
 الجمهورية الجزائرية الديمقراطية الشعبية 

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA 
 

MINISTRY OF HIGHER EDUCATION AND 

SCIENTIFIC RESEARCH 

UNIVERSITY OF 8 MAI 1945 GUELMA 

Faculty of Mathematics, Computer 

science, and Material Sciences 

Department of Computer Science 

 وزارة التعليـم العالــي

 و البحث العلمـي

 قالمـــة   1945  مـــاي8 جامعـة 

 كليــة الرياضيـات، الإعـلام الآلـي 

 و علــوم المـادة 

 قسم: الإعلام الآلي 

 
Lecture notes 

 

Algorithmics and Data 
Strutures 1 

 

Intended for first-year undergraduate students  in Mathematics 

 

Established by : 

 

Dr. Abderrahmane KEFALI 

kefali.abderrahmane@univ-guelma.dz 

kefali.inf@gmail.com 

 

 

2023/2024 



1st Year Mathematics – University of Guelma i  Dr. Abderrahmane Kefali 

Syllabus  

(Course Plan) 
 

 

Course Unit: UEF11 (Fundamental)  

Subject: Algorithmics and Data Structures 1  

Field/Branch: Mathematics and Computer Sciences 

Semester: 1, Academic Year: 2023/2024  

Credits: 6,  Coefficient: 4  

Total Weekly Hours: 07H30 

• Lectures (03H  per week) 

• Tutorials (01H30  per week) 

• Practical Work (03H  per week) 

Language of Instruction: English 

Course Instructor: Dr. Abderrahmane KEFALI, Title: MCA 

Office:, Teachers Rooms, Department of Computer Science (E8) 

Email: kefali.abderrahmane@univ-guelma.dz 

Course Objectives: 

To present the concepts of algorithms and data structures. 

Recommended Prerequisite Knowledge: 

Basic knowledge of computer science and mathematics. 

Bureau : E8. Salle des Enseignants département d’informatique 

Course Content: 

Chapter 1: Introduction 

• Brief history of computer science. 

• Introduction to algorithms. 

Chapter 2: Simple Sequential Algorithm 

• Notion of language and algorithmic language. 

• Parts of an algorithm. 

• Data: variables and constants. 

• Data types. 

• Basic operations. 

• Basic instructions. 

• Construction of a simple algorithm. 

• Representation of an algorithm using a flowchart. 

• Translation into the C language. 



1st Year Mathematics – University of Guelma ii  Dr. Abderrahmane Kefali 

Chapter 3: Conditional Structures (in algorithmic language and in C) 

• Introduction. 

• Simple conditional structure. 

• Compound conditional structure. 

• Multiple choice conditional structure. 

• Branching. 

Chapter 4: Loops (in algorithmic language and in C) 

• The While loop. 

• The Repeat loop. 

• The For loop. 

• Nested loops. 

Chapter 5: Arrays and Strings 

• Introduction. 

• The array type. 

• Multidimensional arrays. 

• Strings. 

Chapter 6: Custom Types 

• Introduction. 

• Enumerations. 

• Records (Structures). 

• Other type definition possibilities.  
 

Assessment Method: Knowledge Assessment & Weightings 

Assessment Method  Weight (%) 

Final examen 60% 

Tutorial works 20% 

Practical works 20% 

Total 100% 

Bibliography: 

• Thomas H. Cormen, Algorithmes Notions de base Collection : Sciences Sup, Dunod, 2013. 

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest Algorithmique - 3ème édition - 

Cours avec 957 exercices et 158 problèmes Broché, Dunod, 2010. 

• Rémy Malgouyres, Rita Zrour et Fabien Feschet. Initiation à l'algorithmique et à la 

programmation en C : cours avec 129 exercices corrigés. 2ième Edition. Dunod, Paris, 

2011. ISBN : 978-2-10-055703-5. 

• Damien Berthet et Vincent Labatut. Algorithmique & programmation en langage C - vol.1 : 

Supports de cours. Licence. Algorithmique et Programmation, Istanbul, Turquie. 2014, 

pp.232. 

• Damien Berthet et Vincent Labatut. Algorithmique & programmation en langage C - vol.2 : 

Sujets de travaux pratiques. Licence. Algorithmique et Programmation, Istanbul, Turquie. 

2014, pp.258. <cel- 01176120> 

• Damien Berthet et Vincent Labatut. Algorithmique & programmation en langage C - vol.3 : 

Corrigés de travaux pratiques. Licence. Algorithmique et Programmation, Istanbul, Turquie. 

2014, pp.217. <cel-01176121> 

• Claude Delannoy. Apprendre à programmer en Turbo C. Chihab- EYROLLES, 1994. 



1st Year Mathematics – University of Guelma iii  Dr. Abderrahmane Kefali 

Preface 
 

 

 

This document serves as the course and exercise material for the "Algorithmics and Data 

Structures 1" course. It is primarily intended for first-year students in the first-year 

Mathematics students in the Department of Mathematics at the Faculty of Mathematics and 

Computer Science and Material Sciences at the University of May 8, 1945, Guelma. 

Nevertheless, this handout can also be useful for any non-computer science student wishing 

to learn the fundamentals of algorithmics and programming. 

The "Algorithmics and Data Structures 1" course is scheduled in the first semester of the first 

year for Mathematics in the fundamental teaching unit UEF11. It is characterized by a 

coefficient of 4, 6 credits, and a weekly hourly volume of 7 and a half hours, divided as 

follows: 3 hours of lectures, one and a half hours of tutorials (TD), and 3 hours of practical 

work (TP). 

Algorithmics is the science whose subject of study is the algorithm. This discipline, at the 

intersection of mathematics and computer science, focuses on the creation, description, and 

analysis of algorithms. This field has particularly flourished with the construction of 

computers and the invention of programming languages. Today, algorithmics represents the 

first step for a computer scientist to enter the world of automated processing. In computer 

science, algorithms are indeed ubiquitous. They are, in fact, the backbone of computing 

because an algorithm provides the computer with a specific set of instructions. It is these 

instructions that enable the computer to perform tasks. As for data structures, they are ways 

of organizing data in memory to facilitate processing. Thus, these two concepts (algorithms 

and data structures) are complementary. The first pertains to the dynamic aspect of task 

automation, and the second to the static aspect. The study of algorithmics and data 

structures is essential for learning computer science. However, beyond computer science, 

algorithmic thinking is crucial in various fields. It involves the ability to define clear steps to 

solve a problem. 

The main objective of this course is to gradually guide students in assimilating and using the 

concepts and techniques necessary for constructing algorithms to solve encountered 

problems. This involves developing analytical skills in students and teaching them algorithmic 

reasoning so that they can understand and analyze the problem at hand, describe it in terms 

of algorithms (in pseudo-code) and programs in the C language, choose the appropriate data 

structures, and effectively address the inherent challenges of programming. 

The content of this course material is in accordance with the latest curriculum framework 

established for the Common Core in Mathematics, Applied Mathematics, and Computer 

Science, as proposed by the national pedagogical committee of the MI domain since the 

academic year 2018 - 2019. 

However, I have endeavored to present the content of this course material in a clear and 

explicit manner, taking into account a simple pedagogical approach supported by examples 



1st Year Mathematics – University of Guelma iv  Dr. Abderrahmane Kefali 

and solved exercises. This is done to ensure maximum clarity and to make the necessary 

knowledge and concepts related to algorithmics and data structures more accessible to 

novice students. As such, no prerequisites are required to follow this document. 

In order to present its content effectively and to adhere as closely as possible to the 

compliance framework, this handout is structured into six chapters, each concluding with a 

set of solved exercises. 

The first chapter, titled "Introduction," serves as an introduction to computer science and 

algorithmics. It presents the definitions of basic computer science concepts, introduces the 

notion of an algorithm through concrete examples, and outlines the various steps in problem-

solving in computer science. 

The second chapter, "Simple Sequential Algorithm," describes the fundamentals of a simple 

algorithm written in pseudocode. It explains the general structure of an algorithm in 

pseudocode and introduces its basic elements (variables, expressions, instructions, etc.). 

The chapter also covers the rules for constructing a flowchart and a C language program 

based on an algorithm. 

The third chapter introduces conditional structures. These are special instructions that allow 

for the handling of complex problems involving multiple cases, where each case requires 

separate processing. Various types of conditional structures are presented in this chapter, 

along with explanations of their use. 

The fourth chapter, titled "Loops," introduces repetitive structures or loops. These are control 

structures that allow the execution of a sequence of instructions to be repeated a finite 

number of times, which may be known in advance or not. The three main types of loops are 

described in this chapter, including their use and the differences between them. 

The fifth chapter introduces arrays, multidimensional arrays, and strings, which are 

composite types that allow multiple values of the same type to be grouped into a single 

variable. For each of these types, the details of declaration and manipulation are described in 

both algorithmics and the C language. 

The last chapter, titled "Custom Types," addresses the possibility of defining new data types 

in algorithmics and in C language. Several custom data types are presented in this chapter, 

with a focus on record and enumeration types. Other types are briefly described. 

Finally, I hope that this modest handout proves to be a valuable addition to the educational 

resources at our university and serves as a valuable course material for our students. 

 



 

1st Year Mathematics – University of Guelma 1  Dr. Abderrahmane Kefali 

Table of  Contents 
 

 

Syllabus  (Course Plan) .......................................................................................................................... i 

Preface .................................................................................................................................................. iii 

Table of Contents ................................................................................................................................... 1 

List of Figures ........................................................................................................................................ 7 

List of Tables .......................................................................................................................................... 9 

Chapter I. Introduction ........................................................................................................................ 10 

I.1) Introduction ..................................................................................................................................................... 10 

I.2) Computer Science: Definitions and a Brief History .................................................................................. 10 

I.2.1) Definitions .............................................................................................................................................. 10 

I.2.1.1) What is Computer Science? ............................................................................................................. 10 

I.2.1.2) What is Information? ....................................................................................................................... 11 

I.2.1.3) Information Processing.................................................................................................................... 12 

I.2.2) Computer ................................................................................................................................................ 12 

I.2.2.1) Components of a Computer ........................................................................................................... 12 

I.2.2.2) Basic Computer Architecture .......................................................................................................... 14 

I.2.3) Utility of Computing ............................................................................................................................. 14 

I.2.4) A Brief History of Computer science ................................................................................................. 15 

I.3) Introduction to Algorithms ........................................................................................................................... 19 

I.3.1) Introductory Examples ......................................................................................................................... 19 

I.3.1.1) Example 1: Fax Machine User Manual ......................................................................................... 19 

I.3.1.2) Example 2: Calculating the Average of 3 Numbers with a Calculator ..................................... 19 

I.3.1.3) Example 3: Giving Directions ........................................................................................................ 20 

I.3.2) Notion of Algorithm ............................................................................................................................. 20 

I.3.2.1) What is an Algorithm?...................................................................................................................... 20 

I.3.2.2) Object of Algorithmics .................................................................................................................... 21 

I.3.2.3) Qualities of an Algorithm ................................................................................................................ 21 

I.3.3) Problem-Solving Steps .......................................................................................................................... 22 

I.3.3.1) Problem Definition and Analysis ................................................................................................... 22 

I.3.3.2) Establishment of the Corresponding Algorithm ......................................................................... 23 

I.3.3.3) Translating the Algorithm into a Computer Program ................................................................ 23 

I.3.3.4) Compiling the Program.................................................................................................................... 23 

I.3.3.5) Program Execution and Testing ..................................................................................................... 23 

I.4) Exercises ........................................................................................................................................................... 23 

I.5) Solution of the exercises ................................................................................................................................ 24 

I.6) Conclusion ....................................................................................................................................................... 26 

 



 

1st Year Mathematics – University of Guelma 2  Dr. Abderrahmane Kefali 

Chapter II. Simple sequential algorithm .............................................................................................. 27 

II.1) Introduction ..................................................................................................................................................... 27 

II.2) Concept of Language and Algorithmic Language ..................................................................................... 27 

II.2.1) Language.................................................................................................................................................. 27 

II.2.2) Computer Language .............................................................................................................................. 28 

II.2.3) Machine Language ................................................................................................................................. 28 

II.2.4) Algorithmic Language ........................................................................................................................... 28 

II.2.4.1) What is an Algorithmic Language? ................................................................................................ 28 

II.2.4.2) Elements of Algorithmic Language ............................................................................................... 29 

II.2.4.3) Difference between algorithm and program ................................................................................ 29 

II.3) Parts of an algorithm ...................................................................................................................................... 29 

II.3.1) Algorithm Header .................................................................................................................................. 30 

II.3.2) The Declaration Section ....................................................................................................................... 30 

II.3.3) Algorithm Body ...................................................................................................................................... 30 

II.4) Data: Variables and Constants ...................................................................................................................... 30 

II.4.1) Variables .................................................................................................................................................. 30 

II.4.2) Constants ................................................................................................................................................. 31 

II.4.3) Notion of Identifier ............................................................................................................................... 32 

II.5) Data Types ....................................................................................................................................................... 32 

II.5.1) Elementary types .................................................................................................................................... 33 

II.5.1.1) Standard types ................................................................................................................................... 33 

II.5.1.2) Non-standard Types (ou non-prédéfinis) ..................................................................................... 34 

II.5.2) Declaration of variables and constantes ............................................................................................. 34 

II.5.2.1) Declaration of variables ................................................................................................................... 34 

II.5.2.2) Declaration of constants .................................................................................................................. 35 

II.6) Basic Operations ............................................................................................................................................. 36 

II.6.1) Operator and Operand ......................................................................................................................... 36 

II.6.1.1) Arithmetic Operators ....................................................................................................................... 36 

II.6.1.2) Logical Operators ............................................................................................................................. 36 

II.6.1.3) Comparison Operators .................................................................................................................... 36 

II.6.2) Expression............................................................................................................................................... 37 

II.6.2.1) Validity of an expression.................................................................................................................. 37 

II.6.2.2) Evaluation of an expression ............................................................................................................ 37 

II.7) Basic instructions ............................................................................................................................................ 38 

II.7.1) Assignment instruction ......................................................................................................................... 38 

II.7.2) Input/Output instructions ................................................................................................................... 39 

II.7.2.1) Reading (input) instruction .............................................................................................................. 39 

II.7.2.2) Writing (output) instruction ............................................................................................................ 40 

II.8) Building a simple algorithm ........................................................................................................................... 41 

II.9) Representation of an Algorithm Using a Flowchart ................................................................................. 42 

II.10) Translation into C language ...................................................................................................................... 43 

II.10.1) The C language: Presentation .......................................................................................................... 43 



 

1st Year Mathematics – University of Guelma 3  Dr. Abderrahmane Kefali 

II.10.2) Why the C language ? ....................................................................................................................... 44 

II.10.3) Basic Elements of the C language .................................................................................................. 44 

II.10.3.1) Structure of a C program ................................................................................................................. 44 

II.10.3.2) Declaration section ........................................................................................................................... 45 

II.10.3.3) Processing Section ............................................................................................................................ 46 

II.10.3.4) Example of a C Program ................................................................................................................. 49 

II.11) Exercises ...................................................................................................................................................... 49 

II.12) Solution of the exercises ............................................................................................................................ 50 

II.13) Conclusion ................................................................................................................................................... 52 

Chapter III. Conditional Structures ..................................................................................................... 53 

III.1) Introduction ................................................................................................................................................ 53 

III.2) Notion of Condition .................................................................................................................................. 53 

III.2.1) Simple Conditions .................................................................................................................................. 53 

III.2.2) Compound Conditions ......................................................................................................................... 54 

III.3) Simple Conditional Structures (IF Statements) ..................................................................................... 54 

III.3.1) Algorithmic Syntax ................................................................................................................................ 54 

III.3.2) Flowchart ................................................................................................................................................ 55 

III.3.3) C language Syntax .................................................................................................................................. 56 

III.4) Compound Conditional Structures (IF - ELSE statements) ............................................................... 57 

III.4.1) Algorithmic Syntax ................................................................................................................................ 57 

III.4.2) Flowchart ................................................................................................................................................ 58 

III.4.3) C language Syntax .................................................................................................................................. 58 

III.5) Nested conditional Structures .................................................................................................................. 59 

III.5.1) Algorithmic Syntax ................................................................................................................................ 59 

III.5.2) Flowchart ................................................................................................................................................ 60 

III.5.3) C language Syntax .................................................................................................................................. 60 

III.6) Multiple-choice structure (CASE statement) ......................................................................................... 61 

III.6.1) Algorithmic Syntax ................................................................................................................................ 61 

III.6.2) Flowchart ................................................................................................................................................ 62 

III.6.3) C language Syntax .................................................................................................................................. 63 

III.7) Branching statement .................................................................................................................................. 64 

III.7.1) Algorithmic Syntax ................................................................................................................................ 64 

III.7.2) C language Syntax .................................................................................................................................. 65 

III.8) Exercises ...................................................................................................................................................... 66 

III.9) Solution of the exercises ............................................................................................................................ 66 

III.10) Conclusion ................................................................................................................................................... 68 

Chapter IV. Loops ................................................................................................................................ 69 

IV.1) Introduction ................................................................................................................................................ 69 

IV.2) What is a loop ? ........................................................................................................................................... 70 

IV.2.1) Definition ................................................................................................................................................ 70 

IV.2.2) Components of a loop .......................................................................................................................... 70 

IV.3) While loop ................................................................................................................................................... 71 



 

1st Year Mathematics – University of Guelma 4  Dr. Abderrahmane Kefali 

IV.3.1) Algorithmic Syntax ................................................................................................................................ 71 

IV.3.2) Flowchart ................................................................................................................................................ 72 

IV.3.3) C language syntax ................................................................................................................................... 73 

IV.4) REPEAT loop ............................................................................................................................................ 74 

IV.4.1) Algorithmic syntax ................................................................................................................................. 74 

IV.4.2) Flowchart ................................................................................................................................................ 75 

IV.4.3) C language syntax ................................................................................................................................... 76 

IV.4.4) Difference between WHILE and REPEAT ..................................................................................... 76 

IV.5) For loop ....................................................................................................................................................... 77 

IV.5.1) Algorithmic Syntax ................................................................................................................................ 77 

IV.5.2) Flowchart ................................................................................................................................................ 79 

IV.5.3) C language Syntax .................................................................................................................................. 80 

IV.6) Choice of the appropriate repetitive structure ....................................................................................... 81 

IV.7) Nested loops................................................................................................................................................ 81 

IV.8) Exercises ...................................................................................................................................................... 82 

IV.9) Solution of the exercises ............................................................................................................................ 83 

IV.10) Conclusion ................................................................................................................................................... 85 

Chapter V. Arrays and Strings .............................................................................................................. 86 

V.1) Introduction ..................................................................................................................................................... 86 

V.2) The Array type ................................................................................................................................................. 87 

V.2.1) Definitions .............................................................................................................................................. 87 

V.2.2) Declaration .............................................................................................................................................. 88 

V.2.2.1) Algorithmic Syntax ........................................................................................................................... 89 

V.2.2.2) C language Syntax ............................................................................................................................. 90 

V.2.3) Manipulation of arrays .......................................................................................................................... 90 

V.2.3.1) Accessing Array Elements ............................................................................................................... 90 

V.2.3.2) Filling an array ................................................................................................................................... 91 

V.2.3.3) Displaying the contents of an Array .............................................................................................. 94 

V.3) Multidimensional Arrays ................................................................................................................................ 95 

V.3.1) Definition ................................................................................................................................................ 96 

V.3.2) Declaration .............................................................................................................................................. 97 

V.3.2.1) Algorithmic Syntax ........................................................................................................................... 97 

V.3.2.2) C language Syntax ............................................................................................................................. 97 

V.3.3) Manipulation of Multidimensional Arrays ......................................................................................... 98 

V.3.3.1) Accessing elements of a multidimensional array ......................................................................... 98 

V.3.3.2) Filling a multidimensional array ...................................................................................................... 98 

V.3.3.3) Displaying the elements of a multidimensional array .............................................................. 101 

V.4) Strings of Characters ................................................................................................................................... 101 

V.4.1) Reminder about Characters ............................................................................................................... 102 

V.4.1.1) Definition ........................................................................................................................................ 102 

V.4.1.2) Presentation of Characters ........................................................................................................... 102 

V.4.2) Definition of a String of Characters ................................................................................................ 103 



 

1st Year Mathematics – University of Guelma 5  Dr. Abderrahmane Kefali 

V.4.3) Strings in Algorithmics ....................................................................................................................... 104 

V.4.3.1) Declaration ...................................................................................................................................... 104 

V.4.3.2) Memory Representation ................................................................................................................ 104 

V.4.3.3) Manipulating strings ...................................................................................................................... 104 

a) Accessing a character in the string ................................................................................................... 104 

b) Reading ................................................................................................................................................. 105 

c) Writing .................................................................................................................................................. 105 

d) Assignment .......................................................................................................................................... 106 

e) Operations specific to strings of characters ................................................................................... 106 

V.4.4) Strings in C language .......................................................................................................................... 108 

V.4.4.1) Declaration ...................................................................................................................................... 108 

V.4.4.2) Memory Representation ................................................................................................................ 108 

V.4.4.3) Manipulating strings ...................................................................................................................... 109 

a) Accessing a character in the string ................................................................................................... 109 

b) Reading ................................................................................................................................................. 109 

c) Writing .................................................................................................................................................. 110 

d) Assignment .......................................................................................................................................... 110 

e) Operations specific to strings of characters ................................................................................... 111 

V.5) Exercises ........................................................................................................................................................ 112 

V.6) Solution of the exercises ............................................................................................................................. 113 

V.7) Conclusion .................................................................................................................................................... 115 

Chapter VI. Custom Types ................................................................................................................. 116 

VI.1) Introduction ............................................................................................................................................. 116 

VI.2) Concept of Data Type ............................................................................................................................ 116 

VI.2.1) Definition ............................................................................................................................................. 116 

VI.2.2) Type declaration .................................................................................................................................. 117 

VI.3) Enumerations ........................................................................................................................................... 117 

VI.3.1) Definition ............................................................................................................................................. 117 

VI.3.2) Enumerations in algorithmics ........................................................................................................... 117 

VI.3.2.1) Declaration ...................................................................................................................................... 117 

VI.3.2.2) Manipulation ................................................................................................................................... 118 

a) Assignment .......................................................................................................................................... 118 

b) Predefined Functions ......................................................................................................................... 119 

c) Using ..................................................................................................................................................... 119 

VI.3.3) Enumerations in the C language ...................................................................................................... 120 

VI.3.3.1) Declaration ...................................................................................................................................... 120 

a) Declaration of an Enumeration ........................................................................................................ 120 

b) Declaration using the typedef keyword ........................................................................................... 121 

VI.3.3.2) Manipulation ................................................................................................................................... 121 

a) Reading and writing ............................................................................................................................ 121 

b) Assignment .......................................................................................................................................... 122 

c) Using ..................................................................................................................................................... 122 



 

1st Year Mathematics – University of Guelma 6  Dr. Abderrahmane Kefali 

VI.4) Records (structures) ................................................................................................................................ 123 

VI.4.1) Definition ............................................................................................................................................. 123 

VI.4.2) Records in algorithmics ...................................................................................................................... 124 

VI.4.2.1) Declaration ...................................................................................................................................... 124 

VI.4.2.2) Manipulating a record ................................................................................................................... 125 

a) Accessing a Field of a Record ........................................................................................................... 125 

b) Reading and writing ............................................................................................................................ 126 

c) Assignment .......................................................................................................................................... 126 

d) The WITH...DO statement ............................................................................................................... 127 

VI.4.2.3) Nesting of Records ........................................................................................................................ 128 

VI.4.2.4) Arrays of records ............................................................................................................................ 129 

a) Declaration ........................................................................................................................................... 129 

b) Accessing Fields of a Record in an Array ....................................................................................... 129 

c) Manipulating an Array of Records ................................................................................................... 129 

VI.4.3) Records in the C language ................................................................................................................. 130 

VI.4.3.1) Declaration of a Structure ............................................................................................................ 130 

a) Declaration of a structure model ...................................................................................................... 130 

b) Declaration by Defining Type Synonyms ....................................................................................... 131 

VI.4.3.2) Manipulating a structure ............................................................................................................... 132 

a) Accessing a Field of a Structure ....................................................................................................... 132 

b) Reading and writing ............................................................................................................................ 132 

c) Assignment .......................................................................................................................................... 133 

VI.4.3.3) Nesting of structures ..................................................................................................................... 134 

VI.4.3.4) Arrays of structures ....................................................................................................................... 134 

a) Declaration ........................................................................................................................................... 134 

b) Manipulation ........................................................................................................................................ 135 

VI.5) Other possibilities for type definition .................................................................................................. 135 

VI.5.1) Interval type ......................................................................................................................................... 135 

VI.5.1.1) Declaration ...................................................................................................................................... 136 

VI.5.1.2) Manipulation ................................................................................................................................... 136 

VI.5.2) Set type ................................................................................................................................................. 136 

VI.5.2.1) Declaration ...................................................................................................................................... 136 

VI.5.2.2) Manipulation ................................................................................................................................... 137 

VI.5.2.3) Set Operations ................................................................................................................................ 137 

VI.6) Exercises ................................................................................................................................................... 138 

VI.7) Solution of the exercises ......................................................................................................................... 140 

VI.8) Conclusion ................................................................................................................................................ 142 

References .......................................................................................................................................... 143 

  



 

1st Year Mathematics – University of Guelma 7  Dr. Abderrahmane Kefali 

List of  Figures 
 

 

 

Figure I.1. Von Neumann model .................................................................................................................. 14 

Figure I.2. Example of Ancient Writing ...................................................................................................... 15 

Figure I.3. An Abacus ..................................................................................................................................... 15 

Figure I.4. El-Khawarizmi ............................................................................................................................. 15 

Figure I.5: Antique Printing Press ................................................................................................................. 15 

Figure I.6. Pascaline ........................................................................................................................................ 16 

Figure I.7: Babbage's Calculating Machine .................................................................................................. 16 

Figure I.8. George Boole ................................................................................................................................ 16 

Figure I.9. Alan Turing ................................................................................................................................... 16 

Figure I.10. Konrad Zuse ............................................................................................................................... 17 

Figure I.11. ENIAC ........................................................................................................................................ 17 

Figure I.12. Von Neumann ............................................................................................................................ 17 

Figure I.13. Transistor .................................................................................................................................... 17 

Figure I.14. The TRADIC ............................................................................................................................. 18 

Figure I.15. Integrated Circuit ....................................................................................................................... 18 

Figure I.16. The Intel 4004 processeur ........................................................................................................ 18 

Figure I.17. The first microcomputer Micral N .......................................................................................... 18 

Figure I.18. First PC (Personnal Computer) ............................................................................................... 19 

Figure II.1. Basic Structure of a Pseudo-Code Algorithm ........................................................................ 29 

Figure II.2. Example of a Representation of a Variable in Main Memory. ............................................ 31 

Figure II.3. Organigramme du calcul de la somme de deux nombres..................................................... 43 

Figure III.1. Flowchart of a simple conditional structure. ........................................................................ 56 

Figure III.2. Flowchart corresponding to the algorithm that tests if a number is negative ................. 56 

Figure III.3. Flowchart of a compound conditional structure.................................................................. 58 

Figure III.4. Flowchart corresponding to the algorithm that tests the parity of a number .................. 58 

Figure III.5. Flowchart corresponding to nested structures. .................................................................... 60 

Figure III.6. Flowchart of a multiple-choice structure. ............................................................................. 63 

Figure IV.1. Formalism of the WHILE loop in a flowchart ................................................................... 72 



 

1st Year Mathematics – University of Guelma 8  Dr. Abderrahmane Kefali 

Figure IV.2. Flowchart for repeating age input using WHILE loop ...................................................... 73 

Figure IV.3. Formalism of the REPEAT loop in a flowchart. ................................................................ 75 

Figure IV.4. Flowchart for Repeating Age Input Using the REPEAT Loop ....................................... 75 

Figure IV.5. Formalism of the FOR loop in a flowchart.......................................................................... 79 

Figure IV.6. Flowchart for Displaying Integers from 1 to 5 Using a FOR Loop. ................................ 80 

Figure V.1. Diagram of an array with 5 elements. ...................................................................................... 88 

Figure V.2. Diagram of the logical array A .................................................................................................. 90 

Figure V.3. Example of an array T ............................................................................................................... 91 

Figure V.4. Diagrams of the 4 mark arrays.................................................................................................. 95 

Figure V.5. Example of an array of arrays grouping the marks of all students in all courses .............. 95 

Figure V.6. Diagram of a 3-dimensional array representing all marks of all students in all courses ... 96 

Figure V.7. A Matrix with 4 Rows and 5 Columns .................................................................................... 97 

Figure V.8. The 8-bit ASCII table. ............................................................................................................. 103 

Figure V.9. Representation of the string "Box" in algorithmics. ............................................................ 105 

Figure V.10. Representation in the C language of the string "Guelma" in an array of size 10. ......... 108 

Figure VI.1. Diagram of a record of type Date. ....................................................................................... 125 

 

 



 

1st Year Mathematics – University of Guelma 9  Dr. Abderrahmane Kefali 

List of  Tables 
 

 

 

 

 

Table II.1. Symbols used in a flowchart. ................................................................................................. 42 

Table II.2. Basic Data Types in the C Language. .................................................................................. 45 

Table II.3. Input and Output Formats in the C Language. .................................................................. 48 

Table IV.1. Differences between the WHILE and REPEAT loops ................................................ 77 

Table IV.2. Example of step-by-step execution of an algorithm. ....................................................... 82 



1st Year Mathematics – University of Guelma 10  Dr. Abderrahmane Kefali 

I. Chapter I. Introduction 
 

 

I.1) Introduction 

Today, the realm of computer science permeates every facet of our daily lives. This 

widespread presence is attributed to the rapid advancement of computer technology, driven 

by breakthroughs across various technical disciplines. It's also a testament to the pivotal role 

played by algorithmics and, subsequently, programming, as the catalysts behind this 

evolution. 

In this initial chapter, we endeavor to acquaint new students with the field of computer 

science. We accomplish this by elucidating essential definitions and offering a historical 

panorama of the progression of computer science throughout the years. Furthermore, we 

delve into the foundational principles of algorithmics through the lens of practical, real-world 

examples. 

I.2) Computer Science: Definitions and a Brief History 

The origins of computer science can be traced back to humanity's inherent desire for 

efficiency, seeking ways to enhance their calculations to minimize errors and save time. 

Nowadays, computer science is omnipresent in every facet of our daily lives. Thus, having 

even a basic understanding of this field is indispensable. 

I.2.1) Definitions 

I.2.1.1) What is Computer Science? 

The status of computer science as a discipline is ambiguous and often misunderstood. Is it to 

be sought on the side of science or on the side of technology? What is the specific focus of 

study for computer scientists, and what are their true competencies? 
In fact, the appellation "computer science" was first introduced in the mid-20th century, 

reflecting a pivotal moment in the digital revolution. The term gained prominence as the field 

rapidly evolved and expanded, fundamentally reshaping our relationship with information and 

technology. It has since become the cornerstone of a discipline that spans the realms of 

science and technology. 

Below, we present several definitions of computer science from authoritative sources: 

• As per the Oxford English Dictionary and the Cambridge English Dictionary, Computer 

Science is defined as “the study of computers and how they can be used”. 

• The world’s leading digital dictionary, available at https://www.dictionary.com defines the 

computer science as “the science that deals with the theory and methods of processing 

information in digital computers, the design of computer hardware and software, and the 

applications of computers”. 

https://www.dictionary.com/


Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 11  Dr. Abderrahmane Kefali 

• Merriam-Webster's Collegiate Dictionary, gives the following definition of computer 

science: “a branch of science that deals with the theory of computation or the design of 

computers”.  

• According to Encyclopedia Britannica, computer science is: “the study of computers and 

computing, including their theoretical and algorithmic foundations, hardware and 

software, and their uses for processing information”.  

In other countries, specific terms have been proposed to describe the field of computer 

science. For instance, in French, the term "informatique" is widely used. In Germany, it is 

referred to as "Informatik," while in Spanish, it is known as "Informática", In Italian, it is 

termed "Informatica". However, since we are in a country that could be considered as 

Francophone, where French is the most common foreign language, we are particularly 

interested in the French translation.  

Etymologically, the French word "informatique" is a neologism (a newly coined term) formed 

by blending the words "information" and "automatique". It was first introduced by Philippe 

Dreyfus, who, in 1962, used it for the first time to name his company, "Société d'Informatique 

Appliquée." Subsequently, the French Academy officially adopted this term in 1967, making 

"informatique" the standard reference. Today, “informatique” is a word widely embraced in 

French-speaking countries. 

Here, we offer several definitions of the word “informatique” from original language sources. 

• One of the most comprehensive definitions of the French word "Informatique", is provided 

by the French Academy: « The science of the rational processing, particularly by 

automatic machines, of information regarded as a knowledge and communication 

medium in the technical, economic and social fields ». 

• The Larousse dictionary provides two definitions of the word "Informatique”: 

- The science of the automatic and rational processing of information, regarded as the 

medium of knowledge and communication. 

- The set of applications of this science, using hardware (computers) and software. 

• According to the “Le Petit Robert” dictionary, informatique is defined as the "Theory and 

processing of information using programs implemented on computers".  

The previous definitions of computer science contain three key concepts that require further 

clarification: processing, information, and computer. 

I.2.1.2) What is Information? 

In fact, it's not possible to discuss the term information independently of the term data. 

However, these two concepts are sometimes conflated, and some interpretations consider 

information as data in every sense of the word.  

On the contrary, the majority of definitions make a clear distinction between these two 

concepts. 

a) Data 

Data is raw information that has not yet been interpreted or placed in context.  

According to Wikipedia: « Data is a basic description of reality. It can be, for example, an 

observation or a measurement ». Data can be collected by a monitoring tool, a person, and 

may take the form of numerical values, personal names, images, and more. 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 12  Dr. Abderrahmane Kefali 

b) Information 

The Oxford English Dictionary and the Cambridge English Dictionary define information as « 

facts or details about someone (person) or something (company, product, etc.) ». 

In simpler terms, information is an interpreted form of data. In other words, adding context to 

data creates added value, transforming it into information. 

Examples: 

• When we say "24," it's data; "24 is the code for the Wilaya of Guelma " is information. 

• "5000" is data, but if we add "meters" to it, making it "5000 meters", it becomes 

information. 

• "110011" is a random sequence, but when treated as a PIN code, it transforms into 

information. 

I.2.1.3) Information Processing 

Information processing involves gathering data and subjecting it to a series of operations to 

obtain a result. When these operations are carried out by a machine, it is referred to as 

Automatic Information Processing. 

I.2.2) Computer 

Computer is an electronic programmable machine used for information processing following 

sequences of instructions (programs). In this process, information, whether it's textual, 

graphic, image, or sound data, is represented and encoded as sequences of binary digits, 

i.e., 0 and 1. 

In France, the term “ordinateur” is used to refer to a computer, and it's not merely a direct 

translation from English. This designation has an interesting historical origin. In April 1955, 

IBM France approached Jacques Perret, a professor of Latin philology at the Sorbonne, with 

a unique request. They asked him to propose a word that would accurately capture the 

essence of what was then commonly referred to as a “calculateur”, a literal translation of the 

English word 'computer.' The term “calculateur” was deemed too limiting, given the 

expansive capabilities of these machines. In response, Jacques Perret introduced the term 

“ordinateur”, a word that better encapsulated the multifaceted nature of these machines.  

The main advantage of a computer lies in its ability to quickly and accurately manipulate a 

large amount of information, store numeric or alphabetic data, and search, compare, or 

organize stored information. 

I.2.2.1) Components of a Computer 

A computer consists of two complementary parts: the immaterial programs (software) that 

describe the tasks to be performed and the physical machines (hardware) that execute these 

tasks. 

a) Hardware 

Computer hardware constitutes a collection of physical components essential for the 

automatic processing of information. At the heart of this machinery is the microprocessor, 

functioning as the central processing unit (CPU). This compact chip is akin to the brain of the 

computer, executing arithmetic and logic operations. Complementing the microprocessor is 

the Central Memory Unit, commonly known as RAM (Random Access Memory). RAM 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 13  Dr. Abderrahmane Kefali 

serves as a high-speed, volatile memory that facilitates rapid data access for the processor, 

temporarily storing actively used program instructions and data to enhance overall system 

performance.  

Another integral component is the hard drive, a storage device responsible for the long-term 

retention of data. It stores the operating system, software applications, and user files, 

ensuring their persistence even when the computer is powered off.  

Furthermore, expanding on the interaction between users and machines, input and output 

devices play a pivotal role. Input devices are peripherals that enable users to provide data 

and instructions to the computer. Common examples include keyboards, which allow the 

entry of text and commands, mice and pointing devices facilitating cursor movement, and 

scanners converting physical documents or images into digital form. Microphones capture 

audio input, enabling voice commands or audio recording. Input devices collectively 

empower users to interact with the computer, initiating processes and conveying information 

to the machine. Conversely, output devices deliver processed information from the computer 

to users in human-readable forms. Monitors or displays present visual information, including 

text, images, videos, and graphics. Printers produce hard copies of documents and images. 

Speakers or headphones output audio information, encompassing system sounds, music, or 

other audio content. Output devices ensure that the results of computations and processed 

data are comprehensible and accessible to users. 

b) Software 

Software consists of a collection of programs and data that collaborate to provide services to 

the user. 

At its core, a program is composed of a structured set of instructions that describe a task to 

be carried out by computer hardware. These instructions, crucial for the functioning of the 

computer, are encoded in binary, the sole language comprehensible by the machine. 

However, there are two overarching categories: system applications and user 

applications.  

System applications, often referred to as system software, form the foundational layer 

responsible for managing and controlling computer hardware. These applications provide 

vital services to the computer system, ensuring seamless operation and facilitating 

communication between hardware components and other software entities. Examples of 

system applications include operating systems (such as Windows, macOS, or Linux), device 

drivers, and utility programs. System applications serve as the backbone of the computing 

environment, handling tasks like memory management, process scheduling, and hardware 

interaction. 

In contrast, user applications, also known as application software, are tailored programs 

designed to meet specific user needs and preferences. Unlike system applications, user 

applications are task-oriented and serve as the interface through which individuals interact 

with computers to accomplish various activities. This category encompasses a diverse range 

of software, including word processors, web browsers, graphic design tools, video games, 

and more. User applications leverage the underlying system software to execute functions 

personalized to the user's demands, offering a dynamic and user-centric computing 

experience. 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 14  Dr. Abderrahmane Kefali 

I.2.2.2) Basic Computer Architecture 

The hardware architecture of a computer is based on the Von Neumann model, which was 

introduced in 1946. In this model of a universal machine, the instructions of a program as 

well as the data it requires or generates are stored in its memory. This model typically 

distinguishes four distinct components, as illustrated in Figure I.1: 

• Central Processing Unit (CPU): It consists of an Arithmetic Logic Unit (ALU), and a 

Control Unit: 

▪ The ALU : responsible for performing basic arithmetic and logic operations  

▪ The Control Unit:  in charge of sequencing operations, acting as a coordinator. 

• Memory, which stores both data and the program that instructs the Control Unit on the 

calculations to perform on this data. 

• Input/Output Devices, enabling communication with the external world. 

 

Figure I.1. Von Neumann model 

I.2.3) Utility of Computing 

Today, computing is omnipresent in all aspects of everyday life. This is primarily due to the 

increasing power of computers used for information processing. It offers several advantages 

across various application domains. Computing allows, among other things, for: 

• Computing saves a significant amount of time, as it can complete tasks in seconds that 

used to take hours. 

• Computing is reliable and error-free. 

• Computing stores documents in a compact format, reducing paper consumption. 

• Computing enables instant communication, such as real-time stock market quotes. 

• Computing precisely and tirelessly manages machine tools that once required a large 

and costly skilled workforce. 

• Computing doesn't take vacations and is never on sick leave. 

Memory 

Control Unit 
Arithmetic 

Logic Unit 

Input Output 

CPU 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 15  Dr. Abderrahmane Kefali 

I.2.4) A Brief History of Computer science 

Computer science didn't emerge recently; its earliest fundamental concepts date back over 

10,000 years, but the development of this science has only taken place in the past half-

century. 

The history of computer science is the result of the conjunction of scientific discoveries from 

various technical and social disciplines. Advancements in automation, electronics, and 

calculation techniques have played a pivotal role in the birth and rapid evolution of computer 

science. 

In the following part of this section, we will attempt to provide an overview of the most 

significant scientific events in the history of computing. 

By 3500 BC, writing emerged as another means of 

information storage and memorization. 

 

Figure I.2. Example of Ancient 

Writing 

Approximately 1000 years BC, the invention of the Abacus. 

An abacus consists of small beads moving on rods, serving 

as an early calculating device that enables numerical 

representation (memory) and the execution of operations on 

those numbers (calculation). 
 

Figure I.3. An Abacus 

In 830 AD, the renowned Arab mathematician Al-Khawarizmi 

introduced the concept of an algorithm, a method for solving 

equations. 

 

Figure I.4. El-Khawarizmi 

In 1454, the invention of the printing press by Gutenberg in 

Germany. 

 
Figure I.5: Antique Printing Press 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 16  Dr. Abderrahmane Kefali 

In 1642, Blaise Pascal created a machine (called the 

Pascaline) capable of performing additions and subtractions. 

It was designed to assist his father, who worked as a tax 

collector. 

 
Figure I.6. Pascaline 

In 1834, the British mathematician Charles Babbage 

designed his analytical engine, a computing machine 

controlled by a program stored on punched cards. It can be 

regarded as the precursor to modern computers. 

 

Figure I.7: Babbage's Calculating 

Machine 

In 1854, the British mathematician and logician George Boole 

introduced binary algebra. He explained that the thought 

process can be encoded using three operations: AND, OR, 

NOT. His work would prove highly valuable for the 

advancement of electronics and logical gates. 

 

Figure I.8. George Boole 

In 1936, the British mathematician Alan Turing published an 

article outlining the principles of the abstract machine that 

bears his name, the Turing machine. This machine is 

theoretically capable of following an algorithm. To achieve 

this, a computer's control unit must be able to direct the 

execution of the program (stored in memory) without the need 

for human intervention in the program's execution. 
 

Figure I.9. Alan Turing 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 17  Dr. Abderrahmane Kefali 

In 1941, the German engineer Konrad Zuse invented a 

computer that operated using electromechanical relays: the 

Z3. This computer was the first programmable machine to 

use binary instead of decimal. 

 

Figure I.10. Konrad Zuse 

Between 1944 and 1946, the invention of the ENIAC 

(Electronic Numerical Integrator and Computer) by Eckert 

and Mauchly, considered the first all-electronic computer (no 

longer containing mechanical parts). It weighed 30 tons, 

occupied a space of 1500 square meters, and was composed 

of 18,000 vacuum tubes, with one tube failing every 7 or 8 

minutes. Its main drawback was its programming: the ENIAC 

could only be programmed manually using switches or 

plugboards. Programs were read directly by the processing 

unit from the punched tape or cards inserted at the machine's 

input. Sequence changes in the program couldn't be made 

without human intervention. 
 

Figure I.11. ENIAC 

In 1946, Von Neumann introduced the concept of stored 

program and presented the architecture of the modern 

programmable and memory-based computer. 

 

Figure I.12. Von Neumann 

In 1948, the transistor was invented by John Bardeen, 

Walter Brattain, and William Shockley. In the 1950s, it 

revolutionized the history of computers by making them less 

bulky, more energy-efficient, and therefore more cost-

effective. 
 

Figure I.13. Transistor 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 18  Dr. Abderrahmane Kefali 

In 1956, the TRADIC (TRAnsistor DIgital Computer) became 

the first machine to use only transistors and diodes, without 

any vacuum tubes. It was constructed by Bell Labs. 

 

Figure I.14. The TRADIC 

In 1958, the integrated circuit was developed by Texas 

Instruments. It further reduced the size and cost of computers 

by integrating multiple transistors on a single electronic circuit 

without the need for electrical wiring. 

 

Figure I.15. Integrated Circuit 

 In 1971, the first microprocessor, the Intel 4004, made its 

debut. This microprocessor integrated logical, arithmetic, and 

other operations. 
 

Figure I.16. The Intel 4004 

processeur 

In 1973, François Gernelle invented the Micral N, the first 

microcomputer. The Micral N exhibited all the characteristics 

of future personal computers of the 1980s. 

 

Figure I.17. The first 

microcomputer Micral N 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 19  Dr. Abderrahmane Kefali 

In 1981, IBM released the first Personal Computer (PC). This 

microcomputer featured a proper operating system 

(Microsoft's MS-DOS) and an « open » architecture, which 

allowed for the addition of numerous peripherals and the use 

of various software applications. 
 

Figure I.18. First PC (Personnal 

Computer) 

In the 1990s: 

• Tim Berners-Lee wrote the first proposal for creating the World Wide Web. 

• Windows was released. 

• Linux was created. 

• Google had its beginnings. 

• And many more significant technological developments occurred during this era. 

 

I.3) Introduction to Algorithms 

Indeed, the concept of an algorithm is quite general and not limited to the field of computer 

science. Throughout history, humans have sought to devise sufficiently precise procedures 

to solve their problems and organize their activities. With the advent of computing, this notion 

has become more restrictive because an additional objective is to transform an algorithm into 

a program. 

I.3.1) Introductory Examples 

There's nothing better than a few introductory examples to introduce the concept of 

algorithms. 

I.3.1.1) Example 1: Fax Machine User Manual 

An excerpt from a fax machine user manual on sending a document. 

1. Insert the document to be sent into the automatic feeder. 

2. Type the recipient's fax number digit by digit from the numeric keypad. 

3. Press the send button to initiate the transmission. 

This user manual provides instructions on how to send a fax. It consists of an ordered 

sequence of commands or instructions (insert, type, press) that manipulate data (document, 

automatic feeder, fax number, numeric keypad, send button) to perform the desired task 

(sending a document)." 

I.3.1.2) Example 2: Calculating the Average of 3 Numbers with a Calculator 

Let's say we want to calculate the average of 3 numbers using a calculator. The steps to 

follow are as follows: 

 



1st Year Mathematics – University of Guelma 20  Dr. Abderrahmane Kefali 

1) Press "On " 

2) Enter the first number. 

3) Press "+ " 

4) Enter the second number. 

5) Press "+ " 

6) Enter the third number. 

7) Press "="  

8) Press "/"  

9) Press "3 " 

10) Press "= " 

11) The average is displayed. 

The preceding steps represent the commands (Press, Enter, etc.) that need to be executed. 

These commands or instructions manipulate data (the 3 numbers, calculator keys) to achieve 

the desired result (the average of the 3 numbers). 

I.3.1.3) Example 3: Giving Directions 

A first-year Mathematics student wants to find his way to Amphitheatre No. 4 for the first time 

to attend an algorithmics class. He asks his colleague, who is already present in the 

Amphitheatre, to show him the way. The colleague's response is as follows: 

« Enter through the main gate of the central campus. Then, go straight until you reach the 

next intersection. Do not turn right or left; continue straight until the end of the curve, then 

turn left. Keep going straight, and you will see Amphitheatre 4 right in front of you ». 

In this dialogue, the colleague's response represents an ordered sequence of instructions (go 

straight, turn left, etc.) that manipulate data (intersection, streets) to accomplish the desired 

task (getting to Amphitheatre 4). 

In summary, the steps to follow in each of the three previous examples make up what we call 

an algorithm. It's simple, isn't it? 

I this way, we encounter algorithms in our daily lives, and we execute them. Moreover, we 

unknowingly create algorithms (as in the case of providing directions to a lost student). 

I.3.2) Notion of Algorithm 

Before delving into the necessary definitions, it's important to note that algorithmics is a term 

of Arabic origin. It originates from the renowned Muslim mathematician Muḥammad ibn Mūsā 

al-Khwārizmī (830 AD), who is one of the pioneers of modern arithmetic. 

I.3.2.1) What is an Algorithm? 

Here are some important definitions of an algorithm: 

• In the Oxford English Dictionary, the algorithm is described as: « a set of rules that 

must be followed when solving a particular problem ». 

• according to the Cambridge English Dictionary, an algorithm is: « a set of 

mathematical instructions or rules that must be followed in a fixed order, and that, 

especially if given to a computer, will help to calculate an answer to a mathematical 

problem ». 

• The world's leading digital dictionary characterizes it as: « a set of rules for solving a 

problem in a finite number of steps, such as the Euclidean algorithm for finding the 

greatest common divisor ». 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 21  Dr. Abderrahmane Kefali 

• Merriam-Webster's Collegiate Dictionary defines it as: « a procedure for solving a 

mathematical problem (as of finding the greatest common divisor) in a finite number 

of steps that frequently involves repetition of an operation ». 

• According to Encyclopedia Britannica, an algorithm is: « a set of steps that are 

followed in order to solve a mathematical problem or to complete a computer 

process».  

• Collins Dictionaries state that an: « An algorithm is a series of mathematical steps, 

especially in a computer program, which will give you the answer to a particular kind 

of problem or question ».  

• The Universalis Encyclopedia1 defines an algorithm as « An algorithm is a finite 

sequence of rules to be applied in a determined order to a finite set of data in order to 

arrive, in a finite number of steps, at a certain result, regardless of the data ». 

It's noteworthy that all of these definitions make reference to mathematics, underscoring the 

inherent relationship between algorithmics and mathematics. 

Other examples of algorithms: 

The steps to make coffee, instructions for using a device, starting a vehicle, integer division, 

and solving a second-degree equation are algorithms. 

Remarks: 

1) If the algorithm is correct, the result is as desired; otherwise, the result will be random. 

2) To work, an algorithm must contain only instructions that are understandable to the one 

who will execute it. For example, you cannot give the instruction "solve the problem" and 

leave the interlocutor to figure it out. It's logical because if the lost student asks their 

colleague for directions to Amphitheater 4, it's because they don't know it. So, telling 

them to "figure it out on your own" is not helpful. Therefore, the actions that make up the 

algorithm should be primitive or elementary. 

3) Proficiency in algorithmics requires two qualities: 

• You need to have a certain intuition. 

• You need to be methodical and rigorous. 

4) The value of an algorithm lies in its ability to be translated into computer programs that 

can be executed directly by the computer. 

I.3.2.2) Object of Algorithmics 

According to Merriam-Webster's Collegiate Dictionary, « algorithmics is the subdiscipline of 

informatics or computer science concerned with the study, analysis, and development of 

algorithms » 

The object of algorithmics is the design, evaluation, and optimization of calculation methods 

in mathematics and computer science.  

Algorithmics focuses on the art of constructing algorithms and characterizing their validity, 

robustness, reusability, complexity, and efficiency. 

I.3.2.3) Qualities of an Algorithm 

As discussed in the previous section, an algorithm is essentially the blueprint of a program. 

Therefore, for a program to be of high quality, the initial algorithm must be correct and of 

 
1 Universalis is the reference encyclopedia in the French-speaking world 

https://www.merriam-webster.com/dictionary/algorithm


Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 22  Dr. Abderrahmane Kefali 

good quality as well. To ensure that an algorithm is of good quality, it should possess the 

following qualities: 

• Readability: The algorithm should be understandable, even by non-computer 

scientists. 

• Validity: It should perform the exact task for which it was designed. 

• Finiteness: The algorithm must terminate within a finite amount of time. 

• High-Level: An algorithm should be translatable into any programming language, 

without relying on technical notions specific to a particular program or operating 

system. 

• Precision and Non-Ambiguity: Each element of the algorithm should be 

unambiguous, leaving no room for confusion. 

• Conciseness: An algorithm should not exceed one page; if it does, the problem 

should be decomposed into smaller sub-problems. 

• Structured: It should be composed of distinct and easily identifiable parts. 

• Robustness: An algorithm should be capable of protecting itself from abnormal 

usage conditions. 

• Reusability: It should be reusable for solving tasks similar to its original purpose. 

• Efficiency: The algorithm should make optimal use of the hardware resources on 

which it runs. 

I.3.3) Problem-Solving Steps 

When using a computer to solve a given problem (by creating a computer program for 

automated processing), you must go through a series of steps known as problem-solving 

steps. It's important to note that the most crucial steps in the problem-solving process are 

independent of the computer and are carried out without it.  

Therefore, the steps for solving a problem in computer science are as follows: 

I.3.3.1) Problem Definition and Analysis 

The purpose of this step is to understand the problem at hand and identify the desired 

objective by analyzing the problem statement. If the problem is complex, it can be broken 

down into a set of smaller, less complex sub-problems. Ultimately, solving the initial problem 

is equivalent to solving all the resulting smaller problems. 

In this step, you should: 

• Determine the outputs (desired results), their format, and their type. 

• Identify the inputs (data) required to obtain these results, including their type, 

characteristics, and the order in which they need to be input. 

• Determine any intermediate variables (if applicable), which are temporary data used 

to store intermediate calculation results. 

• Enumerate various potential computer-based solution methods and evaluate them to 

select the best one in terms of ease, speed, and required memory. 

It's essential to anticipate responses to all foreseeable cases during this step. 

Example: 

Analyze and outline the steps for calculating the average of 3 integers: 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 23  Dr. Abderrahmane Kefali 

• Inputs: the 3 numbers (a, b, and c, integer numbers) 

• Outputs: the average (moy, real number) 

• The plan: 

- Enter the values of the 3 numbers a, b, and c 

- Calculate the average moy using the formula moy = (a + b + c) / 3 

- Display the result moy. 

I.3.3.2) Establishment of the Corresponding Algorithm 

After selecting the best method to solve the problem and determining all the calculation 

formulas to be applied, the next step is to express this method in the form of logical, 

successive steps that lead to a solution to the problem. These successive steps are known 

as an « algorithm »  

An algorithm is often described using a highly simplified, natural pseudo-language that is 

both readable and formal. The data, results, and intermediate variables are clearly declared, 

each calculation is fully specified, and so on. 

I.3.3.3) Translating the Algorithm into a Computer Program 

In this step, the solution steps described in the algorithm are expressed using instructions in 

a specific high-level programming language, such as Pascal, C, Java, etc. This process 

results in the creation of a source code program. 

The source code program is the outcome of translating the algorithm while adhering to the 

syntax and rules of the chosen programming language. 

I.3.3.4) Compiling the Program 

Once the computer program (source code) is written, it needs to be introduced to the 

computer to ensure it is correctly written and to translate it into machine language (0s and 

1s), which is the only language the computer understands. This translation process is called 

« compilation » and is performed by a specialized program called a « compiler». 

The resulting program is referred to as an « executable program».  

During this translation, the compiler detects any potential errors, both lexical and/or 

syntactical. 

I.3.3.5) Program Execution and Testing 

This step involves ensuring that the program produces correct results in all cases and for all 

possibilities.  

Multiple tests need to be conducted, corresponding to different scenarios, to verify the 

validity of the results.  

If all results are valid, the program is accepted as it is. Otherwise, the algorithm may need to 

be revised and modified. 

I.4) Exercises  

Exercise I.1 : 

To convert degrees Fahrenheit to Kelvins, the following formula is used: 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 24  Dr. Abderrahmane Kefali 

8,1

67,459+
=

F
K  

Where K is the degree in Kelvin, and F is the degree in Fahrenheit. 

Analyze and provide the steps for this conversion. 

Exercise I.2 : 

Consider the following problem: A merchant wants to determine the profit he can make from 

selling a given product.  

As analysts, you have been asked to analyze and list the various steps that lead to solving 

this problem, assuming that all entered data is valid. 

Recall that profit is equal to the selling price minus the cost price, and the cost price is equal 

to the sum of the purchase price and expenses. 

Exercise I.3 : 

Analyze and provide the steps for calculating the volume of a sphere with radius R. The 

calculation formula is as follows: 

3

3

4
RV


=  

Where V is the volume of the sphere. 

Exercise I.4 

Given an angle , we want to determine the type of this angle. An angle can be one of the 

following: 

• Zero ( = 0°) 

• Acute (0° <  < 90°) 

• Right ( = 90°) 

• Obtuse (90° <  < 180°) 

• Flat ( = 180°) 

Analyze and provide the steps to solve this problem. 

Exercise I.5 : 

Analyze and provide the steps to solve a second-degree equation. 

I.5) Solution of the exercises  

Exercise I.1 : 

Inputs:  Temperature in Fahrenheit (F, real number) 

Outputs:  Temperature in Kelvins (K, real number) 

Plan: 

• Enter the temperature in Fahrenheit (F) 

• Calculate the temperature in Kelvins using the formula: K = (F + 459.67) / 1.8 

• Display the temperature in Kelvins (K) 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 25  Dr. Abderrahmane Kefali 

Exercise I.2 : 

Inputs:  Selling price (SP, real number) 

         Purchase price (PP, real number) 

         Expenses (E, real number) 

Outputs:  Profit amount (PA, real number) 

Intermediate data:  Cost price (CP, real number) 

Plan: 

• Enter the selling price (SP), the purchase price (PP), and expenses (E) 

• Calculate the cost price using the formula: CP = PP + E 

• Calculate the profit amount using the formula: PA = SP - CP 

• Display the profit amount (PA) 

Exercise I.3 : 

Inputs:  Sphere radius (R, real number) 

Outputs:  Sphere volume (V, real number) 

Plan: 

• Enter the radius (R) 

• Based on the value of R: 

▪ If R > 0: 

- Calculate the volume using the formula: V = ((4 * π) / 3) * R3 

- Display the volume (V) 

▪ If R ≤ 0: 

- Display the message "Input error" 

Exercise I.4: 

Inputs:  Angle (θ, real number) 

Outputs:  Type de angle (T, String) 

Plan: 

• Enter the angle (θ) 

• Based on the value of θ : 

▪ If  θ = 0, T = "Zero" 

▪ If  0 < θ < 90, T = "Right" 

▪ If  θ = 90, T = "Droit" 

▪ If  90 < θ < 180, T = "Obtuse" 

▪ If  θ = 180, T = "Straight" 

• Display the type of angle (T) 



Algorithmics and Data Structures 1  Chapter I. Introduction 

1st Year Mathematics – University of Guelma 26  Dr. Abderrahmane Kefali 

Exercise I.5 : 

Inputs:  The 3 coefficients (a, b, c, real numbers) 

Outputs:  The equation’s roots (x1, x2, real numbers) 

Intermediate data:  The discriminant (Δ, real number) 

Plan: 

• Input the 3 coefficients (a, b, c) 

• Based on the value of a: 

▪ If a = 0: 

- Calculate the unique solution x1 using the formula: 𝑥1 =  −𝑏/𝑎 

- Display the unique solution x1 

▪ If a ≠ 0: 

- Calculate Δ using the formula: 𝛥 =  𝑏2  −  4 ∗  𝑎 ∗ 𝑐 

- Based on the value of Δ: 

o If  Δ < 0 : Display "No solution" 

o If  Δ = 0 :  

o Calculate the double solution using the formula: 𝑥1 =  −𝑏 / (2 ∗  𝑎)  

o Display the double solution x1 

o If  Δ > 0: 

o Calculate  x1 using the formula  𝑥1 = (−𝑏 − √∆)/(2 ∗ 𝑎) 

o Calculate  x2 using the formula  𝑥2 = (−𝑏 + √∆)/(2 ∗ 𝑎) 

o Display both solutions x1 and x2 

I.6) Conclusion 

This first chapter serves as an introduction to the course. In this chapter, we have attempted 

to introduce the basic concepts of computer science as a discipline that is ubiquitous in all 

areas of everyday life, and algorithmics, which constitutes the heart of computer science. 

The chapter is divided into two parts. The first part focuses on the field of computer science 

in general. In this part, we addressed the necessary definitions, provided an overview of the 

historical evolution of computer science over the years, and presented the computer while 

describing its basic architecture and components. 

The second part delves into algorithmics. It began with the introduction of the concept of an 

algorithm through concrete examples. It then presented definitions of this concept, its 

objectives, and qualities. The chapter ended by listing the various steps in problem-solving in 

computer science, with the establishment of the algorithm being one of the key steps. 



1st Year Mathematics – University of Guelma 27  Dr. Abderrahmane Kefali 

II. Chapter II. Simple 

sequential algorithm 
 

 

II.1) Introduction 

In the previous chapter, we have seen that solving a computer science problem is not 

arbitrary but requires extensive preparation, from problem analysis to writing a computer 

program. The resulting program contains instructions for the computer to execute without any 

capacity for invention. However, writing the program is preceded by the creation of an 

algorithm describing the steps to solve the problem. The algorithm itself must be written 

following specific writing rules defined in what is called an algorithmic language or a 

pseudocode. 

In this chapter, we will introduce the algorithmic language that will be used throughout this 

course for describing and creating algorithms. We will describe the general structure of an 

algorithm and present its basic elements (instructions, data objects, etc.). Additionally, we will 

explore how to sequence basic instructions to design our first algorithm for solving a specific 

problem. We will also present flowcharts, a graphical representation of the algorithm, along 

with the rules for constructing them from an algorithm. Towards the end of the chapter, we 

will initiate students into the fundamental vocabulary of the C language, enabling them to 

embark on the journey of programming. 

II.2) Concept of Language and Algorithmic Language 

In general, language refers to the ability that humans have to express their thoughts and 

communicate with each other. It is a way of expressing oneself, of communicating, specific to 

a group. 

However, with the advent of computers and information technology, this term has been 

extended to refer to systems that enable communication with machines. These languages 

are then called artificial languages. 

Subsequently, I will present some definitions related to the term "language". 

II.2.1) Language 

A language is a structured system of signs (vocal, gestural, graphical, etc.) that allows 

humans (or other entities) to express thoughts, ideas, information, emotions, and 

communicate with each other.  

A language is composed of: 

• Vocabulary: a list of symbols (words).  

• Grammar: rules that define how symbols can be combined.  

• Semantics: the meaning of symbols. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 28  Dr. Abderrahmane Kefali 

II.2.2) Computer Language 

A programming language, or computer language, is a conventional notation designed to 

express algorithms and create computer programs to execute them.  

Similar to a natural language, a programming language consists of an alphabet, a vocabulary 

(list of keywords), syntax and grammar rules, and meanings (semantics). These rules specify 

how keywords can be assembled to create instructions, forming programs that can run 

smoothly on a machine. 

Programming languages serve as an interface between humans and computers, allowing the 

writing of operations that computers can execute while remaining comprehensible to 

humans. Since these languages are intended for computers, they must adhere to strict 

syntax. 

II.2.3) Machine Language 

Machine language is the language understood by the microprocessor. It comprises extremely 

basic instructions encoded with precision in the form of binary bit sequences.  

To write a program in machine language, one must have a deep understanding of the 

processor's operation that will be used and be knowledgeable about the binary code for each 

instruction, making it a challenging skill to acquire at present. 

II.2.4) Algorithmic Language 

Although an algorithm, which is a description of the steps to solve a problem, can be 

expressed in natural language through a series of unrestricted sentences, this method or 

formalism of writing algorithms is not the most commonly used in computer science. Natural 

languages are inherently ambiguous. Recall that an algorithm must be precise and 

unambiguous (as discussed in Chapter 1), so it's essential to write algorithms in a formal 

language with precisely defined semantics to avoid any ambiguity. This specialized language 

is referred to as algorithmic language, pseudo-language, or pseudocode. 

II.2.4.1) What is an Algorithmic Language?  

An algorithmic language or pseudocode is a language that is close to natural language and, 

at the same time, takes into account machine characteristics while being more flexible than a 

programming language. It is used for describing algorithms. It serves as a compromise 

between natural language and a programming language. 

This language uses a set of keywords and structures to fully and clearly describe the objects 

manipulated by the algorithm and all the instructions to be executed on these objects to solve 

a problem.  

The pseudocode expresses instructions for solving a given problem independently of the 

specifics of a particular programming language. Therefore, algorithms written in algorithmic 

languages have the advantage of being easily translatable into a programming language. 

Remark: 

It's important not to confuse the algorithm, which is the description of the problem-solving 

process in a series of steps, with its implementation in a specific computer-interpretable 

language: the program. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 29  Dr. Abderrahmane Kefali 

II.2.4.2) Elements of Algorithmic Language  

An algorithmic language (like any other programming language) is defined by a set of words 

constituting its vocabulary, called keywords or reserved words, in addition to rules of 

syntax and grammar governing the assembly of these words. 

a) Keywords 

Keywords are predefined and reserved words used in algorithms that have a particular 

meaning (ALGORITHM, BEGIN, END, IF, THEN, ... etc.). 

The number of keywords in the algorithmic language is limited, and we will introduce them as 

we progress in this course. 

Remarque: 

Le langage algorithmique n'est pas standard et il pourra que vous trouverez une notation 

déférente si vous consultez d'autres documents. Par exemple, la lecture est symbolisé dans 

notre cours par le mot-clé LIRE alors que dans d'autres document elle peut être notée par 

SAISIR.   

The algorithmic language is not standard, and you may find different notations when 

consulting other documents. For instance, in our course, reading is symbolized by the 

keyword READ, whereas in other documents, it might be denoted as INPUT. 

II.2.4.3) Difference between algorithm and program 

Algorithmics expresses the instructions for solving a given problem independently of the 

specific details of any particular language. Therefore, a program translates the algorithm into 

a specific language while respecting its syntax. Learning algorithmics is learning to handle 

the logical structure of a computer program.  

To draw an analogy, if a program were a house, algorithm would be the blueprint. It's better 

to create the blueprint first and then build the house rather than the other way around... 

Remark: 

The algorithmic language is not standardized, and you may find different notations if you 

consult other documents. For example, in our course, reading input is symbolized by the 

keyword READ, whereas in other documents, it might be represented as INPUT. 

II.3) Parts of an algorithm 

An algorithm in pseudocode consists of three essential parts: the algorithm header, the 

declaration section, and the algorithm body (processing section). The following figure 

illustrates the basic structure of an algorithm in pseudocode: 

ALGORITHM <name of the algorithm>;   Header  

Const <list of constants>; 

Type <list of types >;    Declaration section 

Var <list of variables>;   

BEGIN 

<Sequence of actions>    Algorithm body 

END. 

Figure II.1. Basic Structure of a Pseudo-Code Algorithm 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 30  Dr. Abderrahmane Kefali 

II.3.1) Algorithm Header 

The algorithm header has the sole purpose of identifying the algorithm by specifying a name 

for it. The header begins with the keyword ALGORITHM followed by the name of the 

algorithm. However, the name assigned has no influence on the execution and results of the 

algorithm. Note that the algorithm's name must adhere to certain constraints, which we will 

discuss shortly. 

Examples: 

ALGORITHM Sum;  

ALGORITHM calculation;  

II.3.2) The Declaration Section 

The declaration section includes declarations for all objects or data elements used in the 

processing section of the algorithm. Declaration involves naming various objects, specifying 

their types, dimensions, and so on.  

All objects in the processing section must have been declared in the declaration section. 

Toutes les instructions doivent se terminer par un point virgule " ; " qui serve comme 

séparateur entre les instructions. 

II.3.3) Algorithm Body 

The algorithm body includes all the instructions and operations to be performed on the data 

to solve the problem. These instructions involve basic computer operations. 

In this section, you will find basic instructions (assignment, input, output) and control 

statements that combine basic instructions to perform other tasks. 

The processing section begins with the keyword BEGIN and ends with the keyword END, 

which indicates the end of the algorithm.  

All instructions must end with a semicolon ";" which serves as a separator between 

instructions. 

II.4) Data: Variables and Constants 

In an algorithm, you will frequently need to temporarily store objects on which the entire 

algorithm's processing relies. These objects can come from the hard drive or be provided by 

the user (keyboard input). They can also be results obtained by the algorithm, whether 

intermediate or final.  

Whenever you need to store information during an algorithm, you use a variable or a 

constant. These can come in various forms: textual, numerical, logical, and so on.  

Data must be declared in every algorithm before their use. 

II.4.1) Variables 

In algorithmics, a variable is a data element with a name and a value that can change during 

the algorithm's execution. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 31  Dr. Abderrahmane Kefali 

From the computer's perspective, a variable is simply a memory location at an arbitrary 

address identified by a name2, and able to store data of a predefined type. The name is used 

to locate this memory location so that the computer can access it directly.  

A variable can be schematically represented as a box labeled with a name, with a size 

(defined by the type), content (value), and a memory address. 

Example: 

Suppose we have a variable named x; it can be schematically represented in memory as 

follows: 

Memory 

   00  

Variable 

name 
x ............... 01 Adresses 

  02  

Memory 

areas 
  ... 

Variable 

content 
  ... 

 

Figure II.2. Example of a Representation of a Variable in Main Memory. 

From the previous definitions, we conclude that the concept of a variable in algorithmics is 

different from that in mathematics, although the name is the same.  

To use a variable, we must first define (declare) it in the declaration part of the algorithm to 

reserve a memory space for it. 

II.4.2) Constants  

Constants are fixed data (values) that do not change during the execution of the algorithm. A 

constant is identified by a name and has a value that must be set before the algorithm is 

executed. The value of the constant can be numeric, textual, logical, etc.  

Just like a variable, a constant from the computer's perspective is a memory area labeled 

with a name that stores a value, but this value remains unchanged during the execution of 

the algorithm. 

Remark: 

Constants make it easier to write and maintain the algorithm. Suppose we use the value 

5.271 thirty times in the algorithm. Without the use of constants, on the one hand, we have to 

write this value every time we need it, which is thirty times. On the other hand, when we want 

to change this value in the algorithm to 5.273, for example, we would be required to go 

through the entire algorithm and change all occurrences of the old value to the new one, 

which is very tedious and can lead to errors due to oversight. 

 
2 Similar to the algorithm name, the variable name must meet specific criteria, which we will discuss 
shortly. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 32  Dr. Abderrahmane Kefali 

It is therefore preferable to declare the value 5.271 as a constant, named V for example, 

and use V throughout the algorithm instead of 5.271. In this case, when we want to change 

the value 5.271, we only need to modify it once: in the declaration of the constant V. 

II.4.3) Notion of Identifier 

Cependant, malgré que le choix est libre du nom de la variable ou la constante, il préférable, 

pour des raisons de lisibilité et de compréhension de choisir des identificateurs significatifs, 

c'est à dire en fonctions de ce ils représentent. 

An identifier is the name assigned to an object in the algorithm, whether it's the algorithm 

itself, a variable, a constant, etc. This name allows the computer to distinguish them and 

humans to understand and refer to them.  

An identifier is a sequence of alphanumeric characters that must adhere to the following 

criteria: 

• It must start with a letter or an underscore (_). 

• It continues with any number of letters, digits, or underscores (no symbols or spaces). 

• It cannot be a keyword. 

Remarque: 

In algorithmics, there is no distinction between lowercase and uppercase letters. 

Examples :  

A, DELTA, X1, VAL, i, MM, B_727, RACINE  are valid identifiers. 

END, 12MOT, VAL*2  are invalid identifiers. 

II.5) Data Types 

The data manipulated by the algorithm and stored in variables are not all of the same type. 

This is why it is necessary to assign a data type to each variable to specify what it can 

contain.  

Types serve various purposes, including: 

• Defining the set of values that a variable can take. For example, a variable defined as 

an integer cannot receive the value 7.46 which is real value. 

• Specifying the set of operations, typically called operators, that can be applied to the 

variable. For instance, you cannot perform multiplication on two string variables. 

• Indicate to the compiler the space required to store the variable's value. Thus, an 

integer and a real number do not have the same size and do not occupy the same 

space in memory. 

In algorithmics, there are several data types, which can be categorized into two classes: 

• Elementary types 

• Structured or composite types 

In this chapter, we focus on elementary types. Structured types will be the subject of other 

chapters. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 33  Dr. Abderrahmane Kefali 

II.5.1) Elementary types 

Ce sont de types simples, c'est à dire qu'une variable de ces types contient une seule valeur 

à la fois. Dans les types élémentaires on distingues les types standards des types non 

standards. 

These are simple types, meaning a variable of these types contains only one value at a time. 

In elementary types, we distinguish between standard types and non-standard types. 

II.5.1.1) Standard types 

En algorithmique, il y a cinq types standards, dits aussi types prédéfinis : entier, réel, 

caractère, chaine de caractères, et logique. 

In algorithmics, there are five standard types, also known as elementary data types or 

primitive data types: 

a) Integer 

The integer type includes integer numerical values, both positive and negative. It is denoted 

by the name: Integer. 

b) Real  

The real type includes real (floating-point) values, both positive and negative. It is denoted by 

the name: Real.  

The usual representation for real numbers is the decimal notation "a.b", for example: 3.14,   

-7.22, ... 

Remark:  

A variable of real type can have a value of integer type because the integer type 

is included in the real type, but the reverse is not possible. 

c) Character  

The character type represents the domain of characters, including lowercase and uppercase 

alphabetic letters, numerical characters, special characters (., ?, !, <, >, =, , +, ... etc.), and 

the space character. This type is denoted by the name: Character.  

However, a variable of this type can only contain a single character at a time. Characters are 

enclosed in single quotes (apostrophes) " ' ".  

Examples:   

'R', '5', '*', .... 

Remark:  

Characters are ordered according to the order of the considered machine codes. Although 

there are numerous encodings, the most common one is ASCII (American Standard Code for 

Information Interchange). 

d) String 

This type refers to the set of strings that can be formed by composing characters. It is 

denoted by the name: String.  

Strings of characters are delimited by double quotes (quotation marks).  



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 34  Dr. Abderrahmane Kefali 

Examples: 

 "Algo", "123", "True"  are strings. 

Remark: 

The String type can also be viewed as a composite type. It will be studied in more detail 

in Chapter 5. 

e) Boolean (Logical) 

The Boolean type is also called the logical type and represents the logical domain, which 

contains only two values (True and False). It is denoted by the name: Boolean. 

f) Note or Types 

Each type has a specific size and representation in computer memory. Different forms of 

constants should not be confused.  

Examples :  

• The value 3  (Integer type) 

• The value 3.0  (Real type) 

• The value '3'  (Character type) 

• The value "3"  (String type) 

II.5.1.2) Non-standard Types (ou non-prédéfinis) 

In the non-predefined types, we mainly distinguish between enumerated types, interval 

types, and set types.  

These types will be studied in Chapter 6. 

II.5.2) Declaration of variables and constantes 

Following our exploration of the data types used in algorithms, let's now delve into the 

process of declaring variables and constants. 

II.5.2.1) Declaration of variables 

Declaring a variable involves assigning it a name (identifier) and a type.  

The declaration of a variable begins with the keyword VAR, followed by the variable name, 

followed by a colon " : " and then the variable type. The declaration syntax is as follows:  

VAR <name_Variable> : <type_Variable>; 

Where: <name_Variable> is the identifier designating the declared variable, and 

<type_Variable> is the variable’s type. The latter can be any elementary or structured 

data type. 

Example: 

VAR age: Integer;  

VAR avg: Real;  

VAR name: String;  

VAR admitted: Boolean;  

VAR famSit: Character;  



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 35  Dr. Abderrahmane Kefali 

Remarks : 

• Il est possible de placer plusieurs déclarations de variables dans la même ligne séparées 

par des points virgules. 

• The declaration of a variable involves reserving memory space corresponding to the type 

of the declared variable. 

• A single VAR keyword is sufficient to declare multiple variables, even of different types. 

The scope of this keyword extends until the end of the declaration section of the 

algorithm and the beginning of the body. 

• If you need to declare multiple variables of the same type, there's no need to create a 

separate line for each variable. You can declare them all at once on the same line, 

separating them with commas. 

• It is also possible to place multiple variable declarations on the same line, separated by 

semicolons. 

Example: 

 VAR  a : Intger ; 

 VAR  b : Intger ; 

 VAR  c : Intger ; 

 VAR  avg : Real ; 

 VAR  admitted : Boolean ; 

These declarations can be refined as follows: 

 VAR  a,b,c : Integer; avg : real; admitted : Boolean;  

II.5.2.2) Declaration of constants 

La déclaration d’une constante commence par le mot clé CONST suivi par le nom de la 

constante suivi par le caractère égale " = " suivi par la valeur de la constante. La syntaxe de 

déclaration est le suivant : 

The declaration of a constant begins with the keyword CONST, followed by the constant 

name, followed by the equals sign " = ", and then the constant value. The declaration syntax 

is as follows:  

CONST <name_Constant> = <value_Constant> ; 

Here: <name_Constant> is the identifier designating the declared constant, and 

<Value_Constant> is the value of the constant.  

 

Examples : 

CONST  pi = 3.14 ; 

CONST  Number = 10 ; 

CONST  Point = '.' ; 

Remarks:  

• A single keyword CONST is sufficient to declare multiple constants. 

• Multiple constant declarations can be placed on the same line separated by semicolons. 

• Character constants must be enclosed in single quotes  " ' ". 

• Constant declarations come before variable declarations. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 36  Dr. Abderrahmane Kefali 

Example: 

The previous example is equivalent to this one: 

CONST  pi = 3.14; Number = 10; Point = '.'; 

II.6) Basic Operations 

The body of the algorithm encompasses a series of instructions designed to manipulate the 

data declared in the algorithm's declaration section. These instructions combine the data 

using various operators to create expressions. Understanding the fundamentals of operators, 

operands, and expressions is crucial to effectively utilize them in algorithm construction. 

We will first address the concepts of operators, operands, and expressions. 

II.6.1) Operator and Operand 

As previously explained, the type declaration serves to specify the set of operations that can 

be applied to variables of that type.  

An operator is a symbol that denotes an operation, which either acts on variables or performs 

calculations.  

An operand is an entity, such as a variable, constant, or expression, utilized by an operator. 

There are various categories of operators. Operators that operate on two operands are 

called binary operators, while those that operate on a single operand are called unary 

operators. 

II.6.1.1) Arithmetic Operators  

These are the usual arithmetic operations. 

+ : Addition   Div : Integer division 

- : Subtraction   Mod : Modulo (remainder of integer division) 

* : Multiplication  ^ : Exponentiation (Power) 

/ : Division 

Finally, you can use parentheses with the same rules as in mathematics.  

It should be noted that the operators mentioned earlier are binary operators except for the  "-

" operator, which can also be unary and indicates a change in sign.  

Addition, subtraction, multiplication, and division are applicable to integer and real operands, 

while div and mod are only applicable to integer operands. 

II.6.1.2) Logical Operators  

These operators are used to connect logical or boolean operands. These operators are 

NOT, AND, OR.  

NOT is a unary operator that negates a logical value. AND and OR are binary operators that 

combine two logical operands. 

II.6.1.3) Comparison Operators 

Comparison operators are used to compare two values of the same type and return a 

boolean result (true or false) based on order relations: natural order for integers and real 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 37  Dr. Abderrahmane Kefali 

numbers, and ASCII lexicographic order for characters and strings. These operators include 

"<", ">", "=", "≠", "≤", "≥".  

Comparison operators can be applied to operands of type integer, real, character, or 

string. 

II.6.2) Expression 

An expression is a combination of operands linked by operators, and it evaluates to a single 

value. The operands can be direct values, constants, variables, or other expressions.  

Every expression is associated with a type, which is the type of the resulting value of that 

expression. However, based on the types of operators and operands within the expression, 

various types of expressions can be distinguished, including arithmetic expressions, logical 

expressions, character type expressions, and so on. 

Examples: 

Let a and b be two integer variables: 

• 12.5 * a + (b/2)  is an arithmetic expression, 

• a > b et b ≥ c     is a logical expression. 

II.6.2.1) Validity of an expression 

To ensure the validity of an expression and determine its type, it is essential to check the 

syntax of the expression, the compatibility of the operand types it consists of, and the validity 

of the operators involved. The type of the expression is determined by the types of its 

operands. Consequently, it is necessary for the operand types of an operator to be 

compatible. For instance, adding an integer and a character doesn't make sense. A 

particular case is the one involving integers and real numbers. These can appear together in 

the same expression, and the type of the resulting expression is real. 

II.6.2.2) Evaluation of an expression  

The evaluation of an expression is based on the priority rules between operators according 

to the following order (from highest to lowest precedence): 

1. Unary operators applied to a single operand: Logical NOT, Unary – 

2. Power operator: ^ 

3. Multiplicative operators: *, /, div, mod, Logical AND 

4. Additive operators: +, -, Logical OR 

5. Relational operators: <, ≤, >, ≥, =, ≠ 

Remarks : 

• For operators of the same priority, the expression is evaluated from left to right. 

• Logical values are also ordered such that Faux < Vrai. 

• If there are parentheses, start by evaluating the innermost ones. 

• To avoid any ambiguity, it is advisable to always use parentheses. 

 

 

 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 38  Dr. Abderrahmane Kefali 

Example: 

Const i=3; 

Var j,k : Integer; x,y,z : Real ; 

  A,B : Boolean; c: Character; ch1,ch2 : String; 

Evaluate and determine the type of the following expressions : 

• 12 * 3 + 5   is correct and has the value of 41 (Integer value) 

• 12 * (3 + 5.1)   is correct and has the value of 41 97.2 (Reel type) 

• -x - k div 3  is correct and is of Real type 

• z mod j + i   is incorrect because MOD is not valid for Real type 

• NON y ET B > 0  is incorrect : NOT should be applied to Boolean 

• c='c' OU c='t'   is incorrect : OR is not valid for Character type 

• (c='c') OU (c='t')  is correct and is of Boolean type 

II.7) Basic instructions  

An instruction is a basic action that commands the computer to perform a calculation or to 

communicate with one of its input or output devices.  

In algorithmics, there are three basic instructions: assignment, and input/output instructions. 

II.7.1) Assignment instruction 

Assignment is an operation that allows assigning (attributing) a value to a variable. It is 

denoted by the symbol  «  ». The syntax of this instruction is as follows:  

<Variable>  <Value> ; 

It is read as: <Variable> receives <Value>  or <Variable> gets <Value>. 

The left-hand side of an assignment (<Variable>) must be a variable name, while the right-

hand side (<Value>) can be a direct value, a constant, another variable, or an expression. In 

the case of an expression, it is evaluated, and its result is stored in the variable. 

Examples: 

A   3 ; assign the direct value 3 to variable A. 

B   A ; assign the content of variable A, which is 3, to variable B. 

B   B - 2 ; evaluate the expression B-2 and put the result (equal to 1) into 

    variable B. 

Remarks: 

1) Assignment copies the value from the right-hand side to the variable on the left-hand side 

without modifying the right-hand side. 

2) In an assignment, the type of the value (right-hand side) must match the type of the 

variable (left-hand side). 

Exercise: 

What will be the values of the variables used after the execution of the following instructions?  



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 39  Dr. Abderrahmane Kefali 

ALGORITHM Test1 ; 
     

VAR A,B: Integer; R:Real; 
Solution   

BEGIN 
Instruction A B R   

  A  4 ; 1 4 / /   

  B  A + 2 ; 2 4 6 /   

  R  B / A ; 3 4 6 1.5   

  A  A div 3 ; 4 1 6 1.5   

  B  3 ; 5  1 3 1.5   

  R  (R * 2)/B ; 6 1 3 1   

END. 
      

II.7.2) Input/Output instructions 

Let's imagine that we've created an algorithm to calculate the double of a number, let's say 5. 

If we've kept it very simple, we might have written something like this: 

ALGORITHM double ;  

VAR A,B :integer ; 

BEGIN 

 A  5 ; 

 B  A * 2 ; 

END. 

On one hand, this algorithm gives us the double of 5. That's fine, but if we want the double of 

a number other than 5, we would need to rewrite the algorithm. 

On the other hand, the result is calculated by the machine, but it keeps the result to itself. 

The user executing this algorithm will never know what the double of 5 is. 

Thankfully, there are instructions that allow the machine to interact with the user.  

One of these instructions enables the user to input values from the keyboard for the 

algorithm to use. This operation is called reading. 

Another instruction allows the algorithm to communicate values to the user by displaying 

them on the screen. This operation is called writing. 

II.7.2.1) Reading (input) instruction 

Reading is a basic action that allows to input a value from the keyboard and assign it to a 

variable. The syntax of this instruction is as follows: 

 READ(<variable>) ;  

This instruction involves storing the value entered by the user via the keyboard into the 

memory location allocated for <Variable>.  



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 40  Dr. Abderrahmane Kefali 

During execution, the machine waits for the user to input the value for <Variable> using 

the keyboard. Subsequently, the user must press the Enter key " " to signal the completion 

of the input operation. 

Example :  

Var x,y:Integer; a:Real; 

READ(x) ; 

READ(y) ; 

READ(a) ; 

Remarks :  

• The value entered via the keyboard must be compatible with the receiving variable. 

• Multiple read instructions can be combined within a single statement by separating the 

variables to be read with commas. Thus: 

 READ(v1);READ(v2);…;READ(vn);  

Is equivalent to:  

 READ(v1,v2,… ,vn); 

Example :  

The reading instructions in the previous example can be grouped into a single statement as 

follows: 

 READ(x,y,a) ; 

II.7.2.2) Writing (output) instruction 

Writing is an instruction that allows displaying a value on the screen. This value can be a 

direct value, constant, the content of a variable, a message, the result of an expression, … 

The syntax of this instruction is as follows: 

WRITE(Value) ; 

Example :  

WRITE("The mark: ");  displays the message  "The mark: ". 

WRITE(mark);   displays the content of the variable mark. 

WRITE(6*2+5) ;  evaluates the expression 6*2+5 and displays its result. 

Remarks :  

• Multiple writing instructions can be grouped into a single instruction, separating the 

values to display with commas. 

• Messages to be displayed must be enclosed in quotation marks.  

Example :  

WRITE("The mark : ", mark, "/20") ; 

This instruction displays the message "The mark:" followed by the content of the variable 

mark, followed by the string "/20." 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 41  Dr. Abderrahmane Kefali 

II.8) Building a simple algorithm 

To build an algorithm, you need to combine all the concepts presented above. As a result, 

the algorithm takes the following form: 

• Header: Indicates the name of the algorithm. 

• Declaration Part: Where we describe the objects we will use in the algorithm (variables, 

constants, types, etc.). 

• Algorithm Body: Encompasses all the instructions of the algorithm placed between 

BEGIN and END. These instructions are typically presented in the following order: 

- Data Input: we should first gather the necessary data through reading. 

- Data Processing: we perform the necessary operations to solve the problem 

using assignment instructions. 

- Result displaying: Finally, we display the results obtained using the writing 

instruction. 

Recall that the structure of an algorithm takes the following form: 

ALGORITHM <name of the algorithm>;   Header 

Const <list of constants>; 

Type <list of types >;    Declaration part 

Var <list of variables>;   

BEGIN 

<Sequence of actions>    algorithm body 

END. 

Example: 

The algorithm for calculating the sum of two integer numbers is as follow: 

First version: 

ALGORITHM  sum; 

VAR x,y,s:Integer; 

Begin 

WRITE("Enter the first number: "); 

READ(x); 

WRITE("Enter the second number: "); 

READ(y); 

s  x + y; 

WRITE("The sum of the 2 numbers is ",s); 

End. 

 

 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 42  Dr. Abderrahmane Kefali 

Second version: 

ALGORITHM  sum; 

VAR x,y,s:Integer; 

Begin 

WRITE("Enter 2 numbers: "); 

READ(x,y); 

s  x + y; 

WRITE("The sum of the 2 numbers is ",s); 

END. 

II.9) Representation of an Algorithm Using a Flowchart 

Les opérations dans un organigramme sont représentées par les symboles dont les formes 

sont normalisées. Ces symboles sont reliés entre eux par des lignes fléchées qui indiquent le 

chemin. Les principaux symboles sont les suivants: 

We have already seen that an algorithm can be formalized either in natural language or in 

pseudocode. However, there is a third way to represent algorithms: the flowchart. The 

flowchart is a graphical representation of a problem's solution, which makes it easy to 

understand but, on the other hand, it tends to take up a lot of space. 

Operations in a flowchart are represented by symbols with standardized shapes. These 

symbols are connected by arrows, indicating the flow of the algorithm. The main symbols are 

summarized in the following table: 

Symbol 
Role 

 

Used to mark the beginning and end of a flowchart. 

 

Used to mark read and write operations. 

 

It is used for assignment operations (actions). 
 
 

 

Used to represent tests or conditional branching. 

 
 
 

 

Symbol of connection between various symbols. It also 
indicates the sequencing of operations. 

Table II.1. Symbols used in a flowchart. 

The transition from an algorithm to a flowchart is done by representing each of its instructions 

with the corresponding graphical shape and connecting them with arrows. 

Remark: 

Flowcharts do not contain declarations. 

 

Begin/ End 

Non Oui 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 43  Dr. Abderrahmane Kefali 

Example: 

The previous algorithm for calculating the sum of two numbers can be represented by the 

flowchart illustrated in Figure II.3. 

 

Figure II.3. Organigramme du calcul de la somme de deux nombres 

II.10) Translation into C language 

We have mentioned that the next step in the problem-solving process, after establishing the 

algorithm, is to translate it into a computer program by expressing the solution steps 

described in the algorithm using a programming language.  

In fact, a large number of programming languages have been proposed, and this number 

continues to grow. Each of these languages has its own characteristics, advantages, and 

limitations. Therefore, the choice of a language to use depends on various factors, such as 

the type of the intended application, hardware and software architecture, portability, security, 

and more. In the context of this course, we have opted for one of the most widely used 

languages: the C programming language. 

II.10.1) The C language: Presentation 

The C language is an imperative and general-purpose programming language invented in 

1972 by Dennis Ritchie and Ken Thompson, researchers at Bell Labs, with the goal of 

developing the famous UNIX operating system. Ritchie and Thompson drew inspiration from 

languages like B and BCPL (Basic Combined Programming Language) to create the new C 

language. 

C has become one of the most widely used programming languages today. Many more 

modern languages like C++, Java, C#, and PHP borrow aspects from C. While C was initially 

created to develop UNIX, it is still widely used for system programming. Therefore, the 

kernels of major operating systems like Windows and Linux are largely developed in the C 

language. 

Begin 

WRITE("Enter 2 numbers: ") 

 

s  x + y; 

 

READ(x,y)

; 

 

WRITE ("The sum of the 2 numbers is:", s); 

 

End 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 44  Dr. Abderrahmane Kefali 

II.10.2) Why the C language ? 

The C language is one of the most widely used programming languages today. Its main 

advantages are as follows: 

• C is a general-purpose (universal) language. It is not oriented towards a specific 

application domain. 

• It is a compact language. It consists of a core set of operators and predefined functions 

with a simple and efficient formulation. This makes learning the C language less 

challenging than many other recent languages. 

• It is a « close-to-the-machine » language. It provides operators that are very close to 

those of the machine language and functions that allow direct access to the computer's 

internal functions, especially for memory management. This enables the development of 

efficient and fast programs. 

• It is a portable language. This means that a program written in C, following the ANSI-C 

standard, can run without modification on any operating system after recompilation. 

• It is an extensible language. In addition to standard functions, many function libraries 

have been developed. 

• It is a modular language. A program can consist of multiple modules or « source files », 

which promotes code structuring, comprehensibility, and code reusability. 

II.10.3) Basic Elements of the C language 

In this section, we will briefly present the basic elements of the C language. 

II.10.3.1) Structure of a C program 

The simplest structure of a C program is as follows: 

<Library Declarations> 

main() 

{ 

    <Constant and Variable Declarations> 

    <Instructions> 

} 

The first part includes the declaration of the libraries of functions to be used in the program. 

Among these libraries, we mention: 

• stdio.h : This is the library of standard input and output functions. Including the 

stdio.h library is done using the preprocessor directive:  #include <stdio.h> 

• math.h : This is the library of basic mathematical functions. Including the math.h 

library is done using the preprocessor directive:  #include <math.h> 

It is important to pay attention to the following elements: 

• main is a predefined name of the main function that must exist in a C language 

program. It should be in lowercase. 

• The parentheses after the main function are mandatory. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 45  Dr. Abderrahmane Kefali 

• The curly braces ({ and }) mark the beginning and end of a block of instructions or a 

function. They replace BEGIN and END in algorithmic notation. 

II.10.3.2) Declaration section 

a) Identifiers 

The identifiers in the C language have the same characteristics as in algorithmics. 

Furthermore, C has the feature of being case-sensitive, meaning it distinguishes between 

uppercase and lowercase letters. 

Example: 

The identifiers: NAME, Name, and name are  3 different identifiers in C language 

b) Predefined types in the C language 

The basic data types in the C language include characters, integers, and floating-point 

numbers (real numbers). In C, there are multiple integer and real number types, depending 

on the number of bytes they are encoded on and their format, i.e., whether they are signed 

(having a sign - or +) or not. By default, data is signed. 

The various data types recognized in the C language are summarized in the following 

comprehensive table: 

Data type Signification Size 

(Bytes) 

Range of acceptable values 

Char Character 1 -128 à 127 

unsigned char Unsigned Character 1 0 à 255 

short  Short Integer 2 -32768 à 32767 

unsigned short  Unsigned Short Integer 2 0 à 65535 

Int Integer 4 -2147483648 à 2147483 647 

unsigned int Unsigned Integer 4 0 à 4294967295 

long  Long Integer 4 -2147483648 à 2147483647 

unsigned long  Unsigned long Integer 4 0 à 4294967295 

Float Floating (real) 4 3.4×10-38 à 3.4×1038 

Double Double Floating 8 1.7×10-308 à 1.7×10308 

long double Long Double Floating 10 3.4×10-4932 à 3.4×104932 

Table II.2. Basic Data Types in the C Language. 

Remarks : 

• The amount of memory space occupied by different types depends on the machine 

where the compiler is implemented. In the previous table, we considered the case of a 

machine with a 32-bit microprocessor. 

• The C language does not have Boolean and String data types. 

• In C, there is no distinction between the character itself (e.g., 'A') and its ASCII code. 

Therefore, the char type can be represented as an integer encoded on 1 byte. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 46  Dr. Abderrahmane Kefali 

c) Declaration of variables 

The declaration of a variable begins with the variable's type, followed by an identifier 

indicating the variable's name, optionally followed by the "=" character and the initial value of 

the variable. The declaration must be terminated by a semicolon. Therefore, the declaration 

of a variable can be done in two possible ways: 

  <type_Variable> <name_Variable>; 

  <type_Variable> <name_Variable>=<initial_Value>; 

With: <type_variable> being the data type of the variable (one of the types in the 

following table), <name_Variable>  is the variable's name, and <initial_Value>  is the 

initial value you want to assign to the variable. 

Examples: 

int x,y; 

float z; 

char a; 

d) Declaration of constants 

The declaration of constants in the C language can be done in two ways: using the const 

keyword or using the #define directive. We limit ourselves here to declaration using 

#define as this method is safer from a data protection standpoint. 

Therefore, the declaration begins with the #define keyword, followed by a space, the 

name of the constant, another space, and finally, the value of the constant. It takes the 

following form: 

#define <name_constant> <value_Constant> 

Remarks: 

• Each constant must be declared on a separate line, and these lines do not end with a 

semicolon. 

• Character constants should be enclosed in 2 apostrophes. 

• String constants should be enclosed in double quotation marks. 

Examples: 

#define nb 2  //Integer constant named nb with a value of 2 

#define pi 3.14  //Constant named pi with a value of 3.14 

#define b 'v'  //Character constant named b with a value of 'v' 

II.10.3.3) Processing Section 

a) Operators 

The operators in the C language are as follows: 

a.1) Arithmetic Operators 

The classic arithmetic operators include the unary operator - (sign change) as well as the 

binary operators: 

+ : addition  - : subtraction       % : remainder of the division 

* : multiplication / : division (integer and real) 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 47  Dr. Abderrahmane Kefali 

Remark: 

C only uses the "/" notation for both integer division and floating-point division. If both 

operands are of integer type, the "/" operator will produce integer division (the quotient of the 

division). However, it will deliver a floating-point value as soon as one of the operands is a 

float. So, for example, if a=9/6; will return 1 because both operands are integers. In 

contrast, a=9.0/6; will return 1.5 because one of the operands is a real number (9.0). 

a.2) Logical Operators 

They allow the creation of logical or boolean expressions, thus enabling the formation of 

complex expressions from simple ones. 

! : Negation    && : logical AND  || : logical OR 

Since the boolean type does not exist in C, the value returned by logical operators is an 

integer (int type), which is 1 if the condition is true and 0 otherwise. 

a.3) Relational Operators  

These operators are used to perform tests between the values of two expressions, and they 

are primarily utilized in comparison expressions. 

> : strictly greater  >= : greater than or equal  < : strictly less 

<= : less than or equal == : equal   != : not equal 

The value returned is of type int: 1 if the condition is true and 0 otherwise. 

b) Assignment statement 

In the C language, assignment is symbolized by the "=" sign. Its syntax is as follows: 

<name_variable> = <value> ; 

The right-hand side <value> can be a direct value, a constant, another variable, or an 

expression. 

Examples: 

A  = 3 ;     //Assign the direct value 3 to the variable A 

B  = A ;     //Assign the content of the variable A to the variable B 

B  = B - 2 ;  //Store the result of the expression B - 2 in the variable B 

c  = 'K' ;   //Assign to the variable c the character 'K' 

Remark: 

In C, assignment is not just an instruction like in other languages; it's a full-fledged operator. 

As a result, an expression like a=b=c=1 is entirely valid, allowing for multiple assignments. 

You can even perform "chained assignments" and build expressions like a=(b=10)+2; 

which assigns the value 10 to b and 12 to a. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 48  Dr. Abderrahmane Kefali 

c) Reading (input) 

The reading is done in the C language using the scanf function3 from the stdio.h 

library.  

The scanf function allows to input data from the keyboard and store it at the addresses 

specified by the function's parameters. The syntax of this function is as follows: 

scanf("<control string>", &<variable1>, &<variable2>,…) 

The function's parameters consist of a <control string> and the address (indicated by 

the "&" sign) of the variables where the input data should be stored.  

The <control string> specifies the format in which the input data is to be converted. 

Thus, for each variable, a format specifier is specified. Format specifiers are indicated by a 

character preceded by the "%" sign. The format code and the variable type must match.  

The input formats for the scanf function are summarized in the following table: 

Format Data type Data representation 

%d  int Signed decimal 

%hd  short int Signed decimal 

%ld  long int Signed decimal 

%u  unsigned int Unsigned decimal 

%hu  unsigned short int Unsigned decimal 

%lu  unsigned long int Unsigned decimal 

%f  float Floating-point, fixed decimal 

%lf  double Floating-point, fixed decimal 

%Lf  long double Floating-point, fixed decimal 

%c  char Character 

%s  String of characters 

Table II.3. Input and Output Formats in the C Language. 

Example :   

int a; float b,c; 

Scanf("%d",&a) ; 

Scanf("%f%f",&b,&c) ; 

Remarks : 

• Data entered via the keyboard should be separated by spaces or "Enter" unless they are 

characters. 

• It is possible to specify the number of digits or characters to be read. For instance, "%3d" 

for an integer spanning 3 digits, including the sign. 

 

3 Let's now consider the function as an instruction that performs a specific task. In the second 

semester, we will study functions and their characteristics in detail. 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 49  Dr. Abderrahmane Kefali 

d) Writing (output) 

Writing is done using the printf function from the stdio.h library.  

The printf function allows to display data on the screen as specified by the function's 

parameters. The syntax of this function is as follows: 

printf("<control string>",<expression1>,<expression2>,…); 

The control string contains the text to be displayed and the format specifiers 

corresponding to each expression in the parameter list. Format specifications serve the 

purpose of specifying the format of data to be displayed. They are introduced by the "%" 

character, followed by a character indicating the print format. The format specifiers are the 

same as those presented in the table II.3 above. 

Example: 

float a=3.14; 

printf(”The value of P is %f”, a);  

In this example, the string "The value of P is " is displayed on the screen, followed by 

the value 3.14 stored in the variable a. 

Remark : 

We can specify certain parameters of the print format, such as the minimum width of the print 

field (e.g., "%4d" specifies that at least 4 characters will be reserved to print the integer), and 

the precision of the fractional part (e.g., "%.3f" means that a floating-point number will be 

printed with 3 digits after the decimal point). When the precision is not specified, it defaults to 

6 digits after the decimal point. 

II.10.3.4) Example of a C Program  

The following program calculates the sum of two integers, as described in the previous 

algorithm. 

#include <stdio.h> 

main(){ 

int x,y,s; 

printf("Enter two numbers: "); 

scanf("%d%d",&x,&y); 

s = x + y; 
printf("The sum of the two numbers is %d",s); 

} 

II.11) Exercises  

Exercise II.1 : 

Write an algorithm that allows entering the marks for the "Algorithms and Data Structures" 

course of a first-year Mathematics student, and calculates and displays his average, knowing 

that the latter is calculated using the following formula: 

𝐴𝑣𝑔 =
𝑇𝑊 + 𝑃𝑊

2
× 0.4 + 𝐸𝑥𝑎𝑚 × 0.6 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 50  Dr. Abderrahmane Kefali 

Exercise II.2 : 

Let A, B, and C be three logical variables. Write an algorithm that reads the values of these 3 

variables from the keyboard and calculates and displays the value of the following 

expression: 

𝑹 = (𝑨 + 𝑩). (𝑨̅ + 𝑪). (𝑩 + 𝑪̅) 

Exercise II.3 : 

The torr (Torr) is a unit of pressure measurement. It is defined as the pressure exerted at 0°C 

by a column of 1 millimeter of mercury. It was later indexed to atmospheric pressure: 1 

standard atmosphere corresponds to 760 torrs and is equal to 101325 Pascals. 

Write an algorithm that reads a pressure in torrs and converts it to pascals. 

Exercise II.4 : 

Consider a regular pyramid with a square base.  

Write an algorithm that input the height of the pyramid and the length of the side of its square 

base, and calculates and displays its surface area.  

Recall that the area of a triangle is equal to half of the product of the length of the base of the 

triangle by its height. 

Exercise II.5 : 

A magician asks a spectator to think of a number and write it on a slate. He invites the 

spectator to hide this slate for the duration of the act. He then asks him to add 3 and multiply 

this sum by the number he initially thought of. He insists: do not forget this result. Then 

calculates the square of the initial number. Finally, he asks the spectator to subtract this 

result from the previous one. The magician requests the spectator to say the final result out 

loud.  

Establish the pseudo-code algorithm corresponding to this statement. 

II.12) Solution of the exercises  

Exercise II.1 : 

Algorithm average ; 

Var TW,PW,Exam,Avg:Real ; 

Begin 

Write("Enter the marks for Tw,PW,and exam:"); 

Read(TW,PW,Exam); 

Avg  ((TW+PW)/2)*0.4 + Exam*0.6; 

Write("The average is: ",Avg,"/20"); 

End.   

  



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 51  Dr. Abderrahmane Kefali 

Exercise II.2 : 

Algorithme expression_logique; 

Var A,B,C,R:logique; 

Début 

Ecrire("Donner la valeur de A, B, et C: "); 

Lire(A,B,C); 

R  (A ou B) et (non A ou C) et (B ou non C); 

Ecrire("Le résultat est: ",R); 

Fin; 

Exercise II.3 : 

1 atmosphere = 760 torr =  101325 Pa   which implies that 760 torr = 101325 Pa 

So 1 torr = 101325/760 = 133.32 Pa 

Algorithm conversion; 

Var torr,pa:Real; 

Begin 

Write("Enter the pressure in torrs: "); 

Read(torr); 

pa  torr * 101325/760; 

Write("The pressure in pascals id: ",pa); 

End. 

 

Exercise II.4 : 

It is worth noting that in order to calculate the area of the triangle, we need to know the 

height of the triangle (the slope's height). Do not confuse the slope's height with that of the 

pyramid.  

Consider the pyramid illustrated in the following figure: 

 

The height of a regular pyramid is the distance between its apex (Sommet) and the center of 

its base along an axis perpendicular to the base (PO in the figure above). In contrast, the 

height of the triangular face in the pyramid is the distance between the apex of the pyramid 

and the midpoint of one of the sides of the base (PE in the figure above).  

The height of the triangular face can be calculated by applying the Pythagorean theorem: 

𝐸𝑂2 + 𝑂𝑃2 = 𝑃𝐸2 ⇒ 𝑃𝐸 = √𝐸𝑂2 + 𝑂𝑃2 



Algorithmics and Data Structures 1 Chapter II. Simple Sequential Algorithm  

1st Year Mathematics – University of Guelma 52  Dr. Abderrahmane Kefali 

In this solution, it is assumed that we have a predefined function sqrt for calculating the 

square root of a number. 

Algorithm pyramide ; 

Var height,lenSide,areaPyr,heightTri,areaTri,areaBase:Real ; 

Begin 

Write("Enter the pyramid height:"); 

Read(height); 

Write("Enter the lenght of its base side:"); 

Read(lenSide); 

heightTri  sqrt((lenSide/2)^2+ height^2); 

areaTri  (lenSide*heightTri)/2; 

areaBase  lenSide*lenSide; 

areaPyr  areaTri*4+areaBase; 

Write("The pyramid’s area is: ",areaPyr); 

End.    

Exercise II.5 : 

Algorithm magician; 

Var nb,r,carre:integer; 

Début 

Write("Think of a number and write it down:"); 

Read(nb); 

r  nb+3; 

r  r * nb; 

carre  nb * nb; 

r  r - carre; 

Write("The final result is: ",r); 

End. 

II.13) Conclusion 

In this chapter, we have presented the basic concepts necessary for building an algorithm in 

pseudocode. We have tried to cover all the concepts and explain them through examples. 

The chapter also illustrates how to graphically represent an algorithm to obtain a flowchart. 

Finally, the chapter introduces the C language and explains its basic elements to show how a 

C program is derived from an algorithm. 



1st Year Mathematics – University of Guelma 53  Dr. Abderrahmane Kefali 

III. Chapter III. Conditional 

Structures 
 

 

III.1) Introduction 

In the previous chapter, we saw that an algorithm consists of two essential parts: the 

declaration part, which contains the definition of all data elements to be used in the 

algorithm, and the processing part, which gathers the set of instructions that manipulate the 

declared data. The instructions discussed in the previous chapter (assignment, input, and 

output) are elementary instructions, and the sequence of these instructions allows us to 

compose a sequence (block) that performs more or less complex operations. However, 

sequential instructions (instructions in a sequence) are executed one after the other, and an 

instruction can only be executed when all the preceding instructions have already been 

executed. As a result, each sequential instruction is executed once, and only once, in the 

order they were written. 

Indeed, the problems we deal with often require the examination of various situations that 

cannot be handled by simple sequences of actions. In such cases, we need to choose 

between 2 or more processing depending on whether a certain condition is met or not. Since 

we have multiple situations, and we do not know in advance which case we will have to 

execute, in the algorithm, we must account for all possible cases. Conditional structures 

(tests) allow us to achieve this. There are several forms of conditional structures, and they 

are the subject of the current chapter. 

III.2) Notion of Condition 

In algorithms, a condition is merely a logical expression that can become a true or false 

statement depending on the values that make up the expression.  

The condition can be simple or compound. 

III.2.1) Simple Conditions  

A simple condition involves comparing two expressions of the same type. It is composed of 

three elements: an expression, a comparison operator, and another expression. Comparison 

operators have already been introduced in Chapter 1.  

The combination of these three elements forming the condition, if you will, is a statement that 

is either TRUE or FALSE at a given moment. 

Examples :  

 val=5  a<b  x+3 ≥ 5*y-4   'c'≠ 'a' 

Are simple conditions. 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 54  Dr. Abderrahmane Kefali 

III.2.2) Compound Conditions 

These are conditions formed by combining multiple simple conditions using logical AND and 

OR operators. 

Examples: 

 nb≥0 and nb≤20  x=0 or y=0 c≠'O' and (c='N' or c='n') 

Are compound conditions. 

Remark: 

Ternary comparisons are not allowed in algorithmics. They must be represented using 

composite conditions. 

Example: 

The condition  a > b > c  is not a valid condition,  

It must be decomposed into   a>b and b>c 

III.3) Simple Conditional Structures (IF Statements) 

Simple conditional structures allow the execution of a sequence of instructions only if a 

condition is met. The failure to meet the condition corresponds to no action to be taken. 

III.3.1) Algorithmic Syntax 

The syntax of a simple conditional structure is as follows: 

IF <Condition> THEN <block of instructions>; 

The IF statement in its simplest form is used to test the validity of a condition. If the 

condition is true, then the block of instructions following THEN is executed. If the condition is 

false, it is the instruction that follows the conditional structure in the algorithm that is 

executed. 

Example: 

Write an algorithm that asks for a number and determines if it is negative. 

Solution : 

ALGORITHM test; 

VAR a : Integer; 

BEGIN 

Write("Enter a number : ");  

Read(a); 

IF a<0 THEN Write("Negative number");  

END. 

In this example, we test if the value of the variable  a  is less than 0; if yes, we display the 

message "Negative number," otherwise, we do nothing. 

Remarks: 

• The condition can be simple or composite. 

• There is no semicolon after the condition or after THEN. 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 55  Dr. Abderrahmane Kefali 

• The block of instructions can contain one or more instructions. If the sequence contains 

multiple operations, they are separated by semicolons and enclosed between BEGIN 

and END. Otherwise, the compiler will consider only the first instruction as subordinate to 

the IF structure. If the sequence contains a single instruction, then the words BEGIN 

and END are not required. 

Example: 

Consider the following two algorithms: 

ALGORITHM test1; 

VAR x,y : Integer; 

BEGIN 

y  7; 

Write("Enter a number : ");  

Read(x); 

If x > 10 Then  

y  x - 2; 

x  y; 

END. 

 

ALGORITHM test2; 

VAR x,y : Integer; 

BEGIN 

y  7; 

Write("Enter a number : ");  

Read(x); 

If x > 10 Then  

   BEGIN 

   y  x - 2; 

   x  y; 

   END. 

END. 

Let's assume that the entered value is 5. What will be the value contained in variable x at 

the end of the two algorithms? 

Solution: 

Algorithm 1:   x = 7 (the initial value of y) 

Algorithm 2:   x = 5 (remains unchanged) 

Since the entered value of x is 5, the condition x < 10 is not satisfied in both algorithms. 

In Algorithm 1, only the instruction y  x - 2 is subordinate to the IF structure, and 

therefore the instruction x  y is executed. As a result, x takes on the initial value of y, 

which is 7. 

In Algorithm 2, the two preceding instructions are part of the sequence that executes when 

the condition is satisfied. Since the condition is false, these instructions are not executed, 

and we proceed directly to the END. The value of x remains unchanged (x = 5). 

III.3.2) Flowchart 

The simple conditional structure can be represented in a flowchart as follows: 

 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 56  Dr. Abderrahmane Kefali 

 

Figure III.1. Flowchart of a simple conditional structure. 

Example: 

The flowchart corresponding to the algorithm that checks if an entered number is negative is 

as follows: 

 

 

Figure III.2. Flowchart corresponding to the algorithm that tests if a number is negative 

III.3.3) C language Syntax 

The syntax of a simple conditional structure in the C language is as follows: 

if(<condition>) <block of instructions>; 

Remarks: 

• The condition must be enclosed in parentheses. 

• There is no semicolon after the condition. 

 a < 0 True 

False 
Write("Negative number") 

Begin 

Write("Enter a number") 

Read(a) 

End 

 Condition 

Block of instructions 

True 

False 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 57  Dr. Abderrahmane Kefali 

• If the block of instructions consists of multiple instructions, it should be enclosed in 

braces ({ and }), and if it contains a single instruction, braces are not mandatory. 

Example: 

The C program that determines if an entered number is negative is as follows: 

main(){ 

  int a; 

  printf("Enter a number : ");  

  scanf("%d",&a); 

  if(a<0)printf("Negative number");  

} 

III.4) Compound Conditional Structures (IF - ELSE statements) 

The compound conditional structure (also called alternating conditional structure) allows to 

execute a sequence of instructions if a condition is satisfied and to execute another 

sequence if the condition is not satisfied. 

III.4.1) Algorithmic Syntax 

The general form of a compound conditional structure is as follows: 

IF <Condition>  THEN  <block of instructions1> 

ELSE <block of instructions2>; 

In this form, the condition is evaluated. If it is true, then <block of instruction1> will 

be executed. If it is false, <block of instruction2> will be executed. 

Remarks: 

• The condition can be simple or composite. 

• In algorithms, there is never a semicolon before ELSE. 

• If a block of instructions consists of two or more instructions, it must be enclosed by the 

keywords BEGIN and END. If it contains only one instruction, BEGIN and END are not 

required. 

• The two blocks of instructions cannot be executed simultaneously. It's logical because a 

condition cannot be both true and false at the same time. These two blocks are executed 

alternately, which is why they are called alternate structures. 

Example: 

Write an algorithm to input a number and determine whether it is even or odd. 

Solution : 

ALGORITHM test; 

VAR nb : Integer; 

BEGIN 

Write("Enter a number : ");  

Read(nb); 

IF nb mod 2 = 0 THEN Write("The number is even") 

ELSE  Write("The number is odd"); 

End. 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 58  Dr. Abderrahmane Kefali 

In this example, we are testing whether the remainder of dividing the variable nb by 2 is 

equal to 0. If it is, we display the message "Even number"; otherwise, we display another 

message: "Odd number." 

III.4.2) Flowchart 

The compound conditional structure can be represented in a flowchart as follows: 

 

Figure III.3. Flowchart of a compound conditional structure 

Example: 

The flowchart corresponding to the algorithm that tests the parity of an integer entered by the 

user is as follows: 

 

Figure III.4. Flowchart corresponding to the algorithm that tests the parity of a number 

III.4.3) C language Syntax 

The syntax of a compound conditional structure in the C language is typically written as: 

 

 nb mod 2 = 0 
True False 

Write("Odd number") 

Begin 

Write("Enter a number") 

Read(nb) 

End 

Write("Even number") 

 Condition 

Block of instructions 1 

True False 

Bloc of instructions 2 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 59  Dr. Abderrahmane Kefali 

if(condition) <block of instructions1>; 

else <bloc of instructions2>; 

Remarks: 

• The condition must be enclosed in parentheses. 

• In C language, else can be preceded by a semicolon. 

• If <block of instructions1> (respectively <block of instructions2>) 

consists of multiple instructions, it should be enclosed in braces  ({ and }). If it contains 

a single instruction, braces are not mandatory. 

Example: 

The C program that allows to input a number and determine whether the number is even or 

odd is as follows: 

main(){ 

  int nb; 

  printf("Enter a number : ");  

  scanf("%d",&a); 

  if(a % 2 == 0)printf("The number is even");  

  else printf("The number is odd"); 

} 

III.5) Nested conditional Structures 

It's important to understand that the instruction blocks of IF and ELSE are sequences of 

instructions. These blocks can contain reading, writing, assignment instructions, as well as 

conditional structures. When this occurs, it's referred to as having nested structures. 

III.5.1) Algorithmic Syntax 

The general form of nested conditional structures is as follows: 

IF <Condition1>  THEN  <block of instructions1> 

ELSE  IF <Condition2>  THEN <block of instructions2> 

    ELSE IF <Condition3>  THEN <block of instructions3> 

    ... 

    ... 

   ELSE <block of instructions_n>; 

The execution of the nested structure described above proceeds as follows. 

<Condition1> is evaluated first. If it is satisfied, <block of instruction1> is 

executed. If not, <condition2> is evaluated. If the latter is true, we execute <block of 

instruction2>; otherwise, we move on to evaluating <condition3> and so forth. 

Remarks: 

• Note the absence of semicolons before all the ELSE statements in the nested structure. 

• An ELSE always corresponds to the last IF statement encountered to which an ELSE 

has not yet been assigned. 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 60  Dr. Abderrahmane Kefali 

• The evaluation of conditions occurs from top to bottom until one of them is satisfied. The 

associated block of instructions is then executed, and the processing of the nested 

structure is completed. 

Example: 

Write an algorithm that reads a real number and displays whether this number is positive, 

negative, or zero. 

Solution: 

ALGORITHM test; 

VAR x : Real; 

BEGIN 

Write("Enter a number : ");  

Read(x); 

IF x > 0 THEN Write("The number is Positive ") 

ELSE  IF x < 0 THEN Write("The number is Negative") 

   ELSE  Write("The number is Zero"); 

END. 

III.5.2) Flowchart 

The flowchart corresponding to the nested conditional structures: 

 

Figure III.5. Flowchart corresponding to nested structures. 

III.5.3) C language Syntax 

The nesting of multiple tests is done in the C language as follows: 

 

 

 Condition1 

Block of instructions 1 

True False 

Block of instructions 2 

 Condition2 
True 

 

.........

.. 

 Condition_n 

Block of instructions n 

False 

 
False 

 

False 

 

True 

 

Block of instructions n+1 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 61  Dr. Abderrahmane Kefali 

if(condition1) <block of instructions1>; 

else  if(condition2) <block of instructions2>; 

      else if(condition3) <block of instructions3>; 

        ..... 

       else <block of instructions_n>; 

Example: 

The C program that allows you to enter a real number and determine if it is positive, 

negative, or zero is as follows: 

main(){ 

  float x; 

  printf("Enter a number : ");  

  scanf("%f",&x); 

  if(a>0)printf("The number is Positive");  

  else if(a<0)printf("The number id negative");  

  else printf("The number is Zero"); 

} 

III.6) Multiple-choice structure (CASE statement) 

As we have seen before, nesting conditional structures allows us to handle multiple cases by 

evaluating various conditions. However, nesting a large number of tests tends to make the 

algorithm heavier and more challenging to read and manage. 

Fortunately, we have a structure that makes the task a bit easier, known as the multiple-

choice statement or the selective statement. This structure allows to select or distinguish 

several cases (not just two cases like the alternate conditional structure) based on the values 

of an expression. This expression is called the selector, and it must be a scalar type variable 

or expression (integer, character, or boolean). However, the selective statement 

compares the value of the selector to a list of values and executes a sequence of instructions 

among several options based on the actual value of the selector. 

III.6.1) Algorithmic Syntax 

The syntax of the multiple-choice statement is as follows: 

CASE  <expression>  OF 

 <Value1> : <block of instructions 1> 

 <Value2> : <block of instructions 2> 

 …… 

 <Value_n> : <block of instructions n>  

 OTHERWISE:  <block of instructions (n+1); 

END; 

The CASE statement begins by evaluating and testing the validity of the <expression>. 

The expression's value (if it's valid) is then successively compared to each of the selection 

values. As soon as there is a match, the comparisons are stopped, and the associated block 

is executed. If no value matches, then the block associated with OTHERWISE,  if it exists, is 

executed. 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 62  Dr. Abderrahmane Kefali 

Remarks: 

• In the multiple-choice statement, the order of presentation does not matter. 

• The selector (the selection expression) and the values to choose from must be of the 

same type. 

• If a block of instructions consists of more than one instruction, they must be enclosed 

between BEGIN and END. 

• The default case (OTHERWISE) is optional. It is used to perform a task when none of the 

cases is true. 

• The CASE statement can be replaced by nesting multiple IF - ELSE statements, but 

the reverse is only possible if the tests concern a single variable and the tests for that 

variable are equality tests. 

Example: 

Write an algorithm that allows entering an integer between 1 and 5 and displays it in words. 

ALGORITHM example; 

TYPE Digit = 1..5; 

VAR n : Digit; 

END 

Write("Enter a number between 1 and 5 : ");  

Read(n); 

CASE n OF 

 1: Write("One"); 

 2: Write("Two"); 

 3: Write("Three"); 

 4: Write("Four"); 

 5: Write("Five"); 

 OTHERWISE: Write("Input error"); 

 End; 

END. 

III.6.2) Flowchart 

The formalism for the multiple choice structure in a flowchart is as follows: 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 63  Dr. Abderrahmane Kefali 

 

Figure III.6. Flowchart of a multiple-choice structure. 

III.6.3) C language Syntax 

The multiple-choice conditional structure is expressed in the C language as follows: 

switch(<expression>){ 

  case <value>: <block of instructions1> 

            break; 

  case <value2>: <block of instructions2> 

          break; 

   ............... 

  case <value_n>: <block of instructions n> 

           break; 

  default:   <block of instructions n+1> 

} 

Remarks: 

• The default case is optional. 

• The break keyword is required after each block of instructions to indicate the end of a 

case. If break is omitted, execution continues in the following blocks. 

• The instruction blocks should not be enclosed in braces ({ and }). 

Example: 

The C program that allows to input an integer between 1 and 5 and display it in words is as 

follows: 

 

 

 
expression

=value1 

Block of instructions 1 

True 

 

False 

Block of instructions 2 

True 

 

.........

.. 

Block of instructions n 

False 

 

False 

 

False 

 

True 

Block of instructions n+1 

 
expression

=value2 

 
expression

=value_n 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 64  Dr. Abderrahmane Kefali 

main(){ 

    int n; 

    printf("Enter a number between 1 and 5: "); 

    scanf("%d",&n); 

    switch(n){ 

        case 1: printf("One"); 

                break; 

        case 1: printf("Two"); 

                break; 

        case 1: printf("Three"); 

                break; 

        case 1: printf("Four"); 

                break; 

        case 1: printf("Five"); 

                break; 

        default: printf("Input error"); 

    } 

} 

III.7) Branching statement 

Sometimes, there is a need to break the sequential flow of an algorithm to bypass certain 

instructions or to repeat the execution of a set of instructions. This is where the branching 

instruction comes into play.  

The branching instruction allows us to interrupt the normal execution of the algorithm by 

jumping from one point in the algorithm to another and continuing the execution from that 

point. This is why they are also called jump instructions. 

To perform a branch, you first need to identify the instruction in the algorithm to which you 

want to jump using a label. Then, it's possible to jump to that instruction to execute it (and 

those that follow) by knowing its label.  

The label is an identifier assigned to an instruction in the algorithm for the purpose of 

identifying it. This way, it is possible to go directly to the instruction by knowing its label. 

III.7.1) Algorithmic Syntax 

To assign a label to an instruction, you simply need to write the label (which is an identifier, 

as mentioned earlier) followed by a colon ":" before the instruction.  

Then, the branching or jump to that label is performed using the GOTO instruction while 

specifying the label.  

The syntax is as follows:  

<Lable_name>: instruction i ; 

    .......... 

GOTO A <Label_name>; 

    .......... 

 

 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 65  Dr. Abderrahmane Kefali 

Example: 

The following algorithm allows entering a student's exam mark and, if applicable, the makeup 

exam mark, to determine whether the student is admitted or deferred using branching. 

ALGORITHM example; 

VAR exam, makeup : real; 

BEGIN 

WRITE("Enter the exam mark: "); 

READ(exam); 

IF exam ≥ 10 THEN GOTO label; 

WRITE("Enter the makeup exam mark: "); 

READ(makeup); 

IF makeup ≥ 10 THEN GOTO label; 

WRITE("You are deferred"); 

GOTO last; 

label: WRITE("You are admitted"); 

last: WRITE("End of the algorithm"); 

END. 

Remarks: 

• It is possible to jump to: 

- An instruction that precedes the branching instruction, creating a loop effect. 

- An instruction that follows the branching instruction to advance more quickly in the 

algorithm. 

• It is discouraged to use the branching instruction in order to reduce algorithm complexity 

in terms of time. 

III.7.2) C language Syntax 

The definition of a label in the C language is done in the same way as in algorithmics, by 

writing the label followed by a colon ":" before the instruction to be marked.  

For branching, it is done using the goto statement.  

The syntax is as follows: 

<Label_name>: instruction i ; 

    .......... 

goto <Label_name>; 

Example: 

The program that allows to enter a student's exam mark, and if applicable, the makeup exam 

mark, and determine whether he is admitted or deferred is as follows: 

 

 

 

 

 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 66  Dr. Abderrahmane Kefali 

main(){ 

    float exam,makeup; 

    printf("Enter the exam mark : "); 

    scanf("%f",&exam); 

    if(exam >= 10)goto label; 

    printf("Enter the makeup exam mark : "); 

    scanf("%f",&makeup); 

    if(makeup >= 10)goto label; 

    printf("You are deferred"); 

    goto last; 

    label: printf("You are admitted "); 

    last: printf("End of the algorithm"); 

} 

III.8) Exercises  

Exercise III.1 : 

Write an algorithm that allows to enter a real number from the keyboard and calculates and 

displays its absolute value. 

Exercise III.2 : 

Write an algorithm for entering 3 integer numbers and displaying them in ascending order. 

Exercise III.3 : 

Write an algorithm that allows a hostess to calculate the price of a ticket based on the 

passenger's age. Children under or equal to 2 years old do not pay, those under 10 years old 

(between 3 and 9 years) pay half price, and people between 10 and 27 years old and those 

at least 70 years old (age equal to or greater than 70) receive a 10% discount. The user 

should enter the base ticket price and the passenger's age, and the algorithm calculates and 

displays the price to pay. 

Exercise III.4 : 

Write an algorithm performing addition, subtraction, multiplication, or division of two numbers 

based on the user's choice from a menu. The two numbers and the operation to be 

performed should be entered by the user. 

Exercise III.5 : 

Write an algorithm that repeatedly prompts for a student's mark (between 0 and 20) until a 

valid response is given. Use branching statements to achieve this. 

III.9) Solution of the exercises 

Exercise III.1 : 

Algorithm absolute_Value ; 

Var nb,absV:Real ; 

Begin 

Write("Enter a real number:"); 

Read(nb); 

absV  nb; 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 67  Dr. Abderrahmane Kefali 

If absV<0 Then absV  absV*(-1); 

Write("The absolute value of ",nb," is: ",absV); 

End.    

Exercise III.2 : 

Algorithm sort; 

Var x, y, z: Integer; 

Begin 

Write("Enter 3 integer numbers:"); 

Read(x, y, z); 

If x ≤ y and y ≤ z Then Write(x, "<", y, "<", z) 

Else If x ≤ z and z ≤ y Then Write(x, "<", z, "<", y) 

Else If y ≤ x and x ≤ z Then Write(y, "<", x, "<", z) 

Else If y ≤ z and z ≤ x Then Write(y, "<", z, "<", x) 

Else If z ≤ x and x ≤ y Then Write(z, "<", x, "<", y) 

Else Write(z, "<", y, "<", x); 

End.  

Exercise III.3 : 

Algorithm ticket; 

Var age: Integer; basePrice, totalPrice: Real; 

Begin 

Write("Enter the passenger's age:"); 

Read(age); 

Write("Enter the base ticket price:"); 

Read(basePrice); 

If age ≤ 0 Then Write("Input error") 

Else Begin 

     If age ≤ 2 Then totalPrice -> 0 

     Else If age ≥ 3 and age < 10 Then  

  totalPrice  basePrice / 2 

     Else If (age ≥ 10 and age ≤ 27) or age ≥ 70 Then 

         totalPrice  basePrice - basePrice * 10 / 100 

     Else totalPrice  basePrice; 

     Write("The price to pay:", totalPrice); 

  End; 

End. 

Exercise III.4 : 

Algorithm menu; 

Var a, b, r: Real; op: Character; 

Begin 

Write("Enter 2 real numbers"); 

Read(a, b); 

Write("Type + for addition"); 

Write("Type - for subtraction"); 

Write("Type * for multiplication"); 

Write("Type / for division"); 



Algorithmics and Data Structures 1  Chapter III. Conditional structures 

1st Year Mathematics – University of Guelma 68  Dr. Abderrahmane Kefali 

Write("Your choice: "); 

Read(op); 

Case op of 

    '+':  Begin 

         r  a + b; 

         Write(a, "+", b, "=", r); 

         End; 

    '-':  Begin 

         r  a - b; 

         Write(a, "-", b, "=", r); 

         End; 

    '*':  Begin 

         r  a * b; 

         Write(a, "*", b, "=", r); 

         End; 

    '/':  Begin 

         If b ≠ 0 Then Begin 

                r  a / b; 

                Write(a, "/", b, "=", r); 

                End 

         Else Write("Division not possible"); 

         End; 

    Otherwise: Write("Unknown operator"); 

    End; 

End.   

Exercise III.5 : 

Algorithm enter_mark; 

Var mark: Real; 

Begin 

Write("Enter a mark:"); 

input: Read(mark); 

If mark < 0 or mark > 20 Then 

    Begin 

    Write("Incorrect mark, enter the mark again:"); 

    Go to input; 

    End; 

End.   

III.10) Conclusion 

In this chapter, we have seen that simple sequential structures are not sufficient to solve 

complex problems that involve multiple cases of processing. Such problems are solved using 

conditional structures, which allow distinguishing between multiple cases and providing a 

specific processing for each case. We have introduced various conditional structures and 

explained their usage: simple conditional structures, compound conditional structures, nested 

tests, and branching. 



1st Year Mathematics – University of Guelma 69  Dr. Abderrahmane Kefali 

IV. Chapter IV. Loops 
 

 

IV.1) Introduction 

We have previously established that, in general, instructions in an algorithm are executed 

sequentially, one after another, one time only. We have also learned that the sequential flow 

of instructions is not sufficient to solve everyday problems, and fortunately, it is possible to 

break the sequential flow using what are called control structures. 

In the previous chapter, we discussed the first problem that cannot be solved by simple 

sequential instructions, which is the problem where we have multiple cases, and each case 

requires separate processing. This type of problem was resolved by using conditional 

structures. 

Another problem frequently encountered in everyday life is the need to repeat a task multiple 

times.  

Let's take an example. Suppose we want to enter a person's age. It is known that age must 

be strictly positive, but nothing prevents the user from entering an incorrect value (negative 

or zero). However, conditional structures allow us to perform a check on the entered value 

and only accept values strictly greater than 0. Otherwise, we display an error message to the 

user. The corresponding code can be as follows: 

Write("Enter the age: "); 

Read(age); 

If age ≤ 0 Then write("Input error") 

Else write("valid age"); 

But, is the problem solved? No, this piece of code reads the age and tests its value only 

once. If we are lucky and the entered value is correct, we can continue with the execution of 

the algorithm. Otherwise, an error message is displayed, and the algorithm terminates 

without reading a valid age.  

If we are sure that the user will provide a valid age on the second attempt, we can add 

another read instruction within the ELSE block, and the problem is solved (see the code 

below): 

Write("Enter the age: "); 

Read(age); 

If age ≤ 0 then  

  Begin 

  Write("Invalid age, reenter the age:"); 

  Read(age); 

  End 

Else write("Valid Age "); 

Indeed, we cannot guarantee that the value entered the second time is correct. It is 

necessary to add another test to ensure the validity of the provided age. 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 70  Dr. Abderrahmane Kefali 

Write("Enter the age: "); 

Read(age); 

If age ≤ 0 then  

  Begin 

  Write("Invalid age, reenter the age:"); 

  Read(age); 

 If age ≤ 0 then  

   Begin 

   Write("Invalid age, reenter the age:"); 

   Read(age); 

   End 

  Else write("Valid Age "); 

  End 

Else write("Valid Age "); 

This code works even if the user makes mistakes twice; he will be asked to enter their age 

for the third time. However, beyond two attempts, it is not functional. We would need to add a 

read instruction and a test for the value being checked, and so on for each erroneous input. 

But how many times? The number of times the user will provide a valid age is unknown, so 

we cannot predict how many If - Else blocks should be nested to obtain a valid age. 

Therefore, this repetitive processing can be achieved using branching statements with labels, 

but a program that uses labels can be challenging to maintain. The ideal solution for 

implementing repetitive processes is the use of special control structures called loops. 

Loops allow to repeat an instruction or a sequence of instructions a certain number of times, 

which can be known in advance or not. 

In this chapter, we will introduce the concept of repeating a sequence of instructions and 

present the various loop structures in algorithmics. 

IV.2) What is a loop ? 

IV.2.1) Definition 

Loops, also known as repetitive or iterative structures, are structures that allow to repeat 

or redo the same sequence of instructions multiple times with different values for a finite 

number of times.  

During each repetition, the instructions within the loop are executed. This is known as a loop 

iteration. 

The iteration stops when a termination condition is met, which is expressed either by a 

logical expression or by a predefined number of iterations.  

However, there are three variants of repetition, and for each variant, algorithmics (and most 

programming languages) offers a specific type of loop: 

• Repeating a block of instructions a given number of times (FOR loop). 

• Repeating a block of instructions as long as a condition is met (WHILE loop). 

• Repeating a block of instructions until a condition is met (REPEAT loop). 

IV.2.2) Components of a loop 

A loop consists of four essential elements: 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 71  Dr. Abderrahmane Kefali 

• A block of instructions, which will be executed a certain number of times. 

• A condition, similar to conditional instructions. This condition relates to at least one 

variable, referred to as the loop variable. There can be multiple loop variables for a single 

loop. 

• An initialization, which concerns the loop variable. This initialization can be directly 

performed by the loop statement or left to the programmer. 

• A modification, which also concerns the loop variable. Similar to initialization, it can be 

integrated into the loop statement or left to the programmer. 

IV.3) While loop  

The WHILE loop allows to repeatedly execute an instruction or sequence of instructions as 

long as a condition is met. When the condition becomes false, the loop terminates. The 

condition is expressed in the form of a variable or logical expression. 

This loop is particularly useful when the number of iterations is not known in advance. 

IV.3.1) Algorithmic Syntax  

The syntax of the WHILE loop is as follows: 

 WHILE <Condition> DO  

     <block of instructions>; 

The progression of the WHILE loop involves successively and repeatedly the following 

steps. First, the loop’s entry condition is evaluated. If it is satisfied, the body of the loop (the 

block of instructions) is executed, and we return to evaluate the condition again. This process 

continues until the condition is no longer satisfied. In this latter case, the instructions within 

the block are not executed, and the algorithm proceeds to the next instruction just after the 

block. 

Example: 

Write an algorithm that allows to enter a person's age via the keyboard and to repeat the 

entry as long as the value entered by the user is incorrect. 

Solution : 

ALGORITHM input_age; 

VAR age : Integer; 

BEGIN 

Write("Enter the age: "); 

Read(age); 

WHILE age ≤ 0 DO  

  Begin 

  Write("Invalid age, re-enter the age:"); 

  Read(age); 

  End; 

Write("Valide age "); 

END. 

Remarks : 

• The condition can be simple or compound just like in conditional structures. 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 72  Dr. Abderrahmane Kefali 

• Note the absence of a semicolon after the condition and after DO. 

• In this loop, the condition is tested before entering the loop. Therefore, the block of 

instructions that forms the body of the loop may never be executed; this happens when 

the condition is false from the beginning. 

• The parameters of the condition must be initialized by reading or assignment before the 

loop, so that, on the first pass, the condition can be evaluated. 

• In the block of instructions, it is imperative to have an action that modifies the condition 

parameters in such a way that the condition becomes false at some point, otherwise, if 

the condition remains true, you end up in an infinite loop. 

• If the block of instructions to be repeated contains multiple instructions, it must be 

enclosed by BEGIN and END. 

• The WHILE loop is the most generic loop. It can be used whether the number of 

repetitions is known in advance or not. 

IV.3.2) Flowchart 

The formalism of the WHILE loop in a flowchart is as follows. 

 

Figure IV.1. Formalism of the WHILE loop in a flowchart 

Example: 

The flowchart corresponding to the algorithm that repeats the age input until a valid age is 

entered using a WHILE loop is as follows: 

 Condition 

Block of instructions 

True 

False 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 73  Dr. Abderrahmane Kefali 

 

Figure IV.2. Flowchart for repeating age input using WHILE loop 

IV.3.3) C language syntax 

The syntax of the WHILE loop in the C language is as follows: 

 while(<condition>) <block of instructions>; 

Remarks: 

• The condition must be enclosed in parentheses. 

• There is no semicolon after the condition. 

• If the block of instructions consists of multiple statements, it must be enclosed in curly 

braces ({ and }). 

Example: 

Here is the C program that repeats reading the age until a valid age is entered: 

#include<stdio.h> 

main(){ 

    int age; 

    printf("Enter the age: "); 

    scanf("%d",&age); 

    while(age <= 0){ 

         printf("Invalid age, re-enter the age:"); 

         scanf("%d",&age); 

    } 

    printf("Valid age"); 

} 

 
age ≤ 0 

True 

False 

Begin 

Read(age) 

 

End 

Write("Invalid age, 
reenter the age: ") 

Read(age) 

 

Write("Enter the age: ") 

Write("Valid age") 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 74  Dr. Abderrahmane Kefali 

IV.4) REPEAT loop 

The REPEAT loop allows to repeat the execution of a block of instructions until a condition is 

met. Like the WHILE loop, REPEAT is a generic loop that doesn't require knowing the 

number of iterations in advance. 

In contrast to the WHILE loop, the REPEAT loop unconditionally executes the block of 

instructions first and then repeats its execution as long as the condition is false. The loop 

execution stops as soon as the condition becomes true. 

IV.4.1) Algorithmic syntax 

The syntax of the REPEAT loop in algorithmic is as follows: 

REPEAT 

 <block of instructions>; 

UNTIL <Condition>;  

The progression of the REPEAT loop can be described as follows. First, the block of 

instructions that makes up the body of the loop is executed for the first time. Then, the 

condition is evaluated. If it's true, the block of instructions is executed again, and the 

condition is re-evaluated. This process repeats until the condition is satisfied. In this case, 

the loop is exited, and the normal execution of the algorithm continues. 

Example: 

Re-implement the algorithm that repeats the input of a person's age until a valid age is 

provided, but this time using the REPEAT loop. 

Solution : 

ALGORITHM input_age; 

VAR age : Integer; 

BEGIN 

REPEAT 

  Write("Enter the person’s age:"); 

  Read(age);   

UNTIL age > 0; 

Write("Valid age"); 

END. 

Remarks : 

• The condition can be simple or compound. 

• Note the absence of a semicolon after REPEAT and UNTIL. 

• In this loop, the condition is only evaluated at the end of the loop. Therefore, the block of 

instructions that forms the body of the loop is executed at least once, even if the condition 

is satisfied from the beginning. Thus, the first execution is not subject to any condition. 

• The condition in the REPEAT loop is the exit or termination condition of the loop, not the 

repetition condition, as is the case with the WHILE loop. 

• The variables on which the condition is based must be initialized by reading or 

assignment before the condition is evaluated (and not before the loop). 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 75  Dr. Abderrahmane Kefali 

• The body of the loop must contain an instruction that modifies the condition parameters 

to reach the exit condition at some point; otherwise, you would end up in an infinite loop. 

• The block of instructions does not need to be enclosed in BEGIN and END, even if it 

consists of multiple instructions. 

IV.4.2) Flowchart 

The REPEAT loop can be represented in a flowchart as follows: 

 

Figure IV.3. Formalism of the REPEAT loop in a flowchart. 

Example: 

The flowchart corresponding to the algorithm from the previous example is as follows: 

 

Figure IV.4. Flowchart for Repeating Age Input Using the REPEAT Loop 

 
age > 0 False True 

 

Begin 

Read(age) 

 

End 

Write("Enter the age: ") 

Write("Valid age") 

 
Condition 

Block of instructions 

True False 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 76  Dr. Abderrahmane Kefali 

IV.4.3) C language syntax 

The C language loop corresponding to REPEAT is the do-while loop. It is introduced by 

the do statement, followed by the block of instructions, and finally, the condition enclosed in 

parentheses, placed after a while, just like the while loop. 

The syntax is the follows: 

do{ 

  <block of instructions>; 

}while(condition); 

In fact, the meaning of the REPEAT loop in algorithmics is a bit different from that of the 

do-while loop in the C language. The difference lies in the loop's condition.  

However, in algorithmics, it's "repeat until the condition is satisfied," while in C, it's "repeat as 

long as a condition is satisfied". Therefore, the condition in REPEAT is an exit condition, 

whereas in do-while, it's an entry condition to the loop. It's similar to a while loop, 

except the condition is at the end of the loop. 

Remarks: 

• The condition must be enclosed in parentheses. 

• Note the presence of a semicolon after the condition. 

• If the block of instructions contains only one instruction, the curly braces ({ and }) are 

not obligatory. 

• The condition in do-while is the inverse of the condition in REPEAT. 

Example: 

The C program that repeats reading the age using the do-while loop until a valid age is 

entered is as follows: 

#include<stdio.h> 

main(){ 

    int age; 

    do{ 

        printf("Enter the person’s age: "); 

        scanf("%d",&age); 

    }while(age <= 0); 

    printf("Valid age"); 

} 

IV.4.4) Difference between WHILE and REPEAT 

The two loops, WHILE and REPEAT, share similarities in that both allow the repetition of a 

sequence of instructions even when the number of repetitions is not known in advance. 

However, they do have some differences that should be listed in order to use both loops 

correctly. 

The following table summarizes the differences between the WHILE and REPEAT loops: 

 

 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 77  Dr. Abderrahmane Kefali 

While Repeat 

The condition is evaluated before the block of 

instructions. 

The condition is evaluated after the block of 

instructions. 

The condition is an entry condition to the loop. The condition is a termination or exit condition 

for the loop. 

The block of instructions may never be 

executed. 

The block of actions is executed at least once. 

The condition variables must be initialized 

before the loop. 

The condition variables can be initialized after 

entering the loop, within the block of 

instructions. 

If the block of instructions contains multiple 
statements, it must be enclosed between 
BEGIN and END. 

No need to enclose the block of instructions 

with BEGIN and END, as REPEAT - UNTIL 

serves this purpose. 

Table IV.1. Differences between the WHILE and REPEAT loops 

IV.5) For loop 

The first two loops, WHILE and REPEAT, are generic loops that can be used even when the 

number of repetitions is not known. However, in many cases, we deal with problems where 

the number of repetitions is known in advance. In such cases, whether using WHILE or 

REPEAT, we use a counter and stop when the counter reaches its pre-known final value. 

That's why algorithmics and most programming languages offer a more convenient structure 

for writing this kind of repetitive task more simply. This structure is the FOR loop. 

The FOR loop allows the execution of a block of instructions a certain number of times 

known in advance. This loop automates the initialization and modification phases of the loop 

variable, making it a powerful tool for managing repetitive tasks with a known number of 

iterations. 

IV.5.1) Algorithmic Syntax 

In this loop, a control variable of integer type, called the counter, is used to control the 

number of iterations of the loop. This variable keeps track of the number of iterations 

performed to determine when to exit the loop. The loop continues until the desired number of 

iterations is reached. 

The counter takes its values in an interval whose bounds are known. Thus, in the header of 

the FOR statement, you must specify the initial value, the final value, and optionally the step 

(when it's different from 1).  

The syntax of the FOR loop in algorithmic is as follows:  

FOR <counter>  <initial value> TO <final value> STEP=<step 

value> DO <Block of instructions>; 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 78  Dr. Abderrahmane Kefali 

Such as: 

• <counter> is the control variable (of integer type) that counts the number of loop 

iterations. 

• <initial value> is the initial value to which the counter is initialized. It can be a 

constant or an integer-type variable. 

• <final value> is the final value at which the counter ends. It can also be a constant 

or an integer-type variable. 

• <Step Value> is the increment or decrement value for the counter. The step can be 

omitted if its value is 1. 

The block of instructions is executed each time the counter's value is between the 

<initial value> and the <final value>. The progression of the FOR loop can be 

described as follows: 

First, the <counter> is initialized to the <initial value> at the moment of entering 

the loop. If the <counter>'s value does not exceed the <final value>, the <block 

of instructions> is executed, and the <counter> is automatically increased 

(incremented) by the increment value <step value>. When the increment is not specified, 

the default increment is 1. This process repeats until reaching the <final value>. In this 

case, the loop terminates, and execution continues normally after the loop. 

Example: 

Using the FOR loop, write an algorithm to display natural numbers from 1 to 5. 

Solution : 

ALGORITHM display_numbers; 

VAR i : Integer; 

BEGIN 

FOR i  1 TO 5 STEP=1 DO 

  Write(i); 

END. 

Remarks : 

• The FOR loop can only be used when the number of iterations is known in advance. 

• A FOR loop can be executed 0 times (when the final value is less than the initial value), 

1 time (when the initial value and the final value are the same), or multiple times (the 

normal case). 

• The initial value, the final value, and the increment step can be numeric expressions. 

• In the FOR loop, the initialization of the loop variable (the counter), its modification (the 

increment of the counter), and the evaluation of the stopping condition are performed 

automatically. 

• The increment step is optional. If omitted, its default value is 1. 

• The increment step can also be negative, and in that case, the counter is decremented 

by the increment step at each iteration. 

• In the body of the loop, the counter can be used for calculations, but it must not be 

modified either by reading or by assignment. 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 79  Dr. Abderrahmane Kefali 

• The number of iterations in the FOR loop is equal to: <final value> - <initial 

value> + 1 (when the increment step is equal to 1). 

• The initial and final values, and the increment step are evaluated once and for all before 

the iteration; the body of the loop cannot modify their value. 

• If the block of instructions consists of 2 or more instructions, it must be delimited by the 

keywords: BEGIN and END. 

IV.5.2) Flowchart 

The FOR loop can be graphically represented in a flowchart as follows: 

 

Figure IV.5. Formalism of the FOR loop in a flowchart. 

Example: 

The flowchart corresponding to the previous example is as follows: 

 
counter ≤ 

initial value 

Block of instructions 

Vrai 

False 

counter  initial value 

counter  counter + step value 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 80  Dr. Abderrahmane Kefali 

 

Figure IV.6. Flowchart for Displaying Integers from 1 to 5 Using a FOR Loop. 

IV.5.3) C language Syntax 

The loop corresponding to FOR in the C language is also called the for loop. However, 

the syntax of the latter in C language is a bit different from that of FOR in algorithmics.  

The syntax in C of the for loop is as follows: 

La syntaxe de la boucle for  est la suivante: 

for (<initialization>;<condition>;<modification>) 

    <block of instructions>; 

Thus, the header of the for loop is composed of three expressions separated by 

semicolons within parentheses: 

• The first expression (<initialization>) is an initialization expression. It is executed 

only once at the beginning of the loop and is typically in the form: <counter> = 

<initial value>. 

• The second (<condition>) is a comparison expression. It is evaluated at the beginning 

of each iteration, including the first one. 

• The last (<modification>) is a progression expression. This expression is used to 

increment (or decrement) the loop counter and is executed at the end of each iteration. 

The execution of the for loop proceeds as follows. At the beginning of the for loop, the 

<initialization> statement is executed. Then, the <condition> is tested. If the 

condition is true, the instructions within the for loop's body are executed, followed by the 

<modification> statement. The <condition> is re-evaluated with the new <counter> 

i ≤ 5 

 
True 

False 

i  1 

i  i + 1 

Write(i) 

End 

Begin 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 81  Dr. Abderrahmane Kefali 

value before the next iteration, and so on, as long as the <condition> remains true. Once 

the <condition> becomes false, the loop terminates. 

Remarks: 

• It is possible to initialize/modify multiple loop variables simultaneously by using commas 

in the expressions.  

• When the block of instructions consists of more than one statement, it must be enclosed 

in curly braces ({ and }). 

Example: 

The C program that displays natural numbers from 1 to 5 is as follows: 

#include<stdio.h> 

main(){ 

    int i; 

    for(i=1;i<=5;i++) 

        printf("%d\n",i); 

} 

IV.6) Choice of the appropriate repetitive structure 

The choice of the appropriate repetitive structure depends on the problem to be solved.  

If the number of repetitions is known in advance, it is advisable to use the FOR loop. On the 

other hand, if the number of iterations is not known in advance, either the WHILE loop or the 

REPEAT loop should be used. 

However, the choice between these two loops is possible and depends on the minimum 

number of repetitions desired. If you want to execute the instructions in the block at least 

once, it is recommended to use the REPEAT loop. When the number of iterations can be 

zero, the WHILE loop must be used. 

IV.7)  Nested loops 

As we have seen before, loops execute one or more instructions (block of instructions) a 

certain number of times. These instruction blocks can, in turn, contain loops. In this case, we 

refer to them as nested loops. 

Hence, a WHILE loop can contain another WHILE loop, another REPEAT loop, or another 

FOR loop, and vice versa. 

The principle of nested loops can be described as follows: 

1. We enter the outer loop (which encloses the inner loop). 

2. We enter the inner loop and traverse it until its exit condition is met. 

3. We exit the inner loop and return to the level of the outer loop. 

4. We iterate over the outer loop, returning to the inner loop. 

5. And so on, repeating this process as needed. 

Example: 

Consider the following algorithm: 

 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 82  Dr. Abderrahmane Kefali 

Algorithm nested_loops; 

Var i,j:integer; 

Begin 

i  1; 

WHILE i ≤ 3 DO 

 Begin 

 j  1; 

 WHILE j ≤ 2 DO 

  Begin 

  Write(i+j); 

  j  j + 1; 

  End; 

 i  i + 1; 

 End; 

End. 

The step-by-step execution of the algorithm is summarized in the table below: 

Iteration i j Displayed 

value 

1 1 1 2 

2 2 3 

3 2 1 3 

4 2 4 

5 3 1 4 

6 2 5 

Table IV.2. Example of step-by-step execution of an algorithm. 

IV.8) Exercises  

Exercise IV.1 : 

Write an algorithm that takes in a multiple of 3 and determines how many times it is divisible 

by 3. 

Example:  

The number 81 is divisible by 3 four times because 81 = 3 * 3 * 3 * 3. 

Exercise IV.2 : 

A person has bought a new car at a price P. Knowing that the car's value decreases at a 

fixed rate each year, the person wants to resell the car before it loses half of its initial value. 

Write an algorithm that asks the user to enter the price of the car and the rate of price 

decrease, and calculates and displays the number of expected years of use. 

Exercise IV.3 : 

Write an algorithm that calculates the factorial (n!) of an integer n read from the keyboard. 

Reminder: n! = 1 × 2 × ... × n. 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 83  Dr. Abderrahmane Kefali 

Exercise IV.4 : 

Write an algorithm that allows to read a positive non-zero integer x and calculates the 

following sum up to the nth term (n is entered by the user): 

 
=

−

=













+=

n

i

i

j

jxS
1

1

1
 

For example, if x = 3 and n = 4, the sum S  is: 

S = 3 + (3+1) + (3 +1+2) + (3+1+2+3) = 3+4+6+9 =22 

IV.9) Solution of the exercises 

Exercise IV.1 : 

Algorithm calculation; 

Var nb, nbDiv3, x: Integer; 

Begin 

Write("Enter an integer multiple of 3:"); 

Read(nb); 

If nb mod 3 ≠ 0 Then Write("Input error") 

Else Begin 

     nbDiv3  0; 

     x  nb; 

     While x mod 3 = 0 Do 

        Begin 

        x  x / 3; 

        nbDiv3  nbDiv3 + 1; 

        End; 

     Write(nb, " is divisible by 3 ", nbDiv3, " times"); 

     End; 

End.   

Exercise IV.2 : 

Algorithm car; 

Var p, rate, x: Real; numYears: Integer; 

Begin 

Write("Enter the purchase price of the car: "); 

Read(p); 

Write("Enter the depreciation rate: "); 

Read(rate); 

If p≤0 or rate<0 or rate>100 Then Write("Input error") 

Else Begin 

     numYears  0; 

     x  p - p * rate / 100; 

     While x > p / 2 Do 

        Begin 

        numYears  numYears + 1; 

        x  x - x * rate / 100; 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 84  Dr. Abderrahmane Kefali 

        End; 

     Write("The expected number of years is ", numYears); 

     End; 

End. 

Exercise IV.3 : 

Algorithm factorial; 

Var n, i, fact: Integer; 

Begin 

Write("Enter a positive integer: "); 

Read(n); 

If n < 0 Then Write("Input error") 

Else Begin 

     fact  1; 

     For i  1 to n Do 

        fact  fact * i; 

     Write(n, "! = ", fact); 

     End; 

End. 

Exercise IV.4 : 

For example, for  x = 3 and  n = 4, 

i  =     1        2           3           4 

S = 3 + (3+1) + (3 +1+2) + (3+1+2+3) = 3+4+6+9 =22 

The solution involves using nested loops as follows: 

Algorithm sum; 

Var x, n, i, j, s, a: Integer; 

Begin 

Write("Enter x and n: "); 

Read(x, n); 

If x ≤ 0 or n ≤ 0 Then Write("Input error") 

Else  Begin 

     s  0; 

     For i  1 to n Do 

        Begin 

        a  x; 

        For j  1 to i - 1 Do 

            a  a + j; 

        s  s + a; 

        End; 

     Write("S=", s); 

     End; 

End. 



Algorithmics and Data Structures 1   Chapter IV. Loops 

1st Year Mathematics – University of Guelma 85  Dr. Abderrahmane Kefali 

IV.10) Conclusion 

In this chapter, we have delved into an essential control structure for managing repetitive 

tasks within an algorithm: the concept of loops. We've introduced the three main types of 

loops, highlighted their distinctions, and demonstrated their practical application in 

algorithmic problem-solving, flowchart representations, and the C programming language. 

Additionally, we've emphasized that the nesting of multiple loops is a powerful approach to 

address more intricate and multifaceted problems, showcasing the versatility of loops in 

algorithmic solutions. 

 



1st Year Mathematics – University of Guelma 86  Dr. Abderrahmane Kefali 

V. Chapter V. Arrays and 

Strings 
 

 

 

V.1) Introduction 

Up to this point, we have dealt only with simple data, which we stored in variables of 

predefined simple types. To recap, a variable of a predefined simple type can store only a 

single value that matches its data type. For instance, an Integer variable can store an 

integer value, a Real variable can store a real number, and so on. 

However, simple variables are insufficient for addressing complex problems that involve a 

large amount of data and require preserving the entered data for subsequent processing. 

Let's consider an example. 

Suppose we want to input the marks of a class of 5 students and calculate the class average. 

Up to now, using what we have learned in the previous chapters, we would create a separate 

variable for each mark, input the 5 marks individually, and then calculate the sum and 

average of the marks in a single instruction. The corresponding algorithm might be as 

follows: 

Algorithm calculation; 

Var n1,n2,n3,n4,n5,moy:real; 

Begin 

Read(n1,n2,n3,n4,n5); 

moy  (n1+n2+n3+n4+n5)/5; 

Write(moy); 

End. 

It works, but it would become much more complicated if we had to calculate the average for 

a class of 200 students. It would require declaring 200 variables! One solution to this problem 

is to use a single variable to store all the marks and employ a loop to read the 200 values 

one by one, accumulating them in a variable as they are read. At the end of the loop, all that 

remains is to divide the sum by 200 to find the average. The code for performing this 

operation is as follows: 

 

 

 

 

 

 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 87  Dr. Abderrahmane Kefali 

Algorithm calculation; 

Var note,s,moy:real;i:integer; 

Begin 

s  0; 

For i  1 To 200 Do 

  Begin 

  Read(note); 

  s  s + note; 

  End; 

moy  s/200; 

Write(moy); 

End. 

This is an improvement. The code is functional if the sole objective is to simply calculate the 

class average. However, is this method of reading the grades sufficient if we want to 

establish a ranking of students or determine the number of marks that are above the class 

average? 

Unfortunately, it wouldn't be. Here, we need to be able to access the entered marks again, 

which is not possible with the previous code where all values except the last one were lost 

due to the use of a single variable during input. Therefore, it's necessary to be able to store 

these 200 marks. This brings us back to the previous problem, the complexity of writing the 

algorithm when dealing with a large number of variables. 

An alternative to this problem is to consider using a single variable that can hold all the 

values. Fortunately, in algorithmics, there are other data types besides basic types, known as 

compound types or structured types, which are constructed from basic types or other 

declared types, and represent a collection of multiple values. 

In algorithmics, the term data structure is often used instead of structured or compound 

type. A data structure is a specific way of storing and organizing data to process it more 

easily and efficiently. 

However, various types of data structures exist to address very specific problems, such as 

arrays, records (structures), linked lists, and more.  

In this chapter, we will focus on the first structured type that we consider the most important 

and suitable for the previous problem: namely, the array type. Strings, which are considered 

a specific case of arrays, will also be discussed in this chapter. For each of these types, we 

will cover declaration, manipulation, and provide some usage examples.  

Other data structures will be explored in later chapters. 

V.2) The Array type 

V.2.1) Definitions 

V.2.1.1) Array 

An array is a homogeneous data structure that gathers, under a single name, a finite set of 

elements of the same data type. Therefore, we can have an array of integers, an array of real 

numbers, an array of characters, and so on. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 88  Dr. Abderrahmane Kefali 

The elements of the array are arranged in sequentially numbered adjacent cells. Each 

element can be identified by its position in the set. 

In memory, an array is essentially a memory space dimensioned to accommodate a finite 

number of contiguous cells or zones, ensuring the storage of multiple elements of the same 

data type. The elements of the array, therefore, occupy adjacent memory locations. The first 

element is followed by the second, followed by the third, and so on. 

The main advantage of arrays is their ability to represent a set of values using a single 

identifier.  

As such, an array is characterized by: 

• A name: an identifier for the array. 

• The type of its elements. 

• A size or length. 

• An index, which is the indicator that allows us to traverse the array's cells one by one. 

It's worth noting that an array can be one-dimensional (vector), two-dimensional (matrix), or 

multi-dimensional. In this initial part of the chapter, we focus on one-dimensional arrays. 

V.2.1.2) Array Element 

An element refers to one of the values contained within the array. 

V.2.1.3) Index 

An index is a scalar variable, typically of integer type, that allows access to the elements of 

an array. It indicates the rank or position of an element within the array. 

V.2.1.4) Size 

The size, length, or cardinality of an array, sometimes referred to as dimension, is the 

number of its elements. The size can only be a constant or a constant expression. 

Consequently, the size cannot be modified during the execution of the algorithm. 

Example :  

Consider the Not array below, which consists of 5 real elements arranged in 5 cells. 

Each element represents a student's mark. 

 

 

 

 

 

Figure V.1. Diagram of an array with 5 elements. 

V.2.2) Declaration 

The declaration of an array is done by specifying its name, size, and the type of the elements 

stored in the array. It's important to note that during the declaration of an array, a contiguous 

block of memory is allocated for it, which must be defined before its usage and cannot be 

changed. 

Index 0 1 2 3 4 

Not 12 8.5 15 11 7 

 

The elements of the array 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 89  Dr. Abderrahmane Kefali 

We will first present the algorithmic syntax of declaration, followed by the syntax in the C 

language. 

V.2.2.1) Algorithmic Syntax 

In algorithmics, we declare an array variable in a similar manner to how we declare simple 

variables, with the exception that we specify that the declared variable is an array. This is 

done by adding the keyword ARRAY, followed by the size within square brackets, and then 

specifying the data type. 

The declaration syntax is as follows: 

Var <name_Array> : ARRAY[<size>] OF <type_elements>; 

With: 

• <name_Array>: This is the identifier that represents the name of the array. 

• <size>: The number of elements in the array. This number can be specified as a 

direct value or as a previously declared constant to increase the flexibility of the 

algorithm. The size should be placed within brackets after the keyword ARRAY. 

• <type_element >: The type of elements in the array. It can be a standard 

predefined type (integer, real, etc.), a non-standard type (interval, enumerated, 

etc.), or a structured type (array, etc.). 

Example: 

The previous Not array can be declared directly as: 

Var Not:ARRAY[5] OF Real; 

Or it can be declared as: 

Const card=5; 

Var Not:ARRAY[card] OF Real; 

Remarks: 

• Declaring an array as T[N], where N is a variable number of elements, is incorrect 

because N must be a constant value. 

• Like any other types, you can declare multiple arrays with the same characteristics (same 

size and element type), separating them with commas. 

• Indices are not necessarily integers. They can be of any other scalar type. In this case, 

the size of the array does not need to be explicitly specified. 

• The element type of the array should not be confused with the type of the index, which is 

usually an integer. 

• Once an array has been declared, you cannot change its size; it involves static memory 

allocation. Therefore, you need to define an array that is large enough for the task at 

hand. 

Examples: 

1. The following declaration : 

Var A:Array[5] of Real; 

Var B:Array[5] of Real; 

Var C:Array[5] of Real; 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 90  Dr. Abderrahmane Kefali 

Is equivalent to: 

Var A,B,C: Array[5] of Real; 

2. The following array is an array with 4 logical elements, and the indices are characters: 

Var A: Array['e'] of Boolean; 

This array can be represented graphically as follows: 

 

 

Figure V.2. Diagram of the logical array A 

V.2.2.2) C language Syntax 

In the C language, the declaration of an array variable follows a similar procedure to 

declaring regular variables, with the addition of specifying the array size.  

Therefore, declaring an array in the C language involves specifying the type of the elements 

within the array, followed by the array name and its size within square brackets. The 

declaration syntax is as follows: 

<type_elements> <name_Array>[<size>]; 

Where: 

• <type_elements> is the type of the elements in the array,  

• <name_Array> is an identifier that represents the name of the array,  

• <size> is the number of elements in the array. This number can be specified directly or 

as a pre-declared constant.  

Examples: 

1. The declaration in C language for the previous array Not can be done by: 

float Not[5]; 

Or, you can specify the number of elements as a pre-declared constant, like this: 

#define card 5 

float Not[card]; 

2. The following declaration defines an array of 4 integer elements with character indices: 

int L['e']; 

V.2.3) Manipulation of arrays 

The elements of the array are manipulated individually, and therefore, they have the 

characteristics of any other variables. Consequently, they can be read, displayed, used in 

assignments, expressions, or comparisons, just as you would with regular variables. 

V.2.3.1) Accessing Array Elements 

Regardless of the intended purpose of manipulation, we need a way to access the elements 

of an array individually. 

 'a' 'b' 'c' 'd' 

A True True True True 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 91  Dr. Abderrahmane Kefali 

Individual access is achieved by specifying the index of the element (its position in the array). 

Thus, to access an element of an array, we use the name of the array followed by the index 

of the element enclosed in square brackets. The syntax for this access is as follows: 

<name_Array>[<index>] 

With <name_Array> being the name of the array and <index> as an expression 

(typically an integer variable) that determines the index or position of the selected element in 

the array. 

This syntax is common in algorithmics and in the C language.  

It's important to note that the numbering of array elements starts from 0, not from 1 as in 

mathematics. Therefore, for an array of size N, the cells are numbered from 0 to N - 1. 

Example: 

If T is an array of 6 integer elements declared as follows: 

Var T:ARRAY[6] OF Integer; 

Suppose T is the following: 

 

 

 

 

 

Figure V.3. Example of an array T 

• The first element of the array T has an index of 0. It is denoted as T[0], and in the 

example, its value is 4. 

• The third element in the array has an index of 2, and is denoted as T[2]. It contains the 

value 8 in the above array. 

• The last element (with an index of 5) is denoted as T[5]. It contains the value 3. 

Remarks: 

• The value inside the brackets during the array declaration (the maximum size) should not 

be confused with the value inside the brackets when used in instructions (the index). 

• The index used to refer to the elements of an array can either be a direct, explicit value 

(e.g., T[2]), but it can also be a variable (e.g., T[i], where i is a variable, typically an 

integer) or a computed expression (e.g., T[i+2]). 

• Accessing an element with an index greater than or equal to the size of the array will 

consistently result in an incorrect result and often a memory error (attempt to access a 

memory location outside the array). This is referred to as an array overflow (or index 

overflow). However, most compilers do not implement index overflow control. This kind 

of control is left to the responsibility of the programmers. 

V.2.3.2) Filling an array 

Le remplissage du tableau peut se faire par affectation, ou par lecture au clavier. 

 0 1 2 3 4 5 

T 4 19 8 6 24 3 

 
      

 T[0] T[1] T[2] T[3] T[4] T[5] 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 92  Dr. Abderrahmane Kefali 

The declaration of an array only reserves space in the computer's memory. Therefore, before 

any processing, you need to fill the array by assigning values to its elements. 

Filling the array can be done through assignment or by reading from the keyboard. 

a) Filling by reading 

Since each element is manipulated individually, reading an array involves reading all of its 

elements, one by one. Therefore, you can fill an array with a series of read instructions, like 

this: 

Read(<name_Array>[0]);  

Read(<name_Array>[1]); 

......... 

Read(<name_Array>[<size>-1]); 

Where <name_Array> is the name of the array, and <size> is the number of elements 

in the array. 

However, since the same Read instruction is repeated <size> times (only the index 

value changes), we can avoid this repetition by using loops, specifically the For loop (as 

the number of repetitions is known in advance) for reading the elements of an array. The 

filling of an array is then accomplished using the following loop: 

For <indice>  0 To <size>-1 Do 

  Read(<name_Array>[<index>]); 

With <index> being a variable (usually of integer type) used as an index to access the 

elements of the array. 

In the C language, this can be achieved with: 

for(<index>=0; <index> < <size>;<index>++) 

  scanf("<format>",&<name_Array>[<index>]); 

Here, <format> is the format for reading the elements of the array  ("%d", "%f",...). 

Example: 

Filling the array Not  through reading in the previous example is done by: 

For i  0 To 4 Do 

  Read(Not[i]); 

And in C language by: 

for(i=0;i<5;i++) 

  scanf("%f",&Not[i]); 

b) Filling by assignment 

The array can also be filled by directly assigning values to its elements. This assignment is 

done using the assignment statement ("" in algorithmics and "=" in the C language). 

However, when we want to assign a value to a specific element of the array, you use the 

syntax: 

<name_Array>[<index>]  <value>; 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 93  Dr. Abderrahmane Kefali 

Here, <name_Array> is the name of the array, <index> is the index of the targeted 

element, and <value> is the value to be placed in the element. 

If we want to assign the same value to all elements of the array, loops are perfectly suited for 

this type of operation. Filling an array by assignment with the value <value> is done as 

follows: 

For <index>  0 To <size>-1 Do 

  <name_Array>[<index>]  <value>; 

Here, <index> is a variable (usually of integer type) used as an index to access the 

elements of the array, and <size> is the number of elements in the array. 

In C language:  

for(<index>=0; <index> < <size>;<index>++) 

  <name_Array>[<index>] = <value>; 

Examples: 

• To store the value 15.75 in the second element of the previous Not array, we write: 

Not[1]  15.75;  

• Let T be an array of 6 integers. The initialization of all elements of T to 0 is done by: 

For i  0 To 5 Do 

 T[i]  0; 

• For the previous logical array A with character indices: 

Var A: Array['e'] Of Boolean; 

The initialization of all elements of A to False is achieved by: 

Var i:Character; 

For i  'a' To 'd' Do 

  T[i]  False; 

Remarks: 

• If the size is expressed by an enumerated type, then the index can only take the values 

mentioned. Otherwise, the index value must be between 0 and <size> - 1. 

• In the C language, like other variable types, array elements can be initialized during the 

declaration of the array. To do this, you place the values of the elements between curly 

braces ({ and }), separated by commas. In this case, it is not necessary to indicate 

the size of the array within square brackets, as it is specified by the number of elements 

present between the curly braces. Additionally, it is possible to only mention the initial 

values within the curly braces. 

Examples: 

• We initialize an array with the first 5 odd numbers as follows: 

int T[] = {1, 3, 5, 7, 9};  



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 94  Dr. Abderrahmane Kefali 

• It is also possible to initialize only 3 values out of the 5. The remaining two elements 

will remain uninitialized: 

int T[5] = {1, 3, 5};  

V.2.3.3) Displaying the contents of an Array 

To write (display) an array, the process is similar. You just need to replace the reading or 

assignment statement with the writing statement. Thus, displaying the elements of the array 

can be done through a series of writing instructions: 

Write(<name_Array>[0]);  

Write(<name_Array>[1]); 

......... 

Write(<name_Array>[<size>-1]); 

Where <name_Array> is the name of the array, and <size> is the number of elements 

in the array. 

Or by using the For loop as follows: 

For <indice>  0 To <size>-1 Do 

  Write(<name_Array>[<index>]); 

With <index> being a variable (usually of integer type) used as an index to access the 

elements of the array. 

In the C language, displaying the elements of an array is done by: 

for(<index>=0; <index> < <size>;<index>++) 

  printf("<format>",<name_Array>[<index>]); 

Here, <format> is the format for writing the elements of the array  ("%d", "%f",...). 

Example: 

Write an algorithm to input from the keyboard the elements of an array of 100 integers and 

then display the content of this array: 

Algorithm example; 

Const n=100; 

Var t:Array[n] Of Integer;i:Integer; 

Begin 

For i  0 To n-1 Do 

 Begin 

 Write("Enter the element ",i,": "); 

 Read(t[i]); 

 End; 

Write("The elements of the array: "); 

For i  0 To n-1 Do 

 Write(t[i]); 

End. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 95  Dr. Abderrahmane Kefali 

V.3) Multidimensional Arrays 

Suppose we now want to input the marks of a class of 5 students but in 4 different courses 

and store them all in a suitable data structure. Now that we are familiar with arrays, a solution 

to this problem involves using an array to store the students' marks in each course. As a 

result, we have four arrays, each with five elements. The declaration of the 4 arrays is as 

follows: 

Var Not1,Not2,Not3,Not4:Array[5] Of Real; 

These arrays can be represented graphically as: 

Not1 
0 1 2 3 4 

     

 

Not2 
0 1 2 3 4 

     

 

Not3 
0 1 2 3 4 

     

 

Not4 
0 1 2 3 4 

     

Figure V.4. Diagrams of the 4 mark arrays 

Although this solution is correct, it lacks flexibility when manipulating data (input, display, ...) 

and especially when the number of courses is significant.  

It would be better if we could group all this data together in a single data structure. 

Fortunately, when we go back to the definition of an array, we find that the elements of an 

array can be of any type. They can be of integer, real, boolean types, etc., and they 

can also be of compound types, including the Array type. 

Therefore, instead of using four arrays, one for each course, it is sufficient to use a single 

array where each element of this array is, in turn, an array containing the marks of students 

in a course. The used array has the following structure: 

 0 1 2 3 4   

0       The marks in course 1  

1       The marks in course 2  

2       The marks in course 3  

3       The marks in course 4  

Figure V.5. Example of an array of arrays grouping the marks of all students in all courses 

Suppose now that each student has 3 marks in each course (exam mark, tutorial grade, and 

practical grade) and not just one. In this case, to represent all the marks of all students in all 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 96  Dr. Abderrahmane Kefali 

courses, each element of the previous array must itself be an array of 3 elements. The 

resulting array can be schematized as follows: 

 0 1 2 3 4   

0   0 1 2 3 4  

1 0  0 1 2 3 4 

2 1 0      

3 2 1      

 3 2      

  3      

Figure V.6. Diagram of a 3-dimensional array representing all marks of all students in all 

courses 

This type of array is known as a multidimensional array. 

V.3.1) Definition 

The arrays discussed in the first part of the chapter are one-dimensional arrays (single-

dimensional), also known as vectors. Each element of these arrays holds a single value of a 

simple type (integer, real, character, boolean), and it is identified by a single index. 

However, algorithmics and the majority of programming languages, including the C 

language, provide us with the possibility to declare and use arrays with several dimensions 

(2 or more), known as multidimensional arrays.  

Thus, a multidimensional array is an array whose elements can themselves be arrays, which 

can, in turn, contain other arrays, and so on. Each element of such an array is not identified 

by a single index as in one-dimensional arrays but by multiple indices, one for each 

dimension. 

For illustrative purposes, examples will be limited to two dimensions; however, generalization 

to N dimensions is straightforward. 

When the array is two-dimensional, it is called a matrix. The matrix is considered as a grid 

consisting of rows and columns. Therefore, two indices are needed to indicate the cells or 

elements of the matrix: the first index represents the rows, and the second index represents 

the columns. 

Matrices are very practical in programming, with a variety of examples of their use. Matrices 

are useful for presenting the marks of a class of students in multiple courses, modeling a 

system of linear equations, describing an image formed by a set of pixels, modeling a chess 

game, and more. 

The diagram below represents a matrix of real numbers with 4 rows and 5 columns. 

 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 97  Dr. Abderrahmane Kefali 

 0 1 2 3 4 

0 7 4.5 7.25 4 15.75 

1 11.5 16 10 9 16 

2 13 8 15 14.5 20 

3 9.75 19 12.25 14.25 5 

Figure V.7. A Matrix with 4 Rows and 5 Columns 

V.3.2) Declaration 

The declaration of a multidimensional array is done in the same way as a one-dimensional 

array, with the exception that here we need to specify the size for each dimension. For 

example, in the case of a matrix, we need to specify the number of rows and columns. 

V.3.2.1) Algorithmic Syntax 

In algorithmics, the sizes must be placed within square brackets and separated by commas. 

The declaration syntax is as follows: 

Var <name_Array> : ARRAY[<S1>,<S2>,...] OF <type_elements>; 

With: 

• <name_Array> : being the identifier designating the name of the array. 

• <Si> : representing the size along dimension i. 

• <type_elements> : indicating the type of the elements in the array. 

Example: 

The following declaration declares a matrix of real numbers named M with 4 rows and 5 

columns: 

Const nbR=4;nbC=5; 

Var M : ARRAY[nbR,nbC] OF Real; 

The rows of this matrix are numbered from 0 to 3, and the columns from 0 to 4. 

V.3.2.2) C language Syntax 

A la différence avec l'algorithmique, en langage C, chaque taille doit être placée séparément 

entre crochets. 

Ainsi, une variable de type tableau multidimensionnel est déclarée en langage C par: 

Unlike in algorithmics, in the C language, each dimension's size must be specified separately 

within brackets. 

Thus, a variable of multidimensional array type is declared in the C language by: 

<type_elements> <name_Array>[<S1>][<S2>]...; 

Here: 

• <type_elements> is the type of the elements in the array. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 98  Dr. Abderrahmane Kefali 

• <name_array > is an identifier for the array. 

• <Si> represents the size along the ith dimension. 

Example: 

The declaration of a matrix of real numbers M with 4 rows and 5 columns is done in the C 

language by: 

#define nbR 4 

#define nbC 5 

float M[nbR][nbC]; 

V.3.3) Manipulation of Multidimensional Arrays  

As with one-dimensional arrays, manipulating multidimensional arrays involves accessing 

their elements, filling, displaying, etc. 

V.3.3.1) Accessing elements of a multidimensional array  

In a multidimensional array, each element is identified by multiple indices, one for each 

dimension. Therefore, accessing an element involves specifying all its indices.  

Thus, to access an element of the multidimensional array, we include the array name, 

followed by the indices of the element, within square brackets and separated by commas. 

The syntax for this access is as follows: 

<name_Array> [<index1>,<index2>,....] 

Where <name_Array > is the name of the array, and <indexi> is the index of the 

element in dimension i.  

In the C language, the access syntax is similar to that in algorithmics, except that each index 

must be enclosed in separate brackets: 

<name_Array> [<index1>][<index2>].... 

Example: 

To access the element at the intersection of row number 2 and column number 3 of matrix M, 

we would write: 

• In algorithmics: M[2,3] 

• In C language:  M[2][3] 

V.3.3.2) Filling a multidimensional array 

Manipulating an array requires it to be previously filled. Like a simple array, a 

multidimensional array can be filled through reading or assignment. 

a) Filling by reading 

Reading the elements of a multidimensional array is done in a similar way to a one-

dimensional array, except that nested loops are used, each corresponding to the index of a 

dimension. For example, to read the elements of a matrix, you need two loops; the first loop 

iterates over the rows, and the second loop iterates over the columns. 

Filling a multidimensional array of dimension N through reading is done with the following 

nested loops: 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 99  Dr. Abderrahmane Kefali 

For <ind1>  0 To <S1>-1 Do 

  For <ind2>  0 To <S2>-1 Do 

  .................. 

    For <indN>  0 To <SN>-1 Do  

    Read(<name_Array>[<ind1>,<ind2>,...,<indN>]); 

With <name_Array> being the name of the array, <indi> is the index of dimension i, 

and <Si> is the size along dimension i. 

And in the C language: 

for(<ind1>=0; <ind1> < <S1>;<ind1>++) 

  for(<ind2>=0; <ind2> < <S2>;<ind2>++) 

  ............... 

  for(<indN>=0; <indN> < <SN>;<indN>++)  

scanf("<format>",&<name_Array>[<ind1>][<ind2>]...[<indN>]); 

Where <format> is the format for reading the elements of the array ("%d", "%f",...). 

Example: 

Filling a matrix of real numbers M  with 4 rows and 5 columns through reading is done by: 

• In algorithmics: 

For i  0 To 3 Do 

 For j  0 To 4 Do 

  Read(M[i,j]); 

• In C language: 

for(i=0;i<4;i++) 

 for(j=0;j<5;j++) 

  scanf("%f",&M[i][j]); 

Remark: 

In the previous example, the "For i" loop encompasses the "For j" loop, which means that for 

each row i, all columns must be read. In other words, the elements of the matrix are read row 

by row. Therefore, if you want to read the elements of the matrix column by column, you 

simply reverse the loops. 

b) Filling by assignment 

It is possible to assign a value to an element of the multidimensional array individually or to 

assign the same value to all elements of the array. 

When we want to assign a value to a single element of the array, we use the syntax: 

<name_Array>[<ind1>,<ind2>,...,<indN>]  <value>; 

Where <name_Array> is the name of the array, <indi> is the index of the targeted 

element along dimension i, and <value> is the value to be placed in the element. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 100  Dr. Abderrahmane Kefali 

Assigning the same value to all elements of a multidimensional array requires traversing all 

elements of the array, using nested loops as described for reading. Thus, assigning the value  

<value> to all elements of a multidimensional array of dimension N is done as follows: 

For <ind1>  0 To <S1>-1 Do 

  For <ind2>  0 To <S2>-1 Do 

    .................. 

   For <indN>  0 To <SN>-1 Do  

      <name_Array>[<ind1>,<ind2>,...,<indN>] <value>; 

With <name_Array> is the name of the array, <indi> is the index of dimension i, and 

<Si> is the size along dimension i. 

In C language: 

for(<ind1>=0; <ind1> < <T1>;<ind1>++) 

  for(<ind2>=0; <ind2> < <T2>;<ind2>++) 

     ................. 

    for(<indN>=0; <indN> < <TN>;<indN>++) 

  <name_Array>[<ind1>][<ind2>]...[<indN>]) <value>; 

Examples: 

• To store the value 9 in the element at the intersection of the second row and fourth 

column of the previous matrix M, we write: 

▪ In algorithmics : M[1,3]  9;  

▪ In C language: M[1][3] = 9;  

• Let T be a matrix of integers with 10 rows and 7 columns. The initialization of all elements 

of T to 3 is done as follows: 

▪ In algorithmics: 

For i  0 To 9 Do 

   For j  0 To 6 Do 

    T[i,j]  3; 

▪ In C language: 

 for(i=0;i<10;i++) 

    for(j=0;j<7;j++) 

    T[i][j] = 3; 

Remark: 

In the C language, just like with a simple array, it is possible to initialize the elements of a 

multidimensional array during declaration. To do this, we place the values of each dimension 

between curly braces, separated by commas, and enclose the entire set within global curly 

braces.  

Here, it is not necessary to specify the first dimension. However, the others are required.  

As with simple arrays, the final values can be omitted. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 101  Dr. Abderrahmane Kefali 

Examples: 

• The following statement declares an integer matrix with 3 rows and 4 columns and 

initializes its elements with values from 1 to 12: 

int T[3][4]={{1,2,3,4},{5,6,7,8},{9,10,11,12}} 

• In this statement, only a portion of the elements is initialized: 

int T[3][4]={{1,2},{3,4,5}}; 

V.3.3.3) Displaying the elements of a multidimensional array 

The display of elements in a multidimensional array is done in the same way as reading 

them: using nested loops. Thus, displaying the array A of N dimensions (with respective 

sizes: S1, S2, ..., SN) is done through the following nested loops: 

For <ind1>  0 To <S1>-1 Do 

  For <ind2>  0 To <S2>-1 Do 

    .................. 

   For <indN>  0 To <SN>-1 Do  

     Write(<name_Array>[<ind1>,<ind2>,...,<indN>]); 

And in C language by: 

for(<ind1>=0; <ind1> < <S1>;<ind1>++) 

  for(<ind2>=0; <ind2> < <S2>;<ind2>++) 

   ............... 

   for(<indN>=0; <indN> < <SN>;<indN>++) 

printf("<format>",<name_Array>[<ind1>][<ind2>]...[<indN>]); 

Where <format> is the format for displaying the elements of the array ("%d", "%f",...). 

Example: 

Displaying the elements of a matrix of reals M with a size of 4×5 is done as follows: 

• In algorithmics: 

For i  0 To 3 Do 

  For j  0 To 4 Do 

  Write(M[i,j]); 

• In C language: 

for(i=0;i<4;i++) 

  for(j=0;j<5;j++) 

  printf("%f",M[i][j]); 

V.4) Strings of Characters 

We mentioned in Chapter 2 that in algorithmics, data can take various types, including the 

String type. However, the latter is not considered a fundamental type by several 

programming languages but rather a composite type. The motivation behind this is that a 

variable of this type doesn't hold a single value, as is the case for fundamental types 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 102  Dr. Abderrahmane Kefali 

(integer, real, etc.). Instead, variables of such type are intended to receive sequences of 

characters that can evolve, both in content and length, as the algorithm progresses. 

Strings of characters are very useful in programming. They are effectively used for storing a 

large amount of non-numeric information, such as people's names, book titles, company 

addresses, transmitted messages, etc. 

As the character is the basic unit of information in a string of characters, we start this section 

with a brief overview of characters to pave the way for the study of character strings. 

V.4.1) Reminder about Characters 

V.4.1.1) Definition 

A character is a basic textual data. It is used to represent any symbol that may appear in a 

text. A character can be: 

• An alphabetic character (letter): and a distinction is made between uppercase and 

lowercase. Thus 'B' is different from 'b'. 

• A numeric character (digit): '0', '1', ..., '9' 

• A special character: such as '.', '*', '%', '&', '<', ... 

• A control character: Space, Escape, Carriage return, ... 

V.4.1.2) Presentation of Characters 

To be represented and manipulated in the computer's memory, each character is defined by 

a numerical code corresponding to its unique order number in a character encoding system. 

This system aims to standardize the representation of characters and communication 

between computers. There are indeed several encoding standards, with the most famous 

being the ASCII (American Standard Code for Information Interchange). 

The ASCII code (or ASCII table) is based on a fairly simple principle where each character 

has a numerical code to be stored and interpreted by a computer.  

In its initial version, the ASCII code represents characters on 7 bits (meaning 128 possible 

characters, from 0 to 127). Later, it was extended to use 8 bits (28 = 256 characters) to allow 

for the encoding of national characters (not only English, such as accented characters like: ù, 

à, è, é, â, …etc.) and semi-graphic characters. 

The 8-bit ASCII table is depicted in Figure V.8. 

Remarks: 

• A character constant is represented by a single character enclosed in single quotes 

(apostrophes): 'A', '*', '9', ' '. This notation allows distinguishing a character constant from 

both a variable and a numeric constant. 

• The apostrophe character is doubled and placed between quotes, resulting in a total of 

four apostrophes ''''. 

• A character is not necessarily printable. 

 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 103  Dr. Abderrahmane Kefali 

 

Figure V.8. The 8-bit ASCII table. 

V.4.2) Definition of a String of Characters 

Formally, a string of characters is a homogeneous data structure used to store, in a single 

variable, a finite number of character elements. 

Thus, a string variable can contain a sequence of zero, one, or more concatenated 

characters. The characters can be printable or non-printable. 

In fact, the String type can be considered as an array of characters, but it is enriched by 

other special operations facilitating its manipulation. These operations depend on the 

programming language in use. 

Remarks: 

• String constants must be delimited by two double quotes in algorithmics and in the C 

language. 

• The string that contains no characters is called an empty string. It is represented by two 

concatenated double quotes. 

• A character constant can be considered as a string constant of length 1. 

Examples: 

• "Algorithmic1" is a string containing 12 alphanumeric characters. 

• "6453" is a string of characters consisting of 4 numerical characters. It should not be 

confused with the numerical value 6453. 

• "&)+_ $:%" is a string of characters composed of 8 special characters. 

• "" is the empty string. 

• " " is a string consisting of a single character: the space character. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 104  Dr. Abderrahmane Kefali 

V.4.3) Strings in Algorithmics 

The string data type is predefined in algorithmics but not in all programming languages. It is 

designated by the keyword STRING. 

V.4.3.1) Declaration 

The String data type defines "strings of characters" variables with a maximum of 

255 characters (in the base case). A string may contain fewer characters if specified 

during its declaration, where the number of characters (ranging from 1 to 255) is 

placed within square brackets. 

The declaration of a string variable follows the following syntax: 

Var <name_string> : STRING[<length>]; 

With:  

• <name_string> being the name of the declared variable,  

• <length> being its length in characters. It's optional. 

Remark: 

When the length is not specified, the declared string is of maximum length (255 characters). 

Examples: 

• The following declaration declares a string variable of length 255 characters: 

Var ch:String; 

• The following declaration creates a string variable of length 20 characters: 

Var firstName:String[20]; 

V.4.3.2) Memory Representation 

A string of characters occupies a contiguous space in memory. This space is proportional to 

the declared character string's length. Therefore, each character, encoded in ASCII, 

occupies one byte in the memory.  

In practice, one byte is added to this reserved space, used to store the actual length of the 

string. This length is the number of characters actually contained in the string and is not the 

number specified during declaration. If this length is not specified, a default length of 255 

characters is applied.  

V.4.3.3) Manipulating strings 

Strings can be manipulated globally or locally (each character individually). 

a) Accessing a character in the string 

Accessing a specific character in the string is done in the same way as with arrays. Just 

specify the name of the string followed by the rank (index, position) of the character in square 

brackets. The access syntax is as follows: 

<name_String>[<rank>]; 

Where <name_String> is the name of the string, and <rank> is the position of the 

character we want to access. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 105  Dr. Abderrahmane Kefali 

Remarques: 

• It's important to note that in algorithmics, the numbering of characters in a string starts 

from 1 and not 0, as is the case with arrays. The cell at position 0 is intended to contain 

the actual length of the string (the number of its effective characters). 

• If the effective length is less than the declared length, the remaining space reserved for 

the string will be filled with null characters with ASCII code 0. 

Example: 

Let the character string S declared by: 

Var S:STRING[5]; 

Suppose this string contains the value “Box”. This string can be represented as follows: 

   S 

0 1 2 3 4 5 

3 B o x Null Null 

Figure V.9. Representation of the string "Box" in algorithmics.  

As mentioned earlier, character numbering starts from 1 because the zeroth position is 

reserved to store the actual length of the character string which is 3 in this example. Thus the 

word "Box" occupies positions numbered 1 through 3. The character string S is declared 

with a size of 5, leaving 2 unused positions. These remaining positions are then filled with the 

null character, indicating the end of the string. 

In summary, the character string S is represented as follows:  

• S[0] contains the length (3),  

• S[1] to S[3] contain the characters of "Box", 

• S[4] and S[5] are filled with the null character, marking the end of the string. 

b) Reading 

Unlike arrays, a string of characters in algorithmics can be read in its entirety with a single 

reading instruction. It is done as follows: 

Read(<name_String>); 

Example: 

The keyboard input for the string firstName is done using: 

Read(firstName); 

c) Writing 

Similarly for writing, a string in algorithmics can be displayed using a single writing instruction 

as follows: 

Write(<name_String>); 

It is also possible to display a single character from the string by specifying its rank (position) 

in brackets in the writing instruction. The syntax is: 

Write(<name_string[<rank>]>); 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 106  Dr. Abderrahmane Kefali 

Where <rank> is the position of the character to display. 

Example: 

The following instruction displays the content of the string variable firstName: 

Write(firstName); 

To display only the first character of the string variable firstName, we write: 

Write(firstName[1]); 

d) Assignment 

One can assign to any string variable a string expression using the traditional assignment 

symbol "  ". When the value to be assigned is a string constant, it must be enclosed in 

double quotation marks. The assignment syntax is as follows: 

<name_String>  <expression>; 

Where <name_String> is the name of the string of characters, and <expression> is 

the value being assigned. 

We can also assign a value (which must be of character type) to a specific character in a 

string by specifying its position in square brackets after the name of the string. This 

assignment follows the following syntax: 

<name_String>[<rank>]  <value>; 

Where <rank> is the position of the character to be modified, and <value> is the value 

to be stored, which must be of character type. 

Example: 

firstName  "Kamel";  

firstName[4]  'a';  

ch  firstName;   

The piece of code above assigns the constant "Kamel" to the variable firstName and 

then assigns the letter 'a' to the 4th character of the variable firstName. After the 

assignment, the variable firstName will contain the value "Kamal". Finally, it copies the 

content of the variable firstName into the variable ch. 

Remark: 

Assignment is possible between two strings of different lengths, provided that the size of the 

assigned string is not longer. 

e) Operations specific to strings of characters 

As we have already mentioned, strings can be considered as arrays of characters on which 

additional operations and functions can be performed. 

However, Algorithmics provides a set of operators and predefined functions specifically 

designed for manipulating strings of characters.  

Here are a few of them: 

e.1) Concatenation 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 107  Dr. Abderrahmane Kefali 

Concatenation is the operation used to create a new string by joining together two or more 

strings. In algorithmics, this is done using the "+" operator. 

Example: 

Consider the following piece of code: 

 

Var s1,s2:String[20]; 

.................... 

s1  "University"; 

s2  ch1 + " of " + "Guelma"; 

After the execution of the instructions below, the variable s2 will contain the string 

"University of Guelma". 

e.2) Comparison 

It's possible to compare two strings using the standard comparison operators (=, >, <, ≥, ≤, 

≠).  

Like for characters, the comparison of strings is based on the order of ASCII codes of the 

characters. The comparison is made between the characters at the same position in the two 

strings and starts from the first character. If the two characters are equal, we move on to the 

second character in both strings, and so on. 

Examples: 

• "Annaba" < "Guelma" because the ASCII code of 'A' is lower than the ASCII 

code of 'G'. 

• "Anis" > "Amine" because the ASCII code of 'n' is higher than the ASCII code of  

'm'. 

• "497" > "(3p%"   because the ASCII code of '4' is higher than the ASCII code of  

'('. 

e.3) Calculating effective length:  

Algorithmics offers a predefined function to determine the number of characters in a string. 

This function is called Length. The syntax for using this function is as follows: 

Length(<a_string>); 

Where <a_string> is a string expressed as a literal constant or a variable of type 

String. 

Examples: 

Consider the following piece of code: 

Var s:String[20];len1,len2:Integer; 

.................... 

s  "Algorithmics"; 

len1  Length(s); 

len2  Length("University of Guelma"); 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 108  Dr. Abderrahmane Kefali 

After the execution of the previous instructions, the variable len1 will contain the value 12, 

which is the length of the string "Algorithmics", and the variable len2 will contain the 

value 20, which is the length of the string "University of Guelma". 

V.4.4) Strings in C language 

In the C language, there is no real data type specifically for strings of characters (like the 

algorithmic STRING type) ) since we cannot declare variables of such a type. However, 

there is a convention for representing strings. This convention involves treating a string as an 

array of characters and providing specific handling for it. 

V.4.4.1) Declaration 

The syntax for declaring a string in the C language is the same as declaring a regular array 

of characters.  

Thus, a string variable is declared as follows: 

char <name_String>[<size>]; 

Here, <name_string> is the name of the string, and <size> is the maximum number of 

characters that the string can hold. 

Example: 

The string name of 20 characters can be declared as follows: 

char name[20]; 

V.4.4.2) Memory Representation 

In the C language, a string of characters is represented in memory as a sequence of bytes 

corresponding to each of its characters, specifically their ASCII codes. This sequence is 

terminated by an additional byte used to store a special character known as the null 

character or end of string character. This null character is a non-printable character 

denoted '\0', indicating that the string ends at the preceding character.  

This means that, in general, a string of n characters occupies a memory location of n+1 

bytes. 

Example: 

For example, the string "Guelma" is represented in an array of size 10 as follows: 

 

0 1 2 3 4 5 6 7 8 9 

G u e l m a \0    

Figure V.10. Representation in the C language of the string "Guelma" in an array of size 10. 

Remarks: 

• To be valid, a string must necessarily end with the end of string character '\0'. 

Otherwise, a runtime error occurs. 

• The significance of the end of string character is that it allows storing variable-sized 

strings in an array of fixed size. However, the memory space allocated for a string (in the 

form of an array) is static, meaning its size cannot be changed. But its content can be 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 109  Dr. Abderrahmane Kefali 

changed, i.e., modifying the characters it contains. This content always ends with '\0'. 

The remaining cells in the array, if any, remain unused (cells numbered 7, 8, 9 in the 

previous example). 

V.4.4.3) Manipulating strings 

a) Accessing a character in the string 

Accessing a specific character in a string is done in the same way as accessing an element 

in an array. Simply specify the string's name followed by the index (position) of the character 

in square brackets. The access syntax is as follows: 

<name_String>[<rank>]; 

Where <name_string> is the name of the string, and <rank> is the position of the 

character we want to access. 

Remark: 

Unlike in algorithmics, in the C language, the first character starts at index 0, not 1. 

Example: 

Given the string of characters: 

char name[20]; 

name[0] refers to the first character in the name string. 

b) Reading 

Reading a string of characters in the C language can be done in several ways. 

b.1) Reading using scanf 

A string of characters can be read like any other variable using the scanf function with the 

format code "%s". 

scanf("%s",<name_string>); 

Here, <name_string > is the name of the string variable to be read. 

Note the absence of the '&' symbol in scanf when reading a string.  This is because a 

string in C is already an address, so there's no need to obtain its address using &. 

Example: 

Consider the following string: 

char ch[20]; 

Reading this string is done with: 

scanf("%s",ch); 

b.2) Reading using gets 

By default, scanf stops input as soon as it encounters a delimiter character: newline, 

space, tab, etc. So, if the user enters the text "Hello world" only "Hello" will be placed in the 

variable ch.  



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 110  Dr. Abderrahmane Kefali 

Fortunately, the C language has another function specifically for reading a string: the gets 

function. The latter is better suited for reading strings containing spaces or tabs. Its syntax is 

as follows: 

gets(<name_String>); 

Example: 

The reading of the previous string variable ch can be done using: 

gets(ch); 

c) Writing 

There are different ways to display a string of characters in the C language. 

c.1) Writing using printf 

For displaying a string in the C language, we can use the printf function with the format 

code "%s".  

printf("%s",<name_string>); 

Here, <name_string > is the name of the string variable to be displayed. 

Exemple: 

Displaying the string of characters ch is done as follows: 

printf("%s",ch); 

c.2)  Writing using puts 

Just like reading, C also has another function specifically designed for writing a string: the 

puts function. Its syntax is as follows: 

puts(<name_String>); 

Example: 

The display of the previous string of characters ch can be done using the following instruction: 

puts(ch); 

d) Assignment 

In the C language, it's not possible to directly assign a value to a string variable, except 

during its declaration. The syntax for such an assignment is as follows: 

char <name_String>[<length>] = <value>; 

Here, <value> is the initial value assigned to the <name_String > variable. It's a string 

of characters constant enclosed in double quotation marks. 

Note that you do not need to include a final '\0'. This operation is done automatically 

because the quotes indicate unambiguously that it is a string. 

On the other hand, we can assign a value to a specific character in a string by specifying its 

position in brackets after the name of the string. This assignment follows the following syntax: 

<name_String>[<rank>]  <value>; 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 111  Dr. Abderrahmane Kefali 

With <rank> representing the position of the character to be modified, and <value> 

representing the value to be stored, which must be of character type. 

Example: 

• We can declare the 30-character string course and initialize it with the constant 

"Algebra" in a single line as follows: 

char course[30] = "Algebra"; 

• To assign the letter 'v' to the 5th character of the course variable, we write: 

course[4]  'v';   

e) Operations specific to strings of characters 

The C language provides a variety of functions for manipulating strings of characters. These 

functions are defined in the <string.h> library (header file). Here are some of these 

functions: 

e.1) The strcpy function 

This function copies one string into another. It is equivalent to an assignment for strings. The 

prototype of the strcpy function is as follows: 

strcpy(<string1>,<string2>); 

It copies the content of <string2> into <string1> and returns the latter as the result. 

Example: 

char s[10]="Hello"; 

chat t[10]; 

strcpy(t,s); 

The piece of code above copies the content of the string s, which is the value "Bonjour" 

into the string t. 

e.2) The strlen function 

This function returns the effective length (number of characters) of a string. The syntax for 

using this function is: 

strlen(<a_string>); 

Example: 

int nb=strlen("Hello"); 

This instruction assigns the length of the string "Hello", which is 5, to the integer variable nb. 

e.3) The strcat function 

The strcat function concatenates two strings, meaning it appends the characters of the 

second string to the end of the first string. The prototype is: 

strcat(<string1>,<string22>); 

The function copies the contents of <string2> to the end of <string1>, and the result is 

stored in  <string1>. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 112  Dr. Abderrahmane Kefali 

Example: 

char s[30]="Hello"; 

chat t[10]=" world"; 

strcat(s,t); 

A la fin de ces instructions, la variable s va contenir la chaîne "Hello world", qui est le 

résultat de concaténation des deux chaînes contenues dans s et t. 

At the end of these instructions, the variable s will contain the string "Hello world", 

which is the result of concatenating the two strings stored in s and t. 

e.4) The strcmp function 

The strcmp function is used to compare two strings for alphabetical order. The prototype 

is: 

strcmp(<string1>,<string2>); 

Thus, this function returns a negative value when <string1> is less than <string2>, a 

positive value if <string1> is greater than <string2>, and returns 0 when the two 

strings are the same. 

Example: 

char s[30]="Guelma"; 

char t[10]="Annaba"; 

int v=strcmp(s,t); 

The value contained in the variable v will be a positive value indicating that the string 

"Guelma" is greater than the string "Annaba" in alphabetical order. 

V.5) Exercises  

Exercise V.1 : 

Write an algorithm to input an array of 7 real elements from the keyboard and calculate the 

average of the strictly positive elements in the array. 

Exercise V.2 : 

Write an algorithm allows to fill an array of N integer elements from the keyboard, reverse it, 

and display the reversed array. 

Exercise V.3 : 

Write an algorithm for entering the elements of an array of n integer elements and searches 

for the existence of a value v provided by the user in this array. If the value exists, the 

algorithm should display the index of its first occurrence and the index of its last occurrence 

in the array. 

Exercise V.4 : 

The Pythagorean table is a two-dimensional array in which each cell contains the result of an 

operation. In the Pythagorean addition table, for example, each intersection (i, j) contains the 

result of adding i and j. In the Pythagorean multiplication table, each intersection (i, j) 

contains the result of multiplying i  by  j, and so on. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 113  Dr. Abderrahmane Kefali 

We want to create a modified version of the Pythagorean table. In this table, each cell (i, j) 

will contain the result of adding i and j when the sum of the indices is even and the result of 

multiplying i  by j  when the sum of the indices is odd. 

Write the algorithm for creating this modified Pythagorean table. 

Exercise V.5 : 

Write an algorithm to determine the number of lowercase vowels present in a text (assumed 

not to exceed 132 characters) provided by the user. 

V.6) Solution of the exercises 

Exercise V.1 : 

Algorithm calculation; 

Const n = 7; 

Var T: Array[n] of Real; i, nb: Integer; s, avg: Real; 

Begin 

For i  0 to n-1 Do 

    Read(T[i]); 

s  0; nb  0; 

For i  0 to n-1 Do 

    If T[i] > 0 Then 

      Begin 

         s  s + T[i]; 

         nb  nb + 1; 

      End; 

If nb = 0 Then avg  0 

Else avg  s / nb; 

Write("The average is ", avg); 

End. 

Exercise V.2 : 

Algorithm reversal; 

Const n = 7; 

Var T: Array[n] of Integer; i, x: Integer; 

Begin 

For i  0 to n-1 Do 

    Read(T[i]); 

For i  0 to (n-1) div 2 Do 

    Begin 

    x  T[i]; 

    T[i]  T[n-1-i]; 

    T[n-1-i]  x; 

    End; 

Write("The array after reversal:"); 

For i  0 to n-1 Do 

    Write(T[i]); 

End. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 114  Dr. Abderrahmane Kefali 

Exercise V.3 : 

Algorithm search; 

Const n = 10; 

Var T: Array[n] of Integer;  

i, first, last, v: Integer; found: Boolean; 

Begin 

For i  0 to n-1 Do 

    Read(T[i]); 

Write("What value are you looking for: "); 

Read(v); 

found  False; 

For i  0 to n-1 Do 

 Begin 

   If T[i] = v Then 

  Begin 

  last  i; 

  If found = False Then 

   Begin 

   first  i; 

            found  True; 

         End; 

  End; 

 End; 

If found = False Then Write(v, " does not exist in the array") 

Else Begin 

     Write("The first occurrence is at index ", first); 

     Write("The last occurrence is at index ", last); 

  End; 

End. 

Exercise V.4 : 

Algorithm Pythagorean_Table; 

Const n = 10; 

Var M: Array[n,n] of Integer; i, j: Integer; 

Begin 

For i  0 to n-1 Do 

    For j  0 to n-1 Do 

        If (i + j) mod 2 = 0 Then 

            M[i, j]  (i + 1) + (j + 1) 

        Else 

            M[i, j]  (i + 1) * (j + 1); 

Write("The modified Pythagorean table:"); 

For i  0 to n-1 Do 

    For j  0 to n-1 Do 

        Write(M[i, j]); 

End. 



Algorithmics and Data Structures 1  Chapter V. Arrays and Strings 

1st Year Mathematics – University of Guelma 115  Dr. Abderrahmane Kefali 

Exercise V.5 : 

Algorithm vowels; 

Var text:String[132];nbVowels,i:Integer; 

Begin 

Write("Please enter the text:"); 

Read(text); 

nbVowels  0; 

For i  1 To Length(text) Do 

 Begin 

 If text[i]='a' or text[i]='e' or text[i]='i' or   

     text[i]='o' or text[i]='u' or text[i]='y' Then 

                nbVowels  nbVowels +1; 

 End; 

Write("The number of vowels is ", nbVowels); 

End. 

V.7) Conclusion 

The challenges encountered in real-world problem-solving often involve managing extensive 

datasets. To address this, an efficient method for representing information in main memory 

becomes crucial. The conventional approach, assigning a primitive variable to each piece of 

information, reveals its limitations when dealing with large datasets. Consequently, the 

concept of aggregating multiple pieces of information under a unified identifier emerges as 

an ideal solution. It is from this motivation that different data structures have been proposed. 

In this chapter, we introduced the primary data structure enabling the consolidation of values 

of the same type into a singular entity : the array. Within an array, values are systematically 

organized in cells, each uniquely identified by a numerical index. This allows for individual 

manipulation of each element, fostering adaptability in application. Throughout the chapter, 

we explored various aspects of the array type, including multidimensional arrays and 

character strings. We delved into the intricacies of declaration and manipulation for each of 

these data structures, providing comprehensive insights in both algorithmic and C language 

contexts. 

 

 

 



1st Year Mathematics – University of Guelma 116  Dr. Abderrahmane Kefali 

VI. Chapter VI. Custom 

Types 
 

 

VI.1) Introduction 

The algorithms written so far manipulate data of different types. These data types can be 

simple, such as integer, real, character, and boolean types, or structured, as in the 

case of arrays and strings. 

The main common characteristic of all the mentioned data types is that they are predefined 

in algorithmics and in most programming languages. In other words, they are known directly 

by compilers without needing explicit definitions. Another characteristic of predefined types is 

that they are homogeneous, meaning the data contained in a variable of such a type is of the 

same nature. 

However, predefined types do not allow us to describe all kinds of real-world information. 

They do not, for example, enable us to group information of different types related to the 

same object into a single structure. For instance, can we describe a student, a product, or a 

vehicle using a simple predefined type such as an integer, a string, or an array? The 

answer is no. 

Nevertheless, algorithmics and most programming languages offer algorithm and program 

designers the possibility to define new data types, known as user-defined types or custom 

types. These types allow the representation of data structures composed of several 

elements of standard types. 

The definition and manipulation of user-defined types are the subject of this chapter. 

Specifically, in this chapter, we focus primarily on two types: records and enumerations. 

Other types will be briefly described with fewer details. 

VI.2) Concept of Data Type 

VI.2.1) Definition 

A data type defines the nature of the values a piece of data can take, as well as the 

operators that can be applied to it. 

Examples: 

• The Integer type consists of the set of positive and negative integer values, along 

with the operators applicable to such values, namely the arithmetic operators  (+, -, *, 

/, div, mod), and the relational operators (<, >, =, ≠, ≤, ≥). 

• The Boolean type is defined by the set of logical values (True and False) and the 

operators applicable to these values, namely the logical operators (And, Or, Not). 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 117  Dr. Abderrahmane Kefali 

VI.2.2) Type declaration 

In algorithmics and in the C programming language, it is possible to use new types in 

addition to the predefined types. However, to be able to use a new type, it is necessary to 

declare it first in the declaration section. Thus, the declaration of a new type defined by the 

user in algorithmics (respectively in the C language) is done using the keyword TYPE 

(respectively typedef). By convention, the declaration of types will be done after the 

declaration of constants and before the declaration of variables. 

Indeed, each category of types has a special declaration style. We will present in the 

following of the chapter the details of the declaration of each custom type. 

Examples: 

1. The following declaration defines a new custom type called number whose values are 

those of the predefined integer type. The new type number can then be used in 

declarations in the same way the integer (int) type can be used. 

In algorithmics: 

TYPE number = integer; 

In the C language: 

typedef int number; 

2. Declaration of a custom type called Tab, which is an array of 10 real numbers: 

In algorithmics: 

Const n=10; 

TYPE Tab = Array[n]of real; 

In the C language: 

#define n 10 

tyedef float Tab[n]; 

VI.3) Enumerations 

VI.3.1) Definition 

Enumerations, or enumerated types, are the first custom type discussed in this chapter. 

Enumerations are defined by algorithm designers and programmers and are not directly 

recognized by compilers. 

Thus, an enumerated type is a type for which the designer explicitly lists an ordered set of 

possible values that a variable of this type can take in an enumeration. These values are 

explicitly defined and specified by identifiers (constants). The order of the values is the order 

in which the identifiers were enumerated. 

VI.3.2) Enumerations in algorithmics 

VI.3.2.1) Declaration 

The enumerated type to be defined must be declared in the declaration part of the algorithm 

using the keyword TYPE. The declaration of an enumerated type with n values follows the 

following syntax: 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 118  Dr. Abderrahmane Kefali 

TYPE  <name_Type> = (<val0>,<val1>, ...., <valn-1>); 

Where <name_Type> represents the name of the defined enumerated type, and <val0> 

... <valn-1> are the values of this type. 

After defining the enumerated type, we proceed to declare variables of this type as follows: 

VAR <name_Variable> : <name_Type>; 

Here <name_Variable> is the name of the variable, and <name_Type> is the name of 

the defined enumerated type. 

Examples: 

The following declarations allow to define three enumerated types (Season, Color, and 

Day), specifying their respective values, and declare variables of these types: 

TYPE Season = (Spring, Winter, Autumn, Summer); 

     Color = (Red, Green, Blue, Yellow, White, Black); 

     Day = (Saturday,Sunday,Monday,Tuesday,Wednesday,Thursday,Friday); 

VAR s: Season; c1,c2:Color; d:Day; 

Thus: 

• The variable s can only take one of the four values: Spring, Winter, Autumn, 

Summer. 

• The variables c1 and c2 can only take one of the values: Red, ..., Black. 

• The variable j can only have one of the values: Saturday, ..., Friday. 

Remarks: 

• The constants of an enumeration are related by an order defined by the position of the 

values in the enumeration. Therefore, the order in which the identifiers are listed is 

significant. For example, Summer > Winter, and Saturday < Sunday. 

• The rank of an enumerated constant is determined by its position in the list of identifiers. 

In this case, the first value has a rank of 0. 

• The names assigned to the different constants (values) of an enumeration cannot be 

reused. For example, the following declaration is not allowed: VAR green: Integer; 

VI.3.2.2) Manipulation 

A variable of an enumerated type can only have values specified during the declaration of 

the type. Additionally, such a variable cannot be read or written using the Read or Write 

instructions, but it can be manipulated in various other ways. 

a) Assignment 

We can assign a value to a variable of an enumerated type using the usual assignment 

operator (). The assignment follows the following syntax: 

<name_Variable>  <value>; 

Where: <name_Variable> is the name of the enumerated variable, and <value> is the 

value to be placed in the variable.  



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 119  Dr. Abderrahmane Kefali 

The value to be assigned must be one of the constants listed during the declaration of the 

type. This constant can be indicated directly or be contained in another variable of the same 

type. 

Example: 

TYPE Season = (Spring, Winter, Autumn, Summer); 

Color = (Red, Green, Blue, Yellow, White, Black); 

VAR s:Season;c1,c2:Color; 

......................... 

s  Winter; 

c1  Yellow; 

c2  c1; 

b) Predefined Functions 

Algorithmics provides certain predefined functions for the manipulation of enumerated types. 

We list below the three main functions: 

• The Ord function: returns the rank (order) of a value, i.e., its position in the list of values 

specified in the declaration. 

• The Pred function: returns the value that immediately precedes the current value in the 

enumeration. The predecessor of the first value is not defined. 

• The Succ function: provides the value that immediately follows the current value in the 

enumeration. The successor of the last value is not defined. 

Examples: 

Ord(Autumn)  returns 2. 

Pred(White)  returns the value Yellow. 

Succ(White)  returns the value Black. 

c) Using 

An enumerated type variable can be used in a test, in a loop, in a Case statement, etc. 

Examples: 

TYPE Day = (Saturday,Sunday,Monday,Tuesday,Wednesday,Thursday,Friday); 

VAR d:Day; 

The following instructions are allowed: 

1) If d = Friday Then Write("Rest"); 

2) 
For d  Saturday To Friday Do 

 Write(d); 

3) 
Case d of 

 Saturday: Write("Rest"); 

 Sunday:   Write("Work"); 

 ...... 

End; 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 120  Dr. Abderrahmane Kefali 

VI.3.3) Enumerations in the C language 

In the C language, an enumeration type, although it constitutes a user-defined type, is 

considered a specific case of an integer type and, therefore, a scalar (or simple) type. 

VI.3.3.1) Declaration 

An enumeration (enumerated type) is defined in the C language using the enum keyword. 

In this section, two methods of declaring an enumerated type are presented. 

a) Declaration of an Enumeration 

The syntax for declaring an enumeration (or a template for the enumerated type) in the C 

language is as follows: 

enum <name_Enumeration> {<val0>,<val1>,...,<valn-1>}; 

This declaration defines an enumeration named <name_Enumeration> and specifies that 

it has n possible values designated by the identifiers  <val0>,...,<valn-1>. These values 

constitute the constants of the enumeration. 

Subsequently, the declaration of variables of the defined enumerated template is done as 

follows: 

 enum <name_Enumeration> <name_Variable>; 

Example: 

Consider the following declarations: 

Enumeration Declarations: 

enum Season {Spring, Winter, Autumn, Summer}; 

enum Color {Red,Green,Blue,Yellow,White,Black}; 

enum Natural {Four,Five,Six,Seven};  

Variable Declarations: 

enum Season s;  

enum Color c1,c2;  

enum Natural n; 

The lines above define three enumerations (Season, Color, and Natural), specifying their 

respective values, and declare variables of these models. 

Remarks: 

• Note the presence of the enum keyword in each declaration of enumeration variable. 

• Enumerated constants: <val0>,...,<valn-1> are encoded by integers 0,1,...,n-1. 

Thus, the declaration: enum Natural {Four,Five,Six,Seven} simply associates 

an int value with each of the four mentioned identifiers. Specifically, it assigns the 

value 0 to the first identifier Four, the value 1 to the identifier Five, and so on. 

• It is possible to modify the integer value (code) associated with an enumerated constant 

during model declaration by adding the equal sign (`=`) and the new value after the 

constant identifier. 

 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 121  Dr. Abderrahmane Kefali 

Example: 

enum Natural {Four=4,Five,Six,Seven};  

Here, the values of the enumerated constants start from the value 4. Thus, Four = 4, 

Five = 5, Six = 6, and Seven = 7. 

b) Declaration using the typedef keyword 

In fact, the previous declaration lacks flexibility. As mentioned earlier, with the previous 

declaration, we are obliged to write the enum keyword every time we want to declare a 

variable of the enumerated type. 

To simplify the declaration of enumerated variables, there is another, more convenient way 

of declaring. This involves using the typedef keyword to define what is called in the C 

language a shortcut or a type synonym. Thus, using this keyword at the time of defining 

the enumeration will give a new name to this type. 

In this way, it is sufficient to use the name of the defined type without the need to precede it 

with enum. Thus, the syntax of this declaration is as follows: 

typedef enum {<val0>,<val1>,...,<valn-1>} <name_Type>; 

Where <Name_Type> is the name of the enumerated type and <val0> ... <valn-1> are 

the constants of this type.  

After that, to declare a variable of the previous type, the syntax used is: 

<name_Type> <name_Variable>; 

Where <name_Type> is the name of the defined enumerated type, and 

<name_Variable> is the name of the variable. 

Example: 

The following two lines allow defining an enumerated type Color using the typedef 

keyword and then declaring two variables, c1 and c2, of this type: 

typedef enum {Red,Green,Blue,Yellow,White,Black} Color; 

Color c1,c2; 

VI.3.3.2) Manipulation 

a) Reading and writing 

A variable of an enumerated type is read and written like a variable of integer type, using 

the format code "%d". This is logical since the values of an enumeration are encoded as 

integer values. Noting that it is important to validate the read values to avoid erroneous 

results. 

Example: 

The following program reads the value of a variable of the enumerated type Color, ensures 

that the entered value is valid, and then displays it. Reading and writing are performed in the 

form of integer numbers. 

 

 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 122  Dr. Abderrahmane Kefali 

int main(){ 

    typedef enum {Red,Green,Blue,Yellow,White,Black} Color; 

    Color c; 

    scanf("%d",&c); 

    if(c<Red || c>Black)printf("Input error"); 

    else printf("%d",c); 

    return 0; 

} 

b) Assignment 

Assigning a value to an enumerated variable is done using the usual assignment operator 

(=). The value to be assigned must be one of the constants specified during declaration. This 

constant can be written explicitly, expressed by the associated integer value, or contained in 

another variable of the same type. 

The assignment follows the syntax: 

<name_Variable> = <value>; 

Where : <name_Variable> is the name of the enumerated variable, and <value> is the 

value to be placed in the variable. 

Example: 

Consider the following declarations: 

enum Season {Spring, Winter, Autumn, Summer}; 

enum  Season s1,s2,s3; 

The instructions below assign the constant Autumn to the three enumerated variables s1, 

s2, et s3: 

s1 = Autumn; //assigns the constant Autumn to the variable s1  

s2 = 2;   //assigns the constant with the value 2, which is Autumn to variable s2 

s3 = s1;   //assigns the value contained in s1, which is Autumn the to variable s3 

Remark: 

In the C language, there is no control of the value assigned to an enumerated variable. It is 

possible to assign any integer value to a variable of an enumerated type. The control is left to 

the responsibility of the programmers. 

Example: 

Consider the variable c1 of the previous Color type. The following instruction: 

c1 = 20; 

Is accepted although the value 20 does not belong to the Color type. 

c) Using 

As in algorithmics, an enumerated-type variable in the C language can be used in a 

condition, in a loop, in a Case statement, etc. 

Examples: 

Typedef enum {Saturday,Sunday,Monday,Tuesday,Wednesday,Thursday,Friday} Day; 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 123  Dr. Abderrahmane Kefali 

Day d; 

The following instructions are accepted: 

1) if(d == Friday)printf("Rest"); 

2) 
for(d=Saturday;d<=Friday;d++) 

 printf("%d ",d); 

3) 
switch(d){ 

 case Saturday: printf("Rest");break; 

 case Sunday: printf("Work");break; 

 ...... 

} 

VI.4) Records (structures) 

We have seen in the previous chapter that arrays allow us to group several elements of the 

same type under the same name, each of them being identified by its index in the array. 

However, in practice, we may also want to group within the same structure information that 

relates to the same entity but does not necessarily have the same type. 

Take an example. Suppose we want to store in memory all the information related to a 

student (student ID, last name, first name, date of birth, address, marks, etc.). Designating a 

variable for each piece of information doesn't seem like the ideal solution, and the resulting 

algorithm would be difficult to manage. Similarly, grouping all this information in an array is 

not possible because the information has different types (student ID: Integer; first name, 

last name, and address: String; marks: Real, etc.). 

To overcome this problem, algorithmics and programming languages have introduced new 

data structures called Records, which are better suited for the representation of this type of 

information. 

Records are indeed very useful in programming for representing real-world entities. They 

allow, among other things, the representation of: 

• Dates formed by three values: day, month, and year. 

• Complex numbers composed of a real part and an imaginary part. 

• Company employees defined by: a social security number, last name, first name, 

address, position, grade, etc. 

• Vehicles described by: a license plate, brand, color, power, category, number of seats, etc. 

• Bibliographic records (ISBN code, book title, author, publisher, publication date, etc.) 

• Products in a store (code, product name, unit price, available quantity, etc.) 

• Bank clients (number, name, account number, phone number, etc.). 

VI.4.1) Definition 

A record also known as a structure, is a data structure that allows gathering within a single 

entity a set of data of the same type or different types associated with a single object.  

The record is composed of a set of elements called fields, where each field corresponds to a 

piece of data. Similar to the cells of an array, the fields of a record can be accessed 

individually for reading, writing, or manipulation. 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 124  Dr. Abderrahmane Kefali 

VI.4.2) Records in algorithmics 

VI.4.2.1) Declaration 

Before declaring a record variable, its type must first be defined in the declaration section of 

the algorithm using the keyword TYPE. 

To define a record type, you must first choose a name for it, then list all the fields you want to 

store inside this type. Each field is identified by a name, which allows direct access, and a 

type. This type can be any simple (integer, character, etc.) or structured (array, 

string, enumeration, etc.) type. 

The general form of declaring a record type is as follows: 

TYPE <name_Type > = RECORD 

Begin 

<name_Field1>: <type_Field1>; 

<name_Field2>: <type_Field2>; 

.................... 

<name_Fieldn>: <type_Fieldn>; 

End; 

Where: 

• <name_Type>: is the identifier that designates the name of the defined record type. 

• <name_Fieldi>: is the name of the ith field of the record. 

• <type_Fieldi>: is the type associated with the ith field.  

Once the type is defined, we can declare variables of this type as we normally would. The 

syntax for this declaration is as follows: 

VAR <name_Variable>: <name_Type>; 

Where <name_Variable> is the name of the variable, and  <name_Type> is the name of 

the defined record type. 

Examples: 

The following declarations allow the definition of two record types and the declaration of 

variables of these types: 

1) The Date type is used to describe a real-world date, and it consists of three fields: 

day, month, and year, each of type Integer.  

TYPE Date = RECORD  

 Begin  

 Day: integer;  

 Month: integer;  

 Year: integer;  

 End;  

VAR D: Date; 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 125  Dr. Abderrahmane Kefali 

2) The Etudiant type represents a university student. It is defined by his identification 

number (ID), last name, first name, age, and his marks in 9 courses. All this information 

constitutes the fields of the record. Here, the marks are grouped in an array of real 

numbers. 

 

 

TYPE Student = RECORD  

 Begin  

 ID,Age: integer;  

 LastName,FirstName: String[20];  

 Marks: Array[1..9] of real;  

 End;  

VAR Stud: Student; 

Remarks: 

• It is not possible to declare a constant of record type. 

• A record can be schematized as a set of cells of different sizes because the types of the 

fields in a record are not necessarily the same, unlike an array. 

Example: 

The record D of type Date mentioned earlier can be schematized as follows:  

 Day Month Year 

D 6 12 2022 

Figure VI.1. Diagram of a record of type Date. 

VI.4.2.2) Manipulating a record 

In fact, the only possible instruction to manipulate a variable of record type (in its entirety) 

without accessing its fields is assignment.  

However, the fields of a record can be manipulated individually like any other variable of a 

similar type. They can be read, written, assigned values, and used in conditions, loops, etc. 

a) Accessing a Field of a Record 

While the elements of an array are accessible through their index (their number in the array), 

the fields of a record are accessible by their names.  

Thus, we can access a field of the record by specifying the record's name followed by the 

field's name, both separated by the dot operator  (). The syntax for access is as follows: 

<name_Record>.<name_Field> 

Where <name_Record> is the name of the record, and <name_Field> is the name of the 

field we want to access. 

Examples: 

• To access the Day field of the record D, we write: D.Day 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 126  Dr. Abderrahmane Kefali 

• To access the Age field of the record Stud, we write: Stud.Age 

Remark: 

Since access to fields is done by their name, the order of declaring these fields is not 

important. 

b) Reading and writing 

Just like with arrays, it's not possible to read or write an entire record globally. Therefore, to 

read a record, it's necessary to read each of its fields one by one. The same goes for 

displaying; all the fields of the record must be displayed one by one. 

The syntax for reading a field is as follows: 

Read(<name_Record>.<name_Field>); 

The syntax for writing a field is as follows: 

Write(<name_Record>.<name_Field>); 

Example: 

Let D be a variable of the previous type Date: 

Var D: Date: 

Reading all the fields of the record D is done by the following 3 read instructions: 

Read(D.Day); 

Read(D.Month); 

Read(D.Year); 

Or using one single reading instruction: 

Read(D.Day, D.Month, D.Year); 

Similarly, displaying the record D is done by displaying all its fields: 

Write(D.Day); 

Write(D.Month); 

Write(D.Year); 

Or by: 

Write(D.Day, D.Month, D.Year); 

Remark: 

It should be noted that, unlike arrays, it is not possible to use a loop to read or write all the 

fields of a record. This is because the fields are labeled with names and are not numbered 

like the elements in arrays. 

However, this is not a problem, as in practice, the number of fields is very limited (5 to 20 

fields). 

c) Assignment 

As mentioned earlier, assignment is possible between two record variables of the same type. 

Thus, the following form of instruction is accepted: 

<name_Record1>  <name_Record2>; 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 127  Dr. Abderrahmane Kefali 

This instruction implies that all the fields of the record <name_Record2> are copied to the 

corresponding fields of the record <name_record1>. 

We can also assign values to individual fields. To assign a value to a specific field of the 

record, we use the syntax: 

<name_Record>.<name_Field>  <value>; 

With <name_Record> being the name of the record, <name_Field> being the name of 

the field to which we want to assign the value, and <value> being the value to put in the 

field. 

The value and the field must be of the same type. 

Example: 

Let D1 and D2 be two variables of type Date: 

Var D1,D2: Date: 

And let the following instructions be given: 

D1.Day  6; 

D1.Month  12; 

D1.Year  2022; 

D2  D1; 

These instructions assign a value to each field of the record D1 individually and then copy 

each of these values to the corresponding fields in the record D2. 

d) The WITH...DO statement 

The repetition of the record variable name to manipulate each of the record's fields is 

tedious. To simplify access to the fields of a record, we can use a special instruction: the 

WITH statement.  

Inside the WITH statement, we can directly manipulate the fields of the record without 

adding the record name and the dot.  

Thus, instructions of the following form: 

Read(<name_Record>.<name_Field1>); 

<name_Record>.<name_Field2>  <value>; 

Write(<name_Record>.<name_Field3>); 

Can be replaced, using the WITH structure, by: 

WITH <name_Record> DO 

 Begin 

 Read(<name_Field1>); 

 <name_Field2>  <value>; 

 Write(<name_Field3>); 

 End; 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 128  Dr. Abderrahmane Kefali 

Where <name_Record> is the name of the record, and <name_Fieldi> is the name of 

the ith manipulated field. 

Example: 

Let the record D of type Date be as follows: 

Var D: Date: 

An example of accessing the fields of the record D, both without and with the WITH 

structure, is as follows: 

Without the WITH structure  With the WITH structure 

Read(D.Day); 

D.Month  7; 

D.Year  1992; 

Write(D.Day,D.Month,D.Year); 

 

WITH D DO 

Begin 

Read(Day); 

Month  7; 

Year  1992; 

Write(Day,Month,Year); 

End; 

VI.4.2.3) Nesting of Records 

Suppose that in the previously defined Student type, we no longer want the student's age 

but their date of birth. The date of birth consists of three inseparable values (day, month, 

year). Therefore, a date corresponds to a real-world entity that must be represented by a 

record type with 3 fields. Since we have already defined the Date type, we can use it in the 

declaration of the Student type for the date of birth. 

In this case, we have a field in a record that is itself a record. This is referred to as record 

nesting.  

The notation used to access fields remains the same (using the dot) whenever we want to 

delve deeper into the structure. 

Example: 

TYPE Date = RECORD 

 Begin 

 Day, Month, Year: integer; 

 End; 

Student = RECORD 

 Begin 

 ID: integer; 

 LastName, FirstName: String[20]; 

 Date_Birth: Date; 

 Marks: Array[1..9] of real; 

 End; 

VAR Stud: Student; 

To access the birth month of the student Stud, you need to use the dot operator "" twice: 

Stud.Date_Birth.Month 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 129  Dr. Abderrahmane Kefali 

VI.4.2.4) Arrays of records 

Records are used to represent within an algorithm or computer program a real or abstract 

entity. However, it often happens that we want to deal with not just one entity but several. For 

example, we might want to represent a group of students, a set of dates, a list of products in 

a store, etc. 

Let's take the example of a group of students; instead of creating several variables of the 

Student record type, we can create an array that groups all the students in the group. It 

becomes an array of records. 

a) Declaration 

When declaring an array type, we must specify the type of its elements. This type must be 

known before the declaration of the array. Therefore, the declaration of an array of records 

must be preceded by the definition of the type of records that constitute it.  

Finally, we declare a variable of the defined array type. 

Example: 

The declaration of an array of 30 students, each defined by his ID number, last name, first 

name, age, and marks, is performed as follows: 

CONST n = 30; 

TYPE Student = RECORD  

 Begin  

 ID,Age: integer;  

 LastName,FirstName: String[20];  

 Marks: Array[1..9] of real;  

 End;  

 Tab = ARRAY[n] Of Student; 

VAR T: Tab; 

b) Accessing Fields of a Record in an Array 

Each record corresponds to a cell in the array. Accessing a field of a record in the array is 

done by specifying the array name, followed by the record number in square brackets, 

followed by a dot, and then the field name. The access syntax is therefore as follows: 

<name_Array>[<index>].<name_Field> 

Where <name_Array> is the name of the array of records, <index> is the record number 

in the array, and <name_Field> is the name of the field we want to access. 

Examples : 

• T[4] represents the fifth record in the array of students T from the previous example. 

• T[4].FirstName  refers to the FirstName field of the fifth record in the array T. 

c) Manipulating an Array of Records  

The fields of records in an array are manipulated separately in the same way described 

previously.  

However, traversing the records that make up the array's elements can be done using a loop. 

 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 130  Dr. Abderrahmane Kefali 

Example: 

Consider the following declaration : 

CONST n = 30; 

TYPE Student = RECORD  

 Begin  

 ID,Age: integer;  

 LastName,FirstName: String[20];  

 Marks: Array[1..9] of real;  

 End;  

 Tab = ARRAY[n] Of Student; 

VAR T: Tab;i :Integer ; 

The following instructions are accepted: 

1) Read(T[0].LastName); 

2) T[2].Marks[0]  18; 

3) Write(T[5].FirstName); 

4) T[10]  T[9]; 

5) For i  0 To n-1 Do 

 Read(T[i].age); 

VI.4.3) Records in the C language 

In the C language, the term "structure" is often used instead of "record." Each element of the 

structure is called a field or member.  

Unlike arrays, the various elements of a structure do not necessarily occupy contiguous 

memory locations. 

VI.4.3.1) Declaration of a Structure 

The declaration of a structure variable can be done in various ways. However, in the C 

language, a structure is defined using the reserved keyword struct. 

a) Declaration of a structure model 

The first declaration involves defining a structure template and listing the fields it contains, 

and then declaring a variable of the defined template. 

The declaration of a new structure template follows the following syntax: 

struct <name_Template>{ 

 <type_Fields1> <name_Fields1>; 

 <type_Fields2> <name_Fields2>; 

 ... 

 <type_Fieldsn> <name_Fieldsn>; 

}; 

Where: <name_Template> is the name of the defined template, <type_Fieldsi> is the 

type of the ith field of the structure, and <name_Fieldsi> is the name of the ith field of the 

structure. 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 131  Dr. Abderrahmane Kefali 

Please note the mandatory semicolon at the end of a structure definition. 

Next, to declare a variable of the structure type corresponding to the previous template, we 

use the following syntax: 

struct <name_Template> <name_Variable>; 

Where: <name_Variable>  is the name of the declared variable, and  <name_Template> 

is the name of the defined template. 

Examples: 

1) This example illustrates the definition of a structure template named Date, composed of 

3 integer fields: Day, Month, Year, and the declaration of associated variables. 

struct Date{ 

 int Day,Month,Year; 

}; 

struct Date d1,d2; 

2) The following example defines a structure template labeled Student describing a 

university student known by their ID number, last name, first name, age, and marks. 

Then, declaring a structure variable following this template. 

struct Student{ 

  int ID,Age; 

  char LastName[20],FirstName[20]; 

  float Marks[9]; 

}; 

struct Student Stud; 

Remarks :  

1. Do not confuse the definition of the model, which is only a syntactic information for the 

compiler and does not reserve any memory space, with the declaration of variables of 

this model which effectively creates data. 

2. Note the need to repeat the keyword struct in the declaration of a structure variable 

following a model. 

b) Declaration by Defining Type Synonyms 

To avoid the repetition of the struct keyword with every declaration of a structure type 

variable, we can proceed with the second method of declaration. 

This method involves the use of the typedef keyword to define what is called in the C 

language a shortcut or a type synonym.  

Declaration by defining a type synonym follows the following syntax: 

typedef struct { 

 <type_Field1> <name_Field1>; 

 <type_Field2> <name_Field2>; 

 ... 

 <type_Fieldn> <name_Fieldn>; 

} <name_Type>; 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 132  Dr. Abderrahmane Kefali 

Where: <name_Type> is the name of the defined type synonym, <type_Fieldi>  is the 

type of the ith field of the structure, and <name_Fieldi> is the name of the ith field of the 

structure. 

In this way, the declaration of a structure variable is done as for a variable of another type by 

first putting the type and then the identifier of the variable, without needing to precede it with 

struct. The syntax for this declaration is as follows: 

<name_Type> <name_Variable>; 

Here, <name_Variable> is the name of the declared variable, and <name_Type> is the 

name of the defined structure type. 

Example: 

The definition using typedef of the previous Date structure type is as follows: 

typedef struct { 

  int Day,Month,Year; 

} Date; 

The declaration of variables D1 of D2 of type Date is simply done as follows: 

Date d1,d2; 

VI.4.3.2) Manipulating a structure 

Similarly to algorithmics, manipulating a structure is done through its fields. However, if a 

field of the structure is of a given type, then all operations that can be performed on objects 

of that type can be carried out on that field. 

The only allowed operation on structures as a whole is assignment. 

a) Accessing a Field of a Structure 

Accessing the different fields of a structure is done using the  ""  operator in the same way 

as in algorithmics. Thus, field access follows the following syntax: 

<name_Structure>.<name_Field> 

Where <name_Structure> is the name of the structure, and <name_Field> is the 

name of the field we want to access. 

Example: 

Consider the following declaration: 

struct Date d;struct Student s; 

Thus: 

d.Day   refers to the Day field of the structure d. 

s.Marks[0]  refers to the first element of the array Marks of the structure s.  

b) Reading and writing 

Reading and writing a structure is done field by field. 

The syntax for reading a field is as follows: 

scanf("<format>",&<name_Structure>.<name_Field>); 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 133  Dr. Abderrahmane Kefali 

The syntax for writing a field is as follows: 

printf("<format>",<name_Structure>.<name_Field>); 

Here, <format> represents the format for reading and writing the field ("%d", "%f", "%s",...), 

<name_Structure> is the name of the structure, and <name_Field> is the name of the 

field we want to read or display. 

Example: 

Reading the fields of the structure D of type Date is done as follows: 

scanf("%d%d%d",&D.Day,&D.Month,&D.Year); 

Displaying a date stored in the variable D can be done as follows: 

printf("%d/%d/%d",D.Day,D.Month,D.Year); 

c) Assignment 

It is possible to assign a value to each field of the structure individually, just as it is possible 

to assign one structure to another structure of the same type.  

The assignment between two structures copies all the fields from the source structure to their 

corresponding field in the target structure. This assignment follows the following syntax: 

<name_Structure1> = <name_Structure2>; 

Here, <name_Structure1> is the name of the target structure, and <name_Structure2>  

is the name of the source structure. 

To assign a value to a specific field of the structure, we use the syntax: 

<name_Structure>.<name_Field> = <value>; 

With <name_Structure> being the name of the structure, <name_Field> being the 

name of the field we want to assign the value to, and <value> being the value to be placed 

in the field. 

Example: 

Consider two variables D1 and D2 of type Date. The following instructions are accepted: 

D1.Day = 6; 

D1.Month = 12; 

D1.Year = 2022; 

D2 = D1; 

Remark: 

In the C language, you can initialize a structure variable during its declaration, similar to 

arrays, using curly braces and commas. This initialization can be done in a sequential 

manner (the first value in the first field, the second value in the second field, and so on), 

selectively (specifying the fields along with their values), or in a mixed way (a combination of 

both). 

Furthermore, it is possible to initialize only certain fields of the structure within the braces and 

leave the others empty. 

 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 134  Dr. Abderrahmane Kefali 

Example: 

Let's return to the definition of the Date type as defined earlier: 

typedef struct { 

  int Day,Month,Year; 

} Date; 

The following variables are initialized during their declaration: 

• Date birth_Date={7,2,2001};   

Sequential initialization (Day, then Month, then Year). 

• Date entery_Date={.Month=10,.Year=2015,.Day=17};  

Selective initialization. 

• Date exit_Date={20,.Year=2015};            

Mixed initialization. The month is not initialized in this case. 

VI.4.3.3) Nesting of structures 

Similarly to algorithmics, structures in the C language can be nested. Thus, a structure field 

can itself be of structure type, provided that this structure is defined earlier. 

Example: 

typedef struct { 

  int Day,Month,Year; 

} Date; 

typedef struct{ 

  int ID; 

  char LastName[20],FirstName[20]; 

  Date Date_Birth; 

  float Marks[9]; 

} Studiant; 

Studiant Stud; 

To access the birth month of the student Stud, you need to use the dot operator ""  twice: 

 Stud.Date_Birth.Month 

VI.4.3.4) Arrays of structures 

Like in algorithmics, several structures of the same type can be grouped together in an array. 

This array is then an array of structures. 

a) Declaration 

The declaration of an array of structures is done in the same way as the declaration of an 

array whose elements are of a simple type: the type of the elements of the array (which is a 

structure type), followed by the array name and the number of elements in square brackets. 

The declaration of an array of structure requires that the type of structures has already been 

declared before.  

Note that it is preferable to create a synonym for the array type (using typedef) and to 

declare array variables of that type. 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 135  Dr. Abderrahmane Kefali 

Example: 

Declaring an array of 100 persons, each defined by his last name, first name, and age, is 

done as follows: 

#define n 100 

typedef struct{ 

 char LastName[20],FirstName[20]; 

 int age; 

} Person; 

typedef Person Tab_Pers[n]; 

Tab_Pers T; 

b) Manipulation 

Each structure in the array of structures is identified by its index in the array, and each field in 

this structure is accessible through its name.  

Thus, to access a field named <name_Field> of a structure in the <index> position of 

an array of structures <name_Array>, we use the following syntax:  

<name_Array>[<index>].<name_Field> 

Moreover, the fields of the structures in the array are manipulated separately in the same 

way described earlier. They can be read, written to, assigned values, etc.  

However, the traversal of the records constituting the array's elements can be done using a 

loop. 

Example: 

Considering the array of structures T from the previous example, the following instructions 

are allowed: 

1) gets(T[0].LastName); 

2) T[2].age = 18; 

3) puts(T[5].FirstName); 

4) T[10] = T[9]; 

5) for(i=0;i<n;i++) 

 scanf("%d",&T[i].age); 

VI.5) Other possibilities for type definition 

In addition to records and enumerations, there are other custom data types.  

In this section, we will briefly describe two of them, namely: the interval type and the set type. 

VI.5.1) Interval type  

This type allows us to define a range of values for a scalar type by specifying its lower and 

upper bounds. The types of the constants that serve as the bounds of the interval determine 

the scalar type from which the interval is derived. However, the interval can be a range of 

integer values or characters, but not real numbers or strings. 

 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 136  Dr. Abderrahmane Kefali 

VI.5.1.1) Declaration 

Like the enumerated type, an interval type is not known to the compiler, so it must be 

declared in the declaration section of the algorithm using the TYPE keyword as follows: 

TYPE  <Name_Type> = <lower_Bound>..<upper_Bound>; 

Here, <Name_Type> represents the name of the type, and <lower_Bound> and 

<upper_Bound> are two constants indicating the lower and upper bounds of the interval, 

respectively. These two constants must be of the same scalar type. 

Note that this type does not have an equivalent in the C programming language. 

Examples: 

The types Month et Alphabet are declared as follows : 

TYPE  Month = 1..12;  interval derived from the Integer type 

TYPE  Alphabet = 'a'..'z'; interval derived from the Character type 

Remark: 

It is possible to declare an interval type, where the lower and upper bounds take their values 

from a previously defined enumeration type. 

Example: 

TYPE Day = (Saturday,Sunday,Monday,Tuesday,Wednesday,Thursday,Friday); 

TYPE  Working_Days = Sunday..Thursday; 

VI.5.1.2) Manipulation 

A variable of the interval type can be manipulated like any other simple scalar variable. Thus, 

it can be read, written to, assigned a value, used in an expression, condition, loop, etc.  

It is important to ensure, with each manipulation, that the value assigned to the interval-type 

variable does not exceed the bounds of the interval. 

VI.5.2) Set type  

The set type defines an unordered collection of elements of the same type, and its size is 

finite. It allows standard mathematical operations and relations such as union, intersection, 

complement, equality, inclusion, and membership. 

VI.5.2.1) Declaration 

A set type can be defined based on a base type for its elements in the following manner: 

TYPE <name_Type> = SET OF <basic_Type>; 

Where <name_Type> is the name of the defined set type, and <base_Type> is the base 

type of the elements in the set.  

Thus, a variable of the set type can take as values all subsets of the base type. 

 

 

 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 137  Dr. Abderrahmane Kefali 

Example: 

TYPE  Color = (Red, Green, Blue, Yellow, White, Black); 

  Numbers = 0..100; 

  set_Colors = SET OF Color; 

  Digits = SET OF Numbers; 

VAR c : set_Colors; d: digits; 

In this example, the set type set_Colors is a set of the enumerated type Color, and the 

type Digits is a set of the interval type Numbers. 

VI.5.2.2) Manipulation 

Les variables de type ensemble ne peuvent être ni lues, ni écrites. Par contre, on peut 

affecter des valeurs à des variables de type ensemble. Pour ce faire on mets les valeurs 

entre crochets et séparées par des virgules. 

The variables of the set type cannot be read or written. However, values can be assigned to 

variables of the set type. To do this, values are placed in brackets and separated by 

commas. 

 <name_variable>  [<value1>,<value2>,...]; 

Examples: 

1) Consider the following two sets: 

 VAR flag_Color,trafficLight_Color : set_Colors; 

They can be assigned values as follows: 

 flag_Color  [Red,Green,White]; 

 trafficLight_Color  [Red,Green,Yellow]; 

2) Consider the following two sets: 

 VAR A,B : Digits; 

They can be assigned values as follows: 

 A  [0,3,6,9]; 

 B  [0,6,10]; 

VI.5.2.3) Set Operations 

Consider the two sets A and B from the previous example.  

The possible operations on sets are: 

a) L'union  

The union of two sets A and B (denoted as A + B) is the set composed of elements that 

belong to A or B. 

Example: 

A + B = [0,3,6,9,10] 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 138  Dr. Abderrahmane Kefali 

b) Intersection 

The intersection of two sets A and B (denoted as A*B) is the set composed of elements 

that belong to both A and B. 

Example: 

A * B = [0,6] 

c) Difference  

The difference of two sets A and B (denoted as A-B) is the set composed of elements 

that belong exclusively to A. 

Example: 

A - B = [3,9] 

d) Comparison  

There are only two comparison operators: equality (=) and inequality (≠). 

Example: 

[7, 4] = [4, 7] 

e) Inclusion 

It is said that a set A is included in another set B (denoted as A ≤ B)) if all elements of A 

belong to B. 

Example: 

[0,6] ≤ B 

f) Containment 

It is said that a set A contains another set B (denoted as A ≥ B) if all elements of B 

belong to A. 

Example: 

A ≥ [3,9] 

g) Membership 

To test if an element belongs to a set, the in operator is used. 

Example: 

3 in A  returns  True. 

VI.6) Exercises  

Exercise VI.1 : 

Write an algorithm allows to define an enumerated type, having the colors of a traffic light as 

values, intended for traffic control at an intersection. Subsequently, it reads a variable of 

integer type and displays which color corresponds to the entered value. 

Exercise VI.2 : 

Declare types that allow storing: 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 139  Dr. Abderrahmane Kefali 

1. A day of the month (possible values between 1 and 31). 

2. A month number (possible values between 1 and 12). 

3. A year (possible values between 1 and 2010). 

4. A date, composed of three values (day, month, year). 

5. A football player characterized by his name, nationality, and date of birth. 

6. A set of 11 football players. 

7. A football team with its name, players, as well as the points earned, goals scored, and 

conceded in the current season. 

8. A list of N football teams. 

9. A sports tournament described by: a name, a list of participating teams, a start date, 

and an end date. 

Exercise VI.3 : 

Let   A(xA , yA), B(xB , yB) and C(xC , yC)  be three points in the plane, with   xA ≠ xB  and  

xA ≠ xC. These three points are said to be aligned (belong to the same line) if and only if the 

leading coefficient (slope) of line (AB) is equal to the leading coefficient of line (AC). 

The slope of line (AB), denoted as mAB  , is given by: 

AB

AB
AB

xx

yy
m

−

−
=

  

Write an algorithm to: 

• Propose the most suitable data structure to represent a point in the plane. 

• Read the coordinates of three points A, B, and C and determine if these three points are 

aligned. If the points are not aligned, the algorithm should calculate the distance between 

each pair of points. 

• Remember that the distance between two points A(xA , yA) and B(xB , yB)  is calculated 

as: 

( ) ( )22
),( ABAB yyxxBAd −+−=

 

It is assumed that there is a predefined algorithmic function called sqrt that calculates 

the square root of a number. 

Exercise VI.4 : 

Write an algorithm to determine the number of vowels in a sentence entered via the 

keyboard. Use the set VL = {a, e, u, o, i}. 

 

 

 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 140  Dr. Abderrahmane Kefali 

VI.7) Solution of the exercises  

Exercise VI.1 : 

Algorithm TrafficLight_management; 

TYPE trafficLight = (Green,Orange,Red); 

Var num:Integer; 

Début 

Write(""Provide a color number (between 0 and 2): "); 

Read(num); 

Case num Of 

  ord(Green): Write("Green light"); 

  ord(Orange): Write("Orange light"); 

  ord(Red): Write("Red light"); 

  Otherwise: Write("Input error"); 

End; 

End. 

Exercise VI.2 : 

Const N = 16; 

1) Type Day = 1..31; 

2) Type Month = 1..12; 

3) Type Year = 1..2010; 

4) Type Date = Record 

Begin 

d:Day; 

m:Month; 

y:Year; 

End; 

5) Type Player = Record 

Begin 

Name, Nationality: String[20] 

Date_Birth:Date; 

End; 

6) Type Set_Players = Array[11] Of Player; 

7) Type Team = Record 

Begin 

Name:String[50]; 

Players:Set_Players; 

Pts_Gained,Goals_Scored,Goals_Conceded:Integer; 

End; 

8) Type List_Teams = Array[N] Of Team; 

9) Type Tournament = Record 

Begin 

Name:String[50]; 

Teams:List_Teams; 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 141  Dr. Abderrahmane Kefali 

Date_Start,Date_End:Date; 

End;   

Exercise VI.3 : 

Algorithm ex2; 

Type Point = Record 

      Begin 

         x, y: Real; 

      End; 

Var A,B,C: Point;m_AB,m_AC,d_AB,d_AC,d_BC: Real; 

Begin 

Read(A.x, A.y); 

Read(B.x, B.y); 

Read(C.x, C.y); 

m_AB = (B.y - A.y) / (B.x - A.x); 

m_AC = (C.y - A.y) / (C.x - A.x); 

If m_AB = m_AC Then  Write("The 3 points are aligned") 

Else  Begin 

  d_AB = sqrt((B.x - A.x) ^ 2 + (B.y - A.y) ^ 2); 

     d_AC = sqrt((C.x - A.x) ^ 2 + (C.y - A.y) ^ 2); 

     d_BC = sqrt((C.x - B.x) ^ 2 + (C.y - B.y) ^ 2); 

     Write("The distance between A and B is ", d_AB); 

     Write("The distance between A and C is ", d_AC); 

     Write("The distance between B and C is ", d_BC); 

  End; 

End. 

Exercise VI.4 : 

Algorithm VowelsCount; 

TYPE Vowel_Set = Set of Characters; 

Var VL: Vowel_Set; nb,i: Integer; Sentence: String[50]; 

Begin 

Write("Please enter a sentence: "); 

Read(Sentence); 

VL  ['a','e','i','o','u','y']; 

nb  0; 

For i  1 to Length(Sentence) Do 

        Begin 

        If Sentence[i] in VL Then 

             nb  nb + 1; 

        End; 

Write("The number of vowels is: ", nb); 

End. 



Algorithmics and Data Structures 1   Chapter VI. Custom types 

1st Year Mathematics – University of Guelma 142  Dr. Abderrahmane Kefali 

VI.8) Conclusion 

In this chapter, we explored the limitations of predefined data types in handling the diverse 

array of data required to represent real-world objects effectively. To overcome this challenge, 

algorithmics and programming languages empower algorithm designers and programmers to 

introduce their own data types, commonly known as custom types. 

While delving into various data types, our focus centered on two prominent categories: 

enumerations and records. Enumerations enable the systematic listing of an ordered set of 

possible values that a variable of this type can assume. Conversely, records offer a 

sophisticated data structure capable of amalgamating diverse data types. Consequently, the 

record type emerges as the most versatile choice for faithfully representing real-world 

entities. Through the utilization of records, one can articulate the characteristics of 

individuals, organizations, vehicles, and more, providing a comprehensive and flexible 

approach to data modeling. 



 

1st Year Mathematics – University of Guelma 143  Dr. Abderrahmane Kefali 

References 
 

 

 

[1] M. Amad, "Algorithmique et Structures de Données", Course Material and Directed 

Exercises, 1st and 2nd year License, Abderrahmane Mira University of Bejaia, 2016. 

[2] L. Baba Hamed, S, Hocine, "Algorithmique et structure de données statiques: cours et 

exercices avec solutions", University Publications Office, Algiers, 2006. 

[3] M. Belaid, "Algorithmique & Programmation en Pascal, Cours, Exercices, Travaux 

Pratiques, Corrigés", Eurl Pages Bleues Internationales, Bouira - Algérie, 2008. 

[4] S. Bellaouar, "Algorithmique et Structure de Données : Partie 1", Course Handout, 

University of Ghardaia, 2020.  

[5] B. Bessaa, "Exercices corriges d’Algorithmique", The LMD Booklets, Pages Bleues, 

Algiers, 2018. 

[6] A. Boucherit, " Algorithmique et Structures de données I", Course Material, 1st year MI, 

Hamma Lakhdar University - El-Oued, 2020/2021. 

[7] D. Bouchicha, "Initiation à l'algorithmique et à la programmation en Pascal", Rached 

Edition, Sidi Bel Abbes - Algeria, 1st edition, 2019. 

[8] T. H. Cormen, "Algorithmes Notions de base", DUNOD, 2013. 

[9] V. Felea, V. Felea, "Introduction à l'informatique: Apprendre à concevoir des 

algorithmes - Cours et problèmes corrigés", Vuibert; 1st edition,  2013. 

[10] C. Haro, "Algorithmique raisonner pour concevoir", ENI Edition, 2015. 

[11] A. Lalouci, "Algorithmique et structures de données 1", Support de cours, 1ère année MI, 

Centre universitaire de Mila, 2021/2022. 

[12] R. Malgouyres, R. Zrour, F. Feschet, "Initiation à l’algorithmique et à la programmation 

en C - Cours avec 129 exercices corrigés", DUNOD, 2nd edition, 2015. 

[13] K. Messaoud, "Algorithmique et structures de données 1", Course Material, 1st year MI, 

Mohamed Seddik Benyahia University - Jijel, 2021. 

[14] T Slimani, Programmation et structures de données avancées en langage C: cours et 

exercices corrigés", Lulu.com Edition, 2014. 

[15] J. Tisseau, "Initiation à l’algorithmique", University Press - National School of Engineers 

Brest, 2009. 

[16] D. Zegour, "Apprendre et enseigner l’algorithmique (Tome 1): Cours et annexes", 

European University Editions, 2013. 

[17] Joyce Farrell, "Programming logic and design: comprehensive version", 8th Edition. 

Cengage Learning, 2015. 


