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Abstract

This thesis project endeavors to develop an innovative platform tailored for practical ses-
sions within the educational context. The platform aims to provide customized environ-
ments for each teaching module through the implementation of technological containers.
These containers are designed to ensure robust stability and secure isolation of environ-
ments, facilitating seamless access to essential tools and libraries for both teachers and
students. Additionally, the platform seeks to automate the management processes of the
educational computing center, streamlining administrative tasks for system administra-
tors.

Keywords: Linux, Docker, Kubernetes, DevOps, Containers



Résumé

Ce projet de thèse vise à développer une plateforme innovante destinée aux sessions pra-
tiques dans le cadre éducatif. La plateforme vise à fournir des environnements spécifiques
pour chaque module d’enseignement grâce à l’utilisation de conteneurs technologiques. Ces
conteneurs sont conçus pour assurer une stabilité robuste et une isolation sécurisée des
environnements, facilitant l’accès transparent aux outils et bibliothèques essentiels tant
pour les enseignants que pour les étudiants. De plus, la plateforme vise à automatiser les
processus de gestion du centre informatique éducatif, simplifiant les tâches administratives
pour les administrateurs système.

Mots Clés : Linux, Docker, Kubernetes, Conteneurs
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General Introduction

In the digital age of education, where technology is increasingly integrated into teach-
ing and learning processes, the role of educational computing infrastructure has become
paramount. Providing students with tailored environments for practical modules is funda-
mental for fostering effective learning experiences. However, this endeavor is not without
its challenges.

Machines are shared across multiple modules, each having its own development envi-
ronment, resulting in unstable machine states, and requiring frequent reconfiguration. To
tackle this, our solution leverages container technology, a rapidly evolving field, offering
complete isolation of software dependencies, including those of the operating system.

The proposed platform goes beyond stability; it automates the entire process of man-
aging the educational computing center. Through containerization, each instructor is
equipped with a personalized environment that automatically initiates upon login to a
master machine. This not only enhances efficiency but also relieves administrators of the
burdensome tasks associated with manual reconfiguration. In essence, our project aims to
revolutionize the way educational computing resources are managed, providing a seamless
and stable experience for both educators and students alike.

This thesis is organized as follows: The first chapter delves into virtualization technol-
ogy, exploring its foundational concepts and its significance in modern computing environ-
ments, particularly in educational settings. The second chapter examines containerization
technology, detailing how it builds on virtualization principles to offer isolated and efficient
environments. In the third chapter, we outline the design and architectural considera-
tions of our proposed solution, including detailed diagrams and conceptual frameworks.
Finally, the fourth chapter covers the practical implementation of our project, discussing
the steps taken, challenges faced, and results achieved, along with the deployment and
management of the containerized environments.

1



Chapter 1

Virtualization technology

1.1 Introduction

The field of computer science is constantly evolving at a rapid pace, necessitating continu-
ous adaptation to the latest technological advancements. Over recent years, the industry
has seen the emergence of groundbreaking technologies like distributed computing, paral-
lel processing, virtualization, cloud computing, and most recently, the Internet of Things
(IoT). Each of these innovations has paved the way for subsequent developments, con-
tributing to a robust foundation for further progress. For instance, virtualization has
played a transformative role and laid the groundwork for cloud computing.

Since the inception of computers, maximizing resource utilization has been a common
practice, whether through time sharing, multitasking, or more recent trends in virtualiza-
tion.

1.2 Virtualization

In philosophy, "virtual" refers to something that lacks physical reality; however, in com-
puter science, "virtual" denotes a simulated hardware environment. In this context, we
replicate the functionalities of physical hardware and present them to an operating system.
The technology employed to achieve this environment is termed virtualization technology,
or simply, virtualization. The physical system that hosts the virtualization software, such
as a hypervisors, is referred to as a host, while the virtual machines running atop the
hypervisor are termed guests [11]
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CHAPTER 1. VIRTUALIZATION TECHNOLOGY

Figure 1.1: Difference between physical compute and virtual compute [12]

1.3 Historic of virtualization

The concept of virtualization dates back to the 1960s when IBM developed virtual machine
(VM) technology for its mainframe computers. [13]

IBM’s VM/370, introduced in the early 1970s, was one of the earliest implementations
of virtualization technology. It allowed multiple instances of IBM’s operating system
(OS/370) to run concurrently on a single mainframe, effectively partitioning the hardware
resources and providing isolated execution environments for different users. In the 1990s,
as many companies faced the challenge of maintaining their single-vendor IT stacks and
existing applications, they became aware of the need to make better use of their often
underutilized server resources. By adopting virtualization, they could not only more
efficiently partition their server infrastructure but also run their legacy applications on
different types and versions of operating systems. Due to its vast network composed of
many types of computers running on different operating systems, the Internet contributed
to the adoption of virtualization. [14]

1.4 Hypervisors

A hypervisor, also known as a virtual machine monitor (VMM), is a software layer that
allows multiple virtual machines (VMs) to run on a single physical machine, known as the
host system. The primary purpose of a hypervisor is to abstract and virtualize the under-
lying physical hardware, such as the CPU, memory, storage, and networking resources,
so that they can be shared among multiple VMs. A hypervisor enables the simultane-
ous execution of multiple operating systems on the host hardware. These instances can
be utilized by various users, highlighting the hypervisor’s capability to facilitate multi-
tenancy. Additionally, hypervisors ensure isolation between different guest processes, a
crucial factor in supporting multi-tenancy. Furthermore, hypervisors can manage proces-
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sor changes transparently, without impacting the user’s operating system or applications,
thus offering essential agility for cloud infrastructure [13]

Types of hypervisors

• Type 1 Hypervisor (Bare-Metal Hypervisor)

This hypervisor runs directly on the physical hardware without the need for an
underlying operating system.It manages the hardware resources and provides vir-
tualization services directly to the guest VMs. Examples include VMware ESXi,
Microsoft Hyper-V Server, and Xen.

Figure 1.2: Hypervisor type 01 schema [15]

• Type 2 Hypervisor (Hosted Hypervisor):

This hypervisor runs on top of a conventional operating system installed on the
physical hardware. It relies on the underlying operating system to manage hardware
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resources and provides virtualization services through software. Examples include
VMware Workstation, Oracle VirtualBox, and Parallels Desktop for Mac.

Figure 1.3: Hypervisor type 02 schema [15]

1.5 Linux and virtualization

Virtualization made its debut in Linux with User-Mode Linux (UML), igniting the mo-
mentum needed to position Linux as a contender in the virtualization landscape. Presently,
Linux offers a diverse range of virtualization solutions that enable the transformation of
a single computer into multiple virtual machines. Prominent among these solutions are
KVM, Xen, and QEMU. The allure of Linux virtualization lies in its openness, flexibility,
and performance capabilities. Similar to other open-source software, Linux virtualiza-
tion solutions are developed collaboratively, leveraging the advantages of the open-source
model. This collaborative approach fosters wider community input, ultimately leading to
reduced research and development costs, enhanced efficiency, and improved performance
and productivity. Moreover, the open-source model inherently fosters innovation, driving
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continuous improvement within the Linux virtualization ecosystem [11]

1.6 Types of virtualizations

In simple terms, virtualization involves the abstraction of various components such as
hardware, network, storage, applications, and access. This means that virtualization can
be applied to any of these components. Specifically, virtualization entails concealing the
underlying physical hardware to enable its sharing and utilization by multiple operating
systems. This process, also known as platform virtualization, introduces an intermediary
layer called a hypervisor or Virtual Machine Monitor (VMM) between the underlying
hardware and the operating systems running on it. The operating system running atop
the hypervisor is referred to as the guest or virtual machine (VM).

Application virtualization

This enables users to virtually access an application, where the server retains all the ap-
plication’s data and features, enabling remote execution via the internet. Application
virtualization streamlines the deployment of applications within an environment, facili-
tating efficient upgrades and support processes [16]

Figure 1.4: Application virtualisation schema [16]

Network virtualization

This permits the operation of numerous virtual networks, each possessing distinct control
and data plans. Network virtualization offers the capability to swiftly generate and
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allocate virtual networks, encompassing logical switches, routers, firewalls, load balancers,
Virtual Private Networks (VPNs), and workload security, all in minimal time [17]

Figure 1.5: General Architecture Of Network Virtualization [17]

Desktop virtualization

This enables users to remotely access their desktops. Those desiring to utilize operating
systems other than Windows Server can effectively do so through desktop virtualization.
Key advantages include enhanced portability, simplified software installation, and patch
management [17]

Figure 1.6: Desktop virtualization [17]
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Storage virtualization

This feature offers a virtual storage solution that is secure, isolated, and reliable, spanning
multiple networks. It can accomplish all this using just a single storage component.
Even in the event of failures in the underlying systems, storage virtualization guarantees
seamless and uninterrupted operation [17]

Figure 1.7: Storage virtualization

Server virtualization

This form of virtualization involves concealing server resources, where the primary server
(physical server) is partitioned into multiple distinct virtual servers by altering identifiers
and processors. Consequently, each system can function with its own operating system
in isolation, with each sub-server recognizing the central server’s identity. This approach
enhances performance and diminishes operational expenses by distributing main server

8
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resources into sub-server resources. It proves advantageous for tasks like virtual migration,
energy conservation, and minimizing infrastructure expenses [17]

Data virtualization

This type of virtualization involves gathering data from diverse sources and centralizing
it in a single location without delving into technical intricacies such as data collection,
storage, and formatting. The data is then logically organized to create a virtual represen-
tation accessible to interested parties, stakeholders, and users via various cloud services
from remote locations. Numerous major companies, including Oracle and IBM, offer such
services [17]

1.7 Conclusion

In conclusion, virtualization technology has emerged as a powerful tool for optimizing
resource utilization, enhancing flexibility, and improving scalability in computing envi-
ronments. Through the creation of virtual instances of hardware, software, or storage
resources, virtualization enables efficient allocation and management of IT resources. It
facilitates the deployment of multiple operating systems and applications on a single
physical machine, leading to cost savings and increased efficiency. Moreover, virtualiza-
tion plays a crucial role in disaster recovery, high availability, and workload migration
strategies. As organizations continue to embrace cloud computing and data center con-
solidation initiatives, virtualization will remain a cornerstone technology in modern IT
infrastructures, driving innovation and enabling agility in the face of evolving business
needs
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Chapter 2

Containerization technology

2.1 Introduction

In the preceding chapter, we embarked on a comprehensive exploration of virtualization
technology, dissecting its core principles, applications, and implications within comput-
ing environments. We navigated through the complexities of managing shared server
resources, optimizing infrastructure partitioning, and leveraging the versatility of running
diverse operating systems simultaneously on a single physical machine. As we delved into
the nuances of virtualization, we gained valuable insights into its transformative potential
across various domains. In this chapter, we shift our focus to a groundbreaking technol-
ogy poised to revolutionize the landscape of computing infrastructure: containerization.
Unlike traditional virtualization methods, containerization offers a lightweight, efficient
approach to application deployment and management. By encapsulating applications
and their dependencies into portable, self-contained units known as containers, container-
ization enables seamless deployment across diverse computing environments, from local
development environments to production servers.

2.2 Overview of containerization technology

Containerization is a technology that helps package up software and its dependencies so
it can run consistently across different computing environments. Imagine a container like
a self-contained box that holds everything an application needs to run smoothly. This
includes the application itself, along with any software libraries and settings it relies on.
One of the key benefits of containerization is that it abstracts away the complex details of
the underlying infrastructure. This means developers can focus on writing code without
worrying about the specific setup of the server or computer where the application will run.

10
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Containers are lightweight and portable, making them easy to move between different
environments, like from a developer’s laptop to a production server. They also start up
quickly and use resources efficiently, which can help speed up deployment times and save
on computing costs. Overall, containerization has become a popular choice for software
development and deployment because it simplifies the process of building, shipping, and
running applications. It’s like a modern-day shipping container, revolutionizing the way
software is packaged and delivered. [18]

2.3 Containerization versus virtualization

Containers are frequently likened to virtual machines (VMs) as they both contribute
to notable computational efficiencies by enabling the execution of various software types
(whether Linux- or Windows-based) within a unified environment. Nevertheless, container
technology is demonstrating remarkable advantages beyond those offered by virtualization,
swiftly garnering preference among IT professionals. Virtualization technology enables the
concurrent operation of multiple operating systems and software applications, all utilizing
the resources of a single physical computer. This means that an IT organization can run
a mix of operating systems, like Windows and Linux, or multiple instances of the same
operating system, alongside various applications on a single server. Each application,
along with its associated files, libraries, and dependencies, including a complete copy of
the operating system, is bundled together as a virtual machine (VM). By hosting multiple
VMs on a single physical machine, substantial savings can be realized in terms of capital
investment, operational expenses, and energy consumption
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Figure 2.1: Virtual machines and containers architectures [19]

On the contrary, containerization maximizes the utilization of computing resources
even further. A container consolidates all necessary components for running an applica-
tion into a single executable package of software. This includes application code, con-
figuration files, libraries, and dependencies. Unlike virtual machines (VMs), containers
do not include a duplicate of the operating system (OS). Instead, the container runtime
engine is installed on the host system’s OS, serving as the mechanism through which all
containers on the computing system access and share the same OS [20]
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Parameter Virtual Machines Containers
Guest OS Each VM runs on virtual hard-

ware and Kernel is loaded into its
own memory region

All the guests share same OS and
Kernel. Kernel image is loaded
into the physical memory

Communication Will be through Ethernet Devices Standard IPC mechanisms like
signals, pipes, sockets, etc.

Security Depends on the implementation
of Hypervisor

Mandatory access control can be
leveraged

Performance Virtual Machines suffer from a
small overhead as the machine
instructions are translated from
Guest to Host OS.

Containers provide near-native
performance as compared to the
underlying Host OS.

Isolation Sharing libraries, files, etc. be-
tween guests and between guests
hosts is not possible.

Subdirectories can be transpar-
ently mounted and can be shared.

Startup time VMs take a few minutes to boot
up

Containers can be booted up in a
few seconds as compared to VMs.

Storage VMs take much more storage as
the whole OS kernel and its as-
sociated programs have to be in-
stalled and run

Containers take a lower amount
of storage as the base OS is shared

Table 2.1: Comparison between Virtual Machines and Containers

As mentioned, containers are often described as "lightweight" because they share
the operating system (OS) kernel of the host machine. Unlike virtual machines VMs,
containers don’t need to include a whole separate OS for each application. This means
they use less space and can start up faster. Additionally, common bins and libraries can be
shared among multiple containers, making them smaller and quicker to start than VMs.
By running multiple containers on the same computing power as a single VM, servers can
be used more efficiently, leading to lower costs for servers and software licenses.

2.4 Containerization debut

Virtualization emerged in response to the need to optimize existing computing resources,
enabling multiple virtual machines to run on a single host, each with its isolated environ-
ment. Hypervisors, acting as mediators between the host and virtual machines, facilitate
this isolation. Containerization, the next evolutionary step in virtualization, builds upon
these principles, offering isolation at both the operating system and application levels.
The concept of containers traces back to the late 1970s, originating from Unix operating
systems with the introduction of chroot. However, modern container technology began
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to take shape in the early 2000s, marking significant milestones in the evolution of con-
tainerization.

Year Technology First introduced in OS
1982 chroot Unix-Like operating system
2000 jail FreeBSD
2000 Virtuozzo containers Linux, Windows
2001 Linux VServer Linux, Windows
2004 Solaris container Sun Solaris, Open Solaris
2005 Openvz Linux
2008 LXC Linux
2013 Docker Linux, FreeBSD, Windows

Table 2.2: Container technology timeline

Several container technologies, as outlined in Table 2, serve distinct purposes. For
instance, chroot offers filesystem isolation by altering the root directory for running pro-
cesses and their offspring. Conversely, technologies like Solaris containers (zones) and
LXC deliver comprehensive operating system–level virtualization. The lineage of many
contemporary containers can be traced back to LXC, which debuted in 2008. LXC’s
emergence was made feasible by essential functionalities integrated into the Linux kernel
from the 2.6.24 version onwards, as elaborated in the subsequent section. [21]

Here’s a brief explanation of each

• Chroot

Chroot is a Unix system call that changes the apparent root directory for the current
running process and its children. It’s often used for creating isolated environments
within a Unix-like operating system.

• Virtuozzo Containers

Virtuozzo Containers, formerly known as OpenVZ, is a commercial virtualization
solution that provides container-based virtualization for Linux and Windows
environments. It enables the creation of lightweight, isolated containers with shared
kernel resources.

• Linux-VServer

Linux-VServer is an open-source operating system-level virtualization solution for
Linux systems. It allows the creation of multiple isolated virtual environments,
known as virtual private servers (VPS), on a single physical server
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• Solaris Container

Solaris Containers, also known as Solaris Zones, are a form of operating system-
level virtualization technology developed by Sun Microsystems (now Oracle). They
enable the creation of multiple isolated environments, or zones, on a single Solaris
host.

• OpenVZ:

OpenVZ is an open-source container-based virtualization solution for Linux systems.
It provides lightweight, efficient virtualization by leveraging container technology to
create isolated environments on a single physical server.

• LXC

Linux Containers (LXC) is an open-source operating system-level virtualization so-
lution for Linux systems. It utilizes Linux kernel features such as namespaces and
control groups (cgroups) to create and manage lightweight containers.

• Docker

Docker is a popular platform for building, shipping, and running containers. It
simplifies the process of containerization by providing tools and services for creat-
ing, deploying, and managing containers, along with a centralized repository called
Docker Hub for sharing container images

2.5 Key base of containerization

Containers leverage specific functionalities within the Linux kernel to establish an iso-
lated environment within the host machine. This environment closely resembles a virtual
machine but operates independently of a hypervisor.

• Control groups (cgroups)

• Namespaces

• Filesystem or rootfs

2.5.1 Control groups (cgroups)

Control groups (cgroups) are a Linux kernel feature exactly on the virtual file system VFS
.it enables the management of system resources, such as CPU, memory, disk I/O, and
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network bandwidth, among processes or groups of processes. Cgroups allow administra-
tors to define resource constraints, prioritize resources, and isolate processes to prevent
resource contention and ensure efficient resource utilization on a system. They provide a
mechanism for organizing and controlling the resource usage of processes, making them a
fundamental building block for containerization and resource management in modern op-
erating systems. To understand the importance of cgroups, consider a common scenario:
A process running on a system requests certain resources from the system at a particular
instance, but unfortunately the resources are unavailable currently, so the system decides
to defer the process until the requested resources are available. The requested resources
may become available when other processes release them. This delays the process exe-
cution, which may not be acceptable in many applications. Resource unavailability such
as this can occur when a malicious process consumes all or a majority of the resources
available on a system and does not allow other processes to execute [21] Containeriza-
tion utilizes control groups (cgroups) in Linux to manage and limit the resource usage
of containerized processes. Cgroups allow system administrators to allocate and con-
trol resources such as CPU, memory, disk I/O, and network bandwidth among different
processes or groups of processes. By assigning containers to specific cgroups, containeriza-
tion platforms can enforce resource constraints and priorities, ensuring that containers do
not consume excessive resources and that system resources are fairly distributed among
them. This helps in maintaining system stability, improving performance, and preventing
resource contention in multi-tenant environments. Overall, cgroups play a vital role in
enabling efficient resource management and isolation in containerized environments.

Figure 2.2: Cgroups architecture [1]
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2.5.2 Namespaces

Namespaces in the context of operating systems, particularly in Linux, provide a way to
isolate and virtualize system resources. They offer a mechanism for partitioning various
kernel resources such as processes, network interfaces, mount points, and more, so that
each partitioned environment appears as a separate instance to processes within it. Es-
sentially, namespaces provide a form of resource abstraction, allowing processes within
a namespace to have their own isolated view of certain system resources. This isolation
enables the creation of lightweight and portable environments, commonly used in con-
tainerization, where applications and services can run independently without interfering
with each other or the underlying host system. In simpler terms, namespaces act as a
tool to create isolated environments within a single operating system, providing a level of
separation and encapsulation for different sets of processes and resources. [21] container-
ization ensures that processes within a container have their own isolated view of these
resources, making them appear as if they are running independently of other containers
and the host system. For example, the PID namespace isolates process IDs, allowing pro-
cesses within a container to have their own PID space without conflicting with processes
outside the container. Similarly, the network namespace isolates network interfaces and
routing tables, enabling containers to have their own independent network stack. Overall,
namespaces play a crucial role in containerization by providing the necessary isolation to
create lightweight and portable environments for running applications.

2.5.2.1 Type of namespaces

In the Linux kernel, there are several types of namespaces, each responsible for isolating
specific sets of system resources. Here are some common types of namespaces

• PID Namespace

This namespace isolates the process ID number space. Processes in different PID
namespaces can have the same PID, allowing for separate process trees.

• Network Namespace (net):

Network namespaces provide isolation for network resources such as network inter-
faces, routing tables, and firewall rules. Processes in different network namespaces
have their own network stack and appear as separate instances on the network

• Mount Namespace (mnt)

Mount namespaces provide isolation for filesystem mount points. Processes in dif-
ferent mount namespaces have their own view of the filesystem hierarchy, allowing
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for independent mount and unmount operations.

• UTS Namespace

UTS namespaces isolate system identification and hostname. Processes in different
UTS namespaces can have different hostnames and domain names.

• IPC Namespace

IPC namespaces isolate inter-process communication resources such as message
queues, semaphores, and shared memory segments. Processes in different IPC
namespaces cannot communicate with each other using these resources.

• User Namespace

User namespaces provide isolation for user and group IDs. They allow processes to
have their own set of user and group IDs, providing a level of privilege separation
between processes.

• Cgroup Namespace

Cgroup namespaces isolate control groups, which are used for resource management
and accounting. Processes in different cgroup namespaces have their own set of
control groups, allowing for finer-grained resource control.

These namespaces are fundamental building blocks for containerization and provide
the necessary isolation to create lightweight and portable environments.

2.5.3 Filesystem rootfs

the term "rootfs" refers to the initial filesystem that is mounted as the root filesystem
inside a container. It serves as the starting point for all filesystem operations within the
container environment. The root filesystem typically contains all the essential files, direc-
tories, and binaries required to boot and run a minimal Linux environment. This includes
system binaries, libraries, configuration files, device nodes, and other necessary compo-
nents. When a container is created, the root filesystem is usually populated from a base
image, which serves as a template for the container’s filesystem. This base image contains
the initial set of files and directories needed to create a functional container environment.
The rootfs is mounted as the root filesystem inside the container, isolating it from the
host system’s filesystem. This isolation ensures that the containerized application has
its own independent filesystem environment, separate from other containers and the host
system. Containerization leverages filesystem technology to create isolated environments
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for applications and services. Each container typically has its own root filesystem, which
is based on a base image containing the necessary files, directories, and dependencies
required to run the application. Filesystem layers, such as those provided by Docker’s
Union File System (UFS), enable efficient storage and sharing of container images by
allowing multiple layers to be stacked on top of each other. This layered approach allows
for quick and lightweight container creation, as only the differences between layers need to
be stored and transmitted. Additionally, containerization platforms provide mechanisms
for persisting data generated by containers, such as volumes and bind mounts, ensuring
that data is retained even if the container is destroyed or recreated. Overall, filesystem
technology is fundamental to containerization, enabling the encapsulation, distribution,
and execution of applications in isolated and portable environments.

2.6 Containerization engines

A container engine, also known as a container runtime, is a software tool responsible for
managing containers on a host system. It provides the necessary runtime environment
and infrastructure to create, run, and manage containers efficiently. Container engines
handle tasks such as starting and stopping containers, managing their lifecycle, configur-
ing networking, and interacting with container registries to pull container images. One
of the most well-known container engines is Docker Engine, which played a significant
role in popularizing containerization technology. Docker Engine includes various compo-
nents such as the Docker daemon, containerd, and runc, which work together to manage
containers. Other container engines include containerd, which serves as a core container
runtime used by platforms like Docker and Kubernetes, as well as alternatives like cri-o,
Podman, and rkt (pronounced "rocket"). These container engines offer similar functional-
ities but may differ in their implementation, architecture, and compatibility with different
container orchestration platforms. In summary, a container engine is a critical compo-
nent of the containerization ecosystem, providing the runtime environment necessary to
create and manage containers effectively. It abstracts away the complexities of container
management, allowing developers and system administrators to focus on deploying and
running containerized applications.

2.7 Docker

Docker is a versatile platform designed to streamline the development, deployment, and
management of applications. It empowers users to decouple their applications from the
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underlying infrastructure, facilitating swift software delivery. Docker allows for the unified
management of both applications and infrastructure, employing efficient methodologies
for packaging, testing, and deploying code. By leveraging Docker’s tools and practices, or-
ganizations can minimize the time lag between code creation and production deployment,
thereby enhancing the agility and efficiency of their software development processes. [2]
Initially released on March 20, 2013, by Solomon Hykes, revolutionized the world of soft-
ware development and deployment. Written in Go, Docker quickly gained popularity for
its innovative approach to containerization, Docker continues to evolve, catering to the
diverse needs of the development community. The project is open-source and maintained
on GitHub under the repository github.com/moby/moby, reflecting Docker’s commitment
to collaboration and transparency within the software ecosystem. Through its relentless
focus on simplicity, efficiency, and scalability, Docker has become an indispensable asset
for modern software development workflows [22]

2.7.1 Docker architecture

Docker operates with a setup where there’s a client side and a server side. The client, called
Docker client, communicates with the server, known as Docker daemon. The daemon
handles the main tasks of constructing, operating, and sharing Docker containers. Both
the client and daemon can be installed on one machine, or the client can link up with a
remote daemon. They talk to each other using a REST API, either through UNIX sockets
or over a network

Figure 2.3: Docker architecture [2]
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2.7.2 Docker components

Docker as a whole is composed of many different tools, but when most people talk about
installing and using Docker it’s in reference to the Docker daemon and Docker CLI.

2.7.2.1 Docker daemon

The Docker daemon, also known as dockerd, is a background process responsible for
managing Docker containers on a host system. It serves as the central component of the
Docker Engine, handling tasks related to container lifecycle management, image handling,
networking, storage,also Additionally, a daemon has the capability to interact with other
daemons for overseeing Docker services [23].

Figure 2.4: Docker daemon [3]

Key responsibilities of the Docker daemon include:

• API Server
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The Docker daemon exposes a REST API that allows users and other Docker compo-
nents (such as the Docker CLI) to interact with the Docker Engine programmatically

• Container Management

The Docker daemon is responsible for creating, starting, stopping, and deleting
containers as per user requests.

• Image Handling

It manages Docker images, which serve as templates for creating containers. The
daemon pulls, pushes, and caches images from and to Docker registries, and it builds
images from Dockerfiles.

• Networking

The Docker daemon configures and manages networking for containers, including
creating virtual network interfaces, assigning IP addresses, and configuring port
mappings.

• Storage Management

It handles storage for containers, managing container volumes and storage drivers
to ensure data persistence and efficient use of storage resources.

2.7.2.2 Docker client

The Docker client, known as "docker," is the main interface through which most Docker
users interact with the system. Actions like running containers with "docker run" are
communicated from the client to the dockerd, which then executes them. The docker
command operates via the Docker API and has the ability to communicate with multiple
daemons [2]

2.7.2.3 Docker desktop

Docker Desktop is a user-friendly software application designed for Mac, Windows, or
Linux systems. It simplifies the process of creating and distributing containerized appli-
cations and microservices. Docker Desktop comprises essential components such as the
Docker daemon (dockerd), the Docker client (docker), Docker Compose, Docker Content
Trust, Kubernetes, and Credential Helper [2]
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Figure 2.5: Docker desktop GNU [4]

2.7.2.4 Docker compose

is a tool for defining and running multi-container Docker applications, It uses YAML files
to configure the application’s services and performs the creation and start-up process of
all the containers with a single command, The docker-compose CLI utility allows users
to run commands on multiple containers at once; for example, building images, scaling
containers, running containers that were stopped, and more, commands related to image
manipulation, or user-interactive options, are not relevant in Docker Compose because
they address one container. The docker-compose.yml file serves to specify an applica-
tion’s services and encompasses diverse configuration choices. For instance, the build
option delineates configuration parameters like the Dockerfile path, while the command
option permits overriding default Docker commands, among other functionalities. Docker
Compose’s initial public beta release (version 0.0.1) occurred on December 21, 2013. The
first stable, production-ready version (1.0) was introduced on October 16, 2014.
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Figure 2.6: Docker compose role [5]

2.7.3 Docker Objects

Now that we have a grasp of containers, let’s explore other related concepts like images,
and DockerFile

2.7.3.1 Images

ADocker image, also known as a container image, is an independent executable file utilized
for container creation. It encompasses all the essential libraries, dependencies, and files
essential for the container’s operation. Docker images are portable and shareable, enabling
deployment across various locations concurrently, akin to software binary files. Images can
be stored in registries to manage complex software architectures, projects, business sectors,
and user group permissions. For instance, Docker Hub’s public registry houses images
including operating systems, programming language frameworks, databases, and code
editors. Docker images are built using a Dockerfile, which is essentially a set of instructions
guiding the platform on how to assemble the image using layers. Each instruction in the
Dockerfile corresponds to the creation of a new layer within the image. The process
typically involves the following steps:

1. Base Image Specification

The Dockerfile begins with specifying the base image to be used for the container.
This base image serves as the starting point for building the final image.

2. Layer Creation

Subsequent instructions in the Dockerfile contribute to creating additional layers in
the image. Each instruction represents a distinct action, such as installing depen-
dencies, copying files into the image, or executing commands.
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3. Layering Process

As each instruction is executed, Docker creates a new layer based on the changes
introduced by that instruction. These layers are stacked on top of each other to
form the final image.

4. Default Command Definition

The last line of the Dockerfile typically defines the default command to run when
creating a container from the built image. This command specifies the primary
executable or process that should be initiated within the container upon startup

Figure 2.7: Image layers [6]

2.7.3.2 DockerFile

Docker has the capability to automatically construct images by interpreting instructions
outlined in a Dockerfile. Essentially, a Dockerfile is a textual document encompassing
all the commands that a user might execute via the command line to compile an image.
These Dockerfile commands dictate the construction process of an image. To build an
image from a Dockerfile, Docker daemon receives this file and executes its instructions to
transform it into an image [24]

2.7.3.3 Containers

A container represents a runnable instance derived from an image. Using the Docker
API or CLI, you have the ability to create, start, stop, move, or delete a container.
Additionally, you can link a container to one or multiple networks, allocate storage to it,
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or generate a new image based on its current status. By default, a container operates
with a degree of isolation from other containers and the host machine. However, you have
the flexibility to adjust the level of isolation for a container’s network, storage, and other
underlying subsystems, either from other containers or the host machine. The definition of
a container encompasses its associated image and any configuration parameters supplied
during its creation or launch. Upon deletion of a container, any modifications to its state
not preserved in persistent storage will be lost. [2]

Figure 2.8: Container process [7]

2.8 Container orchestration

During the Gluecon conference on May 21, 2014, Joe Beda, co-founder of Kubernetes at
Google, mentioned that "everything at Google runs in a container" and that "we start
over 2 billion containers per week.". . . , with such a large number of containers, it leads us
to wonder how they are managed. Container orchestration involves automating many of
the operational tasks necessary for managing containerized workloads and services. This
encompasses various aspects of managing the lifecycle of containers, such as provisioning,
deploying, scaling (both horizontally and vertically), networking, load balancing, and
additional functionalities. [25]

2.8.1 Container orchestration benefits

Container orchestration plays a crucial role in maximizing the advantages of containers,
offering several benefits for containerized environments: [26]

• Streamlined operations
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This stands out as the primary advantage of container orchestration and is a key
driver for its adoption. Containers bring about a significant level of complexity,
which can become overwhelming without proper orchestration to handle it efficiently

• Enhanced resilience

Container orchestration platforms have the capability to automatically restart or
scale containers or clusters as needed, thereby improving resilience and ensuring
uninterrupted operation

• Improved security

Through its automated processes, container orchestration contributes to maintaining
the security of containerized applications by minimizing the risk of human errors
and enhancing overall security measures

2.8.2 Orchestrations tools

There are many orchestration tools available in the market to manage containerized ap-
plications at scale in production environments. among the popular options are Docker
Swarm and Kubernetes (K8s), each with its own set of features and capabilities tailored
to different use cases and requirements. Additionally, other tools such as Apache Mesos,
Nomad, Amazon ECS, and OpenShift provide alternative solutions for container orches-
tration, catering to diverse infrastructure setups and operational needs, In this chapter,
we’ll dive into a detailed exploration of Kubernetes. But before we get into that, it’s
important to familiarize ourselves with some other orchestration tools.

• Docker swarm

Docker Swarm is Docker’s native clustering and orchestration tool, designed to man-
age a cluster of Docker hosts. It enables users to deploy and manage a group of
Docker hosts as a single virtual system, providing features such as service discov-
ery, load balancing, and automatic scaling. Docker Swarm follows a simple and
straightforward approach, making it easy for Docker users to orchestrate container-
ized applications without needing to learn complex new concepts. [27]

• Apache Mesos

Apache Mesos: Apache Mesos is a distributed systems kernel that abstracts CPU,
memory, storage, and other compute resources, allowing users to run containers,
virtual machines, and traditional applications on a shared pool of resources. [28]
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• OpenShift (Red Hat):

OpenShift is a Kubernetes-based container platform developed by Red Hat, provid-
ing features for building, deploying, and managing containerized applications across
hybrid cloud environments [29]

• Amazon ECS (Elastic Container Service):

Amazon ECS is a fully managed container orchestration service provided by Amazon
Web Services (AWS), offering scalable and reliable deployment of containers on AWS
infrastructure [30]

2.8.3 What is Kubernetes

Kubernetes helps you handle containerized apps smoothly and automatically. It’s like a
manager for containers. In tech talk, it’s often called K8s pronounced Kate’s. With tools
like Docker, you bundle your code and all it needs into an image, then run it to make
containers. But containers are temporary. If one stops working, Kubernetes makes sure
another starts up right away. It also helps manage resources and organize containers into
groups called clusters. [31]

2.8.4 How Is Kubernetes Different from Docker Swarm

Both Kubernetes and Docker Swarm are tools used for container orchestration, but they
have different strengths. Docker Swarm is known for its simplicity and seamless integra-
tion with other Docker technologies. If you’re already using Docker, Swarm might be
the preferred choice due to its ease of use. However, Kubernetes offers more advanced
features and capabilities for container orchestration, particularly in terms of scalability
and monitoring. Kubernetes has built-in horizontal scaling, which Docker Swarm lacks.
Additionally, Docker Swarm offers automatic load balancing, which Kubernetes does not.
Keep in mind that Kubernetes has a steeper learning curve compared to Docker Swarm,
both for developers and administrators [31]
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CRITERIA DOCKER SWARM KUBERNETES
INSTALLATION

AND
SETUP

Easy to set up using the docker
command

Complicated to manually set up the
Kubernetes cluster

TYPES OF
CONTAIN-
ERS THEY
SUPPORT

Only works with Docker containers Supports Container, Docker, CRI-O,
and others

HIGH
AVAILABIL-

ITY

Provides basic configuration to support
high availability

Offers feature-rich support for high
availability

CLI Don’t need to install other CLI Need to install other CLIs such as
kubectl

COMPLEXITY Simple and lightweight Complicated and offer a lot of features
LOAD BAL-
ANCING

Automatic load-balancing Manual load-balancing

SCALABILITY Does not support automatic scaling Supports automatic scaling
SECURITY Only supports TLS Supports RBAC, SSL/TLS, and secret

management

Table 2.3: Comparison of Docker Swarm and Kubernetes [10]

2.8.5 Why we use Docker and Kubernetes

Container runtimes like Docker and container orchestrators like Kubernetes are now the
foundation of containerized application development. And together, microservices, con-
tainers, and Kubernetes form an indispensable part of the cloud computing ecosystem.
All these technologies complement each other. So, it goes like this: using a microservices
architecture, you will decompose your application into smaller services, which is needed
so that the whole application is loosely coupled and the failure of one service doesn’t
bring down the whole application. Then, you will use a container runtime like Docker
to run each of these services as a container, which is needed because containers are very
lightweight and hence can be scaled up and down very quickly, responding to incoming
traffic. Then, you will use a container orchestrator like Kubernetes to manage and orches-
trate all application containers, which is required to provide high availability and fault
tolerance to the application. And all these application containers will run on either a
physical machine (most likely not) or a virtual machine, which would be running in the
cloud [31]
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2.8.6 How Did Kubernetes Come into Existence

Kubernetes comes from the Greek work,which means helpsman or ship pilot
Kubernetes has its roots in Borg, a private container management system used by

Google for its major online services like Search, Gmail, and YouTube. The idea for
Kubernetes came about in 2013 when Craig McLuckie proposed an open-source container
management system to Urs Hölzle. Initially, the idea didn’t gain much traction, but
eventually, it evolved into Kubernetes. Originally called Seven of Nine, the project was
later renamed Kubernetes. Kubernetes inherited four of its core features directly from
Borg:

• Pod

A pod serves as the basic unit for scheduling tasks within a container management
system. It allows for the execution of one or multiple containers, ensuring that
containers within the same pod are always allocated to the same machine

• Services

In Kubernetes, a service functions to expose applications, which operate on a group
of pods, as network services. This enables naming and load balancing within con-
tainer management systems like Borg and Kubernetes.

• Labels

Within container management systems such as Borg and Kubernetes, labels are
used to categorize and organize sets of objects. Label selectors, on the other hand,
are utilized to choose objects based on specific labels.

• IP-per-pod

Both Borg and Kubernetes adhere to the IP-per-pod networking model. In this
model, each pod possesses a distinct IP address assigned from its node’s pod CIDR
range. Additionally, all containers within the same pod share this IP address.

Between Borg and Kubernetes, Google designed and implemented another container
management system called Omega. Omega was created to enhance and improve the ar-
chitecture and design of Borg. So, Google designed three container management systems:
Borg, Omega, and Kubernetes. Google kept Borg and Omega as internal systems while
open-sourcing Kubernetes [31]

30



CHAPTER 2. CONTAINERIZATION TECHNOLOGY

2.8.7 Kubernetes architecture

Deploying Kubernetes results in obtaining a Kubernetes cluster, which typically consists
of one or more master nodes and one or more worker nodes. Each Kubernetes cluster
must include at least a single worker node.in figure Illustrates a standard Kubernetes
cluster, emphasizing three key elements: the master node (also referred to as the control
plane), the worker node, and the cloud API provider. The master node serves as the
hub for all cluster management and operational decisions, essentially functioning as the
brain of the Kubernetes cluster. On the other hand, the worker node is where pods are
instantiated and executed. A pod represents the fundamental unit within Kubernetes
where your application operates. Additionally, the master node oversees the management
of the worker nodes

Figure 2.9: Kubernetes architecture [8]

In a production environment, it’s advisable to have multiple master nodes distributed
across various failure zones to ensure fault tolerance and high availability. Nonetheless,
technically speaking, a Kubernetes cluster can function with just a single master node.
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2.8.7.1 Master Node (Control Plane)

The master node includes several critical components that manage the cluster’s opera-
tions:

• API Server: Serves as the frontend for Kubernetes. All administrative tasks and
interactions within the cluster are handled through the API server.

• Scheduler: Responsible for assigning workloads (pods) to worker nodes based on
resource availability and constraints.

• Controller Manager: Manages different controller processes that regulate the
state of the cluster, such as node controller, replication controller, and endpoints
controller.

• etcd: Distributed key-value store that stores the cluster’s configuration data and
current state. It ensures consistency and provides the basis for all cluster operations.

2.8.7.2 Worker Node

The worker node is where pods are instantiated and executed. It includes:

• Kubelet: Agent running on each worker node, responsible for communicating with
the master node and managing containers (pods) on the node.

• Container Runtime: Software responsible for running containers, such as Docker,
containerd, or CRI-O.

• Kube Proxy: Network proxy that reflects Kubernetes networking services on each
node. It maintains network rules and performs connection forwarding.

2.8.7.3 Add-ons

Additional components and services that enhance Kubernetes functionality:

• DNS: Provides DNS-based service discovery for services running inside the cluster.

• Dashboard: Web-based Kubernetes user interface for managing and monitoring
the cluster.

• Ingress Controller: Manages external access to services within the cluster, typi-
cally through HTTP and HTTPS routes.

• Storage Plugins: Allow Kubernetes to work with various storage solutions, pro-
viding persistent storage to applications.
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2.9 Features of kubernetes

• Scalability

Kubernetes offers automatic horizontal scaling of pods based on CPU utilization.
Administrators can configure the threshold for CPU usage, allowing Kubernetes to
dynamically adjust the number of pods to meet demand. This automated scal-
ing ensures efficient resource utilization and optimal performance without manual
intervention. The scale has two types: [32]

• Vertical scale: This refers to scale by adding more resources such as CPU and
RAM; the container will allow the use of the more powerful machine.

• Horizontal scale: This approach means adding more servers to the current one
(more nodes); in that case, the container will run on different machines

Figure 2.10: Vertical scaling vs Horizontal scaling [9]

• Self-healing

Kubernetes automatically replaces and reschedules containers from failed nodes, ter-
minates unresponsive containers based on defined health checks, and prevents traffic
from being routed to non-responsive containers according to configured rules/policies

• Automated rollouts and rollbacks

Kubernetes seamlessly rolls out and rolls back application updates and configuration
changes, while constantly monitoring application health to prevent any downtime
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• Secret and configuration managment Kubernetes manages sensitive data and
configuration details for an application separately from the container image

• Portability

a cluster can run on any main stream Linux distribution processor architectures
(either virtual machines or baremetal) cloud providers (AWS,AZURE OR google
platform)
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2.10 Conclusion

In conclusion, containerization represents a pivotal component of our project’s vision to
streamline the delivery and management of educational computing environments. By
leveraging container technology, we aim to provide educators and students with tailored,
isolated environments for their specific teaching modules, enhancing stability and acces-
sibility. Containers enable the encapsulation of necessary software dependencies and con-
figurations, ensuring consistent and reproducible environments across different machines
and semesters. Additionally, containerization automates the management of our educa-
tional computing center, alleviating the administrative burden on system administrators.
Through this approach, we anticipate facilitating a seamless and efficient experience for
both educators and students during practical sessions, ultimately enhancing the learning
environment and promoting academic success.

35



Chapter 3

Conception

3.1 Introduction

In the previous chapters, we delved into the fundamentals of containerization, virtual-
ization we are now transiting from theory to practice. This chapter, dedicated to the
conception phase, serves as a critical bridge between understanding and implementa-
tion.We will start by defining the problem statement and setting clear objectives. From
there, we will analyze the requirements, both functional and non-functional, to ensure
that all aspects of the system are well-understood and documented.

3.2 Problem Statement

The educational environment has a significant connection to advancements in the IT field,
sush as networking, virtualization, cloud computing, artificial intelligence, and systems
administration. These domains undergo continuous evolution, marked by daily implemen-
tations of fresh innovations. Thus, addressing challenges within education is imperative
to overcome barriers hindering the advancement of teaching methodologies and practical
applications.

3.2.1 Description of the Problem:

In IT educational infrastructure, teachers often share the same resources, tools, and tech-
nologies during sessions. However, problems arise when different versions of technologies
are needed. For instance, if one teacher requires a newer version of a tool already installed,
the admin might have to uninstall the previous version and install the new one. This is
not a good practice. Additionally, conflicts can occur when two tools require different
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versions of the same dependency, leading to package and dependency issues. we fre-
quently encounter a lot of resources that are not being fully utilized,in many classrooms,
you’ll find numerous machines that are out of service.this underutilization of available
resources poses a significant obstacle to maximizing the effectiveness of our educational
environment, thus we frequently encounter software-related issues with machines, such as
the absence of essential programs like Java or C. These problems often arise due to stu-
dents modifying packages or the lack of necessary dependencies or binaries. Consequently,
these machines remain out of service for extended periods, leading to underutilization of
resources throughout the year. This underutilization not only represents a waste of en-
ergy and time for students attempting to use the machines but also incurs financial costs
for maintaining these resources. Moreover, it poses a substantial obstacle to the smooth
operation of our sessions, hindering the learning process and impeding the achievement
of educational objectives. Addressing these issues is essential to optimize resource utiliza-
tion, enhance efficiency, and create a more conducive learning environment.

3.2.2 Background and use cases:

we will describe typical issues that our project aims to address and provide solutions for.

Two versions of JDK on the same classroom machines

in IT department Providing machines with two versions is possible but has significant
drawbacks to consider. Here are the potential negatives of this method:

• Complexity in Configuration:

Environment Variables: Managing environment variables such as "JAVA HOME"
and the "Path variable" can become complex and error-prone. Incorrectly setting
these can lead to runtime errors or build failures.

Shell Configuration: On Unix-based systems, modifying shell configuration files like
".bashrc", ".bash profile, or ".zshrc" for tools like jEnv can be confusing for less
experienced users.

• Manual Management:

Frequent Switching: Developers often need to switch between JDK versions fre-
quently. Manually changing environment variables or using command-line tools for
this purpose can be time-consuming and interrupt the workflow.
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Human Error: There’s a higher chance of human error when setting paths and
environment variables manually, leading to potential issues with project builds and
executions.

• Resource Intensive:

Disk Space: Installing multiple JDK versions on the same machine consumes more
disk space. Each JDK installation can be quite large, and having multiple versions
can quickly use up available storage.

Memory Usage: Running multiple development environments or tools that require
different JDK versions simultaneously can consume significant system memory and
resources, potentially slowing down the machine.

• Maintenance Overhead:

Updates and Security: Keeping multiple JDK versions up to date with the latest
security patches and updates can be a maintenance burden. Each version must be
individually updated and managed. Tooling Support: Not all development tools
or IDEs handle multiple JDK installations smoothly, which can lead to additional
configuration and troubleshooting efforts.

You can apply this use case to any technology or tool a teacher might need for their
session

Machine Learning with TensorFlow and PyTorch

let’s consider a real-world example involving Python where different tools or packages
require different versions of a dependency. This scenario often occurs in data science and
machine learning projects.

Suppose you are working on a machine learning project that requires both TensorFlow
and PyTorch, and each framework depends on different versions of a common library, such
as numpy in figure 3.1 describe this kind of conflict .

• -TensorFlow: Requires numpy version 1.19.x.

• -PyTorch: Requires numpy version 1.21.x.

When you try to install both TensorFlow and PyTorch in the same Python environ-
ment, you will encounter a conflict
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Figure 3.1: Packages conflict figure

3.2.3 Objectives:

Separation of concerns is an approach widely adopted across various IT fields. It involves
breaking down complex systems into manageable components, each responsible for a spe-
cific aspect of functionality. In the context of education infrastructure, providing each
teacher with an environment tailored to their needs can greatly enhance efficiency and
effectiveness. Similarly, implementing this approach within our infrastructure can ad-
dress many of the educational challenges we face, streamlining operations and optimizing
resource utilization we can

To achieve this, we will use containerization technology. Containerization allows us
to encapsulate software and its dependencies into isolated containers, ensuring that each
environment is consistent and free from conflicts. This approach not only enhances porta-
bility and scalability but also simplifies the management of diverse application require-
ments.

We are going to build a prototype to demonstrate this concept. The prototype will
provide a practical example of how containerization can be used to create isolated, tailored
environments for different educational needs, thereby improving the overall effectiveness
and efficiency of our infrastructure.
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3.3 Requirements Analysis

Functional Requirements

• environment management:

Teacher have possibility to create there environment of each module with the way
they like with technologies they need

• Isolation: Ensure that each teacher environment is isolated from others to prevent
interference and conflicts. and isolated from the host where this environment is
running

• Containerization Support:

Containerization ensure the isolation and separation of objects, so the platform
should support containerization technology to encapsulate the software environment
for each module by using one of container runtime

• Automated Deployment:

Implement automated deployment mechanisms to streamline the setup of environ-
ments

• User Authentication: Provide user authentication mechanisms to control access
to module environments when they start sessions.

• availability : Develop a platform that guarantees the environment is accessible
whenever it is needed.

Non-Functional Requirements:

• Usability: The platform should have an intuitive user interface to facilitate easy
navigation and usage

• Reliability: Ensure reliable operation of the platform, minimizing downtime and
system failures

The environment we are aiming to build it focus on three axes automatisation ,disponi-
bility,system managment
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3.4 System Architecture

3.4.1 High-Level Architecture:

The system architecture for the educational computing platform using containerization
consists of several key components working together to provide an efficient environment
for running educational modules. The architecture can be broken down into the following
layers and components:

Figure 3.2: High-level architecture

User Interface Layer:

• Web Portal:

A user-friendly web interface where teachers and administrators can interact with
the platform.

• APIs:

RESTful APIs to allow integration with other systems and automation scripts
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Core Layer:

Figure 3.3: Core architecture

• Data retrieve service:

This service is responsible for retrieve data of the environments built by teachers
then collect the necessary information to send it to manifest generator service

• Manifests generator service:

This service is responsible for generate manifests.yaml to deploy the environment

• Deploy service:

This service is responsible for deploy the environment in the kubernetes cluster

Kubernetes Layer:

Kubernetes cluster contain master node it receive manifest.yaml from the core then it
apply those configurations in the worker nodes

• Container Orchestration:

Kubernetes: Manages the deployment, scaling, and operation of containerized ap-
plications.

• Container Runtime:

The environment where containers run, managed by Docker Engine or containerd
or crio.
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• Running hosts:

Provide a good architecture and networking for the machines that will be a platform
of teacher’s environments

Infrastructure Layer:

• Compute Resources:

Virtual machines or physical servers hosting the containerized environments.

• Networking:

Overlay Network: Enables communication between containers across different hosts.

3.4.2 Architecture design:

To create a flexible and efficient educational computing infrastructure, we propose the
plan in the diagram below for managing and deploying multiple versions of technologies
and tools. This model aims to address compatibility issues and conflicting dependencies
by utilizing containerization solutions

Figure 3.4: General architecture of the environment

Classroom companion

Classroom companion it’s the name of the web application where the admin and teachers
can manage there configurations and environments

43



CHAPTER 3. CONCEPTION

• Admin interface

The admin is responsible for managing module information, class details, and teacher
information. They assign modules to teachers, manage their account credentials and
calendars, and ensure the overall stability of the environment. The admin also has
access to the environment’s database to perform these tasks.

• Teacher interface

In the teacher’s space, they can find the modules assigned to them by the admin.
The teacher is responsible for building the environment for each module by selecting
the programming languages and frameworks, along with their specific versions, that
they want to use. They can test the environment through the same web application
from anywhere, ensuring it meets their requirements. Once satisfied with the setup,
they can finalize and apply the environment for each module. This setup process is
typically done once, unless the teacher needs to update the environment by changing
versions or removing unnecessary tools. The system allows for easy updates and
modifications to ensure the environment stays current with their teaching needs.

• Database

Our IT system relies on a central database to store all information, including data
of teachers, modules, and more. This database is pivotal to the functionality of our
system, serving as its intuitive core.

• Core

The core is the main part that interact to the computer stuff by sending orders
and setups through manifests.yml files. It gathers data from the database, creates
manifests, and sends them to the components that need them.

• manifest files

The manifest files, typically named ‘manifest.yml‘, are crucial for defining the con-
figuration and deployment details of each environment. These files are used by the
system to automate the deployment process in the Kubernetes cluster.

Kubernetes cluster

The Kubernetes cluster is the backbone of our container orchestration system, providing
the necessary infrastructure to manage and deploy containerized applications efficiently
The classes of the department it will be considered as one kubernetes cluster,each class
belong to a subnetwork ,each machine is a worker node in this cluster
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Container image registry

The Container’s Image Registry is a crucial component of our containerized environment,
serving as a centralized repository for distributing container images. This registry ensures
that all the required images for various modules and environments are readily available
for deployment. the kubernetes cluster will interact with those registries to get specific
images based on manifest files

3.5 UML Diagrams

To provide a detailed and structured view of the system design, the following UML dia-
grams are included:

3.5.1 Class diagram

The Class Diagram provides a detailed view of the system’s structure by depicting the sys-
tem’s classes, attributes, methods, and the relationships among the classes. This diagram
is crucial for understanding the static design of the system and how different components
interact at a code level. It serves as a blueprint for the system’s implementation and helps
in identifying the key objects and their interactions.

Figure 3.5: Class diagram figure
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3.5.2 Use Case Diagram

The Use Case Diagram shows the interactions between users and the system, highlighting
the main functionalities provided.

Figure 3.6: use case diagram

3.5.3 Database schema

Our database schema is designed to efficiently store and manage the data necessary for
the system prototype. It ensures data integrity, supports necessary relationships between
entities, and optimizes performance for the application’s key operations.
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Figure 3.7: Database schema
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3.6 Conclusion

In this chapter, we have transitioned from the theoretical foundations of containerization
and virtualization to the practical aspects of designing our educational computing plat-
form. We started by clearly defining the problem statement and objectives, ensuring a
solid understanding of the challenges we aim to address. We analyzed the functional and
non-functional requirements to provide a comprehensive overview of the system’s needs.

We then outlined the system architecture, detailing the high-level components and
their interactions, including the user interface, application layer, containerization layer,
and infrastructure layer. This architecture serves as the blueprint for our platform, em-
phasizing scalability, security, and efficiency.

Additionally, we discussed the design considerations for the admin interface and the
teacher’s space, ensuring that both administrators and teachers have the necessary tools
to manage and utilize the platform effectively. We also touched on essential aspects such
as manifest files, Kubernetes clusters, and container image registries.

In the following sections, we provided detailed UML diagrams to visualize the system’s
structure and interactions, further clarifying the design. These diagrams, along with the
subsequent sections on database design, component design, and API design, form the
foundation for the implementation phase.

By thoroughly documenting the conception phase, we have established a clear and
detailed plan for building our educational computing platform. This will guide us through
the implementation, ensuring that we address the identified challenges and achieve our
objectives effectively.
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Implementation

4.1 Introduction

In the previous chapter, we outlined the conceptual framework and design of our edu-
cational computing platform using containerization. With a clear understanding of the
problem, requirements, and system architecture, we now transition to the implementation
phase. This phase is crucial as it involves translating our design into a functional and
operational system.

The primary objectives of the implementation phase are to develop the user interface,
set up the backend services, and integrate containerization to ensure a scalable, efficient,
and secure environment for educational modules. We will detail the setup of the devel-
opment environment, the construction of the user interface and backend, the creation of
Docker images, and the deployment of these components using Kubernetes. Additionally,
we will cover the integration of security measures, monitoring, and logging to maintain a
robust and reliable system.

This chapter will serve as a comprehensive guide through the implementation process,
providing detailed steps and considerations for each aspect of the system prototype. By
the end of this chapter, we aim to have a fully functional beta platform ready for deploy-
ment, capable of addressing the challenges outlined in the problem statement and meeting
the needs of our users.

4.2 Setting Up the Environment

To fully understand our system, building a prototype is a great idea. This prototype
will allow us to experiment with different configurations, test various components, and
identify potential issues early in the development process. Setting up the environment
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involves several steps, including the installation of necessary software, configuration of
development tools, and preparation of the infrastructure to support containerization and
orchestration.

4.2.1 Kubernetes cluster

Kubernetes offers extensive documentation for beginners to learn from scratch. It also
provides tools that allow you to try Kubernetes and learn its basics. However, these tools
do not encompass all of Kubernetes’ features.

• kind

Kind allows you to run Kubernetes on your local computer. To use this tool, you
need to have Docker or Podman installed. [33]

• Minikube

Similar to Kind, Minikube is a tool that enables you to run Kubernetes locally.
Minikube can set up either a single-node or a multi-node Kubernetes cluster on your
personal computer, whether it’s running Windows, macOS, or Linux. This allows
you to experiment with Kubernetes or use it for daily development tasks. [33].

In our case, we need to try a production environment to benefit from all the features
and capabilities that Kubernetes offers. This will enable us to accurately simulate real-
world scenarios, optimize resource allocation, and ensure the stability and scalability of
our applications.

A production-quality Kubernetes cluster requires planning and preparation.it must be
configured to be resilient a production Kubernetes cluster environment has more require-
ments than a personal learning A production environment may require secure access by
many users, consistent availability, and the resources to adapt to changing demands

There are many methods and tools for setting up your own production Kubernetes
cluster. For example:

• kubeadm

• kops:

An automated cluster provisioning tool. For tutorials, best practices, configuration
options and information on reaching out to the community, please check the kOps
website for details.
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• kubespray:

A composition of Ansible playbooks, inventory, provisioning tools, and domain
knowledge for generic OS/Kubernetes clusters configuration management tasks.
You can reach out to the community on Slack channel

4.2.1.1 Resources Requirements

We detail the necessary resources for setting up a Kubernetes cluster using kubeadm.
Meeting these requirements is vital for the cluster’s smooth operation and reliability.
Each machine in the cluster must adhere to these prerequisites. Below is a comprehensive
list of the hardware and network requirements.

Requirement Details
Compatible Linux Host The Kubernetes project provides generic

instructions for Linux distributions based on
Debian and Red Hat, and those distributions
without a package manager.

Memory 2 GB or more of RAM per machine (any less
will leave little room for your apps).

CPU 2 CPUs or more.
Network Connectivity Full network connectivity between all machines

in the cluster (public or private network is fine).
Unique Identifiers Unique hostname, MAC address, and

product_uuid for every node. See here for more
details.

Open Ports Certain ports must be open on your machines.

Table 4.1: resources requirements of the kubernetes cluster

Trying Kubernetes at home requires virtual machines, so I chose to test this cluster
on Microsoft Azure cloud resources.

4.2.2 Creating Virtual Machines on Microsoft Azure

To set up a Kubernetes cluster, we need to create three virtual machines (VMs) on
Microsoft Azure. Follow these steps to create the VMs:

• Step 1: Log In to the Azure Portal

Navigate to https://portal.azure.com and log in with your Azure credentials.
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• Step 2: Install Azure CLI

Install the Azure CLI by following the instructions at https://docs.microsoft.
com/en-us/cli/azure/install-azure-cli.

• Step 3: Log In to Azure CLI

Open a terminal and log in to Azure:

az login

• Step 4: Create a Resource Group

az group create --name myResourceGroup --location eastus

• Step 5: Create the First Virtual Machine

Create the first VM (e.g., k8s-master):

az vm create \

--resource-group myResourceGroup \

--name master \

--image UbuntuLTS \

--size Standard_B2s \

--admin-username azureuser \

--generate-ssh-keys

• Step 6: Create the Second and Third Virtual Machines

Create the second VM (e.g., k8s-node1 ):

az vm create \

--resource-group myResourceGroup \

--name worker \

--image UbuntuLTS \

--size Standard_B2s \

--admin-username azureuser \

--generate-ssh-keys
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the third VM (e.g., k8s-node2 ):

az vm create \

--resource-group myResourceGroup \

--name Worker2 \

--image UbuntuLTS \

--size Standard_B2s \

--admin-username azureuser \

--generate-ssh-keys

• Step 7: Open Necessary Ports

Open the necessary ports for Kubernetes communication on each VM:

az vm open-port --port 6443 --resource-group myResGroup --name master

az vm open-port --port 2379-2380 --resource-group myResGroup --name master

az vm open-port --port 10250 --resource-group myResGroup --name master

az vm open-port --port 10251 --resource-group myResGroup --name master

az vm open-port --port 10252 --resource-group myResGroup --name master

az vm open-port --port 10250 --resource-group myResGroup --name worker

az vm open-port --port 10250 --resource-group myResGroup --name worker2

By following these steps, you will have created three virtual machines on Azure, which
will serve as the nodes for your Kubernetes cluster.

Configuring Vms

After creating virtual machines comes the step to configure them by following the official
documentation provided by kubernetes

• Disabling swap

You MUST disable swap if the kubelet is not properly configured to use swap. For
example, sudo swapoff -a will disable swapping temporarily. To make this change
persistent across reboots, make sure swap is disabled in config files like /etc/fstab,
systemd.swap, depending how it was configured on your system.
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• Installing container runtime

we need to install a container runtime into each VM in the cluster so that Pods
can run there. installing a container runtime require to install and configure some
prerequisites you might find in the configuration file

• Installing kubernetes packages

You will install these packages on all of your machines:

1. kubeadm: the command to bootstrap the cluster.

2. kubelet: the component that runs on all of the machines in your cluster and
does things like starting pods and containers.

3. kubectl: the command line util to talk to your cluster.

we will apply this configuration on all Vm’s

Configuring master Vm

In the previous configuration, we outlined the settings that need to be applied to all
Kubernetes nodes. In this section, we will focus on the configuration specific to the
master node.

• Pull images

This step is optional and applies only if you want kubeadm init and kubeadm join to
avoid downloading the default container images hosted at registry.k8s.io. By doing
this, you won’t need an internet connection when adding a computer to the cluster.

• Initializing your control-plane node

The control-plane node hosts essential control plane components, including etcd (the
cluster’s database) and the API Server (which interfaces with the kubectl command
line tool). As a result of this process, an invitation token is generated, which is
necessary for machines to join the cluster.

By following these steps and forums, you will achieve configurations similar to those
in this GitHub repository: https://github.com/raidkarki/kubeadm-configuration/
tree/main/scripts, and a robust cluster capable of handling our environment require-
ments.
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Figure 4.1: Kubernetes cluster

4.3 Developing classroom companion

Classroom companion it’s a web application designed to be part of our system,built with
MERN stack

4.3.1 Technologies and Tools

To develop the Classroom Companion, we utilize the following technologies and tools:

• MongoDB: A NoSQL database that provides a flexible, scalable way to store and
manage data. It is used to store information about teachers, students, classes, and
resources.

• Express.js: A minimal and flexible Node.js web application framework that pro-
vides a robust set of features to develop web and mobile applications. It is used to
build the backend of the Classroom Companion.

• React: A JavaScript library for building user interfaces. It is used to develop the
frontend of the application, providing a dynamic and responsive user experience.

• Node.js: A JavaScript runtime built on Chrome’s V8 JavaScript engine. It allows
us to run JavaScript on the server side, enabling the development of the backend
services for our application.

• Docker: Used to containerize the application, ensuring consistency across different
environments and simplifying deployment.

• Jest: A testing framework for JavaScript, used to write and run tests to ensure the
reliability and correctness of the code.

In addition to these core technologies, we also use various libraries and tools to enhance
development and ensure a smooth workflow, including:

• Mongoose: An Object Data Modeling (ODM) library for MongoDB and Node.js,
used to manage database operations.
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• Postman: An API development tool used for testing and debugging the backend
APIs.

By leveraging these technologies and tools, we ensure that the Classroom Companion
is robust, scalable, and user-friendly, providing a seamless experience for educators and
students alike. you can test classroom companion by visit http://4.233.222.154/ 1

,also this is the repository of the project https://github.com/raidkarki/PFE

1The URL may be inaccessible due to system maintenance or updates.
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4.3.2 Functionality

4.3.2.1 Uploading data to system

The admin interface is a dashboard that allows management of teacher accounts by adding
their credentials and assigning subjects to them

Figure 4.2: Admin upload teachers into database

Figure 4.3: Admin upload Subjects into database
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4.3.2.2 Assign subjects to teacher

The administrator decides which teacher will teach each subject. In our situation, the
administrator may also hold the position of the head of the IT department.

Figure 4.4: Admin assign subjects to teacher

4.3.2.3 User authentication

Authentication is a security measure must be when we need to provide functionality to
a specific actor ,in our application the teacher can sign up only if the admin add his
credentials in the database then he can sign in to the platform ,this action to prevent
Intruders use the platform
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Figure 4.5: Authentication interface

4.3.2.4 Manage environments

After the teacher is authenticated, they proceed to manage their environments. They will
find the subjects assigned to them and then manage each subject by searching for tools
with the specific versions they require during their session.

Figure 4.6: Teacher dashboard

In 4.7 teacher make a search for node js runtime
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Figure 4.7: Result of searching for tools

In 4.8, the teacher selects Python 3.1 and Node 16.20 as the necessary tools for the
web development subject

Figure 4.8: interface for subject environment

After selecting the desired tools, the next step is to deploy this environment in the
Kubernetes cluster. In this prototype, we focus on demonstrating how containerization
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can address the problem, so we developed only the essential components. This can be
done by pressing the deploy button shown in the previous figure 4.8.

4.3.2.5 Test deployed environment

After pressing the deploy button, the core system will create and send a manifest.yaml
file to the control plane of the Kubernetes cluster. The control plane will then officially
deploy the environment on the worker nodes.

Figure 4.9: Kubernetes cluster with environment

Now, we observe on figure 4.9 that the environment the teacher constructed has been
successfully deployed across all worker nodes in the Kubernetes cluster. in workers ma-
chines we have node js 16.20 and python 3.10
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4.4 Conclusion

The implementation chapter details the crucial transition from conceptualization to re-
alization in the development of an educational computing platform leveraging container-
ization. Beginning with the setup of a robust Kubernetes cluster on Microsoft Azure,
the chapter meticulously guides through each step—from configuring virtual machines to
installing necessary software and ensuring network connectivity. This foundation is es-
sential for creating a scalable and efficient environment capable of supporting educational
modules.

Moving forward, the development of the Classroom Companion web application using
the MERN stack is explored. This application serves as an integral part of the platform,
facilitating the management of teacher credentials, subject assignments, and session en-
vironments. Key technologies such as MongoDB, Express.js, React, and Node.js are em-
ployed to ensure flexibility, scalability, and responsiveness in both backend and frontend
development.

Throughout the chapter, emphasis is placed on integrating security measures, moni-
toring, and logging to uphold system reliability. The deployment process using Docker
containers and Kubernetes showcases the platform’s capability to manage diverse educa-
tional environments effectively. By the conclusion of this chapter, a fully functional beta
platform emerges, poised to address the outlined challenges and meet the educational
needs of its users effectively.
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General conclusion

The journey from conceptualization to implementation of our educational computing
platform using containerization has been both challenging and rewarding. In this thesis,
we embarked on a comprehensive exploration of the design, development, and deployment
phases, aiming to address the critical needs of modern educational environments.

Conceptual Framework and Design: We began by outlining a robust conceptual frame-
work that identified key challenges in educational technology, emphasizing scalability, effi-
ciency, and security. The design phase meticulously translated these conceptual ideals into
a structured system architecture, centered around Kubernetes for container orchestration.

Implementation Phase: Transitioning from design to implementation, we navigated
through the setup of a Kubernetes cluster on Microsoft Azure, configuring virtual ma-
chines, installing necessary software, and ensuring network connectivity. This founda-
tional step was crucial in creating a resilient and scalable environment capable of sup-
porting diverse educational modules.

Classroom Companion Application: A pivotal component of our platform, the Class-
room Companion application, was developed using the MERN stack. This web application
empowered educators to manage sessions, deploy customized learning environments using
containerized tools, and foster collaborative learning experiences seamlessly.

Integration of Security and Reliability Measures: Throughout the implementation,
we integrated robust security measures, monitoring tools, and logging mechanisms to
safeguard data integrity and ensure system reliability. This holistic approach aimed to
build trust among users and maintain operational continuity.

Deployment and Future Directions: Leveraging Docker containers and Kubernetes, we
successfully deployed our educational platform, demonstrating its capability to manage
complex educational environments efficiently. Looking ahead, further enhancements could
focus on optimizing resource allocation, enhancing user interfaces, and expanding support
for additional educational tools and modules.

What I learned: In this thesis, I gained extensive knowledge, particularly in the areas
of containers, Docker, Kubernetes. I deepened my understanding of how containerization
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enhances scalability, efficiency, within software environments. Moreover, I honed my skills
in setting up Kubernetes clusters, configuring virtual machines on cloud platforms like
Microsoft Azure,deploying application in production environments,

The research and exploration into these topics also introduced me to DevOps practices
and microservices architecture. Understanding their role in modern software development
and deployment has sparked my interest in further exploring these fields.

This experience not only enriched my technical expertise but also underscored the
importance of adaptive learning and continuous improvement in the rapidly evolving field
of educational technology.

Future Work: As we conclude this thesis, we recognize the ongoing evolution of tech-
nology and educational practices. Future work could :

• Explore integrating CI/CD pipelines for automated deployment and management
of educational workloads.

• Develop a seamless solution to integrate IDEs like VS Code into the platform for
enhanced development environments.

• Implement a robust system for securely storing and accessing projects of both teach-
ers and students remotely.

• Extend the platform’s capabilities to department machines for broader institutional
use.

• Enhance security measures across the system to safeguard data and user interactions
effectively.

In conclusion, this thesis has laid the groundwork for a scalable, efficient, and secure
educational computing platform powered by containerization. By addressing the outlined
challenges and leveraging cutting-edge technologies, we’ve envisioned a platform capable
of meeting the evolving needs of educational institutions and empowering educators and
students alike.
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