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Abstract

Following a newly established paradigm in precursor works at LMAM,
diverging from widely recognised conventions, and inspired by an article
on non-linear equations, we embark on the interdisciplinary mathemati-
cal mission to carry on the pursuit of numerically and theoretically discus-
sing the approximation of solutions to the general Fredholm integral equa-
tion of the second kind defined on a large interval. Firstly, we show how
efficient it is to truncate a Neumann’s Series resulting in enhancing the
outcomes and reducing numerical costs further all whilst manoeuvring
the same well-constructed environment of the Banach spaces from pre-
vious works in order to approximate the solution of the equation cited
hereinabove. Secondly, delving deeper into it, we demonstrate that with
a shift in focus towards the Hilbert space L2, new horizons emerge. The
need for more generalisations of classically known algebraic iterative me-
thods, with a particular care landing on generalising those of relaxation ;
namely, the Jacobi Over-relaxation (JOR) scheme, uncovers various theo-
retical corners, demonstrating that, with implicit analogies to Rn, we pro-
vide coherent and consistent findings as well as highlight the promising
possibility of additional investigations despite the handful of limitations
encountered. Our work concludes with enticing perspectives and inviting
goals for richer and more comprehensive explorations.

Keywords Fredholm Integral Equations, Functional Analysis, Numeri-
cal Analysis, Bounded Linear Operators Theory, Spectral Theory, Approxi-
mation Theory, Iterative Methods, Linear Algebra, MATLAB Programming.



Résumé

En suivant un paradigme nouvellement établi dans des travaux précurseurs
au LMAM, s’écartant des conventions largement reconnues, et inspiré par
un article sur les équations non linéaires, nous entamons une mission mathé
-matique interdisciplinaire pour poursuivre l’étude numérique et théorique
de l’approximation des solutions de l’équation intégrale de Fredholm gén
-érale du second ordre définie sur un large intervalle. Tout d’abord, nous
démontrons l’efficacité de la troncation d’une série de Neumann, améliorant
ainsi les résultats et réduisant les coûts numériques tout en manœuvrant
dans le même environnement bien construit des espaces de Banach is-
sus de travaux précédents pour approcher la solution de l’équation citée
ci-dessus. Ensuite, en nous immergeant plus avant dans ce sujet, nous
démontrons que lorsque notre attention se porte sur l’espace de Hilbert
L2, de nouveaux horizons apparaissent. La nécessité de généraliser da-
vantage les méthodes itératives algébriques classiques, avec un soin par-
ticulier accordé à la généralisation des méthodes de relaxation, et plus
précisément la méthode de Jacobi sur-relaxation (JOR), révèle divers as-
pects théoriques. Cela démontre que, en tirant des analogies implicites
avec , nos résultats sont cohérents et consistants, et souligne les possibilités
prometteuses d’investigations supplémentaires malgré les limitations ren-
contrées. Notre travail se conclut par des perspectives alléchantes et des
objectifs invitants pour des explorations plus riches et plus exhaustives.

Mots Clés Equations intégrales de Fredholm, Analyse Fonctionelle, Ana-
lyse numérique, Théorie des operateurs linéaires bornés, Théorie spéctrale,
Théorie d’approximation, Méthodes itératives, Algèbre linéaire, Program-
mation MATLAB.
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Introduction

With Latin roots, one of Cambridge Dictionary’s definitions for the
word equation is

Equation n. (statement) A mathematical statement in which you
show that two amounts are equal using mathematical symbols.

The lexical definition does not fall short on conveying the specialised
technical essence of how the concept manifests and is realistically drawn
upon per mathematical structures. Inarguably, for as far back in history as
from when historians, historian mathematicians, and etymologists would
agree, the concept of equating or looking for how to equate two sides (or
quantities) has been very intrinsic an idea to mathematics that, owing to
which, many theories, within or beyond the scope of this manuscript, have
flourished and known stellar advancements that continue today.

Incidentally, our statement is upheld in the shear diversity of this one
concept by which it manifests throughout the field, where an equation
could be something algebraic having a polynomial expression, like the
fifth-degree three-unknown Diophantine equation of

m3 + n3 − k3 = 0, (m, n, k) ∈N3,

for which there are no non-trivial triplet solutions (m, n, k) of natural num-
bers 4. Or, it could be something algebraic involving a transcendental con-
cept like that of the exponential, as in the equation

ez + 1 = 0, z ∈ C,

whose one of the solutions takes part in producing one of Mathematics’
beautiful equations. However, equations could enjoy a little more in-depth

4. This mathematical assertion is due to the mathematician Andrew J. Wiles’ break-
through paper Modular elliptic curves and Fermat’s Last Theorem. However, Number Theory
certainly exceeds our knowledge.

1

https://dictionary.cambridge.org/
https://mathworld.wolfram.com/EulerFormula.html
https://mathworld.wolfram.com/EulerFormula.html
http://scienzamedia.uniroma2.it/~eal/Wiles-Fermat.pdf


sophistication, when they could be condensely assembled to formulate
(non-)linear systems of them, by which way researchers attempt to cap-
ture some of the real world’s fascinating intricacies, thus introducing for-
mulae having very physical interpretations as in Navier-Stokes (non-)lin-
ear system of partial differential equations that is conventionally given, for
(x, t) ∈ Ω = Rd × [0; ∞), with d = 2, 3, as

ρ∂tV(x, t) = ∇x p(x, t) + ν∆xV(x, t) + ρ f (x, t),
div(V(x, t)) = 0,
+Initial and Boundary Conditions,

resulting in one of six unsolved problems from seven millennial problems
proposed by Clay Mathematics Institute.

Building upon this, often being on par with differential equations (ordi-
nary or partial), from taking a share in formulating the solutions for some,
performing the role of their alternatives, to mixing together with them pro-
ducing even more potent mathematical tools, Integral Equations exhibit
qualities and behaviours that have captivated the attention since early
in the 19th century; the reason underpinning why the ball kept rolling
for continuous theoretical discoveries in different areas of mathematics as
well as in other fields all along the historical accounts until the present
days; this could be traced in the current times, and the reader may refer to
[35] for newer research works on these equations.

Presumably, the historical narrative had began with Fourier’s works
on thermal transport along his integral transformation (cf. [13]), but much
clearer with Abel’s integral equation and his mechanical problem touching
upon the tautochrone curve 5. His mission of identifying a trajectory curve
given the distance travelled by or the time it took a moving object on it to
reach the level from a given initial height led to studying the solution(s) of
what in modern times would be classified as a weakly-singular, first-kind,
linear Volterra integro-differential equation. Here, we provide a general
formulation of it as,

For a given T, γ > 0, find ψ : T(h0) =
∫ 0

h0

ψ′(h)√
γ(h0 − h)

dh, T(0) = 0.

For further details on this, see [8, 12, 39], and [32] for an exclusive focus
on the different aspects of Volterra integral equations. But, for the more

5. A tautochrone curve is one type of curve that, if being the shape of a movement tra-
jectory with specific physical considerations, objects on it reach its endpoint at the same
time regardless of their initial positions on the curve; exactly as its Latin-engineered name
indicates: same time. Digging deeper, the curious may have his feet dragged towards
Fractional Calculus or even Horology.

2
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curious reader, in [18, 19], one could find how integral equations might be
favoured over differential ones in what showcases the effect of memory
possessed by integrals and lacked in ordinary differentiation.

Circa these periods, treating infinite-dimensionality problems stem-
ming from attempts in solving differential equations, the stationary, per-
turbed partial differential equation of Poisson:

λ u(x, y) + ∆ u(x, y) = g(x, y), λ ̸= 0, (x, y) ∈ Ω ⊂ R2, (1)

stimulated works from pioneering mathematicians like Poincaré, Fred-
holm, then Hilbert, leading to the launch of further investigations into the
integral equation they posed in a retrospect analogy to (1), as they all had
concentrated a great share of their foci on the following problem,

Given g, find ψ: ψ(x)− λ
∫ b

a
k(x, s)ψ(s) ds = g(x), λ ̸= 0, (2)

creating both a historical and a historic trend within the mathematical
community, thus paving a way to what finished, after extensive rigorous
works, in the establishment of a rather new discipline at those periods; it
was the birth of Functional Analysis. For more details, we refer the reader
to [8, 10, 13].

In spite of this , integral equations’ theory did not halt receiving care.
Multifacetedly, those equations can be legible for analytical closed forms
of solutions via the use of classical methods like Laplace’s Transform or
The Adomian Decomposition, whenever possible, on which subject the
reader may confer [24, 25, 32, 39]. However, in [5], one reads on Atkinson’s
historical account of how the conventions that once propelled forwards
the theory of those equations [12, 16] became the de facto initial step in
studying the harnessing of new machine technologies and computational
capabilities 6, hence spawning a racing interest in developing competing
methods to help accelerate the approximations of the equations’ solutions,
provided that they existed. It was primarily developed alongside iterative
methods and their theory that germinated in Gauss’ works; the reader may
confer [41].

As will be addressed later on this thesis manuscript, albeit modified
to align with modern times conventions, the integral equation (2), which
is classified as an inhomogeneous linear Fredholm integral equation of
the second kind, has known extensive examinations; one of which is [4].

6. With Artificial Intelligence booming and Quantum Computing being on the hori-
zon, Numerical Mathematics may know unprecedented and unparalleled leaps in how
the methods are developing or yet to be developed.

3



This equation has been known to be, in many cases, related to boundary-
value differential problems. Moreover, being an integral equation, with a
smooth working environment; i.e, at one’s disposal, the solution sought-
after complies in its characteristics with traits and the regular, nearly-reg-
ular, weakly-singular, or singular behaviours of the kernel and the source
functions where (bi-)continuity, continuity, or square-integrability are pre-
dominantly the prevalent conditions of the milieu one sets for ulterior nu-
merical approximations to develop 7.

Furnishing an a priori guaranteed stability by means of the integration
operation and a manageable consistency with respect to what approach
applied in the discretisation phase, the numerical methods applied on the
Fredholm’s integral equation of the second kind, having more or less mod-
erate error analyses, have been principally classified under three main cat-
egories:
• Degenerate Kernel Methods,
• Projection Methods, and
• Nyström’s Method(s) (for richer contents, cf. [4, 5]).

Nevertheless, all these methods, or reportedly their variations, have
always had the same structured road to follow:

⋆ Provided its solvability, tend to the integral term of the studied
equation and approximate it,

⋆ Then, adequately create a discrete quantity out of it,
⋆ Build an algebraic system using your findings,
⋆ With a proper iterative scheme, use your machine to iteratively ap-

proximately solve the linear algebraic system you created.
This structured process finds cradle in a long-lived idea that was adopted
in early theoretical discussions of the integral equations area and other
overlapping areas, as well as being all-present in the numerical transition
that we aforementioned.

In his thesis [43], O. Titaud undertook the modelling and the numerical
study of the generally static, stratified, atmospheric, stellar energy transfer
boundary-value problem. Complying with his aim, his careful considera-
tions brought him about treating “une équation de Fredholm de seconde éspèce
à noyeau de convolution faiblement singulier”. Although exceptionally suc-
cessful, given the milieu he operated within, Titaud’s conclusion involved
his solemn declaration,

7. More on this in the Preliminaries chapter of this manuscript.

4



“Ce point de vue nous a d’ailleurs poussé à étudier et mettre en œuvre des
méthodes asymptotiques efficaces pour essayer de surmonter la difficulté majeure

de ce problème qui réside en l’amplitude trés importante de l’intervalle
d’intégration.”

—Olivier Titaud, PhD Thesis.

Such a statement supported the question of how sophisticated was it to
operate

λϕ(x)−
∫ b

a
k(x, t)ϕ(t) dt = f (x), λ ̸= 0, (3)

where x belonged to an interval [a, b] ⊂ R having a finite but substantial
length (b− a); i.e,

1≪ b− a < ∞?

At LMAM, it was examined at length that, sitting on the fence be-
tween regularity and singularity (regardless of its kernel type), equation
(3) posed a challenging numerical mission when the conventional discre-
tise-iterate process listed above was used for numerical approximation but
failed to deliver good and/or satisfying outcomes.

On this and on other motivations, like being inspired by [20] on non-
linear equations, Lemita’s works [26, 27] and thesis [28] were erected. Con-
cerning this matter, the so-called Chasles Property of definite integration,
if applied (N − 1) times, yields:∫ b

a
=

N

∑
i=1

∫ ci

ci−1

, a ≤ cj ≤ b, j = 0, · · · , N,

which proved useful in transforming (3), having transitioned towards math-
ematical abstraction, into a linear system that was not of algebraic type;
the instance which needed a thorough investigation of its invertibility and
the discussion of the potential applicability of iterative schemes and tech-
niques known from Linear Algebra on the resulting mathematical object.
It was indeed feasible, and generalisations to Jacobi’s and Gauss-Seidel’s
schemes were made within the new frame as well as the meaning of a ma-
trix of bounded linear operators to be strictly diagonally dominant by rows was
established. The rewards were promising.

Despite these, the question whether one could possibly consider gen-
eralising more iterative schemes and establish more meaning to funda-
mental concepts in Linear Algebra like that of symmetry and that of pos-
itive definiteness for matrices of bounded linear operators was left unad-
dressed. In this manuscript, we venture in addressing those questions and
set three main chapters where:

5



In Chapter 1, we provide the utilised mathematical prerequisites and
concepts found all throughout.

In Chapter 2, we present the extreme of extending the boundaries and
introduce a refinement in the both introduced methods in Lemita’s works,
[27, 28], using the idea of truncation and relying on numerical quadrature
rules’ stability results.

In Chapter 3, we move to establishing the generalisation of a relax-
ation scheme known in Linear Algebra by the acronym of JOR; half of
what was similarly discussed in [29]. Resorting to a new environment of
setups that should not be astray from real scenarios, the setting out on the
quest to address those queries left behind by precursor works of Lemita,
with the transition from Riemann integrability to Lebesgue’s, channels our
ways to craft new adequate definitions and properties resembling their fi-
nite-dimensional counterparts; in particular we introduce the generalisa-
tion of the concepts of symmetry and positive definiteness for a matrix of
bounded linear operators which shall be harnessed a priori to ensure the
convergence of the said generalised iterative JOR as well as contribute to
determining region for the relaxation parameter on that matter.
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Chapter 1

Preliminaries: A General
Miscellany

Contents

1.1 Univalued Single-variable Functions: Integration and Ap-
proximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Finite-dimensional Mappings: Matrix Linear Algebra, Square
Linear Systems, and Elements of Spectral Theory . . . . . . . 16

1.3 Of Linear Operators: Theory and Some Classifications . . . . 24
1.4 Integral Equations: Diversity and Some Theory . . . . . . . . 29

Per mathematical customs, it is indispensable to set ahead the ground
for all that is necessary to allow for the development of whichever math-
ematical endeavour to come. Hence, with much-regarded attention to
citation instances, this preliminary offers a general miscellany that aims
at reviving the reader’s knowledge and equipping them with the toolkit
needed to navigate one’s way through the manuscript.

We admit that the present inaugural chapter does not find interest in
reiterating foundational concepts and axiomatic builds from undergrad-
uate courses; namely, proofs for theorems at this level are either omitted
or referred to in external sources. Precisely, our work does not target uni-
versity first-years or second-years of the mathematics speciality, nor does
it most certainly target less than graduates in other fields of science and
engineering. Moreover, to when it should fit, symbolic notations used all
throughout the text are not all clarified; that is, massively used conven-
tional mathematical notations are not defined and the reader is considered
aware of them by default. But, conventional notations that are specific to

7



our uses and are found in the subsequent chapters may be initiated and
established early at this stage. Embedded, the reader may find dedicated
passages (including footnotes to that matter) for this whenever the need
occurs.

Finally, we signal that, occasionally, sections of the chapter, with or
without notice, may overlap at some point or another. To illustrate this,
overlaps may happen between: section 1.1 and section 1.3, or section 1.3
and section 1.2, etc.

1.1 Univalued Single-variable Functions:
Integration and Approximations

Let I be a non-empty real interval of any kind. Although a little flexible
to fit where it is needed, a function w(·) : I 7→ R is termed a weight-
function if it is at least

1. Non-negative but not identically null,
2. Both integrable and essentially bounded regardless of what the type

of I was, and
3. Having a prevalent monotony over I with a special character about

some of its points, including its endpoints, with the presence of a
certain asymptotic behaviour about them—the endpoints.

For this, such a weight-function w renders a mapping like

∥ f ∥w,∞ = sup {w(x)| f (x)| : x ∈ I}

a norm over the vector-space of continuous real-valued functions f (·) :
I 7→ R. Moreover, such a norm-application offers the specific property
that whenever I is both closed and bounded, a sequence of functions { fk}k,
defined over I, verifying

∥ fp − fp+q∥w,∞ → 0, q ≥ 1, p→ ∞,

would always have a limit f in the vector-space from above. This is what
defines the space completion and makes the normed space of continuous
functions mapping the compact I into R a Banach space. We refer the
reader to one of [8, 10, 13] for more history on the origins and development
of Banach spaces.

In our manuscript, we shall not wander non-deterministically. For, fix-
ing I to be a compact of R, and taking the neutral weight function

w(x) = 1, x ∈ I,

8



we introduce the uniform-convergence norm 1 by ∥ · ∥∞:

∥ · ∥w,∞ ≡ ∥ · ∥∞.

Thus, denoted C(I, R), or simply C(I) so long as we are not mapping into
the complex numbers, the Banach space in mention does not lose its pos-
session of the subsequent two characteristics:

One is a concept encountered in general metric spaces, but becomes es-
pecially sophisticated for subsets of functions. We talk about compactness
for subsets of C(I) that is framed differently. Without much verbiage, this
particular matter is given in the Arzelà-Ascoli Theorem:

Theorem 1.1.1. (Arzelà-Ascoli) A subset S ⊂ C(I) is compact if its elements
are both

1. Uniformly bounded, such that

∃M > 0 : ∥ f ∥∞ ≤ M, f ∈ S,

and

2. Equi-continuous, where

∀ϵ > 0, ∃δϵ : f ∈ S, x, y ∈ I, |x− y| < δ =⇒ | f (x)− f (y)| < ϵ.

In literature, this theorem may be formulated in terms of sequences of
functions and the result may be given in terms of the possibility of extract-
ing a uniformly convergent subsequent from all sequences of functions
in S verifying the two conditions of the theorem; a result, if weakened,
may require the concept of Quasi-uniform Convergence [8]. In addition, as
will be indicated in the rest of this section and later, Arzelà-Ascoli Theo-
rem plays a role in proving compactness for various mappings between
normed functional vector-spaces on the broader scale; namely, the vector-
space C(X) of all uniformly continuous real-valued functions taking from
the compact set X with the appropriate topology for completeness.

Two is an approximation property independent of any peculiarity dis-
played by the chosen element of C(I). Indeed, it is always possible to
approximate elements of this Banach space with an adjustable polynomial
function. A result rigorously stated in the well-known theorem of

1. Starting at this stage, the symbol ≡ should infer a sense of equivalence and/or
identification between two functions, applications, sets, vector-spaces, etc.
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Theorem 1.1.2. (Weierstrass) For every element f of C(I), and for any positive
real ϵ, there exists a polynomial function P of a degree dependent on ϵ such that

∥ f − P∥∞ < ϵ.

This cornerstone theorem, in its core, sets the ground for the essen-
tials of Approximation Theory in modern times. Indeed, such a result can
be very much observed for sufficiently smooth functions over I; i.e, func-
tions having continuous derivatives up to some positive integer order k
about some point x0 ∈ I, such that these functions are approximated us-
ing their Taylor k-polynomial expansions which are an excellent approx-
imating guess provided one is restrained within a neighbourhood of the
point x0.

However, in general, Weireistrass’ Theorem can be approached inde-
pendently of Taylor’s expansions. For instance, we note that for a, b the
endpoints of I, a < b, the p-family of Bernstein’s polynomials, which is
originally defined over [0, 1], is defined over I with individual terms given
by

Bq,p(x) =
(

p
q

)(
x− a
b− a

)q (b− x
b− a

)p−q
, 0 ≤ q ≤ p, a ≤ x ≤ b,

where
(

p
q

)
is the binomial coefficient. These polynomials are often used

to provide a proof for Weireistrass’ Theorem, and at this stage, this may
help us construct an idea of the abundance of polynomials that share the
trait of approximating the function f of C(I)!

Of this abundance, let be a mesh {xi}n
i=0 of equidistant nodes over I:

xi = a + ih, h = (b− a)/n, 0 ≤ i ≤ n, n ≥ 1,

Such a construction helps define Lagrange’s polynomial of degree n with
the expression

ℓi(x) =
n

∏
j=0
i ̸=j

x− xj

xi − xj
, xi of the mesh and x ∈ I,

which is yet another approach to approximate a function of C(I) using a
linear combination of the linearly independent family of polynomial func-
tions {ℓi(·)}n

i=0 of degree n in what builds Lagrange’s polynomial interpolant
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of f at the mesh points such that 2

f (x) ≊ P(x) =
n

∑
j=0

f (xi)ℓi(x), x ∈ I,

with
f (xi) = P(xi).

Furthermore, not only do Lagrange’s polynomials play an interpolating
role for f , but also prove quite useful in building the expression for the
interpolatory 3 Newton-Cotes quadrature rules formulae where a general
statement is given by

Q =
n

∑
i=0

wi f (xi),

with wi being precisely determined weight numbers w.r.t. ℓi(·), such that

wi =
∫ b

a
ℓi(x) dx.

Q is termed a quadrature rule and is used to approximate the definite inte-
gral of f over I.

Reliant on polynomial interpolation and the use of the polynomial fam-
ily {ℓi(·)}i to compute the corresponding weights wi, quadrature rules Q
with equidistant meshes of nodes xi’s, that may or may not contain both
endpoints 4, provide basic and generally practical rules for their goal. For
instance, as will be used later in this manuscript, we shall make use of the
two-point closed Newton-Cotes rule known as the trapezoidal rule which
is generally given by

Q =
1

∑
i=0

wi f (xi) =
f (a) + f (b)

2
.

2. The symbol ≊ may be used, starting at this stage, to indicate approximate equality
between eventually numerical quantities. The symbol≈may serve other in-text purposes
that we shall clarify ulteriorly.

3. It is true that the reader may deliberately sense the hidden emphasis put on this
term. For, rules of approximating the definite integral of a continuous function over a
compact real interval may not be interpolatory; namely, Riemann Sums are one such
example, and, to a lesser extent, Darboux Sums as well. Moreover, by all means, these
numerical integration rules mentioned make apparent the deterministic character of theirs
contrary to the probabilistic one encountered in Monte Carlo’s or Bayesian quadratures!

4. The rule is termed closed if it involves both endpoints, and open if it excludes them.
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One such rule is known to be exact for all polynomial functions of order at
most one and has a convergence order of three. Moreover, in its composite
version over N subintervals of equal length, where the rule is generally
concatenated subinterval-by-subinterval, the trapezoidal rule is given by

Q =
h
2

N

∑
m=1

( f (xm−1) + f (xm)) .

This rule is rather simple and easy to implement; perfect for our needs dis-
cussed in Chapter 2. However, with a low order, trapezoidal quadrature is
often not the best option for an efficient numerical definite integration of
sufficiently smooth functions as other higher order methods like the three-
point Simpson’s rule of order two, that is exact for all polynomials of an
order at most three 5, exist to augment the efficiency of the method like
augmenting the convergence order (Simpson’s has a convergence order of
five), irrespective of their composite versions that refine the outcomes a
step further.

On another hand, even though we have

n

∑
i=0

wi = b− a,

we read in [14] that the quantity

κ =
n

∑
i=0
|wi|,

determines whether the Newton-Cotes variant one manipulates is stable
or not and thus determines its convergence or divergence, respectively.
Notably, due to the appearance of negative weights, closed Newton-Cotes
rules of a degree at least nine are not stable and thus not convergent.

In summary, Newton-Cotes do not fulfil every need one has and may
create more issues than they solve. Hence, in response, a first remedy to
one of the two problems with these methods is to break free of the uni-
formity of the quadrature nodes distribution and choose to operate on a
non-uniform mesh. In other terms, the special character of some functions
where their behaviour around the endpoints is quite oscillatory resulting,

5. In general, depending on the parity of the nodes number n, those methods exhibit
different exactness degrees; namely, their exactness is always of an odd degree, such that
if n is even, then they are exact with degree (n− 1), and if it is odd, then they are exact
with degree n.
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at times, in what is known as Runge’s Phenomenon solicits the consider-
ation of other methods; notably, The Clenshaw-Curtis quadrature is one
example of such remedies and, albeit still based on the integration of the
Lagrangian interpolant of the function f like Newton-Cotes, the nodes in
this method that are predefined as the zeros of the Chebyshev polynomials
(originally defined on [−1, 1]) of which, for

y =
2x− b− a

b− a
, x ∈ I,

those of the first kind are

Tn−1(y) = cos ((n− 1) arccos (y)) , y ∈ [−1, 1],

and those of the second kind are

Rn−1(y) =
2

n(b− a)
d

dy
[Tn−1(y)] , y ∈ [−1, 1],

The clustering behaviour the zeros of these polynomials show around the
endpoints helps mitigate the undesired effects of the oscillations and lead
to better results.

Notwithstanding the above, the Clenshaw-Curtis methods with the
advantages they provide, still depend on predefining the nodes with a
special character. A better approach that would guarantee both stability
and treatment of the endpoints at once, all whilst maintaining the conven-
tion of using Lagrange’s polynomials for weights determination, would
be crowned in Gaussian quadrature rules that raise the order of exactness
to (2n + 1) and echo Clenshaw-Curtis’ rules in seeking the nodes as the
zeros of special polynomials that are termed orthogonal.

Indeed, generated by Rodrigues formula:

Ln−1(y) =
21−n

(n− 1)!
dn−1

dyn−1

[(
y2 − 1

)n−1
]

, y ∈ [−1, 1],

Legendre’s polynomials Ln−1(·) verify the orthogonality criterion∫ 1

−1
Li(y)Lj(y) dy = 0, 0 ≤ i ̸= j ≤ n,

and prompt the generation of special zeros that serve the role of the nodes
choice over which the Gaussian rules are built. One may refer to [45] for a
systematic review of the above two methods; i.e, Gaussian vs. Clenshaw-
Curtis quadrature rules.

13
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With this being stated, orthogonality is not a concept exclusive to Leg-
endre’s polynomials and numerical quadratures. In fact, outside the above
context, letting

Ω = I \ {a, b},
the weighted real inner-product

⟨ f , g⟩w :=
∫

Ω
w(x) f (x)g(x) dx,

where the weight function w is subject to the three conditions listed at
the beginning of this section 6, helps define the weighted vector-space of
square-integrable functions that we denote 7 L2

w(Ω) over which an induced
norm follows as,

∥ f ∥2
w := ⟨ f , f ⟩w, f ∈ L2

w(Ω),

leading to the functional Cauchy-Schwarz inequality:

|⟨ f , g⟩w| ≤ ⟨ f , f ⟩w⟨ g, g⟩w, f , g ∈ L2
w(Ω).

It is that we have the property of

{ fk}k≥0 ⊂ L2
w(Ω), ⟨ fp − fq, fp − fq⟩w → 0, p, q→ ∞,

that if f is an element of the space, limit to the sequence above, then it is
so in the strong sense:

⟨ fk − f , fk − f ⟩w → 0, k→ ∞,

and such that we accord the Hilbert Space label to L2
w(Ω).

To [8], not only does the Arzelà-Ascoli Theorem extend to the men-
tioned Hilbert space, but the concept of orthogonality that had been more
or less purely geometric since the times of Euclid until the birth of Func-
tional Analysis also finds room for application to functions of L2

w(Ω) such
that two vectors (functions) are said to be orthogonal if they verify

f , g ∈ L2
w(Ω), f ⊥ g ⇐⇒ ⟨ f , g⟩w = 0.

Moreover, going for the neutral weight

w(x) = 1, x almost everywhere (a.e.w.) in Ω,

6. The conditions are rather non-exhaustive. Had more specialised emphasis been
required, one may check W. Gautschi, Orthogonal polynomials: Computations and Approx-
imation, Numerical Mathematics and Scientific Computations Series, Oxford University
Press, 2004.

7. Like previously, since we do not intend to manipulate mappings into the complex
plane, then L2

w(Ω) shall infer L2
w(Ω, R)
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as indicated previously, the performance of the Gram-Schmidt orthogo-
nalisation procedure on the canonical family of monomials {xm}m≥0 nat-
urally generates Legendre’s polynomials which underlies their fulfilment
of the two-term recursive formula:

(n + 1)Ln+1(y) + nLn−1(y) = (2n + 1)xLn(y), y ∈ [−1, 1].

For more essential details, one could confer [6].
Subsequently, if normalised with respect to their corresponding inner-

product, the resulting denumerable family of normalised Legendre poly-
nomials {L̃n−1(·)}n≥1:

L̃n−1(y) =

√
2n− 1

2
Ln−1(y), y ∈ [−1, 1],

defines an orthonormal system over L2(Ω) whose closure spans the Hilbert
space:

Span{L̃n−1(·)}n≥1 = L2(Ω),

making it separable and allowing for the Fourier expansion,

f (x) =
∞

∑
j=0
⟨ f , L̃j⟩L̃j(x), x a.e.w. in Ω, f in L2(Ω),

where, clearly, Bessel’s inequality holds:

m

∑
j=0
|⟨ f , L̃j⟩|2 ≤ ∥ f ∥2, f ∈ L2(Ω).

On the other hand, considered an indexing parameter, the weight function
w, in general, determines what polynomial family to result of the perfor-
mance of the Gram-Schmidt ortho-normalisation procedure on the canoni-
cal family of monomials from above; for instance, Chebyshev polynomials
of the first kind are the result obtained in regards to the weight function

w(y) =
1√

1− y2
, y a.e.w. in (−1, 1),

and we obtain the same with them as with their counterparts of Legendre!
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1.2 Finite-dimensional Mappings: Matrix
Linear Algebra, Square Linear Systems, and

Elements of Spectral Theory

Let be an integer N ≥ 1. Over the real vector-space RN, the bilinear
form

⟨u|v⟩ :=
N

∑
i=1

uivi, u, v ∈ RN ,

defines a discrete scalar-product by which the Euclidean norm defines as

∥u∥2
2 := ⟨u|u⟩, u ∈ RN.

Being complete in the Cauchy sense, both of the above real-valued func-
tionals of the scalar-product and its induced norm grant RN the Hilbert
structure needed subsequently.

Endomorphic over RN, the mappings RN φ−→ RN constitute a vec-
tor-space L (RN) that is bijectively identified with that of square matrices
RN×N. Elements A of RN×N have a rich theory of their own and such that
the invertibility of the linear system

Au = 0, u ∈ RN ,

with 0 denoting the null vector of RN, is more than often the first step to
delve into the subject. Namely, the solution u = 0 may be the only solution
to the system, hence allowing for terming A invertible and writing

det(A) ̸= 0.

Otherwise, for IdRN being the identity square matrix of RN, one is brought
into treating the case where

∃u ∈ RN \ {0} : Au = 0 =⇒ ∃λ ∈ C : (λIdRN − B) u = 0.

It is far from ambiguous that one has the view of

A = λIdRN − B, B ∈ RN×N ,

and that, due to R being non-algebraically closed, λ could be a complex
number depending on the type of B. Of course, we shall not explore this
and refer the reader to introductory or intermediate courses and textbooks
on Matrix Linear Algebra or Linear Algebra in general, like [11, 38, 40].
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Attributed the German term eigen, the above λ with its uλ make an
eigen-couple (λ, uλ) where, in general, the eigenvalue λ is root to the char-
acteristic polynomial χB(·) of B defined by

χB(t) = det(tIdRN − B), t ∈ C.

Overlooking the potential hardships that may arise when solving

χB(t) = 0,

this is usually the standard method to find 8 the eigenvalues λ of B. How-
ever, accentuating the use of the scalar-product of RN, the Rayleigh Quo-
tient that is defined by

RB(v) :=
⟨v|Bv⟩
⟨v|v⟩ , v ̸= 0,

makes a rather delicate approach for this aim.
Indeed, it is easily observed that any eigenvalue of B must pertain to

the image set of the quotient:

W(B) = RB

(
RN \ {0}

)
,

termed the numerical range of B; that is, denoted σ(B), the spectrum of B,
being the complex subset of the eigenvalues of B, satisfies:

σ(B) ⊂W(B) ⊂ C.

If B is symmetric, then the quotient clarifies the containment

σ(B) ⊂ R : card(σ(B))=N.

A fact that fuels the hallmark theorem of

Theorem 1.2.1. (Spectral Decomposition: Finite Dimensions) For any symmet-
ric matrix B ∈ RN×N, its spectrum is a subset of the reals, and we have the
dirsct-sum decomposition

RN =
N⊕

j=1

Ej,

where
Ej = Span{uλj}, 1 ≤ j ≤ N,

are the pairwise orthogonal unidimensional eigenspaces of B.

8. Unless otherwise indicated in the text, the explanation involving the matrix B can
be made in the account of all other elements of RN×N .
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Moreover, the symmetry of B helps Rayleigh quotient serve another
significant role, such that one obtains the equivalence

B = BT =⇒ RB(v) > 0 ⇐⇒ ⟨v|Bv⟩ > 0, v ̸= 0,

giving rise to a specific type of square matrices: the symmetric and positive-
definite (SPD) matrices.

In general, for all (N×N)-matrices B, the quotient may be equivalently
defined by the expression:

RB(w) := ⟨w|Bw⟩, w =
v
∥v∥2

, v ̸= 0,

such that a quantity of interest, termed the numerical radius of B, is defined
by

ν(B) := max
w
|⟨w|Bw⟩|,

and is notably qualified to establish a norm over RN×N which is tightly
related to the spectral quantity termed the spectral radius of B that defines as

ρ(B) = max{|λ| : λ ∈ σ(B)},

and, in turn, establishes another norm over RN×N, where, with consider-
ation of the suprema manipulated, applying the discrete Cauchy-Schwarz
inequality yield the inequalities

ρ(B) ≤ ν(B) ≤ ∥B∥2,2, B ∈ RN×N ,

with

∥B∥2,2 := max
x ̸=0

∥Bx∥2

∥x∥2
.

As one so remarks, the three of ρ(·), ν(·), and ∥ · ∥2,2 introduce a topo-
logical (metric) structure over the vector-space of RN×N, and, in general,
one introduces such a structure with the use of the (operator) matrix-norm:

∥M∥mat := max
x ̸=0

∥Mx∥RN

∥x∥RN
, M ∈ RN×N.

Hence, we should note that with the p-norms over RN such that

∥x∥p
p :=

N

∑
i=1
|xi|p, x ∈ RN , p ∈ [1; ∞),
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infinitely many norms could be induced over the matrices following the
formula

∥M∥mat ≡ ∥M∥pq := max
x ̸=0

∥Mx∥p

∥x∥q
, M ∈ RN×N , p, q ∈ [1; ∞),

where the Banach-space structure generated over RN with the two vector
norms 9 ∥ · ∥1 and ∥ · ∥∞ provides what Chapter 2 features an analogy of:

∥M∥∞,1 =
N

max
i=1

N

∑
j=1
|mij|.

A further exploration could be referred to in [30]. However, not all matrix
norms are vector-induced, and such that in Chapter 3 we shall be inter-
ested in the analogous of the so-called Frobenius norm:

∥M∥2
F :=

N

∑
i=1

N

∑
j=1
|mij|2, M ∈ RN×N.

Though, with the scalar-product and its induced Hilbert structure over
RN, we always have

∥M∥2,2 ≤ ∥M∥F, M ∈ RN×N.

Under all circumstances, intrinsic of a property to its corresponding
matrix, the spectral radius of a matrix satisfies the Gelfand’s formula of

ρ(M) := lim
k→∞

k
√
∥Mk∥mat, M ∈ RN×N ,

which easily establishes another bound for the spectral radius:

ρ(M) ≤ ∥M∥mat.

Thus, irrespective of the matrix norm used 10, Gelfand’s formula serves on
the list of mathematical machinery to prove the Geometric Series Theorem:

Theorem 1.2.2. (The Geometric Series Theorem: Finite Dimensions) Let be M
and IdRN be elements of RN×N, with the latter being the identity matrix with

9. ∥ · ∥∞ = lim
p→∞
∥ · ∥p uniformly over the whole of RN .

10. Norms are equivalent on Euclidean spaces where Gelfand’s formula, in general,
concerns all matrix norms, including that of Frobenius.
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respect to the canonical basis of RN. Provided that M is strictly less than unity in
the spectral radius, it is sufficient that we necessarily have the matrix (IdRN −M)
be invertible with

(IdRN −M)−1 = IdRN + M + M2 + · · ·+ Mn + · · · ;

and such that
∥ (IdRN −M)−1 ∥mat ≤

1
1− ∥M∥mat

.

Furthermore, the spectral radius also serves in governing one of ap-
plied mathematics most crucial theorem. Based on [6], its finite-dimen-
sional version follows as

Theorem 1.2.3. (Banach’s Fixed-point: Euclidean Spaces) Let be a real α such

0 ≤ ρ(M) ≤ α < 1, M ∈ RN×N.

The fixed-point equation of

x = Mx + c, c, x ∈ RN ,

has a unique solution x∗ in RN and such that the generated iterative sequence of{
xk+1 = Mxk + c, k ≥ 0,
x0 ∈ RN ,

verifies the error estimation of

∥x∗ − xk∥RN ≤
αk

1− α
∥x1 − x0∥RN .

The previous theorem underlies the convergence of iterative methods
known to approximate the solutions of algebraic linear systems.

Historically [41], however relatively effective and diverse the direct
methods to solve the algebraic square linear system of

Tx = b, b, x ∈ RN , T ∈ RN×N ,

may be, like Cramer’s rule, The LU-Decomposition, The QR-Decomposi-
tion, etc., in his relaxation process of finding the solution to the above sys-
tem, Gauss weighed the virtues of iteration and proceeded as such setting
the residual vector

rk = b− Txk, k ≥ 0,

20



where he would annihilate a component of the residual vector at each iter-
ation of the scheme. Later, these germinal ideas knew much development
that took a final frame in the century that followed prior to the advent of
computational machines.

In every instance, the processes that emerged, including the developed
version of Gauss, had all rested on the splitting of the data matrix T such
that one takes

T = P− R, det(P) ̸= 0,

where the invertible matrix P is often referred to in literature as the pre-
conditioning matrix and R the matrix of the rest of data from T. Hence,
to this day, building upon this, two famous iterative methods have been
established where considering the decomposition

T = D− L−U,

with D the diagonal part of T, and L, U are the lower and upper parts of
it, respectively. Hence, we obtain the following two results:

Jacobi’s Iterative Method (J) is the result of choosing

P = D, R = L + U,

allowing, by a handful of manipulations, the surfacing of fixed-point equa-
tion

JEq : x = D−1(L + U)x + D−1b,

which builds an iterative scheme whose component-wise representation
is given by:

J :


xk+1

i =
1
tii

 N

∑
j=1
i ̸=j

tijxk
j + bi

 , k ≥ 0,

x0
i ∈ R, 1 ≤ i ≤ N.

As demonstrated in theorem 1.2.3, it is sufficient and necessary for the
iteration matrix D−1(L + U) to meet

ρ(D−1(L + U)) < 1,

for the iterative scheme J to converge to the solution of the fixed-point
equation JEq which in turn is the solution of the algebraic linear system
under examination.
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Gauss-Seidel’s Iterative Method (G-S) on the other hand, following the
same three-term decomposition of T as indicated previously, is the result
of choosing

P = D− L, R = U.

Thus, the exact same manipulations from above offer the fixed-point equa-
tion:

G-SEq : x = (D− L)−1Ux + (D− L)−1b,

which yields the following

G-S :

xk+1
i =

i−1

∑
j=1

tijxk+1
j +

N

∑
j=i+1

tijxk
j + bi, k ≥ 0,

x0
i ∈ R, 1 ≤ i ≤ N.

Anew, theorem 1.2.3 states that G-S converges to the solution of G-SEq,
equivalently to the solution of the algebraic linear system in discussion,
provided that we sufficiently and necessarily have the iteration matrix
(D− L)−1U verify

ρ((D− L)−1U) < 1.

Even though theorem 1.2.3 may appear sufficient and universal in de-
termining whether schemes J and G-S converged, it still utilised the spec-
tral radius which is more than often far from reachable without the har-
nessing of machine power. Consequently, using the dominance of the ma-
trix norm over the radius, a sufficient condition for convergence would be
to assume that the iteration matrix, in general, verifies

∥P−1R∥mat < 1.

However, an a priori condition would make matters rather approachable.
In fact, the type of the data matrix T factors in to be of use, such that the
two schemes above converge a priori 11 if T is a strictly diagonally dominant
matrix by rows (SDD-R); that is, if it satisfies

|tii| >
N

∑
j=1
i ̸=j

|tij|, 1 ≤ i ≤ N.

The G-S also always converges if T is an SPD matrix, even though the J
one may or may not be so.

11. A proof for this may be mediated by means of Gershgorin’s Discs.
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Since the 1950s (give or take few years), propelled by the especially un-
precedented computational triumphs achieved by new technological ma-
chines at the times, the ongoing competitive race to create faster schemes
caused the over-relaxation schemes to see light. In regards to [22], the base
idea was to set

T = Pω − Rω : Pω = ω−1P, ω ∈ R \ {0}.

Hence, solving for Rω, the particular case of the JOR scheme following the
relaxation of J is given the fixed-point equation:

JOREq : x =
(
(1−ω)IdRN + ωD−1(L + U)

)
x + ωD−1b,

with the component-wise formulation as

JOR :


xk+1

i = (1−ω)xk
i +

ω

tii

 N

∑
j=1
i ̸=j

tijxk
j + bi

 , k ≥ 0,

x0
i ∈ R, 1 ≤ i ≤ N.

The convergence of the new over-relaxation schemes ensues from merg-
ing the predisposed condition on the data matrix and the determination
of a specific region for the relaxation parameter ω. Namely, among other
scenarios, the successive over-relaxation (SOR), the issue of Gauss-Seidel’s
scheme, is convergent for SPD data matrices with ω ∈ (0, 2), with the sole
aim of adjusting the convergence speed of the G-S. On the other hand, the
JOR scheme from above plays two roles of which one is rather significant:

1. Accelerate the convergence of J provided it is convergent, with ω ∈
(0, 1], and

2. Despite divergence, introduce the convergence of the scheme with
an appropriate range for the over-relaxing ω.

Indeed, being SPD but non-SDD-R, matrices like
15 2 1 2 0
2 10 2 2 2
1 2 7 2 2
2 2 2 5 0
0 2 2 0 1


urge for more in-depth investigations on J’s convergence. As a result, ar-
ticle [46] offers a list of discussions in which remedies to the above issue
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are provided discarding, at times, the use of the spectral radius of the iter-
ation matrix in setting bounds for the region of ω over which convergence
is guaranteed for the JOR. However, of the results surfacing therein, we
reword a theorem as follows:

Theorem 1.2.4. (JOR Convergence for all SPD Matrices) Let T ∈ RN×N be an
SPD matrix. The iterative JOR scheme converges for all values ω such that

0 < ω <
2

ρ(D−1T)
.

1.3 Of Linear Operators: Theory and Some
Classifications

In this section, we take interest in discussing operators between vector-
spaces of finite or infinite dimensions.

Thus, let (B, ∥ · ∥B) be a real Banach space. An endomorphism A : B 7→ B
is said to be bounded if it verifies the assertion

∃C ≥ 0, ∥Au∥B ≤ C∥u∥B, u ∈ B \ {0B}.

We always have that the assertion above is satisfied for the operator-norm
∥ · ∥op:

∥A∥op := sup
u ̸=0B

∥Au∥B

∥u∥B
.

The boundedness of A is equivalent to its continuity where it is continuous
if we have

{un}n ⊂ B : lim
n→∞

un = u =⇒ lim
n→∞

Aun = Au.

In a loose speech, bounded endomorphisms A, if we notice, preserve the
boundedness between the input and the output space.

A more subtle result is that, assumed bijective, a bounded endomor-
phism A over the Banach B gains invertibility as well as boundedness of
its inverse A−1 and such that bounded endomorphisms T that are in prox-
imity to A where

∥A− T∥op ≤
1

∥A−1∥op
,

are invertible. This is especially important when one investigates the solv-
ability of perturbed abstract linear vector-equations like tackled in this
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manuscript. This also interprets to the fact that bounded and invertible
endomorphisms form an open subset of the space of bounded endomor-
phisms that we denote 12 L (B). Additionally, of the tools that one likely
uses to prove the above result is the following generalisation of theorem
1.2.2 that we state with a relatively weakened hypothesis:

Theorem 1.3.1. (The Geometric Series Theorem: Inclusive Statement) Let be the
identity endomorphism of B, IdB, and an A of L (B) with an operator-norm that
is less than unity. We have that the endomorphism (IdB − A) is an invertible
element of L (B) such that

(IdB − A)−1 = IdB + A + A2 + · · ·+ Ak + · · · ,

and that
∥ (IdB − A)−1 ∥op ≤

1
1− ∥A∥op

.

A stronger class of endomorphic operators are the compact endomor-
phisms which are not exclusive to Banach spaces. Elements of this class,
by definition, not only do they preserve boundedness as in the above, but
they also transform it into a stronger property; namely, they produce im-
age sets with compact closure in the output space out of bounded sets in the
input space. Hence, all compact endomorphisms are bounded. Further-
more, in the case of infinite dimensions, these endomorphisms are often
perceived as the counterparts of matrices from Euclidean spaces where
both share the property that both their spectra are denumerable and are
only constituted of eigenvalues; a fact that leads to a pivotal statement ex-
tending the solvability theory of matrices to compact operators in general
Banach spaces:

Theorem 1.3.2. (Fredholm’s Alternative) Let be an endomorphism 13 (λ− A) of
B with A compact. Then, equation

(λ− A) u = f , f ∈ B,

is either uniquely solvable for all the terms f , with u = 0B being the unique
solution of

(λ− A)u = 0B,

12. This is an exclusive notation for its served purpose. In general, we shall denote
by L (V1, V2), respectively L (V1), the vector-space of all bounded homomorphisms, re-
spectively endomorphisms, between two vector-spaces V1, V2, respectively between V1
and itself.

13. Starting at this point, we shall dismiss indicating clearly the presence of the identity
operator throughout the whole of the manuscript, unless it is inevitable as when λ = 1
or when we have varying indices to operate.
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or that there exists a linearly independent family { fn}n with

fn ̸= 0B and (λ− A) fn = 0B, n ≥ 0,

In terms of the zero of a vector-equation, Fredholm’s Alternative is
not the only result to extend from normed Euclidean spaces to Banach
spaces of arbitrary dimensions, for we also have the extension of Banach’s
Fixed-point Theorem that deals with the existence, uniqueness, and ap-
proximation of the zero of vector-equations involving contractive mappings,
although not necessarily compact endomorphisms as with Fredholm’s result:

Theorem 1.3.3. (Banach’s Fixed-point: General Statement in Banach Spaces)
Let K : B 7→ B be a mapping such that

∥K(u)− K(v)∥B ≤ α∥u− v∥B, u, v ∈ B,

with 0 ≤ α < 1, then K is a contractive mapping and the equation

u− K(u) = 0B,

is uniquely solvable with a guaranteed convergence for the sequence {uk}k ⊂ B
such that

uk+1 = K(uk), k ≥ 0, u0 ∈ B,

towards the fixed point u∗ solution to the equation from above and such that one
obtains the estimation

∥u∗ − uk∥B ≤
αk

1− α
∥u1 − u0∥B, k ≥ 0.

In light of Riesz’s theorem 14, a vector-space’s dimensionality trans-
gresses the elementary concept of its vector-basis’ cardinality. In fact, with
topological structures introduced via norm applications, it is very striking
of a result to have a close link between dimensionality and the topological
compactness such that both concepts become equivalent. This is very well
exploited in regards to endomorphisms where, provided that its rank 15 is
finite, an endomorphism is always going to be compact. Besides, when
blended with the closure of the set of compact endomorphisms, this pro-
duces another particular result that the limit of a sequence of finite-rank
operators is always a compact operator.

14. In brief, it is the one stating that a unit ball is compact if, an only if, the dimension
of the space is finite.

15. The dimension of its image set; also known as codimension.
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Nonetheless, this is not a universally reversible result over general Ba-
nach spaces; that is, a compact endomorphism is not always the limit of a
finite-rank sequence of endomorphisms even that it is indeed a limit of a
sequence of compact endomorphisms 16.

Such statements bring us about the mention of modes of convergences [1]
over L (B) where if A ∈ L (B) then a sequence {An}n ⊂ L (B) may be

1. Pointwise-convergent to A if

lim
n→∞

Anu = Au, ∀u ∈ B,

2. Norm-convergent to A if

lim
n→∞
∥A− An∥op = 0,

3. Collectively-compact convergent to A if

(a) It is pointwise convergent to it, and
(b) The sequence elements An start to verify operator compactness

starting at some sequence rank:⋃
n≥n0

{(An − A)u : ∥u∥B ≤ 1}

is relatively compact with⋃
n≥n0

{Anu : ∥u∥B ≤ 1}

is so in case of compactness of A.

Mode 3. of convergence characterises the specialness and rather nuanced
attachments joining integral and numerical quadrature operators. One
may refer to [1, 4, 6] for further details, as well as Chapter 2 where we
will faintly articulate it in a lemma’s proof involving Nystroöm’s Method.

On the other hand, with real inner-products (·, ·)H we induce the norm
applications ∥ · ∥H which places us onto real Hilbert spaces H of arbitrary
dimensions, where many of the attributes from the extensively covered
finite-dimensional case of Euclidean spaces are adequately extended to
infinite dimensions, and such that with the (almost) always guaranteed

16. Although stated, the paragraph’s substance is particularly advanced and exceeds
our current scope and/or capacity in all terms!
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existence 17 of an orthonormal family {ej}j≥0 ⊂ H over infinite-dimen-
sional Hilbert spaces, an infinite Hilbert system (or loosely, basis) proves
the approximation result on compact endomorphisms over H, elements
of L (H), which, in this space settings, are (almost) always the limits of
finite-rank endomorphisms. To illustrate this, the orthogonal projection en-
domorphisms πn : H 7→ H are usually defined by

πnu :=
n

∑
j=0

(ej, u)H ej, u ∈ H,

making of them, by Bessel’s inequality and their finite-ranks, compact el-
ements of L (H) which verify:

1. Pointwise convergence to the identity endomorphism IdH, without
norm-convergence to it unless H is finite-dimensional. In fact, the
sequence {πn}n does converge to π∞ : H 7→ H which is a com-
pact 18 element of L (H) defined by the expression

π∞u :=
∞

∑
j=0

(ej, u)H ej, u ∈ H,

2. The space’s direct decomposition such that

H = Ker(πn)
⊕

Ker(IdH − πn), n ≥ 0,

or equivalently

H = Range(IdH − πn)
⊕

Range(πn), n ≥ 0,

where (IdH−πn) is a second orthogonal projection operator that is
pointwise-convergent to the annihilation endomorphism mapping
H onto the singleton {0H}, and

3. The identity

(v, πnu)H = (πnv, u)H, u, v ∈ H.

Point 3. weighs in to show the idempotence trait of πn in addition to how
it translates into the self-adjointness of the orthogonal projection which, by
virtues of Riesz’s Representation Theorem, presents us to an especially

17. Exotic enough, Non-seperable Hilbert Spaces is yet another advanced topic that the
reader may investigate independently!

18. Clearly, π∞ is not the identity operator IdH.
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important class of endomorphisms over H: the self-adjoint class of endo-
morphisms that necessarily verify 3. unconditionally which establishes
the extension of the concept of symmetry from matrices over Euclidean
spaces to endomorphisms over arbitrary Hilbert spaces. Consequently,
this clarifies the reason underlying the fact that the spectra of self-adjoint
operators are embedded into the real line.

Finally, another interesting subclass of compact endomorphisms over
Hilbert spaces that usually features within the frame of integral equa-
tions (see next section) is the one of Hilbert-Schmidt endomorphisms S
for which the Hilbert-Schmidt norm 19 is defined by

∥S∥2
HS :=

∞

∑
j=0

(Sbj, Sbj)
2
H =

∞

∑
i,j=0

(Sbj, bi)
2
H,

independently of the choice of the Hilbert system {bj}j≥0. To conclude,
Hilbert-Schmidt norms verify the inequality

∥S∥op ≤ ∥S∥HS, S a H-S endomorphism,

and even though they are not sub-multiplicative 20, Hilbert-Schmidt norms
also verify a closely related inequality:

∥ST∥HS ≤ ∥T∥op∥S∥HS, S a H-S endomorphism, and T ∈ L (H).

More aspects and various other results can be referred to in [7].

1.4 Integral Equations: Diversity and Some
Theory

In this section, we shall not provide extensive explanations on the the-
ory of integral equations since richer details may be referred to in literature
like [4, 5, 6, 16, 25, 32, 39].

Nonetheless, we shall indicate that, similar in its aim to all other vary-
ing rich types of functional equations in mathematics, an integral equation
is an equation of functions who seeks to find the unknown solution func-
tion appearing under the integral sign. We report that there exist types of
integral equations that are classified with respect to their defining parts:

19. One should note that in finite dimensions, Hilbert-Schmidt norm is identical to
Frobenius’.

20. Sub-multiplicity is the fact that one has ∥AB∥ ≤ ∥A∥ · ∥B∥, within appropriate
settings. Sometimes, textbooks or otherwise may term it consistency property.
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1. The domain: regular if finite, singular if infinite or contains singu-
larity points, of Volterra if of varying constant length, or of Fred-
holm if of constant fixed length,

2. The kernel function: regular, nearly-singular, weakly-singular, or
singular, in compliance with the domain above,

3. The source-function: homogenous if it is null, non-homogenous
otherwise (the regularity plays less important role), and

4. The parameter λ (see below) that makes the first kind of the equa-
tion if being null, and introduces the regular/spectral second kind
if being non-zero.

To our concern, the present manuscript treats unidimensional regular
integral equations of the form

λϕ(x)−
∫

D
k(x, t, ϕ(t)) dt = f (x), x ∈ D ⊂ R.

Provided that D is a fixed 21, finite-length real domain that may be open or
closed, the kernel function k(·, ·, ·) : D3 7→ R is linear in its third variable:

k(x, y, z) = k(x, y)z, x, y, z ∈ D,

and that the non-zero source-function f (·) : D 7→ R exhibits certain reg-
ularities with belongingnesses to well-determined spaces, the situation
amounts to the treatment of

λϕ(x)−
∫

D
k(x, t)ϕ(t) dt = f (x), x ∈ D,

where λ is taken a non-zero real number. This is the classic non-homogenous
Fredholm integral equation of the second kind where the linear integral operator
A:

Aφ(x) =
∫

D
k(x, t)φ(t) dt, x ∈ D,

that we appropriately define in subsequent chapters, is compact. The
equation is often twin to the study of boundary-value problems (BVPs)
like the one below 22

x2y(2) + xy′ + (x2 − 4)y = e−x, π/2 ≤ x ≤ π,{
y(π/2) = y′(π),
y(π) = y′(π/2).

21. Constant with respect to changes in the variable x.
22. This is BVP with a Bessel’s differential equation whose solution involves a linear

combination of Bessel’s 2-functions of the first and second kind: J2(·), Y2(·), respectively.
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Ultimately, either produced by BVPs like the one above or are the re-
sults of treating and/or modelling real-world phenomena, the application
of Fredholm’s Alternative, or of Banach’s Fixed-point Theorem in its gen-
eral statement for Banach spaces, entails that Fredholm’s integral equa-
tions of the second kind are uniquely solvable for all continuous, respec-
tively bi-continuous, functions f (·) and k(·, ·) over the compact D = I =
[a, b] ⊂ R provided that we have λ a regular parameter:

|λ| > max
a≤x≤b

∫ b

a
|k(x, t)| dt.

Over the Lebesgue-measured set D = I \ {a, b}, the mentioned equations
of Fredholm’s second kind are also uniquely solvable when one takes f (·)
and k(·, ·) square-integrable making of A a Hilbert-Schmidt integral oper-
ator to verify

λ2 >
∫∫

D2
|k(x, t)|2 dA.

We close our preliminaries by noting that the unique solution of the
above BVP is appropriately determined using the boundary conditions; a
situation invoking Green’s function, G(·, ·), that is piecewise defined by

G(x, t) =


J2(x)Y2(t)

W(t) , π/2 ≤ t ≤ x,
J2(t)Y2(x)

W(t) , x ≤ t ≤ π,

with

W(t) = det
[

J2(t) Y2(t)
J′2(t) Y′2(t)

]
,

being the Wronskien of the corresponding second-order linear Bessel’s dif-
ferential equation. Predominantly, as can be observed in G(x, t), Green’s
functions are, among other states, symmetric where

G(x, t) = G(t, x), t, x in the domain of the corresponding BVP,

which makes them, being the kernels of integral operators of Fredholm’s
type, a specimen of a broader class of real-valued 23 kernel functions hav-
ing the symmetry property that we shall exploit in Chapter 3. For fur-
ther readings, although not particularly used in our work but may find
applications within, one may investigate Mercer’s Theorem that relates to
kernel functions and explore Reproducing Kernel Hilbert Spaces (RKHS); a
concept drawing curtains on some rather vast area of entangling mathe-
matical subfields.

23. As previously stated, we do not intend to treat complex-valued functions nor do
we intend to use complex numbers.
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Chapter 2

To Truncate a Series of Operators:
A Refinement
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2.2 Discretise then Iterate: A Ruptured Convention . . . . . . . . 35
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2.4 Truncation: The Refinement . . . . . . . . . . . . . . . . . . . 43
2.5 Numerical Implementations: Concluding Remarks . . . . . . 48

2.1 Prelude

In the manuscript’s Introduction chapter, we have already touched
upon the motivating key points behind the present work and its prede-
cessor. However, in this prelude section, we shall elaborate a little further
on integral equations of the Fredholm’s type. Evidently, those equations
appear in various physical scenarios; namely, we talk about the intertwine-
ment of partial differential boundary-value problems and their integral-
equation representations in Potential Theory [25].

Justifiably, drawing from classical physics, [17] surveys Love-Lieb inte-
gral equations where the study of electrostatic potential fields of uniformly
charged capacitors 1 of coaxially δ-separated iso-radii 2 end disc plates in-

1. Energy storage devices.
2. Or, different radii as well.
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vokes the considerations of mathematical models that lead to investigating
a linear Fredholm integral equation of the second kind as:

u(x)± 1
π

∫ 1

−1

δ u(t)
(x− t)2 + δ2 dt = f (x), x ∈ [−1, 1].

Such a regular integral equation, despite its recognised simplicity of treat-
ment, formulates an interesting study case when δ decreases; i.e, δ ↓ 0,
pushing towards the creation of a nearly singular kernel function 3 about
the bisector x = t, and posing numerical challenges with the tackling of
integrations over the dilated intervals of the form 4 [−1/δ, 1/δ] whose sub-
stantial lengths are indisputable.

On these steps, the thesis discussing the celestial astrophysical phe-
nomena of the atmospheric stellar energy transfer as well as the matter dis-
cussed in [20] that addressed the numerical treatment of non-linear equa-
tions stimulated the works in [26, 27] crowned by the thesis [28] where it
was demonstrated that Fredholm’s integral equations of the second kind
defined over large intervals were not to be treated the same way the ones
defined over normal-length interval were. In essence, it was primarily due
to the failure of the conventional process of discretising then iterating ver-
sus the success of the novel one of iterating then discretising in what made
parallel the situation to that tackled in [20] as mentioned.

Before we proceed, this chapter shall treat the Fredholm integral equa-
tion of the second kind defined over the compact real interval I = [a, b]
where

1≪ (b− a) < ∞,

and such that for the non-zero real parameter λ and the real-valued source
function f (·) ∈ C(I) and regular kernel function k(·, ·) ∈ C(I × I), we set
the mentioned equation of the unknown function ϕ(·) ∈ C(I) as follows

λϕ(x)−
∫ b

a
k(x, t)ϕ(t) dt = f (x), x ∈ I. (2.1)

As postulated in the Preliminaries’ chapter, Section 1.4, such an equation
is uniquely solvable provided that

|λ| > max
a≤x≤b

∫ b

a
|k(x, t)| dt. (2.2)

3. (x− t)2 + δ2 = (t− x− iδ)(t− x + iδ).
4. Make the change t/δ = y.
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2.2 Discretise then Iterate: A Ruptured
Convention

Conventionally, for equation (2.1) to be treated numerically, one ded-
icates much care to the approximation of the integral operator A defined
by

Aϕ(x) =
∫ b

a
k(x, t)ϕ(t) dt, ϕ(·) ∈ C , x ∈ I,

with C = C(I) endowed with its norm of uniform convergence being a
Banach space. It is noteworthy to mention that, owing to Arzelà-Ascoli’s
Theorem (see Preliminaries), A is a compact element of L (C) with

∥A∥op = max
a≤x≤b

∫ b

a
|k(x, t)| dt,

which, together with (2.2), one obtains the invertibility of (λ − A) and
hence the applicability of Fredholm’s Alternative Theorem to ensure the
existence of one ϕ(·) in C solution of (2.1).

Of the care regarded for A, utilised and discussed throughout this chap-
ter, we have the Nyström’s method that consists of replacing (2.1) with a
discrete version:

m ≥ 2, λϕm(x)−Qmϕm(x) = f (x), x ∈ I, (2.3)

where, based on numerical quadrature principles for the approximation
of definite integrals of appropriate functions, the endomorphism Qm ∈
L (C) is the discrete integral operator defined by

Qmψ(x) =
m

∑
j=0

wjk(x, tj)ψ(tj), x ∈ I, {tj}m
j=0 ⊂ I,

with tj a node from the mesh created over I and

∥Qm∥op =
m

∑
j=0
|wjk(x, tj)|.

Presumably, the aim is to construct the sequence {ϕm}m≥2 ⊂ C such that

lim
m→∞

∥ϕ− ϕm∥∞ = 0,

which, by the following pointwise convergence

lim
m→∞

Qmψ(x) = Aψ(x), x ∈ I, ψ(·) ∈ C ,
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one obtains a primal convergence result.
However, in terms of operator-norm, this is not a straightforwardly

achieved aim as Nyström’s method posits a nuanced approach of con-
vergence and error analysis such that the sequence of compact endomor-
phisms {Qm}m≥2 ⊂ L (C) does not satisfy

lim
m→∞

∥Qm −A∥op = 0.

Since this sequence verifies the collectively-compact convergence towards
the endomorphism A which implies that we have

lim
m→∞

∥(Qm −A)A∥op = lim
m→∞

∥(Qm −A)Qm∥op = 0.

this is a guarantee that, together with the compactness of A, (2.2) enter-
tains the invertibility of the endomorphism (λ − Qm) for all sufficiently
large ranks m. Consequently, one obtains the estimation

m≫ 1, ∥ϕm − ϕ∥∞ ≤ ∥(λ−Qm)
−1∥op∥Aϕ−Qmϕ∥∞. (2.4)

For a profounder explanation, one may refer to [4, 6].
The convention of discretising (2.1) to obtain (2.3) by choosing, without

loss of generality, the composite closed two-point trapezoidal rule such
that with

m ≥ 2, d = (b− a)/m, tj = a + jd, 0 ≤ j ≤ m,

which yields the scheme

λϕm(x)− d
2

m

∑
j=0

k(x, tj)ϕm(tj) = f (x), x ∈ I,

where a collocation over the nodes tj of the mesh gives the (m + 1)2-linear
system of equations:

λϕm(ti)−
d
2

m

∑
j=0

k(ti, tj)ϕm(tj) = f (ti), 0 ≤ i ≤ m,

such that the unknown vector (ϕm(tj))
m
j=0, that could be approximately

found using an iterative scheme like Jacobi’s, Gauss-Seidel’s, etc., is lever-
aged in the usual Lagrange’s interpolating formula:

ϕm(x) ≊
m

∑
j=0

ϕm(tj)ℓj(x), x ∈ I,
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or in Nyström’s interpolating formula 5:

ϕm(x) ≊ 1
λ

(
f (x) +

d
2

m

∑
j=0

k(x, tj)ϕm(tj)

)
, x ∈ I,

to build an approximation ϕm(·) of the solution ϕ(·).
In [28], it was demonstrated that such a conventional approach failed

to meet the expectations when one operated over a substantially large in-
terval.

Algorithm 1 Computation of the approximate solution ϕm(·) of (2.1) fol-
lowing the discretise-then-iterate method
Require: λ, a, b, and m ≥ 2
Ensure: ϕm(tj), for all 0 ≤ j ≤ m

1: d = b−a
m

2: t0 = a, tm = b
3: while 1 ≤ i ≤ m− 1 do
4: ti ← ti−1 + d
5: end while
6: while 0 ≤ i ≤ m do
7: F(i) = f (ti)
8: end while
9: while 0 ≤ i ≤ m do

10: while 0 ≤ j ≤ m do
11: K(i, j) = d

2 k(ti, tj)
12: end while
13: end while
14: A = λIdRm+1 − K
15: Choose Jacobi’s or Gauss-Seidel’s scheme to approximate the solution

of the linear system AV = F, where V =
(
ϕm(tj)

)m
j=0

16: Rebuild ϕm(·) using an interpolation formula

5. The weights are w.r.t. the quadrature in use; here, we use the composite closed
two-point trapezoidal rule. In general, they are taken as wj and computed as explained
in the Preliminaries’ chapter.
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2.3 Iterate then Discretise: Generalised Jacobi’s
and Gauss-Seidel’s Schemes

The remedy of the discussed failure results in the break of the conven-
tions that starts in setting, for N ≥ 2, the mesh 6

H = (b− a)/N,

{
xi = xi−1 + H, 1 ≤ i ≤ N − 1,
x0 = a, xN = b,

which, using the so-called Chales rule for definite integration, leads to
writing (2.1) in the following equivalent form

λϕ(x)−
N

∑
j=1

∫ xj

xj−1

k(x, t)ϕ(t) dt = f (x).

With the premise that Ii = [xi−1, xi], the notations

ϕi(x) ≡ ϕ(x), fi(x) ≡ f (x), x ∈ Ii, 1 ≤ i ≤ N,

result in yet another form of (2.1) where one thus creates an (N×N)-linear
system of Fredholm’s integral equations of the second kind:

λϕi(x)−
N

∑
j=1

∫ xj

xj−1

k(x, t)ϕj(t) dt = fi(x), x ∈ Ii, 1 ≤ i ≤ N.

Hence, denoting by Ci the Banach space C(Ii) endowed with its uniform
convergence i-norm ∥ · ∥i:

∥g∥i = ∥g∥∞, g ∈ Ci,

we introduce the family of compact integral operators {Aij}N
1=i,j where

Aij : Cj 7→ Ci

g 7→ Aijg(x) =
∫ xj

xj−1

k(x, t)g(t) dt, x ∈ Ii.

With the agreed-upon definition for the operator-norm, where 0i denotes
the additive neutral element of Ci, we have that:

∥Aij∥op = sup
g ̸=0j

∥Aijg∥i

∥g∥j
=

∥∥∥∥∥
∫ xj

xj−1

k(·, t) dt

∥∥∥∥∥
i

, 1 ≤ i, j ≤ N,

6. Our choice of the mesh is the basic standard. However, other convexly uniformly
formed meshes within I may also work with respectful minor to no effects on the outcome
resulting thereof.
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implies the belongingness Aij ∈ L (Cj, Ci).
Next, defining the product-vector-space B by

B :=
N

∏
i=1
Ci,

one introduces a Banach structure over it with the norm

∥G∥B =
N

max
i=1
∥gi∥i, G ∈ B.

Moreover, denoting by M the vector-space of matrices of bounded lin-
ear operators which is identifiable with the vector-space L (B), one is
allowed to set the norm of operator matrices that is very similar in ex-
pression to ∥ · ∥∞,1 (see Preliminaries, Section 2):

∥T ∥M =
N

max
i=1

N

∑
j=1
∥Tij∥op, T ∈M .

With Idii denoting the identity operator of Ci, one defines the identity op-
erator-matrix of B, element of M , by

I = δijIdii, 1 ≤ i, j ≤ N,

where δij denotes Kronecker’s delta. At this stage, one is prepared for the
following definition

Definition 2.3.1. (SDD-R Operator-matrices) LetM = (Mij)
N
i,j=1 ∈ M . We

say thatM is an SDD-R operator-matrix if and only if we have

∥Mii∥op >
N

∑
j=1
i ̸=j

∥Mij∥op.

Equivalently, we say it is SDD-C 7 ifMT is an SDD-R, where

(MT)ij = Mji, 1 ≤ i, j ≤ N.

The structures set hereinabove facilitate the task of treating (2.1) where
one produces the following abstract linear matrix-vector system out of it:

(λI −A)Φ = F, (2.5)

7. SDD-C: Strictly Diagonally-dominant by Columns.
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with F = ( fi)
N
i=1 ∈ B, and A = (Aij)

N
i,j=1 ∈ M constituting the given

data, and Φ being the unknown function-vector to be found in B. It is,
then, straightforward to notice that (2.2) implies

|λ| > ∥A∥op

= max
a≤x≤b

∫ b

a
|k(x, t)| dt

= max
a≤x≤b

N

∑
j=1

∫ xj

xj−1

|k(x, t)| dt

=
N

max
i=1

N

∑
j=1
∥Aij∥op = ∥A∥M .

(2.6)

Hence, consequence to The Geometric Series Theorem in its inclusive state-
ment and to Fredholm’s Alternative Theorem, (2.5) is uniquely invertible
with the formal solution

Φ = (λI −A)−1 F.

Similar to the algebraic case, the stance of assuming the splitting of A:

A = D −L− U ,

where D,−L,−U are the diagonal, the lower, and the upper parts of A,
respectively, allows for:

∥A∥M ≥ ∥D∥M ,

as well as
∥A∥M ≥ ∥D −L∥M ,

which, by (2.6), justify writing (λI −D)−1 and (λI −D + L)−1; thus gen-
erating the generalised versions of the Jacobi (GJ) and the Gauss-Seidel
(GG-S) schemes as follows:

GJ :

{
Φk+1 = (λI −D)−1 ((L+ U )Φk + F

)
, k ≥ 0,

Φ0 ∈ B,
(2.7)

and

GG-S :

{
Φk+1 = (λI −D + L)−1 (UΦk + F

)
, k ≥ 0,

Φ0 ∈ B.
(2.8)
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Component-wise, without invoking the inverse of the operator-matrices
as shown above, (2.8) and (2.9) can be expressed as

GJ :


λϕk+1

i = Aiiϕ
k+1
i +

N

∑
j=1
i ̸=j

Aijϕ
k
j + fi, k ≥ 0,

ϕ0
i ∈ Ci, 1 ≤ i ≤ N,

(2.9)

and

GG-S :

λϕk+1
i =

i

∑
j=1

Aijϕ
k+1
j +

N

∑
j=i+1

Aijϕ
k
j + fi, k ≥ 0,

ϕ0
i ∈ Ci, 1 ≤ i ≤ N.

(2.10)

(2.6) implies that (λI −A) is SDD-R since

|λ| = ∥λI∥M ,

and that, for all the rows 1 ≤ i ≤ N,

N

∑
j=1
i ̸=j

∥Aij∥op < |λ| − ∥Aii∥op

≤
∣∣∣∥λIdii∥op − ∥Aii∥op

∣∣∣
≤ ∥λ−Aii∥op,

which allows for the predetermination of convergence for both of GJ and
GG-S, as well as its allowance of the application of Banach’s Fixed-point
Theorem in its general statement where the general statement of The Ge-
ometric Series Theorem clarifies how the combination of (2.2) and (2.6)
results in obtaining the necessary spectral condition off the sufficient norm
condition for the convergence of either of (2.7) and (2.8):

ρ (J ) ≤ ∥J ∥M < 1,

with J denoting the iteration matrix of GJ:

J = (λI −D)−1 (L+ U ) ,

or of GG-S:
J = (λI −D −L)−1 U .
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Subsequently, it is inevitable that one be cast into the discrete world of
numbers where the iterative process discussed previously is followed by
the discretisation that is based on Nyström’s method, such that, for n ≥ 2,
the sub-mesh nodes over the compact subinterval Ii:

1 ≤ i ≤ N, h = (xi − xi−1)/n,

{
xi

q = xi
q−1 + h, 1 ≤ q ≤ n− 1,

xi
0 = xi−1, xi

n = xi,

help define the discrete integral operator

Aiing(x) =
n

∑
q=0

wqk(x, xi
q)g(xi

q), x ∈ Ii, g ∈ Ci, 1 ≤ i ≤ N.

That Aiin is a compact element of L (Ci) is clear with

∥Aiin∥op = max
x∈Ii

n

∑
q=0
|wqk(x, xi

q)|, 1 ≤ i ≤ N,

and such that the family {Aiin}n ⊂ L (Ci) is collectively-compact conver-
gent to Aii which de facto offers the pointwise convergence:

Aiing n→∞−−−→ Aiig, g ∈ Ci, 1 ≤ i ≤ N,

and establishes the discrete versions of GJ:

GJn :


λϕk+1

in = Aiinϕk+1
in +

N

∑
j=1
i ̸=j

Aijϕ
k
jn + fi, k ≥ 0,

ϕ0
in ∈ Ci, 1 ≤ i ≤ N,

(2.11)

and of GGS:

GG-Sn :

λϕk+1
in = Aiinϕk+1

in +
i−1

∑
j=1

Aijϕ
k+1
jn +

N

∑
j=i+1

Aijϕ
k
jn + fi, k ≥ 0,

ϕ0
in ∈ Ci, 1 ≤ i ≤ N.

(2.12)
On the other hand, we have the estimation

k ≥ 0, n≫ 2 =⇒ ∥ϕk
i − ϕk

in∥i ≤ ∥(λ−Aiin)
−1∥op∥Aiiϕ

k
i −Aiinϕk

i ∥i.

Referring to [28], one observes how the above estimation combines with
the convergence of GJ or of GG-S to produce a function-sequence {Φk

n :
n ≥ 2, k ≥ 0} of B that converges to the exact solution Φ of (2.5) which is
equivalent to finding the solution of (2.1), where we write

lim
k,n→∞

∥Φ−Φk
n∥B = 0.
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2.4 Truncation: The Refinement

Even though the invertibility of (λ−Aii) implies that of (λ−Aiin)
when n is sufficiently great, it is not clear whether one has

|λ| > ∥Aiin∥op,

hence the indecisive applicability of The Geometric Series Theorem in its
general statement. In other terms, it would still remain a question to write
or not to write the following

(λ−Aiin)
−1 =

∞

∑
r=0

λ−r−1Ar
iin, A0

iin := Idii, 1 ≤ i ≤ N, n ≥ 2. (2.13)

Consequently, the answer is provided in the following cornerstone lemma
that feeds off quadrature rules’ stability where both of the following two
assertions hold:

1. The weights of the quadrature rule are positive, and

2. The sums of the weights of the quadrature rule are uniformly bounded
regardless of the increasing number of the weights; i.e,

sup ∑ (weights of the quadrature) < ∞.

As a result, we have

Lemma 2.4.1. Denote the resolvent set of Aiin by re(Aiin) where

re(Aiin) = C \ σ(Aiin), 1 ≤ i ≤ N, n ≥ 2.

Then, using stable quadrature rules, for all rank n ≥ n0, with n0 sufficiently
greater than 2, the operator (λ−Aiin) is invertible with

n ≥ n0 ≫ 2, λ ∈ re(Aiin) and |λ| > ∥Aiin∥op.

Proof. By hypothesis, the positivity of the utilised stable quadrature rule’s
weights allows for the following consideration

∥Aiin∥op = max
x∈ Ii

n

∑
q=0
|wqk(x, xi

q)|

= max
x∈ Ii

n

∑
q=0

wq|k(x, xi
q)|.

43



It is easily noticed that, setting

ψx(·) = |k(x, ·)|, x ∈ Ii,

we introduce an element of Ci which implies that, in a different statement,
if

κn(x) =
n

∑
q=0

wqψx(xi
q), x ∈ Ii,

the convergence of stable quadrature rules to the exact definite integral of
continuous functions over compact intervals yields

lim
n→∞

κn(x) = κ∞(x) =
∫ xi

xi−1

ψx(t) dt =
∫ xi

xi−1

|k(x, t)| dt.

Hence,

lim
n→∞
∥Aiin∥op = lim

n→∞
max
x∈ Ii

κn(x)

= max
x∈ Ii

κ∞(x)

= max
x∈ Ii

∫ xi

xi−1

|k(x, t)| dt

= ∥Aii∥op.

Consequently, setting the sequence of positive real numbers

{αn = ∥Aiin∥op}n ⊂ R,

we have by the above convergence that

lim
n→∞

αn = α = ∥Aii∥op,

which translates into the following ϵ-statement:

∀ϵ > 0, ∃n0 ≫ 2 : ∀n ≥ n0, |αn − α| < ϵ.

In particular, choosing
ϵ = |λ| − α,

guarantees the existence of a rank n0 ≫ 2 starting from which we have

αn − α ≤ |αn − α| < ϵ =⇒ αn < |λ|, n ≥ n0 ≫ 2.
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However, it is worthy to note that such a lemma finds place only when
the used quadrature rule’s weights are positive. The reader may investi-
gate this area independently and we refer to [14].

As a consequence, it is justified that one endorses (2.13) permitting for
the truncation of the geometric series of operators into the following geo-
metric p-sum of operators:

(λ−Aiin)
−1 ≈

p

∑
r=0

λ−r−1Ar
iin, A0

iin := Idii, 1 ≤ i ≤ N, n ≥ 2.

Ensuing, two three-parameter discrete schemes follow as attributes to both
of GJn

8:

GJn(p) :


ϕk+1

in (p) =

[
p

∑
r=0

λ−r−1Ar
iin

] N

∑
j=1
i ̸=j

Aijϕ
k
jn(p) + fi

 , k ≥ 0,

ϕ0
in(p) ∈ Ci, 1 ≤ i ≤ N,

(2.14)
and GG-Sn(p):

GG-Sn(p) :



ϕk+1
in (p) =

[
p

∑
r=0

λ−r−1Ar
iin

] ( i−1

∑
j=1

Aijϕ
k+1
jn (p)

+
N

∑
j=i+1

Aijϕ
k
jn(p) + fi

)
, k ≥ 0,

ϕ0
in(p) ∈ Ci, 1 ≤ i ≤ N,

(2.15)

Although falsely trivial at first glance, it is inevitable to examine the
convergence of both GJn(p) and GG-Sn(p) subsequent to the application
of the truncation’s concept; a result supported by:

Theorem 2.4.1. Over the Banach space B, both of the schemes GJn(p) and
GG-Sn(p) generate a function-vector sequence {Φk

n(p) : p, k ≥ 0, n ≥ 2}
that converges in the B-norm to the function-vector Φ ∈ B solution of (2.5),
equivalently prompting the required data to build the solution of (2.1).

8. However missing its own conference proceedings paper, GJn(p) had been the sub-
stance of discussion around which we took part (online) in a hybrid international confer-
ence held in İstanbul, Türkiye, under the name “6th International Conference on Mathemat-
ics: An İstanbul Meeting for World’s Mathematicians”.
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Proof. To avoid redundancy, we opt for omitting the proof on the conver-
gence of GJn(p) since it is identical to what shall follow with adequate ad-
justments in summation indices. Hence, in regards to GG-Sn(p), observe
that we have

∥ϕi − ϕk
in(p)∥i ≤∥ϕi − ϕk

i ∥i + ∥ϕk
i − ϕk

in∥i

+ ∥ϕk
in − ϕk

in(p)∥i, 1 ≤ i ≤ N, n ≥ 2, p ≥ 0.

Then, establish the following three sums over Ci:

Sk
i =

i−1

∑
j=1

Aijϕ
k+1
j +

N

∑
j=i+1

Aijϕ
k
j + fi,

Sk
in =

i−1

∑
j=1

Aijϕ
k+1
jn +

N

∑
j=i+1

Aijϕ
k
jn + fi,

Sk
in(p) =

i−1

∑
j=1

Aijϕ
k+1
jn (p) +

N

∑
j=i+1

Aijϕ
k
jn(p) + fi.

We shall follow an inductive proof, such that at iteration k = 0, since one
has

p ≥ 0, ϕ0
in = ϕ0

in(p),

then it follows that

∥ϕ0
in − ϕ0

in(p)∥i = 0 = lim
p→∞
∥ϕ0

in − ϕ0
in(p)∥i, n ≥ 2, 1 ≤ i ≤ N.

Next, suppose that the assertion holds up to iteration k ≥ 1:

lim
p→∞
∥ϕk−1

jn − ϕk−1
jn (p)∥i = 0, 1 ≤ j ≤ i− 1,

and, fact that we are treating the Gauss-Seidel concept 9, we also have that

lim
p→∞
∥ϕk

jn − ϕk
jn(p)∥i = 0, i + 1 ≤ j ≤ N.

9. In GJn(p), we would not assume the same, as the only used terms originate in the
previous iteration and one cannot predetermine anything on the current iteration.
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Consequently, we have the following manipulation

ϕk
in − ϕk

in(p) = (λ−Aiin)
−1 Sk−1

in −
(

p

∑
r=0

λ−r−1Ar
iin

)
Sk−1

in (p)

=

(
p

∑
r=0

λ−r−1Ar
iin

)(
Sk−1

in − Sk−1
in (p)

)
+

(
(λ−Aiin)

−1 −
p

∑
r=0

λ−r−1Ar
iin

)
Sk−1

in .

On one hand, by virtue of The Geometric Series Theorem, we have that

(λ−Aiin)
−1 −

p

∑
r=0

λ−r−1Ar
iin =

∞

∑
r=p+1

λ−r−1Ar
iin

p→∞−−−→ 0L (Ci)
, L (Ci).

On the other, we have

Sk−1
in − Sk−1

in (p) =
i−1

∑
j=1

(
Aij(ϕ

k
in − ϕk

jn(p))
)
+

N

∑
j=i+1

(
Aij(ϕ

k−1
in − ϕk−1

jn (p))
)

,

which is a quantity convergent to 0Ci for all iterations k ≥ 1. Hence, the
result also holds at iteration (k+ 1), and by principle of induction, we have

lim
p→∞
∥ϕk

in − ϕk
in(p)∥i = 0, n ≥ 2, k ≥ 0, 1 ≤ i ≤ N.

Next, similar in reasoning to the above, the convergence w.r.t. parame-
ter n is consequence to following the manipulation

k ≥ 1, ϕk
i − ϕk

in = (λ−Aii)
−1 Sk−1

i − (λ−Aiin)
−1 Sk−1

in

= (λ−Aiin)
−1
(

Sk−1
i − Sk−1

in

)
+
(
(λ−Aii)

−1 − (λ−Aiin)
−1
)

Sk−1
i ,

where, by virtues of

Dn =
(
(λ−Aii)

−1 − (λ−Aiin)
−1
)
= (λ−Aii) (Aiin −Aii) (λ−Aiin) ,

and the pointwise convergence of the family {Aiin}n towards Aii in Ci, we
have that

lim
n→∞

Dn = 0L (Ci)
, 1 ≤ i ≤ N.
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Moreover, considerate of the offerings by Gauss-Seidel scheme, the appli-
cation of inductive reasoning proves that

lim
n→∞

(
Sk−1

i − Sk−1
in

)
= 0Ci , k ≥ 0, 1 ≤ i ≤ N.

Thus,
lim

n→∞
∥ϕk

i − ϕk
in∥i = 0, k ≥ 0, 1 ≤ i ≤ N.

Additionally, owing to the estimation from Banach’s Fixed-point Theorem,
we obtain

∥ϕi − ϕk
i ∥i ≤

∥J ∥k
M

1− ∥J ∥M
∥ϕ1

i − ϕ0
i ∥i, k ≥ 0, 1 ≤ i ≤ N,

from which, as discussed previously in the text, we have a priori deter-
mined that ∥J ∥M < 1; that is, GG-S is convergent. Thus, we have

lim
k→∞
∥ϕi − ϕk

i ∥i = 0, 1 ≤ i ≤ N.

As a result, taking the maximum over 1 ≤ i ≤ N, one concludes that

lim
p,n,k→∞

∥Φ−Φk
n(p)∥B = 0.

2.5 Numerical Implementations: Concluding
Remarks

Realised on a Windows 10, ×64 bits system, 6th-Gen i5-PC, we carry
out some illustrative numerical examples, and, once again, all definite in-
tegrals are approximated using composite closed two-point trapezoidal
quadrature rule.

For a first example, letting τ ≫ 0, we set over the interval [0, τ] the
following

λϕ(x)−
∫ τ

0
sin(αxt)ϕ(t) dt = f (x), 0 ≤ x ≤ τ, (2.16)

where for positivity of the bi-continuous sine-kernel over the compact in-

terval taken, we have α =
π

τ2 , and to operate continuous functions, note
that since we have the following maximisation procedure

max
[0,τ]

∫ τ

0
| sin(αxt)| dt = max

[0,τ]

(
τ2

πx
− τ2

πx
cos

(πx
τ

))
≊ τπ

4.3355
,
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which is achieved for x∗ ≊ τπ

4.232
, it is justified that, for the value λ = 2τ,

the ensuing unique exact solution of (2.7):

ϕ(x) = x, 0 ≤ x ≤ τ,

is the result of choosing the source-function as

f (x) =

λx +
τ

αx
cos(ταx)− sin(ταx)

α2x2 , x ̸= 0,

0, x = 0.

Consequently, setting τ = 200, fixing N = 200, increasingly varying the p,
iterating over k, and making the following table

Scheme Error Notation Error Formula
GJn e ∥Φ− JΦk

n∥B
GJn(p) ep ∥Φ− JΦk

n(p)∥B
GG-Sn E ∥Φ− GSΦk

n∥B
GG-Sn(p) Ep ∥Φ− GSΦk

n(p)∥B

With a 10−8-tolerance, one obtains tables 2.1, 2.2, 2.3, and 2.4:

n e Time (sec)
9 2.478061560395872E-07 66.33

21 3.933695325031295E-08 218.69
41 9.561290426063351E-09 718.57

Table 2.1 – The Error of GJn

n ep Time (sec)
9 2.460836299178482E-07 64.51

21 3.775389245674887E-08 214.25
41 8.223963732234552E-09 701.15

Table 2.2 – The Error of GJn(p)

We notice the effects of truncation comparing Table 2.1 with 2.2 and Table
2.3 with 2.4. The comparison between tables 2.1 and 2.3 or the eventual 2.2
and 2.4 is not of the greatest importance or interest as such point has been
already discussed in [28], and it was made clear, as it is the case for the
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n E Time (sec)
9 2.478061560395872E-07 18.41

21 3.933695325031294E-08 83.97
41 9.561290426063351E-09 292.01

Table 2.3 – The Error in GG-Sn

n Ep Time (sec)
9 2.460836299178482E-07 17.79

21 3.775389245674887E-08 82.04
41 8.223963732234552E-09 289.52

Table 2.4 – The Error in GG-Sn(p)

algebraic scenario, that Gauss-Seidel achieves what Jacobi does in lesser
time.

Consequently, the p-truncations, although reliant on finite summations
of a geometric series of endomorphisms, offer some gain in time as well
in their achieving the same rank of errors as is observed; a profit set to
accumulate the more n grows. However, to investigate it further, observe
Table 2.5 where over [0, 10] (τ = 10), for ten subintervals (N = 10), and for
81 sub-nodes (n = 81), one obtains given the same tolerance criterion:

τ = 10, N = 10, n = 81
E Time (sec) p Ep Time (sec)

1.216945193505126E-07 13.62

2 6.111517816798084E-05 13.61
3 3.103139251336984E-06 13.50
4 2.677355901425926E-07 13.51
5 1.288582343050848E-07 13.49
6 1.220462735318506E-07 13.58
7 1.217118050789168E-07 13.59
8 1.216953684490818E-07 13.58
9 1.216945637594335E-07 13.61

10 1.216945229032262E-07 13.57

Table 2.5 – Varying the p

It is more clear how the truncation does not affect convergence and
such that even as small as a three-term geometric sum, an error of rank
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10−5 makes entrance with a monotonically decreasing behaviour that is
parallel to a sequence of monotonically non-increasing elapsed execution
time. Ultimately, as it is one of the crucial factors, by preserving the same
tolerance of the example and choosing p = 3, we also investigate the effect
of the interval’s size on how well of an approach the truncation would
be: As one notices, in general cases, synchronous to the interval’s growth

[0, τ] : H = 1, ϕ(x) = x, x ∈ [0, τ]
τ n E Time (sec) Ep Time (sec)

100 21 8.36226E-08 19.18 7.41688E-08 18.97
150 31 2.10201E-08 89.41 1.74087E-08 88.81
200 41 9.56129E-09 292.01 8.22396E-09 289.52

Table 2.6 – Influence of the interval’s size

in length, λ is set to grow proportionately with the interval’s size; a fact
that explains the small summation rank at which neglect is exerted on the
action of the powers of Aiin; i.e, the iterated endomorphic compositions
Ar

iin, against those of in denominator λr+1. Hence, as seen in our choice,
a value as small as p = 3 proves rather influential in gaining solid better
convergence compared with invoking the inverse of an (n + 1)× (n + 1)
matrix when, in practice, n is destined to grow. In other terms, over even
larger intervals when τ > 200, n is generally taken rather great, which
helps visualise the amount of culminated gain in computational time and
error efficiency. Again, this is an indisputably noteworthy aspect given the
general difficulty of inverting algebraic square matrices with important
sizes.

We conclude the section, as well as the chapter, by a second example
where we set the following convolution-kernel Fredholm’s integral equa-
tion of the second kind:

λψ(x)−
500∫
0

|t− x|ψ(t) dt = h(x), x ∈ [0, 500]. (2.17)

It is clear that

max
[0,500]

∫ 500

0
|t− x| dt = max

[0,500]

(
x2 − 500x +

5002

2

)
=

5002

2
,

is achieved for x∗∗ =
5002

2
. Therefore, letting µ ≥ 1, the choice λ =

5002µ testifies for the unique invertibility of (2.17) as well as its guaranteed
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convergence. Consequently, let µ = 2. A solution for (2.17) is then given
by

ψ(x) = x1/2, x ∈ [0, 500],

when the source-function term is chosen as

h(x) = λ
√

x+

(
2(10
√

5)3

3

)
x−

(
8
15

)
x5/2−

(
2(10
√

5)5

5

)
, x ∈ [0, 500].

For a principal step H = 10, we have N = 50 subintervals, where, pre-
serving the same tolerance as in the previous first example and working
with the fixed choice p = 3 with the errors

Scheme Error Notation Error Formula
GG-Sn ∆ ∥Ψ− GSΨk

n∥B
GG-Sn(p) ∆p ∥Ψ− GSΨk

n(p)∥B

we construct Table 2.7 as

n ∆ Time (sec) ∆p Time (sec)
9 1.957418373166320E-06 3.82 1.957429979881908E-06 3.72

21 4.963218209752540E-07 17.49 4.963334383489837E-07 16.80
31 2.704285151367003E-07 35.35 2.704401111941479E-07 34.36
41 1.757889371845067E-07 58.07 1.758005474528090E-07 58.01

Table 2.7 – GG-Sn versus GG-Sn(p)

Anew, considering the interval’s size influence that we have discussed
above, the method proves useful in terms of a merely continuous kernel
function. The gains are clear, and identical results are achieved with no
insisting resort to invoke the computation of a matrix’s inverse.
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Chapter 3

A Fredholm Integral Equation on
a Hilbert: Symmetry, Projections,

and the Functional GJOR
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Despite having not been the subject of any national or international
conference(s), nor being the subject of any peer-reviewed article, this chap-
ter has been, in all cases, the substance of a participation in Les journées
guelmoises pour les mathématiques appliquées (JGMAs), and such that we
fully include it in the manuscript because we estimate having made sig-
nificant findings in this regard.

Furthermore, we testify that, however intentionally not incorporated,
even partially, in the preliminaries, the reader may find applications of
elements from the theory of (Non-)Commutative Banach Algebras and the
theory of C∗-Algebras. To this end, inclusion of glimpses of these concepts
may be aptly indicated whenever required/needed. Nonetheless, for a
broader coverage of the subject, it is recommended that one confers [23].
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3.1 Motivation

In his article [29], Lemita considered the same problem (2.1)-(2.2) as
presented in the previous chapter, where, using the same unconventional
procedure of iterating-then-discretising, as well as the same abstract topo-
logical structures and attributes, he applied the fact 1 that states

An ω-relaxation procedure that we attribute to an iterative scheme
is the action of constructing a convex combination relating, at each
iteration of the process, the (1−ω)-multiple of the previous relaxed
iteration with the current ω-multiple of the non-relaxed iteration of
the scheme of concern.

Differently stated, based on the previous chapter’s Section 2.3’s nota-
tions, the relaxed k-iteration that we construct from GJ shall be expressed
as

Φk
GJUR = (1−ω)Φk−1

GJUR + ωΦk
GJ, k ≥ 1. (3.1)

We also have the relaxed k-iteration of GG-S expressed as:

Φk
GSUR = (1−ω)Φk−1

GSUR + ωΦk
GG-S, k ≥ 1. (3.2)

Implicitly, the convexity of the combination prematurely implies that
the investigations focus shall not deviate very much from the interval
[0, 1], hence the letter U (for Under) instead of O (for Over) 2 in GJUR as
well as in GSUR, and, indeed, the endpoint 1 generates the non-relaxed
schemes; the other endpoint 0 generates non-conclusion where the treat-
ment would be stationary at the initial guess Φ0—therefore, it is omitted.

Subsequently, it was demonstrated in [29] that, provided (2.2) held,
both of GJUR and GSUR discussed above converged for all the values
ω ∈ (0, 1]. Although completely defensible, the study only relied on con-
tinuous functions (data and unknowns) which prompted the use of seem-
ingly general Banach structures and the implicitly implied SDD-R nature
of the data operator-matrix (λI −A). The reader may refer to the previ-
ous chapter (Chapter 1) for notations and/or structures.

1. In the Preliminaries, the relaxation process was introduced by means of the splitting
of matrices. This is, in fact, not at all contradictory to the statement hereinafter, as it is the
result of applying the process discussed in Section 2 of the mentioned chapter.

2. This is not uncommon in the algebraic scenario, where the use of under and/or over
relates in some sense to the eventual effects made on the convergence speed of the scheme
under study.
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In practice, functions are more than often the least regular: being square-
integrable in one of the best cases, and kernels of the integral operators A
may very often exhibit a sense of symmetry in case of real evaluations or
of Hermitian-nature in case of complex evaluations. Thus, in this chapter,
we shall consider, over the substantial-length open interval Ω = (a, b), the
Fredholm’s integral equation of the second kind as

λu(x)−
∫

Ω
k(x, t)u(t) dt = f (x), x a.e.w in Ω, (3.3)

where λ is taken a non-zero real number, the source and unknown func-
tions f (·), u(·), respectively, are supposed square-integrable over Ω, and
the kernel is as well supposed to possess a square-integrability over the
open square Ω2; that is, ∫∫

Ω2
|k(x, t)|2 dA < ∞,

which makes of the endomorphism K of the real-Hilbert L2(Ω) = L:

Kv(x) =
∫

Ω
k(x, t)v(t) dt, x a.e.w. in Ω, v ∈ L,

a Hilbert-Schmidt operator:

∥K∥2
HS :=

∫∫
Ω2
|k(x, t)|2 dA < ∞.

Consequently, as K is a compact endomorphism by default, the condition

∥K∥HS < |λ|, (3.4)

implies that Fredholm’s Alternative is applicable to (λ−K) and thus (3.3)
is uniquely invertible in L.

3.2 Beforehand Examination: The Conventional
Discretise-Iterate Path

Consistent with notations from Chapter 1 (Preliminaries), the Hilbert
spaceL equipped with its usual topological structure induced by the usual
inner-product ⟨·, ·⟩,

⟨v, w⟩ =
∫

Ω
v(s)w(s) ds, v, w ∈ L,
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such that
∥v∥2

L := ⟨v, v⟩, v ∈ L,

has the orthonormal Legendre’s family, {L̃q}q≥0, for a Hilbert basis by
which the truncating-projection endomorphism πm of L is defined as

πmv(x) :=
m

∑
q=0
⟨v, L̃q⟩L̃q(x), x a.e.w. in Ω, v ∈ L,

creating of it an element of L (L), with

∥πm∥op ≤ 1, m ≥ 0.

Hence, defining

Kmv(x) := (K ◦ πm) v(x) =
m

∑
q=0
⟨v, L̃q⟩KL̃q(x), x a.e.w. in Ω, v ∈ L,

we introduce a discrete, finite-rank (compact) element of L (L) whose lin-
earity is due to the bi-linearity of ⟨·, ·⟩ and whose Hilbert-Schmidt norm
verifies

∥Km∥HS ≤ ∥K∥HS, m ≥ 0, (3.5)

As a result, equation (3.3) transitions from the continuum into the discrete
to have the form,

λum(x)−Kmum(x) = f (x), x a.e.w. in Ω, (3.6)

which, by (3.5), is a uniquely invertible 3 abstract discrete equation over L.
Next, if one performs the inner-product of (3.5) with an arbitrary el-

ement L̃i, 0 ≤ i ≤ m, of the Legendre’s Hilbert basis, a linear algebraic
((m + 1)× (m + 1))-system generates as follows

(λ− K)Um = Fm, m ≥ 0, (3.7)

where

Um =

 ⟨um, L̃0⟩
...

⟨um, L̃m⟩

 , Fm =

 ⟨ f , L̃0⟩
...

⟨ f , L̃m⟩

 , m ≥ 0,

3. Notice that, unlike the treatment of invertibility of discrete abstract equations in-
volving discrete integral operators as shown in Chapter 1, the invertibility in our case
is verified regardless of the size of the discretisation index m; i.e, m need not be neither
sufficiently nor significantly great.
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and

(λ− K) =

λ− ⟨KL̃0, L̃0⟩ · · · −⟨KL̃m, L̃0⟩
... . . . ...

−⟨KL̃m, L̃0⟩ · · · λ− ⟨KL̃m, L̃m⟩

 , m ≥ 0.

Dissimilar with what shall ensue in the next sections, it is easily remarked
that (λ− K) is automatically symmetric by construction leading to

σ (K) ⊂ R.

Moreover, given the fact that

∥K∥2
F =

m+1

∑
i=1

m+1

∑
j=1
|⟨KL̃i−1, L̃j−1⟩|2 = ∥Km∥2

HS,

it is then justified that, by the application of the Spectral Mapping Theo-
rem 4, one has

σ (λ− K) = {λ− µ : µ ∈ σ (K)},

where, following (3.4) and (3.5), it is implied that{
(λ− K) is SPD, λ > 0,
(λ− K) is SND, λ < 0.

Consequently, it follows that the JOR (see Preliminaries) is applicable and
such that Theorem 1.2.4 applies to (3.7) making it possible to uniquely ap-
proximately find the coefficients of the approximate solution um(·) within
the orthonormal Legendre’s basis, which leads to naturally constructing

um(x) =
m

∑
j=0
⟨um, L̃j⟩L̃j(x), x a.e.w. in Ω,

or, similarly as in Chapter 2, to consider

um(x) =
1
λ

(
f (x) +

m

∑
j=0
⟨um, L̃j⟩KL̃j(x)

)
, x a.e.w. in Ω.

4. The application is justified since matrix K is symmetric by construction and hence is
a normal element of the C∗-Algebra

(
C(m+1)×(m+1), ∗

)
of complex-entry matrices, with

∗ denoting in this case the involutive matrix-Hermetian-transpose operation.
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Nonetheless, due to having

C(Ω, R) = L, w.r.t. ⟨·, ·⟩,

findings of [29] demonstrate the inefficiency of the conventional approach
and hence an insisting demand for the application of the new reversed
path.

Algorithm 2 Computation of the approximate solution um(·) of (3.3) fol-
lowing the discretise-then-iterate method
Require: λ, a, b, and m ≥ 2
Ensure: ⟨uj, L̃j⟩L, for all 0 ≤ j ≤ m

1: d = b−a
m

2: T(0) = t0 = a, T(m) = tm = b
3: while 1 ≤ i ≤ m− 1 do
4: ti ← ti−1 + d
5: end while
6: while 0 ≤ i ≤ m do
7: while 0 ≤ j ≤ m do
8: L(i, j) = L̃i(tj)
9: end while

10: end while
11: while 0 ≤ i ≤ m do
12: F(i) = TrapezoidIntegral( f (T). ∗ L(i, :), a, b)
13: end while
14: while 0 ≤ i ≤ m do
15: while 0 ≤ j ≤ m do
16: while 0 ≤ p ≤ m do
17: Q(j) = TrapezoidIntegral(k(tp, T). ∗ L(j, :), a, b)
18: end while
19: K(i, j) = TrapezoidIntegral (Q. ∗ L(i, :), a, b)
20: end while
21: end while
22: A = λIdRm+1 − K
23: Choose the finite-dimensional JOR scheme, based on Theorem 1.2.4 to

approximate the solution of the linear system AU = F, where V =(
⟨u, L̃i⟩L

)m
j=0

24: Rebuild um(·) using an interpolation formula
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3.3 Iterate: Hilbert Spaces, SPD
Operator-matrices, and Convergence of the

GJOR

Let be an integer N ≥ 2. Then, introduce the equidistant mesh of points
{xi}N

i=0 ⊂ Ω:

H = (b− a)/N,

{
xi = xi−1 + H, 1 ≤ i ≤ N − 1,
x0 = a, xN = b,

such that by denoting Ωi = (xi−1, xi), 1 ≤ i ≤ N, the Lebesgue integra-
tion properties allows for setting the linear (N× N)-system of Fredholm’s
integral equations of the second kind identically as was done in Chapter
2:

λui(x)−
N

∑
j=1

∫
Ωj

k(x, t)uj(t) dt = fi(x), x a.e.w. in Ωi, 1 ≤ i ≤ N,

where

ui(x) ≡ u(x), fi(x) ≡ f (x), x a.e.w. in Ωi.

Hence, denoting by Li = L2(Ωi), 1 ≤ i ≤ N, the i-Hilbert space of square-
integrable functions over Ωi endowed with its i-inner-product ⟨·, ·⟩i:

⟨v, w⟩i :=
∫

Ωi

v(s)w(s) ds, v, w ∈ Li,

from which the i-norm, ∥ · ∥i, follows:

∥v∥2
i := ⟨v, v⟩i, v ∈ Li.

We build a family of operators {Kij}N
i,j=1 where

Kij : Lj 7→ Li

w 7→ Kijw(x) =
∫

Ωj

k(x, t)w(t) dt, x a.e.w. in Ωi,
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such that, denoting the additive neutral element of Li by 0i, we have

∥Kij∥2
op :=

(
sup
w ̸=0j

∥Kijw∥i

∥w∥j

)2

≤ sup
w ̸=0j

∥Kijw∥2
i

∥w∥2
j

≤ ∥Kij∥2
HS

=
∫∫

Ωi×Ωj

|k(x, t)|2 dA

≤
∫∫

Ω2
|k(x, t)|2 dA

= ∥K∥2
HS,

(3.8)

resulting in the endomorphism Kij being of a Hilbert-Schmidt type, hence
being compact as well as an element of L (Lj,Li).

Next, setting the product-vector-space H as

H :=
N

∏
i=1
Li,

we introduce a Hilbert-space structure over it by means of the inner-prod-
uct application ⟨·, ·⟩H :

⟨V, W⟩H :=
N

∑
i=1
⟨vi, wi⟩i, V, W ∈H ,

which, in turn, induces the normed structure such that:

∥V∥2
H := ⟨V, V⟩H , V ∈H .

The space of all the bounded endomorphisms of H is denoted L (H )
and is identified with the vector-space of (N×N)-operator-matrices, that,
similar to Chapter 2, we also denote 5 as M , where a complete topological
structure is induced over it by means of a Frobenius-like norm:

|M|2F :=
N

∑
i=1

N

∑
j=1
∥Mij∥2

op, Mij ∈ L (Lj,Li).

5. Both notations M and L (M ) may be used interchangeably starting at this stage of
the text and onwards.
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The identity operator-matrix is denoted I and is defined mutatis mutan-
dis 6 as in Chapter 2.

That all necessary constructions are made is clear which make it an in-
vitation for the discussion of the following abstract equation that is equiv-
alent to (3.3):

(λI −K)U = F, (3.9)

where the source function-vector and the unknown function-vector are
respectively F = ( fi)

N
i=1, U = (ui)

N
i=1, and the matrix K is an element of

M such that, provided that (3.4) holds, then (3.8) implies that

|K|F ≤ ∥K∥HS < |λ|, (3.10)

hence the applicability of Fredholm’s Alternative and the uniqueness of
the solution function-vector U of (3.9) in H .

Unlike the conventional method, the adjoint of the data operator-ma-
trix (λI −K), that we deliberately term transpose and denote (λI −K)T is
not guaranteed by default. Hence, we necessitate the following definition

Definition 3.3.1. In the space M , an operator-matrixM is said to be symmetric
if, and only if, we have

Mij = Mji, 1 ≤ i ̸= j ≤ N.

Moreover, a symmetric matrixM in M is said to be positive-definite if, and only
if, we have

⟨Mψ, ψ⟩H > 0, ψ ∈H \ {0H }.
It is, however, said to be negative-definite if −M is positive-definite.

Subsequently, with a practical condition on the kernel function k(·, ·),
a lemma ensues

Lemma 3.3.1. Suppose that the kernel function in (3.3) verifies

k(x, t) = k(t, x), (x, t) a.e.w. in Ω2,

and that (3.4) is fulfilled. Then we have

1. The operator (λ−K) is self-adjoint and the data operator-matrix (λI −K),
as well as the operator-matrix (λI −D), is symmetric.

2. The data operator-matrix (λI −K) as well as that of (λI −D) are either
positive-definite or negative-definite.

6. =In a similar manner with necessary changes made.
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Proof. The first part in 1. is due to showing that the integral operator K is
self-adjoint provided that the symmetry condition on the kernel function
holds. Indeed, observe that since the adjoint of K, that we denote K∗, is a
Hilbert-Schmidt (compact) element of L (L), such that

K∗h(t) :=
∫

Ω
k(x, t)h(x) dx, t a.e.w. in Ω, h ∈ L,

then we have
⟨Kv, h⟩ = ⟨v, K∗h⟩, v, h ∈ L,

which, coupled with the condition taken on the kernel function, one en-
sures the self-adjointness of the endomorphism K; i.e, K = K∗, and hence
that of the endomorphism (λ−K); that is,

(λ−K)∗ = λ−K∗ = (λ−K) .

Next, the finite length of Ω implies the result

Lp(Ω) ⊆ L1(Ω), p ∈ [1; ∞),

and that
Lp(Ω2) ⊆ L1(Ω2), p ∈ [1; ∞).

Hence, since K is a Hilbert-Schmidt operator, then we have

k(·, ·) ∈ L2(Ω2) =⇒ k(·, ·) ∈ L1(Ω2),

and such that Fubini’s Theorem is applicable which helps establish the
following manipulations, for all 1 ≤ i ̸= j ≤ N:

⟨Kijhj, hi⟩i =
∫

Ωi

∫
Ωj

k(x, t)hj(t) dt hi(x) dx

=
∫

Ωi

∫
Ωj

k(x, t)hj(t)hi(x) dt dx

=
∫∫

Ωi×Ωj

k(x, t)hj(t)hi(x) dA

=
∫

Ωj

∫
Ωi

k(x, t)hi(x)hj(t) dx dt

= ⟨hj, K∗ijhi⟩j
= ⟨hj, Kjihi⟩j,

and, as a consequence, we obtain

K∗ij = Kji,
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which, by virtue of the kernel function’s symmetry, yields

Kij = K∗ij = Kji.

Therefore, the operator-matrixK is symmetric and thus the data operator-
matrix (λI −K) is also symmetric. The symmetry of the operator-matrix
(λI −D) follows trivially as it is a diagonal operator-matrix.

In regards to 2., we define the numerical radius of K by

ν(K) := sup
∥V∥H =1

|⟨KV, V⟩H | = sup
V ̸=0H

|⟨KV, V⟩H |
⟨V, V⟩H

.

Criterion (3.4), together with (3.10), allows for the application of results
from [7], where the Hilbert-structure of H justifies for the writing

ν(K) ≤ |K|F < |λ|.
Next, since ⟨·, ·⟩H maps into the reals, then we necessarily have

⟨KV, V⟩H
⟨V, V⟩H

< |λ|, V ∈H \ {0H }.

Consequently, if λ is positive, then it is straightforward to see that one
obtains

⟨(λI −K)V, V⟩H > 0, V ∈H \ {0H },
hence the positive-definiteness of the data operator-matrix (λI −K). Ad-
ditionally, if λ is negative, then we have

λ < −|⟨KV, V⟩H |
⟨V, V⟩H

≤ ⟨KV, V⟩H
⟨V, V⟩H

, V ∈H \ {0H },

which implies that

⟨(λI −K)V, V⟩H < 0, V ∈H \ {0H },
thus the negative-definiteness of the data operator-matrix (λI −K). Con-
cerning the positive-definiteness of the operator-matrix (λI −D), notice
that, by (3.10), we have

ν2 (D) ≤ |D|2F =
N

∑
i=1
∥Kii∥2

op

≤
N

∑
i=1

N

∑
j=1
∥Kij∥2

op

= |K|2F ≤ ∥K∥
2
HS < λ2.

Hence, the result on (λI −D) follows mutatis mutendis as was done for
(λI −K) replacing K by D in the steps. The lemma is, thus, proven.
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Furthermore, it is worthy to bring attention to the fact that the previous
building-block lemma gives rise to a rather essential corollary for subse-
quent treatments:

Corollary 3.3.1. Provided that Lemma 3.3.1 holds, the two operator-matrices
(λI −D)−1 and (λI −D)−1 (λI −K) are respectively either SPD and PD or
SND and ND.

Proof. We begin with (λI −D)−1 where its symmetry is a result of it being
a diagonal operator-matrix. For its positive-definiteness, observe that if
(γ, Vγ) ∈ C× (H \ {0H }) denotes an eigen-couple of the matrix, then
we have

(λI −D)−1 Vγ = γVγ =⇒ Vγ = γ (λI −D)Vγ.

Hence, performing the inner-product of the equation with the eigen-func-
tion-vector Vγ, we obtain

⟨Vγ, Vγ⟩H
⟨(λI −D)Vγ, Vγ⟩H

= γ.

But, since the LHS is a real number and that, by Lemma 3.3.1, the operator-
matrix (λI −D) is either SPD or SND w.r.t. the sign of λ, it follows that
we have the justified assertion

σ
(
(λI −D)−1

)
⊂ R+ \ {0}.

Hence, the diagonal operator-matrix (λI −D)−1 is either SPD or SND.
Next, for the operator-matrix (λI −D)−1 (λI −K), we proceed in a

similar manner, such that, let be an eigen-couple (δ, Wδ) ∈ C× (H \ {0H }):

(λI −D)−1 (λI −K)Wδ = δWδ =⇒ (λI −K)Wδ = δ (λI −D)Wδ.

Then, multiplying the equation by the eigen-function-vector, we have

⟨(λI −K)Wδ, Wδ⟩H
⟨(λI −D)Wδ, Wδ⟩H

= δ.

It is clear that, by Lemma 3.3.1, not only is the LHS a real number but we
also have the justified following assertion:

σ
(
(λI −D)−1 (λI −K)

)
⊂ R+ \ {0}.

Hence, the operator-matrix (λI −D)−1 (λI −K) is as supposed; thus, the
proof is complete.
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Fact that we have established an a priori nature for the data operator-
matrix (λI −K), we move forwards to discuss the iterative approxima-
tion of the solution function-vector U by a sequence of function-vectors
{Uk}k≥0 ⊂ H using the over-relaxed iterative scheme of GJ, that we de-
note GJOR.

Introducing the splitting of K:

K = D − E −F ,

withD,−E ,−F are, respectively, the diagonal, lower part, and upper part
of K. Then, for a non-zero real ω, observe that by defining

Dω := ω−1 (λI −D) , ω ̸= 0,

we define the matrix

Nω = ω−1 ((1−ω) (λI −D) + ω (E +F )) , ω ̸= 0.

Ultimately, since (3.10) entertains that

|D|F < |λ|,

then D−1
ω exists and the GJOR ensues as

GJOR :

{
Uk+1 = D−1

ω NωUk +D−1
ω F, k ≥ 0,

U0 ∈H .
(3.11)

which, component-wise, is also given as

GJOR :


λuk+1

i = Kiiuk+1
i + ω

 N

∑
j=1
i ̸=j

Kijuk
j + fi

+ (1−ω)uk
i , k ≥ 0,

u0
i ∈ Li, 1 ≤ i ≤ N.

(3.12)
One already remarks that the convex combination discussed in the Moti-
vation section of this chapter surfaces as a result of applying the matrix-
splitting technique. Moreover, by Banach’s Fixed-point theorem in its gen-
eral statement, scheme (3.11) is sufficiently and necessarily convergent if,
and only if, the iteration matrix Gω = D−1

ω Nω meets the spectral condition

ρ (Gω) < 1, ω ̸= 0 and is appropriate.
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However, before establishing the convergence theorem for (3.11) (equiv-
alently for (3.12)), we note that Lemma 1 from [46] holds true in the case
of our operator-matrices:

ρ
(
(λI −D)−1 (E +F )

)
< 1 ⇐⇒ ρ

(
(λI −D)−1 (λI −K)

)
< 2,

and that
ρ (Gω) < 1 ⇐⇒ ρ

(
D−1

ω (λI −K)
)
< 2.

As a consequence, we obtain the following theorem

Theorem 3.3.1. Provided that Lemma 3.3.1 holds, the scheme (3.11) is conver-
gent for all the positive values ω:

0 < ω <
2

ρ
(
(λI −D)−1 (λI −K)

) .

Proof. If Lemma 3.3.1 holds, then the data operator-matrix (λI −K) is ei-
ther SPD or SND w.r.t. to Definition 3.3.1. Next, without loss of generality,
we suppose in what ensues that λ > 0, and observe that we have

D−1
ω Nω = (1−ω)I −ω (λI −D)−1 (E +F ) , ω > 0.

Next, in view of Corollary 3.3.2’s proof, let µ ∈ σ
(
(λI −D)−1 (E +F )

)
⊂

R. Then we have that

α ∈ σ
(
D−1

ω Nω

)
⇐⇒ α = 1−ω + ωµ,

and consequently, the equivalences on the spectral radii mentioned pre-
viously, as well as the positive-definiteness of (λI −D)−1 (λI −K) by
virtues of Corollary 3.3.2, imply that

|α| < 1 ⇐⇒ 0 < η = (1− α) ∈ σ
(
D−1

ω (λI −K)
)

: η < 2, ω > 0.

Observe that

0 < η < 2 ⇐⇒ 0 < |η| < 2 ⇐⇒ 0 < |1− α| < 2 ⇐⇒ 0 < |ω(1−µ)| < 2.

Consequently, if the associated GJ is convergent, then

|µ| < 1 =⇒ (1− µ) > 0.
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Then, noting that

ρ
(
(λI −D)−1 (λI −K)

)
= max{|1− µ|},

the choice of ω yields

0 < |ω(1− µ)| = ω(1− µ) <
2(1− µ)

ρ
(
(λI −D)−1 (λI −K)

) ≤ 2.

Subsequently, our choice for ω results in verifying

ρ (Gω) < 1 ⇐⇒ ρ
(
D−1

ω (λI −K)
)
< 2.

Hence, the convergence of the GJOR.
Next, suppose that the associated GJ is divergent; that is,

ρ
(
(λI −D)−1 (E +F )

)
≥ 1.

Then, we do not necessarily have that

|1− µ| = 1− µ.

Nevertheless, with the choice made for the range of ω, we have

0 < |ω(1− µ)| = ω|1− µ| < 2|1− µ|
ρ
(
(λI −D)−1 (λI −K)

) ≤ 2.

Once again, the choice of ω helps establish the equivalence

ρ (Gω) < 1 ⇐⇒ ρ
(
D−1

ω (λI −K)
)
< 2.

In light of this, the convergence of the GJOR follows. Consequently, the
theorem is proven.

Even that we have not made it clear in the proof, notice that the con-
vergence of the GJ implies that

1

ρ
(
(λI −D)−1 (λI −K)

) >
1
2

=⇒ 2

ρ
(
(λI −D)−1 (λI −K)

) > 1,

which translates to the fact that if we have

ω ∈ (0, 1],
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then one de facto ensures the applicability of Theorem 3.3.1 and hence the
convergence of the GJOR. In other terms, the usual (0, 1] region, inspired
by the algebraic JOR and adopted in [29], becomes a sufficient condition
for the convergence of the GJOR.

Nevertheless, given the rigidity of the unclear task of finding the spec-
trum and the spectral radius of an operator-matrix, the convergence theo-
rem demonstrated above may be perceived as a little impractical for use.
Therefore, before proceeding further in the text, we establish the following
lemma

Lemma 3.3.2. The sub-multiplicative and sub-linear functional N(·) : M 7→ R

defined by

N(M) := sup
V ̸=0H

∥MV∥H
∥V∥H

, M ∈M ,

endows a normed structure over the space L (M ).

Proof. That N(·) is a norm-application mapping into the non-negative re-
als is a straightforward proposition which qualifies it as a sub-linear 7 func-
tional. For sub-multiplicity, observe that since H is a Hilbert space, with
its inner-product ⟨·, ·⟩H , then leveraging the Cauchy-Schwarz inequality
yields the following reasoning

S , T ∈M , N2(ST ) :=

(
sup

V ̸=0H

∥ST V∥H
∥V∥H

)2

≤ sup
V ̸=0H

∥ST V∥2
H

∥V∥2
H

= sup
V ̸=0H

⟨ST V, ST V⟩H
⟨V, V⟩H

≤ N2(S)N2(T )⟨V, V⟩H
⟨V, V⟩H

, V ̸= 0H .

Hence, taking the square-root, we have

N2(ST ) ≤ N2(S)N2(T ) =⇒ N(ST ) ≤ N(S)N(T ), S , T ∈M .

This completes the proof.

7. Sub-linearity is another term for the triangle-inequality for norms.
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Again, it is essential to re-note that,

M ≡ L (H ), up to an isomorphism.

Additionally, since (H , ⟨·, ·⟩H ) is a Hilbert space and hence is a Banach
space, then the normed (L (H ), N(·)) is complete and thus may be re-
garded as a non-commutative unital Banach Algebra, where The Gener-
alised Gelfand’s Identity applies:

ρ (M) = lim
p→∞

p
√

N (Mp), M ∈M ,

where
Mp =M◦ · · · ◦︸ ︷︷ ︸

p times

M, p ≥ 1, M0 = I ,

with the non-commutative algebraic-operator ◦ is defined by means of the
non-commutative operator-composition over the Hilbert spacesLi,Lj and
the identity operator-matrix I is the unital element of the Banach algebra
in mention. It is also admitted that

ρ (M) = inf
p∈N\{0}

p
√
∥Mp∥,

where ∥ · ∥ is such that one generates the Banach algebra with over M . In
other terms, it is all complete norm application that possesses all that is for
N(·) defined hereinabove. One may confer [23] for richer details.

Subsequently, perceived as an alternative to Theorem 3.3.1, we opt for
the following sufficient corollary where we use more concrete quantities
from the given data:

Corollary 3.3.2. Provided that Lemma 3.3.1 holds, the scheme (3.11) converges
for all the positive values ω:

0 < ω ≤ 2
(
|λ| − ∥K|HS

|λ|+ ∥K|HS

)
.

And we have, for 1 < ε < 2,

ω ∈


(0, 1), |λ| < 3∥K∥HS,
(0, 1], |λ| = 3∥K∥HS,
(0, ε), |λ| > 3∥K∥HS.
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Proof. Without loss of generality, suppose that λ > 0, and let be

β = ρ
(
(λI −D)−1 (λI −K)

)
.

Then, by the operator-matrix norm-application N(·) defined in Lemma
3.3.2, we consequently have, over M , that the successive and respective
applications of the sub-multiplication property of N(·), its triangle-inequal-
ity, and the result of The Geometric Series Theorem in its general statement
by virtue of results from [7]:

N(D) ≤ |D|F ≤ |K|F ≤ ∥K∥HS < λ,

yield that

β ≤ N
(
(λI −D)−1 (λI −K)

)
≤ N ((λI −K))

λ− N (D)

≤ λ + N (K)
λ− N (D)

≤ λ + |K|F
λ− |D|F

.

Therefore, observe that we have

2
β
≥ 2

(
λ− |D|F
λ + |K|F

)
> 2

(
λ− |K|F
λ + |K|F

)
≥ 2

(
λ− ∥K∥HS

λ + ∥K∥HS

)
,

which means that taking ω:

0 < ω < 2
(

λ− ∥K∥HS

λ + ∥K∥HS

)
suffices to meeting the region-criterion from Theorem 3.3.1 and thus ob-
taining the convergence of GJOR.

Next, observe that for some 1/2 < ε′ < 1, we have(
λ− ∥K∥HS

λ + ∥K∥HS

)
:


< 1/2, λ < 3∥K∥HS,
= 1/2, λ = 3∥K∥HS,
(> 1/2) and (< ε′), λ > ∥K∥HS.

As a result, for some 1 < ε < 2 such that ε = 2ε′, we write the following
sufficient region-condition:

ω ∈


(0, 1), |λ| < 3∥K∥HS,
(0, 1], |λ| = 3∥K∥HS,
(0, ε), |λ| > 3∥K∥HS.

Which terminates the proof.
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Ultimately, given our premises and the investigations’ findings implied
hereinabove, we have managed to employ the GJOR to build a function-
sequence {Uk}k≥0 ⊂H :

lim
k→∞
∥U −Uk∥H = 0.

3.4 Discretise: Projections

Unlike with continuous functions, the imposed square-integrability at-
tribute of our data implies that, similar to Section 3.2, we need to invoke
the projection concept to discretise our scheme (3.12).

Therefore, for 1 ≤ i ≤ N, let the family {L̃i
q}q≥0 ⊂ Li denote the Ωi-

family of orthonormal Legendre’s polynomials:

Span{L̃i
q}q≥0 = Li, 1 ≤ i ≤ N.

Thus, for n ≥ 2, define the projection-endomorphism πi
n by

πi
nvi(x) =

n

∑
q=0
⟨vi, L̃i

q⟩i L̃i
q(x), x a.e.w. in Ωi, vi ∈ Li, 1 ≤ i ≤ N.

By Bessel’s inequality, we have that

∥πi
n∥op ≤ 1 =⇒ πi

n ∈ L (Li), 1 ≤ i ≤ N.

Moreover, we have the pointwise-convergence of it:

lim
n→∞

πi
nvi = vi, a.e.w. in Ωi, vi ∈ Li, 1 ≤ i ≤ N,

as well as

lim
n→∞

(
Idii − πi

n

)
vi = 0i, a.e.w. in Ωi, vi ∈ Li, 1 ≤ i ≤ N.

Then, it is justified that we define the finite-rank Hilbert-Schmidt (com-
pact) operator Kiin:

Kiinvi :=
(

Kii ◦ πi
n

)
vi

=
n

∑
q=0
⟨vi, L̃i

q⟩iKii L̃i
q(x), x a.e.w. in Ωi, vi ∈ Li, 1 ≤ i ≤ N.
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With the aforementioned, the interrelation between an operator-norm and
the Hilbert-Schmidt norm over Hilbert spaces results in

Kiin ∈ Li, n ≥ 2, 1 ≤ i ≤ N,

as well as 8 ∥∥∥∥Kiin

λ

∥∥∥∥
op

< 1,

implying that (λ−Kiin) is invertible by The Geometric Series Theorem in
its general statement. However, we do not intend on merging between the
two chapters: Chapter 2 (the previous) and Chapter 3 (the current).

It follows that the discretised version of (3.12), denoted GJORn, re-
ceives the following form for a scheme

GJORn :


λuk+1

in = Kiinuk+1
in + ω

 N

∑
j=1
i ̸=j

Kijuk
jn + fi

+ (1−ω)uk
in, k ≥ 0,

u0
in ∈ Li, 1 ≤ i ≤ N.

(3.13)
And, to the systematic construction of the investigation, we provide the
examination of its convergence in the following theorem

Theorem 3.4.1. Provided that Theorem 3.3.1 holds, the sequence of function-
vectors {Uk

n : n ≥ 2, k ≥ 0} converges in the H -norm to the solution function-
vector of (3.11); equivalently, of (3.9), and we write

lim
k,n→∞

∥U −Uk
n∥H = 0.

Proof. Observe that for all iteration-rank k ≥ 0, and all discretisation pa-
rameter n ≥ 2, we have

∥U −Uk
n∥H ≤ ∥U −Uk∥H + ∥Uk −Uk

n∥H .

On one hand, since the hypothesis is that Theorem 3.3.1 holds, then the
scheme GJOR converges; that is,

ρ (Gω) < 1, ω > 0.

Moreover, since N(·) of Lemma 3.3.2 is sub-multiplicative, then

ρ (Gω) = inf
p∈N\{0}

p
√

N
(
G p

ω

)
≤ p
√

N
(
G p

ω

)
, ω > 0.

8. The writing Kiin
λ is an abuse of notation. In fact, we would normally write λ−1Kiin.
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Hence, if we also have that

N(Gω) < 1, ω > 0,

then, as an application of the estimate from the Banach’s Fixed-point The-
orem in its general statement, we obtain

∥U −Uk∥H ≤
Nk (Gω)

1− N (Gω)
∥U1 −U0∥H , k ≥ 0, ω > 0.

and the convergence follows straightforwardly. Otherwise, by the sub-
multiplicity of the norm-application N(·) we have, in all cases, that

∥U−Uk∥H ≤ N(Gω)∥U−Uk−1∥H ≤ · · · ≤ N(Gk
ω)∥U−U0∥H , ω > 0.

It follows then that since it is the infimum over p ∈ N \ {0}, then since
also:

N(Gk
ω) ≤ Nk(Gω), k ≥ 1, ω > 0,

the spectral radius verifies by means of the aforementioned results,

∥U −Uk∥H ≤ ρk (Gω) ∥U −U0∥H︸ ︷︷ ︸
a fixed known quantity

k ≥ 0, ω > 0,

which concludes the convergence to 0 as we iterate in k up to infinity; that
is, we arrive at the result

lim
k→∞
∥U −Uk∥H = 0.

What remains is the term ∥Uk −Uk
n∥H , for which we shall proceed induc-

tively over k.
By construction and the employment of the projection concept, we

have
lim

n→∞
∥U0 −U0

n∥H = 0.

Next, suppose that the result holds up to iteration k ≥ 0, that is,

lim
n→∞
∥Um −Um

n ∥H = 0, 0 ≤ m ≤ k,

and observe that, at iteration-rank (k + 1), we have the two equations

λuk+1
i = Kiiuk+1

i + ω

 N

∑
j=1
i ̸=j

Kijuk
j + fi

+ (1−ω)uk
i , k ≥ 0,
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and

λuk+1
in = Kiinuk+1

in + ω

 N

∑
j=1
i ̸=j

Kijuk
jn + fi

+ (1−ω)uk
in, k ≥ 0.

As a result of taking their difference, we obtain

λ
(

uk+1
i − uk+1

in

)
−Kiiuk+1

i + Kiinuk+1
in = Rω

(
uk

i − uk
in

)
, k ≥ 0,

where Rω(·), ω > 0, denotes an endomorphism of Li, which, by virtues
of the induction hypothesis made hereinabove, we have it verify, for all
0 ≤ m ≤ k, and all 1 ≤ i ≤ N,

lim
n→∞

Rω(um
i − um

in) = lim
n→∞

ω

 N

∑
j=1
i ̸=j

Kij

(
um

j − um
jn

)+ (1−ω)(um
i − um

in)


= 0i.

On the other hand, since πi
n is a projection over the Hilbert Li, then, by

a result from Preliminaries, Section 3, we have the following direct-sum
decomposition:

Li = Range(Idii − πi
n)
⊕

Range(πi
n), n ≥ 2, 1 ≤ i ≤ N,

which implies that since uk+1
i is an element of Li as a linear combination

of its elements, then given the orthogonality of the projection operators in
manipulation, we have

uk+1
i = (Idii − πi

n)u
k+1
i + πi

nuk+1
i , n ≥ 2, k ≥ 0, 1 ≤ i ≤ N.

Moreover, setting

dk+1
in = uk+1

i − uk+1
in , n ≥ 2, k ≥ 0, 1 ≤ i ≤ N,

we obtain

λdk+1
in −Kiiuk+1

i + Kiinuk+1
in = λdk+1

in −Kii

(
(Idii − πi

n)u
k+1
i + πi

nuk+1
i

)
+ Kiinuk+1

in

= λdk+1
in −Kii

(
Idii − πi

n

)
uk+1

i −Kiindk+1
in .
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Consequently, we have

(λ−Kiin) dk+1
in −Kii

(
Idii − πi

n

)
uk+1

i = Rωdk
in, k ≥ 0, n ≥ 2, 1 ≤ i ≤ N.

Since (λ−Kiin) is invertible, and that
(
Idii − πi

n
)

is pointwise-convergent
to the annihilation endomorphism of Li, the we have, for all 1 ≤ i ≤ N

lim
n→∞

dk+1
in = lim

n→∞
(λ−Kiin)

−1
[
Kii

(
Idii − πi

n

)
uk+1

i + Rω(dk
in)
]
= 0i.

As a result, by the principal of induction, if the convergence holds at itera-
tion-rank k ≥ 0, then it would as well at iteration-rank (k + 1). That is, by
induction over k, we have

lim
n→∞
∥Uk −Uk

n∥H = 0.

Hence,
lim

k,n→∞
∥U −Uk

n∥H = 0.

The proof is then complete.

Although potentially redundant, we should note that the discretisation
process offers an effect of perturbation in the the GJOR in that, despite
the linear convergence, one has it on iterating to have built the following
estimation

∥U −Uk
n∥H ≤ (ρ (Gω) + En)

k ∥U −U0∥H , k ≥ 0, n ≥ 2, ω > 0.

However, unlike with the non-linearity’s effects on whether n had to be
fixed or not which is a matter discussed in [20], it is not clear if it followed
that convergence of the discretised GJOR is not interrupted by the dis-
cretisation effect, and such that fixing an n with small values, the conver-
gence is unclear of an option in regards to the convergence of the scheme,
and such that we still do not know to what extent is the dominance of the
k-convergence over that of the n.

3.5 Numerical Implementations: Concluding
Remarks

We sincerely apologise to the reader for the perplexing and intimidat-
ing inconvenience of not showcasing any progress in regards of the chal-
lenging and ongoing numerical implementations of the both paths: Con-
ventional (Discretise-Iterate) and/or Unconventional (Iterate-Discretise).
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Conclusion and Perspectives

In the name of Allah (SWT),
Ultimately, in our thesis, we have undertaken the numerical and the-

oretical study of solution approximation of the Fredholm’s integral equa-
tions of the second kind defined over large real intervals, where we have
stated that, unlike the conventional literature treatment of these equations,
the one adopted in the manuscript has proven more efficient in that, in
case of treatment of continuous functions and thus Banach spaces, given
a required sufficient criterion for the stability of the numerical integration
quadrature rules used, we have applied the truncation of the Neumann’s
series of the Banach endomorphisms discussed hereinbefore to prove the
usefulness of the possibility to avoid inverting an algebraic matrix and
computing a sum of a handful of its powers instead.

Secondly, although being a preprint, we have established the neces-
sary theoretical builds to prove that, if the settings are on the real Hilbert
space L2(Ω), then, by means of the inner-product(s), we have given pre-
cise and coherent definition of symmetry and of positive-definiteness for
matrices of bounded linear operators over Hilbert spaces on par with the
algebraic case and have shown that the relaxed iterative GJOR scheme is
a priori necessarily and sufficiently convergent for all SPD operator-ma-
trices of our context provided the relaxation parameter ω subjects to the
same frame of constraints established in finite dimensions. Moreover, by
a projection method, we have shown that our functional Hilbert-iterative-
scheme may be discretised where, using some relatively advanced tools
from Functional Calculus and in particular those elements on Banach Al-
gebras, its convergence to the exact solution would still hold true on the
Hilbert space constructed hereinabove.

As perspectives, insha’Allah, with other projection methods for dis-
cretisation, we hopefully envision walking the same path to study the pos-
sibility to generalise the relaxed version of G-S; that is, the GSOR, into the
new treatment(s). With weaker constraints on the same large-interval real-
Hilbert space L2(Ω), we conjecture that, in light of the trace concept, then
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provided that one satisfies

|λ|2 >
∫

Ω
|k(s, s)|2 ds, λ ∈ C \ {0R},

we might be able to significantly reduce the size of λ without risking the
existence and uniqueness of the solution, as well as continue leveraging
results from Normed Algebras (Banach, C*) to have our spatial construc-
tions weighing in to either positively confirm or negatively deny that

Proposition 1. If (λI −K) is symmetric and positive-definite, then, if ω ∈
(0, 2), the GSOR is convergent.

In the long-term, we may continue exploring the various possible ap-
plications of the eminent Continuous Functional Calculus on the study of
Integral Equations. On a deeper level, we may attempt tackling the seem-
ingly alerting patterns and close relationships between RN, or CN, and the
Cartesian-product vector-space

HN := H× · · · ×︸ ︷︷ ︸
N times

H, H a Hilbert space.

In particular, if we were to assume that H = ℓ2(Z, C), then how sophisti-
cated would it be to discuss the theory underpinning the study of (linear)
equations of the form

MX = B, X, B ∈ HN , M ∈ HN×N ≡ L (HN)?
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