
ةيبعشلاةيطارقميدلاةيرئازجلاةيروهمجلا

Peoples Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University May 8, 1945 -Guelma -

Faculty of Mathematics, Computer Science and Material Sciences
Computer Science Department

Masters Degree Thesis
Branch: Computer Science

Option: Informatics Systems

Theme:

Advanced Android Malware Detection: Leveraging Machine Learning for
Zero-Day Threat Defense

Presented by:
Yehya Djaghout

Jury Members:

Title Full Name Quality
Dr. Djalila Boughareb Chairperson
Dr. Abdelhakim Hannousse Supervisor
Ms. Soumia Felkaoui Examiner

June 2024

To my dear parents, as a testament to my
profound gratitude and unwavering

appreciation for all the sacrifices they make
for me, the trust they place in me, and the

boundless love they surround me with.
To my dear brother, for whom I can never

find enough words to express my love. I wish
you all the success in the world.

To my friends and everyone who supported
me throughout this journey. Your

encouragement, understanding, and
companionship have been invaluable. Thank

you for being there for me and for your
unwavering support.

Acknowledgements

— First and foremost, I express my deepest gratitude to Allah, who granted me the
strength, patience, determination, and, most importantly, the health needed to carry
out this work. Without these blessings, the completion of this research would not
have been possible.

— I would like to express my deep gratitude to my supervisor Dr. Hannousse Abdel-
hakim, for his patient guidance, enthusiastic encouragement and useful critiques of
this research work.

— I address my thanks to our head of the department Dr. Zineddine Kouahla and all
my teachers who contributed to our training. I would also like to thank the members
of the jury.

— Finally, I wish to express my heartfelt gratitude to my parents for their unwavering
support and encouragement throughout my studies. Their continuous belief in my
abilities and their constant encouragement have been a source of immense strength
and motivation. Without their love, understanding, and sacrifices, this journey
would not have been possible.

“ ّللاعَِفْرَي ّلاُه� ّلاَومُْكنِماوُنَمآنَيِذ� تٍاَجَرَدَمْلِعْلااوُتو�أنَيِذ� ”
– 11ةيآلا-ةلداجملاةروس

i

صخلم

ةجاحلاىلعدكؤيامم،ةراضلاجماربللاًيسيئراًفدهتحبصأ،عساوقاطنىلعديوردنألاةزهجأمادختساراشتنالاًرظن

فشك�لطلتخملاتباثلاليلحتلًاركتبمًاجهنةلاسرلاهذهمدقت.مهتانايبونيمدختسملاةيامحلةلاّعففشكتايلآلةحلملا

صحفو،تانذإلاليلحتجمديامم،لماكتملاملعتلاةينقتديدحتلابو،ةلآلاملعتتاينقتنمديفتسي،ةراضلاديوردنألاجمارب

ىلعهتردقوفشك�لاةقدزيزعتىلإلماشلاانجهنفدهي.اهنملكةوقرامثتسال،دوكتيابروصتو،يتامولعملازيمرتلا

.رفصلامويتاديدهتدضعافدللةلاّعفةيلآةحاتإوةروطتملاةراضلاجماربريوطتتاكيتكتلاعفلكشبةهجاومل،فيكتلا

ةقيرطلاتققحثيح،ةفلتخمةينمزتارتفنمةراضجماربلتانيعىلعيوتحتتانايبيتعومجمىلعةعساوبراجتتيرجأ

ءادألاعم،ةميدقةراضجماربتانيعنمضتتيتلاتانايبلاةعومجمىلع٪٨٢.٩٩ةبسنبةظوحلمةقدانبةصاخلاةيليلحتلا

انجذومنةيلاعفجئاتنلاهذهدكؤت.٪٦٠.٦٩ةبسنبةثيدحةراضجماربتانيعىلعيوتحتيتلاتانايبلاةعومجمىلعزرابلا

تامولعملانمألاجميفريبكلكشبمهسيامم،ةراضلاجماربلاتايكولسنمةعساوةعومجمدضيوقعافدريفوتيفلماكتملا

ليابوملاةزهجأنامأزيزعتلةيلمعتاقيبطتميدقتو،ةراضلاديوردنألاجماربفشك�لًانرموًامدقتمًالحميدقتلالخنم

.يلمعلاعقاولايف

.ةلآلاملعت،طلتخمجهن،تباثليلحت،ةراضلاديوردنألاجماربفشك:ةيحاتفملاتاملكلا

ii

Résumé

La popularité croissante des appareils Android en fait une cible principale pour les
logiciels malveillants, soulignant le besoin critique de mécanismes efficaces de détection
pour protéger les utilisateurs et leurs données. Cette thèse présente une approche innovante
d’analyse statique mixte qui exploite les techniques d’apprentissage automatique, en
particulier l’apprentissage d’ensemble, pour la détection des malwares Android. Cette
approche intègre l’analyse des permissions, l’examen des opcodes et la visualisation
du bytecode, en capitalisant sur les forces de chaque méthode. Notre approche vise à
améliorer la précision de la détection et son adaptabilité, contrecarrant efficacement
les tactiques évolutives des développeurs de logiciels malveillants, et fournirnissant un
mécanisme de défense efficace contre les menaces Zero-Day. Des expériences approfondies
menées sur deux ensembles de données contenant des échantillons de malwares de
différentes périodes démontrent la performance supérieure de notre méthode. Nous avons
atteint une précision remarquable de 99,82% sur l’ensemble de données comprenant
des échantillons de malwares anciens, mettant en valeur la robustesse de notre modèle
face aux menaces historiques. Pour l’ensemble de données contenant des échantillons de
malwares récents, notre approche a atteint une précision élevée de 96,06%, surpassant
significativement les autres méthodes qui ont montré des baisses notables de performance
avec les malwares plus récents. Ces résultats soulignent l’efficacité de notre modèle intégré
pour fournir une défense robuste contre une large gamme de comportements malveillants.
Cette recherche contribue de manière significative à la cybersécurité en proposant une
solution avancée et flexible pour la détection des malwares Android, offrant des implica-
tions pratiques pour renforcer la sécurité des appareils mobiles dans des applications réelles.

Mots-clés : détection de malwares Android ; analyse statique ; approche mixte ;
apprentissage machine.

iii

Abstract

The widespread use of Android devices has made them a prime target for malware,
highlighting the critical need for effective detection mechanisms to protect users and
their data. This thesis introduces an innovative mixed static analysis approach that
leverages machine learning technique, specifically, ensemble learning, for Android malware
detection, which integrates permission analysis, opcode examination, and bytecode
visualization, capitalizing on the strengths of each method. Our comprehensive approach
aims to enhance detection accuracy and adaptability, effectively countering the evolving
tactics of malware developers, and providing an effective Zero-Day threat defense
mechanism. Extensive experiments conducted on two datasets containing malware
samples from different time periods demonstrate the superior performance of our method.
We achieved a remarkable accuracy of 99.82% on the dataset comprising older malware
samples, showcasing our model’s robustness in handling historical threats. For the
dataset containing recent malware samples, our approach achieved a high accuracy of
96.06%, significantly outperforming other methods which exhibited notable decreases
in performance with newer malware. These findings underscore the effectiveness of our
integrated model in providing a robust defense against a wide range of malware behaviors.
This research contributes significantly to cybersecurity by proposing an advanced and
flexible solution for Android malware detection, offering practical implications for
enhancing mobile device security in real-world applications.

Keywords: android malware detection; static analysis; mixed approach; machine
learning.

iv

Table of Contents

Acknowledgements i

صخلم ii

Résumé iii

Abstract iv

Table of contents v

List of figures vii

List of tables vii

Introduction 1

1. Emerging Threats of Android Malware 3
1.1. Dependency on Mobile Applications . 3
1.2. Android Applications . 4

1.2.1. Role in the Mobile Ecosystem . 4
1.2.2. Popularity of Android Apps . 6
1.2.3. Android Apps on Other Devices . 7

1.3. Structure of Android applications . 8
1.3.1. Manifest File . 9
1.3.2. Application code . 10
1.3.3. Resources . 11
1.3.4. Assets . 11
1.3.5. Native Libraries . 11
1.3.6. META-INF . 11

1.4. Rising Concerns about Android Malware 12
1.4.1. Causes of Android Malware . 12
1.4.2. Definition and Forms of Android Malware 14
1.4.3. Notable Android Malware Attacks 15

v

1.5. Conclusion . 16

2. Android Malware Detection Approaches 18
2.1. Permission-based Approaches . 19
2.2. Opcode-based Approaches . 20
2.3. Visualization-based Approaches . 23
2.4. Hybrid Approaches . 24
2.5. Conclusion . 26

3. A Mixed Static Analysis Approach for Android Malware Detection 27
3.1. Overview of the proposed approach . 28
3.2. Permissions Analysis . 28
3.3. Opcode Examination . 29
3.4. Bytecode Visualization . 30
3.5. Mixed approach . 32
3.6. Conclusion . 33

4. Experimentation and Analysis 34
4.1. Data Collection . 34
4.2. Evaluation process . 36
4.3. Permission-based detection . 37
4.4. Opcode-based detection . 40
4.5. Visualization-based detection . 42

4.5.1. Feature Extraction and Classifier Evaluation 43
4.5.2. Combination Analysis . 45
4.5.3. Performance enhancement via interpolation 48

4.6. Mixed Apporoach-based detection . 49
4.7. Comparison with the State-of-the-art works 51
4.8. Conclusion . 53

Summary and conclusions 54

References 56

vi

List of Figures

1.1. Forecast number of mobile devices worldwide in billions [49]. 4
1.2. Most popular android applications categories [9]. 6
1.3. Market share of mobile operating systems worldwide Q1 2024 [51]. 7
1.4. Structure of Android applications. 9
1.5. A snippet of a simple Manifest file. 10
1.6. Android malware growth over the years [11]. 13
1.7. Distribution of detected mobile malware by type, Q1-Q3 2023 [44][50]. 15

2.1. Classification of Android malware detection approaches. 19
2.2. A snippet of a simple Opcode. 21

3.1. Architecture of our system. 28

4.1. Top 30 important permissions in the APKComboDrebin dataset. 38
4.2. Top 30 important permissions in the APKComboAndrozoo dataset. 39
4.3. Grayscale images generated from individual and combined files. First row

represent images of a benign app while the second row represents the images
generated for a malware app. A: classes.dex, B: AndroidManifest.xml, C:
resources.arsc . 43

4.4. Confusion matrix of static approaches - APKComboDrebin dataset. 51
4.5. Confusion matrix of static approaches -APKComboAndrozoo dataset. 52

vii

List of Tables

4.1. Distribution of benign and malicious samples in experimented datasets . . . 36
4.2. Performance comparison on permission-based detection 38
4.3. Opcode-based performance results using different n-grams 41
4.4. Opcode-based performance results using 2-gram and varying the vector size. 42
4.5. Visualization-based performance results using classes.dex files. 44
4.7. Visualization-based performance results using AndroidManifest.xml files. . . 44
4.6. Visualization-based performance results using resources.arsc files. 45
4.8. Visualization-based performance results using classes.dex and AndroidMani-

fest.xml. 46
4.10. Visualization-based performance results using AndroidManifest.xml and re-

sources.arsc files . 46
4.9. Visualization-based performance results using classes.dex and resources.arsc. 47
4.11. Visualization-based performance results using classes.dex, AndroidMani-

fest.xml and resources.arsc files. 47
4.12. Performance using different interpolation methods using MSER-RF. 48
4.13. Performance using different image sizes within MSER-RF configuration. . . . 49
4.14. Performance of the mixed approach. 50
4.15. Comparison with state-of-the-art works. 52

viii

Introduction

The ubiquitous adoption of mobile devices, particularly Android-powered smartphones,
has revolutionized various aspects of modern life [51]. However, this rapid proliferation has
concurrently introduced critical cybersecurity challenges. The inherent convenience and
accessibility afforded by these mobile technologies have inadvertently created opportunities
for malicious actors to exploit vulnerabilities. Given the predominance of Android devices
in the global market and their role in managing sensitive personal and financial data, the
imperative to secure these platforms cannot be overemphasized. Addressing the security
threats posed to Android ecosystems is of paramount importance to safeguard user privacy
and mitigate potential financial losses or data breaches.

Historically, Android malware has evolved in complexity and prevalence, posing sub-
stantial threats to users and organizations alike. This evolution has been marked by
increasingly sophisticated techniques used by attackers to bypass security measures and
infiltrate devices. Notable malware attacks, such as the notorious DroidDream and the so-
phisticated HummingBad, have highlighted the potential damages, including unauthorized
data access, financial loss, and significant privacy breaches. DroidDream [30], for instance,
infected over 50 applications on the Android Market, leading to widespread data theft
and unauthorized control over infected devices. HummingBad [14, 31], on the other hand,
established a persistent rootkit on devices, enabling the attackers to generate fraudulent
ad revenue and exfiltrate sensitive information. These incidents underscore the urgent
need for robust detection and prevention mechanisms to safeguard users from ever-evolving
malware threats. As malware authors continue to refine their strategies, the challenge for
security professionals becomes increasingly complex, necessitating advanced and adaptive
solutions to protect the vast and diverse Android ecosystem.

Over the years, various approaches have been developed to tackle Android malware,
each with its strengths and limitations [19]. Static methods such as permission-based
analysis, which scrutinizes the permissions requested by apps, and opcode-based detection,
focusing on the operational codes used in app execution, have been widely utilized.
Additionally, visualization techniques that transform code into visual patterns for easier
anomaly detection have gained traction. However, these methods often struggle with
evolving malware tactics and the need for real-time detection.

1

In response to these challenges, our research proposes a mixed static analysis approach
that integrates permission analysis, opcode examination, and bytecode visualization. This
holistic method aims to leverage the strengths of each individual technique to create a more
comprehensive and effective malware detection system. Permission analysis scrutinizes the
permissions requested by applications, identifying those that seek unnecessary or potentially
dangerous access to sensitive data or system functions. Opcode examination delves into
the operational codes used during app execution, uncovering patterns and anomalies that
may indicate malicious intent. Bytecode visualization transforms the code into visual
patterns, making it easier to detect deviations from normal behavior. By combining these
approaches, our model enhances its ability to detect a wide range of malware behaviors and
adapt to new threats more efficiently. This integrated approach not only improves detection
accuracy but also provides a more robust defense against sophisticated malware that might
evade single-method detection systems. Through comprehensive analysis, our method
addresses the multifaceted nature of modern malware, ensuring a higher security level for
Android users, and providing a strong defense mechanism against Zero-day attacks.

The present thesis is structured into four chapters. Chapter 1 highlights the proliferation
of Android systems and the structure of Android applications, aiding in the understanding
of how malware is injected into Android apps. It also discusses the different types
of Android malware and presents some notable examples, along with their impacts.
Chapter 2 provides an overview of various Android malware detection methods, offering
a comprehensive classification of these techniques and presenting related works for each
method. Chapter 3 details the proposed mixed approach for effectively detecting Android
malware and describes the experimental setup adopted to validate the proposed system.
Finally, Chapter 4 presents and discusses the obtained results, comparing them with
state-of-the-art methods. This comparison showcases the advancements provided by the
proposed system in detecting Android malware compared to existing approaches.

2

Chapter 1

Emerging Threats of Android
Malware

The proliferation of smartphones, particularly those powered by the Android operating
system, has revolutionized the way we interact with technology on a daily basis. With
millions of applications available for download from various app stores, Android users enjoy
a diverse range of functionalities, from productivity tools to entertainment apps. However,
this widespread adoption of mobile technology also brings forth significant challenges,
particularly in the realm of cybersecurity. Amidst the convenience and innovation facilitated
by mobile applications, there lurks a growing menace: Android-based malware. These
malicious programs pose a serious threat to the security and privacy of users, potentially
leading to financial losses, identity theft, and unauthorized access to sensitive information.
In this chapter, we delve into the increasing dependence of users on mobile applications,
specifically focusing on those built for the Android platform. We examine the internal
structure of Android applications, uncovering their architectural components. Additionally,
we discuss the profound implications of this reliance, particularly in light of the prevalent
risks posed by Android-based malware. By analyzing the potential consequences of using
these applications, we aim to illuminate the security vulnerabilities and threats encountered
by users. Our exploration underscores the importance of heightened awareness and the
implementation of robust protective measures to mitigate these risks effectively.

1.1 Dependency on Mobile Applications

The prevalence of mobile devices, particularly Android smartphones, has seen a significant
increase in recent years. In 2021, there were nearly 15 billion mobile devices in use globally,
an increase from just over 14 billion in the previous year. This number is projected to rise
to 18.22 billion by 2025, as illustrated in Figure 1.1. This exponential growth reported
by Statista [49] is largely driven by the increasing dependency on mobile applications for
various tasks.

3

0

5

10

15

20

2020 2021 2022 2023 2024 2025

Figure 1.1 – Forecast number of mobile devices worldwide in billions [49].

The meteoric rise of mobile applications has fueled a growing dependency on smart-
phones for an ever-expanding array of tasks. From managing personal finances to ordering
food, from staying connected with friends to accessing critical work documents, mobile
applications have become the go-to solution for addressing myriad needs and desires. The
convenience and accessibility offered by these apps have revolutionized the way we navigate
the modern world, blurring the boundaries between the physical and digital realms.

1.2 Android Applications

Android applications, commonly referred to as apps, are software programs designed to run
on the Android operating system, the world’s most widely used mobile platform. These
apps are integral to the mobile ecosystem, enabling users to perform a wide range of
tasks directly from their smartphones or tablets. Developed using the Android Software
Development Kit (SDK), Android apps are distributed through various channels, with
Google Play Store being the most prominent [8].

1.2.1 Role in the Mobile Ecosystem

Android apps play a pivotal role in the mobile ecosystem, acting as the primary interface
through which users interact with their devices. They facilitate a multitude of functions,
from essential services like communication and navigation to entertainment and education.
By providing tailored experiences and leveraging the capabilities of mobile hardware,
Android apps enhance the usability and versatility of smartphones, making them indis-
pensable tools in modern life. The Android app ecosystem is marked by its extraordinary
diversity and complexity. This vast array of apps can be broadly categorized into several

4

types based on their functionalities 1.2:

— Productivity Tools: These apps help users manage their daily tasks, schedules, and
works. Examples include email clients, calendar apps, to-do lists, and document edi-
tors. The Productivity category has an average rating of 4.1 stars and approximately
28% of apps have over 50,000 downloads [9].

— Games: Ranging from simple puzzles to graphically intensive multiplayer games,
Android gaming apps cater to all age groups and preferences, providing immersive
entertainment experiences. Games are one of the most popular categories with over
100,000 apps, an average rating of 4.3 stars, and about 20% of apps exceeding 50,000
downloads [9].

— Social Networking: Apps like Facebook, Instagram, Twitter, and TikTok enable
users to connect, share, and interact with others globally, fostering a digitally
interconnected society. This category averages a 4.2-star rating and around 30% of
apps have more than 50,000 downloads [9].

— Communication: Messaging and calling apps such as WhatsApp, Telegram, and
Skype facilitate real-time communication through text, voice, and video. The
Communication category boasts an average rating of 4.1 stars, with approximately
25% of apps surpassing 50,000 download [9].

— Media and Entertainment: Streaming services like Netflix, Spotify, and YouTube offer
on-demand access to movies, music, and videos, transforming media consumption
habits. These apps typically have high user engagement, reflected in an average
rating of 4.3 stars and 22% of apps achieving over 50,000 downloads [9].

— E-commerce: Shopping apps like Amazon, eBay, and Alibaba allow users to browse
and purchase products from their mobile devices, revolutionizing retail experiences.
The E-commerce category has an average rating of 4.2 stars, with about 18% of
apps having more than 50,000 downloads and an average price for paid apps being
around $3 [9].

The complexity of these applications varies significantly, from simple utilities with
straightforward functionalities to sophisticated programs that integrate advanced tech-
nologies like artificial intelligence, augmented reality, and cloud computing.

5

0

50000

100000

150000

200000

250000

300000

Pro
ductiv

ty
 To

ols

Gam
es

Social N
etw

ork
in

g

Com
m

unicatio
n

M
edia and E

nte
rta

in
m

ent

E-c
om

m
erc

e

Figure 1.2 – Most popular android applications categories [9].

Figure 1.2 illustrates the distribution of popular Android application categories, re-
vealing significant trends in user preferences and developer focus. Games and e-commerce
applications dominate the landscape with the highest number of applications, underscoring
a robust demand for entertainment and online shopping solutions. The prominence of
these categories can be attributed to their extensive user engagement and the profitability
of in-app purchases and e-commerce transactions. In contrast, social networking and
communication applications represent the lowest numbers, indicating either a market
saturation of existing applications or a reduced demand for new entries in these domains.

1.2.2 Popularity of Android Apps

The popularity of Android apps is underscored by compelling statistics and trends. As of
the latest data, the Google Play Store hosts over 1.9 million apps, making it the largest
app marketplace globally. The adoption of Android apps continues to surge, driven by
the widespread availability of affordable Android devices and the continuous innovation in
app development. Several key statistics highlight the dominance and usage patterns of
Android apps:

— Download Volumes: In 2023, Android apps were downloaded over 100 billion times
globally. This immense volume of downloads highlights the widespread adoption
and reliance on Android apps across different demographics and regions [39, 40].

— Market Share: Android holds a dominant position in the global smartphone market,
with over 70% of mobile devices operating on the Android OS. This significant
market share ensures a vast and diverse user base for Android applications [39].

6

— User Engagement: Android users exhibit high levels of engagement with their apps,
spending several hours daily interacting with various applications. Categories such
as social networking, gaming, and streaming media are particularly popular, driving
substantial user engagement and interaction [13].

0%

20%

40%

60%

80%

Android iOS Others

Figure 1.3 – Market share of mobile operating systems worldwide Q1 2024 [51].

Figure 1.3 shows that Android has the highest market share among mobile operating
systems worldwide in Q1 2024, with around 70%. iOS comes second with a market
share of around 28%, while other operating systems like Samsung, Windows Phone
collectively account for a small portion of around 2% market share. These statistics not
only demonstrate the popularity and widespread use of Android apps but also underline
their critical role in the daily lives of users. The extensive reach and significant impact of
Android applications necessitate ongoing efforts to ensure their security and reliability,
particularly in the face of rising malware threats.

1.2.3 Android Apps on Other Devices

Beyond smartphones and tablets, Android applications have expanded their reach to a
variety of other devices, significantly enhancing their functionality and user experience.
One prominent example is the integration of Android apps with smart TVs [20].

— Android TV: Android TV is a version of the Android operating system designed
for digital media players and smart TVs. It provides a consistent and user-friendly
interface for accessing streaming services, games, and other apps on the larger screen.
Android TV supports Google Play Store, allowing users to download and install a
wide range of apps optimized for television screens.

7

— Wear OS: Android applications also extend to wearable devices through Wear OS,
Google’s operating system for smartwatches. These apps offer functionalities such as
fitness tracking, notifications, navigation, and music playback, significantly enhancing
the utility of wearables. By integrating these capabilities, Wear OS apps provide
a seamless and enriched user experience, making smartwatches more versatile and
essential in daily life.

— IoT Devices: The versatility of Android applications also extends to Internet of
Things (IoT) devices. From smart speakers to home automation systems, Android
apps empower users to control and monitor various IoT devices, creating a cohesive
and interconnected smart home environment. This integration facilitates seamless
interaction between devices, enhancing convenience and efficiency in everyday life.

1.3 Structure of Android applications

Android applications are distributed as APK (Android Package Kit) files, which are
essentially compressed archives containing all the necessary files for an application to
function on an Android device. Understanding the structure of these APK files is crucial
for malware detection and analysis, as it allows for a detailed inspection of their contents
to identify any malicious components. While typical APK files include components like
the AndroidManifest.xml, classes.DEX file (compiled code), res folder (resources), assets
folder, and META-INF directory, deviations such as the presence of multiple .DEX files
or the absence of certain expected files can indicate anomalous or potentially malicious
behavior. Figure 1.4 illustrates the internal structure of typical APK files.

8

Figure 1.4 – Structure of Android applications.

1.3.1 Manifest File

The Manifest File, known as AndroidManifest.xml, serves as a comprehensive guide for an
Android application. This file is crucial as it defines key information that the Android
operating system needs before executing any of the app’s code. It specifies the app’s
package name, which uniquely identifies the app on the device and in the Google Play
Store. Additionally, the manifest file lists the permissions required by the app, such as
access to the internet, camera, or location services. These permissions inform users about

9

the app’s potential access and functionality, enhancing transparency and security. The
manifest also declares the minimum Android version required for the app to run, ensuring
compatibility with the device’s operating system. By detailing these vital components,
the Manifest File plays a pivotal role in the app’s deployment and functionality, acting as
a blueprint for the Android OS to correctly manage and execute the app [16].

Figure 1.5 illustrates a code snippet of an Android AndroidManifest.xml file, which
serves as a declaration for a simple Android application. It specifies the package name
com.example.myapp, which uniquely identifies the application. The <uses-permission>
tag requests internet access for the app. The <application> tag contains several attributes:
allowBackup enables data backup, icon sets the application’s launcher icon, label sets
the application’s name, supportsRtl ensures right-to-left text layout support, and theme
specifies the application’s theme. Within the <application> tag, an <activity> element
defines the main activity (MainActivity) and includes an <intent-filter> that designates
this activity as the application’s entry point, launching it when the device’s home screen
icon is tapped. This setup ensures the proper configuration and behavior of the Android
application.

Figure 1.5 – A snippet of a simple Manifest file.

1.3.2 Application code

The application code, encapsulated within the compiled classes.dex file, contains the essen-
tial logic and functionality of the application. This file includes the actual programming
code, typically written in Java or Kotlin, defining how the application operates and re-
sponds to user interactions. It encompasses various components such as activities, services,
broadcast receivers, and content providers, each contributing to different aspects of the

10

application’s functionality. Within this code, developers implement algorithms, business
logic, user interface elements, and interactions with external resources like databases and
network services. The application code serves as the backbone of an Android application,
dictating its behavior and ensuring its proper functioning [16].

1.3.3 Resources

The resources folder plays a crucial role in ensuring the smooth functioning of Android
applications across various devices and user environments. It encompasses a diverse set
of components, including layout files defining the user interface structure, image files for
graphical elements, string files containing localized text for different languages, and XML
files specifying configuration parameters and other settings. These resources collectively
provide the visual and textual elements necessary for the application’s user interface and
overall experience. By separating these elements from the application code, developers can
easily customize and adapt the application’s appearance and behavior without modifying
the underlying logic, facilitating better maintainability and scalability of the application.
The folder also contains a .arsc file, often named resources.arsc, which includes compiled
resources like strings and styles, making them more efficient to access at runtime. This
file is generated during the build process and serves as a binary representation of the
application’s resources [16].

1.3.4 Assets

The Assets folder within an Android application houses raw files that don’t fall under the
category of traditional resources. These files might include additional fonts, data files,
or other resources that the app needs but aren’t considered part of the core resource set.
Unlike resources stored in the res directory, assets are accessed using a different mechanism
and are typically read directly from the APK at runtime [16].

1.3.5 Native Libraries

The lib folder within an APK file stores platform-specific libraries that are essential
for performance-intensive operations within the application. These libraries, typically
written in lower-level languages such as C or C++, provide optimized functionality for
resource-intensive tasks, thereby enhancing the overall performance of the application [16].

1.3.6 META-INF

The META-INF directory within an Android application houses metadata about the APK
file itself. This metadata includes information about the contents of the APK and signature
files used to authenticate the application’s integrity and origin. The MANIFEST.MF

11

file, found within this directory, lists the contents of the APK and plays a vital role in
helping the Android system understand the structure, components, and authenticity of
the installed application [16].

1.4 Rising Concerns about Android Malware

Amidst the proliferation of mobile applications, the threat of Android malware casts a
significant shadow over the digital landscape. Malicious actors, driven by financial motives,
espionage, or malicious intent, exploit vulnerabilities in the Android ecosystem to introduce
a wide range of threats to unsuspecting users [21].

The implications of Android malware extend beyond individual users, affecting organi-
zations, industries, and the broader cybersecurity landscape. For users, falling victim to
Android malware can lead to financial losses, identity theft, privacy breaches, and reduced
device performance.

Moreover, the impact of Android malware is not limited to mobile devices. With the
integration of Android into various IoT devices, such as smart home systems, connected
appliances, and industrial IoT deployments, the risks to data privacy, device integrity, and
user safety are substantial.

Similarly, Android TV devices and Wear OS smartwatches are also vulnerable to
malware. Compromised Android TV devices can be used to launch DDoS attacks, distribute
malicious content, or intercept sensitive information, while infected Wear OS devices may
jeopardize user privacy, health data, and personal information.

For organizations, the consequences of Android malware can be even more severe,
including data breaches, regulatory penalties, reputational damage, and operational
disruptions. In an interconnected world where mobile devices serve as gateways to
corporate networks and critical infrastructure, the repercussions of Android malware can
resonate across entire industries and economies [21].

1.4.1 Causes of Android Malware

The prevalence of Android malware is fueled by several key factors that create opportunities
for malicious actors to infiltrate and compromise devices:

— Open-Source Nature of Android: Android’s open-source framework, while fostering
innovation and customization, also makes it more susceptible to exploitation. The
flexibility that allows developers to modify the operating system can be exploited by
malicious actors to insert malware into apps or even the OS itself [53].

— Fragmentation of the Android Ecosystem: The Android ecosystem is highly frag-
mented, with numerous manufacturers and devices running different versions of the
OS. This fragmentation results in inconsistent security updates and patches, leaving

12

many devices vulnerable to known exploits. Attackers often target older, unpatched
versions of Android [53].

— Lax App Review Processes: Despite efforts by Google to enhance security, the Google
Play Store has historically struggled with lax app review processes, relaxed or lenient
procedures employed by app stores or platforms when evaluating and approving
applications for distribution to users. Malicious apps can sometimes evade detection
and be distributed to millions of users before being identified and removed. This
problem is exacerbated by third-party app stores, which often have even less stringent
security measures [53].

— Social Engineering and Phishing: Attackers often use social engineering tactics to
trick users into downloading malicious apps or clicking on harmful links. Phishing
emails, malicious SMS messages, and fake websites are common methods used to
distribute Android malware [53].

— Third-Party App Stores: While Google Play Store is the primary source for Android
apps, many users download apps from third-party app stores, which often lack
rigorous security checks. These stores can host pirated apps that are infected with
malware, significantly increasing [53].

— Rooting and Jailbreaking: Users who root or jailbreak their devices to gain more
control and remove manufacturer restrictions often disable built-in security features.
This practice can expose the device to a higher risk of malware infection as it bypasses
many of the security protocols established by the Android OS [53].

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

2020 2021 2022 2023 2024

Figure 1.6 – Android malware growth over the years [11].

Figure 1.6 illustrates the growth of Android malware over the years, highlighting a
significant spike in the number of malware instances in 2020 and 2021. During these years,

13

the count of Android malware sharply increased, reaching its peak. This surge could
be attributed to several factors, including the rapid expansion of the Android user base,
increased internet penetration, and the exploitation of vulnerabilities by cybercriminals
amid the global shift to remote work and online activities due to the COVID-19 pandemic.
However, in subsequent years, the number of Android malware instances shows a noticeable
decline, which may suggest improved security measures, better user awareness, and
enhanced detection and prevention technologies within the Android ecosystem.

1.4.2 Definition and Forms of Android Malware

Android malware refers to malicious software specifically designed to target Android
operating systems. Various forms of Android malware include:

— Spyware: Spyware is a type of malware designed to covertly gather user information
without their consent. It can access various types of data, including contact lists,
messages, browsing history, and even real-time location data [23]. A significant
instance of spyware was the discovery of malicious code in some file manager
applications on Google Play, which transmitted sensitive information to servers in
China. The widespread impact of this threat was highlighted in a report indicating
that spyware affected over 40% of organizations globally [46].

— Adware: Adware automatically displays or downloads unwanted advertisements
on the users device. Some adware operates stealthily, running in the background
to generate revenue through ad clicks [23]. For example, the Goldoson malware,
discovered in several popular apps, was found to load hidden ads and harvest user
data. According to a study, adware was responsible for 42.55% of all detected mobile
threats, highlighting its significant presence in the mobile threat landscape [45].

— Ransomware: Ransomware locks the users device or encrypts their data, demanding
a ransom to restore access. Android ransomware can be particularly devastating as
it can render the device unusable until the ransom is paid [15]. In 2023, a surge in
ransomware attacks was observed, with the mobile sector witnessing a 35% increase
in ransomware incidents compared to the previous year. This trend underscores the
growing threat of ransomware in the mobile ecosystem [2].

— Trojans: Trojans are malicious programs that disguise themselves as legitimate appli-
cations to trick users into installing them. Once installed, they can perform various
malicious activities, such as stealing personal information or subscribing users to
premium services without their knowledge [23]. The Fleckpe subscription Trojan, for
instance, downloaded additional payloads and subscribed users to unwanted services.
In 2023, Trojans accounted for 34% of mobile malware detection, demonstrating
their significant presence in the threat landscape [24].

14

Q1 2023 Q2 2023 Q3 2023

0% 10% 20% 30% 40% 50% 60%

AdWare

Trojan

Risktool

Spyware

Ransomware

Figure 1.7 – Distribution of detected mobile malware by type, Q1-Q3 2023 [44][50].

Figure 1.7 shows the distribution of detected mobile malware by type from Q1 to
Q3 2023. The percentage of AdWare, which was relatively high in Q1 and Q2, dropped
significantly in Q3. This decline suggests a reduction in the prevalence or effectiveness of
AdWare during this period. In contrast, the percentage of Risktool malware exhibited a
substantial increase in Q3 compared to the earlier quarters. This shift indicates a growing
trend or focus on Risktool malware, which often includes applications that can be misused
for malicious purposes, such as gaining unauthorized access or performing harmful actions.
The data highlights changing dynamics in mobile malware threats, emphasizing the need
for adaptive security measures.

1.4.3 Notable Android Malware Attacks

Android malware poses a significant threat to the security and privacy of millions of
users worldwide. These malicious software programs target vulnerabilities within the
Android operating system, often exploiting unsuspecting users through seemingly legitimate
applications or websites. In recent years, several high-profile malware campaigns have
underscored the severity of this threat, highlighting the need for robust cybersecurity
measures and proactive detection strategies. In this section, we delve into four notable
instances of Android malware: Judy Malware, HummingBad, Gooligan, and Xiny. Each of
which has left a significant impact on the Android ecosystem, affecting millions of devices
and demonstrating the evolving tactics used by cybercriminals to infiltrate mobile devices.

— Judy Malware: One of the largest malware campaigns, Judy infected over 36 million
devices by embedding itself in over 40 apps on the Google Play Store. It primarily

15

functioned as adware, generating fraudulent clicks on advertisements to generate
revenue for the attackers. Discovered in May 2017, the malicious apps had been
present on the Play Store for an extended period, potentially affecting users for a
long time before being detected and removed by Google. These attacks highlight the
persistent and evolving nature of Android malware threats. Each incident emphasizes
the need for robust security practices and advanced detection mechanisms to protect
against the increasing sophistication of cyber threats targeting Android devices [41].

— HummingBad: Discovered in February 2016, HummingBad infected around 10
million devices. This malware installed fraudulent apps and generated fraudulent
ad revenue. It also attempted to gain root access to devices, allowing it to perform
more severe malicious activities. The campaign was linked to a group of Chinese
cybercriminals known as Yingmob, and at its peak, it was estimated to generate
$300,000 per month in revenue from fraudulent ads. Efforts to resolve it involved
extensive updates and security patches from Google and other stakeholders in the
Android ecosystem [14].

— Gooligan: Gooligan malware compromised over a million Google accounts by tar-
geting older versions of the Android OS. It gained root access to devices and stole
authentication tokens that allowed attackers to access users Gmail, Google Photos,
Google Docs, and other services. This malware was discovered in November 2016
and was part of a larger campaign affecting at least 86 apps available on third-party
app stores. The financial impact included both direct revenue from fraudulent app
installs and the potential indirect costs related to data breaches and unauthorized
access to sensitive personal information [14].

— Xiny: A persistent threat since 2015, Xiny malware is known for its ability to root
devices and install unwanted apps. It affected millions of devices and continuously
evolved to bypass security measures, making it particularly challenging to eradi-
cate. The malware’s capability to re-infect devices even after a factory reset posed
significant challenges. Efforts to combat Xiny included continuous updates to An-
droid’s security features and collaboration between Google and security researchers
to identify and block new variants of the malware[32].

1.5 Conclusion

The meteoric rise of Android applications and the increasing reliance on mobile devices
have undoubtedly transformed our daily lives, offering unparalleled convenience and access
to a wealth of services. However, this technological revolution comes with an inherent risk:
the proliferation of Android malware. As we have explored in this chapter, the threat
landscape is rapidly evolving, with cybercriminals continuously developing new tactics

16

and exploiting vulnerabilities within the Android ecosystem. The implications of Android
malware extend far beyond individual users, posing significant risks to organizations,
industries, and critical infrastructure. Financial losses, data breaches, privacy violations,
and operational disruptions are just a few of the potential consequences of falling victim
to these malicious attacks. Addressing this challenge requires a multifaceted approach,
combining robust security practices, advanced detection mechanisms, and a heightened
awareness among users and developers alike. We delve deeper into the realm of Android
malware detection and mitigation strategies, in the next chapter.

17

Chapter 2

Android Malware Detection
Approaches

As Android has emerged as the dominant mobile operating system, malware targeting
Android devices has become a growing concern. The widespread presence of malicious
apps not only violates user privacy and security but also endangers sensitive personal and
financial information. Traditional detection methods that rely on known malware signatures
are proving ineffective in keeping up with the rapid evolution of malware. This has spurred
the need for more robust and adaptive detection techniques, particularly those powered by
machine learning (ML) approaches. Machine learning holds promise by analyzing patterns
and behaviors associated with malware, allowing for the identification of previously
unidentified threats [28]. By training on vast datasets of both benign and malicious
applications, ML models can effectively discern subtle differences and generalize from
learned patterns to detect new variants of malware. This paradigm shift towards ML-based
detection methods underscores the importance of integrating advanced computational
techniques to enhance security measures against sophisticated cyber threats [34]. In
this chapter, we offer a thorough presentation of significant research efforts leveraging
Machine Learning (ML) techniques for the detection of Android malware. Through
a meticulous examination of these studies, our aim is to elucidate the advancements,
methodologies, and outcomes attained in the domain of Android malware detection using
ML. Notably, the literature encompasses four primary techniques, each offering distinct
advantages: permission-based, opcode-based, visualization-based, and hybrid approaches [29].
In the following sections of this chapter, we will describe each of these approaches in
detail, discussing notable research works and advancements associated with each method.
Figure 2.1 illustrates a classification of various approaches documented in the literature
for detecting Android malware.

18

Figure 2.1 – Classification of Android malware detection approaches.

2.1 Permission-based Approaches

Android applications must explicitly declare the permissions they require, such as access
to the camera, contacts, or internet, in their manifest files (AndroidManifest.xml, refer
to Section 1.3 for more details about the structure of the Android application file). This
is essential for the operating system to manage application privileges and maintain user
security. However, malware often exploits this by requesting excessive or inappropriate
permissions to perform malicious activities, such as accessing sensitive data or controlling
device functions without the user’s consent.

Permission-based detection methods leverage this aspect by meticulously analyzing the
permissions requested by an application. These methods involve creating profiles of known
benign and malicious applications based on their permission requests. Machine learning
models are then trained on these profiles to learn the patterns and correlations between
specific permissions and malicious behavior. For instance, an application requesting access
to both the camera and the internet might be flagged as suspicious, especially if it doesn’t
have a clear reason for needing both [26]. By evaluating the permissions requested by new
applications and comparing them with the established profiles, trained machine learning
models can classify applications as either malicious or benign. This approach not only
helps in detecting existing malware but also in identifying new, previously unseen threats
by recognizing anomalous permission requests that deviate from normal behavior patterns.

Alsoghyer and Almomani [5] investigated the role of application permissions in detecting
Android ransomware. Their study focused on analyzing 115 permissions associated with
ransomware behavior. Receiving boot system completion, internet access, network state
access, reading phone state, and writing into external storage were found among the
top frequently required permissions by Android ransomware. To assess the effectiveness
of various machine learning models in ransomware detection, the authors experimented
with several classifiers, including Random Forest (RF), Sequential Minimal Optimization
algorithm (SMO), Decision Tree (DT), and Naïve Bayes (NB). Utilizing a balanced dataset
comprising 500 samples for each category (ransomware and benign apps), the RF model

19

emerged as the most effective, achieving an impressive accuracy of 96.9%.
Rathore et al. [42] conducted an extensive analysis on Android permissions, identifying

a set of 197 permissions and applying three distinct dimensionality reduction techniques:
variance threshold, principal component analysis, and auto-encoders, to derive 16 significant
permissions. Noteworthy permissions among these included reading phone state, writing
into external storage, and Wi-Fi access permissions. The study employed a diverse range
of machine learning models, including deep neural networks, to assess performance on
a dataset comprising 5560 malware and 5721 benign Android applications. Among the
models evaluated, the Random Forest classifier exhibited the best overall performance.
With the original feature set, it achieved the highest area under the curve (AUC) score of
98.1%. Furthermore, employing the reduced feature sets obtained from each dimensionality
reduction technique, the Random Forest classifier yielded AUC scores of 97%, 97.6%, and
97.7%, respectively, showcasing its robust performance across different data representations.

Todd McDonald et al. [33] conducted a study on the effectiveness of using Android
manifest permissions as features for machine learning-based malware detection. They
allowed individual machine learning algorithms to assign weights to each feature, focusing
on analyzing permissions. Among the most frequently encountered permissions, internet
and network state access, as well as reading phone state, were found to be prevalent.
The study utilized four machine learning algorithms: Random Forest, Support Vector
Machine, Gaussian Naïve Bayes, and K-Means. Random Forest emerged as the top
performer, achieving an F1-score of 84.2%. Evaluating their approach on a substantial
dataset comprising 4,597 benign and 6,000 malicious Android applications, the authors
demonstrated that single-algorithm machine learning techniques utilizing only manifest
permissions can surpass commercial antivirus engines in Android malware detection.

2.2 Opcode-based Approaches

Opcode-based techniques focus on the sequences of opcodes (operation codes) executed by
an application. Opcodes are the fundamental instructions that a CPU executes to perform
various operations, such as arithmetic, data movement, and control flow. Opcodes in
Android applications are the low-level instructions that the Android runtime environment
either Dalvik Virtual Machine (DVM) [1] or Android Runtime (ART) [56] executes. These
opcodes dictate the fundamental operations that the application performs, ranging from
arithmetic operations and data handling to control flow management. In an APK file,
these opcodes are found within the classes.DEX file (refer to Section 1.3 for more details
about the structure of the Android application file), which is the compiled bytecode of
the application. When developers write code in languages like Java or Kotlin, this code is
compiled into the Dalvik Executable format (.DEX), which contains the opcode sequences.
By decompiling the classes.DEX file using tools like JADX or APKTool, one can extract

20

and analyze these opcodes to understand the application’s behavior and identify any
malicious patterns.

Figure 2.2 represents a simple method that prints "Hello, Dalvik!" to the standard
output. The .registers 2 directive indicates that the method uses two registers, v0 and
v1. The const-string instruction loads a string constant into register v0, sget-object
loads a static object reference from a class field into register v1, and invoke-virtual calls
the println method on the PrintStream object referenced by v1. Finally, return-void
terminates the execution of the method.

Figure 2.2 – A snippet of a simple Opcode.

Analyzing the sequences of these opcodes can reveal characteristic patterns associated
with both benign and malicious behavior. For instance, certain opcodes may be used
more frequently in malware to exploit system vulnerabilities, access sensitive data, or
perform unauthorized actions. By examining these patterns, security researchers can
develop profiles of typical opcode sequences for benign applications and compare them to
those found in potential malware.

To automate and enhance the detection process, machine learning algorithms can be
used. These algorithms can be trained on labeled datasets of known benign and malicious
applications to learn the distinctive opcode patterns associated with each class. Once
trained, these models can analyze new applications’ opcode sequences to identify deviations
from normal patterns, flagging those that exhibit suspicious or anomalous behavior
indicative of malware. Opcode analysis provides a fine-grained view of an application’s
functionality, making it a powerful tool for malware detection. Unlike higher-level features,
such as permissions, opcodes offer a detailed and granular perspective on the actual
operations an application performs. This detailed insight can help uncover sophisticated
malware that may evade detection through more superficial analysis methods [26].

Niu et al. [38] proposed a novel method for generating opcode sequences by analyzing
Function Call Graphs (FCGs). These FCGs serve as representations of the calling
relationships between functions within a program, effectively capturing the program’s
flow and behavior. The extracted sequences of opcodes are then converted into numerical
values or vectors using one-hot encoding. For classification purposes, the authors employed
a Long Short-Term Memory (LSTM) neural network, chosen for its suitability in handling

21

sequential data such as opcode sequences. The parameters of the LSTM model were fine-
tuned using grid search and cross-validation techniques to optimize performance. In their
experimentation, the LSTM-based neural network, with an embedding layer initialized
through Word2Vec, outperformed other classifiers such as Support Vector Machines (SVM).
It achieved higher accuracy in malware detection compared to traditional machine learning
models, with an F1-score of 97%. This evaluation was conducted on a dataset comprising
1000 benign, 1000 Trojan, and 796 AdWare samples.

Sihag et al. [47] proposed a probabilistic method for classifying Android malware
into families based on analyzing their opcodes. They utilized a dataset containing 1010
samples from 15 different Android malware families. The study began by extracting opcode
sequences from the classes.DEX files of these samples using the APKTool, retaining only
the opcode operations and discarding the operands. Similar operations were then grouped
together and assigned common, abstract names to standardize the opcode representation.
Next, the authors generated n-grams ranging from 1 to 5, which were then filtered using a
frequency-based method to select the most representative features. They experimented
with different feature vector lengths, including 128, 256, 512, and 1025, to determine the
optimal configuration for classification. The classification process utilized a Bloom filter to
measure the similarities among samples. This approach allowed the identification of closely
related family sets for each malware sample during the training phase. Through extensive
experimentation, the best performance was achieved using 128 features of 5-grams, resulting
in an accuracy of 94.34%.

Kaleem et al. [37] introduced Op2Vec, an innovative technique for converting opcodes
of Android applications into meaningful vector representations using the skip-gram model,
a neural network-based approach for learning word embeddings. In this method, opcodes
are treated similarly to words in natural language processing. Opcode sequences are
extracted from classes.DEX files, and the skip-gram model is trained on these sequences
to learn embeddings where opcodes with similar contexts are mapped to nearly identical
vectors. The Op2Vec embeddings are then used to create sequences of vectors for end-to-
end Android malware detection, replacing traditional manual feature engineering. These
vector sequences are fed into various deep neural networks, including Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory
(LSTM) networks, to automatically learn and classify malware. This approach leverages
the context-based learning capability of skip-gram to capture the semantic relationships
between opcodes, enhancing the effectiveness of malware detection. The authors evaluated
several recent deep learning techniques on their Op2Vec dataset, demonstrating significantly
improved performance. They reported an average detection accuracy of 97.47% on a
dataset comprising 16240 benign and 12330 Android malware applications, underscoring
the robustness of the Op2Vec approach in accurately identifying malicious applications.

22

2.3 Visualization-based Approaches

Visualization-based detection methods in Android malware analysis involve converting
the application’s code, typically stored in binary files like classes.DEX, into visual repre-
sentations, often grayscale or color images, where each byte of the binary file is mapped
to a pixel intensity value. This transformative process encodes the bytecode instructions
into pixel values, generating images with specific sizes that encapsulate the structural
and sequential aspects of the code. The fundamental assumption is that malware and
benign software will exhibit distinct visual patterns when rendered as images. Leveraging
computer vision and deep learning techniques, researchers aim to discern these patterns
within the images [17].

Once the binaries are converted into images, those images can either be fed directly
into deep learning models with convolutional layers for feature extraction and analysis.
Alternatively, feature extraction techniques such as using local or global image descriptors
can be applied to extract distinctive features from these images. These features capture
the underlying patterns and characteristics of the binary data that correspond to malicious
behavior. By analyzing these visual features, machine learning models can be trained to
differentiate between benign and malicious files with high accuracy. The extracted features
serve as inputs to various machine learning classifiers, enhancing the detection capability
by focusing on the visual signatures of malware [26, 35].

Ding et al. [17] conducted a study utilizing a dataset comprising 3962 malware samples
spanning 14 families and 1000 benign samples. The research proposed a novel approach
involving the transformation of the content within the classes.DEX files into grayscale
images with dimensions of 512x512 pixels. These images were subsequently employed
as input for a Convolutional Neural Network (CNN). The CNN architecture comprised
multiple convolutional and pooling layers designed to automatically learn and extract fea-
tures from the image data. To identify the optimal model structure, various configurations
of the CNN were explored, differing in the number of convolutional and pooling layers
utilized. Through systematic experimentation, the study aimed to determine the most
effective architecture for malware detection based on image representations of Android
application code. The study achieved the best performance by incorporating high-order
feature maps into their CNN architecture, resulting in an accuracy of 95.1%.

Mercaldo and Santone [35] proposed an innovative method for detecting mobile malware
and classifying them into their respective families and variants by representing Android
applications as grayscale images. The images have a fixed width of 256 pixels and a
variable length depending on the size of the binary file. They extracted a feature vector
of 256 dimensions from the grayscale histogram of each image, which served as input to
various traditional classifiers, including J48, Random Tree (RT), Random Forest (RF),
AdaBoost, and Bayesian Network (BN), as well as a Deep Neural Network (DNN). The

23

DNN architecture utilized by the authors consists of an input layer, multiple hidden layers
(ranging from 1 to 12), a dropout layer for regularization, a batch normalization layer, and
an output layer. This architecture was experimented with to determine the optimal number
of hidden layers for the best performance. The proposed approach was tested on three
main tasks: malware detection, family identification , and family variant detection. The
method was evaluated on a comprehensive dataset comprising 50000 Android applications
(24553 malware and 25447 benign). The results demonstrated the effectiveness of the
approach, with the DNN achieving the best performance with 10 hidden layers. The
F1-scores obtained were 87.5% for malware detection, 91.5% for family identification, and
95.9% for family variant detection.

Almomani et al. [4] propose an automated vision-based Android malware detection
(AMD) model that employs 16 different fine-tuned convolutional neural network (CNN)
algorithms. The bytecodes of the classes.dex files extracted from the Android benign and
malware apps were converted to color and grayscale visual images with different resolutions
based on the app sizes. For example, the input image resolution for the Xception CNN
algorithm, which achieved the best performance, was 299x299x3. The generated images
were resized to meet the input requirements of the employed CNN algorithms. Both
balanced (2486 malware and 2486 benign samples) and imbalanced (14733 malware and
2486 benign samples) datasets were used for training and testing. The fine-tuned Xception
CNN algorithm achieved the best performance, with a detection accuracy of 99.40% for
balanced color images and 98.05% for imbalanced color images, outperforming other CNN
algorithms and existing approaches that utilize conventional vision-based algorithms on
the same benchmark Android dataset.

2.4 Hybrid Approaches

Hybrid techniques in Android malware detection involve the integration of multiple detec-
tion methods to capitalize on the unique advantages of each approach. For instance, one
hybrid approach might combine visualization-based and opcode-based techniques, allowing
for the simultaneous analysis of both visual patterns and opcode sequences within Android
applications. By leveraging both types of information, this hybrid method aims to enhance
detection accuracy by capturing a broader range of malware characteristics. Another
prevalent hybrid strategy involves integrating permission analysis with opcode analysis.
This combined approach offers a comprehensive understanding of an application’s behavior
by considering both the requested permissions and the underlying opcode sequences. By
combining these insights, hybrid techniques can often achieve higher detection rates and
lower false-positive rates compared to using a single detection method alone [26].

Geden [18] explored various features extracted through the application of several reverse
engineering methods to the classes.DEX file, alongside string features extracted from

24

the Manifest.MF meta file and AndroidManifest.xml file. The authors employed n-gram
analysis of different lengths (3-grams, 4-grams, and 5-grams) and utilized two primary
feature selection methodologies: Information Gain (IG), which scores features based on
their information gain, and a novel method called Normalized Angular Distance (NAD),
which prioritizes features based on their distinguishing level over document frequencies.
The system architecture encompasses data collection from reverse engineering files, feature
extraction using n-gram models, feature selection through IG and NAD techniques, and
classification using various classifiers. Evaluation was conducted on a dataset comprising
1800 benign and 1800 malicious APK files, with a focus on accuracy and resilience
against unseen Android malware families. The highest performance was achieved using
a combination of 4-grams extracted from the classes.DEX file and 5-grams from the
AndroidManifest.xml file with the Random Forest (RF) classifier, resulting in an accuracy
of 98.33%, outperforming other classifiers such as Support Vector Machine (SVM) and
Naïve Bayes (NB).

Alzaylaee et al. [6] introduced DL-Droid, a system that employs a deep neural network
(DNN) trained on a combination of static and dynamic features. Static features encompass
permissions, while dynamic features include API calls and intents. For feature extraction,
DL-Droid leverages DynaLog, an automated platform capable of sequentially running
a large number of Android applications on real devices or emulators and logging their
dynamic behaviors. DynaLog is further modified to extract permissions before execution.
The extracted features are then utilized to train a DNN classifier for detecting malware
among benign Android applications. Evaluated on over 31,125 applications (11,505 malware
and 19,620 benign), DL-Droid achieved its peak performance with a detection F1-score of
96.27%. The DNN model, comprising 3 hidden layers with 200 neurons each, surpassed
traditional machine learning classifiers.

Maryam et al. [48] proposed two hybrid machine learning-based Android malware
detection frameworks, HybriDroid and cHybriDroid, which combine static and dynamic
analysis techniques. HybriDroid uses a machine learning model trained on static features
such as permissions and intents. Applications flagged as suspicious by this model are then
subjected to a dynamic analysis phase. This phase involves executing the application
in an emulator and extracting dynamic features, such as system calls, usage of external
DeXClass, cryptographic activities, and rehashing activities. These dynamically extracted
features are used to train a secondary machine learning model to refine the detection
of malicious behavior. In contrast, cHybriDroid simultaneously extracts both static
and dynamic features and combines them into a single feature set. This comprehensive
feature set is then fed into a single machine learning model for malware detection. The
authors experimented with several classifiers, including Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), and the Tree-based Pipeline
Optimization Tool (TPOT), a Python automated machine learning tool that optimizes

25

machine learning pipelines using genetic programming. Their experiments were conducted
on a dataset comprising 2500 benign samples and 2500 malware samples from various
families. The best performing model for the proposed system was the TPOT-based
technique, achieving an F-score of 97%.

2.5 Conclusion

The detection of Android malware has become critical due to the increasing sophisti-
cation of malicious applications. Traditional signature-based methods are insufficient
against evolving threats, prompting the development of advanced machine learning (ML)
techniques. This chapter explores four primary ML-based approaches: permission-based,
opcode-based, visualization-based, and hybrid methods. Permission-based approaches
analyze the permissions requested by applications. These methods are effective because
malicious applications tend to request a distinct set of permissions compared to benign ones.
Opcode-based techniques focus on the sequences of operation codes (opcodes) executed
by applications. By leveraging neural networks, these techniques can detect patterns
in the opcodes that are indicative of malware, resulting in significant detection rates.
Visualization-based methods convert binaries into visual representations. Convolutional
neural networks (CNNs) can then be used to detect malware based on visual patterns found
within these images. This innovative approach allows for the identification of malicious
software by visualizing code as images, revealing patterns that might not be apparent
through traditional text-based analysis. Hybrid approaches combine multiple methods
to enhance detection effectiveness. By integrating static and dynamic analysis features,
hybrid models can leverage the strengths of each individual method, leading to more
comprehensive and accurate malware detection.

The integration of ML in Android malware detection signifies a shift towards more
adaptive and intelligent security measures, essential for mitigating sophisticated cyber
threats and ensuring user safety. However, the research landscape shows that no single
approach can comprehensively address all types of malware due to the diverse strategies
employed by malicious actors. Therefore, ongoing research and development are focused on
creating more robust, versatile, and resilient detection frameworks. This includes exploring
more hybrid techniques, continuous feature enhancement, and real-world testing to adapt
to new and emerging threats. The evolving nature of cyber threats necessitates a dynamic
and proactive approach to Android malware detection, underscoring the importance of
advanced machine learning methodologies in safeguarding users and systems.

26

Chapter 3

A Mixed Static Analysis Approach
for Android Malware Detection

The prevalence of Android malware underscores the urgent need for advanced detection
techniques to safeguard user data and device integrity. While traditional static analysis
methods are valuable, they often struggle to comprehensively identify malicious behaviors
due to their reliance on isolated features such as permissions, opcode or bytecode sequences.
To address this challenge, hybrid approaches integrate both static and dynamic analysis
techniques, leveraging the strengths of each to offer a multifaceted perspective on an
application’s behavior. Dynamic analysis involves executing the application in a controlled
environment to monitor its behavior, hence it can be time-consuming and resource-intensive,
requiring sophisticated sandbox environments that can be circumvented by malware capable
of detecting emulation. In contrast, static analysis examines the application’s code and
resources without execution, enabling a faster and more scalable examination of a large
number of applications. Given these considerations, we opt for a mixed static analysis
approach that integrates multiple static analysis techniques, including permissions analysis,
opcode examination, and bytecode visualisation. This integration offers a robust solution,
unveiling potential actions an application can execute, exposing underlying logic and
potential obfuscation techniques, and detecting visual similarities with known malware.

This synergistic approach may not only enhances detection accuracy by reducing false
positives and negatives but also bolsters resilience against sophisticated evasion tactics
employed by malware developers. This approach is critical for timely threat detection
and mitigation in environments where new malware variants emerge rapidly and need to
be detected instantly. By favorizing static analysis techniques, this mixed approach aims
to offer a more efficient and practical solution for analyzing Android applications while
maintaining a high level of detection accuracy. In this chapter, we delve into the details of
the proposed mixed static approach for the detection of Android malware.

27

3.1 Overview of the proposed approach

Figure 3.1 – Architecture of our system.

The proposed approach shown in Figure 3.1 integrates comprehensive stages, starting with
data collection from diverse sources such as APKCombo, Drebin, and Androzoo. Following
this, data preprocessing involves extracting permissions, opcodes, and converting byte
data into images. The extracted features are then utilized to train three distinct machine
learning models, each specialized in permissions, opcodes, and images. Finally, these
models are combined to form a robust and unified final model, ensuring a holistic and
effective analysis. In the subsequent sections, we provide a detailed overview of each step
in our proposed approach. This includes a thorough explanation of each incorporated
technique in the mixed approach.

3.2 Permissions Analysis

In this section, we focus on the permission-based detection method incorporated in our
proposed Mixed Static Analysis Approach. The goal is to extract, analyze, and refine the
list of permissions from the Android application package (APK) files in our dataset to
enhance the accuracy of our malware detection model.

The first step in our permissions analysis is to extract the permissions declared in
each APK file. We scan each APK file in our dataset to retrieve the list of permissions it
requests. This process involves parsing the AndroidManifest.xml file, where permissions
are declared. The extraction process is automated to handle large datasets efficiently,
ensuring a thorough and consistent analysis across all applications in our dataset. Once
we have extracted the permissions from all APK files, we compile a comprehensive list of

28

all unique permissions. This involves aggregating the permissions from all APK files and
removing duplicates to ensure that each permission is only listed once, regardless of how
many applications request it. The resulting list is then saved into a Comma-Separated
Values file (.CSV), where each row represents an individual APK file, and each column
corresponds to a unique permission. The cells in the .CSV file indicate whether a particular
permission is requested by a given APK.

To evaluate the effectiveness of permission-based detection, we use several machine
learning classifiers to analyze the list of permissions. These classifiers are trained on the
permissions data to distinguish between malicious and benign APK files. We systematically
assess the performance of these classifiers to determine their ability to accurately identify
malware based on the permissions requested by each application. This thorough analysis
helps us refine our detection model, ensuring that it leverages the most relevant permissions
to improve the accuracy and robustness of our malware detection approach.

3.3 Opcode Examination

In our experimentation with Android malware detection, we focus on extracting and
analyzing opcodes from Android application files, specifically from the Dalvik Executable
(DEX) format found within APK files. This process begins by loading the APK file, which
is the package format used by Android for the distribution and installation of apps. Inside
the APK, the executable content is stored in a DEX file, which contains the compiled code
running on the Android Runtime (ART). We make use of the Androguard tool [52] to
parse the DEX file and access the Dalvik bytecode, comprising the low-level instructions
executed by the Android system. We then systematically iterate through all the classes and
methods defined in the DEX file, extracting the bytecode for each method that contains it.
From the extracted bytecode instructions, we focus on selecting only the operation codes
(opcodes), which represent the actions performed by the application, such as arithmetic
operations, data movement, or control flow changes. The operands, which provide the data
or references needed by the opcodes, are ignored in this process. The extracted opcodes
are recorded sequentially in a file for subsequent analysis.

To transform these opcodes into a format suitable for machine learning, we utilize
the Term Frequency-Inverse Document Frequency (TF-IDF) method [43]. TF-IDF is a
statistical measure used to evaluate the importance of a word in a document relative to a
collection of documents. In our context, each opcode sequence is treated as a document,
and the entire collection of opcode sequences forms the corpus. This method helps in
converting the textual opcode sequences into numeric vectors, where each dimension
represents the importance of an opcode n-gram in the sequence. We experimented with
different n-grams (combinations of consecutive opcodes) and vector sizes to optimize the
representation of the opcode sequences for our machine learning models.

29

3.4 Bytecode Visualization

Bytecode visualization involves converting the bytecode of an application into a visual
format, typically an image, to leverage image processing techniques for malware detection.
To achieve this, we conducted an extensive experimentation process comprising six steps:
transforming binary files to squared grayscale images, resizing, feature extraction, evaluation,
combination, and performance enhancement via varying interpolation. By following these
steps, we aimed to leverage the visual characteristics of bytecode for robust and accurate
Android malware detection, demonstrating the potential of this approach across different
datasets and configurations. In the following, we detail each of these steps.

1. Transformation to squared grayscale images: We converted the binary assets
of the APK fileAndroidManifest.xml, classes.dex, and resources.arscinto individual
squared grayscale images. Each file was transformed based on its size to preserve
structural integrity. Adopting a grayscale and squared image format ensures uni-
formity and compatibility with image processing algorithms. Grayscale reduces
computational complexity by simplifying the color channel to one, advantageous for
large datasets. Squaring the images standardizes their dimensions, facilitating easier
model input and visual pattern comparison.

2. Image resizing: The generated images were resized to uniform dimensions of
512x512 pixels. This standardization ensures consistent input for machine learning
models and facilitates the comparison of visual patterns. The choice of 512x512
pixels, resized using default interpolation techniques, strikes a balance between
preserving detail and maintaining computational efficiency, as commonly practiced
in previous studies [19].

3. Feature extraction: We applied several local feature descriptors to extract salient
features from the images. The descriptors used were Scale-Invariant Feature Trans-
form (SIFT), Adaptive and Generic Accelerated Segment Test (AGAST), Maximally
Stable Extremal Regions (MSER), and Features from Accelerated Segment Test
(FAST). These four algorithms were selected for their robustness in capturing compre-
hensive visual features, each contributing unique strengths to the feature extraction
process:

— Scale-Invariant Feature Transform (SIFT): SIFT is renowned for its ability
to detect and describe local features in images. It is particularly effective in
recognizing patterns regardless of scale and rotation, making it highly suitable
for diverse malware samples [36].

— Adaptive and Generic Accelerated Segment Test (AGAST): AGAST is an
efficient corner detection algorithm that excels in identifying interest points

30

in an image. Its adaptability and speed make it valuable for processing large
datasets [36].

— Maximally Stable Extremal Regions (MSER): MSER detects stable regions
within images that remain consistent across different thresholds. This charac-
teristic is essential for identifying distinct regions of bytecode that may indicate
malicious activity [36].

— Features from Accelerated Segment Test (FAST): FAST is a high-speed corner
detection method that identifies key points based on the intensity contrast
of pixels. Its computational efficiency and accuracy are crucial for real-time
malware detection applications [36].

By utilizing these diverse feature descriptor algorithms, we ensured that the byte-
code’s visual representations were rich in information. This comprehensive feature
extraction enhances the capability of machine learning models to accurately distin-
guish between benign and malicious Android applications.

4. Classifier evaluation: The features extracted by the local descriptors were fed
into various machine learning classifiers. This step assessed the classifiers’ ability to
distinguish between malware and benign files. We utilized the same five classifiers
from previous analyses (CF, RF, LR, SVM, and KNN) to maintain consistency and
comparability. Each classifier’s performance was rigorously evaluated to identify the
most effective model for distinguishing malware from benign samples.

5. Combination analysis: We explored pairwise combinations of the files and their
features, as well as the combination of all three files. This was done to identify
which combination provided the best classification performance. To handle the size
variations of individual files, we used the maximum size for each file type, padding
smaller files with zeros on the right-hand side. This approach ensured that the bytes
of each file type remained distinct, avoiding mix-ups and preserving data integrity.

6. Performance enhancement via interpolation: For the best-performing combi-
nation identified in the previous step, we experimented with different image sizes
ranging from 64x64 to 1024x1024 pixels. This allows us to assess how image reso-
lution impacts feature descriptor performance and model accuracy. Additionally,
various interpolation techniques available in OpenCV [22] were used to resize the
images, aiming to determine the optimal technique for extracting keypoints and
improving classification results. We experimented with different image sizes and
interpolation techniques (INTER_LINEAR, INTER_CUBIC, INTER_NEAREST,
and INTER_LANCZOS4) to optimize keypoint extraction and classification results.
Techniques available in OpenCV were applied, such as nearest-neighbor, bilinear,
and bicubic interpolation, to find the most effective method for our goals.

31

— Nearest-Neighbor (INTER_NEAREST): This simplest interpolation method
selects the nearest pixel value, resulting in a blocky image but fast processing.

— Bilinear Interpolation (INTER_LINEAR): This method computes the output
pixel value using a weighted average of the four nearest pixels, producing
smoother images than nearest-neighbor.

— Bicubic Interpolation (INTER_CUBIC): This technique uses 16 nearest pixels
to determine the output value, resulting in even smoother images and better
edge preservation.

— Lanczos Interpolation (INTER_LANCZOS4): This high-quality resampling
technique uses a larger window of pixels, providing the most accurate and
smoothest images, but at a higher computational cost.

3.5 Mixed approach

In this section, we integrate the results from the three different analysis approaches
permission-based, opcode-based, and visualization-based to develop two ensemble machine
learning models: Stacking and Voting. These ensemble techniques aim to leverage the
strengths of individual models to improve the overall accuracy and robustness of our
malware detection system.

Stacking, also known as stacked generalization [55], is an ensemble learning technique
that involves training a meta-model to combine the predictions of several base models. The
base models are trained on the entire training dataset, and their predictions are used as
input features for the meta-model, which is then trained to make the final prediction. This
method allows the meta-model to learn how to best combine the strengths and mitigate
the weaknesses of each base model, potentially leading to improved predictive performance.

Voting [27] is another ensemble learning technique where multiple models are trained
independently, and their predictions are aggregated to determine the final output. There
are two main types of voting: hard voting and soft voting. In hard voting, the final
prediction is determined by the majority vote of the base models, while in soft voting,
the predicted probabilities from each model are averaged, and the class with the highest
average probability is selected. In this work, we consider the equal importance of all the
incorporated static approaches and hence we consider soft voting.

By employing stacking and voting ensembles, we aim to create a more accurate
and robust Android malware detection system. These techniques help in leveraging the
complementary strengths of the different analysis approaches, thus enhancing the overall
detection capability of our models.

32

3.6 Conclusion

In this chapter, we have explored a comprehensive mixed static analysis approach for An-
droid malware detection, leveraging multiple techniques to enhance detection accuracy and
robustness. Our methodology integrates permission-based analysis, opcode examination,
and bytecode visualization to provide a multifaceted view of an application’s behavior.
This integration enables the identification of malicious patterns that might be missed
when using a single analysis technique. The use of permissions analysis allows for the
identification of suspicious applications based on the permissions they request, which can
be indicative of potential malicious intent. Opcode examination provides deeper insight
into the application’s executable logic, uncovering hidden malicious activities. Bytecode
visualization transforms the application’s binary data into images, allowing for the appli-
cation of advanced image processing techniques to detect malware. To further enhance
our detection capabilities, we employed two ensemble learning techniques: stacking and
voting. Stacking combines the predictions of several base models using a meta-model,
learning how to best integrate their strengths and mitigate weaknesses. Voting aggregates
the predictions of multiple models, either through majority voting or averaging predicted
probabilities, to make a final decision. Both approaches leverage the complementary
strengths of our individual models, resulting in a more robust and accurate malware
detection system. In the following chapter we provide the results of conducted experiments
demonstrating that the adopted ensemble technique significantly improve the performance
of our malware detection models.

33

Chapter 4

Experimentation and Analysis

In this chapter, we delve into the evaluation of the proposed mixed approach and
compare it with state-of-the-art methods. For the evaluation, we collect and utilize two
distinct datasets of benign and malware APK files from different periods. We conduct
extensive experiments to determine the optimal configuration for each static analysis
method: permission-based, opcode-based, and visualization-based approaches. We test each
method with various classifiers and parameter values tailored to its specific requirements.
After identifying the best configuration for each approach, we explore different combination
methods to integrate these approaches and select the most effective technique. The
combination methods are assessed to ensure that the integrated approach leveraged the
strengths of each individual method, leading to improved performance. For comparison
with state-of-the-art methods, we replicate recent studies in the field and benchmarked
their results against our findings. This comparison aim to highlight the advantages and
limitations of our approach. By juxtaposing our results with those from existing studies,
we will be able to underscore the improvements our mixed method brings, particularly in
terms of accuracy, robustness, and applicability across different datasets and time periods.
This thorough evaluation demonstrates the efficacy of our approach and its potential for
enhancing malware detection capabilities in real-world scenarios.

4.1 Data Collection

To conduct effective experimentation and analysis for Android malware detection using
machine learning, we assembled a comprehensive dataset consisting of both malicious and
benign samples. The data sources and collection methods are described in detail below:

— Malicious samples: For our malicious samples, we utilized two primary sources:
Androzoo [3] and Drebin [10]. The Androzoo repository [3], a large collection
of Android application (APK) files from various sources, was filtered to include
samples from 2020 onwards to maintain relevance and up-to-dateness. To select the

34

most harmful applications, we utilized VirusTotal [54], a widely respected online
service that aggregates the results of over 70 antivirus engines, website scanners,
and other tools to provide a comprehensive analysis of files and URLs for potential
threats. VirusTotal’s robust detection capabilities allow us to accurately identify
and rank malicious applications based on the number of detections reported by its
suite of analysis tools. To create a focused and effective dataset for our research,
we sorted the APK files by the number of VirusTotal detections. This process
involved analyzing each APK file with VirusTotal and recording the number of
antivirus engines that flagged the file as malicious. By prioritizing files with the
highest number of detections, we ensured that our dataset prominently featured
the most harmful and clearly malicious samples available. From this sorted list, we
downloaded the first 2000 files, starting with those that had the highest number
of VirusTotal detections. This approach ensured the inclusion of highly malicious
samples in our dataset, providing a rich source of data for training and evaluating
our malware detection models. The Drebin dataset [10], on the other hand, is a
well-known benchmark in Android malware detection research. It offers a set of
5560 malicious APK files collected between August 2010 and October 2012, each
manually labeled by experts and categorized based on their behaviors. For our study,
we randomly selected samples from the Drebin dataset to ensure a comprehensive
representation of various malware types and families. This selection process was
designed to encompass a broad spectrum of malware characteristics, providing a
well-rounded foundation for evaluating and enhancing our detection models. By
incorporating the Drebin dataset, we aimed to leverage its rich and varied malware
samples to thoroughly test and refine our detection techniques, thereby improving
their robustness and generalizability.

— Benign samples: For benign samples, we manually downloaded APK files from
the APKCombo website [7], a trusted source for legitimate Android applications.
Our selection criteria were stringent to ensure the benign nature of the samples:
each application had to have a minimum of 50,000 downloads, indicating popularity
and user trust, and a rating of 3 stars or higher, suggesting user satisfaction and
reducing the likelihood of problematic apps. These criteria were slightly relaxed
for applications developed by well-known and reputable companies, acknowledging
the inherent trust and security associated with established developers. Additionally,
each of these files was subjected to a VirusTotal check, and only those reported as
safe were selected. This multi-tiered approach ensured a high level of confidence in
the benign nature of the samples, providing a reliable foundation for training and
evaluating our malware detection models. By combining these stringent selection
criteria with VirusTotal verification, we aimed to create a robust and trustworthy
dataset of benign applications to complement our malware samples, enhancing the

35

overall accuracy and reliability of our research findings.

Dataset #Benign #Malicious
APKComboAndrozoo 698 698
APKComboDrebin 1097 1097

Table 4.1 – Distribution of benign and malicious samples in experimented datasets

The collected samples were used to form two distinct and balanced datasets: the
APKComboAndrozoo dataset and the APKComboDrebin dataset. As their names imply,
the APKComboAndrozoo dataset comprises malicious samples sourced from Androzoo and
benign samples obtained from the APKCombo repository. Conversely, the APKCombo-
Drebin dataset consists of malicious samples selected from the original Drebin dataset
and benign samples sourced from APKCombo. Given that the malicious samples in the
Drebin dataset date back to 2012, while those from Androzoo are from 2020 onwards,
analyzing these datasets separately allows for the observation and comparison of malware
evolution over different periods. This comparative analysis provides valuable insights into
how malware has adapted and evolved, facilitating the refinement and enhancement of
our detection methodologies accordingly. Table 4.1 offers detailed information about the
two compiled datasets used in the study, highlighting the number of benign and malicious
samples in each for reference.

4.2 Evaluation process

In our evaluation, we assessed the performance of several classifiers: Cascade Forest
(CF), Random Forest (RF), Linear Regression (LR), Support Vector Machine (SVM),
and K-Nearest Neighbors (KNN). Particularly, CF is a sophisticated ensemble learning
technique that constructs multiple layers of random forests to capture intricate patterns and
dependencies within the data. This cascading architecture combines the benefits of both
shallow and deep learning approaches, making it particularly effective for complex tasks
such as malware detection [57]. We adopted a 10-fold cross-validation methodology [25]
where each classifier underwent rigorous training and testing. This method entails dividing
the dataset into ten subsets, training the model on nine subsets, and validating it on
the remaining one. This iterative process is repeated ten times, ensuring each subset is
utilized for both training and validation, thus providing a more reliable estimate of model
performance by reducing variance. To gauge the effectiveness of our models, we employed
four key metrics: Recall, Precision, Accuracy, and F1-Score.

— Recall: measures the proportion of malware samples that correctly identified by

36

the model. It is defined as:

Recall = correctly predicted malware samples
total number of malware samples

High recall indicates that the model effectively identifies most of the malware samples.
— Precision: measures the proportion of malware predictions that are actually correct.

It is defined as:

Precision = correctly predicted malware samples
correctly predicted malware + incorrectly predicted benign

High precision indicates that the model has a low false positive rate, meaning it
rarely misclassifies benign samples as malware.

— Accuracy: measures the proportion of malware and benign samples that are
predicted correctly. It is defined as:

Accuracy = correctly predicted malware + correctly predicted benign
total number of samples

This metric provides a general sense of how often the model is correct.
— F1-Score: is the harmonic mean of precision and recall, providing a balance between

the two. It is particularly useful when the class distribution is imbalanced. It is
defined as:

F1-Score = 2 × Precision × Recall
Precision + Recall

A high F1-Score indicates that the model has both high precision and high recall,
making it effective in detecting malware while minimizing false positives.

4.3 Permission-based detection

To assess the efficacy of permission-based features in detecting Android malware, we
evaluated five distinct machine learning classifiers: Cascade Forest (CF), Random Forest
(RF), Linear Regression (LR), Support Vector Machine (SVM), and K-Nearest Neighbors
(KNN). Employing 10-fold cross-validation across all models ensured the robustness and
generalizability of the results. Table 4.2 provides a summary of performance metrics for
each model on both datasets, encompassing recall (R), precision (P), accuracy (A), and
F1-score (F1).

For the APKComboDrebin dataset, Cascade Forest achieved the best result with an
F1-score of 97.17%, indicating high precision and accuracy in distinguishing between
malicious and benign samples. Random Forest closely followed with an F1-score of 97.10%.
SVM, Logistic Regression, and KNN also performed well but did not surpass the ensemble
methods. For the APKComboAndrozoo dataset, the Random Forest model outperformed

37

Dataset Model R (%) P (%) A (%) F1 (%)

APKComboDrebin

CF 98.36 96.05 97.13 97.17
RF 98.91 95.38 97.04 97.10
LR 96.63 90.94 93.48 93.69
SVM 97.17 96.20 96.63 96.66
KNN 97.81 91.60 94.39 94.59

APKComboAndrozoo

CF 84.67 87.71 86.32 86.05
RF 86.25 87.05 86.61 86.55
LR 74.07 84.18 79.95 78.69
SVM 85.53 86.51 85.90 85.89
KNN 84.25 83.92 83.82 83.93

Table 4.2 – Performance comparison on permission-based detection

the others, achieving an F1-score of 86.55%, demonstrating its robustness in handling
the diverse characteristics of this dataset. However, Cascade Forest was not far behind,
with an F1-score of 86.05%, showcasing its strong potential in this context as well. The
performance of Logistic Regression, SVM, and KNN was comparatively lower, indicating
that ensemble methods are more effective for this datasets.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Information Gain

READ_PHONE_STATE

FOREGROUND_SERVICE

ACCESS_LOCATION_EXTRA_COMMANDS

POST_NOTIFICATIONS

ACCESS_COARSE_LOCATION

ACCESS_WIFI_STATE

READ_EXTERNAL_STORAGE

ACCESS_FINE_LOCATION

ACCESS_ADSERVICES_AD_ID

ACCESS_ADSERVICES_ATTRIBUTION

READ_MEDIA_IMAGES

READ_SMS

READ_APP_BADGE

ACCESS_ADSERVICES_TOPICS

WRITE_SMS

DOWNLOAD_WITHOUT_NOTIFICATION

BROADCAST_SMS

USE_CREDENTIALS

RECEIVE_BOOT_COMPLETED

READ_OWNER_DATA

USE_FINGERPRINT

READ_LOGS

CAMERA

SEND_SMS

SET_PROCESS_LIMIT

BLUETOOTH_CONNECT

UNLIMITED_TOASTS

READ_MEDIA_VIDEO

REMOVE_TASKS

ALLOW_SLIPPERY_TOUCHES

Fe
at

ur
e

N
am

e

Information Gain of Top 30 Features

Figure 4.1 – Top 30 important permissions in the APKComboDrebin dataset.

Overall, the results presented in Table 4.2 highlight the effectiveness of ensemble
methods, notably Cascade Forest and Random Forest, in harnessing permission-based
features for Android malware detection. The high F1-scores attained by these models

38

underscore their potential as reliable tools for cybersecurity applications. However, the
disparities in detection performance observed between the two datasets, APKComboDrebin
and APKComboAndrozoo, suggest a shift in tactics among recent malware samples obtained
from APKComboAndrozoo. This evolution in tactics is evidenced by variations in the types
of permissions sought by malicious applications over time. Further analysis is warranted
to discern and adapt to these evolving trends, ensuring the ongoing effectiveness of our
detection methodologies in combatting emerging malware threats.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Information Gain

READ_PHONE_STATE

REQUEST_INSTALL_PACKAGES

READ_LOGS

ACCESS_WIFI_STATE

MOUNT_UNMOUNT_FILESYSTEMS

GET_TASKS

CHANGE_WIFI_STATE

RECEIVE_USER_PRESENT

SYSTEM_ALERT_WINDOW

ACCESS_LOCATION_EXTRA_COMMANDS

READ_EXTERNAL_STORAGE

WRITE_SETTINGS

CHANGE_NETWORK_STATE

POST_NOTIFICATIONS

CONTROL_KEYGUARD

ACCESS_COARSE_LOCATION

SCHEDULE_EXACT_ALARM

ACCESS_FINE_LOCATION

SET_ORIENTATION

ACCESS_DOWNLOAD_MANAGER

READ_FRAME_BUFFER

STATUS_BAR

VIEW_INSTANT_APPS

FOREGROUND_SERVICE

ALLOW_SLIPPERY_TOUCHES

BLUETOOTH_PRIVILEGED

SUBSTITUTE_NOTIFICATION_APP_NAME

FORCE_STOP_PACKAGES

MANAGE_DEVICE_ADMINS

MANAGE_EXTERNAL_STORAGE

Fe
at

ur
e

N
am

e

Information Gain of Top 30 Features

Figure 4.2 – Top 30 important permissions in the APKComboAndrozoo dataset.

Given that not all permissions are equally informative for distinguishing between benign
and malicious applicationssome permissions are rarely requested and do not offer significant
information for malware detectionwe used information gain [12] to gain insights into the
most critical permissions for discerning malicious from benign APK files. Information gain
quantifies the reduction in entropy, or uncertainty, achieved by understanding the value
of a particular feature. In this context, it measures how much knowledge of a specific
permission enhances the prediction of whether an application is benign or malicious. By
computing the information gain for each permission, we can pinpoint and retain only
those permissions that make the most substantial contribution to our model’s predictive
capabilities. Figure 4.1 displays the top 30 significant features based on information gain

39

for the APKComboDrebin dataset, while Figure 4.2 presents the top 30 important features
based on information gain for the APKComboAndrozoo dataset.

The comparison of the lists of permissions provided in Figure 4.1 and Figure 4.2,
respectively, vividly illustrates the evolution of tactics in permission usage over the years.
The READ_PHONE_STATE permission’s sustained prominence, albeit with a significant
decrease in information gain from 34% to approximately 14% in newer samples, underscores
its enduring relevance for malicious actors. This permission likely remains attractive due to
its access to sensitive device information, such as device identifiers and network connectivity
status, enabling various nefarious activities, including identity theft and targeted attacks.
Additionally, the emergence of permissions like REQUEST_INSTALL_PACKAGES in
the APKComboAndrozoo dataset highlights the shifting strategies adopted by malware
developers. This permission, which facilitates the installation of applications without user
consent, reflects a growing trend towards more stealthy and aggressive tactics. Malware
strains leveraging this permission can install additional malicious software or unwanted
applications, expanding their foothold on infected devices and enhancing their persistence.

4.4 Opcode-based detection

For opcode-based detection, we use our two collected datasets (APKComboDrebin and
APKComboAndrozoo) to train and test the same five machine learning classifiers used in the
permission-based detection. Our experimentation involved using Term Frequency-Inverse
Document Frequency (TF-IDF) to convert opcode sequences into numerical representations.
We tested different n-grams ranging from 1-1 to 3-3 to identify the best configuration that
captures the most relevant patterns in the data with a default vector size set to 256. After
determining the optimal n-gram configuration, we further explored the impact of varying
vector sizes on the performance of our models. The vector sizes tested ranged from 64 to
512. This step aimed to understand how the dimensionality of the feature space affects
the classifiers’ ability to distinguish between benign and malicious applications.

To ensure the reliability and generalizability of our results, we employed a 10-fold cross-
validation approach. Through this thorough evaluation process, we aimed to determine
the most effective combination of n-gram configuration and vector size for opcode-based
malware detection. The use of two different datasets also helped in assessing the consistency
and adaptability of our models across varied samples, ensuring that our findings are
robust and applicable to real-world scenarios. Table 4.3 presents the results of our
experiments using different n-gram configurations for opcode sequences. Meanwhile,
Table 4.4 displays the performance outcomes for various vector sizes, based on the optimal
n-gram configuration identified from Table 4.3.

The results in Table 4.3 highlight the impact of using different n-grams on the per-
formance of our classifiers. For the APKComboDrebin dataset, CF achieved the highest

40

N-gram Model APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

1

CF 99,18 98,64 98,91 98,91 93.14 97.62 95.43 95.31
RF 99,36 97,68 98,50 98,51 92.00 97.90 95.00 94.83
LR 99,09 97,59 98,31 98,33 86.43 95.25 91.00 90.54
SVM 98,91 95,96 97,36 97,40 78.00 96.39 87.50 86.11
KNN 99,36 96,82 98,04 98,07 89.57 92.40 91.00 90.87

2

CF 99,45 98,91 99,18 99,18 92.00 98.18 95.14 94.96
RF 99,73 98,13 98,91 98,92 91.29 98.62 95.00 94.77
LR 99,27 98,47 98,86 98,87 92.14 92.80 92.43 92.40
SVM 98,63 96,61 97,58 97,61 77.43 96.21 87.14 85.66
KNN 99,09 97,41 98,22 98,24 89.14 93.64 91.43 91.19

3

CF 99,64 98,83 99,23 99,23 92.00 98.04 95.07 94.87
RF 99,73 98,12 98,91 98,92 90.71 97.74 94.29 94.04
LR 99,64 98,39 99,00 99,01 91.71 93.41 92.57 92.50
SVM 99,09 96,97 98,00 98,02 77.14 96.39 87.07 85.56
KNN 99,36 97,50 98,41 98,42 89.14 93.10 91.21 90.98

1-2

CF 99,45 98,73 99,09 99,09 92.29 97.63 95.00 94.85
RF 99,64 98,21 98,91 98,92 91.14 98.04 94.64 94.42
LR 99,36 98,13 98,72 98,73 91.57 93.21 92.43 92.37
SVM 99,00 95,95 97,40 97,44 77.71 95.58 87.00 85.59
KNN 99,36 97,16 98,22 98,24 89.43 93.16 91.36 91.17

1-3

CF 99,36 98,64 99,00 99,00 92.29 97.89 95.14 94.97
RF 99,64 98,30 98,95 98,96 91.57 97.22 94.43 94.24
LR 99,45 98,12 98,77 98,78 91.43 94.39 92.93 92.83
SVM 99,00 96,12 97,49 97,53 77.71 95.75 87.07 85.66
KNN 99,45 97,60 98,50 98,51 89.00 92.70 90.93 90.73

Table 4.3 – Opcode-based performance results using different n-grams

F1-score and accuracy, both at 99.23%, with 3-grams. CF also delivered the best precision
score of 98.91% with 2-grams. Meanwhile, RF excelled in recall, reaching 99.73% with
3-grams. With 1-gram, CF still performed commendably, securing the fourth-best F1-score
and accuracy at 98.91%. In the APKComboAndrozoo dataset, CF led in F1-score, accuracy,
and recall, achieving 95.31%, 95.43%, and 93.14% respectively with 1-grams. RF, on the
other hand, achieved the highest precision at 98.62% with 2-grams. When using 3-grams,
CF maintained strong performance, with the third-best F1-score of 94.87%, accuracy of
95.07%, the best precision at 98.04%, and the fourth-best recall score at 92%. These
findings indicate that 3-grams are particularly effective for the APKComboDrebin dataset,
especially for achieving high F1-scores and accuracy with CF, while 1-grams are more
suitable for the APKComboAndrozoo dataset to maximize F1-scores, accuracy, and recall.

This suggests that the choice of n-grams should be tailored to the specific dataset to
optimize the performance of malware detection classifiers. To develop a machine learning
model that performs well across both the APKComboDrebin and APKComboAndrozoo
datasets, it’s essential to prioritize a configuration that balances high performance on
both datasets. Accordingly, using CF with 2-grams strikes a balance, offering excellent
precision on both datasets (98.91% and 98.18% respectively) while maintaining robust
performance across all the remaining key metrics. This configuration leverages the strengths

41

V. size Model APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

512

CF 99.69 99.20 99.44 99.44 92.84 97.48 95.20 95.06
RF 99.69 98.35 99.01 99.01 91.84 97.71 94.84 94.64
LR 98.51 97.79 98.14 98.14 94.27 87.86 90.54 90.91
SVM 99.25 95.64 97.36 97.41 77.38 96.22 87.11 85.57
KNN 99.25 97.21 98.20 98.22 88.55 92.74 90.76 90.49

256

CF 99,45 98,91 99,18 99,18 92.00 98.18 95.14 94.96
RF 99,73 98,13 98,91 98,92 91.29 98.62 95.00 94.77
LR 99,27 98,47 98,86 98,87 92.14 92.80 92.43 92.40
SVM 98,63 96,61 97,58 97,61 77.43 96.21 87.14 85.66
KNN 99,09 97,41 98,22 98,24 89.14 93.64 91.43 91.19

128

CF 99.38 98.95 99.16 99.16 91.41 98.05 94.77 94.55
RF 99.50 98.17 98.82 98.83 89.98 98.28 94.19 93.85
LR 99.13 97.34 98.20 98.22 89.26 94.94 92.19 91.92
SVM 98.76 95.50 97.05 97.10 77.24 96.06 86.96 85.42
KNN 99.13 97.09 98.07 98.10 88.12 92.20 90.26 89.99

64

CF 99.25 98.41 98.82 98.83 90.12 97.84 94.05 93.75
RF 99.44 97.63 98.51 98.52 90.55 96.95 93.84 93.59
LR 98.88 95.68 97.20 97.25 84.96 95.57 90.47 89.88
SVM 98.63 95.33 96.89 96.95 77.38 96.22 87.11 85.57
KNN 99.07 97.14 98.07 98.09 87.69 91.73 89.83 89.55

32

CF 99.07 98.22 98.63 98.64 89.97 98.48 94.27 93.97
RF 99.50 97.69 98.57 98.59 89.83 96.94 93.48 93.18
LR 97.95 94.84 96.30 96.37 80.53 93.71 87.46 86.42
SVM 98.39 95.16 96.68 96.74 77.24 96.21 87.03 85.48
KNN 98.63 96.72 97.64 97.66 87.54 91.94 89.90 89.61

Table 4.4 – Opcode-based performance results using 2-gram and varying the vector size.

observed in both datasets, ensuring that the model is not overly specialized to one dataset’s
characteristics but performs reliably across different types of malware samples.

When exploring the impact of vector sizes and the use of 2-grams, the results described
in Table 4.4 indicate that increasing the vector size to 512 provides the best accuracy
and F1-score for both datasets. For the APKComboDrebin dataset, this adjustment
results in an F1-score increase of 0.21%, reaching an impressive 99.44%. Similarly, for the
APKComboAndrozoo dataset, the F1-score improves by 0.29%, reaching 95.06%. These
findings suggest that larger vector sizes, coupled with the use of 2-grams, enhance the
model’s ability to capture and utilize more detailed feature representations, leading to
more accurate and effective classification of APK files across both datasets. These findings
underscore the potential of the CF classifier in leveraging opcode-based features for robust
and accurate Android malware detection, showcasing its superior performance across
different datasets and TF-IDF vector sizes.

4.5 Visualization-based detection

For the visualization-based model, we used the same datasets and machine learning models
mentioned in the previous sections. Initially, we generated squared grayscale images from

42

the datasets for individual and combined files with 512x512 size each. Figure 4.3 shows an
example of those images for two different applications, benign and malware.

A B C A+B A+C B+C A+B+C

Figure 4.3 – Grayscale images generated from individual and combined files. First row
represent images of a benign app while the second row represents the images generated
for a malware app. A: classes.dex, B: AndroidManifest.xml, C: resources.arsc

4.5.1 Feature Extraction and Classifier Evaluation

We evaluated the performance of four local feature descriptor algorithmsSIFT, AGAST,
MSER, and FASTby extracting features from the generated images and then feeding
these features into five different classifiers. Tables 4.5-4.11 present the results of these
classifiers for the APKComboDrebin and APKComboAndrozoo datasets, using individual
and combined assets of APK files: classes.dex, AndroidManifest.xml, and resources.arsc.
The best performance scores for each scenario are highlighted in bold.

When analyzing the performance of various feature descriptors and classifiers across the
two experimented datasets, several key insights emerge. Considering only classes.dex files
within the APKComboDrebin dataset, the SIFT descriptor combined with the SVM model
achieved the highest F1-score of 95.24%. In contrast, for the APKComboAndrozoo dataset,
the best F1-score of 94.64% was obtained using the FAST descriptor with the CF model. A
configuration that performs well across both datasets is the CF classifier with the AGAST
descriptor, which provided an F1-score of 94.63% on the APKComboAndrozoo dataset
and a close performance of 94.84% on the APKComboDrebin dataset. For resources.arsc
files, lower scores were observed across both datasets. The APKComboDrebin dataset
saw its highest F1-score of 86.38% with the SIFT descriptor and RF model. In the
APKComboAndrozoo dataset, the best F1-score was 80.60% using AGAST and RF.
The most balanced approach for both datasets was AGAST with CF, achieving the
second-best score of 84.49% for APKComboDrebin and the third-best score of 78.88% for
APKComboAndrozoo.

43

Desc. Model APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

SIFT

CF 96.90 93.55 95.08 95.17 88.54 93.07 90.90 90.67
RF 96.62 93.39 94.85 94.95 84.96 92.57 89.04 88.57
LR 95.62 91.61 93.39 93.55 77.79 87.07 83.09 82.11
SVM 96.62 93.93 95.17 95.24 83.24 92.16 88.04 87.42
KNN 96.90 91.52 93.94 94.12 86.67 88.19 87.46 87.32

AGAST

CF 96.99 92.83 94.71 94.84 94.55 94.78 94.63 94.63
RF 96.26 92.55 94.21 94.34 93.84 94.84 94.34 94.32
LR 97.72 91.52 94.30 94.50 90.24 93.99 92.19 92.02
SVM 97.81 91.06 94.07 94.30 92.55 94.34 93.48 93.42
KNN 97.54 91.38 94.12 94.33 91.41 92.19 91.83 91.78

MSER

CF 95.53 91.38 93.20 93.37 92.69 94.38 93.55 93.50
RF 95.26 91.69 93.25 93.40 92.27 93.82 93.05 93.01
LR 94.25 90.65 92.20 92.37 90.53 91.67 91.11 91.06
SVM 95.53 91.00 92.98 93.17 92.40 94.54 93.48 93.43
KNN 95.17 89.14 91.75 92.04 91.27 91.99 91.62 91.60

FAST

CF 97.35 92.37 94.62 94.77 94.55 94.78 94.63 94.64
RF 97.08 92.37 94.49 94.64 94.41 94.78 94.55 94.56
LR 98.09 92.48 95.03 95.19 88.53 93.28 91.04 90.80
SVM 97.72 91.15 94.07 94.30 90.97 94.59 92.84 92.70
KNN 97.44 91.42 94.12 94.32 92.84 93.40 93.12 93.09

Table 4.5 – Visualization-based performance results using classes.dex files.

Desc. Model
APKComboDrebin dataset APKComboAndrozoo dataset

R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

SIFT

CF 91.07 91.37 91.20 91.16 70.35 83.64 78.15 76.15
RF 93.17 87.33 89.70 90.07 69.77 80.80 76.50 74.72
LR 88.52 89.88 89.24 89.14 72.21 76.94 75.29 74.44
SVM 92.53 90.63 91.43 91.52 73.21 82.27 78.65 77.40
KNN 84.42 90.80 87.88 87.39 69.64 77.19 74.50 73.11

AGAST

CF 90.80 93.26 92.07 91.93 71.48 77.61 75.36 74.32
RF 90.16 92.55 91.43 91.27 72.20 76.52 74.93 74.21
LR 90.97 90.40 90.66 90.66 71.62 73.80 72.93 72.60
SVM 91.43 94.20 92.89 92.76 68.19 77.94 74.36 72.68
KNN 90.43 92.82 91.71 91.56 71.05 71.41 71.21 71.16

MSER

CF 87.43 92.13 89.97 89.64 68.91 73.60 71.99 71.08
RF 88.33 90.00 89.24 89.10 68.05 70.81 69.91 69.35
LR 87.60 89.25 88.47 88.33 67.76 69.03 68.41 68.25
SVM 85.96 91.44 88.93 88.53 65.62 72.04 69.92 68.55
KNN 86.42 89.34 87.97 87.76 70.49 66.78 67.62 68.49

FAST

CF 90.43 94.00 92.30 92.12 73.78 78.12 76.44 75.79
RF 89.61 92.53 91.16 90.99 73.93 77.92 76.44 75.82
LR 89.89 91.01 90.47 90.40 75.21 75.44 75.29 75.26
SVM 90.52 93.13 91.89 91.74 71.63 79.64 76.58 75.36
KNN 89.52 91.95 90.80 90.64 71.91 74.43 73.49 73.09

Table 4.7 – Visualization-based performance results using AndroidManifest.xml files.

44

Desc. Model APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

SIFT

CF 91.14 82.57 95.75 86.29 78.37 76.81 77.36 77.56
RF 89.04 84.29 95.84 86.38 77.51 76.00 76.50 76.71
LR 88.33 78.42 94.55 82.57 72.93 73.06 72.99 72.92
SVM 90.15 80.76 95.28 84.83 79.09 76.02 77.00 77.46
KNN 73.77 83.18 93.83 77.70 57.16 74.23 68.62 64.34

AGAST

CF 88.46 81.64 95.46 84.49 78.91 79.18 78.91 78.88
RF 86.76 82.17 95.37 84.05 80.76 80.75 80.63 80.60
LR 89.08 76.74 94.32 81.92 79.92 76.52 77.62 78.10
SVM 87.42 76.98 94.24 81.10 80.63 76.72 77.91 78.49
KNN 76.11 73.45 93.02 73.66 78.90 75.99 76.90 77.31

MSER

CF 90.56 78.34 94.91 83.91 77.36 75.35 75.93 76.26
RF 91.67 79.98 95.40 85.30 74.35 74.70 74.43 74.43
LR 80.98 70.68 92.32 75.31 80.37 69.01 71.99 74.18
SVM 79.90 74.09 92.89 76.57 81.81 71.58 74.36 76.19
KNN 72.68 73.14 92.16 72.23 76.51 69.55 71.42 72.79

FAST

CF 87.32 81.03 95.21 83.85 79.06 79.62 79.27 79.16
RF 83.89 82.94 95.13 83.00 78.90 79.15 78.91 78.88
LR 90.20 73.62 93.91 80.72 79.05 74.28 75.75 76.49
SVM 85.56 79.10 94.64 81.66 80.91 76.82 77.98 78.58
KNN 73.20 76.74 93.34 73.76 79.62 76.21 77.26 77.72

Table 4.6 – Visualization-based performance results using resources.arsc files.

When focusing on AndroidManifest.xml files, the overall scores were lower for the
APKComboAndrozoo dataset, with the highest F1-score of 76.15% achieved using the
SIFT descriptor and CF classifier. For the APKComboDrebin dataset, AGAST with SVM
performed better, achieving an F1-score of 92.76%. The optimal configuration here appears
to be FAST with CF, yielding the second-best F1-score of 92.12% for APKComboDrebin
and the third-best F1-score of 75.79% for APKComboAndrozoo.

4.5.2 Combination Analysis

When combining classes.dex and AndroidManifest.xml files, the APKComboDrebin
dataset’s best score slightly increased to 95.56% using SIFT and CF, while the AP-
KComboAndrozoo dataset’s best score increased to 94.98% with FAST and CF. The most
balanced configuration maintaining the highest scores for both datasets is using AGAST
with CF achieving the second highest F1-score 94.49% for the APKComboAndrozoo dataset
and a reasonably high F1-score 94.81% for the APKComboDrebin dataset. Combining
classes.dex and resources.arsc files yielded a slight improvement for APKComboDrebin,
reaching 96.59% with SIFT and CF, but no improvement for APKComboAndrozoo.

45

Desc. Model APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

SIFT

CF 96.90 94.27 95.49 95.56 88.39 93.40 91.04 90.77
RF 97.80 91.99 94.62 94.79 84.52 92.07 88.61 88.07
LR 96.90 91.99 94.21 94.37 77.65 88.43 83.74 82.63
SVM 97.35 92.81 94.89 95.02 82.95 93.40 88.53 87.78
KNN 96.26 92.04 93.94 94.08 87.10 90.25 88.82 88.59

AGAST

CF 97.35 92.43 94.67 94.81 94.27 94.76 94.48 94.49
RF 96.99 92.61 94.58 94.71 93.84 94.85 94.34 94.32
LR 97.35 91.42 94.07 94.27 89.82 94.22 92.12 91.92
SVM 97.63 91.21 94.07 94.29 92.83 94.55 93.70 93.65
KNN 97.08 90.82 93.57 93.80 92.70 93.65 93.19 93.15

MSER

CF 96.17 91.40 93.52 93.70 93.12 94.30 93.69 93.67
RF 96.08 91.37 93.48 93.64 91.41 94.63 93.05 92.95
LR 95.80 90.12 92.61 92.85 88.26 92.45 90.47 90.24
SVM 96.80 91.00 93.57 93.78 91.11 93.92 92.55 92.43
KNN 95.62 90.38 92.66 92.89 90.40 91.29 90.83 90.80

FAST

CF 97.08 93.08 94.90 95.01 94.84 95.17 94.98 94.98
RF 97.08 93.15 94.94 95.05 94.13 94.85 94.48 94.47
LR 97.63 91.85 94.44 94.62 89.82 93.61 91.83 91.64
SVM 97.45 91.67 94.26 94.44 91.83 94.91 93.41 93.31
KNN 97.17 90.74 93.57 93.81 92.98 93.17 93.05 93.05

Table 4.8 – Visualization-based performance results using classes.dex and AndroidMan-
ifest.xml.

Desc. Model
APKComboDrebin dataset APKComboAndrozoo dataset

R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

SIFT

CF 90.04 92.67 97.18 91.20 79.75 77.96 78.54 78.79
RF 91.00 92.90 97.34 91.76 80.76 78.00 78.90 79.31
LR 89.57 94.15 97.34 91.59 77.89 74.37 75.46 76.00
SVM 91.45 93.44 97.42 92.13 80.47 77.43 78.47 78.84
KNN 91.93 92.72 97.42 92.11 74.17 78.51 76.90 76.18

AGAST

CF 98.00 97.09 98.03 97.53 80.37 82.47 81.59 81.31
RF 98.43 96.96 98.15 97.67 78.94 80.62 79.88 79.69
LR 97.72 95.72 97.36 96.69 79.08 75.93 76.94 77.43
SVM 97.29 96.39 97.47 96.81 79.22 76.51 77.37 77.77
KNN 97.29 95.71 97.19 96.46 75.79 76.08 75.94 75.88

MSER

CF 91.05 92.26 97.46 91.47 78.22 78.52 78.37 78.30
RF 91.58 93.75 97.78 92.46 79.51 77.31 78.01 78.34
LR 86.26 92.40 96.82 88.82 81.37 71.02 74.00 75.79
SVM 87.89 93.66 97.22 90.27 79.66 75.20 76.65 77.33
KNN 85.76 93.97 96.98 89.48 75.21 73.63 74.00 74.32

FAST

CF 97.57 97.20 97.92 97.38 78.52 80.55 79.66 79.45
RF 98.29 96.66 97.98 97.46 79.37 79.93 79.66 79.61
LR 96.29 96.07 96.97 96.15 79.51 74.83 76.29 77.05
SVM 97.14 96.89 97.64 96.99 80.07 76.55 77.73 78.21
KNN 97.86 96.25 97.64 97.03 75.93 76.30 76.08 76.04

Table 4.10 – Visualization-based performance results using AndroidManifest.xml and
resources.arsc files

46

Desc. Model APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

SIFT

CF 96.99 96.25 96.58 96.59 93.41 93.94 93.62 93.62
RF 97.36 95.57 96.39 96.43 90.69 93.56 92.19 92.05
LR 97.45 94.90 96.08 96.14 90.41 91.55 90.97 90.95
SVM 98.27 94.91 96.49 96.55 91.55 93.51 92.55 92.45
KNN 96.90 95.01 95.89 95.93 91.39 93.57 92.47 92.36

AGAST

CF 95.99 95.51 95.71 95.72 94.41 94.21 94.27 94.28
RF 96.53 95.61 96.03 96.05 93.99 94.04 93.98 93.97
LR 96.63 94.12 95.26 95.33 90.98 93.70 92.41 92.30
SVM 96.72 94.86 95.71 95.76 86.82 93.85 90.54 90.13
KNN 96.63 94.17 95.30 95.37 90.12 91.10 90.62 90.55

MSER

CF 97.54 95.07 96.21 96.27 94.12 94.84 94.48 94.46
RF 97.26 95.48 96.30 96.35 93.98 93.76 93.84 93.85
LR 98.18 94.05 95.94 96.05 92.41 91.81 92.05 92.08
SVM 97.99 94.95 96.35 96.43 94.13 92.81 93.41 93.45
KNN 97.54 94.90 96.12 96.18 93.42 90.70 91.90 92.02

FAST

CF 96.62 95.89 96.21 96.23 92.98 94.37 93.69 93.65
RF 97.08 95.55 96.26 96.29 93.41 93.87 93.62 93.62
LR 96.54 93.77 95.03 95.11 90.83 93.09 92.05 91.93
SVM 97.45 94.58 95.90 95.97 87.40 94.31 91.04 90.66
KNN 96.81 94.48 95.53 95.60 90.12 92.09 91.19 91.05

Table 4.9 – Visualization-based performance results using classes.dex and resources.arsc.

Desc. Model
APKComboDrebin dataset APKComboAndrozoo dataset

R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

SIFT

CF 97.81 96.20 96.94 96.98 93.55 94.84 94.20 94.16
RF 97.90 95.77 96.76 96.81 90.55 93.67 92.19 92.02
LR 97.72 95.50 96.53 96.58 90.54 91.29 90.90 90.88
SVM 98.09 95.59 96.76 96.81 92.11 94.23 93.19 93.10
KNN 97.72 95.84 96.71 96.76 92.41 93.57 92.98 92.93

AGAST

CF 97.17 96.17 96.63 96.65 94.27 94.44 94.34 94.34
RF 97.72 95.41 96.49 96.53 94.13 94.47 94.27 94.27
LR 97.63 94.14 95.76 95.84 90.54 93.07 91.83 91.72
SVM 98.17 94.06 95.94 96.05 88.25 94.78 91.69 91.36
KNN 97.72 93.86 95.62 95.72 89.54 91.78 90.76 90.63

MSER

CF 97.90 96.45 97.13 97.16 94.12 94.43 94.27 94.26
RF 97.90 96.45 97.13 97.16 94.27 94.57 94.41 94.41
LR 98.54 95.40 96.85 96.92 92.26 92.42 92.33 92.33
SVM 98.45 96.15 97.22 97.27 92.84 94.07 93.48 93.44
KNN 97.99 95.98 96.90 96.95 91.69 91.41 91.47 91.50

FAST

CF 97.54 94.90 96.13 96.19 94.27 94.72 94.48 94.48
RF 97.63 95.08 96.26 96.32 94.55 94.35 94.41 94.43
LR 97.63 94.23 95.81 95.89 90.97 92.32 91.69 91.61
SVM 97.44 94.66 95.94 96.01 88.11 93.91 91.19 90.85
KNN 97.90 93.61 95.58 95.69 89.69 91.94 90.90 90.78

Table 4.11 – Visualization-based performance results using classes.dex, AndroidMani-
fest.xml and resources.arsc files.

47

Notably, combining classes.dex and resources.arsc files for the APKComboDrebin
dataset significantly boosted the F1-score to 97.67% using AGAST and RF, though the
APKComboAndrozoo dataset only reached 81.31%. Finally, integrating all three file types,
the APKComboDrebin dataset achieved its second-highest F1-score of 97.27% with MSER
and SVM, while the APKComboAndrozoo dataset maintained the same score of 94.48% as
when combining classes.dex and AndroidManifest.xml. A balanced configuration using
MSER and RF yielded the second-best score of 97.17% for APKComboDrebin and the
third-best score of 94.41% for APKComboAndrozoo.

4.5.3 Performance enhancement via interpolation

After identifying the best Descriptor-Classifier combination, we explored the potential for
performance enhancement by applying different resize interpolation techniques beyond
the default INTER_LINEAR method. To this end, we experimented with three other
interpolation techniques available in OpenCV: INTER_CUBIC, INTER_NEAREST,
and INTER_LANCZOS4. The goal was to determine whether these alternative resizing
methods could further optimize the feature extraction process and subsequently improve
classification performance. Each technique offers a different approach to resizing: IN-
TER_CUBIC uses a cubic convolution for higher quality at the cost of processing time,
INTER_NEAREST employs nearest-neighbor interpolation for faster but potentially
less accurate resizing, and INTER_LANCZOS4 uses a high-quality Lanczos filter to
achieve better accuracy for resizing, especially in downscaling scenarios. By comparing the
performance outcomes of these methods, we aimed to identify the optimal resizing strategy
that enhances the classifier’s ability to accurately detect and classify features within
the APK files, ultimately improving the overall effectiveness of the Descriptor-Classifier
combination.

Interpolation APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

Cubic 97.54 96.09 96.76 96.80 93.84 93.46 93.62 93.63
Nearest 97.99 95.52 96.67 96.72 89.55 93.02 91.40 91.23
Lanczos4 98.18 96.03 97.04 97.08 94.55 93.65 94.05 94.08
Linear 97.90 96.45 97.13 97.16 94.27 94.57 94.41 94.41

Table 4.12 – Performance using different interpolation methods using MSER-RF.

The results of the experiment are shown in Table 4.12, which illustrates that no
significant improvement was achieved over the default INTER_LINEAR method. However,
the INTER_LANCZOS4 method demonstrated performance that closely matched the
results obtained with INTER_LINEAR. Specifically, while INTER_LINEAR remained
the best performing interpolation technique for most metrics, INTER_LANCZOS4 showed
comparable accuracy and F1-scores, suggesting it as a viable alternative for scenarios where

48

a higher-quality resize might be beneficial without compromising performance. On the
other hand, INTER_CUBIC and INTER_NEAREST did not yield competitive results,
indicating that their interpolation approaches were either too computationally intensive
without corresponding accuracy gains (INTER_CUBIC) or too simplistic to maintain
feature integrity (INTER_NEAREST). This experiment underscores the robustness of
INTER_LINEAR for resizing in feature extraction but also highlights INTER_LANCZOS4
as a close alternative, potentially useful in specific contexts where its nuanced interpolation
might offer marginal benefits.

Size APKComboDrebin dataset APKComboAndrozoo dataset
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

64 92.00 86.33 93.46 89.01 79.94 83.79 82.23 81.78
128 96.81 90.46 93.25 93.50 83.54 89.94 87.03 86.49
256 98.30 93.94 95.98 96.04 85.89 91.64 88.93 88.58
512 97.90 96.45 97.13 97.16 94.27 94.57 94.41 94.41

Table 4.13 – Performance using different image sizes within MSER-RF configuration.

After identifying the best interpolation technique, we tested our optimal Descriptor-
Classifier configuration (MSER-RF) with various image sizes ranging from 64x64 to
512x512 pixels. The findings, as presented in Table 4.13, highlight a clear trend: as the
image size increases, the performance of the models improves. The best results were
obtained with the 512x512 pixel size, where the increased resolution allowed for more
detailed feature extraction, enhancing the classifier’s accuracy and F1-score. Although we
attempted to use images sized at 1024x1024 pixels, our hardware was unable to process
them due to memory constraints and computational limits. This experiment underscores
the importance of image resolution in model performance, indicating that larger image
sizes can significantly enhance the quality of feature extraction and, consequently, the
effectiveness of classification, provided the hardware capabilities are sufficient to handle
the increased computational load.

4.6 Mixed Apporoach-based detection

Table 4.14 showcases the performance metrics of various mixed models across the APKCom-
boDrebin and APKComboAndrozoo datasets. Among these models, the voting ensemble
method emerges as the top performer, achieving the highest F1-score on both datasets.
Specifically, voting attains an impressive F1-score of 99.82% for the APKComboDrebin
dataset and 96.01% for the APKComboAndrozoo dataset, indicating its effectiveness in
accurately distinguishing between malicious and benign applications. On the other hand,
the stacking ensemble method with RF metamodel exhibits superior performance on the
APKComboDrebin dataset, yielding an F1-score of 98.72%. However, when applied to the

49

APKComboAndrozoo dataset, the stacking approach with LR metamodel achieves an F1-
score of 94.33%, which falls short compared to the performance achieved by the individual
models utilizing opcodes and byte-visualization techniques. These findings underscore the
efficiency of the voting ensemble technique compared to stacking for Android malware
detection. The voting ensemble technique demonstrates its effectiveness by providing a
notable increase in performance compared to the best-performing model obtained from
previous experiments. In the APKComboDrebin dataset, the voting ensemble achieves an
improvement of 0.38% over the best individual model (CF with opcode-based detection).
Similarly, in the APKComboAndrozoo dataset, the voting ensemble showcases a significant
enhancement of 0.95% compared to the same individual model. This improvement suggests
that the ensemble method effectively leverages the diverse insights of multiple classifiers,
resulting in enhanced performance in distinguishing between benign and malicious Android
applications.

Mixed APKComboDrebin dataset APKComboAndrozoo dataset
Model R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)
Vote 99.82 98.83 99.82 99.82 94.99 97.06 96.06 96.01
Stack-CF 98.26 97.34 97.76 97.78 90.41 96.79 93.62 93.39
Stack-RF 98.63 98.82 98.72 98.72 90.69 97.14 93.98 93.76
Stack-LR 98.72 97.32 97.99 98.00 92.98 95.78 94.41 94.33
Stack-SVM 98.26 98.50 98.36 98.36 91.42 97.31 94.34 94.11
Stack-KNN 97.90 98.22 98.04 98.04 90.55 97.64 94.13 93.88

Table 4.14 – Performance of the mixed approach.

The comparison between individual static approaches and the mixed approach, as
illustrated in Figures 4.4 and 4.5, offers valuable insights into their performance char-
acteristics on the APKComboDrebin and APKComboAndrozoo datasets. Notably, the
mixed approach exhibits a remarkable reduction in false negatives compared to individual
static approaches, with only 0.18% for the APKComboDrebin dataset and 5.01% for the
APKComboAndrozoo dataset. This reduction in false negatives suggests that the mixed
approach effectively captures more instances of malicious applications that would have
been missed by individual static approaches alone, thereby enhancing the overall detection
capability. However, it’s worth noting that the mixed approach shows a slight increase in
false positives compared to opcode-based detection, with an increment of 0.09% in the
APKComboDrebin dataset and 0.44% in the APKComboAndrozoo dataset. While false
positives can lead to unnecessary alerts, this marginal increase indicates a trade-off for
the improved detection of malicious applications, achieved by the mixed approach. This
suggests that while the mixed approach may produce slightly more false positives, its
ability to significantly reduce false negatives outweighs this drawback, resulting in a net
improvement in overall detection accuracy.

50

0 1
Predicted label

0
1

Tr
ue

 la
be

l

96.62% 3.38%

2.10% 97.90%

0 1
Predicted label

0
1

Tr
ue

 la
be

l

98.90% 1.10%

0.27% 99.73%

Permission-based detection Opcode-based detection

0 1
Predicted label

0
1

Tr
ue

 la
be

l

95.80% 4.20%

2.28% 97.72%

0 1
Predicted label

0
1

Tr
ue

 la
be

l

98.81% 1.19%

0.18% 99.82%

Visualization-based detection Mixed Approach-based detection

Figure 4.4 – Confusion matrix of static approaches - APKComboDrebin dataset.

To sum up, the mixed approach demonstrates its efficacy in enhancing the detection of
Android malware by substantially reducing false negatives, thereby improving the overall
detection capability. Although there is a slight increase in false positives compared to
opcode-based detection, this trade-off is justifiable given the significant improvement
in detection accuracy achieved by the mixed approach. These findings underscore the
importance of leveraging a combination of static approaches to achieve more robust and
effective malware detection in Android applications.

4.7 Comparison with the State-of-the-art works

Table 4.15 compares our obtained results with those of state-of-the-art methods in terms
of performance on two datasets: APKComboDrebin and APKComboAndrozoo. Our
mixed model (Vote) significantly outperforms all others on the APKComboDrebin dataset,
achieving remarkable scores across all metrics: 99.82% for Recall, Precision, Accuracy, and
F1-score. The second-best performance on this dataset comes from the CNN model trained
on visualized DEX files proposed by Ding et al. [17], which also shows high performance

51

0 1
Predicted label

0
1

Tr
ue

 la
be

l

87.97% 12.03%

15.33% 84.67%

0 1
Predicted label

0
1

Tr
ue

 la
be

l

97.57% 2.43%

6.15% 93.85%

Permission-based detection Opcode-based detection

0 1
Predicted label

0
1

Tr
ue

 la
be

l

93.99% 6.01%

7.02% 92.98%

0 1
Predicted label

0
1

Tr
ue

 la
be

l

97.13% 2.87%

5.01% 94.99%

Visualization-based detection Mixed Approach-based detection

Figure 4.5 – Confusion matrix of static approaches -APKComboAndrozoo dataset.

but falls short compared to our model. Similarly, on the APKComboAndrozoo dataset, our
model leads with the highest scores: 94.99% Recall, 97.06% Precision, 96.06% Accuracy,
and 96.01% F1-score. The closest competitor is the DNN model proposed by Mercaldo
et al. [35], which is trained on opcodes, yet it does not surpass our model in any of the
metrics.

Ref. Model APKComboDrebin APKComboAndrozoo
R (%) P (%) A (%) F1 (%) R (%) P (%) A (%) F1 (%)

[5] RF 96.45 90.94 93.34 93.57 75.05 79.21 77.08 76.63
[42] RF 90.97 90.64 90.75 90.76 82.81 81.19 81.71 81.92
[17] CNN 99.54 93.97 96.58 96.67 84.46 96.15 90.00 89.93
[35] DNN 88.42 97.97 92.14 92.95 94.33 89.87 91.79 92.04
[47] Bloom 92.86 91.53 95.01 93.24 91.17 93.03 89.05 91.00
Our Vote 99.82 98.83 99.82 99.82 94.99 97.06 96.06 96.01

Table 4.15 – Comparison with state-of-the-art works.

52

4.8 Conclusion

In this chapter we concluded by underscoring the efficacy of the proposed mixed approach
for Android malware detection. The experimental results demonstrate that combining
permission-based, opcode-based, and visualization-based methods significantly enhances
detection accuracy and robustness. The mixed approach effectively leverages the strengths
of each individual analysis technique, leading to a more comprehensive detection system
that can identify a broader range of malware behaviors. Notably, the ensemble learning
methods, including stacking and voting, play a critical role in improving the model’s
overall performance by integrating the complementary strengths of the different analysis
approaches. The evaluation also highlights the superiority of the proposed model com-
pared to state-of-the-art methods. The model achieves remarkable scores across various
metrics, including recall, precision, accuracy, and F1 score, particularly excelling on the
APKComboDrebin and APKComboAndrozoo datasets. This indicates that the proposed
approach not only enhances detection capability but also offers a robust solution adaptable
to different datasets and evolving malware tactics. Overall, the findings affirm that the
mixed static analysis approach, supported by ensemble learning techniques, provides a
significant advancement in the field of Android malware detection.

53

Summary and conclusions

The research presented in this thesis addresses the pressing issue of Android malware
detection through an innovative and comprehensive approach. The increasing complexity
and prevalence of malware attacks on Android devices necessitate advanced detection mech-
anisms that can adapt to evolving threats. Our proposed mixed static analysis approach,
which integrates permission analysis, opcode examination, and bytecode visualization,
offers a robust solution to this challenge. By leveraging the strengths of each individual
technique, our model significantly enhances detection accuracy and robustness, providing
a more effective defense against a wide range of malware behaviors. The experimental
results affirm the superiority of our approach compared to traditional methods and ex-
isting state-of-the-art techniques. Our model demonstrates high performance across two
datasets, with malware samples collected from different periods, showcasing its ability to
adapt to various malware types and detection scenarios. Specifically, the Drebin malware
samples date back to 2012, whereas the Androzoo malware samples are relatively recent,
dating from 2020 onwards. While state-of-the-art techniques and individual analysis
methods achieve an impressive detection rate within the APKComboDrebin dataset, which
comprises older malware samples, they exhibit a notable decrease in performance when
applied to the APKComboAndrozoo dataset, which includes newer malware samples. This
highlights the robustness and adaptability of our model, as it consistently outperforms
other methods regardless of the age and type of malware, ensuring reliable detection across
diverse and evolving malware landscapes. This research findings not only contributes to
the academic field of cybersecurity but also has practical implications for improving the
security of Android devices. As mobile technology continues to advance and proliferate,
the importance of maintaining robust security measures cannot be overstated. These
findings of this study underscore the potential of integrated analysis methods to offer a
more resilient solution for malware detection, ultimately contributing to the security of
users in the digital age, and providing a way to defend against Zero-day attacks.

As future work, we plan to enhance the model’s capabilities by integrating additional
static and dynamic analysis techniques, demonstrating their resilience against the continu-
ous evolution of malware developers’ tactics. Additionally, we aim to expand the dataset
to include a broader range of benign and malicious samples. By continually refining and
expanding our approach, we intend to stay ahead of emerging threats and ensure that

54

our detection system remains effective in the face of evolving malware strategies. Our
ultimate goal is to provide a comprehensive, adaptable, and reliable solution that can be
implemented in real-world applications, thereby significantly contributing to the protection
of the Android ecosystem. This proactive stance will help us deliver a robust security
framework that safeguards users and devices from the ever-changing landscape of cyber
threats.

55

References

[1] Absar, J. Programming for the Android Dalvik Virtual Machine, 1st ed. Springer
Publishing Company, Incorporated, 2017.

[2] Albin Ahmed, A., Shaahid, A., Alnasser, F., Alfaddagh, S., Binagag,
S., and Alqahtani, D. Android ransomware detection using supervised machine
learning techniques based on traffic analysis. Sensors 24, 1 (2024).

[3] Allix, K., Bissyandé, T. F., Klein, J., and Le Traon, Y. Androzoo:
collecting millions of android apps for the research community. In Proceedings of the
13th International Conference on Mining Software Repositories (MSR’16) (New York,
NY, USA, 2016), MSR ’16, Association for Computing Machinery, p. 468471.

[4] Almomani, I., Alkhayer, A., and El-Shafai, W. An automated vision-based
deep learning model for efficient detection of android malware attacks. IEEE Access
10 (2022), 2700–2720.

[5] Alsoghyer, S., and Almomani, I. On the effectiveness of application permissions
for android ransomware detection. In 2020 6th Conference on Data Science and
Machine Learning Applications (CDMA) (2020), pp. 94–99.

[6] Alzaylaee, M. K., Yerima, S. Y., and Sezer, S. Dl-droid: Deep learning
based android malware detection using real devices. Computers & Security 89 (2020),
101663.

[7] Apkcombo. Apkcombo - download apks for android. https://apkcombo.com/.
Accessed: 2024-06-19.

[8] AppBrain. Number of android apps on google play. https://www.appbrain.com/
stats/number-of-android-apps, May 2024. Accessed: May 22, 2024.

[9] AppBrain. Top categories on google play. https://www.appbrain.com/stats/
android-market-app-categories, May 2024. Accessed: May 20, 2024.

[10] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., and Rieck, K.
Drebin: Effective and explainable detection of android malware in your pocket. In
NDSS (2014), The Internet Society.

56

https://apkcombo.com/
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/android-market-app-categories
https://www.appbrain.com/stats/android-market-app-categories

[11] AV-ATLAS. Total amount of malware and pua under android. https://portal.
av-atlas.org/malware/statistics/, 2024. Accessed: May 23, 2024.

[12] Azhagusundari, B., Thanamani, A. S., et al. Feature selection based on
information gain. International Journal of Innovative Technology and Exploring
Engineering (IJITEE) 2, 2 (2013), 18–21.

[13] BuildFire. App statistics. https://buildfire.com/app-statistics/, 2024. Ac-
cessed: May 20, 2024.

[14] Cinar, A. C., and Kara, T. B. The current state and future of mobile security
in the light of the recent mobile security threat reports. Multimedia Tools and
Applications 82 (2023), 18425–18444.

[15] CrowdStrike. Mobile malware. https://www.crowdstrike.com/
cybersecurity-101/malware/mobile-malware/, 2024. Accessed: May 20,
2024.

[16] Developers, A. Developer guide. https://developer.android.com/guide, 2024.
Accessed: May 23, 2024.

[17] Ding, Y., Zhang, X., Hu, J., and et al. Android malware detection method
based on bytecode image. Journal of Ambient Intelligence and Humanized Computing
14 (2023), 6401–6410.

[18] Geden, M. Ngram and Signature Based Malware Detection in Android Platform.
PhD thesis, University College London, 09 2015.

[19] Haidros Rahima Manzil, H., and Manohar Naik, S. Detection approaches for
android malware: Taxonomy and review analysis. Expert Systems with Applications
238 (2024), 122255.

[20] Jackson, W. The future of android iot apis: Android tv, glass, auto, and wear. In
Pro Android Wearables. Apress, Berkeley, CA, 2015, pp. 325–340.

[21] Jiang, F., Wu, W., Chen, X., Wang, J., Luo, X., and Lin, Y. Android
malware analysis in a nutshell. PloS one 17, 7 (2022), e0270647.

[22] Kaehler, A., and Bradski, G. R. Learning OpenCV 3: computer vision in C++
with the OpenCV library, first edition, second release ed. O’Reilly Media, Sebastopol,
CA, 2017.

[23] Kaspersky. Malware in google play 2023. https://usa.kaspersky.com/blog/
malware-in-google-play-2023/29356/, 2023. Accessed: May 21, 2024.

57

https://portal.av-atlas.org/malware/statistics/
https://portal.av-atlas.org/malware/statistics/
https://buildfire.com/app-statistics/
https://www.crowdstrike.com/cybersecurity-101/malware/mobile-malware/
https://www.crowdstrike.com/cybersecurity-101/malware/mobile-malware/
https://developer.android.com/guide
https://usa.kaspersky.com/blog/malware-in-google-play-2023/29356/
https://usa.kaspersky.com/blog/malware-in-google-play-2023/29356/

[24] Kaspersky. Global mobile banking malware grows 32 percent
in 2023. https://www.kaspersky.com/about/press-releases/2024_
global-mobile-banking-malware-grows-32-percent-in-2023, 2024. Accessed:
Mai 21, 2024.

[25] Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In International Joint Conference on Artificial Intelligence (03 2001),
vol. 14.

[26] Kouliaridis, V., and Kambourakis, G. A comprehensive survey on machine
learning techniques for android malware detection. Information 12, 5 (2021).

[27] Kuncheva, L. I. Combining Pattern Classifiers. John Wiley & Sons, Ltd, 2004.

[28] Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., and Liu, H. A review of android
malware detection approaches based on machine learning. IEEE Access 8 (2020),
124579–124607.

[29] Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., and Liu, H. A review of android
malware detection approaches based on machine learning. IEEE Access 8 (2020),
124579–124607.

[30] Martinelli, F., Mercaldo, F., Nardone, V., and Santone, A. Twinkle
twinkle little droiddream, how i wonder what you are? In 2017 IEEE International
Workshop on Metrology for AeroSpace (MetroAeroSpace) (2017), pp. 21–25.

[31] Martinelli, F., Mercaldo, F., Nardone, V., Santone, A., and Vaglini, G.
Model checking and machine learning techniques for hummingbad mobile malware
detection and mitigation. Simulation Modelling Practice and Theory 105 (2020),
102169.

[32] McAfee. Android game malware: Stealthy and widespread. https://www.mcafee.
com/blogs/mobile-security/android-game-malware/, 2024. Accessed: 2024-06-
11.

[33] McDonald, J. T., Herron, N., Glisson, W. B., and Benton, R. K. Machine
learning-based android malware detection using manifest permission. In Proceedings
of the 54th Hawaii International Conference on System Sciences (2021).

[34] Meijin, L., Zhiyang, F., Junfeng, W., Luyu, C., Qi, Z., Tao, Y., Yinwei,
W., and Jiaxuan, G. A systematic overview of android malware detection. Applied
Artificial Intelligence 36, 1 (2022), 2007327.

[35] Mercaldo, F., and Santone, A. Deep learning for image-based mobile malware
detection. Journal of Computer Virology and Hacking Techniques 16 (2020), 157–171.

58

https://www.kaspersky.com/about/press-releases/2024_global-mobile-banking-malware-grows-32-percent-in-2023
https://www.kaspersky.com/about/press-releases/2024_global-mobile-banking-malware-grows-32-percent-in-2023
https://www.mcafee.com/blogs/mobile-security/android-game-malware/
https://www.mcafee.com/blogs/mobile-security/android-game-malware/

[36] Miksik, O., and Mikolajczyk, K. Evaluation of local detectors and descriptors
for fast feature matching. In Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012) (2012), pp. 2681–2684.

[37] Nazir, S., Khan, K. N., Ullah, N., Ali, S., Khan, M. S., Nauman, M.,
and Ghani, A. Op2vec: An opcode embedding technique and dataset design for
end-to-end detection of android malware. Security and Communication Networks
2022 (2022), 3710968.

[38] Niu, W., Cao, R., Zhang, X., Ding, K., Zhang, K., and Li, T. Opcode-level
function call graph based android malware classification using deep learning. Sensors
20, 13 (2020).

[39] of Apps, B. App statistics. https://www.businessofapps.com/data/
app-statistics, 2024. Accessed: May 20, 2024.

[40] of Apps, B. Google play statistics. https://www.businessofapps.com/data/
google-play-statistics, 2024. Accessed: May 20, 2024.

[41] Point, C. Judy malware possibly largest malware campaign found on google play,
2024.

[42] Rathore, H., Sahay, S. K., Rajvanshi, R., and Sewak, M. Identification
of significant permissions for efficient android malware detection. In Broadband
Communications, Networks, and Systems. BROADNETS 2020. Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, H. Gao, R. J. D. Barroso, P. Shanchen, and R. Li, Eds., vol. 355.
Springer, Cham, 2021, pp. 38–54.

[43] Sammut, C., and Webb, G. I., Eds. Encyclopedia of Machine Learning. Springer
US, Boston, MA, 2010.

[44] Securelist. It threat evolution q2 2023 mobile statistics. https://securelist.com/
it-threat-evolution-q2-2023-mobile-statistics/110427/, 2023. Accessed:
May 20, 2024.

[45] Seraj, S., Pavlidis, M., Trovati, M., and Polatidis, N. Maddroid: malicious
adware detection in android using deep learning. Journal of Cyber Security Technology
(2023), 1–28.

[46] Shahzad, M., Arshad, S. M. U., Ahmad, H. A., Rafique, M. A., Mazzara,
M., and Distefano, S. A comprehensive survey on malware detection approaches.
Sensors 22, 15 (2022).

59

https://www.businessofapps.com/data/app-statistics
https://www.businessofapps.com/data/app-statistics
https://www.businessofapps.com/data/google-play-statistics
https://www.businessofapps.com/data/google-play-statistics
https://securelist.com/it-threat-evolution-q2-2023-mobile-statistics/110427/
https://securelist.com/it-threat-evolution-q2-2023-mobile-statistics/110427/

[47] Sihag, V., Mitharwal, A., Vardhan, M., and Singh, P. Opcode n-gram based
malware classification in android. In 2020 Fourth World Conference on Smart Trends
in Systems, Security and Sustainability (WorldS4) (2020), pp. 645–650.

[48] Srivastava, G., Maryam, A., Ahmed, U., Aleem, M., Lin, J. C.-W., Ar-
shad Islam, M., and Iqbal, M. A. chybridroid: A machine learning-based hybrid
technique for securing the edge computing. Security and Communication Networks
2020 (2020), 8861639.

[49] Statista. Forecast number of mobile devices worldwide from 2020
to 2025 (in billions)*. https://www.statista.com/statistics/245501/
multiple-mobile-device-ownership-worldwide, 2021. Accessed: April 27, 2024.

[50] Statista. Distribution of mobile malware worldwide in 2nd quarter 2023 and
3rd quarter 2023, by type. https://www.statista.com/statistics/653688/
distribution-of-mobile-malware-type/, 2023. Accessed: Mai 21, 2024.

[51] Statista. Market share of mobile operating systems worldwide from
2009 to 2024, by quarter. https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/, 2024.
Accessed: Mai 21, 2024.

[52] Team, A. Androguard: Reverse engineering and pentesting for android applications.
https://github.com/androguard/androguard, 2024. Accessed: 2024-06-11.

[53] Threatpost. 38 android devices infected with mal-
ware preinstalled in supply chain. https://threatpost.com/
38-android-devices-infected-with-malware-preinstalled-in-supply-chain/
124275/, 2017. Accessed: May 21, 2024.

[54] Virustotal. Virustotal. https://www.virustotal.com/, 2024. Accessed: 2024-06-
11.

[55] Wolpert, D. H. Stacked generalization. Neural Networks 5, 2 (1992), 241–259.

[56] Yadav, R., and Bhadoria, R. S. Performance analysis for android runtime
environment. In 2015 Fifth International Conference on Communication Systems and
Network Technologies (2015), pp. 1076–1079.

[57] Zhou, Z.-H., and Feng, J. Deep forest: Towards an alternative to deep neural
networks. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17 (2017), pp. 3553–3559.

60

https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide
https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide
https://www.statista.com/statistics/653688/distribution-of-mobile-malware-type/
https://www.statista.com/statistics/653688/distribution-of-mobile-malware-type/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://github.com/androguard/androguard
https://threatpost.com/38-android-devices-infected-with-malware-preinstalled-in-supply-chain/124275/
https://threatpost.com/38-android-devices-infected-with-malware-preinstalled-in-supply-chain/124275/
https://threatpost.com/38-android-devices-infected-with-malware-preinstalled-in-supply-chain/124275/
https://www.virustotal.com/

	Acknowledgements
	arabicملخصenglish
	Résumé
	Abstract
	Table of contents
	List of figures
	List of tables
	Introduction
	Emerging Threats of Android Malware
	Dependency on Mobile Applications
	Android Applications
	Role in the Mobile Ecosystem
	Popularity of Android Apps
	Android Apps on Other Devices

	Structure of Android applications
	Manifest File
	Application code
	Resources
	Assets
	Native Libraries
	META-INF

	Rising Concerns about Android Malware
	Causes of Android Malware
	Definition and Forms of Android Malware
	Notable Android Malware Attacks

	Conclusion

	Android Malware Detection Approaches
	Permission-based Approaches
	Opcode-based Approaches
	Visualization-based Approaches
	Hybrid Approaches
	Conclusion

	A Mixed Static Analysis Approach for Android Malware Detection
	Overview of the proposed approach
	Permissions Analysis
	Opcode Examination
	Bytecode Visualization
	Mixed approach
	Conclusion

	Experimentation and Analysis
	Data Collection
	Evaluation process
	Permission-based detection
	Opcode-based detection
	Visualization-based detection
	Feature Extraction and Classifier Evaluation
	Combination Analysis
	Performance enhancement via interpolation

	Mixed Apporoach-based detection
	Comparison with the State-of-the-art works
	Conclusion

	Summary and conclusions
	References

