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ABSTRACT

The aim of this memory is to study some physical problems
related to wave equations.

These wave phenomena appear in numerous applications such
as: sound waves and electromagnetic waves...

In the first chapter, we recalled some definitions and
properties of PDEs, as well as some generalities that we used
in the following chapters.

The second chapter was devoted to solving the wave equation,
where we presented three methods of resolution, namely the
D'Alembert method, the Fourier method and the Kirchhoff
method.

Finally, and through the last chapter, we have proposed a
numerical solution of the equation in question via the finite
difference method.

Keywords:

Partial differential equations - The wave equations -
CHAUCHY problem — D'ALEMBERT's formula - FOURIER
separation - Kirchhoff formula.



RESUME

L’objectif de ce mémoire s’inscrit dans 1’é¢tude de certains problemes
physiques liés aux equations des ondes.

Ces équations apparaissent le plus souvent dans de nombreuses
applications telles que : les ondes sonores et les ondes
électromagnétiques, etc...

Dans le premier chapitre, nous rappelons quelques définitions et
propriétés sur les EDPs, ainsi que quelques généralités que nous
utiliserons par la suite

Le deuxiéme chapitre est consacré a 1’étude de ces équations, oU nous
avons presente trois méthodes de résolutions a savoir la méthode
D'Alembert, la méthode de Fourier ainsi que celle de Kirchhoff.

Enfin, et a travers le dernier chapitre, nous proposons une résolution
numérique de I’équation des ondes via la méthode des différences
finies.

Mots clés :

Equations aux dérivées partielles - Les équations des ondes -probléme
de CHAUCHY - La formule de D’ALEMBERT - Séparation de
FOURIER- formule de KIRCHHOFF.
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Introduction

Many phenomena and problems in the world today are based on partial differential equa-
tions, hereafter abbreviated as PDEs.

When did PDEs first appear? They were probably first formulated at the birth of rational
mechanics in the 17th century (Newton, Leibniz...). The "catalogue" of PDEs then grew with
the development of the sciences, in particular physics. If we have to choose just a few names,
we should mention Euler, followed by Navier and Stokes for the equations of fluid mechanics,
Fourier for the heat equation, Maxwell for the equations of electromagnetism, Schrodinger
and Heisenberg for the equations of quantum mechanics and, of course, Einstein for the PDEs
of relativity.

Partial differential equations translate the laws of phenomena in mechanics, fluid dynamics,
elasticity and meteorology, among others, into mathematical language. Furthermore, due to
technological advancement, PDEs have been applied to image processing. Hence, physics and
mathematics have a close correlation. Poincare’s words affirm this relationship: "All laws are
derived from experience, but to state them, a special language is needed; ordinary
language is too poor, and moreover too vague, to express such delicate, rich and
precise relationships. This, then, is the first reason why the physicist cannot do
without mathematics it is the only language he can speak". (Poincare, 1910).In 1765,
Euler wrote a dissertation on pure mathematics dedicated to a specific PDE." Lagrange gave
a summary of PDEs encountered in physical problems and provided innovative integration
methods. He was less systematic and mathematical in his teaching of EDP. D’Alembert was
the only one to simultaneously:

- consider PDEs outside of any physical problem.

- undertake the study of very broad classes of PDEs.

Wave equation is one of partial differential equations that express many of the fundamental

laws of nature, and generally arise in the mathematical analysis of problems in science and



Contents

technology.

We essentially encounter three types of waves: acoustic waves, i.e. waves that propagate
in a fluid (water or air for example). Elastic waves, i.e. waves that propagate in a solid;
electromagnetic waves, for example light. We will mainly study the acoustic wave equation
which is the simplest model (scalar model).

This memoir is divided into three chapters:

In the first chapter, we review some definitions and properties of PDEs, as well as some
generalities such as Fourier series.

In the second chapter, we looked at solving the wave equation.We present this resolution
using three methods Fourier’s method, D’Alembert’s method and Kirchouft’s method.

In the last chapter, we establish a numerical resolution of the equation under consideration

using the finite-difference method.



Chapter 1
Preliminaries [1] |2]

In this part, we introduce some fundamental notions about partial differential equations and

different properties necessary for the rest of our work.

1.1 Generalities about partial differential equations

1.1.1 Definitions and properties

Definition 1 A partial differential equation of the first order with the unknown u and n

independent variables 1, ..., x, is an equation of the form:

ou ou

_— ., ) = 1.1
u’@xl’ ’axn) 0 (1.1)

F(xy,...,zp,
where (x1,...,x,) € Q is an open of R™ .

Definition 2 The general form of a second-order PDE is:

du du Pu  0%u 0*u *u
Ox’ Oy’ Oxdy’ dydx’ Ox?’ Oy?

F(z,y,u, )=0 (1.2)

for (z,y) € Q is an open of R?.
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1.2 Some mathematical physics equations

PDEs are commonly found in science and engineering, particularly in physics. Here are a few

examples of them:

1.2.1 Transport equation :

ot or

where u (z,t) and c is a positive real number.

0

The transport equation is used to model air pollution, the dispersion of dyes and even

traffic flows.

1.2.2 Wave equation :
Pu 5 0%u  DPu O
oz ¢ (8562 - oy? - 02?2

)=0
where u (z,y, 2, 1)
eThe wave equation is utilised in various phenomena such as string theory, gravitational
waves, light waves and sound waves.
oIt helps us determine the movement of strings and fluid surfaces such as water waves.
eThe wave theory has its application in numerous fields, be it wireless communications,

musical instruments or the detection of speeding vehicles.

1.2.3 Heat equation :
@ B <82u N 0u N 0%u
ot ox?  0y*> 022

)=0
where u (z,vy, 2, t)

The heat equation is used in real life to predict temperature changes in various objects and
systems, such as in engineering design, climate modeling, heat transfer processes and thermal

conduction.
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1.2.4 Burgers equation :

ou n ou 0

- U— =

ot Ox
where u (z,t) and u is the speed.

The Burgers equation is a widely used mathematical model for physical phenomena such

as gas dynamics, traffic flow, shallow water waves, diffusion of chemical reactions.

1.2.5 Laplace equation:
Pu  Pu  *u
trgt ey =

where u (z,y, 2)
Laplace’s equation is a fundamental second-order partial differential equation that finds
extensive application in the field of physics and engineering. These include electrostatics, grav-

itation, fluid mechanics and steady-state heat conduction.

1.2.6 Euler-Bernoulli equation :

Pu 40N

o2 o Y

where u (z, 1)
Bernoulli’s equation has many real-life applications. One common application is in the

study of fluid dynamics, it is also used in the design of water distribution systems.

1.3 Classification of second-order PDEs

Second-order partial differential equations of the following form :

0*u 0*u 0*u ou Ou
B D —_— =
Ox? + Oxdy + C@yz + D@y, u, ox’ Oy

A )=0
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where A, B and C are constants of x and y. Partial differential equations of the second

order are classified into three types, depending on the value of the determinant: B2 — 4AC
where we distinguish:
If B2—4AC < 0, the PDE is called Elliptic.
If B2—4AC = 0, the PDE is called Parabolic.
If B2—4AC > 0, the PDE is called Hyperbolic.

’u  J%*u

22 "o =

B? —4AC = 0% —-4(1)(1) = —4 < 0 so the Laplace equation is elliptic.

ou 9%u

or o2 7Y

B? —4AC = 0> — 4(—d) (0) = 0 so the diffussion equation is parabolic.

Pu 0%

o2 o !

B? —4AC = 0% — 4(—¢c*) (1) = 4¢* > 0 so the wave equation is hyperbolic.

Pu  0%u
Y— —_—_— =
or?  Oy? 0

tricomi equation.

if Y < 0 = the PDE is elliptic.

if Y = 0 = the PDE is parabolic.
if Y > 0 = the PDE is hyperbolic.
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1.4 Reminder of Fourier series:[1][3]

1.4.1 Periodic Applications :

Definition 3 A function fR — C is called periodic with period T > 0 if
fla+T)=f(x)

Vr e R

Example 4 1) Constant functions are periodic, for any period T.
2) t — exp(it) is periodic with period 2.

3) The functions x — cosx and x — sinx are 27 periodic.

1.4.2 Fourier series and Fourier coefficients

Definition 5 A Fourier series is a series that takes the form of the following formula
% + nZ:; (a,, cos(nx) + by, sin(nz))
(Real form)

Definition 6 Let f be a piecewise continuous function on [—m, | .The exponential Fourier

coefficients of f are the complex numbers c,, defined for all n € Z by

en(f) = o= / f(z) e da

and we call the trigonometric Fourier coefficients of f the numbers a, and b, are defined by

wh)=7 [ fwd

™

an(f) = % /_ " () cos(na)dz
and b, (f) = %/_ﬂf(x) sin(nx)dx
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Example 7 let f(z) = 2+ 22 € [-m, 7] so

1 (7 272
ap = ;/_Wf(l')dl': ?
ifn>1 so

a, = l/ (z + 2?) cos(nz)dx

= %((m + %) sin (na)]", — % /_7r (1 + 2z) sin(nx)dx
= —% {(— (14 2z) cos (nx)]™, + %2 sin (nx)]irﬂ}
_ 4cos (nm) _ 4(=1)"

and b, = %/W (z + 2?) sin(nz)dz = #

therefore the series of f(x) is

%2+:§ ((4(;;)”) cos (nz) + (2(_71)71“> sin(nx))

Remark 8 1) If f is an even function = (b, = 0), then its Fourier series is as follows:

+o0
2 s
S Zan cos(nx) with a, = —/ f (z) cos(nx)dx forn >0
2 ot T
2) If f is an odd function = (a, = 0), then its Fourier series is as follows:

+oo
2 ™

Z b, sin(nx) with b, = —/ f () sin(nx)dx forn >0
™ —T

n=1

1.4.3 Dirichlet’s simple convergence theorem

Definition 9 A piecewise continuous function on [0, 2] is piecewise continuously differenti-
able (of class C' ) on this interval if there exists a partition of [0,27] consisting of a finite

number of intervals |a, b] such that

10
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1: f is continuous on |a,b] , and f has a right-hand limit at a and a left-hand limit at b.

2: f is differentiable on |a, b[ and f’ is piecewise continuous on this interval.

Theorem 10 "Dirichlet’s" Let f: R — C be a periodic 21 function that is continuously

piecewise differentiable on R. Then the Fourier series of f converges simply and its sum is

for all x € R.

ao(f) + Z [an(f) cos(na) + b, (f) sin(nz)] = fag) + flxg)

2
n>1

where f(xg) and f(xy) are the right and left limits of f at xy. In particular if f is continuous

at a point x, then we have

f(@) ==+ ) lan(f) cos(nz) + bn(f) sin(nz)]

11
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12



Chapter 2

wave equation|6)

A wave is the phenomenon of propagation in a medium that does not involve the transport
of matter.

The wave equation is a second-order partial differential equation that describes wave
propagation phenomena such as sound waves, light waves ....This equation appears in many

fields.

In this chapter, we study the wave equation

0*u
w — C2AU = f

where ¢ is a constant.

2.1 Wave equations in one dimension

The evolutionary P.D.E. of second order in time (¢) and space (x) is called the linear wave

equation:
Pu  ,0%u

w—C@:O t€R+,$€R

where c is a given positive real number, homogeneous to the wave propagation speed.

13
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- In dimension one (of space), the wave equations model the equations of vibrating strings.

-The general solution to this equation is the sum of two functions:

u(z,t) = Fx +ct) + Gz — ct)

2.2 Types of wave equations

2.2.1 Acoustic waves

If ©2 denotes an open space of R? (bounded or not) filled with fluid, the propagation of acoustic
waves in this fluid depends on p(z) the fluid density at the point z, c¢(x) the local velocity of

the acoustic waves and the function g (x,t) is the source.

The equation that governs variations in the pressure P(z,t) of the fluid at a point x and

at time t is the wave equation

1 9°P < 1 )
———— —div|—VP ) =g 2€Qt>0
() ot p(z)
where u(z) = p(x)c*(z)
Applications:

Acoustic waves are used, for example, in musical acoustics, room acoustics, underwater

acoustics or to study wave phenomena.

14
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I:ICCILIStIl: Waves

.c-'.- 3

Wawvelengkth (A)

Acoustic wave

2.2.2 Elastic waves

The equations of motion are

2‘)
paa;; —div(o)=pg

where (x,t) is a vector representing the displacement of a particle from point z to
time ¢, 0 is the tensor of opposites , linked to the deformation tensor £( u ) by the material

behaviour law.
Applications:

Elastic waves are encountered in particular when studying seismic or geophysical problems

and non-destructive testing.

15
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Earthquake epicenter Key
oz ' . P-wave ——
S-wave —»

>-wave S-wave

Seismic station records
both P and S waves

Seismic station records
no P or S waves

140° "
Seismic station records
P waves only

S-wave shadow 20"

seismic waves

2.2.3 Electromagnetic waves

In a medium that we will assume to be isotropic linear dielectric, an electromagnetic field in
a domain € is described by the electric field E (z,t) and the magnetic field H (x,t) which

satisfy Maxwell’s equations
u% + rotE =0
5%+a§—rotﬁ+§=0
e (z) > 01is the dielectric permittivity of the medium, p(z) > 0 is the magnetic permeability

of the medium, o(x) > 0 is the conductivity of the material, j; is a source current. The wave

velocity of the medium is given by the relation :

16
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Applications:

Electromagnetic waves are widely used to detect flying objects (radar stealth).

/\/\/\/\/\/\/\/\/\J\/\/\/\/WWU\MNWM

Radio waves Infrared
lemmpe © B &

Gamma rays

Electromagnetic waves applications

2.3 Canonical form and general solution|5]

The homogeneous wave equation in one dimension space has the form:

0*u 282u

W_ 62_0 —o<r< 400, t>0 (2.1)
T

where ¢ € R is called the wave velocity. To obtain the canonical form of equation (2.1),
we use the change of variables
E=x+ct
n=x—ct

We pose w(&,n) = u(z(&,n),y(§,n)) . The chain rule gives

ou _ (0w _ ow
at — C\ae ~ on

Ou _ Ov , Ov
%_a{+%

17
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and
ot = G+ 2o + ot
Therefore,
Pu 0% 0w

c = —4

o2~ " 02 oean ~ !

This is the canonical form of the wave equation. Such as % = 0 it follows that g—“g = f(§)
thenw = [ f(§)dé+ G (n).

The general solution of equation % = 0 has the form:

w(&n)=F(E)+G(n).

Where F, G € C?(R) are both arbitrary functions, the fact that

w(&m) =u(@(&mn),y(&mn)

implies

u(z,t) =F(x+ct)+G(z—ct)

2.4 Cauchy’s problem and d’Alembert’s formula|5]

The Cauchy problem for the one-dimensional homogeneous wave equation is given by

2 2
gu— 204 =0, —oco<z<400,t>0

u(z,0) = f(z), w(zr,0)=g(z), —oo<zx< 400

Theorem 11 The solution to the Cauchy problem is given by the following formula (called
the D’Alembert formula)

Fla+at) + flo—cb)] + %} / T (s)ds (2.2)

r—ct

N —

u(z,t) =

18
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Proof. we have the general solution of the wave equation is
u(x,t) = F(x +ct) + G(x — ct)
therefore at ¢t = 0, we obtain
u(z,0) = F(x) + G(z) = f(x).
u(x,0) = cF'(x) — cG'(x) = g(z).
therefore

u(@,0) = Flz)+G2) = f(a).

/ / 1
w(e.0) = Fr) - G)= Sols).
integration of (2.4) in [0, z] we obtain
1 x
F(z) — G(x) = E/ g(s)ds+C
0

where C' = F (0) — G (0)
(2.3) + (2.5) F(z) =
(2.3) = (2.5) G(z) =
If we substitute these expressions for F' and G into the general solution
u(z,t) = Fx +ct) + Gz — ct)

we obtain the following formula

1 x+ct 1 1 xr—ct
wat) = 3f@ et [ gt grla—a) =g [ als)as
where
1 r—ct 1 0
5 |, g(s)ds = +os x_ctg(s)ds

19
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therefore

1 1 x+ct

u(x,t) = 5 [flx+ct)+ flx —ct)]| + — 5 / g(s)ds. (2.8)
r—ct
|
Example 12 solve:
U = 4uxx
u(z,0) = —x ui(z,0) =0

here =4 ¢=2  f(z)=-x g(x) =0

the general solution

o2t
u(z,t) = % [f(x+2t)+ f(x—2t)] + i /2t g(s)ds.
u(z,t) = % [—(z+2t) — (x —2t)]+0
1
= 5[—x—2t—x+2t]
= £ [-2]
u(z,t) = —x

2.5 The non-homogeneous Cauchy problem/[5]

Let’s consider the following Cauchy problem

2 2
9% — A0y =F(x,t), —oo<z<+00,t>0

uw(z,0) = f(z), w(x,0)=g(x), —oo<z<+00,t>0

(2.9)

Theorem 13 The problem (2.9)has a unique solution u, which is given by the formula

z+-ct E=x+c(t—T)
w(z,t) = = [f(z+ct) + f(x — ct)] —i—%/x ds+—/ / F(&, 1)dédr

—ct xct‘r

N =
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Proof. The equation is in the form
A2 B2=(A—B)(A+B)
The equation (2.9) can be written as:
Pu 0% 0 0 0 0
—_—— —_— —_— — — —_— pu F
FERY (at Cax) (at * Cax) u=Flz.1)

To simplify, let

so we obtain the problem

we obtain the following two transport equations

vy + v, = F(x,t)
0(z,0) = glx) — f(x)

up — cuy = v(z,t)

u(z,0) = f(x)

v(z,t) =gz —ct) —cf' (v —ct) + /0 F(x —ct+cr,7)dr

u(z,t) = f(x+ct)+/tv(a:+ct—c7',r)d7
0

¢ r+ct—cr—cr)—cf(x +ct—cr —cT
- f(x+ct)+/ g . ) 7 ) dr
0 + Jo Flx +ct —cr +er,7)dr

t t
—l—/ / F(x + ¢t —2¢T + cr, 7)drdr (2.10)
0 Jo

we have

t
/ g(x + ct — 2er)dr
0
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we assume
s = x4+ct—2cr = ds=—2cdr
-1
dr = —ds
2c
T — 0 s=x+ct
T — s=x—ct
1 x+ct
= / x+ct —2er)dT = g(s)ds
20 x—ct
we have also
t 1 x+ct
/ f(x+ct—2cr)dr = — f'(s)ds
0 26 r—ct
1
= o+ dt) - fz )

we take

t t
I:/ / F(x + ¢t — 2¢T + cr, 7)dTdT
0 Jo

suppose that

¢ = s+er=x+ct—2cr+cr

d¢ =

x+c(t—T)
I = // F(&, 1)d&dr
0 c(t—T)

z+-ct E=x+c(t—T)
[f(x+ct)—i—f(a:—ct)]+%/$+ ds+—/To/ U e e

—ct acctT

substitute in (2.10) we find

N | =

u(z,t) =
u

Example 14 consider the following Cauchy problem

2 2 _

%—9(‘32—;:6‘”—63” —oco <z < +4oo,t>0
u(z,0) == —oo <z < 400
u(z,0) =sinzx —o00 <z < 400
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from D’Alembert formula we have

z+ct E:z:ctT
[f(l‘—i—Ct)—I—f(l‘—Ct)]—i—%/er ds—l——/T 0/ i ,T)dédT

—ct .Z’CtT

N | =

u(z,t) =

SO
x+3t

[f(x+3t)+ f(z —3t)] + é / sin(s)ds

—3t
E=x—3(t—7)

/ / —e %) dédr
E=x—3(t—7)

2 2
u(z,t) =z + § sin x sin 3t — 9 sinh x + 9 sinh x cosh 3¢

u(z,t) =

DN | —

2.6 Wave equations in a bounded domain4]

Now we consider the 1D wave equations posed on the space domain [0, 1]:
0*u 2 0*u
— — =0, t>0 €10,1 2.11
atQ axQ Y T ] ? [ ( )

with initial conditions

u(z,0) = f(x), E(x,O):g(x), xr €]0,1] (2.12)
for example, the homogeneous DIRICHLET boundary conditions

u(0,t) =u(l,t)=0, t>0 (2.13)

2.6.1 Separation of variables and FOURIER series

The separation of variables consists in finding solutions to (2.11)(2.12) (2.13) that take the
form

u(x,t)=T ()X (), t>0, =z€][0,1]
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By formally injecting this formula into the wave equations (2.11), we then obtain
T" (t) X (v) = AT (t) X" (2)

necessarily, then we have

X"(x)=XX(x), x€][0,1]
T"(t) = AT (t), t>0

where )\ is a real so far undetermined.

The solutions of the first equation take the form
u(z) = aeV " 4 eV
The DIRICHLET conditions reported on u then impose the conditions
u(0)=u(l)=0

which requires having

£ and VA = VA

a = —

Therefore, it appears that no solution can be found if A < 0 and that the only suitable values
for A > 0 are the values for which v\ € inZ.
either again

A=—(nm)® for neN

Then the solution is a multiple of
X (z) = sin (n7x)
o which corresponds a time factor oscillating of the form
T (t) = ay cos (nmet) + by, sin (nwet)

Any finite combination of these functions is reciprocally a solution of (2.11) (2.13).
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More generally, if the initial conditions f and g admit FOURIER series expansions of the

form

f(x) = Z a, sin (nmz)

neN

g(z) = Z (nmc) by, sin (nrzx) .

neN
then the solution to the DIRICHLET problem is given by :

u(z,t) = Z (ay, cos (nmct) + by, sin (nmet)) sin (nmx) (2.14)

neN
provided that this series converges and that we can derive two variables under the sum sign
with respect to each of the variables.
Which is the case if f and ¢ are sufficiently regular.
A sufficient condition for the series (2.14) to be a solution of class C?([0,1] x RT) is for

example to have f € C*([0,1]), g € C3([0,1]) and the compatibility conditions
FO) =f1)=f"(0)=f"(1)=9g(0)=9g(1)=0

Example 15 [8] We consider a rope of length L maintained at each end. The rope is pinched
and released at t = 0 in such a way that its initial speed is zero. The place x = a where we
clamp the rope to a large influence on the harmonics present (and consequently on the sound).
It is considered that at the initial instant, the position of the string is as follows (the string is
pinched in the middle over a height h and has a triangular shape represented by the function
f(x)) .

The laws of physics lead us to solve the following partial differential equation where y(x,t)
is the unknown function (position of the string at each point and at each instant) and v is the
propagation velocity in m/s which depends on the physical characteristics of the string.
1%y _ 0%
v2 Ot?2 Ox?

Field of Study () : 0<xz <L

Equation to be solved (E)
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. y(0;1) =0
Border conditions (F) (rope fized at the ends)

r;t=0) = f(x) (initial position of the rope
Initial conditions (I) : v ) )=F@) ( P / P
y

o (w3t = 0) = 0 (zero initial speed)
The function f(x) is written :

/(@) %x for 0<z<L/2
T) =
2(L—xz) for LI2<z<L

We are looking for a solution of the form (we separate the variables x andt) :

y(z,t) = X (2)T(t)
If we replace this expression in equation (E), we obtain :

1
_2XTII — X/IT
(%

We divide by the product XT

1 T// X//
T = -\ ()X is a constant)
v

Again, the variables are separable because they are on either side of the equality.

We are then led to solve the following problems :

¢ [ eigenvalue problem (Sturm-Liouwille) on the variable x (because the homogeneous bound-
ary conditions are found on this variable) :

X" () +AX (z)=0
X(0)= X (L)=0

where it is necessary to search for all A\, eigenvalues and eigenfunctions X, (z) .

¢ [ differential equation of the 1st order on the variable t :

T" (t) + A\0*T (t) =0
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a) Solving the eigenvalue problem:

The eigenvalues and eigenfunctions are as follows :
2
M:(%s withn =1,2.3, .00

X, (z) = Asm(TZT)

b) Solving the differential equation on the variable t:

nmwu\ 2

T (t) + (T) T(t)=0
The general solution of this differential equation is written :
T (t) = C,, cos (n_zvo + D, sin <?t>
where C,, and D,, are two arbitrary constants.
c) General solution of the PDE:

The general solution of the partial differential equation is the superposition of the set of

solutions (we must consider all the eigenvalues) :

=3 X (@) T (1)

By associating the coefficients A,C,, and B, D,, with each other, we obtain the general solution

of the PDEFE :

=3 fanes (270) i (7720) i (F2)

n=1
d) Special solution :

The general solution must verify the initial conditions :

g (it =0) = f(z) and 2 (@t =0)=0

ot
with
2y for 0<a<L/2
fa)=q . "
Z(L—z) for L/2<xz<L
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Substituting the two initial conditions into the general solution, we obtain :

>\ B,L
0= Z sin <n%3:> which imposes B,, = 0

It therefore remains to calculate the coefficients A, by decomposing f(x) on the basis of the

eigenfunctions :

A, = %/OLf (x)sin (%x) dx

Replacing f(x) with its expression, we obtain:

9 [L/29p 2 (% 2h
A, = E/o f:csin (%x) dx+Z/L/gf<L_x) sin (%x) dx

The development of calculations gives us :

A, = &2 sin <n77r>

(n)

The position of the string as a function of x and time is then given by the following function :

y(x,t) = Z Sh 5 sin <n77r> Cos <$ ) sin (%x)
(

The variations of the position of the rope as a function of x and t are given in the following

figure (for h = 5mm, L = 0.5m and v = 30m/s).
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-

02 : e 006

posistion x {m) W

x 10

Evolution of the height of the string as a function of t and x.

2.7 Higher-dimensional wave equation|9]
In this section, let’s consider the wave equation in dimension n > 2,

Uy = Au; reR"t>0
with initial conditions

u(x,0) = f(x), ug (x,0) =g (x); = eR"

Using spherical averaging, we will transform the previous equation given in dimension

n > 2 into an equation in dimension 1.

Let’s start with the following definition.
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Definition 16 For a function h continuous on R"™, we define its spherical mean on the sphere

of radius r and center x by

1 1
My (z,r) = — /83(0’1) h(z+rz)dS(z) = — /|Z_1 h(z+rz)dS (z)

Wn Wn

where w, s the area of the unit sphere
0B(0,1)=8""'={2zeR"| 2z |=1}
The function My, verifies some important properties grouped in the following proposition

Proposition 17 For a given function h = h (z) € C* (R™) , k > 2 the functionv : R"xR — R
defined by v (z,7) = M, (z,7) is of class C* on R™ x R.

Moreover, it verifies the following properties:
lv(z,0) = h(x) for all z € R™.

2.0 (x,—r)=v(x,r) for all z € R",r € R.
3.2y (z,0) =0 for all z € R".

4-5_:27) (x,r) + nT_lg_:Z,U ($7T) = Axl) (‘I’T) on Rn X R*

2.8 Kirchhoff formula:

Either the problem

Uy = C2Au; r€eR"t>0
u(z,0) = f(z), u (z,0) =g(z); z€R"

(Pn)

We will solve the problem (p,,) for n = 3, in other words we will determine the form of the
solution to the problem(ps).

Using spherical averages, we prove the following theorem.
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Theorem 18 Let f € C? (R?) and g € C* (R®) . Then the problem (p3) has a unique solution
u(z,t), defined by Kirchhoff’s formula

u(xz,t) = tG(x,ct)+ % (tF (z,ct))

_ ;/itl:t[tg<y>+f<y>+Vf<y><y—x>1ds<y>

4 c2t?

where F' (z,r) and G (x,r) are the spherical means of f and g respectively.

Proof. According to Darboux’s formula, since G (z,7) is the spherical mean, then for n = 3
we have
2

0 20 W
wG(m,r)—i—;EG(:z:,r):AxG(x,r), (z,7) € R" x R*.

Multiply both members by r we get
G (,7) + 2G, (2,7) = AL (rG (z,7))

Write this equation in the form

82
92 (rG (z,r)) = Ay (rG (2, 7))

and put

G (2,1) = G (, ct) = ﬁ/l_lg(x et2)dS ().

then the function G satisfies the wave equation

Gy (x,t) = AAG (z,t);2 € R® ¢ > 0.
with the initial conditions

é(m,O) =0, ét(x,O) =g(r):z R

Repeating the same calculations for the spherical mean F' (z,r) of f (z) and posing

t
F(z,t) =tF (x,ct) = in "

f(x+ctz)dS ()
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we can easily check that
Fu(2,t) = AAF (2,1) ;2 € R3, 1 > 0.

As an exercise, we show that since F is of class C® on R? x 10, +o00land satisfies the wave
equation, then the function Z;t also satisfies this equation.

Furthermore, we have

F(z,t) = %F (z,1) = % (tF (z,ct)) = F (z,ct) + t%F (z, ct)
- 1 t 0
Fy(z,t) = yym - f(x+ctz)dS (z) + yye ( " f(x+ctz)dS (z))
- % - f(z+ctz)dS (z) + %c (/Z|:1 Vf(x+ctz)zdS (z))
that means
215 (x t):i f(.’E—l-CtZ)dS(Z)—i-i/ [f (x4 ctz) + ctV f(x + ctz) 2] dS (2)
ot ! ’ 47 |z|=1 47 |z|=1
we have
- _ 1 _f=)
=g [ r@ase=50=se,
and
_ 2 _
gFt (x,0) = a—F (z,0) = AF (2,0) =0

ot o
We have thus obtained two solutions to the equation in the problem(ps).

The first is G (x,t) satisfying
G (2,0) = 0,G, (2,0) = g (2); = € R®

and the second solution is F (x,t) , with

Fi(2,0)=f(z),  Fyl(x,0) :%Ft(x,O):o; z € R?,

Now, since the problem (p3) is linear, its solution can be written as

u(x,t) = F (x,t) + G (z,1).
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and note that for all z € R3

w(z,0) = F, (z,0) + G (2,0) = f (x)

u (x,0) = Fyy (2,0) + ét (z,0) = g (x)

Finally, let’s express u (x,t) as a function of f (x) and g (z). We have

u(x,t) = Fy (x,t) + G (x,t)

By replacing each term by its expression we obtain

t

u(x,t) = $/|z|:1 [f(a:—i—ctz)+ctVf(x—|—ctz)z]dS(z)+E

/|_1 g(z+ctz)dS (2)

let y =z + ctz, so dS (y) = *t?dS (z) and |2| =1 = |y — z| = ct.
With this change

1
A7 c2t?

t

v = pap [ WO NS0 e [ s e-nas).

and we arrive at Kirchhofl’s formula

1

u(z,t) = A2t

/ lzt[tg(y)+f(y)+Vf(y)(y_x)]d5(y)_

2.9 Energy and Unicity

Definition 19 let u be a solution of % —023273 = 0 in the interval I of R (x € I).The energy

of u at time t is the quantity

B(t) = %/j [(%)Z& (g—Zﬂ de.
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Proposition 20 Let I = [a,b] then %2 = ¢ [3% (b,t) 2% (b, t) — 2% (a,t) 2 (a,1)]
fact dE _/ Ou 0*u ny ,Ou 0u P
mjact “ =] \aroe " rown ) ¥

b8_u 0*u i 8u6u - b Ou H%u
9z 0tox “or ot ¢ ot onr”

where ¢

2 . .
as %Tg —c 3772‘ = 0 only the term in square brackets remains.

We can deduce the following theorem

Theorem 21 let u; and us be two solutions to the following problem:

%—02322 =0 Vz € [a,b
(E) u(x,0) = f(x), a(.r,()) =g(x) Vz€la,b]
u(a,t) =a(t), u(bt)=p(t), Vt>0

then uy (x,t) = ug (x,t)  Va € la,b], V>0

Proof. u; — uy is a solution of (E), uy (a,t) —us (a,t) = a(t) —a(t) =0 Vt >0 so

d

7 (up —ug) (a,t) =0 Vt
in the same way

d

and according to the previous proposition % = 0: the energy associated with the function

U1 — Us, is therefore a constant

b 2 2
calculate E (0) = %/ l% — %] (z,0) + ¢ [% — %] (z,0) dx;

8u1 . 3u2 .
where o (x,0) = g (z) and v (z,0)=g(x), Vzx

in addition w; (z,0) = f () = uz (x,0), Vx so E£(0) =0.
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b 2 2
thenO:2E(t):%/ {%(x,w—%(x,t)] + l%@,t)—%(x,t) dz,

%4 and % are continuous, this constant is zero due to the initial conditions.

Since the functions 5

This method can be generalised to other situations and other equations. Thus replacing
% = Au by 3273 — giyfj + %We obtain in dimension 3 that for a solution of %273 —c2Au =0 on
a closed domain €2 of boundary 2 and for a boundary condition u (M) = f (M) independent
of t that F (t) is constant, this allows us to conclude uniqueness.

The previous method also establishes the uniqueness of the problem where (E) is replaced

?u 2 &*u

S 5% = h(x,t), in fact if and u; and uy are two

by the equation with second member
solutions u (z,t) — ug (x,t) is the solution to the problem without a second member.

the method can also be used, for example, for the telegrapher’s equation. This can be
transformed into:

O = b= — k*u+cg (z,t)
x

The energy of a solution u is defined by:

1 ° ou\” ou\> L,
§/a [CL(E) +b(%> +I€U

and we can reason as before to establish the uniqueness of solutions to a problem whose initial

(x,t)dx

and boundary conditions are determined. m
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Chapter 3

Numerical solution of the wave

equation

In this chapter, we have numerically studied the wave equation in dimension one in a ho-
mogeneous medium. In the homogeneous case, we apply a finite difference numerical scheme
to a vibrating string problem. We have studied the consistency, stability and convergence

properties of this method.

3.1 The finite difference method|10] [11] [12][13] [14]

3.1.1 Principle of the method

The finite difference method consists of approximating the derivatives of the equations of
physics by means of Taylor’s developments and can be deduced directly from the definition of
the derivative. It is due to the work of several 18th century mathematicians (Euler, Taylor,
Leibniz, etc.).

Advantages :

e Simple to write and low cost of calculation.
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e It is widely used and easy to access.

3.1.2 Definitions and properties

Definition 22 The finite difference method is a common technique for finding approximate
solutions to partial differential equations. It involves solving a system of relations (numerical
diagram) linking the values of the unknown functions at certain points sufficiently close to
each other. This method appears to be the simplest to implement because it involves two
stages: firstly, discretisation by finite differences of the derivation operators, and secondly,
convergence of the numerical scheme thus obtained convergence of the resulting numerical

scheme as the distance between the points decreases.

Mesh

Since we mentioned the word mesh in the previous paragraph and we’ll need it all the time,
let’s define it here. For an application defined on a segment of R, we will generally add the
two extremities of the segment; for a higher-dimensional mesh, we may have to choose points

on the contour of the definition domain.
The mesh pitch is the distance between two successive adjacent mesh points.
*Let’s consider a one-dimensional case where we want to determine a quantity u(x)

on the interval [0, 1]. The search for a discretized solution of the quantity u leads to the

creation of a mesh of the interval of definition.

We consider a mesh (or calculation grid) made up of N + 1 points x; for i = 0,...,N

)
regularly spaced with a step Ax. The points z; = iAz are called the nodes of the mesh.
The initial continuous problem of determining a quantity on an infinite-dimensional set thus

reduces to the search for N discrete values of this quantity at the various nodes of the mesh.
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Truncation error

The quantity obtained by replacing the derivatives by the divided differences is known as the
truncation error. The calculation of truncation errors is usually based on Taylor expansions.

The truncation error is an error that indicates how the equation is approximated by the
diagram. It is not an error between the exact solution and the approximate solution (con-
vergence error), but it is an error that quantifies to what order the exact solution verifies the

scheme.

Schematic order

A discretization scheme with NV discretization points is said to be of order p if there exists

C € R, depending only on the exact solution, such that the consistency error satisfies :

max (R;) < ChP

i=1,....N

Where R; is the truncation error and h is the mesh pitch (i.e. the maximum of
Tit1 — iﬁz)
Digital schematic consistency

A finite difference scheme is consistent if :

Jnax (Ri) — 0

When h — 0, where N is the number of discretization points.

Numerical schema stability

By definition, a numerical scheme is stable if the errors (rounding, truncation, etc.) cannot
increase during the numerical procedure from one time step to the next:

A scheme can be :
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- Unconditionally unstable: Whatever At and Az the errors increase with each itera-
tion.This causes completely wrong results.

-Unconditionally stable: Whatever At, Ax the errors caused by the numerical scheme
do not explode over iterations.

- Conditionally stable: We must set a condition on At and Az so that the solution does
not explode, for example the Courant-Friedrichs-Lewy condition, which we will define in the

next paragraph.

Interpretation of the Courant-Friedrichs-Lewy condition
1928 (CFL)

This is a necessary and sufficient condition for the stability of the scheme, showing that the
stability of a scheme cannot necessarily be ensured no matter how At and Az tend to zero. It
is a very constraining condition from a practical point of view, since if we wish to have good
accuracy in space, it is necessary to choose Az small which imposes a choice of At significantly

smaller.

Convergence

In general:(Consistency + Stability) = Convergence.

Theorem 23 [7|(Lax) In a well-posed problem, with a consistent numerical scheme, stability

s a necessary and sufficient condition for convergence.

3.1.3 Finite differences in one dimension

All numerical methods presuppose discretisations of the geometrical domain in order to move
from a continuous problem with an infinite number of unknowns to a discrete problem with a

finite number of unknowns.
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Domain discretisation

In this case, we discretise the continuous interval [a,b] and approach the derivatives at the
discretisation points using difference operators. More precisely, we give ourselves an integer

N from which we define the discretisation step
h:AJT:ZL'i—JTi_l =Tijr1 — X4

We introduce the N +1 points x; = ¢h for ¢ = 0, ..., N which then form a regular subdivision
of the interval|a, b] (uniformly).
The continuous problem is thus replaced by the problem of finding approximate values ui

of the solutions u(x;) at the points z; of the discretisation.

Discretization by F.D in 1D

3.1.4 Diagram construction
the first derivative

let u be a function of one variable of class C?
If h tends towards 0, using the Taylor limit expansion of the function u up to order 2 at

the point (z; + h),(x; — h) we obtain :

i1 = u(x; + Az) = u; + Ax <%) i+ 0 (Az?) (3.1)
ou . 9
w1 =u(x; — Azr) = u; — Az o i+ 0 (Az?) (3.2)
T
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indicial case D1 :

The diagram with the 1st order F.D. ‘forward’ or ‘off-centre forward’ or ‘off-centre right’:

ou . U1 — Uy
<(9_a:> = T O (Ax) (3.3)

The diagram with the 1st order RFs ‘backwards’ or ‘off-centre left’

ou\ . w—ui
notation u; = u (x;) and (g_Z):c:x- = (%) i =u

Centred scheme :

First carry out a Taylor expansion in the vicinity of z; to order 3.

ou\ . Ax? (0% . 3
1 =u(r; — Az) = u; — A @ ,+A_1*2 @ '—|—O(A3) (3.6)
Ui = u (x; ) =u; x o 1 5 \ 552 1 x .
Subtracting these two relationships gives :
ou . 3
Ujr1 — Uj—1 = 2Ax % 7+ O (AQ? ) (37)

This gives us the second-order ‘centred’ scheme for approximating the first derivative of u

ou\ . Uipr — Uiy 9
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» X

S

xX-Ax xX+Ax

A

Approximation of F.D

Remark 24 To obtain higher orders, it is necessary to use several meighbouring nodes of

x;. The number of points required to write the diagram is called a stencil.

The second derivative

First performing a Taylor expansion in the vicinity of xi to order 4.Adding the two equalities

gives :

ou\ . Ax? (0*u) . Az® [(Pu) A

Uip1 = u (x; + Az) = u; + Ax (%>z+ 5 (8x2)z+ 5 <8x3>2+O(Ax ) (3.9)
ou\ . Az? (9*u) . Azxd [(Pu) A

w1 = u(r; — Az) = u; — Az (%)z%— 5 (0m2>l_ 5 <8x3)Z+O(Ax ) (3.10)

Adding the two equalities gives :
Ui — U1 — 2u; = Ax? @ i+ 0 (Az?) (3.11)
1+1 i—1 1 8%’2 .

This leads to the so-called ‘centred’ second-order scheme for approximating the second

derivative of u :

(5 ) i= = o o) (312)
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3.1.5 Finite differences in dimension two
Domain discretization

Uniform discretization in time and space is used to reduce to a finite-dimensional system of
equations.to a finite-dimensional system of equations. It is desirable for the validity of the
calculation that the approximate solution obtained by solving this system. Discretization
therefore involves giving a set of points t",n = 0,..., M in the interval [0,T], and a set of
points x;,7 = 0, ..., N in the interval [a, b] .

For simplicity, we consider a constant step in time and space. Let h = b’Ta = Aux,be the
discretization step in space, and k = % = At the time step. We pose t" = nk forn =0,..., M
and z; = ih for i =0, ..., N.

In the case of D2 u (x,t) is decomposed into N x P pairs of points (x;,t") form a space-time

grid are called grid nodes.

ul is the discrete value of the quantity u (x,t) at the nodes (z;,t").

3.2 Solving the wave equation by F.D.[14]

3.2.1 Problem continues

In an unbounded domain, this problem consists of searching for :

u: R X R — R,checked:

Pu(r,t)— A2 (rt)=f a€RE>0

u(x,0) =wug (z) initial coditions

The parameter ¢ (wave speed) is assumed to be positive.
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If the domain is bounded in time and space :

Ou (2,t) — ALY (v,t) = f x€[0,L] t€[0,T]
u(x,0) = ug (z) and %% (z,0) = o° initial coditions,

u(0,t) =u(L,t) =0 boundary conditions.

3.2.2 First approach: discrete problem
Discretization

A first method for solving this evolution problem numerically is to discretize the second-order
equation by finite differences. For simplification, let’s consider the one-dimensional case of a
string of length L. We choose a regular discretization of [0, L] into intervals of length Az such
that L = MAx and a discretization of the time interval [0,77] into time steps of length At
such that "= NAt. Let x; be the point ¢Ax and t" the time nAt. Let u} be the value of the

approximate solution at point x; and time t".

The diagram is explicit in terms of time and centred in space.

Taking f = 0 then :

n+1 n n—1
u; " —2ultu,
At2

u = u® (z;) and u} + Atv? such that i = 1,..., M — 1 initial conditions (3.13)

2 Uity —2u Uity

=c Ax?

ul =uy; =0 Vn=1,..,N homogeneous Dirichlet boundary conditions

This scheme is explicit because it gives an explicit formula for calculating the solution at
time t"*! as a function of the values of the solution at the previous time. There is no equation
to solve to obtain the value at the new time ¢t"*!.

It’s an explicit diagram, so :

At AL\?
u?“=2<1— (55 >u+(A—) (e + ) —
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Chapter 3. Numerical solution of the wave equation

-Truncation error:

we have EI' = (E™ + E;) such that E; is the space error and E™ is the time error
| B} |< ¢ (AP + Az?)

Proof. By Taylor’s limited expansion for the exact solution u, assumed to be sufficiently

regular, we find with respect to the time variable (x; being fixed) we obtain

AtQ 2
u (@, t") = w(z;, ") + At@ (x4, t") O

En = (;,1")
At3 83 At4 84 + + n yn+l
+?at3( Z’t)+ﬂm<u€ )ag G[tvt }

ou At? 5%

o gn—1 — AN el qn = 7" o qn

u (z,t" ") = u(z,t") Atat (25, t") + T (2, 1")
At PBu o A e
T )+ g ) £ e e

n+1 2U 4 Un 1 82'& At2 8411, -
— ar e Wt g (wlE ) e (@) (3

In the same way for space, we get :

Az? = ga @)+ gy gt En ) u ((61)

Since u is a solution, the first terms disappear, leaving a truncation error

uly —2ul +ul,  OPu Az? u

At? A At? A
|E”|—\E”+E|—\—M+iM'\_ M|+ er'|

| EP |< ¢ (AP + Az?)
and ¢ = & max (M, M’) such that
Otu _
w (U (xia§+) y U (xlaf )) |

4

M =sup | ou (&, #7) u ((§-.17)) |

M = sup |
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Chapter 3. Numerical solution of the wave equation

- Consistency:

The scheme is consistent to order 2 in time and space, and consistent for the truncation
error tends to 0 when At and Az tend to 0 .

- Order:

This explicit scheme is of order 2 in time and space such that :

J%u umt — oy !

gz (Tl = T xp HO(8r)
02 uly — 2ul +ul

_(9;; (x;,t") = ol AxZQ =140 (A:L‘2)

- Stability :
In the case of numerical schemes applied to hyperbolic problems, we will choose, as a
stability condition, to impose on the vector of approximate solutions to be preserved or to

decrease in norm over time.

At At
it =2 (1 B (cA_x) ) up + <CA_x) (wisy +uiy) —uf ™

To get the convex combination :
cAt\? cAt\? cAt\?
2(1—(— — — ] -1=1
() (5) ()

At 2 At
0<(C—> <1 = 0< 20
Az

and

Az
2
O<2(1—(%>><1
2
2(1—(%>>>0

and

for inequality :

is verified for (%)2 < 1.

47



Chapter 3. Numerical solution of the wave equation

We are left with the second inequality, i.e. :

o (1o (AN oy At
Ax Ax
Therefore: the CFL condition for stability is :

cAt <1
Ax

- Convergence :

According to Lax’s theorem, we obtain convergence ( consistency and stability imply

convergence).

Conclusion 25 The phenomena of wave propagation are encountered in many applications. There
are essentially three types of waves : acoustic waves, that is to say waves that propagate in
a fluid, elastic waves, that is to say waves that propagate in a solid, electromagnetic waves.
In this memory, and from the properties of the wave equations, we have determined the wave
equations in dimension greater than two in particular in dimension one. This equation helped

us in the numerical methods used to solve mathematical problems.
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