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Table of notations

These notations permit the reader to clearly understand the content of this work.

A, B,C nbynmatrices, a, 8, \, pare scalarsand X, Y, Z, x, y, z... are vectors.
A~! The inverse of the matrix A.

e”* The exponential matrix of A, e’ is fundamental matrix solution to the homoge-
neous system X' = AX.

T, U Upper triangular matrices

f.g. f denote for Endomorphisms over a vector space E.

fog or fg Means f(g(.)) and we write (f o g) (v) = f (g9 (v))-
f¥Means fo fo... o f,ie., the composition k-times.

Vect {u,us,...,u,} The vector space of all linear combinations of the vectors u; (1 <
I < 7).

P The passage matrix.

FE a vector space over K.

K™ The field of n-tuples of real or complex numbers.
(1, g, ..., T,) An element of K" (vector).

K [z], K,, [z] The vector space of all polynomial of degree not exceeding n with real
or complex coefficients.

C' ([a,b] ,R) The vector space of all continuous functions on [a, b] .
C* ([a,b] ,R) The v. space of all infinitely differentiable functions on |[a, b] .
M., (K) The vector space of all n by n real (or complex) matrices.

GL,, (K) The vector space of all n by n invertible matrices.

1V
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{e1, ez, ....e,} In general denotes for the canonical basis.
F' & G Direct sum between F' and G.
diag{ay, as, ..., a, } Diagonal matrix whose diagonal entries are a;, as, ..., a,.
pa(z), ps (x) Characteristic polynomials A and f, respectively.
Sp (A) The spectral set of A = The set of eigenvalues of A.
A, b eigenvalues
i The imaginary pure number (i* = —1).
I or I,, The identity matrix.
Re (z) The real part of a complex number z and Im for the imaginary part.
A" The transpose of a matrix A,
det (A) Determinant of a square matrix A.
|lv|| The norm of the vector v.
|Al| The norm of the matrix A.
X' (t), X" (t) The first derivative of the vector function X
X ™) (t) The m-th derivative of the vector function X
ker (f) The kernelof f :ker f ={ve E: f(v) =0g}.
ker (A — AI) The eigenspace corresponding to A
ry --- =z, | Matrix formed by n vectors zy, ..., .
J Jordan matrix by blocks
Ji (A) Simple k x k Jordan matrix corresponding to A.
N Nilpotent matrix (N* = 0 for some k > 1).
E)\ The corresponding eigenspace of f for the eigenvalue .
N, The corresponding characteristic subspace of f for the eigenvalue .
idp identical Endomorphism of E.

com (A) The comatrix of A.
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General Introduction

differential equation is an equation whose unknown is a function (generally
denoted z(t) or simply z); in which some of the derivatives of the function

appear (first derivative z’ or derivatives of higher orders: z”, z* ™ and so
on.
We consider the following differential equation; called of order 1.
d () =a-z(t)+ [ (), L€ [0, (E)

The corresponding homogeneous differential equation is that where the second member f(t)
1S zero, 1.e.
' (t)=a-x(t),t €|0,a (1)

The solution verifies z (t) = z (0)e”. We found that any solution of the homogeneous
system (1) is written in the form z () = ce®, where c is a constant. Then if we denote by S
the set of solutions of (1), then S = Vect {e*'} . We return to the general problem (E), it is
immediate to prove that z (¢) is a solution of (E) if and only if

X (t) = z(0) e* + /ﬂ e* ") f (r) dr. (2)

Thus, the problem (E) has only one solution. For more information, one can see [1].
There are many types of such equations as well as the first order differential equations
when we meet with the famous Cauchy’s problem, the second and higher order differen-
tial equations. There are also homogeneous and nonhomogeneous equations and some
of which are linear. To find all the solutions of the differential equation (E), it suffices to
find a particular solution and add to it the general solution of the homogeneous equation.
To find this particular solution we will use the method of variation of the constant. There
is no a priori method for finding a particular solution to a second order linear equation
except for sine, cosine or exponential functions. But there are many applications that pro-
vide to some differential equations sharing a common set of solutions [6]. Typically, these
solutions include arbitrary real or complex constants. I propose to understand and study
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a system of simultaneous linear differential equations with constant coefficients with or
without a second member, and to establish a mode of discussion and resolution of this
system, analogous to that developed for differential equations. Therefore, the study of
differential equations was generalized by considering that the variable function is a com-
posite vector of several functions that are generally connected to each other.

More generally, in view of (E) and (1) we consider X (¢) as a vector function includes n
components, thatis X () = (1 (), ..., z, (f)) and if we have an n x n matrix with real or
complex entries, then it is would be important to generalize (E) as follows:

X'(t)=AX () + F(t),t € [0,q], (3)

where F' is a continuous vector function from [0, a] to K" and A € M,, (K). The above
equation known as a nonhomogeneous ODE system with constant coefficients. There-
fore, to determine solutions of the system (3) we must have somehow to find particulars
solutions to the nonhomogeneous corresponding system and use the technique from the
eigenanalysis study to obtain solution to the homogeneous system. Recall that for the

ODE we know three approaches to solve nonhomogeneous equations: variating of the
constant (or variating of the parameters) method, the method of an educated guess, and
the Laplace transforing method. Similarly, with ODE system the same methods are used.

We present proofs for some results dealing with trigonalizations of any matrix from
which we conclude that if A is upper triangular, then (3) becomes few easy. Note that in
the diagonalization and trigonalization problems, we know that all matrices with complex
entriesare are trigonalizable, so they are similar with to an upper triangular matrix. There
are some important consequences of these results. Many applications immediate from
diagonalization and trigonalization of matrices with the calculus of powers and solving
systems of differential equations. More precisely, solving systems as in (3) required us to
compute the exponential matrix e**. We can use the triangulation of any matrix A to prove
that the problem (3) has always a solution, where the system must be only treated when
A is upper triangular and we use next the fact that every matrix with complex entries
can written as PTP~', where P is invertible and T is triangular. We can also calculate
the exponential using the eigenanalysis method when A is diagonalizable, that is, A can
represented as PDP~' with D diagonal or by Dunford decomposition. In fact, if A =
D + N is the Dunford decomposition, where D is diagonalizable and N is nilpotent with
D and N commute, then e* = ¢Pe’¥. Generally we decompose the matrix of the sentence
so that we can calculate its exponential. Computing the exponential matrix means solving
systems of finite set of linear differential equations in which the eigenvalues are real or
complex numbers. Concerning systems including higher order differential equations [4],
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for example if we wish to solve the one of the systems
X™@t)=AX @)+ F(¢),tel0,d, (4)

and
AX' (D) = A 1 XM V@) 4+ ..+ AX )+ AX @)+ F(t),te[0,d], (5)

then we must convert such systems to (3).

An important factorization of any square matrix was made by Jordan and known as the
Jordan decomposition theorem which states that every matrix A can be written as PJP~1,
where P is invertible and J is the Jordan matrix by blocks. Since there is a formula to
compute e’ with real, we can therefore deduce the general solution of (3), (4) or (5) and
many others.

Workplan.

We try to undestand the most important method to solve a system of higher-order dif-
ferential equations. The most useful references are [1], [2], [5], [4] and [6]. In Chapter 1,
we present the proof of Cayley-Hamilton’s Theorem and some results on the matrix expo-
nential calculus as well as the computing e** for special cases. In Chapter 2, we focus on
the matrix decomposition Theorems: Trigonalization, Dunford Decomposition Theorem
and Jordan Decomposition Theorem. In Chapter 3, we study the eigenanalysis method
for systems of differential equations of the first order, where we present important the-
oretically methods involving eigenpairs by applying the matrix decomposition theorems
studied in Chapter 2. Moreover, in Chapter 4, we finish this manuscript by studying sys-
tems of higher order differential equations. At the end, there is a conclusion and some
open problems for further research.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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CHAPTER 1

MATRIX EXPONENTIAL CALCULUS

Un this chapter we present some definitions and basic tools. At first, we present the proof
of Cayley-Hamilton’s Theorem. For more details, see [5].

1.1 Proof of Cayley-Hamilton’s Theorem

Theorem 1.1 (Cayley-Hamilton Theorem). Let A € M,, (R) and let p4 (x) be its characteristic
polynomial. Then ps (A) = 0.

In the proof, we need to use the following lemma.

Lemma 1.1. For each A € M,, (R), we have
(com (A))'-A=A-(com(A)) =det A- I,. (1.1)

When the matrix A is invertible, then its inverse is given by

1
Al = om (A))".
det (A) (com (A))
Proof of Cayley-Hamilton Theorem. Let
/ 11 dAi2 ... Qn \
a1 Q992 ... Q9
A= 7 T T | e Ma(R).

\ Ap1 Ap2 ... Qpn /

Assume further that p4 (z) = 2" + ¢,_12" 7' + 22" 2 + ... + c12 + ¢o. Applying Lemma
1.1 using the matrix z/,, — A, we obtain

(I, — A) com (zI — A)' = det (zI,, — A) I,
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1.1. PROOF OF CAYLEY-HAMILTON’S THEOREM 5

where
( L — an a2 a1n \
i A (21 £ —. 122 (a2n
\ Gn1 Ap2 L — App /
Hence,
1,1 1,2 1,n
ot () P (2) o pR7 ()
(2,1) 2,2) (2,n)
Pn-1\L) Ppa1\¥) ... Ppa\L
om(zl— Ay — | P1@ mA@ R @ |
n,l n,2 n,n
PL—lj (z) pfz—1] (£) = pL—1} (z) }

where p\"/) are polynomials of degree n — 1. Setting

com (zl — A = By + 2By + 2By + ... + 2" 'B,,_;, where (B;) e M, (R).

i=0,1,...n—1

We deduce that

(zI — A) (By+ By + 2°By+ ... + 2" 'B,_1) = det(zl, — A).I,
g2 4o 52 L 4. boiel Lol

|

It follows that
iITan_l -+ 33”_1 (Bn_g e ABn_l] 5 TR (Bﬂ — 4‘431) — AB[]
= G L BT L s i Gl

Then

[ AR — ol

< B[] e ABI = cljn

Bn—? - ABn—l = Cn—lmn_lfn

l Bn—l — in

This gives
pa(A) = clp+cA+ ...+ e, i A% L4 AP
= —ABg+ A(By— ABy) + ... + A (Bh,_o — AB,_1)+ A"B,,_1

This completes the proof of Theorem 1.1. [

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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1.2. FUNDAMENTAL MATRIX 6

1.2 Fundamental matrix

K will be the field R or C, E a K-vector space of finite dimension. Let z € K. It is well-
known that the power series

r I xk
1+E+E+...+E—l—.i. (1.2)

is denoted by e*. Let A € M,, (K). If we replace the matrix A into (1.2), then we obtain

2 k TOO 4k
e’*:!+é+‘4—+...+ﬂ—+“.: A—i
1! 2! k! i k!

Moreover, the corresponding fundamental matrix of any matrix A is defined as follows:

Definition 1.1 (Fundamental matrix). Let A be a square matrix and let € R. Then define

A2 . Akk

At
e =1, + At + o) X

B (1.3)

The above formula is known as the series expansion of Maclaurin for the function
t — e It is not obvious that this sum converges, so a natural question: Is the above

series convergent?
Let K be the field of real numbers or complexes. We define the mapping

If we set n = 1, we find the well-known exponential function on R and on C. Let A =

(ai;) € M,, (K) and let M be a positive real number such that |a;;| < M for 1 < i,57 < n.

Since A? = (a.{.z.]) witha'? =5 _a.. -as;, we conclude that 1{?

tj L] 5=1
the entries of A* are bounded by M*n*~!. We can prove this by induction on k. Indeed,

< M*n. More generally,

i}

for k = 2, the statement is true. Assume that the statement is true for k, so if A* = (a“‘:]) ,

._i;j
41 __ [ (k1) : (k+1) _ o o (K)
then A" = (ﬂij ) witha;; " =), a;s-ay, where

(m+1)

i !
< § :aﬁ*“-n*f—l — MEH1pk.

s=()

(k)
Qg;

< )l

As required.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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2. FUNDAMENTAL MATRIX 7

Now, if we put ¢ = (¢5), ., i, then

Tl "‘r.{z Hh_lﬂ’f't' s b
D L, - Foven S B

lcij| <14+ M+ o1 x <

This proves the existence of the entries of e. So for any matrix A, the exponential matrix
e exists.

Proposition 1.1. The series defined in (1.3) converges.
It suffices to present the proof of the following result:

Proposition 1.2. For any A € M,,(C), the series y " o0 A s absolutely convergent.

Proof. Let ||.|| be any matrix norm. For every k > 0, we have H < "A" . By d’Alembert’

rule, we obtain

JAj -+
Cran L IR
LAay* k+1
k!
Hence, 372, 4% converges. Since
«— A _ Al
| S&
k=0 k=0
A!:
we deduce that the series >, 7 converges absolutely. O

Next, we present the exponential of a diagonal matrix by blocks. In fact, if A =
d?ﬂg ‘{.1"‘-11,_| Ap_, A}c}: then

= diag {FA” . E‘q‘ff‘} . (1.4)

We can compute the exponential matrix when A is diagonalizable, which gives the cor-
0 1

responding fundamental matrix. For example, if A = ( . 8

), then the corresponding

fundamental matrix is given by

cost —sint
Fm(t) = ( _ ) ;
sint cost

Hn+1

Let Y u, such that u,, is positive. If the limit [ = lim (finite or not) exists, then

e The series ) u,, is convergent when [ < 1,

e The series ) _ u, is divergent when ! > 1.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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1.2. FUNDAMENTAL MATRIX 8

where F,,(0) = I. Note that the matrix A is diagonalizable which has the eigenvalues
A1 = —i and A\, = i with the corresponding eigenvectors v; = (z,1) and v, = (—7,1). So
we can easily compute e*'.

Some well-known facts on the exponential matrix:

1.2.1 Some facts on exponential matrix

Proposition 1.3. We have the following facts:

1. Let 0 be the zero matrix. Then e° = 1.

2. If AB = BA, then e**8 = e - €8 = €® - €. In particular, (e*"")_l = e 4,
3. If A, P € M,, (C) with P is invertible, then e"F™" = PeAP~!,

4. If D = diag {1, A2, ..., A\n }, then el = diag {rf:}“lﬁ e E}"“} .

5. If T is an upper triangular matrix whose diagonal entries are (t;;), then €' is also upper

triangular matrix whose diagonal entries are (e"*) .
6. det (e?) = €A,

7. % (em) — A-etd,

8. Let A € M, (C). Then

AN K
lim (In + —) = et
k—+oco X

9. If AB = BA, then Be® = e** A and e**eP* = e\ 415)¢,

At FAS A(t+s)

10. Since At and As commuite, e — g .

=
11. (e*“) = e~ 4%, Thus, ette—4At = |,

12. IfA e ME (R) with Sp (14) — ‘{}113 )\g}, then E‘qt — E}"lff r = El;;:i?t (A == ;\.1!) .
13. If A € M, (R) with Sp(A) = {\}, then e = eM] + tet (A — \I).
14. If.A & ME ([C) with Sp (A) — {)‘(11 )\2} and )\1 = }\_3 = a 1 Ib; b > U; then

e™ sin bt
et = e® cos bt] + ; (A —al).

15. For any matrix A € M (K) and t € R,we have ||e““H < ellAllfe,

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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1.2. FUNDAMENTAL MATRIX 9

Recall that if A, B are two n X n matrices. We say that A is similar to B if there exists
an invertible matrix P such that A= PBP~! or B= PAP~ ',

Remark 1.1. On R the matrices which are similar to symmetric matrices are only diagonal-

izable matrices. However, on C, every matrix A is similar to a symmetric matrix.

1.2.2 Computing ¢’ for some cases

If Ais an upper triangular matrix (resp. lower triangular matrix), then a column v ()
of e* can be easily found by solving the system v (t) = Av (t), where v (0) = v is the
corresponding column of the unit matrix. Note that such problem can always be solved.
In particular, when A = diag {1, A2, ..., Ax}, then the columns v (t) = (vy (£), ..., vk (£)) of

e* can be easily found by solving the equation v (t) = \;v; () with v; (0) = 1, which gives

v; () = €M So, et = diag {eM? et .. ert].

Theorem 1.2. If A = diag {A;, Ao, . .., Ay} where each of Ay, As, .. ., Ay, 1s square, then

4 & 4 ]

et = diag {EAIE il WS :EAH} ;

Proof. The proof holds immediately since A® = diag { A}, A3, ..., A;} whenever A = diag { A1, As, ..., A

[

Corollary 1.1. Let A € M,,(R) be a square matrix having a unique eigenvalue, say A\. Then

(-

| — ¥
et =eMY  (A- )" =
- |

o
I

Proof. We first have p4 (z) = (x — A\)" since A has a unique eigenvalue A\. We have

|

EfA o E}Lf._fn—l—t{ﬂ—}\fn:l (1.5)

|

e Mn et A=) (hecause A1, and t (A — \I,)) commute)

eMetA=Mn) (because e/ B = ¢*B for any B € M,(R) and a € R)

I

+00 3
T
= M) (A-AL) & (1.6)
k=0 &
N n—1 \ tk
— ¢ Z(A—Mn) o
k=0

where > (A - A1,,)* = 0; this is obtained by Cayley-Hamilton theorem since p4 (A) =
(A—-M,)" =0. (]

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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1.2. FUNDAMENTAL MATRIX 10

Theorem 1.3. Let A € M3(R). If A has two distinct eigenvalues A and p (where A has multiplic-

ity 2), then
Mt oA teM
el = M(I+t(A— M)+ —— (A—N)* — —— (A— A])2. (1.7)
(10— A\ n— A
Proof. From (1.5) and (1.6), we have
tA Y o k £*
e = M) (A-Al 5
k=0
+00 tk
= (T4 (A= AD) M) (A —-AD" =
g L4 )) ¢ gg( )
A A < T
L t w t o s r
= eMI+(A=X))+e 2£@4 \) I (1.8)

Now, let p4 (z) = (z — A\)” (z — 1) be the characteristic polynomial of A. First, we note that

A—pl =(A=)AI,)— (p— M) 1.
By Cayley-Hamilton theorem, we get

0= (A= A)*(A—pl)= (A= M)’ = (u—A) (A= AI)",

from which is follows that

(A— X% = (u— ) (A- D).
By induction, for every r > 1,

(A= AD" = (w— X" (A~ AI)°.

It follows from (1.8) that

— 241 t2+r - r t2+r : 2
2 A=A G = LN gy (4D
LS X (A AT
(au - )\) L—0 k!

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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1.2. FUNDAMENTAL MATRIX 11

Finally, we obtain

At

= I (A=A + s {1 - (= N (A=A
H—
pht _ oAt fet
= MT+t(A-)))+ = (A= Al) — (A= XIY .
p—A) p— A
This completes the proof. O]
Example 1.1. Consider the matrix
a=( "7
We have
ed = ¢ ( ey ANy ) | (1.9)
—siny Ccosy
In fact, if we put z = z + yi, where i* = —1, then we can easily prove by induction on n
that N
Ty _ Re(z™) Im(2") | (1.10)
—y T —Im(2") Re(z")

Indeed, for n = 1 the statement is true by definition. Assume that (1.10) holds for n = 1.
Then
T i r oy Re (z") Im(2")
(y :1:) (u ;E)(Im(z”) Re(z“))

( zRe (2") —yIm(2") xIm(2")+ yRe(2") )
On the other hand, if we put 2 = r cos # 4+ rsin 8, then we have 2" = r" (cos (nf#) + sin (n8)).

|

—xIm (2") —yRe (2") zRe(z")—ylm (2"

Hence,

n+1
LY

o ( zcos (nf) —ysin(nf) zsin(nf) + ycos (nh) )
—z sin (nf) — ycos(nf) zcos(nf) — ysin (nd)
) )

sy ( cos f cos (nfl) — sin f sin (nf cos f sin (nf) + sin 6 cos (nf) )
T

— cos @ sin (nf) — sinf cos (nfl) cos @ cos (nf) — sin O sin (nf)

|

( r"tleos((n+1)6) r**lsin((n+1)86) )

—r"tlsin((n4+1)0) r"tlcos((n+1)6)

(
(fﬁ@“ﬂ Im&”ﬂ)

—Im (2"1) Re(z™)

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha
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1.3. NILPOTENT MATRICES AND BINOMIAL FORMULA 12

Therefore, by definition, we get

[ #G) ) (e )
n=0 \—Im (—) Re (—) / —Im(e*) Re(€?)

where e¢* = ¢V = e” [cos y + i sin y] . Thus, we obtain (1.9).

Remark 1.2. As above, we can compute e for the matrix

[z y \

Ty

A= -y T

Thus, by Lemma, we have

/ cosy sSIny \
—siny cosy

cosy siny

e’ =¢ —siny cosy

cosy siny

\ —siny Ccosy /

1.3 Nilpotent matrices and Binomial formula

At first, consider the following definition:

Definition 1.2. An n by n matrix N (resp. an Endomorphism f) is said to be nilpotent if
there exists a nonnegative integer k such that N* = 0 (resp. f* = 0). The smallest positive
integer k such that N*~! # 0 and N* = 0 is called the index? of N.

In other words, A nilpotent matrix is a square matrix N such that N* = 0 for some

2We say that N is nilpotent with index k.
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1.3. NILPOTENT MATRICES AND BINOMIAL FORMULA 13

positive integer k. Consider the n by n matrix

[0 0 0 0
10 0 0
N = 1 .
0 0 0 0

\ 0 0 1 0)

This matrix is nilpotent with index n, since N"~! # 0 and N" = (. Therefore,

7 AT2 ATnR—1
EN:IH—FE—{—L‘{—-“‘i— i .
11 2 (n— 1)!

Proposition 1.4. Let N be a nilpotent matrix. Then

e Sp(N)={0},

e [ — N is invertible.

Proof. Assume that /V is nilpotent with index k, and let (), z) be an eigenpair of N. Since
Nz = Mz, we have \*z = s. But, since = is nonzero, we deduce that A = 0. O]

Theorem 1.4. Let A be a nonzero nilpotent matrix. Then A is nondiagonalizable.
Theorem 1.5. Any strictly triangular matrix is nilpotent.

Proof. Setting

/D 0 <= 0\
121

0 --- 0
A =

\ Ap1 Ap2 - - D )
Since p4 (z) = z". By Cayley-Hamilton theorem, A" =. Thatis, 2 £ < n such that A* =0,
and hence A is nilpotent. O

Theorem 1.6. Let N be nilpotent with index k and let v € R™ be a nonzero vector such that
N*=1y £ 0. The family
{j’fuj Nv, N%v, ..., N‘I‘“_HJ}

Is free.
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1.3. NILPOTENT MATRICES AND BINOMIAL FORMULA 14

Proof. Let (ai)g<;<i_1 € R such that

from which it follows that
( agN* v+ oyNkv+ ...+ ap_1N?* 29 =0 ( agN 1 =0
agN 20+ ayNF"lv+ ... 4+ ap_{N#*3p =0 a; N1z
! agNv+aoyN>v+...+ar_Nfv=0 = 4
; ap_oNF1z =0
| @plv taNv+. + ap_1NF-1v =0 \ e INF1ig =)
Since N*~1v # 0, then ag = a; = ... = a_; = 0. This completes the proof. O]

Let us consider the following example:

Example 1.2. Consider the 3 by 3 matrix

s

I
o
S O
S = O

We can easily calculate e’ since A has many zeros. Indeed, by Definition we have A* = (
7 )
t 1,
L)

for s > 3, and so

A?t?
EAt:In_|_At_|_ 2! =

= = -

t
1
0

where [, is the identity matrix.
Remark 1.3. Let NV be nilpotent with index k. By Definition , it is clear to see that

AEtE A.‘.’:—lt.‘.’:—l
T T T

(1.11)

Since multiplication is not commutative for matrices, the usual binomial identities are
false. In particular, (A + B)? is not generally worth A* +2AB + B?, but we only know that
(A+ B)*= A*+ AB + BA + B>

On the calculus of (A + B)* whenever A and B commute.

Proposition 1.5. Let A and B be two elements of M,, (R) which commute, that is to say such that
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1.3. NILPOTENT MATRICES AND BINOMIAL FORMULA 15

AB = BA. Then, for any integer k > 1, we have the formula:
k k
(,A n B)k . Z C;;AiBﬁr—t’. e ZC}!;—EBE':
=0 i=0

where C}. denotes the coefficient of the binomial.

The proof is (by induction on k) similar to that of the binomial formula for (a+ b)* with
k21,
As application of Proposition, we consider the upper triangular matrix

/Axxxx\

A X X X

A= . X X
A

X
\ A/
We put N = A — \I which is a nilpotent matrix’, i.e, there exists a positive integer m such

that N~ £ 0 and N™ = 0. Since A = M\l + N with A\I and N commute, we conclude that

u

k m—1
A=) "CiA'B¥* =) CjA'B*.
=0 =1

Thus, when we need to apply the binomial formula with matrices, we must have two
matrices A and B such that AB = BA. Otherwise, this formula is not useful.

*We recall that a matrix A is said to be unipotent if A — I is nilpotent. Or, equivalently, if its spectrum is
reduced to {1}.
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CHAPTER 2

SOME MATRIX DECOMPOSITION
THEOREMS

ecall that to solve a system of differential equations of any order we first write the

system in the matrix form and then we need to compute the corresponding fun-
damental matrix e**. To do this, we must represent the matrix A in some special forms so
that the powers can be deduced easily. So any matrix A € M,,(C) is either diagonalizable
or trigonalizable. When A is diagonalizable, the corresponding fundamental matrix can
be derived from the fact that e’ is the product of the passage matrix P, its inverse and the
diagonal matrix which includes all eigenvalues of A. However, when A is not diagonaliz-
able, so by a Theorem we can show that is of the form A = PT'P~!, where P is invertible
and 7' is upper triangular. This means that A is similar to an upper triangular matrix. This
factorization is not enough to compute an explicit formula of the fundamental matrix. For
this purpose, we will show that any matrix, whose characteristic polynomial is split, can
be written as the sum of a diagonalizable matrix and a nilpotent matrix. In other words,
this matrix is similar to the sum of a diagonal matrix and a nilpotent matrix. Other suit-
able representation is to show that any matrix, whose characteristic polynomial is split,
can be written as PJP~!, where P is invertible and J is the matrix by blocks of the Jordan
simple matrices corresponding to the eigenvalues of A whose entries are equal to \; on
the diagonal, 1 right above the diagonal and 0 elsewhere.

2.1 Trigonalization

We have seen that not all matrices are diagonalizable. However, we can break down some
of them into the simplest form possible. We will see three decompositions.

e Digonalization: transforming a matrix into a diagonal matrix.
e Trigonalization: transforming a matrix into a triangular matrix.

¢ The Dunford decomposition: writing a matrix as the sum of a diagonalizable matrix

and a nilpotent matrix.

16
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2.1. TRIGONALIZATION 17

¢ Jordan reduction: transforming a matrix into a block-diagonal matrix.

The goal of these factorization of any matrix A is to find an explicit formula for e with
t € K. The later matrix gives us the general solution of the system of differential equations
given by its matrix expression X' = AX. First, recall the necessary and sufficient condition
of the diagonalization.

Theorem 2.1 (Necessary and sufficient condition of the diagonalization). Let A € M, (R)
be square. Then A is diagonalizable if and only if there exists a base B of R™ formed by n eigenvec-
tors of A.

Definition 2.1. A matrix A = (a;;)
1 > j, that is the coefficients below the diagonal are all zero. Here, we can write

1<i.j<n 1S said to be upper triangular if a;; = 0 whenever

11 Q12 -~ QAin \
(} (a po— a9y,
A= 7 T 2.1)
U 0 U (nn j

In particular, if a;; = 0 whenever ¢ > j, then A is said to be strictly upper triangular.

We will show that any matrix, whose characteristic polynomial is split, is similar to a

triangular matrix.

Definition 2.2. A matrix A € M,, (K) is trigonalizable on K if there exists an invertible
matrix P € M,, (K) invertible such that P~' AP is upper triangular. Moreover, an Endo-
morphism f of E is trigonalizable if there exists a basis of £/ in which the matrix of f is
upper triangular.

Of course, a diagonalizable matrix is in particular trigonalizable.

Theorem 2.2. A matrix A € M,, (K) (resp. an endomorphism f) is trigonalizable on K if and

only if its characteristic polynomial is split over K.

Recall that a polynomial is split on K if it decomposes into the product of linear factors
in K [z] or the product of simple factors in K [z]. Clearly, if f is trigonalizable, then there
exists a base of £ in which the matrix of f is written as in (2.1). It follows that p, (z) =
(a11 — x) (a2 — x) ... (an, — ), which proves that p,, () decomposes into the product of
linear factors in K [z] . We will see the converse later.

0 1

-1 0
polynomial is not split on R, therefore A is not trigonalizable on R. If we consider the same

Example 2.1. Define the matrix A = ( ) € M5 (R). Then py (z) = z* + 1. This

matrix A as an element of M, (C), then it is trigonalizable (and here even diagonalizable)
on C.
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2.1. TRIGONALIZATION 18

Remark 2.1. Note that if K = C, by the well-known d”Alembert-Gauss theorem, we have:
Theorem 2.3. Any matrix with complex entries is trigonalizable over M,,(C).

Proof. Let A € M, (C). We will show that A is trigonalizable over M,,(C). We use induc-
tion on n. Indeed, for n = 1 we have

A= ({111) " where aij € o
In this case, we write
A=1I(ap) [ '=PTP 'withP=I=(1)and T = (a) = A.

Assume that every matrix 4; € M,, (C) is trigonalizable. Let (), z) be an eigenpair of A,
and let {z, us, ..., u, } be a basis of C". We put U = (z, us, ..., u,), it follows that

AU=(Ar Auy ... Au)=( )z Auy ... Au, ).
Now, calculate U=!AU. In fact, we have
Ul=U"'"Ues =e,
where e; = (1,0, ...,0). Therefore,
UTAU =U ( Az Auy .. Auy )= (e U'Au, ... U™'Au, ).

Also we obtain

(Ax...x\
0 =

U tAU = o7 = A C =T;
. M 2 0 A

\ 0 * ... x /
where C' € M, ,_, (C) and A, € M,,_; (C). From the hypothesis, there exists an invertible
matrix W such that

1 C % ¢ 1 0\ (A CW (A oW
0 W-1l 0 A, ow /] \No waw/] \o T )

amti (M VY g
0 T

Hence,

where T is upper triangular. That is, A ~ 7} ~ T which gives A ~ T. The proof is
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2.1. TRIGONALIZATION 19

finished. ]
Let us take
1 4 =2
A= 0 6 -3
-1 4 0

Let us prove that A is trigonalizable on R and find a matrix P such that P~' AP is upper
triangular. Since p4 (z) = (z — 2)* (z — 3), we see that this polynomial is split on R. So,
the matrix is trigonalizable on R. The roots of the characteristic polynomial are the real
numbers \; = 3 (with multiplicity 1), and A\; = 2 (with multiplicity 2). Let us determine
the associated eigensubspaces. Let E5 be the eigensubspace associated with the simple
eigenvalue 3, i.e, E3 = Vect{(1,1.1)}. Let E; be the eigensubspace associated with the
eigenvalue 2, i.e., E; = Vect {(4,3,4)}. The dimension of E; is equal to 1 while the multi-
plicity of the corresponding eigenvalue A, is equal to 2. Consequently, we know that the
matrix A will not be diagonalizable. Let v3 = (0,0, 1). The vectors (v, v3, v3) form a basis
of R’. The passage matrix (consisting of the v; written in column) is

1 4 0 -3 4 0
P=]|1130],s0oP'= 1. —I 0
1 4. 1 -1 0 1

We have A - v; = 3v; and A - v, = 2v,. It remains to express A - v in the basis (v, v2, v3).
After simple computation, we see that

A-v3=(-2,-3,0) = —6v; + v9 + 2v3.

Thus, the endomorphism which has matrix A in the canonical basis of R has matrix 7" in
the basis (v, v2, v3), where

—6

T =

o O W
o N O

1

2

This is an upper triangular matrix whose diagonal entries are the eigenvalues of A. We
could also have calculated 7 by the formula: 7= P~ - A- P.

Remark 2.2. Note that other choices for v; are possible. Here, any vector v; completing
(v1,v5) in a basis of R? would be suitable. On the other hand, another choice would lead
to a different triangular matrix 7" (for the last column).
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2.2. DUNFORD DECOMPOSITION THEOREM 20

2.2 Dunford Decomposition Theorem

We will present the proof of Dunford’s Theorem which allow us to compute the powers
of any matrix A and so e’ for any ¢ € R. Let us start by proving the following lemma:

Lemma 2.1 (Kernel Lemma). Let f be an endomorphism of E. Let P and () be polynomials of
K [z], relatively prime. Then

ker (PQ) (f) = ker P (f) @ ker Q (f).

More general, let Py, Ps, . .., P,, be polynomilas pairwise relatively prime. Then

ker (PoPy...P,)(f)=ker P (f) @ ker B (f)&®...Bker P, (f). (2.2)

Of course we have similar statements with matrices.

Let P and ) be polynomials of K [z]. We say that P(X) and Q(X) are coprime in
K[X] if the only polynomials which divide both P and @ are the constant polynomials. In
particular, on C, two polynomials are relatively prime if and only if they have no common
root. Also we need to Bézout’s theorem, which is stated as follows: P’ and () are coprime
if and only if there exist U and V in K[X]|suchthat P- U+ Q -V = 1.

Proof of Lemma ... Let P and () be two mutually prime polynomials. Then, according to
Bézout’s theorem, there exist polynomials U/ and V such that P - U + @Q -V = 1. We
therefore have, for any endomorphism f.

P(f)oU(f)+Q(f) oV (f) =1k

In other words, forall z € E

P(f)(z)oU(f)(z)+Q(f) () oV (f)(z)==.

We will show thatker P(f) Nker@Q (f) = {0}. Letz € P(f) Nker @ (f), we have

P (f) (z) oU (f) (z) + Q (f) (z) oV (f) (z) = =
—( =]

therefore + = 0, which proves P (f) Nker@Q (f) C {0}. On the other hand, since {0} C
P (f) Nker @ (f) we have the equality. By double inclusion, we prove that ker (PQ) (f) =
ker P (f) +kerQ (f). Let x € ker (PQ) (f). We have, again due to Bézout’s theorem

P(f)(z)oU(f)(z)+Q(f)(x) oV (f)(z) ==z
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2.2. DUNFORD DECOMPOSITION THEOREM 21

We show that P (f) () o U (f) () € kerQ (f) . Indeed,

Q(f)e P(f)(z)oU(f)(z) =U(f) o ((PQ(f)))(z)=0.

We used that the endomorphism polynomials in f commute and that PQ (f) () = 0.
Similarly, we can easily prove that and Q (f) (z) o V (f) (z) € ker P (f) . Thus,

P(f)(2)oU(f) () +Q(f) (z) o V (f) (z) =

— — N ——pr—
ker Q( f) cker P(f)

andsoz € ker P(f) +kerQ (f).
Now, we will show that ker P (f) + kerQ (f) C ker (PQ) (f). Let u € ker P(f) and
v € ker @ (f). Then

and thus u + v € ker (PQ) (f). As a conclusion, ker (PQ) (f) = ker P (f) @ kerQ (f) . The
proof of Lemma Lemma 2.1 is finished. ]

2.2.1 Characteristic subspaces

We have seen that, when f is diagonalizable, we have £ = E, & E\, & ... & E,,, where
E\, = ker (f — Aitdg) is the corresponding eigenspace of the eigenvalue A;. We will demon-
strate that even if f is not diagonalizable, but if its characteristic polynomial is split on K,

we can write
E =ker ((f — Midg)"") @ ker ((f — Aidg)"™) & ... & ker ((f — Aridg)™") ,

where m; is the multiplicity of the eigenvalue J;, as the root of the characteristic polyno-
mial of f.

Definition 2.3. Let f be an endomorphism of £. Let A be an eigenvalue of f and let m be
its multiplicity as the root of M. The characteristic subspace of f for the eigenvalue A is
given by

Ny = ker ((f — Aidg)™) . (2.3)

When ) is an eigenvalue of A, we have E), C N, since ker (f — Aidg) C ker ((f — Aidg)®)
for any s > 1.

Example 2.2. Let us take the matrix formed by the vectors v; = (—2,-3,1,9), v2 =
(3,4,1,-5),v3 = (0,0,1,-1) and vs = (0,0, 0, 3). We calculate the characteristic subspaces
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2.2. DUNFORD DECOMPOSITION THEOREM 22

of A. First, we have p4 (z) = (z — 1) (z — 3). The eigenvalue 3 has multiplicity 1 and
eigenvalue 1 has multiplicity 3. Next, we find the characteristic subspace associated with
A1 = 3. As the multiplicity of this eigenvalue is 1 then the characteristic subspace is also
the eigensubspace

My, = ker (A — M) = Ey, = Vect {(0,0,0,1)}.

Since NV,, = FE,, is of dimension 1 and v; = (0,0,0,1) € N,,, we deduce that NV}, = R-v;.
We also find the characteristic subspace associated with A\; = 1. The multiplicity of this

eigenvalue is 3, so
Ny, = ker ((A = \1)°),

where (A — A1)’ is formed by the vectors (0, 0,0, 16), (0,0,0,—-4), (0,0,0,—-4) and (0,0, 0, 8) .

We are looking for a basis of NV,,, it is a vector space of dimension 3, of which for example
11
0 0
1
1

( U1 Ug U3 ) ==

”

Theorem 2.4. Let f be an Endomorphism of E such that Py is split. Setting

= O H= =

Pr(z)=(x—A)™ - (x— )™

For 1 < i < k, let N, let N,be the characteristic subspace associated to the eigenvalue \;. We

have:

1. Every N,, is stable by f.
2. I :NAI @.N‘,xg ¢ ”'@Nkk

3. dimN,. =m,.

In other words, the vector space E is the direct sum of the characteristic subspaces N,
for: = 1.2,...,k. In addition, the dimension of the characteristic subspace associated
with eigenvalue ); is the multiplicity of A; as the roots of the characteristic polynomial.

Let us return to Example 2.2. We have \; = 3 is an eigenvalue of multiplicity 1, where

dimN,, = 1 and A\, = 1 is an eigenvalue of multiplicity 3, where dim N, = 3. Thus, we
have R" = NAI @’NAE-

Proof of Theorem 2.4. The proof is presented as follows:
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2.2. DUNFORD DECOMPOSITION THEOREM 23

1. We will prove that f (N).) C N,.. Letv € N,.. Then f(v) € f(N).). Thus, v €
ker (f — A\;jidg)™. This means that (f — A\;idg)™ (v) = 0. Or, equivalently,

(f = Aiddg)™ o f(x) = fo(f— Nidg)" (v) =0.

Hence, f (v) € ker (f — \idg)™ = N,,.

2. This is an application of the Kernel lemma (see Lemma 2.1). Recall that

The polynomials (z — X;)" are coprime since the eigenvalues are distinct. By Lemma
2.1 (see Equation (2.2)), we get

ker P (f) = ker(f — \idg)™ & --- @ ker (f — A\yidg)™
= -N’Al $NAE$“'$NAF

Now, according to Cayley-Hamilton Theorem (see Theorem 1.1), we have P; (f) = 0.
Hence, ker P; (f) = E. The result is proved.

3. We have dim V,, = m; since N, " N,, = {0} for ¢ # j.
L]

Theorem 2.5 (Dunford Decomposion Theorem with matrices). For any matrix A € M,, (K)

having a split characteristic polynomial on K, there exist a unique nilpotent matrix N and a unique
D diagonalizable matrix such that A = D + N with DN = ND (that is D and N commute).

From this theorem, we can immediately deduce the following corollary:

Corollary 2.1. Let A € M,, (K) and assume that A = D + N with D diagonalizable, N
nilpotent and DN = ND. Then we have:

1. Ais diagonalizable if and only if A =D and N = 0.
2. Aisnilpotentif and only if A = N and D = 0.

Theorem 2.6 (Dunford Decomposion Theorem with Endomorphisms). Let f be an Endo-
morphism of E with Py (x) is split. There exist unique two Endomorphisms g and h. Such that

1. g is diagonalizable and h is nilpotent.

2. f=g+h.
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2.2. DUNFORD DECOMPOSITION THEOREM 24

3. goh=hog.
For the proof of Theorem 2.5 or Theorem 2.6, we need to some lemmas.

Lemma 2.2. If f is nilpotent, then 0 is its unique eigenvalue. Moreover, we have

Proof. Let (), v) be an eigenpair of f. Then f (v) = Av. Since f is nilpotent, we deduce that
there exists k > 1 such that 0 = f*v = A\*v. Hence, A = 0. Consequently, P; (z) = (—1)" 2"
since eigenvalues are the roots of P; (z) , where (—1)" is the leading coefficients of P;. [

Lemma 2.3. Let f be an Endomorphisim on E which is diagonalizable. Let Ay, s, - - - , A\x be the
eigenvalues of f with the corresponding eigenspace Ey, E,, - - - |, Ey. If F' is a vector subspace of E
stable by f (f (F') C F'), then we have

F= (FHEAI)&B(FHEAE)EB---EB(FHEAK).

Proof. Letv € E. Sincez € £ = E), & --- @ E), there exist unique vy, vs,- -+ ,vx. with
v; € E). (1 <1< k)suchthatv = v; +vy+ - - - +v;. The vector subspace F is stable by f, it
is also stable by P (f) for any polynomial F' € K [z]. Since v; € E), we have f (v;) = A\;v..
More generally,

i

s

£
I

P(\)v;forl <i<k.

Define

We have also P; (A\;) =01if: # jand F; (A\;) = 0. if i # j and P; (\;) # 0. We can also write

JPf (f) (-’U) = P (f) (111 e = U.‘r.:)
(Ai)ur 4+ B () vk
() v

P

il
e B

Since P, (f) (v) € F by stability of f, Then v; € F. Thus, forevery 1 <: < k, v; € FFN E}..
This prover the result. O]

Lemma 2.4. If f is diagonilizable and F' is a vector subspace of E, stable by f. Then the restriction
of f to F is also diagonalizable.

Proof. Let g = fr be denote the restriction of f to the space F' so g is well-defined since F
is stable by f . Let Ay, Ao, . ... A\, be the eigenvalues of f. Since f is assumed diagonaizable,
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2.2. DUNFORD DECOMPOSITION THEOREM s

we deduce that
E=Ey, @ By, @@ Ey,,

where each FE),, is the eigenspace corresponding to the eigenvalue A;. By Lemma , we
obtain
F=(FNE),)®---®(FNE),).

Moreover, for every scalar o € K, we see that ker (¢ — aidp) = F Nker (f — aidg) and
then the eigenvalues of g, denoted by a;, s, . .., a, are in {Aq, g, . . ., Ar}. The numbers

4 4 4 4

ai, 9, ..., a5 form exactly the set of values of {A;. A2, ..., A} for which N E,. # {0}.

Thus, we have
F =ker (g — aidp) @ --- P ker (g — asidp) .

This proves g is diagonalizable. ]

Lemma 2.5. Let f and g be two diagonalizable Endomorphisms. Assume that f o g = g o f, then
there exists a common basis of eigenvectors of f and g. Similarly, if A, B €¢ M,, (R) with A and
B commute and diagonalizable, then we can diagonlize then in a common basis, that is to say that
there exists a matrix P € M,, (K) invertible such that P~' AP and P~'BP are both diagonal.

Proof. Let A1, Ao, .. ., A be the eigenvalues of f . Note that

Ey, ={ze E: f(x)= Mz}

There for every x € E,_, we have f|g(z)] = g[f (z)] = g(Nz) = Xig(z). This proves
that g (r) € E\,. Hence, £, is stable by g. By lemma, their restriction of g to E,, is
diagonalizable. Let us consider, in the space E) _, a basis B; of eigenvectors of g, which are
also eigenvectors of f (be cause they are in £),). Since f is diagonalizable, we have

E = EJtl P---P EJ.M
51 Bk

So, the basis = 3, U ... U f is therefore a basis of E formed of vectors which are eigen-

vectors for both f and g. ]
Let us present the proof of Dunford’s decomposition theorem.

Proof of Theorem 2.6. Here is the general idea:

e We decompose the vector space £ (resp K") into the sum of the characteristic sub-
spaces Ny, where ); are the eigenvalues of E (resp K").
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2.2. DUNFORD DECOMPOSITION THEOREM 26

e On each of these subspaces N,,, we decompose the restriction of f into g; + h; with
g; = \jidy, which is of course diagonalizable'.

e We show that h;, which is f — g; restricted to ), is nilpotent.

e Since g; is A; times the identity, we deduce that g; commutes in particular with ;.

Let z; be the characteristic polynomial of f which, by hypothesis, is split on K. Let
us denote by \; an eigenvalue of f and m; its multiplicity as the root of the characteristic
polynomial

Let Ny,,...,N), be the characteristic subspaces of f. For1 < i < r, we have N,, =
ker (f — Niidg) and E =Ny, @ ... @ N,,.. We will define the endomorphism ¢ on each
N,,, in the following way: for all v € N, we set g (v) = A;u. The vector space E being
a direct sum of the N, g is defined on the set E. Indeed, if v € N,, is decomposed into

v=v; + -+ v, withv; € N, (for 1 <i < k), then
gv)=g(n+---+w)=g(v)+---+v(vg) = v1+ - + AU

For 1 <i < k,wehave g; = g, = Aitdy, . We finally set

We still have to check that A is nilpotent.

1. By construction, g is diagonalizable. Indeed, let us set a base for each subspace N,,.
For each vector v of this base, g (v) = A\;jv. As E is the direct sum of the N, then, in
the base of F formed from the union of the bases of the N, (1 < i < k), the matrix of
g is diagonal.

2. We defined h = f — g - N). which is stable by h (because it is true for f and g). We
set hy = by, = fiva, — Aitdy, - Then, by definition, N, = ker (h."), and therefore
h;" = 0. Thus, by setting m = maxm,(1 < i < k), since h™ is zero on each N,,, then

1

h™ = 0, which proves that h is nilpotent.

3. We will check that go h = hog. If v € E, it decomposes into v = v; + - - - + v, with
v; € N, for 1 < i < k. On each N, , we have g|n, = \iidy, , therefore commutes

'Every square matrix of the form \I,, is diagonalizable.
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2.2. DUNFORD DECOMPOSITION THEOREM 27

with any endomorphism. In particular, g o h (z) = h o g (z) since N,, is stable by h.
We therefore have

goh(vi+---4+v)=goh(vy)+---+goh(v)
hoh(vi)4+---4+hog(v) =hog(v).

I

goh(x)

|

So, g and h commute.

4. It remains to prove uniqueness. Suppose that (5, g), is the couple constructed above
and is (. ¢') another couple satisfying the properties of Dunford decomposition
Theorem. 4.1. Let us show that g and ¢’ commute, as well as h and h'. We have
f=9g+h=g+FH, hence

gof=go(g+h)=gog+goh=gog+hog=(g9+h)og=fog.

Thus, f and g commute and we also show that f and ¢’ commute. Let us show that
N, is stable by ¢'. Let v € N, = ker (f — A\iidg)™. So,

(f — Mitdg)™ o ¢’ (&)= g o(f—Nidg)™ =0.

So g’ € N,,. By construction, gINy, = A\iidg, therefore g and ¢’ commute on each NV, ,
therefore on E' as awhole. Orh = f—gand h' = f— ¢’ therefore, as g and ¢’ commute
and f commutes with ¢ and ¢/, then h and A’ also commute.

4.2. Since d and d' commute, according to Lemma 2.5, there exists a common basis
of eigenvectors. In particular, g — ¢’ is diagonalizable.

4.3. Since the endomorphisms h and i’ are nilpotent and commute, 2 — A’ is also
nilpotent. Indeed, if r and s are integers such that /" = 0 and (k)" = 0, then
(h — h')"** = 0 (by Newton’s binomial formula and see that, in each term h* (k)" =

0,wehavek >rorr+s—k > s).

44. Thus g — ¢’ = h — h' is an endomorphism which is both diagonalizable and
nilpotent. As it is nilpotent, its only eigenvalue is 0 (this is Lemma 2.2). And since
it is diagonalizable, it is necessarily zero endomorphism. We therefore have g — ¢’ =
h—h.

4.5. As a conclusion, g = ¢'and h = h'.
This completes the proof of uniqueness. 1

Remark 2.3. Note that a triangular matrix can always be written as the sum of a diagonal
matrix and a nilpotent matrix, but, in general, these do not commute. Remember this
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counterexample carefully to avoid this trivial decomposition. Let

1
A — 3 P 1 0 N = 0 3 |
b 2 ¢ 0 2 ) 0 0

Then we have A =D + N, D is diagonal, N is nilpotent (N 2 = (). However, it is not the
Dunford decomposition because the matrices do not commute: D - N # N - D.

Remark 2.4. The Dunford decomposition is simply D = N, and N is the zero matrix. D
is clearly diagonalizable (its characteristic polynomial is split with simple roots) but is not
diagonal; N is nilpotent and DN = ND.

2.2.2 How to apply Dundord’s Theorem in the practice

The method to find the Dunford decomposition of a matrix A € M, (K) consists the
following steps.

1. We calculate the characteristic polynomial p (z) of A. so, it must be split. We cal-
culate its roots, which are the eigenvalues of A. This is a we have done with the

diagﬂnalizatinn or trigunalizatinn.

2. For each eigenvalue \ of multiplicity m as arootof p4 (z), we note N, = ker (A — A\[,,)™.

It is a vector space of dimension m. We determine m vectors forming a basis of N.
The union of all bases 8, of NV, forms a basis B = (vq,...,v,) of K"

4

3. We define the endomorphism f by f (v;) = Av;, for each v; € N,. (In the basis ‘B,
the matrix of f is diagonal.) Let By = (ey,...,e,) be denote the canonical basis of
K. (A is the matrix of the endomorphism f in the basis B(), © will be the matrix
of f in the basis ‘B, that is to say that the columns of © are the coordinates of f (e;)
expressed in the basis (e, ..., e,).

4. Weset N = A — D. By the proof of Theorem 2.5, © is diagonalizable, N is nilpotent
and DN = N9 The transition matrix P from the basis B to the canonical basis B
transforms ® into a diagonal matrix D = P~'®P.

Let us calculate the Dunford decomposition of the matrix formed by the vectors v, =
(1,0,0), v = (1,1,0) and v3 = (1,1,2). Clearly, if we consider the matrix ® formed by
the vectors v; = (1,0,0), v5 = (0,1,0) and v5 = (0,0,2) which is diagonalizable and N
the nilpotent matrix formed by v{ = (0,0,0), vJ = (1,0,0) and v§ = (1,1,0) which is
strictly upper triangular, then after computation ® N # ND. So, in general the Dunford

decomposition of an upper triangular matrix cannot be deduced easily.
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Let us now calculate the Dunford decomposition of A. The characteristic polynomial
pa (A)is equal to (A — 1)% (A — 2). We therefore have two eigenvalues which are \; = 1 and
A2 = 2. The eigenvalue A; has a multiplicity m; = 2, while, for the eigenvalue )\, ms = 1.
We note that A} = ker (A — I5)* and Ay = ker (A — 213). The vector space R’ is written
as a direct sum: R3 = ker (A — I3)” @ ker (A — 215). Let us determine these characteristic
subspaces. We know that it is a vector space of dimension m; = 2. We obtain

N, = ker (A — I3)* = Vect {(1,0,0), (0,1,0)}

The matrix A is not diagonalizable: in fact, the eigenvalue 1 has multiplicity 2, but £; has
dimension 1.

For ;. We know that it is a vector space of dimension ms = 1. To determine the kernel
ker (A —2I;) = {veR’: Av=2v}, if v = (z,9,2), we have N3 = Vect{(2,1,1)}. The
family B = (u1, us, ug) is a basis of R?, where u; = (1,0,0), us = (0,1,0) and u3 = (2,1, 1).
Therefore,

R? = Rv; @ Ru, @ Rus.
We define the endomorphism f by f(vi) = vy, f (va) = ve (because vy,v, € N;) and
d(v3) = 2v3 (because v3 € N;). In the basis B, the matrix of f is therefore the diagonal
matrix D formed by the vectors (1,0,0), (0,1,0) and (0,0,2). Now we need to the matrix
of f in the canonical basis B, = (e, 2, e3). The computations will be quite simple because

e; = v; and e; = vs.

I

o f(e) = f(1,0,0)=(1,0,0) = e.

e f(e2) = f(0,1,0)

e We also have v3 = (2,1,1) = 2¢e; + e3 + e3, where e3 = (0,0, 1) = 2v; + vy + v3. So

I

(D 10) — €9.

fles) = f(-2vi+wve+wv3)==2f(v1)— f(v2) + f(v3) = =201 — v2 + 203
— —281 — E9 e 2(2&1 e E9 e Eg) p— 2E1 - €9 - 283.

Thus, © is the matrix of f with respect the basis B, that is, the matrix formed by the
vectors (1,0,0), (0,1,0) and (2,1,2). Next, we put N = A — D, that is N is the nilpotent
matrix formed by the vectors (0,0,0), (1,0.0) and (—1,0,0). The Dunford decomposition
is A = ® + N. The proof of the decomposition theorem states that A is diagonalizable, N
is nilpotent and © N = ND. We note P the passage matrix from the basis ‘B to the basis
‘B. Therefore, P contains the vectors of the new basis B = (v, v, v3) expressed in the old

basis By = (e1.€9,€3). Since v; = €1, U3 = €5 and v3 = 2e; + e5 + e3, then P is the matrix
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formed by the vectors (1,0,0), (0,1,0) and (2, 1. 1), and so P~" is the matrix formed by the
vectors (1,0,0), (0,1,0) and (-2, —1,0). If necessary, we can diagonalize ® as follows:

1 0 2 1 0 2 1 0 0 1 0 -2
01 1| =]011 01 0 0 1 —1
002/ 001/, \ooz2/) \oo 1/ |

Remark 2.5. D and N are unique, but there are several possible choices for the vectors v;
and therefore for the matrix P.

Let us calculate the Dunford decomposition of A formed by the vectors (2. 3. 3), (1,3, 1)
and (—1, —4, —2).

1. We find p4 (A\) = (A — 1) (A — 2)°. The eigenvalue \; = —1 has multiplicity 1, and the
value \; = 2 has multiplicity 2.

2. We calculate N_; = ker (A + I3) = Rvy, where v; = (0, 1, 1) (itis indeed an eigenspace
of dimension m_; = 1).

3. We calculate N; = ker (A — 213)2 which will be of dimension my = 2: Since A — 215
is formed by the vectors (0,3,3), (1,1,1) and (-1, —4, —4) and (A — 2I5)* is formed
by the vectors (0,—-9,-9), (0,0,0) and (0,9,9). For a base of N,, we first choose
vy € Ey = ker (A — 2I3) C N, for example v, = (1,1, 1). We look for v3 € N, linearly
independent with v,. For example, v3 = (1,0, 1). The family B = (v, v2, v3) is a base
of R?. Thus, we have

R? = Rv; @ Ruy @ Rus.
il g

——

."‘u'l.‘:il 1 .-".'!."tjl 2

4. We denote by By= (e, €2, €3) the canonical base of R*. The passage matrix P from
the basis B, to the basis B is obtained by writing the vectors v; in columns. So
P is formed by (0,1,1), (0,1,—1) and (1,—1,1). Also P~! is formed by the vectors
(—1,1,0), (0,1,—1) and (1, —1,1).

5. We define the endomorphism f by f (v;) = —v; (because v, € N_;), and f (v2) =
2v9, [ (v3) = 2v3 (because vy, v3 € N,). In the basis B = (v;, vy, v3), the matrix of
f (denoted by D) is the diagonal matrix forme by the vectors (1,0,0), (0,2,0) and
(0,0,2). The matrix of f in the basis ‘B is obtained by expressing f (e;) in the basis
(e1,€2,e3). Therefore, ® = PDP~' is formed by the vectors (0,1,1), (1,1,1) and
(1,0,1).

6. We set N = A — ® which is the matrix formed by (0,0,0), (1,1,1) and (-1, -1, —1).
Thus, the Dunford decompositionis A = D + N. We have D is diagonalizable since
D = P7'®P. Also we can easily see that N* = 0 and that DN = ND.
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As a conclusion, if A est diagonal or nilpotent, there is no problem. Otherwise we use
the Dunford decomposition: A = D + N with D diagonalizable, N nilpotent and N - D =
D-N which allows us to write e* = e - ¢”. The matrix D is diagonalizable, which means
that there exists an invertible matrix P and a diagonal matrix D such that D = PDP~'.
Thus, e? = ePPP™" = peP P~1. We can therefore always calculate the exponential of any

matrix with real or complex coefficients.

2.3 Jordan Decomposition Theorem

We start with the definition of simple Jordan (resp. by block) matrix corresponding to the

value A, which is denoted by J;. (A) or simply J (A). Also we show its importance and how

to find the associated fundamental matrix e?/**).

Definition 2.4. An n by n simple Jordan matrix corresponding to the value A (denoted by

(A1 \

A
s [B)— . (2.4)
A1

\ A

In other words, a Jordan simple matrix corresponding to A is an n by n matrix (denoted

J or J, (\)) is given by

by J (A)) whose entries are equal to A on the diagonal, 1 right above the diagonal and 0
elsewhere.

Remark 2.6. In some references, the simple Jordan matrix is given by the following for-

[ A \
| )

T (N) = . (2.5)

1 A

\ LX)

Definition 2.5. Let A be a square matrix and let A € Sp(A). If a nonzero vector satisfies

mula:

the equation (A — AI)” v = 0, then we say that v is generalized eigenvector of \.

Note thatif (A — \I)™ v = 0, then

EAt'i"_-’ _ E}Jt—l—[ﬂ—.}kf}tv _ E}.f. ('U —{—t(A . }\_!) v+ +
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Definition 2.6 (Jordan chain). Let A € M,, (R) be a square matrix and let A € R be an
eigenvalue of A. The family of nonzero vectors {v;. v, ..., v, } forms a Jordan chain corre-
sponding to A if it satisfies the following condition:

vir1,1f 7 < 8

2.6
0,ifi = s e

(A— A, v; = {
Remark 2.7. From the above definition, we remark that the last vector v, is an eigenvector
of A Corresponding to A since A - v, = A - v,.

Remark 2.8. Given a matrix A € M,, (K) we know that there exists a sequence of inclu-
sions of vector subspaces:

{0} C ker A Cker A C ker A> C ... CkerA* Cc ... c K",

where (dim ker A’) form an increasing sequence. In fact, if v € ker A* then A*v = 0 and so
Aty =0 fori > 0.

Definition 2.7. Let n > 1. We say a block of the simple Jordan matrix any matrix n x n

[ \

Jg

)

where all the matrices J,, Js, . .., J, are of the form (2.4) or (2.5).

matrix of the form

In other words, a Jordan matrix by Blocks is a square matrix formed by Jordan sim-
ple matrices. In particular, the possible cases of the simple 3 by 3 Jordan matrix are the
following;:

A Al £ 4 \
A2 A ., X q
}\3 N ).‘/
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An example on Jordan matrix by Blocks:

{D{l \

\ ay

which is formed by four simple Jordan matrices.

We state without proof (the proof is few long) the following important theorem.

Theorem 2.7 (Jordan Decomposition Theorem). Every spuare matrix A can be written as:
A= P-J P, (2.7)

where P is invertible and J is the Jordan matrix by blocks.

Let A be real or complex number. By induction on the type of a simple Jordan matrix
Ji (), we can prove that

/ Ar L1 g2 o CRELADRF] \
A" o o CR'—EAH—I:—I—E
JL (}‘)H =
AL O
}\n C&}(n—l

\ o)

where C'? = ( for n < s. To do this, in view of (2.4) or (2.5) we see that

[\ 1 \(}t,\ \ (o1 \

A1 0 1
J;;()«): — - . .
A1 A 0 1
\ ;\/ \ A/D \ O/N
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where DN = ND. By Theorem 1.5, N is nilpotent. Thus, by Binomial formula (see Section
1.5) we obtain an explicit formula of J, (A\)". Moreover, we have

(1t 5 . . )
2

¢ 2
Lt .. (k—2)!

) — A

2.3.1 Examples

Consider the following examples:

Example 2.3. Let us take the matrix formed by the vectors v; = (2,0,0,0), v, = (—1,3,1, —1),

v3 = (0,—1,1,0) and v3 = (1,0,0,3). We obtain, ps (z) = (z — 2)° (z — 3), so this matrix
has the eigenvalues \; = 2 with multiplicity m; = 3 and \; = 3 with multiplicity m; = 1.
Also we have E),, = Vect{(1,0,0,0),(0,1,1,1)} and E), = Vect {(1,0,0,1)} . Since

ker (A — 2I)* = Veet {(1,0,0,0),(0,1,2,0),(0,1,0,2)},

let us choose v3 = (0,1.2.0). Put B = {fuh (A—21)vs, (A — 21’)2 Vs, , wg}, where v; =
(1,0,0,0) is an eigenvector of Ay, v3 = (0,1,2,0) is a generalized eigenvector of \; and
vy = (1,0,0, 1) is the eigenvector of \,. After computation, we get

2 -1 0 1\ (1 -101) (2 \{100—1\
0 3 =10 [0 -110 2 1 0 -2 1 0
0 1 1 0| |0 =120 0 2 0 -1 1 0

0 -1 0 3) \0-101/}}\ 5/1\0—21 1)

Example 2.4. Let A € M,, (R) the matrix formed by the vectors (1,1,...,1). Then by in-
duction on n we can prove that

(000 0)

0 n O 0
J=1 0 0 0 0

\UU[}[}.(}/
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which is formed by n simple Jordan matrices. However, if

(11
1
A=
\
then
[ 1
1 1
J =

\

which includes one simple Jordan matrix.

1
1

11
1 1
1
1 1
1)
\
1 1
11
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CHAPTER 3

EIGENANALYSIS METHOD FOR SYSTEMS
OF DIFFERENTIAL EQUATIONS OF THE
FIRST ORDER

Cw e present some general notions on matrices and derivative. Let A (t) = (a;; (f)) be
a square matrix. If the functions a;; (f) are differentiable, then we introduce the

derivative of the matrix A’ (¢) as

) _ QA _ [ aiy () iy (8)
AO="3"=1 & @ a0

We can immediately verify the following properties:

{
1) If (G is a constant matrix, then %j = (0 (0 = zero matrix)

2) If A(t) and B (t) have the same dimension,then

LIA®D +B(0)] = A () +B (1

3) If the product of the matrices A () and B (¢) has sense, then

% [A(t)B (1)) = A'(t) B(t) + A(t) B'(t)

4) Let A~!(t) be the inverse of A (¢). Then

d
A (t)- AL (t) — A1) - EA—I (t) =0
p J

A(t) - EA—I (t) = A'(t)- A~ (1)

We can introduce the notion of the integral of a matrix

/t:;il(t) dt = (/ﬁ: a:; (t) dt) ot € [a,b].

36
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Now, we present the general form of a system of differential equations (linear, with
constant coefficients and the second member):

d.
f ﬁ = anTy + -+ a1pTy + f1 (1)
L2
Gz _ oo QonZs, t
l anTi + -+ + ATy + fao (t) (3.1)
’ n
l % = An1&1 T+~ e ApnLn + fn (t)
whete f(t) = (fi(t),---, fa(t)) is a continuous vector function on |a,b[. The general
solution of (3.1)is given by
z(t)=)» Crzr"+2°(t), (3.2)
k=1

where z° (¢) is a particular solution of (3.1) and Y ;_, Cjz* is a general solution of the

homogeneous system:

d
L[z] = 5 — Az =0. (3.3)

In fact, for any constant C, the sum (3.2) is clearly a solution of the system (3.1).

LY Cua¥+4al| =L [ =}
k=1 =

On the other hand, if x is a solution of the system (3.1), then
Lz —2'| =Ljg]~L[s"| =f~F=0
and for certain constants (',

T — LITD = Z C,t;il?ki (3-4)
k=1

If we have fond the general solution of the system (3.3), we can find a particular solu-
tion of the the system with the second member (3.1) by the method of arbitrarily constants
(this is the Lagrange method).

Theorem 3.1 (Picard approximation). Let A € M,, (R) be independent on t. Assume that
X' (t) =A- X (t) with X (0) = Xy. Then X (t) = et - X,.

Proof. From the hypothesis, we see that

X () = Xo + / AX () dr. (3.5)
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It follows from (3.5) (we apply it many times) that

X(t) = Xn+_/an(Xn+/AX )dr)d

— XH+A/;d.r+A?/ (fX )

= XD+A/;dr+A?/D (/{; (X.;. /DAX()dr)dr)dr
—~ :Haf;dmlJrAﬂf;(/;ldmg)dmﬁ...]xn

i A?tE

Hence, X (t) = e - Xg. The proof is finished. O]

Proposition 3.1. Let A € M,, (R) and let A € Sp (A) with a corresponding nonzero eigenvector
v. Then the mapping X : R — R with X (t) = e v is a solution of the system X' (t) = A- X (t).

Proof. Let X (t) = e - v. Then we have
X' (t) = deMv=e"(\v) =M (Av) = A(eMv) = A- X (t).

This proves that X (¢) is indeed a solution of the homogeneous system X' () = A- X (¢). [

Definition 3.1. Let Fs = {71 (), 22 (t),..., 7, (t)} be a set of n linearly independent solu-
tions of the system X' () = A- X (¢). The set F§s is called fundamental solution set of the
system. The corresponding matrix M = | z;(t) o (t) ... x, (1) ] is called fundamen-
tal matrix of the system. In this case,

X (t)=c1xy (t) + caxa (t) + ... + cpxy, (1)

is called the general solution of the system.

©2024, University 8 Mai 45 Guelma. Department of Mathematics. Cheddadi Samiha

Scanné avec CamScanner


https://v3.camscanner.com/user/download

3.1. EIGENANALYSIS METHOD FOR X' = AX 39

3.1 Eigenanalysis Method for X' = AX

In this chapter we first systems include differential equations of the first-order. Consider

t
the system of ODES: 2’ (t) = Ax (t), where X = ( Ty Ty v Th ) € R™ and
{ aipx @iz -+ Qin \
il (1: . » w (1: n
§ 21 @22 | 2 €M, (R).

\ﬂ'nl L ann}

If we put z(t) = ve*. After derivation, we obtain A (L*E:"t) = \ve*. Hence, Av = v,
from which we deduce that (A, v) is an eigenpair of A.Therefore, (A - Al)v = 0. Or,
equivalently, det (A — AJ) = 0 (this is the characteristic equation of A and denoted by

(11 dj12
A =
(131 aA922

we get pa (A) = A? — (a11 + ax2) A + ajjass — ajpas. By Section 1.2.1, et is computed ac-

pa (A)). In particular, for the matrix:

cording to the following three cases:
1. Distinct real roots,
2. Complex conjugate roots,
3. repeated roots.

Proposition 3.2. Let A € M, (R) be diagonalizable and let P = { Xy My sam Py ] the
invertible matrix formed by n eigenvectors of A. Then the system X' = AX with X (0) = Cy has

a unique solution given by the following formula:
X (t) = GET X LB b F TR (3.6)

where ¢, cs, ..., c, € R.

Proof. From the equality X’ = AX we must have X (t) = e**.§, where £ € M,,; (R). On
the other hand, since A is diagonalizable, we obtain

( et \

E}hgf

X(#t)=Pe?*P =P | P (3.7)

\ ey
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If we put P~'¢ = C, then by (3.7) we get

g2t Co
X (t) - [ Xl Xn Xn ] :
\ )\ e/
o)
- [ pMlY; eMtX | eMtX ] FE
e,
= ™ X5 e X+ ... e X
Since X (0) = Cy, we conclude that C = P~'Cj. The proof is finished O

Homogenous systems including n first-order differential equations having constant
coefficients. The general form is given by (3.1). Or, equivalently, (3.1) can be written in the
matrix form: X' () = A- X (¢) with A = (a;;) € M,, (R). For n = 2, we have the result:

Theorem 3.2. Consider the system X' (t) = A - X (t), where A € My (R) with Sp(A) =
{1, A2 }. Then there exist two differentiable functions a, (t) and a; (t) and two square matrices A,
and Ay € Ms (R) such that

X (t) = (a1 (t) - A1+ az (t) - A2) X (0).

Proof. Define the matrices A; = I, and A; = A — A\ [5. Let a; () and a, (t) be two differen-
tiable functions such that

™

1,
(19 (U) — D

Setting X (¢) = (a1 (f) - A1 + a2 (t) - A2) X (0). Applying Cayley-Hamilton Theorem, we
get pa (x) = 2% —tr (A) z + det A and so A* — tr (A) A + det A from which we also get

A% —(X XA F Xidals = (A—XaB) (A—2ala) =D,
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and so (A — A\ 15) As = 0 from which we have AA; = A\ As. It follows that

X' (t) (A1a;1 (t) Ay + Xoas () As + a4 (2) Ag) X (0)
= (a1 (t) (MA; + A2) + Aaay (t) A2) X (0)

(a1 (t) (MIa + A= AMilz) +a(t) AAy) X (0)
Alay (t) I + as (1) Ay) X (0)

A-(a(t) A +as(t) Ay) X (0)

A-X (1),

|

|

which means that X (¢) is a solution. The proof is finished. ]
More general, we have the following theorem:

Theorem 3.3. Consider the system X'(t) = A - X (t), where A € M, (R) with Sp(A) =
{1, A2, ..., A }. Then there exist differentiable functions a, (t) and square matrices A; € M, (R)
(1 <1 < n)such that

X(t):(ﬂl(t)ﬂ1—|—{lg(t)1’flg++Hn(t)AH)X(O)

Proof. Define the matrices

m—1

Ay :InrAm = 1_[ (A_}"ifn): fﬂrm:Q?S?..._‘_n

i=1

and let a; (¢) such that

L’I-‘-l (t) — }'\11’11 (ﬁ) (11 (U‘) — l
ﬂ-% (t) = )\gﬂg (f) + aq (f) 5 (0) — 03
al (t) = M8, (U) F a1 () a, (0) = 0.

By Cayley-Hamilton Theorem 1.1, we have (A — A\ 1,) (A — Ao1y,) ... (A=A 1,) = 0. As
above, we deduce that AA,, = A\, A, and that \,A,, + A,,;1 = AA,, for1 < m < n - 1.
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Therefore,

X' (¢) ) s Ai Lab(l) - Ayt oo td (1)< 4,) X (0)

Z Aia; (1) A; + i a1 (t) Az) X (0)

|
—
~
P-‘ S
= —~

|

|

L

rin—1
i g (t) Ai =+ i (f) )\nﬂﬂ -+ Z i; (f) J‘ili_H) X (U)
1

1—1 e
1

= (HZ (1; (t] ()\i/qi i+ Ai—H) + Qnp (f) /\nﬁn) X (U)
A

Y4 (t) (AA) + an (1) AAH) X (0)

|

So, X (t) is a solution. This completes the proof. O

Proposition 3.3. The set S of solutions of the homogeneous system X' (t) = AX (t) forms a

vector subspace of C'* ([0, a] , K™) of dimension n.

Proof. Let (e;) be denote the canonical basis. Let Y; denote the unique solution of the
Cauchy problem X' (t) = AX () for t € [0,a| and X;(0) = e;. Any linear combination X,
of X;, is still solution of X' () = AX (¢), therefore Vet { X;, X5, ..., X,,} C S. Conversely, let
X be a solution of X' (t) = AX (¢). Let us denote Xy = X (0), with coordinates (Xy;). We
consider the linear combination Y (¢) = ) X, - X; (). We note that Y is indeed solution of
the homogeneous system Y’ () = AY (¢) and furthermore Y (0) = X,. Thus X(¢) and Y (¢)
are two solutions of the Cauchy problem X' (t) = AX (¢) with X (0) = X, therefore by
uniqueness of the solutions X = Y. This proves that S C Vet { X;, X5, .... X,,}, and hence
the equality S = Vet {X;, X5, ..., X, }.

Finally, let us verify that the family (X;) is free. Suppose that > o, X; = 0 in the space
of functions C" ([0,a| , K"). Then for all t € [0,4a],  @;X; (t) = 0. In particular for t = 0 we
obtain ) | a;e; =0,s0 a; = 0 for 1 < ¢ < n since (e;) is the canonical basis. (]
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3.2 Two examples on Jordan decomposition Theorem

We would like to solve the systems of differential equations:

r] =211 — T3 + T4
!

Ty = 3T9 — T3

. (3.8)

5'33 — I»n + I3

T, = —x3 + 314

The corresponding matrix is given by

(2 -1 0 1)
0 3 -1 0
0 1 0

\o -1 ; 3 )

A=

It follows from Example 2.3 that

; It e? te?
Since e’/?* = , we deduce that

0 €2

(e 0 0 0

EAf _ P ' E‘H ' P_l _ [] EE tEE 0
0 ‘@ 22 D
\o 0 0 &)

A

The general solution of (3.8) is given by X (¢) = ¢ - ¢, which gives

71 (t) = c1e®* + co (€* + € — 2 + €%t) + c3 (—e* + €% — e%t) + ¢4 (e** + %)
To (t) = co (e + €*t) — cze’t

z3 (t) = coe’t + c3 (€* — €%t)

T4 (t) = c3 (2€* — 2e% + €%t) + c3 (—e* + e — €%t) + c4e™,

t
where ¢ = ( Ci Cx C3 Cy4 ) is a constant. As required.
Another example, we wish to solve the system of differential equations X’ = AX,
where A € M7 (R) is upper triangular matrix which has 2 in the diagonal-entries and 1
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elsewhere. As in (2.7), we can check that the corresponding Jordan matrix form is given

by
/(211111 1) (0 0 0 0 0 01) (200000 0)
0211111 5 =8 1 =i ¥ 1200000
0021111 5 —4 3 -2 1 00 0120000
0002111 =1]-106 =31 0 00 0012000 x
0000211 10 -4 1 0 0 00 0001200
00000 21 5 1 0 0 0 00 0000120
\0000[}02/ \'1 0 0 0o o000/ \ooooo12/

{0000001\

000001 5

000014 10

000136 10

001234 5

011111 1

\100000 0/

soedt = P.e’t. P71, where

t 1 0
tE
o t 1 0 0 0 0
tﬂ t?
Tt a1 31 t 1 0 0 0
t4 tﬁ tE
— — — t 1 00
! 31 1
5P g 5 A @
51 41 3] 2]
tﬁ #2 t_i %3 t? C
\ 6! 5! 4! 3! 2] /
t
'T}'H.ISJir X (t) = EAt -cwith ¢ = ( €1 B3 . £k ) 1S a constant.

3.3 Nonhomogeneous Linear Systems

Let us now give our attention from the study of homogeneous systems to nonhomoge-
neous systems. Fortunately, the basic tools and the most important materials for solving
nonhomogeneous systems quite well parallels to those used in the study for solving non-
homogeneous differential equations.
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Definition 3.2. We call Cauchy problem any problem of the form

{ X'()=AX () +F @) 0.0 53)

X(0)=X,,m>1

where A € M,, (R), Xp and F'(t) are given.

In this work, we will show that there exists at most one solution of the Cauchy problem
(3.9). We can easily check that if X; (#) and X, (¢) are two solutions then Y (¢) = X; (¢) —
X, (t) is a solution of Y’ (t) = AY (t) with Y (0) = 0.

Theorem 3.4. The problem (3.9) has a solution.

Proof. We start by treating the case K = C. The proof can be done by triangulation of
the matrix A. Let us start by assuming that A is an upper triangular matrix. To simplify,
suppose that n = 3. The problem is then written

5

1 () = anzy (t) + araws (t) + arzzs (t) + f1(2).
5 (1) = agxs (t) + azsws (t) + fo (t),
5 (t) = asszs (t) + f3 (1) .

X

&

Let Xq = (xo1, To2, To3)" denote the components of X. The third equation only involves
z3 (t) and can therefore be solved explicitly

f

T3 (t) = ™33z, (t) + f e33(=7) £o (r) dr,

0

If we put fo (t) = agszs (t) + f2 (f) which is now known we see that the second relation is

written
Ty (t) = axnzs (t) + f2(1).

The above equation hass one and only one solution verifying z( (0) = ;. Finally, the first

relation is written as
1 (t) = anzi (t) + f1 (1),

where f; (t) = a5 (t) + a13zs () + f1 (t). So there is one and only one possible solution.
Thus, the problem (3.9) is completely solved.

We now assume that A € M, (C) is any matrix. We know that A is trigonalizable,
that is, there exists an upper triangular matrix 7" and an invertible matrix P such that
A = PTP'. We putY {{) =P X () and F (t) = P7'F (t). The system of differential
equations X' (¢) = AX (t) + F (t) after multiplication by P~! becomes

P

PIX'(t)=TY (t) + F (t).
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0

Furthermore, we easily show that for any matrix () (with constant coefficients — (QY (%)) =

ot
QY’ (t). Thus, Y’ (t) = P~ X’ (t) and the system becomes

i

Y'(#) =TY (t) + F ().

The initial condition is fixed by Y (0) = Yy = P~'Xj. Thus the existence and uniqueness
of the solution hold because we are in the case of an upper triangular matrix. We finally
obtain, necessarily, the solution X in the form Y (¢) = PY (¢). This completes the proof in
the case K = C.

Obtaining solutions in the real case: In the case where the data are real (A € M,, (R)
and F'(t) € R with X; € R"), we can see the problem as having a value in C and obtain
a unique solution X (#) in this framework, therefore X (f) € C. We then define Y (f) =
Re(X(t)), the real part. We see that Y'(t) = AY(¢) + F(¢t) because A and B(t) are real-
valued. So Y is a (real-valued) solution to the problem. On the other hand, as there is only
one complex solution to the problem, we also have Y () = X (f). So in fact the solution
X (t) constructed at the beginning has a real value and is indeed the only solution to the
problem. ]

Recall that if we have y' (t) = A-y(t) + f (t), where y and f are n by 1 matrices and A
is n by n matrix with constant entries, then

t
y(t) = [ e f () dz + e - c. (3.10)
0

Moreover, if f is a continuous function over R with values in R". The solution of the above
system such that y ({y) = yo is given by

t
y (1) = f e‘qﬁ_r]f () dx + gAlt—to) | Y.
to

Note that a second order differential equation can represented as first order system
and conversely. First, the following equation

' +ar’'+2=0,a € R} (3.11)

can be written as a system of differential equations. Indeed, if we set z; = x and 2, = 2/,
then we get the system

{ w3 P (3.12)
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0 1

—1 —a

whose matrix A = ( ) . Thus, we can solve (3.12) and we deduce the solution of

(3.11).
Second, consider the system of differential equations

] = —2%,
"
=

2

By differentiating x} we have z{ = —2z, = —z;. Hence, z{ + ; = 0 which is a second
order differential equation.

Proposition 3.4. The general solution to system (3.9) is the sum of the general solution to the

corresponding homogeneous system and a particular solution to the nonhomogeneous system. That
is, X (t) = X () + X, ().

Therefore, to find solutions to the system (3.9) we need to find a particular solution to
the corresponding nonhomogeneous system. So, how to find a particular solution?

3.3.1 Educated guess method and applying Laplace transform

Sometimes it is not easy to find a particular solution. Consider, for example the system of
the form y’ = Ay + se™, where s € R" is a constant and a € R is fixed. We try to look for a
particular solution as y, (1) = we®. We obtain that

aw =Aw+s= (A—al)w=s.

Supposing that a is not an eigenvalue of the matrix A, we can solve the last system
w=(A—al) s
Example 3.1. Let us take the system

i

y1 = 2y1 — Y2 +€*

yp = 3y1 — 2ys + €*

\

After simple computations, the matrix A has eigenvalues A\; = 1 and A\, = —1 with the
corresponding eigenvectors u; = (1,1) and u, = (3,1). Thus, the general solution to the
homogeneous system is

t

{ y1.h (1) = c1e + 3coe™

Yor (t) = c1€® + coe™

where ('}, C; are constants. since 3 is not an eigenvalue of A, we can look for a particular
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solution to the nonhomogeneous system in the form

A 3t

HAt) =
yp() BF,

Where A and B are constant to be determined. After plugging y,(¢) and canceling all the
exponents,we obtain the system

3A
3B

9A — B+1,
34 —~IB LT,

|

|

which has the unique solution A = 1/2, B = 1/2. Therefore, the general solution to our
system is given by

1 3 1] 1
) — C _,t C —i - _J3f.
Yn(?) 1 | s O i e + A E e

We can also apply Laplace transform to deal with nonhomogeneous systems. Suppose
that we need to give solutions to the system (3.9). Let X (s) be the Laplace transform of
X (t) given as follows

X (s) = L{X (t)}.

From a well-known fact, we have L{X' (f)} = sX (s) — Xy. In view of (3.9), by using
the Laplace transform, we find sX (s) — Xy = AX(s) + F (s), or, equivalently X (s) =
(sI — A)™" (Xo + F(s)), this give the formal solution, but this is after we find the inverse
Laplace transform X (t) = L7 {X (s)}.

Example 3.2. Consider the system

r
i =31, —4dry 4 €

! t
k I2:$1+I2+E

where 7, (0) = 23 (0) = 1. Applying Laplace transform, we obtain

s—3 4 1 1

X = SII _I_
-1 s+41 — 1

where X (s) can be calculated easily since
- 5—3 i 8—3
X (3) — {.'5-—1]E {.5—1]‘E
5—2 5—2
L (a—1)* T (i)
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By the partial fraction decomposition, we get

g2 gD foge s 3 1 1 1

—

(s —1)° =1 =1 G-

Hence £7! {-} = ¢! —te' —t?¢’, and similarly for the second term £7' {-} = e’ — 1t?¢’. Thus,
the final solution is given by

{ Ty =(1—t—1t%)é€

Ty = (l - %tz) e,

3.3.2 Variation of constants

Let e*' be a fundamental matrix solution to the homogeneous system X’ = AX. Hence,

L - 2
At.c, where c = (c1,. .., ¢,) is an arbitrary

the general solution can be written as X, (t) = e
constant. Now, suppose that this vector a function depending on ¢, that is, ¢ = ¢ (¢) and
set X (t) = e'c(t) into (3.9). We find (EAt)j (t) - c(t) + e?ic (t) = Aetc(t) + F(t), and
since (e4?)’ (t) = Ae?, we obtain ¢ (t) = (e*’“)_l F (t) , which gives the solution ¢ (t) =

co + L‘; e~ F (r) dr, where ¢ is a constant vector. Applying this solution, we get

t

Xt)=eM-cg+e® | e"F(r)dr.
X5 (1) "-Lv—’
Xp(t)

Since e*!* is a special fundamental matrix, we can derive the following formula

f
X (t) = ey +/ e F (r)dr.
Lo
If we give the initial condition X (#;) = X, we also get

t
X () =g X, +/ e (r) dr

Ly
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CHAPTER 4

SYSTEMS OF HIGHER ORDER
DIFFERENTIAL EQUATIONS

Cfto t first, we present a transformation of a problem of order n into a system of n
equations of order 1, and vice versa. Suppose that y is the solution of a problem of
order n of type (3.5). To simplify, we will assume here that n = 2 :

' =ax+ax' +a(t),a,a €R. (4.1)

. t
Let X (¢) be the vector of R* such that X (t) = ( z(?) ) . By (4.1), we then notice that

z' (t)

z' (t)

Xit) = ( ) satisfies
I” (t)

| 7' (1) 0 1 z (1) 0
X' () = = |
@ ( a1z (t) + axx’ (t) + a(t) ) ( & G ) ( z' (1) ) i ( a(?) )

It is therefore a system of two differential equations of order 1, given the following form:

F
Ty = a11T1 + a12T2 + fi (t)

: (4.2)

Ty = a2271 + anx2 + fo (t)

b

wherez; =z, 20 =2',...

Conversely, if we assume that (z1, x5 ) is the solution of the system (4.2) then by replac-
lng (l1p L9 = fﬂrl — (117 — fl (t) n the SECEII'ld Equatlﬂn we Dbtaln

TT — (a1 + a) Ti + (a11a92 — a19a91) 1 = f{ — ag f1.

which is a second order differential equation for z,. Likewise we show that z, verifies the
following differential equation

Ty — (@11 + @) 5 + (a11a2 — a12a21) 2 = f3 — a1 fo.

50
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41 How tosolve X" = AX withm > 1?

In this subsection, we deal with a system of higher-order differential equations of the form
XM () = A- X (t) withm > 1, where A € M,, (R). There are two cases to consider:

Case 1. When A is digonalizable. Assume further that A = PDP~!, where P is invertible
and D is diagonal. We put X (¢) = PY (?). It follows that

[ X(m) (t) = PDP X (t) = PY™ (¢)
| Y (t) = DP7'X (t) = DY (t)

We first solve Y™ (¢) = DY () and then we obtain X (). As an application, we have the
following example:

Example 4.1. We want to solve the system

) = —x1 4+ T2 + T3
"
To =T — T2+ I3

Th = T+ Ty — T3
After simple computations, the corresponding matrix is diagonalizable. We can easily get

1 = 1€’ + e + (€3 + ¢5) cos 2t + (¢4 + cg) sin 2t,

{

To = c1€' + cpe” ! — c3cos 2t — ¢4 8in 2t,

{

T3 = 1€t + cse™t — 5 cos 2t — cg sin 2t.

Case 2. When A is non-digonalizable. Assume that A = PJP~', where P is invertible
and J is the Jordan matrix by blocks. Similarly as above, we put X () = PY (). It follows
that

X () = PJP1X (t) = PY™) (¢)
Yl () = JP-1X (t) =JY (&)

We first solve Y™ (¢) = JY (t) and we find X ().
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4.2 Converting systems of higher order linear equations

Let us deal with the differential equation y™ = ay. Define the system of differential
equations
T5=0%y
T —Tq
(4.3)

The corresponding matrix is given by

/Ua \
0 1
A —

0

1
1 0 0 ... 0
\ )

Clearly if we put z; = y, we obtain y™ = ay. Then solving the system (4.3) gives the

general solution to our higher order differential equation y'™ — ay = 0.

Example 4.2. We wish to solve the differential equation y” = y. For this purpose, we
consider the system of differential equations:

T, =T5
A (4.4)
Th =4

where 7, 75, and z3 are complex functions depending on the real variable ¢. After compu-
tation using the eigenanalysis of the corresponding matrix we get

~ 2
1 = c1€° + c9e?t + cgelt

t . gt -2 _432¢
T = ¢1€” + cpye’t 4+ cgj e’

! - . R
T3 = ci1et + cj%e’t + c3jel’t

where 1+ 7+ 72 =0and c;, ¢c3,¢c5 € C.
Now, if we put y = x; then by (4.4) we see that y"" = y, so y = ¢1e’ + e’ + caed t.

Proposition 4.1. Every n order differential equation of the form

=P (65,2, .. 8™ )
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can be represented as a system of differential equations of the form X' = A - X.

Proof. We introduce new variables, namely y1, 3, ..., y, by setting
==z, Yo=2, Y3 =2%", ..., Y, = "V (4.5)

It follows that

| -

Y1 =T = Y2

| I

Yo = — Y3

[ ||

Us = — Y4

f _ n—1) __
gl =z =y,

y:}, :I{ﬂ] — F(t:yljyzt' " -:yn)

The proof is finished.

Next, we transform systems of the form X" = AX + FtoY’' = BY + F. Consider the

system
X" (t) = AX (t)+ F (t),

where A € M,, (R). We can rewrite the above system as

a( xt)\ [0 I z (t) 0
5(fm)ﬁ(ﬂﬂ)(fm)+(F®)' o

i

Then we put U (t) = (z (t),2'(t)), we get U’ (t) = AU (t) + F' (t) . Also, if we consider the
system
AX"(t)=BX' () +CX (t)+ F (1),

where A is invertible. We can rewrite it as

A 01)o t) Y (0 A x (1) i 0
0 AJot\ @) ) \C B ' (t) F@) ]

So this is a first order system define by block matrices. We can also obtain

J r(t) |\ 0 I z (1) n 0
o\ 2@t ] \ A'c A'B |\ o) ATVF () )
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Similarly, if we have

AX"(t)=BX"(t)+ CX'(t)+ DX (t)+ F (1),

then
A 0 0 9 E () 0 A 0 % (%) 0
00 A0 |5| 2B |=[00A ' (1) | + 0
0 0 A " (t) D C B " (t) F (t)
Or, equivalently,
5 z (t) 0 I 0 z (t) 0
5 () | = 0 0 I ' (t) | + 0
" (1) A A-C A~ " (t) ATLE(t) )

More generally, if we have
AX"™ () = A a X" D)+ AnaX™ D () + ..+ AX )+ AAXO+F@ER), A7)

which can be written in the matrix form

ooy ey e ) ey )

|
]
_|_

a) \evo) L . ) Ve ) \re)

) Y §f 0 1 0\{3:(@\ 0

: B (t) 0
ot 5 B 0 I 5 " '

D@y )\ A4, . A4, L, AA, ) \ 2D (1) ) AR (1 )

This proves that (4.7) can rewritten as in (3).
Proposition 4.2. Let B be the matrix of (4.6). Then pg () = (—=1)" pa (2?).

Proof. We see that
S | I 0\ 0 I
A —zI el T )] \ A—22T —zI |
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By applying the determinant product formula, we get

-zl I I 0 0 I .
det ; det = det = (—=1)"det (A — 2°I) .
A —xl xl 1 A—a2?] —xl

Or, equivalently, det (B — zI) = det (A — 2*I) . This proves the result. [

Remark 4.1. Let A € M,, (R) and define the 2n x 2n matrix by blocks:

0 I
B:(AO). (4.8)

X
where Y’ = BY withY = ( ) Then

f

v = Au

"
Au = A2
mhn(“)_0@< L=
v

\

From the above remark, we deduce the following corollary:

Corollary 4.1. Let A € M,, (R) and let B as in (4.8). Suppose that B has eigenpairs (\;, u;)
for: = 1,2, ..., 2n with uy, us, ..., uy, are independent. Let / denote the n by n identity and
define v; = diag{I,0}u; fori = 1,2,...,2n. Then Y’ = BY and X" = AX have general
solutions:

1. Y (t) = cieMtuy + cpe?tuy + ... + cone?ntu,.
2. X (t) = c1e™Mtvy + ce*?tug + ... + cone?iu,.

When A has simple eigenvalues, we have the following result:

Proposition 4.3. Let A € M,, (R) with Sp(A) = {A1, Aa, ..., A\, } which are real or complex.
Define the matrices Ry, Rs, ..., R,, by

k
Then et = MRy + e Ry + ...+ ™R, with Y R; =1
g=—1

Proof. If we put P = [ V1 V2 ... Up ] the corresponding invertible matrix formed by the
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eigenvalues of A, then P~' exists and so

Now, define R; = v;v; for 1 < ¢ < n. Clearly, A = MRy + AMRe + ..\, R,. Since the
eigenvalues of e are the values {e*,e*2, ..., e* ] then there exists matrices R} (1 < i < n)
such that

et = e‘j‘ltﬁ.i + EJ‘EtR; E . E)‘”tR:,l.

Here, we see that

More generally, for every function f defined on the values (}xi)li i<kr We deduce that
k

(A=) f\)Ri;Rie M, (R) A<i<k).

2—1

2

In particular, for f (z) = cos® z + sin” z, giving

k
I =cos? A+sin?A= Z (EDSE DR }.i) R = Z R;.
1=1

Thus, St ,Ri=1 O

4.3 Examples on the second and third-order linear differ-

ential equations

Here we discuss an example on the systems of the form X" (¢) = AX' (t) + BX (t) + F' (¢),
where A, B are two matrices.

Example 4.3. Consider the system

{ 7 (t) = ay -2 (t) + by - 2% (8) + 1 21 (8) + dy - 22 (8) + f1 (2) (4.9)

zy (t) = a2 - 27 (1) + b2 25 (8) +c2- 21 (8) +da - 22 (2) + f2 (2)

with the initial values z; (0), 7 (0), z2 (0) and 75 (0) . This system is equivalent to a system
including four equations of the first order. Indeed, we introduce two functions y, () and
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y2 (t) which represent z} (¢) and z5 (¢), respectively. That is, y; (f) = 2} () and y. (f) =
zh () . We put

ENOR 0 0 1 0 ) 0 ) AOR
x| 20 | a {000t ol 0 | xoo| 20
h (t) (11 bl 1 dl fl (t) Tfl (0)

\ v (1) ) ay by ¢y dy ) f2(t) ) 5 (0) )

Or, equivalently, the system (4.9) can be writtenas X' = A- X+ F Ifwetakea; = b, = d; =1
(1 <i<?2),then

e
(0 1 1 Z3iae@3-9 ) ([0 o \
%
A= |0 @ @) || LS '
1 0 S - (2v3-4) V3 +1
\ -1 0 25 HZmevi-4 N\ L=t )
( 0 0 2 3 \
2 =3 0 0
i~ V3 i~ 1V3 V3 V3
V'3 3 9 V3 3 9 V3

\1%@—24 12v/3—-24 12v/3-24 124/3—24 12+/3—-24 12+/3—24 12+/3—-24 19+/3-—94

Example 4.4. Define the third-order linear differential equation:
2"+ f(t)x"+gt)x'+h(t)z=Ek(t), (4.10)

where f, g, h, k are continuous functions defined some interval [a, b]. From (4.10), it follows
that

' =—ft)x" —gt)x' —h({t)z+k(t).

After introducing the following dependent variables: x; = z, z; = 2’ = 2} and 23 = 2" =
z5. Thus,

2" =aa=—f(t)xz3—g(t)xa —h(t) 1 + k(1).

Or, equivalently
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In the matrix form, we get

T 0 0 7 \ 0
Ty, | = 0 0 1 Tg | + 0
T3 —h(t) —g(t) —f() r3 ) k()

As required.
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Conclusion and open problems

Solving different types of problems, particularly in science and engineering, comes down
to characterize all solutions of a system of the first order or higher order ditferential equa-
tions. So these systems have many applications which we have not discussed in this
manuscript since we have only concentrated on the eigenanalysis methods to solve them,
as well as Brine Tank Cascade, Cascades and Compartment Analysis, Recycled Brine Tank
Cascade, Pond Pollution, Home Heating, Chemostats and Microorganism Culturing, Ir-
regular Heartbeats and Lidocaine, Nutrient Flow in an Aquarium, Biomass Transfer, Pes-
ticides in Soil and Trees, Forecasting Prices, Coupled Spring-Mass Systems, Boxcars, Elec-
trical Networks, Logging Timber by Helicopter and Earthquake Effects on Buildings.

In the literature, there are new contributions involving system of ordinary differential
equations by special methods as well as Adomian decomposition method [2], some gen-
eralization as nonlinear stochastic systems of differential equations and others on solution
method for a non-homogeneous fuzzy linear system of differential equations.

For more details on some problems involving differential algebra, integrating differ-
ential polynomials and differential eliminations, one can see [7]. A very famous problem
is the quadratization problem: If we consider a system of ordinary differential equations
with polynomial at the right-hand side and we wish to transform it into a system with at
most quadratic equation at the right-hand side. For example, consider y' = y'°, so if we
introduce a new variable z = y”, then we obtain y' = zy and 2’ = 9y°y = 9y’z = 922

Hence,
!
y =y,
{ ' = 912

More generally, it is important to ask on the transforming of the differential equation

y{m] _ yﬁa _l_yk—l TR y i 1.

That is, it is natural to ask if one could use suitable variables for quadratization if the new
variables are arbitrary polynomials. For details, see [3].
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Abstract. We study some higher order differential equations sharing a common

set of solutions, where we deal with the fundamental link between these
equations and the linear differential systems of the first order in dimension n.
That is, by using eigenanalysis methods, we deal with systems of linear
simultaneous differential equations with constant coefficients. Moreover, we
study converting systems of higher order linear equations.

Key words: Exponential Matrix, Nonhomogeneous ODE systems, Eigenanalysis
methods, Jordan Form.

Résumé. Nous étudions quelques équations différentielles d'ordre supérieur
partageant un ensemble commun de solutions, ou nous traitons du lien
fondamental entre ces équations et les systemes différentiels linéaires du

premier ordre en dimension n. Autrement dit, en utilisant des méthodes
concernant valeurs et vecteurs propre, nous traitons de systemes d'équations
difféerentielles simultanées linéaires a coefficients constants. De plus, nous
etudions la méthode de conversion de systemes d'équations linéaires d'ordre
supérieur.

Mots clés : Matrice exponentielle, systemes d’'EDO non homogéenes, méthodes
d'analyse propre, forme de Jordan.
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