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RÉSUMÉ

Le travail présenté dans cette thèse de doctorat se concentre sur le développement de systèmes de
détection et de reconnaissance des maladies qui affectent les cultures et les plantations, basés sur
l’apprentissage profond et l’apprentissage automatique. Les systèmes de détection et de recon-
naissance proposés dans la littérature offrent des solutions précises pour l’identification précoce
et la gestion efficace. Cependant, ils rencontrent encore plusieurs défis et sont limités dans leurs
utilisations. Le premier défi est leur manque de robustesse et de généralisation. Leur utilisation
est limitée aux types de cultures et de maladies rencontrés lors du processus d’apprentissage, ce
qui pose des problèmes lorsqu’ils sont confrontés à de nouveaux types de cultures et de maladies
non rencontrés lors de la phase d’entraînement. Le deuxième défi est que la plupart de ces sys-
tèmes sont conçus pour détecter une seule maladie à la fois et ne traitent pas le problème de la
détection simultanée de plusieurs maladies. Un autre défi est que la plupart des systèmes pro-
posés détectent les maladies à partir des feuilles, ce qui est courant car les feuilles sont souvent
le premier endroit où les maladies apparaissent dans les plantes. Cependant, certaines maladies
infectent les branches des arbres et n’apparaissent pas sur les feuilles. Pour relever ces défis, nous
avons introduit trois systèmes de reconnaissance des maladies des plantes. Le premier système
est basé sur l’apprentissage profond, capable de distinguer entre les feuilles saines et malades,
quel que soit le type de culture et de maladie, même si le système ne les a pas rencontrés lors
de la phase d’entraînement. L’idée principale est de donner la priorité à l’identification des
petites régions foliaires malades plutôt que de se fier uniquement à l’apparence globale de la
feuille malade. De plus, cela inclut l’évaluation du taux de prévalence de la maladie sur toute la
feuille. Pour assurer une classification efficace, nous utilisons une architecture de modèle Small
Inception, qui est capable de traiter de petites régions sans compromettre les performances. Le
deuxième système proposé est un modèle basé sur l’apprentissage profond conçu pour détecter
et reconnaître plusieurs maladies simultanément à partir de n’importe quel type de culture, y
compris ceux qui n’ont pas été rencontrés lors du processus de formation. Notre méthode permet
la reconnaissance indépendante des symptômes de chaque maladie dans les petites régions foli-
aires, indépendamment de la présence d’autres maladies sur la même feuille et indépendamment
du type de culture. Cela est accompli grâce à la méthode d’isolement, qui isole chaque région
contenant des symptômes spécifiques de maladie et élimine l’influence des caractéristiques de la
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culture, en conjonction avec l’architecture du modèle Small Inception. De plus, notre approche
permet le calcul du taux de prévalence de chaque maladie sur la feuille et la détermination de
l’étendue globale de toutes les maladies présentes sur la feuille. Le troisième système est une
approche basée sur l’apprentissage automatique conçue pour détecter et segmenter les maladies
des branches d’arbres, ciblant spécifiquement la maladie Nectria cinnabarina sur les branches de
pommiers. Ce système utilise des techniques de traitement d’image pour améliorer la qualité et
la précision de l’image, facilitant ainsi la tâche du classificateur de modèle de mélange gaussien.
Ce classificateur apprend la distribution de probabilité de la couleur de la maladie et génère un
masque de segmentation, qui est ensuite utilisé pour identifier les zones malades sur la branche.
Les résultats obtenus à partir des expériences sur les trois systèmes démontrent l’efficacité des
méthodes proposées pour améliorer la précision de la détection des maladies des plantes. De
plus, ils ont surpassé les méthodes existantes en identifiant avec succès les maladies à travers
différents types de cultures, en détectant plusieurs maladies simultanément à partir de la même
feuille, et en identifiant et en segmentant avec précision les maladies sur les branches.

Mots-clés: Agriculture, Maladies des Plantes, Détection de Maladies, Intelligence Artificielle,
Apprentissage Profond, Apprentissage Automatique.

Imane BOUACIDA Ph.D. Dissertation



ABSTRACT

The work presented in this Ph.D. thesis focuses on developing detection and recognition systems
for diseases that affect agricultural crops and plantations based on deep learning and machine
learning. The proposed detection and recognition systems in the literature offer precise solutions
for early identification and effective management. However, they still face several challenges and
they still limited in their uses. The first challenge is their lack of robustness and generalization.
Their use is limited to the types of crops and diseases encountered during the learning process,
leading to problems when faced with new types of crops and diseases not seen in the training
phase. The second challenge is that the majority of these systems are designed to detect only
one disease at a time and do not address the problem of simultaneous multi-disease detection.
Another challenge is that most proposed systems detect diseases from leaves, which is common
because leaves are often the first place where diseases appear in plants. However, some diseases
infect the tree branches and do not appear on the leaves. To tackle these challenges, we have
introduced three plant disease recognition systems. The first system is based on deep learning,
capable of distinguishing between healthy and diseased leaves regardless of the crop type and
disease, even if the system hasn’t encountered them during the training phase. The primary idea
is to prioritize the identification of diseased small leaf regions rather than solely relying on the
overall appearance of the diseased leaf. Moreover, it includes assessing the disease’s prevalence
rate across the entire leaf. To ensure efficient classification, we employ a Small Inception model
architecture, which is adept at processing small regions without compromising performance. The
second proposed system is a deep learning-based model designed to detect and recognize multiple
diseases simultaneously from any crop type, including those not encountered during the training
process. Our method enables the independent recognition of each disease’s symptoms within
small leaf regions, regardless of the presence of other diseases on the same leaf and irrespective
of the crop type. This is accomplished through the isolation method, which isolates each region
containing specific disease symptoms and eliminates the influence of crop characteristics, in
conjunction with the Small Inception model architecture. Additionally, our approach enables the
calculation of the prevalence rate of each disease on the leaf and the determination of the overall
extent of all diseases present on the leaf. The third system is a machine learning-based approach
designed for detecting and segmenting diseases from tree branches, specifically targeting Nectria
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cinnabarina disease on apple tree branches. This system utilizes image processing techniques to
enhance image quality and precision, thus facilitating the task for the Gaussian Mixture Model
classifier. This classifier learns the probability distribution of the disease color and generates
a segmentation mask, which is then utilized to identify the diseased areas on the branch. The
results obtained from the experiments on the three systems demonstrate the effectiveness of
the proposed methods in enhancing the accuracy of plant disease detection. Moreover, they
outperformed existing methods by successfully identifying diseases across various crop types,
detecting multiple diseases simultaneously from the same leaf, and accurately identifying and
segmenting diseases from branches.

Key-words: Agriculture, Plant Diseases, Disease Detection, Artificial Intelligence, Deep learn-
ing, Machine learning.

Imane BOUACIDA Ph.D. Dissertation
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INTRODUCTION

General context and issues

Agriculture holds paramount significance as the primary source of global food security and
as an important economic sector in every country. Its development is crucial not only for
meeting the increasing demands of a growing population but also for generating substantial
profits from surplus production. The agricultural sector faces numerous threats that can hinder
the optimal production of agricultural products, consequently disrupting the food supply chain
and heightening the risks of food shortages. Additionally, economic dependency resulting from
these losses impacts countries’ economies. Among these threats, plant diseases stand out as the
most serious threat. Early detection of plant diseases is crucial for effectively combating them.
Early detection poses a significant challenge, as it demands meticulous monitoring of crops in the
field, collecting diagnostic data, and extensive expertise in disease identification. Consequently,
this process is time-consuming. With the emergence of modern technologies such as Artificial
Intelligence (AI), the Internet of Things (IoT), remote sensing, and others, the terms "smart
agriculture" and "precision agriculture" have come to the forefront. These terms encompass
the application of these advanced technologies in agriculture to enhance reliability, efficiency,
and automation in farming practices, including the prediction and early detection of diseases.
Two primary methods for automatic disease prediction have emerged. The first method involves
the use of sensors distributed throughout the field, which collect information on environmental
conditions and physiological changes in plants associated with disease emergence. While this
method can provide detailed data, it is considered ineffective due to its high cost, especially
for large fields where a significant number of sensors would be required. The second method
involves predicting diseases through image analysis. In this approach, drones or surveillance
cameras capture images of the plants in the field. These images are then analyzed to identify
any defects or signs of disease in the plants. This method is more cost-effective and scalable,
making it a practical alternative for large-scale agricultural operations.

To analyze the images taken from the field, the machine learning method was used in the
beginning. With the advent of deep learning, and considering its superiority over machine
learning, it became the ideal solution for identifying plants from images. Consequently, many
methods were proposed in the literature that rely on deep learning, but there are many challenges
facing the optimal use of this technology. The main challenge is the lack of data. Creating a
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comprehensive dataset that includes all types of plants and diseases poses significant difficulty
due to the vast number of plant species and diseases worldwide. Capturing data for each presents
a formidable challenge, compounded by the fact that some diseases spread widely, making timely
capture challenging. Furthermore, capturing multiple infections simultaneously may take several
years, if not proving impossible. This explains the limited availability in the proposed methods,
as most of them typically address the lack of data through the use of data augmentation and
transfer learning. However, they still lack robustness, generalization, and multi-disease detection,
as they are often specific to a particular combination of crop types or diseases within the training
dataset. Therefore, it is imperative to develop solutions capable of simultaneously identifying
any type of disease, any type of plant, and any number of infections, which serves as this thesis’s
main topic. Another topic in our thesis is the detection of diseases in tree branches, a subject
not previously addressed in the literature.

Objectives

This thesis will design novel AI-based systems to recognize plant disease detections. These
systems must employ a new perspective for recognizing disease infections. This perspective
must enable the long-term objective of addressing the following core issues:

❖ As it is impossible to collect a dataset that can be used to detect all types of diseases from
all types of crops, the first solution is crucial: to have a system capable of distinguishing
between infected and healthy leaves regardless of the type of crop and disease.

❖ As it is impossible to recognize all types of diseases that can infect crops, it is essential to
determine the most common and well-known diseases that threaten agricultural plants. It
is important to have a system capable of detecting multiple infections of these diseases in
the same leaf simultaneously, regardless of their crop type.

❖ For determining the amount of chemical spraying, it is important to calculate the preva-
lence rate of each disease and assess the overall extent of all diseases present on the leaf.

❖ To ensure the health of all parts of plants in the field, it is important to have a system
capable of detecting diseases that can infect the branches without affecting the leaves.

Scientific Contributions

In this Ph.D. thesis, several contributions are made toward achieving the desired systems. The
major contribution can be summarized as follows:

✍ First contribution: Our literature review on methods for detecting plant diseases has led
us to propose a new taxonomy based on AI techniques, specifically machine learning and
deep learning while considering the range of crops and diseases covered. This taxonomy
categorizes disease infections into three main categories: unique disease infection from a
unique crop type, multiple disease infections from one crop type, and multiple disease in-
fections from multiple crop types. This categorization scheme offers a thorough framework
for comprehending and classifying the different methods used in agricultural settings for
disease detection.
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✍ Second contribution: We have proposed a new generalized method for identifying un-
healthy leaves, regardless of crop and disease types. This method utilizes a deep learning
model, specifically the Small Inception architecture, and focuses on small leaf pieces that
lack crop-specific characteristics and features, rather than using the entire leaf. The model
is trained to extract common features present in both healthy and diseased leaves, irrespec-
tive of plant or disease type. By prioritizing the recognition of these shared characteristics,
the model can effectively differentiate between healthy and diseased leaves across all crop
and disease types. The small leaf pieces are created by splitting the leaves into small
patches, each limited to the characteristics of the crops. The healthy patches, which do
not exhibit any disease symptoms, are used to extract the features that represent healthy
leaves, while the unhealthy patches containing disease symptoms are used to extract the
features of unhealthy leaves.

✍ Third contribution: This method involves the independent identification of each disease,
regardless of the crop type, by isolating each disease type from others and eliminating the
influence of crop type variation. Instead of using the entire leaf in the training process, we
utilize small leaf pieces. These pieces isolate each disease-specific feature, rather than rely-
ing on entire images containing leaves with distinct diseases and crop characteristics. The
leaf is split into small patches, each isolating a specific disease type and eliminating crop-
specific characteristics and features. All healthy patches extracted from healthy leaves,
as well as from the healthy regions of unhealthy leaves, are labeled as healthy. For the
remaining unhealthy patches, each patch containing specific disease symptoms is labeled
with the corresponding disease. This ensures the complete elimination of crop-specific in-
fluences during training by using patches extracted from various crop types to train Small
Inception models to learn features specific to each disease type. This ensures that disease
characteristics identified in one crop can be applied to others.

✍ Fourth contribution: We have introduced a novel approach to identifying plant diseases
in tree branches, leveraging a standard Resource Description Framework (RDF) across
multiple stages: acquisition, preprocessing, relevant information extraction, and detection.
The acquisition step involves capturing images from the field using drones or surveillance
cameras. Preprocessing encompasses the application of various techniques to enhance
image quality and accuracy, thereby facilitating classification. Relevant information ex-
traction involves training a machine learning model, Gaussian Mixture Model (GMM), to
extract relevant features and create a segmentation mask based on the probability distri-
bution of disease color. Finally, detection involves disease spot segmentation using the
generated segmentation mask.

Thesis Roadmap

This thesis is organized into two main parts. The first part consists of state-of-the-art topics
divided into two chapters, while the second part comprises contributions organized across three
chapters. The thesis concludes with a general conclusion.

❖ Part I: Backgrounds, Preliminaries, Basic Concepts and Literature Re-
view

❏ Chapter 01: “Evolution of Artificial Intelligence Paradigms”
This chapter reviews the fundamental concepts of AI. Initially, we explore the domain
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of AI, its definitions, and its most significant applications. Subsequently, we intro-
duce its core components, machine learning and deep learning, and delve into their
definitions, main types, and renowned models. Additionally, we address the primary
challenges encountered when employing these paradigms.

❏ Chapter 02: “Plant Disease Detection with Artificial Intelligence”
This chapter covers the current state of plant disease detection and its development.
It begins with an overview of plant pathologies, including descriptions of common
agricultural diseases. Next, it presents the most popular datasets for plant disease
detection. This is followed by a comprehensive analysis of the latest approaches and
methods proposed in this field, focusing on the detection and classification of plant
diseases using deep learning and machine learning techniques. Lastly, it discusses the
challenges and issues faced by plant disease identification and classification systems
presented in the literature.

❖ Part II: Proposed Plant Diseases Detection Systems

❏ Chapter 03: “Deep Learning Approach for Cross-Crop Plant Disease Detection”

This chapter presents our architecture for the proposed generalized system for iden-
tifying unhealthy leaves. It outlines the methods and materials used to develop this
system, detailing the dataset and explaining the steps involved in its creation. The
chapter then presents and discusses the results obtained from the evaluation of the
proposed system.

❏ Chapter 04: “Deep Learning Approach for Simultaneous Multi-Disease Detection on
the Same Leaf”
This chapter describes our architecture for multi-disease detection on the same leaf
simultaneously. It presents the methods and materials used to develop this system,
including the dataset and proposed methods. Finally, it discusses the results obtained
from the evaluation of the proposed system.

❏ Chapter 05: “Intelligence System for Detecting Diseases in Apple Tree Branches”
In this chapter, we introduce the proposed system for detecting diseases in tree
branches. It presents the steps for creating this system, starting from the collec-
tion of the dataset to the architecture of the system. Finally, it discusses the results
of the evaluation of this system.
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1.1 Introduction

Since the emergence of modern computing in the late 19th and early 20th centuries, humanity has
delved into the idea of "artificial intelligence". AI has undergone significant evolution over the
decades, transitioning from early conceptualizations to its present status as a defining element of
the modern era. With the progression of technology and the growing abundance of data, AI has
permeated numerous domains, including business, healthcare, transportation, entertainment,
and agriculture. AI can be defined as the simulation of human intelligence through the creation
of intelligent computers. Precisely, AI refers to the capacity of a computer system or machine
to perform tasks such as learning, problem-solving, and logical reasoning, which are typically
associated with human intelligence [82, 118].

The rise of AI coincides with the emergence of machine learning as a pivotal sub-field within the
AI domain. Machine learning can be defined as the type of AI wherein computers are capable of
independent thinking and learning [14]. It entails the creation of algorithms for data analysis,
utilizing this data to recognize patterns, and ultimately making decisions or predictions based
on it. A highly esteemed machine learning technique is the Artificial Neural Network (ANN),
designed to mimic the structure and operations of the human brain. With interconnected nodes
resembling neurons, an ANN possesses the capability to efficiently analyze data and extract
valuable insights from given instances.

The field of machine learning has made remarkable advancements in sophisticated learning algo-
rithms and efficient pre-processing techniques [74]. A noteworthy breakthrough is the evolution
of ANNs into deeper and more complex architectures, known as deep learning, which provide
superior learning capabilities [56, 93]. Deep learning is the term used to describe ANNs that have
delicate multi-layers [2]. Deep learning demonstrates superior performance compared to tradi-
tional machine learning methods in numerous scenarios, particularly when dealing with large
datasets. This stands as its primary advantage over traditional machine learning techniques
[161, 188].

This chapter will delve into the core principles of AI, focusing on machine learning and deep
learning as fundamental components. ANNs will be highlighted as the bridge between these
concepts. In Section 1.2, we will explore the domain of AI and its diverse applications. Following
that, Section 1.3 will introduce the machine learning paradigm, detailing its types and prominent
algorithms. In Section 1.4, we will delve into deep learning, where ANNs serve as the foundation.
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We will discuss various types of deep learning networks. Finally, in Section 1.5 we tackled the
challenges faced in both machine learning and deep learning.

1.2 Artificial Intelligence (AI)

1.2.1 Historical background and evolution of AI

The historical background and evolution of AI trace back to ancient times, with the concept
of creating modern computer in the late 19th and early 20th centuries. However, the mid-20th
century marked the start of the modern AI era.

In 1943, the term "artificial intelligence" hadn’t yet been coined, but the seeds of this revolu-
tionary field were sown. It was during this time that the concept of ANNs emerged, spearheaded
by Warren McCulloch and Walter Pitts, marking a significant milestone in the journey toward
creating intelligent machines with the publication of their paper titled "A Logical Calculus of
the Ideas Immanent in Nervous Activity" [3].

In 1950, Alan Turing published a seminal paper titled "Computing Machinery and Intelligence,"
where he introduced his proposal commonly known as "the turing test" which aimed to ratio-
nalize and question whether machines could exhibit human-like intelligence [60].

"I propose to consider the question, ’Can machines think?’ This should begin with definitions
of the meaning of the terms ’machine ’and ’think’. . . . [But] Instead of attempting such a
definition I shall replace the question by another... The new form of the problem can be
described in terms of a game which we call the ’imitation game’."

Alan Turing, “Computing Machinery and Intelligence”, 1950

The "imitation game" serves as an alternative name for the turing test. Turing’s objective
with this test was to provide a means of assessing whether a machine could exhibit intelligent
behavior comparable to human thought processes [139]. An interrogator communicates with
both a human and a machine via a text interface, attempting to discern which is which based
solely on their responses. If the interrogator is unable to consistently differentiate between the
human and the machine, the machine is deemed to have passed the test, demonstrating behavior
that is indistinguishable from that of a human [170].

"I believe that in about fifty years’ time it will be possible to programme computers, with a
storage capacity of about 109, to make them play the imitation game so well that an average
interrogator will not have more than 70 percent chance of making the right identification
after five minutes of questioning. . . . I believe that at the end of the century the use of words
and general educated opinion will have altered so much that one will be able to speak of
machines thinking without expecting to be contradicted."

Alan Turing, 1950

In 1955, american computer scientist and cognitive scientist John McCarthy coined the term
"artificial intelligence" [95], and he proposed the creation of a conference dedicated to AI. This
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proposal was officially announced by John McCarthy, Marvin Minsky, Nathaniel Rochester, and
Claude Shannon on September 2, 1955 [53]. The 1956 Dartmouth summer research project on
AI was a pivotal event in the field’s history, where the term "artificial intelligence" was officially
coined [113].

"We propose that a 2-month, 10-man study of artificial intelligence be carried out during the
summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed
on the basis of the conjecture that every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can be made to simulate it. An
attempt will be made to find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and improve themselves. We
think that a significant advance can be made in one or more of these problems if a carefully
selected group of scientists work on it together for a summer."

McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon, 1955

From the official coinage of the concept of AI, this field has indeed witnessed several stages. From
the period from 1956 to 1974, known as the era of early AI research, significant developments
occurred that laid the groundwork for the field. Researchers focused on symbolic AI, developing
programs capable of logical reasoning and problem-solving, creating the groundwork for modern
AI. The period from the mid-1974 to the early 1980s is indeed known as the first AI winter. The
field experienced periods of both enthusiasm and skepticism, leading to funding being stopped
temporarily. This was due to challenges in scaling AI systems and limitations in computing
power, which halted progress temporarily. In the period from 1980 to 1987, AI was back on
the scene, and several achievements were made such as expert systems, machine learning, and
natural language processing. From 1987 to 1993, the AI winter returned, named the second
AI winter. During this time, many AI projects failed, and AI research declined due to reduced
funding and skepticism. Between 1993 and 2011, the concept of AI agents evolved significantly
with advancements in areas such as intentional systems and multi-agent systems. AI permeated
various aspects of daily life, becoming increasingly integrated into technology, communication,
and decision-making processes. Beginning in 2011, significant advancements in AI have catalyzed
the emergence of big data and the concept of deep learning. From the year 2020, interest in
AI shifted towards large language models, with several notable examples such as ChatGPT
emerging onto the scene.

1.2.2 AI definition

Since the birth of the term "artificial intelligence", various definitions have been proposed by
different scientists and researchers according to their knowledge and viewpoints. AI has many
definitions over its long history, but there is no standard, unified definition so far. For this
reason, here are some of the most frequently cited definitions in the literature proposed by
eminent experts in the field:

In 1955, John McCarthy coined the term AI as:

"The science and engineering of making intelligent machines." (John McCarthy, [10])

Marvin Minsky, in 1968, defined AI as:
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"The science of making machines do things that would require intelligence if done by men."
(Marvin Minsky, [115])

Nils J. Nilsson, in 1971, described AI as:

"The goal of work in artificial intelligence is to build machines that perform tasks normally
requiring human intelligence." (Nils J. Nilsson, [123])

In 1977, RJ Nelson explained AI as:

"The use of computer programs and programming techniques to cast light on the principles of
intelligence in general and human thought in particular." (RJ Nelson, [122])

Elaine Rich, in 1985, defined AI as:

"The study of how to make computers do things at which, at the moment, people are better."
(Elaine Rich, [149])

Ray Kurzweil, in 1990, characterized AI as:

"The art of creating machines that perform functions that require intelligence when performed
by people." (Ray Kurzweil, [182])

Russell and Norvig, in 1995, conceptualized AI as:

"Systems that think like humans, systems that act like humans, systems that think rationally,
systems that act rationally." (Marvin Minsky, [150])

Nils J. Nilsson, in 2010, defined AI as:

"That activity devoted to making machines intelligent, and intelligence is that quality that enables
an entity to function appropriately and with foresight in its environment." (Nils J. Nilsson, [124]).

Additionally, he described AI as:

"the study of agents that receive percepts from the environment and perform actions." (Nils J.
Nilsson, [151])

In 2018, various experts offered their perspectives on AI. Elon Musk described it as:

"A complex adaptive system that maximizes its expected utility in a broad class of environments."
(Elon Musk, [182])

Andrew Ng defined it as:

"A set of algorithms and intelligence to enable computers to learn, see, hear, speak, and make
decisions like humans." (Andrew Ng , [182])

Judea Pearl characterized AI as:

"A scientific discipline concerned with understanding the mechanisms underlying thought and
intelligent behavior and their embodiment in machines." (Judea Pearl , [182])

Yann LeCun defined it as:

"The ability of a machine to perceive its environment and take actions that maximize its chance
of success in some goal." (Yann LeCun , [182])
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In 2018, the United Kingdom (UK) Parliament adopted the definition outlined in the 2017
industrial strategy white paper:

"Technologies with the ability to perform tasks that would otherwise require human intelligence."
(UK parliament, [65])

In 2021, the European Union published its AI proposal to regulate the use and transparency of
AI, aiming to establish a single future-proof definition of AI:

"Software developed with techniques and approaches that can generate outputs influencing the
environments they interact with." (European Commission, [91])

Lastly, according to the Oxford Dictionary, AI is:

"The theory and development of computer systems able to perform tasks that normally require
human intelligence." (Oxford Dictionary, [43])

While the Merriam-Webster Dictionary defines it as:

"A branch of computer science dealing with the simulation of intelligent behavior in computers."
(Merriam-Webster Dictionary, [43])

Based on all previously cited definitions of AI, we can offer the following summarized definition:

"AI is a field of computer science that, as its name suggests, attempts to create intelligence for
machines to simulate human intelligence. This involves making machines behave and perform
tasks that typically require human intelligence, such as thinking, learning, making decisions,
solving problems, and recognizing patterns."

1.2.3 AI applications

AI has revolutionized all aspects of life. It is utilized in numerous fields, bringing transformative
changes. In this section, we will present some of the most impressive AI applications.

1.2.3.1 AI in agriculture

AI is utilized throughout all stages of agriculture, from the initial planting to eventual harvesting.
By analyzing data and images acquired through the IoT technologies such as sensors, drones, and
satellite imagery, AI enhances various agricultural practices [108]. The objective is to facilitate
timely interventions and precise actions to maintain crop quality and optimize yields. The
following are some important areas in which AI is making an impact in agriculture:

❖ Crop monitoring / precision agriculture: Farmers are able to track various aspects of
their crops, including growth, productivity, and health, by utilizing data collected through
IoT technologies and analyzed by AI-driven analytics. With this information, farmers
can implement appropriate agricultural practices to enhance crop quality, increase yields,
and optimize farming procedures. By consistently monitoring crop conditions and making
data-driven decisions, farmers can achieve greater efficiency and productivity.
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❖ Disease detection: Machine and deep learning algorithms analyze images of crops to iden-
tify signs of diseases. This allows farmers to be informed of potential threats in the field,
enabling them to promptly investigate and take action, such as using chemical pesticides,
to prevent crop loss.

❖ Pest detection: The data collected by IoT sensors and cameras positioned in the field
or traps can be utilized to detect pests and insects. By accurately identifying the type
of insect present, precision spraying of chemical pesticides can be implemented. This
approach reduces environmental pollution and safeguards crop health.

❖ Weed detection: Farmers can utilize computer vision algorithms to identify and catego-
rize weeds, allowing them to implement the most suitable weed management and control
techniques.

❖ Pesticide application: AI technologies empower farmers to make well-informed decisions
regarding the types and quantities of pesticides necessary to mitigate threats identified
within the farm. AI algorithms can precisely evaluate the severity of the threat and pro-
pose appropriate pesticide remedies. Additionally, AI-driven drones and robots outfitted
with precision spraying mechanisms can effectively administer pesticides to specific sec-
tions of the farm. This not only helps in minimizing crop damage but also reduces the
environmental impact by optimizing pesticide usage.

❖ Yield prediction: Machine and deep learning models, trained on historical crop data and
considering various environmental conditions and agricultural practices, can forecast future
crop yields. Based on this predictive capability, farmers can strategize their marketing
plans more effectively.

❖ Water management / irrigation: Using data collected by IoT sensors on soil moisture
levels and weather forecasts, AI systems can analyze the current conditions and accurately
calculate the amount of water needed for irrigation. Additionally, AI can automate the
irrigation process, ensuring that crops receive the appropriate amount of water at the right
time.

❖ Harvesting : Computer vision systems can alert farmers when crops are ready for harvest
by detecting their maturity. Additionally, AI-powered robotic arms can automate the
harvesting process, enhancing efficiency and reducing labor costs.

1.2.3.2 AI in healthcare

AI is making a revolutionary impact on the healthcare process, transforming various aspects of
medical practice. By analyzing medical data and images gathered by systems through a network
of medical device-connected sensors, AI enhances several healthcare practices. The objective is
to facilitate timely interventions and precise actions to provide safe and effective health services
to patients. Here are some important areas in which AI is making an impact in healthcare:

• Drug discovery : Through the analysis of chemical and biological data, AI can identify
new molecules and predict their effects. By assessing drug compounds and structures,
AI can anticipate patient responses to these drugs and forecast potential interactions.
Moreover, AI evaluates the risks associated with these medications, offering insights crucial
for decision-making in drug development.
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• Clinical trials: AI is pivotal across all phases of clinical trials, spanning from protocol
design to patient recruitment, data analysis, and regulatory compliance. By leveraging
historical trial data and patient records, AI aids in protocol design and predicts suitable
patient cohorts for trial participation. Through robust analysis of trial outcomes, AI
enhances decision-making processes and refines trial strategies. Additionally, AI facilitates
conducting trials via simulation methods, providing invaluable insights for optimizing trial
protocols and ensuring their success.

• Patient care: AI is revolutionizing patient care, starting with disease diagnosis, customiza-
tion of treatment plans, remote patient monitoring, and communication. Through the
analysis of medical data such as ECGs and vital signs, along with medical images like
X-rays, MRIs, and CT scans, AI enables disease detection. Additionally, treatment is
tailored by analyzing the patient’s historical data and vital signs, aiding in formulating
treatment plans. Through the use of wearable devices equipped with AI, patients can be
monitored remotely to assess their vitality and health. Moreover, the utilization of virtual
assistants and chatbots enables remote communication with patients to access medical
services remotely.

1.2.3.3 AI in energy

AI has significantly transformed and enhanced the energy sector, seamlessly integrating into
every phase from initial production to storage, distribution, and consumption. Through com-
prehensive analysis of production, consumption, weather patterns, wind, and solar activity data,
AI optimizes energy utilization, thereby boosting efficiency. Below, we will delve into the key
applications of AI in the energy field:

• Smart grid : AI is pivotal in enhancing the performance of smart energy networks, as it
enables monitoring of network performance for early detection and prediction of outages.
Additionally, it facilitates effective management of energy demand by predicting demand
patterns and analyzing consumer behavior. This aids in more efficient production planning
and energy distribution.

• Renewable energy : AI systems are enhancing the efficiency and sustainability of renewable
energy sources by accurately predicting energy production from sources like wind and solar.
By analyzing data related to wind patterns and solar radiation, AI can determine the
optimal times and locations for energy extraction, thereby maximizing renewable energy
utilization.

• Energy storage: AI significantly enhances the interactive efficiency of energy storage sys-
tems. Through predictive analytics, AI accurately forecasts energy demand and efficiently
manages the charging and discharging processes. Moreover, AI plays a crucial role in
extending battery life cycles by predicting potential failures and implementing improved
maintenance strategies.

• Energy trending : AI indeed plays a crucial role in the energy trading market by analyzing
data related to energy trading. It accurately predicts energy demand, provides insights
into energy prices, enables informed decisions regarding optimal buying and selling times,
and facilitates the management of supply and demand operations.
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1.3 Machine learning

1.3.1 Introduction to machine learning

The term "machine learning" was coined by Arthur Samuel in 1959 in his paper titled "Some
Studies in Machine Learning Using the Game of Checkers" [157], which dealt with the use of
self-learning and pattern recognition to teach a computer program to play checkers [125]. Over
the years, several definitions of machine learning have been proposed. The following presents
the most cited machine learning definitions in the research literature:

Arthur Samuel (1959):

"Machine learning is the field of study that gives computers the ability to learn without being
explicitly programmed." (Arthur Samuel, [157])

Tom M. Mitchell (1997):

"A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E." (Tom M. Mitchell, [116])

Ethem Alpaydin (2004):

"Machine learning is programming computers to optimize a performance criterion using example
data or past experience." (Ethem Alpaydin, [12])

Daphne Koller and Nir Friedman (2009):

"Machine learning explores the study and construction of algorithms that can learn from and
make predictions or decisions based on data." (Daphne Koller and Nir Friedman, [87])

Kevin P. Murphy (2012):

"Machine learning is a set of methods that can automatically detect patterns in data, and then use
the uncovered patterns to predict future data or other outcomes of interest." (Kevin P. Murphy,
[119])

Pedro Domingos (2015):

"Machine learning is about predicting the future based on the past." (Pedro Domingos, [44])

Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016):

"Machine learning is a set of methods that can automatically detect patterns in data, and then
use the uncovered patterns to predict future data or perform other kinds of decision making under
uncertainty." (Ian Goodfellow, Yoshua Bengio, and Aaron Courville, [56])

Based on all previously cited definitions of machine learning, we can propose the following
summarized definition:

"Machine learning is a subset of of AI, aim to learn machines in a manner analogous to human
learning processes. This involves training machines on a dataset and directing them to extract
distinctive characteristics or features from it. This allows machines to perform predictions, make
decisions, and recognize patterns in new data based on their learning experience."
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1.3.2 Types of machine learning

Machine learning includes many different types that are essential to the field. These main types
include:

1.3.2.1 Supervised learning

Supervised machine learning is a machine learning kind where the training process relies on
a labeled dataset, which means a dataset containing target values or labeled answers for the
output, along with examples for the input [74]. The goal of the machine learning here is to
optimize the parameters to reduce the gap between the predicted label and the target label [77].
Two major categories can be distinguished in supervised learning:

❏ Classification : The predicted label by the machine learning algorithm is a categorical
value. For example, if we have a dataset with three classes (A, B, C), supervised machine
learning will learn how to differentiate between these classes. It will be trained to predict
which one of these three classes a new data point belongs to based on the patterns it
learned from the labeled training data.

❏ Regression : The predicted label by the machine learning algorithm is a continuous value.
For example, the machine learning algorithm learns from a dataset where each data point
has a continuous numeric value associated with it. It learns patterns in the data and is
trained to predict a continuous numeric value for new data points, based on the relation-
ships it learned from the training data.

Supervised machine learning is illustrated in Figure 1.1.

Figure 1.1: Supervised learning (from [77]).

1.3.2.2 Unsupervised learning

Unsupervised machine learning is a type of machine learning where the training process relies
on an unlabeled dataset, which means a dataset containing the input without the corresponding
target values [153]. The goal of the learning system is to detect patterns and cluster the data
without any previously assigned labels, based on the similarity within the training dataset [74,
77]. For example, let’s consider a dataset with various data points. The algorithm’s goal is to
cluster these data points based on their similarity. This means that the algorithm will group
together data points with similar characteristics, even though these groups are not predefined
or labeled. Unsupervised machine learning is illustrated in Figure 1.2.
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Figure 1.2: Unsupervised learning (from [77]).

1.3.2.3 Semi-supervised learning

Unsupervised and supervised learning are combined in semi-supervised machine learning, which
is a hybrid approach. The training procedure in semi-supervised learning depends on a dataset
with a large proportion of unlabeled data and a small proportion of labeled data [153]. The goal
of machine learning here is for labeled data is to minimize the mistake between the target label
and the predicted label, while for unlabeled data, it is to group them based on their similarities
[77]. For instance, consider a dataset containing both labeled data points, categorized into three
classes (A, B, C), and unlabeled data points. In semi-supervised learning, a small subset of
labeled data is used to learn how to differentiate between classes. However, it also leverages the
larger pool of unlabeled data to refine its understanding of the data and improve its ability to
classify new instances within the known classes (A, B, C). Semi-supervised machine learning is
illustrated in Figure 1.3.

Figure 1.3: Semi-supervised learning (from [77]).

1.3.2.4 Reinforcement learning

Reinforcement learning is a machine learning kind where an agent, or learner, learns to make
consecutive decisions to achieve an optimized final reward by performing actions and receiv-
ing rewards or penalties [153]. The external environment provides the input for reinforcement
learning, and the action itself produces the output. The environment and critics determine the
reward or penalty, and the parameters are modified to optimize rewards and reduce penalties
[77]. Consider a robot that is learning how to get around a maze. The robot’s sensors provide
input, informing it about its current location and environment. The robot makes various actions,
including forward, left, and right turns, as it navigates the maze. It gets input from the envi-
ronment every time it moves: it gets rewarded if it approaches the exit and gets penalized if it
strikes a wall or goes in the opposite direction. The robot eventually discovers the most effective
way out of the maze after learning to optimize its route over time by maximizing rewards and
minimizing penalties. Reinforcement machine learning is illustrated in Figure 1.4.
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Figure 1.4: Reinforcement learning (from [77]).

1.3.3 Popular machine learning algorithms

1.3.3.1 Support Vector Machine (SVM)

SVM [180] is an algorithm for supervised machine learning that can be applied to both regression
and classification tasks, although it is particularly beneficial for classification. It is effective for
both linear and non-linear data. The following outlines the key ideas behind the SVM algorithm:

• Hyperplane: In SVM, the algorithm aims to optimize the boundary that separates the
classes. For linear data, this boundary is a dividing line, while for non-linear data, it
corresponds to a separate space.

• Support vectors: Support vectors are data points closest to the hyperplane from each class,
playing a crucial role in determining the hyperplane’s position.

• Margin: It is the space between the hyperplane and the support vectors. The margin is
calculated by finding the perpendicular distance between the hyperplane and the support
vectors.

• Kernel trick : When dealing with non-linear data, SVM uses kernel functions, such as
polynomial, sigmoid, Radial Basis Function (RBF), and linear, to transform the data into
a higher-dimensional space, enabling linear separation.

The SVM algorithm aims is to draw a hyperplane that best separates the data points in the
feature space into different classes. This hyperplane guarantees the maximum possible margin
between it and the nearest data points of each class [110].

1.3.3.2 K-Nearest Neighbor (KNN)

KNN [6] is a simple and popular supervised machine learning algorithm that performs both
classification and regression tasks. It is non-parametric and frequently referred to as "lazy
learning". For each new data point, the KNN algorithm determines its class based on the
distances to the k-nearest neighbors from the training data points [14]. The steps of the KNN
proceed as follows:

• K value selection: Determining the value of K, the hyperparameter representing the num-
ber of nearest neighbors, should be the first step. Choosing this variable plays a crucial
role in achieving optimal performance of the algorithm.
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• Distance calculation: The distance between each new data point and all training data must
be calculated using one of these distance metrics: Euclidean, Manhattan, or Minkowski
distances.

• K nearest neighbors determination: Based on the calculated distances between the new
data point and the training data, the K training data points with the smallest distances,
which are the closest neighbors, are identified as the K nearest neighbors of the new data
point.

• Class label determination: The class label that appears most frequently among the selected
K nearest neighbors determine the class label for the new data point in the case of classi-
fication. In the case of regression, the average of the values of the K nearest neighbors is
the value chosen for the new data point.

1.3.3.3 Decision Tree (DT)

DT is a well-known technique for non-parametric supervised learning. Both the classification
and regression tasks employ DT learning techniques. There are several DT algorithms; the most
well-known ones are CART [29], ID3 [144], and C4.5 [145]. The components of a DT include a
root node, which is the first node of the tree and represents the data points. The decision nodes
are the internal nodes that represent the decision attributes used for splitting the data points.
The branches are the outputs of the decision nodes. The leaf nodes, which do not have branches,
represent the class labels. A DT uses feature values to classify instances, moving them from the
root node to a few leaf nodes [15]. The steps of the DT are as follows:

• Decision attribute selection: The best attributes that divide the dataset are chosen by
minimizing impurity as much as possible. These attributes are selected using either Gini
impurity or entropy.

• Data splitting : Using the chosen attributes, the dataset is divided into two subsets, with
each subset representing a decision node.

• Tree building : By repeating the two previous processes for each decision node, the tree will
be built until it reaches one of the chosen stopping conditions.

• Class label determination: Each leaf node is assigned a class label. In classification cases,
the label corresponds to the majority class of the data points in that leaf node. In regression
cases, it is the mean value of the data points within that leaf node.

• Classification / regression with DT : The resulting DT is used to predict the class label or
regression value of new data points.

1.3.3.4 Random Forest (RF)

RF [28] is an ensemble learning technique applied to regression and classification tasks. A random
subset of data is used to train multiple DTs using the bagging technique. To generate the final
decision of the RF, the outputs from each DT in the ensemble are combined [15]. Consequently,
compared to a single DT-based model, the RF learning model with multiple DTs is usually more
accurate [162]. The workflow of RF algorithm is presented as follows:
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• Bootstrap sampling : The training data is divided into a predefined number of subsets called
bootstrap samples, with each subset used to train a DT.

• Random feature selection (Feature randomness): The selected features available for the
training are split into random subsets.

• DT building / bagging : Each subset of data is trained using a subset of features in each
decision node to build a specific DT.

• RF prediction: New data points are predicted using all the built DTs. In classification
tasks, the class label is determined using a voting technique, while in regression tasks, the
mean of all DTs’ predictions is calculated as the result of the RF.

1.3.3.5 K-means

K-means [109] is a common algorithm for cluster analysis in unsupervised machine learning. Its
objective is to divide a set of data points into K clusters, where each data point is assigned to the
cluster with the closest mean, acting as a representative of the cluster. The center of a cluster
is defined by the mean of the observations within that cluster [15]. The K-means algorithm’s
execution depends on the parameter K selection. It determines how the algorithm operates,
and different values for K can produce different clustering results [9]. The steps of the K-means
algorithm are as follows:

• K initialization: The initial step in the K-means algorithm involves randomly assigning
the value of K, which represents the number of clusters to be created from the training
dataset. This entails determining the centroids, or cluster centers, for the initial clusters.

• Cluster assignment : Every data point from the training dataset is assigned to the nearest
cluster, which means the cluster with the smallest distance between this data point and
the centroid of that cluster. This distance is calculated using one of the following distance
metrics: Euclidean distance, Manhattan distance, Chebyshev distance, or Mahalanobis
distance.

• Cluster update: The centroids are recalculated by calculating the mean of all the data
points in each cluster following the assignment of each dataset point to its corresponding
cluster. The clusters are then updated using these new centroids.

• Repetition of steps 2 and 3 : Until the centroids stabilize, indicating that the model has
converged and the clusters won’t change anymore, the two previous steps are repeated.

• Prediction: Each new data point will be assigned to a cluster by measuring the distance
between it and the cluster centroids. The data point will be assigned to the nearest cluster.

1.3.3.6 Fuzzy C-Means (FCM)

FCM [46] is unsupervise clustering algorithm in d machine learning. This algorithm assigns
each data point to several clusters with a membership degree, which is calculated based on the
distance between each cluster center (centroids) and that data point [54]. The FCM algorithm
objective is to minimize the following objective function J :
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J =
n∑

i=1

K∑
j=1

(uij)
m∥xi − Cj∥2 (1.1)

Where n is the number of the data points, K is the number of clusters, xi is the i-th data point,
Cj is the j-th cluster, uij is the membership degree of the data point xi in the cluster Cj , and
m is the fuzzy index (m > 1).
The FCM algorithm consists of the following steps:

• K initialization: The initial step in the FCM algorithm is randomly assigning the number
of clusters K. This step includes determining the centroids, or cluster centers, for the initial
clusters.

• Clusters membership calculation: For each data point xi, calculate their membership in all
the cluster C using the following equation:

uij =

(
c∑

k=1

(
∥xi − vj∥
∥xi − vk∥

) 2
m−1

)−1

(1.2)

Where uij is the membership of the data point xi in the cluster Cj .

• Cluster centroids update: The cluster centroids are recalculated using the following equa-
tion:

vj =

∑n
i=1 u

m
ij · xi∑n

i=1 u
m
ij

(1.3)

• Repetition of steps 2 and 3 : Until the model has converged or the number of iterations is
reached.

1.3.3.7 Naïve Bayes (NB)

NB is probabilistic supervised machine learning, It is based on the "Bayes" theorem, a principle of
conditional probability, and operates under the "Naive" assumption, which assumes conditional
independence between each pair of features or attributes [143]. It performs well and can be
applied to many real-world scenarios, including document or text classification, spam filtering,
and both binary and multi-class categories [160]. The key concepts of the NB algorithm are:

• Bayes theorem: The posterior probability of a class A given feature values B is calculated
using the prior probability of class A given feature B, according to Bayes’ theorem as
follow:

P (A|B) =
P (B|A) · P (A)

P (B)
(1.4)

Where P (A|B) is the posterior probability of class A given feature B, P (B|A) is the
probability of observing feature B given class A, P (A) and P (B) are the prior probability
of class A, and feature B.
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• Naive assumption: The Naive assumption allows the calculation of the probability of class
A given a set of features (B1, B2, . . . , Bn) as follows:

P (A | B1, B2, . . . , Bn) = P (A)
n∏

i=1

P (Bi | A) (1.5)

Where P (A) is the probability of class A, and P (Bi | A) is the probability of feature Bi

given class A.

• Prediction: The posterior maximum rule is used to predict the new data points xnew class:

MAP = argmaxAk∈A(P (Ak | xnew)) (1.6)

1.3.3.8 Logistic Regression (LR)

LR [30] is a probabilistic supervised machine learning model. Contrary to what its name suggests,
it is a classification model used for binary and linear classification. It demonstrates exceptional
performance with linearly separable classes [171]. The logistic function (Sigmoid function) is
used in LR to estimate the probabilities [160]. The key concepts of the LR algorithm are:

• linear combination: Before calculating the probability using the logical function, the linear
combination z of the features (independent variables) is calculated as follows:

z = β0 + β1x1 + β2x2 + . . .+ βnxn (1.7)

Where β0 is the intercept term, β1, β2, . . . , βn are the coefficients for the respective features
x1, x2, . . . , xn.

• logistic function (Sigmoid function): The Sigmoid function g maps the real-valued result
of the linear combination to the range [0, 1], which means it gives the probability of the
dependent variable z given the features x1, x2, . . . , xn.

g(z) =
1

1 + exp(−z)
(1.8)

• Prediction: To classify a new data point, the probability of this data point based on
its features is calculated using a logistic function. The class label is determined using a
threshold (generally 0.5).

1.3.3.9 Gaussian Mixture Model (GMM)

A GMM is probabilistic model for cluster analysis in unsupervised machine learning. GMM
assumes that data point are generated from a mixture of several Gaussian distributions [52, 134].
GMM are built based on two key concept, Gaussian distribution and mixture model. A Gaussian
distribution or normal distribution is a continuous probability distribution with bell-shaped
curve. The mixture model is a probabilistic model that assumes data generation from a mixture
of several distributions. The mathematical representation of the GMM is as follows:
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P (X) =
K∑
i=1

ωiη (X,µi, Σi) (1.9)

Where K represents the number of Gaussians, ωi denotes the mixture weight, µi represents the
average, and Σi indicates the covariance matrix, each of which is evaluated for the i-th Gaussian.
η denotes the Gaussian probability density function, which is presented as follows:

η (X,µ,Σ) =
1

(2π)
D
2 |Σ|

1
2

e−
1
2
(X−µ)TΣ−1(X−µ) (1.10)

Where D expresses the dimension of the vector X.

The GMM consists of the following phases:

• Initialization: First, determine the value of K, the hyperparameter representing the num-
ber of clusters or Gaussian components, and then initialize the parameters of each Gaussian
ω, µ, and Σ either randomly or using one of several initialization methods.

• Parameters update: There are several techniques available for estimating GMM param-
eters. The most popular and commonly used method is the Expectation-Maximization
(EM) algorithm. The concept behind the EM algorithm is to iteratively estimate the pa-
rameters to maximize the posterior probability for each data point given each Gaussian
component. The EM algorithm consists of two main steps:

– Expectation step (E-step): Calculating the posterior probability for each data point
Xt in each cluster i as follows:

γti =
ωiη (Xt, µi, Σi)∑K

k=1 ωkη (Xt, µk, Σk)
(1.11)

– Maximization step (M-step): Update the Gaussian parameters to maximize the pos-
terior probabilities. using the following equations:

ω̄i =
1

T

T∑
t=1

γti (1.12)

µ̄i =

∑T
t=1 γtiXt∑T
t=1 γti

(1.13)

σ̄2
i =

∑T
t=1 γtiX

2
t∑T

t=1 γti
− µ̄2

i (1.14)

Where T present the number of the data points in the dataset.

The steps of the parameter update phase (E-step and M-step) are repeated until the model
converges and the parameters stabilize.
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1.4 Deep learning

1.4.1 Introduction to deep learning

The term "deep learning" was coined by Rina Dechter in 1986 in her paper titled "Learning while
searching in constraint-satisfaction-problems" [40]. The paper discusses the concept of learning
while searching in constraint-satisfaction problems. While "deep learning" gained popularity in
the mid-2000s, it was defined as neural networks with multiple layers. Over the years, several
definitions of deep learning have been proposed. Below are some of the most cited definitions in
machine learning research:

Geoffrey Hinton (2007):

"Deep learning is a type of machine learning in which a model learns to perform classification
tasks directly from images, text, or sound." (Geoffrey Hinton, [63])

LeCun Yann, Bengio Yoshua, and Hinton Geoffrey (2015):

"Deep learning allows computational models that are composed of multiple processing layers to
learn representations of data with multiple levels of abstraction. These methods have dramatically
improved the state-of-the-art in speech recognition, visual object recognition, object detection, and
many other domains such as drug discovery and genomics." (LeCun Yann, Bengio Yoshua, and
Hinton Geoffrey, [93])

Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016):

"Deep learning is a particular kind of machine learning that achieves great power and flexibility
by learning to represent the world as a nested hierarchy of concepts and representations, with
each concept defined in relation to simpler concepts, and more abstract representations computed
in terms of less abstract ones" (Ian Goodfellow, Yoshua Bengio, and Aaron Courville, [56])

Francois Chollet (2018):

"Deep learning is a specific subfield of machine learning: a new take on learning representa-
tions from data that puts an emphasis on learning successive layers of increasingly meaningful
representations." (Francois Chollet, [34])

John D Kelleher (2019):

"Deep learning is the subfield of artificial intelligence that focuses on creating large neural network
models that are capable of making accurate data-driven decisions." (John D Kelleher, [81])

M Arif Wani, Farooq Ahmad Bhat, Saduf Afzal, and Asif Iqbal Khan (2020):

"Deep learning refers to the architectures which contain multiple hidden layers (deep networks)
to learn different features with multiple levels of abstraction. Deep learning algorithms seek to
exploit the unknown structure in the input distribution in order to discover good representations,
often at multiple levels, with higher level learned features defined in terms of lower level features."
(M Arif Wani, Farooq Ahmad Bhat, Saduf Afzal, and Asif Iqbal Khan, [186])

Based on all previously cited definitions of deep learning, we can propose the following summa-
rized definition:
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"Deep learning is a subset of machine learning and AI, aims to simulate the intricate workings of
human neural networks. It focuses on training deep neural networks to learn and automatically
extract distinct characteristics and features from datasets. This enables deep learning models to
perform predictions, make decisions, and recognize patterns based on the learned experience."

1.4.2 Deep learning basics

1.4.2.1 Artificial Neural Network (ANN)

ANN is computational technique employed in machine learning. They serve as effective tools for
showcasing acquired knowledge and leveraging it to enhance the output responses of complex
systems [33]. ANN aim to simulate the neural system found in the human brain. It emulates
the brain’s process of analyzing data and information to make decisions through the utilization
of a mathematical model [37, 88]. Through this simulation, neural networks allow machines to
identify patterns and make decisions in a way that resembles human thought processes. Similar
to the human brain’s composition of neural networks, ANNs also comprise network of artificial
neurons (nodes). Below, we elucidate the fundamental principles and mechanics of ANNs.

• Artificial neuron : An artificial neuron serves as the fundamental unit within every
ANN, functioning as a basic mathematical model that emulates biological neurons. The
biological neuron receives data through its dendrites, processes it within the soma, and
transmits output through its axon. The artificial neuron receives various data inputs,
such as data points, weights, and biases. It processes these inputs using two primary
functions: a summation function and a transfer function, also known as an activation
function. Ultimately, the neuron generates output(s) according to the outcomes of these
computational steps [88]. Figure 1.5 gives an illustration of the structure of biological and
artificial neurons. An artificial neuron can be represented mathematically as follows:

Y = f

(
n∑

i=1

wixi + b

)
(1.15)

Where Y is the output, X are the inputs, w are the weights, b is the bias, and f() is the
transfer function (activation function).
Weights determine the significance of input features by assigning them different degrees of
influence on the network’s output. Bias enables the system to adapt to variations and shifts
within the input data, facilitating the learning of more complex patterns. The activation
function introduces non-linear behavior to a neuron’s output, thereby determining whether
the neuron is activated or not, essentially deciding whether it produces an output or
remains inactive. The commonly used activation functions are Sigmoid, Hyperbolic tangent
(tanh), REctified Linear Unit (ReLU), and Softmax. The mathematical equations for each
of these functions are as follows:

– Sigmoid function:

0 < σ(x) =
1

1 + e−x
< 1 (1.16)

– Hyperbolic tangent (tanh) function:

−1 < tanh(x) =
ex − e−x

ex + e−x
< 1 (1.17)
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– Rectified Linear Unit (ReLU) function:

ReLU(x) = max(0, x) (1.18)

– Softmax function:
Softmax(xi) =

exi∑
j e

xj
(1.19)

(a) (b)

Figure 1.5: Neuron structure: (a) biological neuron, (b) artificial neuron (from [88]).

• ANN structure : An ANN is composed of numerous neurons interconnected through
links, with each neuron possessing its own bias and specialized activation function. These
connections between neurons are characterized by weights. Neurons are organized into
layers, with the primary types being the input layer, hidden layer, and output layer. The
input layer comprises neurons (nodes) that receive input data and transmit it to the hidden
layer. The hidden layer is the intermediary layer responsible for processing data points
and extracting relevant features from them. The output layer represents the final stage
of an ANN, where it generates the predicted output. Its primary role is to produce the
output based on the transformations carried out by the hidden layer. Figure 1.6 illustrates
the structure of an ANN.

Figure 1.6: A structure of an ANN (from [38]).

In the context of ANNs based on the topology of connection, feedforward and feedback
architectures are two fundamental types of network structures; they are as follows:

– Feedforward architecture : ANNs are classified as feedforward when information
flows in one direction, from the input layer through the hidden layer to the output
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layer. This directional flow excludes feedback loops, resulting in the absence of mem-
ory to preserve previous results and network states. Commonly, feedforward neural
networks find applications in image classification, object recognition, and various re-
gression problems. The architecture of feedforward ANN is shown in Figure 1.7a.

– Feedback architecture : ANN is classified as feedback, also known as Recurrent Neu-
ral Network (RNN), where information flows backward through connections between
the network’s neurons, creating loops between them. RNNs possess memory capa-
bilities that store both previous and next states, enabling the modeling of dynamic
temporal behavior. Common applications include language modeling, speech recog-
nition, time series prediction, and machine translation. The architecture of feedback
ANN is shown in Figure 1.7b.

(a) (b)

Figure 1.7: ANN architectures: (a) feedforward architecture, (b) feedback architecture (from
[37]).

• ANN learning : There are several types of learning algorithms for ANNs. The common
ones are the previously mentioned types: supervised, unsupervised, semi-supervised, and
reinforcement learning. The common method used to train ANNs is back propagation,
a learning strategy that reduces the error between the expected and actual outputs by
adapting the weights and biases of the network. This consists of the following steps:

– Model initialization: The weights and biases are initialized either randomly or using
one of several initialization methods.

– Forward pass: The dataset, or a subset of it known as a batch, passes through the
ANN. This technique involves splitting the dataset into smaller sets, and the ANN
is trained on each batch. This technique enhances the performance of the ANN and
makes the training faster. During the forward pass, the data propagates through all
the layers to calculate the outputs. Each neuron processes the data point using two
primary functions: a summation function and an activation function. This process is
repeated for all neurons until reaching the last neuron of the output layer, where the
final output is calculated.

– Error calculation: Error is calculated using the loss function, which estimates the
difference between the actual output values and the predicted values. There are
several loss functions based on the learning type. The commonly used ones are: Cross-
Entropy Loss, Binary Cross-Entropy Loss, Categorical Cross-Entropy Loss, Mean
Squared Error, Mean Absolute Error, and Huber Loss.
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– Backward pass (backward propagation): The gradients, which represent the loss values
of each weight and bias, are propagated backward through the ANN layers to adjust
and update the weights and bias for minimizing the loss function. This process is per-
formed using optimization algorithms such as Gradient Descent, Stochastic Gradient
Descent, or Adam.

– Iteration: The process repeats from the forward pass to the backward pass until the
model converges and the error is not further minimized, or until the stopping criteria
are achieved. These criteria can be defined by a predetermined number of epochs,
a certain number of times passing the whole dataset through the ANN, or by using
techniques such as early stopping to prevent overfitting.

In RNNs, Back Propagation Through Time (BPTT) is used for learning. This technique
involves the forward pass, where data points propagate through the network and outputs
are calculated at each time step. Then, during the backward pass, gradients are calculated
at each time step, propagating backward through time.

1.4.2.2 Deep learning network

Deep learning network or Deep Neural Network (DNN) describe ANN that has multiple layers
[2]. In other words, a deeper ANN consists of multiple hidden layers, facilitating the acquisition
of data representations with diverse levels of abstraction [93]. Deep learning networks have
proven highly effective in analyzing large datasets, demonstrating notable success in fields such as
speech recognition, computer vision, pattern recognition, recommendation systems, and natural
language processing [105]. The architecture of a DNN is shown in Figure 1.8.

Figure 1.8: A structure of a DNN (from [37]).

1.4.3 Popular deep learning networks

1.4.3.1 Convolutional Neural Network (CNN)

CNNs [94] are a type of feedforward ANN that excel at extracting complex and hierarchical
features. They find extensive use in image recognition and video processing due to their ability
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to preserve spatial relationships between pixels in an image. This entails processing groups of
pixels, termed patches, together. Each patch is directed to a specific node in the next layer,
thereby retaining the patch’s original location. This differs from traditional ANNs, which pro-
cess individual pixels separately and do not preserve spatial relationships [64, 89, 93]. A CNN
comprises multiple deep layers, with initial layers focusing on extracting primary features such
as edges and corners, while subsequent layers specialize in extracting more intricate features and
recognizing objects. The main layers in a CNN are the convolutional layer, pooling layer, and
fully connected layer, as illustrated in Figure 1.9.

Figure 1.9: A structure of a CNN (from [136]).

The details of the CNN layers are as follows:

• Convolutional layer : It serves as the core component of the CNN and is responsible
for feature extraction using kernels or filters, which are small weight matrices. Each filter
is designed to detect a specific feature within the image. Convolutional layers convolve
filters over the image with a step size known as stride. At each position, the filter weights
are multiplied with the pixel values of the image using element-wise matrix multiplication,
resulting in a new stacked matrix known as the feature map. This map demonstrates the
presence of specific features at particular points in the image, as described by the following
equation:

γij = f(
h−1∑
m=0

w−1∑
n=0

I(i+m, j + n) · F (m,n)) (1.20)

Where I is the input image with dimensions H×W , F is the filter with dimensions h×w,
f() is the activation function, and γij is the resulting feature map at position (pixel index)
(i, j) with dimensions (H − h+ 1)× (W − w + 1).

The process of convolution operation is shown in Figure 1.10.

• Pooling layer : The pooling layer downsamples the feature map to reduce its dimension,
retaining only critical information. The pooling layer moves across the feature map using
a kernel with a defined stride size (s), called a pooling window, much like the convolutional
layer. There are two types of pooling operations: max pooling and average pooling. In max
pooling, the operation computes the maximum value within each window, representing the
activated feature in that region (see Figure 1.11a, and equitation 1.21). Conversely, average
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Figure 1.10: A convolution operation process (from [107]).

pooling calculates the average value of the window’s contents, representing the combined
features within that region (see Figure 1.11b, and equitation 1.22).

γij = maxm,n(I(i · s+m, j · s+ n)) (1.21)

γij = k × k

k−1∑
m=0

k−1∑
n=0

I(i · s+m, j · s+ n) (1.22)

(a) (b)

Figure 1.11: Pooling operations: (a) max pooling operation, (b) average pooling operation
(from [107]).

• Fully connected layer : After traversing through numerous convolutional and pooling
layers of CNNs, the fully connected layer emerges, serving as the final decision-maker
based on the feature maps extracted from the preceding layers. In this layer, each node
is intricately connected to every node of the previous layer, facilitating the simultaneous
consideration of all features. This comprehensive connectivity enables the extraction of
complex relationships among the features.

CNNs are widely used in computer vision tasks, and several architectures have been proposed
over the years for tasks such as classification, object detection, and segmentation. Some of the
most famous CNN architectures include: LeNet-5 [94], AlexNet [89], Inception [173], VGGNet
[167], ResNet [62], Faster R-CNN [147], Mask R-CNN [61], etc.

1.4.3.2 Generative Adversarial Network (GAN)

A GAN [57] takes a set of noise inputs and generates new data samples that resemble the training
dataset by learning the underlying probability distribution of the provided data. GAN composed
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from two ANN, generator and discriminator. In a non-cooperative zero-sum game, both networks
are trained simultaneously until the discriminator can no longer distinguish between real and
generated samples (see Figure 1.12). The gain of one network corresponds to the loss of the
other [74]. The following are the key concepts of GANs:

• Generator network : The generator (G) in a GAN is an ANN that produces new data
similar to the existing data in the training set from a set of noise. The aim is to make it
difficult to differentiate between the newly produced data and the real data. Its goal is
to reduce the probability of the discriminator correctly identifying the generated data as
fake. The mapping form noise (z) to new generated data samples (x̂) is represented by the
following mathematical equation:

x̂ = G(z) (1.23)

• Discriminator network : The discriminator (D) is an ANN tasked with distinguishing
between real data and data generated by the generator. It receives both real and generated
data as inputs, classifying them as either real or fake. Its goal is to minimize the classifica-
tion error between real and fake data. The mapping of the data samples to a probability
is represented by the following mathematical equation:

D(x) = f(Wx+ b) (1.24)

Where x represents the inputs, W denotes the weight, b stands for the bias, and f() is the
activation function.

• Adversarial loss function : During the training of the GAN, the objective is to minimize
the adversarial loss function, which quantifies the discrepancy between the generated data
and the real data. This function comprises both the generator loss and discriminator loss,
as follows:

LGAN = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1.25)

x represents real samples, z represents random noise input to the generator, G(z) are
generated samples from the generator. D(x) is the calculated probability distribution of
real data from the discriminator, and D(G(z)) is the calculated probability distribution of
fake data from the discriminator. pdata(x) is the true data distribution, and pz(z) is the
noise distribution.

Figure 1.12: A GAN structure (from [140]).
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1.4.3.3 Autoencoders (AE)

An AE is a feedforward ANN for unsupervised learning tasks. The network is driven to ignore
unnecessary noise and retain important information from the input data [56]. It encodes the
data in the first stage and then, based on the obtained encoded data, it tries to reconstruct
the original copy of the data. It is primarily used for anomaly detection because of its capacity
to measure reconstruction errors, which are thought to be substantially greater for anomalous
instances than for typical cases [132]. The AE consists of three components: the encoder, the
code, and the decoder, as illustrated in Figure 1.13. The details of these components and the
key concepts of AE are as follows:

• Encoder : The encoder in an autoencoder is a neural network responsible for encoding the
input data into a code or latent space representation (a lower-dimensional representation)
to reduce the dimensionality of the data and extract only the important features, thus
removing noise. This process is mathematically represented as follows:

Y = fe(Wex+ be) (1.26)

Where x ∈ Rn is the input data, y ∈ Rn′ is the latent representation, fe() is the encoder
activation function, We is the encoder weight matrix, and be is the encoder bias.

• Decoder : The decoder in an autoencoder is a neural network responsible for decoding the
code or latent space representation and reconstructing data that resembles the input data
as closely as possible. This process is mathematically represented as follows:

x̂ = fd(Wdy + bd) (1.27)

Where x̂ ∈ Rn is the reconstructed input data, y ∈ Rn′ is the latent representation, fd()
is the decoder activation function, Wd is the decoder weight matrix, and bd is the decoder
bias.

• Reconstruction loss: The objective of the AE during the training process is to minimize
the error between the original data and the reconstructed data, called the reconstruction
error. This minimization is achieved using the following objective function:

min
We,be,Wd,bd

L(X, x̂) (1.28)

L() is the loss function, commonly used in AE is the Mean Squared Error (MSE) loss
function.

1.4.3.4 Transformer

A transformer [181] is an ANN that recognizes contextual relationships within sequential data
using a self-attention mechanism, enabling parallel processing [72]. It is primarily applied in nat-
ural language processing and is now used across various domains where data can be represented
as sequences, such as computer vision and speech recognition. The main mechanisms used in
transformers and their basic architecture are presented as follows:
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Figure 1.13: An AE structure (from [11]).

• Input embedding : Using the embedding matrix, which is either initially randomly ini-
tialized and then updated during the training process or pre-trained, to convert each token
in the input sequence into a numerical representation (vector representation) is known as
token embedding.

• Positional encodings: Adding positional information of each token in the sequence as a
continuous vector to the input embedding. Token embedding and positional encoding are
summed to produce the final input embedding. This ensures that both the meaning of the
tokens and their placement in the sequence are incorporated into the input embedding.

• Attention mechanism : The attention mechanism involves analyzing the relationships
between tokens in the sequence and their connections, where each token is given weight
based on its relationship with the other tokens in the sequence. This mechanism is imple-
mented through the Scaled Dot Product Attention, which is composed as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1.29)

Where Q, K, and V are linear transformations of the input embedding, each of them is
presented as follows:

– Query(Q) is the vector that represents the current token used to calculate the atten-
tion weight.

– key(K) is the vector that represents tokens in the sequence which will be compared
to the query.

– value(V ) is the vector that provides information about the token.

These values are calculated as follows:

Q = X ·Wq (1.30)

K = X ·Wk (1.31)

V = X ·Wv (1.32)
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Where X is the input embedding, wq, wk, and wv are learned weight matrices that trans-
form input query, key, and value vectors respectively in transformer models.

• Multi-head attention : The mechanism enables the model to attend to various parts
of the input sequence simultaneously and assess their significance. This is accomplished
through multiple attention heads, each computing a distinct attention distribution as fol-
low:

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (1.33)

The output of the multi-head attention mechanism is obtained as follow:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (1.34)

Where h is the number of attention heads, and w0 is the output weight matrix used to
linearly transform the outputs.

• Transformer architecture : The Transformer is composed of two primary modules, the
encoder and the decoder, as shown in Figure 1.14. The encoder module, which is composed
of a multi-head attention layer and a feedforward neural network, is used to encode the
information in the input sequence by capturing the relationships between the tokens in the
sequence. The decoder module is composed of a masked multi-head attention layer, a multi-
head attention layer, and a feedforward network. It is used to decode the representation
encoded by the encoder and generate the output sentence by capturing the relationships
between the tokens from the perspective of the encoder presentation.

Figure 1.14: A transformer structure (from [72]).
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1.4.3.5 Long Short Term Memory Network (LSTM)

LSTM [66] is a type of RNN that has the ability to extract long-term relationships in data that
is in the form of a series by using a memory cell. Its main goal is to eliminate the problem found
in traditional RNNs, represented by vanishing gradients, by allowing gradients to flow through
unchanged [166]. This issue arises when the gradients that are backpropagated through time to
update the network weights get smaller, making it harder for the network to learn long-term
dependencies. LSTMs have been extensively employed in a variety of tasks, including time series
prediction, speech recognition, and natural language processing. As presented in Figure 1.15,
the LSTM is composed of memory cells and gates. These components are used to selectively
retain and update information over time as follows:

• Memory cell : The memory cell is the key component of the LSTM that allows it to
memorize long-term information. This component has two states:

– Cell state (Ct): Is the long-term memory of the network that store the information
over time steps. The cell state is updates as follow:

ct = ft ⊗ ct−1 + it ⊗ σc(Wcxt +Whht−1 + bc) (1.35)

– Hidden state (ht): The short-term memory of the network stores the information
or output of the LSTMs at this time step and needs to be forwarded to the next time
step. The hidden state is updates as follow:

ht = ot ⊗ tanh(ct) (1.36)

• Gates: The gates are the components responsible for controlling the flow of information
in an LSTM. There are three types of gates:

– Input gate (it): Determines the information that must be stored in the cell state.
The following equation provides the input gate:

it = σ(Wixt +Wiht−1 + bi) (1.37)

– Output gate (ot): Determines the information that must be outputted from the cell
state. The following equation provides the output gate:

ot = σ(Woxt+ woht1 + bo) (1.38)

– Forget gate (ft): Determines the information that must be forgotten from the cell
state. The following equation provides the forget gate:

ft = σ(Wfxt +Wfht−1 + bf ) (1.39)

Where xt is the input at time step t, ht−1 is the previous hidden state, σ is the sigmoid function,
tanh is the hyperbolic tangent function, ⊗ is the element-wise multiplication, W are the input
weight matrices, w is the recurrent output weight matrix, and b are the biases.
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Figure 1.15: A LSTM structure (from [92]).

1.5 Challenges and issues of machine learning and deep learning
paradigms

Despite the promising results achieved by machine learning and deep learning approaches, mak-
ing them hot topics in many applications, they still face numerous challenges and obstacles that
hinder their optimal and effective utilization. The quality and quantity of data play pivotal
roles in the outcomes of machine learning and deep learning. A sufficient amount of data gives
the model a wide range of patterns and relationships, leading to a deeper comprehension of the
underlying structures in the dataset and helping the model adapt adeptly to new unseen data.
Furthermore, data quality is crucial; high-quality data promotes more accurate learning, facili-
tating the development of robust models. In contrast, poor-quality data can compromise model
performance. As a result, the generalization and robustness of machine learning and deep learn-
ing models depend on both the quantity and quality of data. However, the process of collecting
a dataset of optimal quantity and quality is challenging, necessitating significant investments of
time, resources, and availability.
The second obstacle, feature extraction, presents a formidable challenge in both machine learn-
ing and deep learning approaches. This critical task, especially for machine learning, relies on
human expertise, rendering it susceptible to errors and subjectivity. Furthermore, when dealing
with extensive datasets, the complexity of feature extraction is amplified, necessitating consid-
erable experience and careful selection of preprocessing techniques to ensure optimal results.
Within deep learning, models autonomously learn to extract features during training. This fur-
ther complicates the process, with the model’s internal workings concealed within a black box
framework. This lack of transparency not only makes interpretation more difficult but also hin-
ders understanding of the variables influencing program outputs.
Another issue pertains to the computational resources required for computations. Training ma-
chine learning and deep learning models on extensive datasets demands substantial computing
power, often necessitating the utilization of high-performance computing systems, graphics pro-
cessing units, or cloud computing platforms. These resources come with significant costs. The
complexity of selecting appropriate training parameters further adds to the challenges. This task
necessitates conducting multiple experiments to determine the optimal configuration, demand-
ing a wealth of experience and expertise. Moreover, achieving proficiency in parameter selection
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requires a considerable investment of time, involving thorough experimentation and analysis to
understand the intricate dynamics of the model’s performance under varying conditions.
Despite ongoing efforts to address these challenges and the development of numerous methods
and theories aimed at overcoming them, they continue to pose obstacles to achieving optimal
results in machine learning and deep learning.

1.6 Conclusion

In this chapter, we have addressed various aspects within the scope of our thesis. We began
by discussing the concept of AI, briefly exploring its historical emergence from its inception
to the present day. We provided an overview of AI’s evolution and presented definitions of
AI from renowned scientists. Finally, we proposed our own definition and showcased some AI
applications. In the subsequent section, we delved into machine learning paradigms. Starting
with the definition of machine learning according to scientific literature, we then proposed our
own definition. We discussed different types of machine learning and highlighted famous machine
learning algorithms. Similarly, we explored deep learning paradigms, discussing definitions,
types, and notable algorithms. Finally, we addressed the challenges encountered in both machine
learning and deep learning.
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2.1 Introduction

Plant diseases are considered one of the biggest threats facing global food security, imperiling
the livelihoods of millions of humans [26, 27]. These diseases destroy agricultural crops, resulting
in significant losses in agricultural production. The Food and Agriculture Organization of the
United Nations (FAO) reports that each year plant diseases cause 20% to 40% of crop yield
losses. Consequently, these agricultural losses disrupt food supply chains and increase the risk
of widespread food shortages on a global scale.

Plant diseases can arise from various factors, with pathogens and environmental changes being
particularly significant [41]. Pathogens invade plants and disrupt their life cycles, leading to
disease development. Furthermore, alterations in environmental conditions can create conducive
environments for diseases. These diseases typically exhibit symptoms, which manifest as distinct
visual patterns on the plant. These patterns serve as crucial diagnostic signs, facilitating the
identification and management of plant diseases [99].

Detecting diseases early is vital for effectively managing them and preserving plant health.
Timely detection helps minimize losses and protects crops from extensive damage. However,
traditional disease detection methods, reliant mainly on human diagnosis, often prove inade-
quate due to limited expertise and time constraints [99]. Moreover, the frequency of inspections
and data collection methods may be insufficient, necessitating a more reliable approach to diag-
nosis. To address this challenge, modern technologies have emerged as automated solutions for
identifying plant diseases [146].

The automated solution was developed using two subcategories of artificial intelligence, deep
learning and machine learning. Plant disease detection using machine learning and deep learn-
ing has become has grown in popularity due to its promising outcomes in precisely identifying
plant diseases from images. Numerous research works have suggested deep learning and machine
learning-based techniques for the identification and diagnosis of plant diseases. However, deep
learning-based methods have demonstrated superiority over machine learning-based approaches,
particularly in image recognition tasks. This superiority is attributed to their reliance on auto-
matic feature extraction rather than human feature selection [104]. Despite their effectiveness,
deep learning models often face challenges due to the scarcity of datasets. While deep learning
and machine learning techniques have revolutionized the plant disease detection domain, they
still encounter obstacles that hinder their optimal utilization. This chapter provided an overview
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of the application of deep learning and machine learning methods to plant disease detection. It
discussed the various applications of machine learning and deep learning in automating disease
detection processes. Additionally, the chapter delved into the current status of research in this
field, offering insights into recent advancements, methodologies, and trends.

The chapter is structured as follows: Section 2.2 provides an overview of plant pathologies,
including disease types and symptoms, along with illustrations of common agricultural diseases.
Section 2.3 ullistrated the most used dataset in the field of plant disease detection. Section 2.4
offers an overview of the latest advancements in the detection and classification of plant diseases
using machine learning and deep learning techniques. Consequently, it offers a comprehensive
analysis of the latest approaches and methods proposed in this field. In Section 2.5, an analysis
and discussion of the challenges and issues faced by proposed plant disease identification and
classification systems in the literature are presented.

2.2 Plant pathology

Throughout their life cycles, plants are vulnerable to various diseases. These diseases can affect
plants at different stages of their life cycles, from germination to maturity and beyond. Several
factors, as summarized by [183] and illustrated in Figure 2.1, can cause plant diseases, which
can be grouped into two different types. Abiotic diseases are non-infectious conditions that
impact plants due to physiological factors or alterations in environmental conditions. Nutrient
deficiencies or toxicities, water-related disorders, temperature extremes, light-related issues, soil-
related complications, and air pollution are among the primary contributors. These factors not
only directly affect plant health but also create environments favorable for the development of
diseases. Biotic diseases are those caused by infectious factors, known as pathogens, such as
bacteria, fungi, viruses, mites, mold, protozoa, and nematodes. These pathogens infect plants
and disrupt their normal growth and function. These diseases are typically spread from one
plant to another through various means, such as wind, water, insects, animals, or soil. Biotic
diseases pose a greater risk due to their transmissible nature, as they can spread from one plant
to another, leading to severe damage in agricultural crops and natural ecosystems. In contrast,
abiotic diseases, being non-transmissible, are primarily caused by environmental factors and are
often preventable through proper management practices. Consequently, researchers have chosen
to exclusively focus on biotic diseases, recognizing their significant impact on plant health and
agricultural productivity.

Biotic disease infection results in numerous external and internal symptoms that manifest in the
appearance of the plant, both externally and internally. External symptoms are often the first
indicators of disease and may include visible signs such as wilting, discoloration, lesions, spots,
or deformities on the leaves, stems, flowers, or fruits of diseased plants [99]. These external
symptoms vary depending on the specific disease and its impact on the plant’s physiology. It
is noteworthy that the initial external symptoms typically manifest on the leaves of the plants
in nearly all cases [86]. On the other hand, internal symptoms consist of tissue rotting, cellular
structure degradation, or changes in physiological processes like water or nutrient uptake. These
internal and external symptoms have the potential to impair a plant’s regular operations and
ultimately cause it to deteriorate or die.

The most prominent biotic plant diseases in the agricultural domain, such as fungal infections,
bacterial diseases, and viral infections [17], are extensively discussed in the research literature
and addressed in our thesis. These diseases, which have significant implications for agricul-
tural productivity, are presented in detail in Table 2.1. The table offers detailed information
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on the pathogens associated with each disease, as well as the symptoms observed in the leaves.
Additionally, image examples for each disease are included to ensure comprehensive visual repre-
sentation. It is noteworthy that all images utilized in the table are sourced from the PlantVillage
dataset [70].

Figure 2.1: Types of plant diseases and their respective causal factors.

Table 2.1: Summary of the common plant diseases, their pathogens, and symptoms.

Disease
name Pathogens Disease Exemple Disease symptoms

Bacterial spot Bacteria

- Water-soaked spots: Small, water-soaked
spots appear on the leaves, initially light
green to yellowish, which may turn brownish-
red or black;

- Leaf yellowing: Surrounding the spots, af-
fected leaf sections may turn yellow or
chlorotic discoloration.

Black rot Fungi

- Yellowing at the margins of the leaves: At
first, the symptoms appear as leaf margin
yellowing;

- V-shaped spots: V-shaped spots emerge as
the yellowing extends from the edges towards
the middle of the leaf, resulting in spots
resembling water-soaked areas that subse-
quently darken to brown or black;

- Vein discoloration: The veins within the
spots may become discolored, appearing dark
brown or black.
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Table 2.1: Summary of the common plant diseases, their pathogens, and symptoms.

Disease
name Pathogens Disease Exemple Disease symptoms

Cedar apple
rust Fungi

- Yellow spots: Small yellow spots initially ap-
pear on the leaves;

- Orange spots: The yellow spots develop into
orange-colored lesions with raised bumps or
pustules as the disease progresses;

- Leaf curling and distortion: Infected leaves
may exhibit curling or distortion, particu-
larly around the areas of lesion formation.

Cercospora leaf
spot gray leaf
spot

Fungi

- Gray to brown spots: Initially, small gray
necrotic spots appear on the leaves. As the
disease progresses, these spots enlarge and
develop into larger rectangular lesions, turn-
ing brown in color;

- Leaf yellowing: Leaf yellowing may occur
around the affected spots. Furthermore, the
impacted regions of the leaves might undergo
necrosis, transitioning to a brown or black
color before eventually desiccating.

Common rust Fungi

- Orange to reddish-brown spots: Initially,
small round to elongated spots appear on
the leaf surface, which are orange to reddish-
brown in color;

- Leaf curling and yellowing: Infected leaves
may exhibit curling or distortion, particu-
larly around the areas where spots form. Ad-
ditionally, the affected areas of the leaves
may turn yellow.

Early blight Fungi

- Circular to irregular spots: Spots appear on
the leaves, initially presenting as small, dark,
dry, papery flecks. These spots gradually
expand to form brown-black, circular-to-oval
areas on the leaves;

- Leaf browning or yellowing and curling: Af-
fected leaf tissue may display browning or
yellowing, while leaves may also curl, com-
mon symptoms of early blight infection.
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Table 2.1: Summary of the common plant diseases, their pathogens, and symptoms.

Disease
name Pathogens Disease Exemple Disease symptoms

Esca (black
measles) Fungi

- Necrotic spots: The leaves initially have tiny,
dark brown spots that grow over time to be-
come larger necrotic areas on the leaf surface;

- Interveinal chlorosis and vein discoloration:
Affected leaves show signs of interveinal
chlorosis, which is characterized by discol-
oration of the veins within the affected areas
as well as yellowing of the tissue between the
leaf veins;

- Leaf Curling: Curling, deformation, or other
atypical growth patterns can be exhibited in
infected leaves.

Huanglonbing
(Citrus green-
ing)

Bacteria

- Leaf yellowing: The leaves exhibit yellowing,
which initiates from the tips and edges and
progressively spreads across the leaf, result-
ing in a mottled appearance;

- Vein discoloration: Discoloration of the veins
within the affected leaves is evident, typically
presenting as dark green or brown streaks.

Late bligh Mold

- Dark spots: Dark water-soaked spots may
initially be small and irregular in shape.
As the disease progresses, the lesions may
change color, turning from dark brown to
black, surrounded by a light green halo;

- Leaf yellowing, wilting, and curling: Sur-
rounding leaf tissue may exhibit yellowing,
wilting, and curling, common symptoms of
late blight infection.

Leaf mold Fungi

- Light green to yellow spots: Small, light
green to yellow spots emerge on the up-
per surface of the leaves. These spots may
progress into tan or pale patches as the dis-
ease advances;

- Leaf curling: Infected leaves may display
curling or distortion, particularly around the
areas of the spots.
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Table 2.1: Summary of the common plant diseases, their pathogens, and symptoms.

Disease
name Pathogens Disease Exemple Disease symptoms

Leaf blight
(Isariopsis leaf
spot)

Fungi

- Irregular spots: Initially, irregular spots de-
velop on the leaves, varying in color from
dull brown to black as the disease progresses.
These spots may gradually enlarge, forming
larger necrotic areas on the leaf surface;

- Lesion margins: The spots may have a yellow
halo surrounding them and frequently have
well-defined margins;

- Leaf yellowing and curling: Infected leaves
may exhibit yellowing, light green, or brown-
ing, and may also curl, especially around the
areas of the lesions.

Leaf scorch Fungi

- Marginal browning or yellowing: The leaves’
tips or margins become brown or yellow,
starting from the outer edges and progress-
ing inward. The browning or yellowing may
be accompanied by a dry, crispy texture and
extend into the leaf between the veins;

- Leaf curling or wilted appearance: Infected
leaves may exhibit curling or a wilted appear-
ance.

North leaf
blight Fungi

- Light brown Spots: Elongated lesions de-
velop on the leaves, initially appearing as
small, light brown spots. Over time, these
spots gradually enlarge, with the lesions
darkening to brown or tan. A dark green to
black border may encircle the lesions, while
the center of the lesion may become grayish-
white;

- Leaf Blighting and Curling: Blighting of the
leaves occurs, characterized by large areas of
necrosis. Additionally, affected leaves may
exhibit curling or rolling, particularly around
the areas where lesions have formed.

Powdery
mildew Fungi

- White powdery spots: White to grayish pow-
dery patches or spots spread on the surfaces
of leaves. Initially localized, these patches
have the potential to spread and cover more
of the plant;

- Leaf curling or distortion: Infected leaves
may exhibit curling, twisting, or other forms
of distortion, and leaf edges curl upwards as
the disease progresses.

Imane BOUACIDA Ph.D. Dissertation



Chapter 2. Plant Disease Detection Using Artificial Intelligence 44

Table 2.1: Summary of the common plant diseases, their pathogens, and symptoms.

Disease
name Pathogens Disease Exemple Disease symptoms

Septoria leaf
spot Fungi

- Circular spots: Circular water-soaked spots
appear on the leaves, initially small and
brownish, the spots may develop gray cen-
ters with darker margins;

- Leaf yellowing or browning and necrosis:
Surrounding the spots, the affected areas of
the leaves may turn yellow or brown and
eventually necrotic.

Spider mites
two spotted
spider mite

Mite

- Tiny spots: Fine, stippled spots may appear
on the upper surface of leaves, ranging in
color from white to yellow;

- Yellowing or browning: Leaves may begin to
yellow or brown, particularly on the upper
surface;

- Leaf curling or curling edges: Infected leaves
may exhibit curling or rolling, especially
around the edges.

Target spot Fungi

- Circular spots: Circular lesions or spots ap-
pear on the leaves, typically with concentric
rings of alternating light and dark colors, re-
sembling a target;

- Leaf yellowing: Surrounding the lesions, the
affected areas of the leaves may turn yellow.
The lesions may enlarge and coalesce, leading
to extensive damage on the leaf surface.

Yellow leaf curl
virus Virus

- Leaf yellowing: Leaves display yellowing, be-
ginning from the veins and extending to-
wards the edges;

- Leaf curling: Infected leaves may curl up-
wards or downwards, with their edges curling
towards the center of the leaf.

Mosaic virus Virus

- Mosaic patterns: Leaves develop irregular
patterns of yellow to light and dark green
areas, resembling a mosaic;

- Leaf curling: Infected leaves may exhibit
curling upwards or downwards, with the leaf
edges curling towards the center of the leaf.
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Table 2.1: Summary of the common plant diseases, their pathogens, and symptoms.

Disease
name Pathogens Disease Exemple Disease symptoms

Scab Fungi

- Spots: Circular to irregularly shaped spots
appear on the leaves, initially small and
water-soaked, and later turn olive-green to
black;

- Leaf curling: Infected leaves may show signs
of curling or distortion, especially around the
areas of lesion formation.

2.3 Plant disease datasets

In this section, we will outline the common disease datasets frequently utilized by researchers in
the literature.

2.3.1 PlantVillage

The PlantVillage dataset [70] is an open dataset hosted on the PlantVillage online platform 1,
specifically designed for the recognition of plant leaf diseases. It comprises a total of 54,305
images, encompassing 14 crop types and 20 disease types, separated over 38 classes: 26 diseased
leaf classes, and 12 healthy leaf classes. These classes represent a wide range of plant diseases,
including fungi, bacterial, mold, viral, and mite diseases. The images were captured under
controlled laboratory conditions with a uniform background, each sized at 256 × 256 pixels.

2.3.2 Plant Pathology Challenge

The Plant Pathology Challenge dataset [174] is an openly accessible dataset hosted on the
Kaggle online platform 2. It consists of a collection of images utilized in a competition or
challenge related to plant pathology, specifically focusing on foliar diseases of apples. The dataset
comprises a total of 3651 images, covering two disease types: apple scab and cedar apple,
separated over 3 classes: two diseased leaf classes, and healthy leaf classes. These images were
taken under real-world conditions.

2.3.3 AI Challenger

The AI Challenger 2018 dataset, utilized in the Crop Disease Recognition Competition of the
2018 Artificial Intelligence Challenger Competition, is publicly accessible on GitHub 3. This
dataset comprises images of 10 crops and 27 diseases, totaling 36,379 images classified into

1PlantVillage: https://www.plantvillage.org, Accessed May. 2024
2Plant Pathology Challenge: https://www.kaggle.com/c/plant-pathology-2020-fgvc7, Accessed May.

2024
3AI challenger: https://github.com/AIChallenger/AI_Challenger_2018, Accessed May. 2024
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61 classes. These classes encompass a wide range of plant diseases, such as bacterial, mold,
viral, and mite diseases. It’s worth noting that the images in this dataset were captured under
controlled laboratory conditions.

2.3.4 Plant Disease Symptoms (PDDB)

The Image Database Plant Disease Symptoms (PDDB) [21], available at Embrapa website 4, is
a comprehensive plant disease database containing 2326 images. The dataset images represent
171 diseases and other disorders affecting 21 plant species. Within the dataset, 715 images
were captured in the field, while 1611 were obtained under controlled conditions. The dataset
encompasses a wide range of plant diseases, including diseases caused by fungi, viruses, pests,
and bacteria, as well as other issues such as phytotoxicity, algae, nutritional deficiencies, and
senescence.

2.4 Plant disease detection and classification techniques

In light of their success in various fields, extensive research has investigated the utilization of
machine learning and deep learning techniques for recognizing plant and crop diseases. The
main objective is to develop methodologies and algorithms that can autonomously detect and
classify diseases in agricultural settings, leveraging images of crop leaves or other crop features
[41]. Notably, leaves frequently exhibit the initial symptoms of diseases, prompting a significant
portion of research to concentrate on disease detection through leaf images. Traditional machine
learning techniques, including feature extraction and classification, entail the extraction of fea-
tures from images such as shape, texture, and color. These features are then utilized for training
the classifier, enabling it to distinguish healthy from unhealthy crop leaves [164]. deep learning
techniques, like CNNs, distinguish themselves by training the network to distinguish the intrin-
sic features of images, enabling the detection of subtle disease symptoms that traditional image
processing methods might overlook [164]. Based on our comprehensive study, we categorize plant
disease detection techniques into two main categories: plant disease detection and classification
with machine learning, and deep learning. Each category can be further subdivided into three
subcategories: techniques for detecting a specific disease in a particular crop, techniques for
detecting multiple diseases in a specific crop, and techniques for detecting multiple diseases in
multiple crops.

2.4.1 Plant disease detection and classification with machine learning tech-
niques

This section offers a comprehensive overview of state-of-the-art approaches in plant disease
detection using machine learning techniques.

2.4.1.1 Techniques for detecting a specific disease in a particular crop

The studies presented in this section primarily focus on employing machine learning techniques
to identify a specific disease in a particular crop. Table 2.2 outlines the latest research in

4Plant Disease Symptoms (PDDB): https://www.digipathos-rep.cnptia.embrapa.br/, Accessed May. 2024
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recognizing a specific disease across a particular crop, while Figure 2.2 presents their obtained
accuracies. The study presented in [24] aims to combat powdery mildew disease in tomato plants
through a hybrid approach combining SVM and LR algorithms. The method involves utilizing
SVM and the Adaptive Sampling based Noise Reduction method to reduce data noise, followed
by employing the LR classifier for disease prediction. Comparative analysis of the results high-
lights the superior performance of the proposed hybrid approach over individual SVM and LR
algorithms. The paper [178] focuses on automating the detection and classification of sugar-
cane leaf scorch diseases through image processing techniques, including acquisition, filtering,
and segmentation using color-based K-means segmentation. Additionally, mean Energy Entropy
Contrast features are extracted, and a KNN classifier is employed for the classification of these
extracted features. In [131], a novel method is introduced for detecting diseases and estimating
their stage in cotton plants. The proposed approach utilizes two cascaded KNN classifiers: the
first classifier segments the leaf from the background based on local statistical features, while
the second classifier, trained on hue and luminance from the HSV color space, identifies the
disease and determines its stage. The algorithm demonstrates high generalization and can be
effectively applied to detect various diseases. The study described in [111] introduces an inno-
vative and effective method for detecting and classifying diseases in wheat leaves. By employing
FCM clustering on carefully selected features extracted from images of diseased wheat leaves,
the system achieves accurate identification of plant diseases. Additionally, the paper outlines
an efficient approach for selecting the feature set, which relies on analyzing inter and intra-class
variances. Overall, the research demonstrates the effectiveness of the FCM Clustering Algorithm
as a classifier for disease identification in plant leaves. The paper [42] concentrates on identifying
citrus huanglongbing (HLB) through image processing and Cost-Support Vector Classification
(C-SVC). It includes extracting texture and color space histograms from images, followed by fea-
ture modeling and HLB presence recognition with C-SVC. Experimental outcomes underscore
the method’s efficacy, achieving precise HLB recognition with low costs and computational com-
plexity. In [192], an automated method for detecting citrus canker from leaf images captured
in the field is introduced. It employs a hierarchical detection strategy, utilizing an improved
AdaBoost algorithm, to segment lesion leaf images from their backgrounds. Subsequently, both
color and local texture features are extracted using Local Binary Pattern Histogram (LBPH)
to capture spatial properties within lesion zones. The study evaluates various classification
techniques, including Radial Basis Network (RBN), SVM, and KNN. Results indicate superior
classification accuracy compared to alternative methods, with performance comparable to human
experts’ classification. In the study by [4], the focus was on automating computer vision-based
diagnosis of Cassava Mosaic Disease. Classification was based on shape and color features, us-
ing normalized histograms, Scale Invariant Feature Transformation (SIFT), and Speeded Up
Robust Features (SURF). Several standard classification methods were applied, including NB,
two-layer Multilayer Perceptron (MLP) networks, SVM, KNN, and divergence-based learning
vector quantization. The results showed that near-perfect classification was possible for leaf
images captured under ideal conditions.

Table 2.2: Comparative analysis of machine learning-based methods for detecting a specific
disease in a particular crop.

Ref Crop Disease Dataset Machine Learning technique

[24] Tomato Powdery mildew Tomato Powdery
Mildew Disease

Hybrid of SVM and LR

[178] Sugarcane leaf scorch Self KNN

[131] Cotton Grey Mildew Self KNN
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Table 2.2: Comparative analysis of machine learning-based methods for detecting a specific
disease in a particular crop.

Ref Crop Disease Dataset Machine Learning technique

[111] Wheat Rust Self Fuzzy

[42] Citrus Citrus huanglongbing Self C-SVC

[195] Citrus Citrus canker Self RBN, SVM, KNN

[4] Cassava Mosiac Self NB, SVM, MLP, KNN

[24]
[178]
[131]
[111]
[42]

[195]
[4]

79.23

95

82.5

88

91.93

87.99

98

Figure 2.2: Bar chart of accuracy for machine learning-based methods for detecting a specific
diseasess in a particular crop.

2.4.1.2 Techniques for detecting multiple diseases in a particular crop

This section encompasses relevant papers that address multiple diseases within a single crop
used machine learning techniques. Table 2.3 highlights the recent studies in the recognition of
multiple diseases in a particular crop, while Figure 2.3 presents their obtained accuracies. The
authors of [114] introduced a hybrid model based on Back Propagation Neural Network (BPNN)
and DT for detecting coffee diseases. They utilized K-means segmentation techniques along with
Gray Level Cooccurrence Matrix (GLCM), Statistical, and Color features extraction methods.
In [90], an approach is devised to identify and prevent the spread of turmeric diseases. A dataset
of varied leaf images is compiled and processed through k-means image segmentation. Subse-
quently, the leaf images undergo textural analysis with GLCM and are classified using an SVM
classifier. Prior to classification, the attributes of the images are prioritized using an information
gain algorithm. Additionally, a Graphical User Interface (GUI) is created to visualize the various
phases of the image processing algorithm and detect turmeric leaf diseases. The study presented
in [138] explores supervised machine learning methods including NB, DT, KNN, SVM, and RF
for detecting diseases in maize. These classification techniques are evaluated and compared to
identify the most accurate model for predicting plant diseases. Among them, the RF algorithm
demonstrates superior performance compared to other classification techniques. The study de-
tailed in [19] introduces a computer vision framework aimed at identifying and classifying plant
diseases. This system utilizes Local Tri-directional Pattern (LTriDP) to both reduce the dimen-
sions of each class and extract discriminative information from plant leaf images. Classification
tasks are performed using multiclass SVM. Experimental evaluations have demonstrated that
the proposed framework surpasses other methods that rely on commonly used feature extrac-
tors. The objective of the study conducted by [126] is to streamline the process of detecting and
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categorizing grape leaf diseases utilizing the SVM classification method. Initially, the segmen-
tation technique involves identifying the diseased region through K-means clustering, followed
by extracting texture and color features. Subsequently, a classification method is utilized to
discern the type of disease present. The proposed methodology showcases effective detection
and classification of the analyzed diseases. In [158], a comparative experiment was conducted
to determine the most effective classifier for detecting plant diseases, particularly those affecting
Jatropha curcas plants. DT, KNN, and a modified version of KNN were employed. The findings
indicated that the adapted KNN method surpassed the performance of other techniques. The
research outlined in [79] presents an innovative approach to diagnosing and categorizing rice
diseases. A specialized algorithm is created to extract diverse characteristics, including shape
and color, from the affected areas of the plants. Subsequently, these extracted features are com-
bined for each disease and subjected to classification utilizing both Minimum Distance Classifier
(MDC) and KNN classifier techniques. Experimental outcomes suggest that the MDC method
excels over the KNN method regarding classification accuracy. The paper [133] presents an au-
tomated approach for identifying rice leaf diseases through image processing methodologies. The
technique involves identifying and segmenting the affected areas using k-means segmentation.
Color texture features obtained from each segmented region are subsequently utilized as inputs
for both SVM and KNN classifiers. In this study, the SVM classifier demonstrates superior
performance compared to the KNN classifier. In [67], a method is introduced for detecting and
classifying citrus leaf diseases. The diseased segment is segmented using the KNN classifier, and
texture features such as GLCM, Mean, Standard Deviation, Energy, Contrast, Homogeneity,
and Correlation are extracted for classification with the KNN classifier. This approach effec-
tively identifies and distinguishes the targeted diseases. An innovative system introduced in [73]
revolutionizes the detection and classification of soybean diseases. The proposed system inte-
grates multiclass SVM and KNN, coupled with preprocessing techniques, to pinpoint the Region
of Interest and utilizes K-means clustering for color-based segmentation. Subsequently, color
and texture features are extracted from segmented diseased leaf areas using RGB color space
and GLCM. The study underscores the system’s efficacy in accurately identifying and catego-
rizing soybean diseases. In [71], the authors introduced an approach based on image processing
and machine learning for disease recognition from leaf images. They utilized a segmentation
approach and extracted color and textural features using GLCM. The SVM classifier was em-
ployed for classifying the extracted features, showing successful disease classification. The paper
[159] introduces an Android app designed to address the detection and management of diseases
impacting cotton leaves, in addition to soil quality monitoring. It proposes an SVM-based regres-
sion system for identification and classification tasks. Disease segmentation is achieved through
color transformation and thresholding, while feature extraction involves utilizing color moments
for color features and Gabor filters for texture features. Classification is then performed using
SVM. Furthermore, the app provides farmers with information regarding the identified disease
and its corresponding remedies, as well as soil quality information.The system described in [58]
aims to automate the identification and categorization of plant diseases through the application
of machine learning and image processing methodologies. Feature extraction encompasses both
local and global features. Multiple machine learning algorithms, such as LR, RF, KNN, DT, and
SVM, are assessed to identify the most suitable algorithm. The study concludes that the RF
algorithm is particularly effective in this context. In [168], a methodology is proposed for both
detecting and classifying diseases in potato plants. The segmentation of images is achieved using
the K-means method, while feature extraction relies on the GLCM. For classification, the multi-
class SVM method is employed. The proposed methodology demonstrates promising detection
results.In the study [175], a web application is developed for detecting sugarcane leaf diseases
using image processing techniques. The process begins with collecting leaf images, followed by
preprocessing steps such as Adaptive Histogram Equalization (AHE) and segmentation using
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the k-means clustering algorithm, followed by statistical feature extraction using GLCM and
Principal Component Analysis (PCA) methods. Detection and classification are carried out us-
ing SVM, achieving good accuracy. The system also provides necessary control measures based
on the classification results.

Table 2.3: Comparative analysis of machine learning-based methods for detecting multiple
diseases in a particular crop.

Ref Crop Disease Dataset Machine Learning technique

[114] Cofee 3 Diseases Self DT with BPNN

[90] Turmeric Leaf Spot, Leaf Blotch Self K-Means, GLCM, SVM

[129] Maize 3 Diseases PlantVillage SVM, NB, KNN, DT, RF

[19] Tomato 3 Diseases PlantVillage SVM

[126] Grape Downy, Powderly Self SVM

[158] Jatropha cur-
cas

9 Diseases Self KNN

[79] Rice 5 Diseases Self KNN, MDC

[133] Pady Spot, leaf blast Self SVM, KNN

[67] Citrus 5 Diseases Arkansas, Reddit-plant KNN

[73] Soybean 3 Diseases Self KNN, SVM

[71] Potato Early blight, late blight PlantVillage SVM

[159] Cotton 5 Diseases Self SVM

[58] Tomato 7 Diseases PlantVillage SVM

[168] Potato Early blight, late blight PlantVillage Multiclass SVM

[175] Sugarcane 4 Diseases Self SVM

2.4.1.3 Techniques for detecting multiple diseases in multiple crops

The studies examined in this section primarily concentrated on utilizing machine learning tech-
niques for diagnosing various diseases across multiple crops. Table 2.4 provides a summary of the
latest studies concerning the recognition of multiple diseases across multiple crops, while Figure
2.4 presents their obtained accuracies. The authors of [169] introduced an image segmentation
algorithm aimed at automating the detection and classification of plant leaf diseases. They
employed a genetic algorithm for image segmentation, which played a crucial role in disease de-
tection. Furthermore, SVM was utilized for disease classification, with color and texture features
extracted using methods such as color co-occurrence matrix, local homogeneity, contrast, clus-
ter shade, energy, and cluster prominence. The study [8] explores the utilization of Directional
Local Quinary Patterns (DLQP) as a novel feature descriptor for detecting plant leaf diseases,
paired with SVM as a classifier. DLQP captures directional edge information by calculating
grey-level variations between neighboring pixels in four directions. Comparative analysis with
established algorithms for plant disease phenotyping, such as Local Ternary Pattern (LTP) and
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Figure 2.3: Bar chart of accuracy for machine learning-based methods for detecting multiple
diseases in a particular crop.

LBP, additionally validates the effectiveness of the proposed method. The paper [154] presents
a novel approach, the Hybrid RF Multiclass SVM (HRF-MCSVM), for detecting plant foliar
diseases. The system enhances computation accuracy by preprocessing and segmenting image
features using Spatial FCM before classification, followed by multi-class SVM classification. The
efficiency of the proposed HRF-MCSVM method is evaluated through comparison with existing
techniques. In [156], the authors introduce the Cross Central Filter (CCF) technique for noise
removal in images. They employ the Cognitive Fuzzy C-Means (CFCM) algorithm to identify
objects, distinguishing suspicious regions from normal ones. The evaluation demonstrates su-
perior performance compared to alternative filters and segmentation techniques. The authors
of [18] developed a processing scheme comprising four primary stages. Firstly, they create a
color transformation framework for the input RGB image. Then, they eliminate green pixels
by masking them using a particular threshold value, followed by segmentation. Texture and
color features are then extracted. Lastly, the extracted features are fed into the MDC and SVM
classifiers. The efficacy of the proposed algorithm is notable for its successful detection and
classification of the investigated diseases, particularly leveraging the SVM classifier. The pre-
sented approach in [130] illustrates an automated method for identifying crop diseases from leaf
sample images of different crop species. This method involves image segmentation using GMM
and feature extraction using LBP. Classification is performed using a One Class SVM Classifier
dedicated to each plant’s health condition. When tested on new crops, the suggested method-
ology exhibits very high generalization behavior. In [141], the focus is on processing images of
plant diseases. Color and texture features are extracted from sample images of plant diseases,
and algorithms for this purpose are developed. These algorithms utilize a reduced feature set
approach for recognizing and classifying plant disease images. The extracted features are then
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employed to train SVM and ANN classifiers. Results suggest that the SVM classifier is more
effective for identifying and classifying plant diseases in agriculture and horticulture crops. The
authors of [128] presented a plant disease detection approach based on machine learning. Ini-
tially, the model segments images utilizing K-means clustering and HSV-dependent classification
to identify infected sections of the leaf. Feature extraction is conducted using GLCM. Experi-
mental comparisons were carried out for several classification models, including RF, DT, KNN,
and SVM. The proposed methodology, especially when utilizing RF, exhibits high effectiveness
in the detection and classification of plant diseases.

Table 2.4: Comparative analysis of machine learning-based methods for detecting multiple
diseases in multiple crops.

Ref Crop Disease Dataset Machine Learning technique

[169] 4 Plant species 5 Diseases Self SVM with the proposed model

[8] 3 Crops 6 Diseases PlantVillage DLQP with SVM

[154] 14 Crops 38
Diseases

PlantVillage HRF-MCSVM

[156] Apple, rice 9 Diseases Self FCM

[18] 9 Crops 16 Diseases Self SVM

[130] 18 Plant
species

4 Diseases Self One-class SVM

[141] 11 Plant
species

20 Diseases Self SVM

[128] Pepper bell
and tomato

3 Diseases Self RF, DT, KNN, and SVM

[169]
[8]

[154]
[156]
[18]

[130]
[141]
[128]

95.71

97.8

99.57

83.47

94

95

92

98

Figure 2.4: Bar chart of accuracy for machine learning-based methods for detecting multiple
diseases in multiple crops.

2.4.2 Plant disease detection and classification with deep learning techniques

This section provides an in-depth summary of the methods proposed for detecting plant diseases
using deep learning techniques.
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2.4.2.1 Techniques for detecting a specific disease in a particular crop

The studies examined in this section primarily concentrated on utilizing deep learning tech-
niques for diagnosing a specific disease in a particular crop. Table 2.5 provides a summary of
recent studies focusing on the recognition of specific diseases in particular crops, while Figure 2.5
presents their obtained accuracies. In order to automatically detect northern leaf blight lesions
in maize plants from field-acquired images with high reliability, a new approach was proposed by
the authors of [39]. Their method utilizes a computational pipeline of CNNs to tackle challenges
such as limited data and irregularities in images of plants grown in fields. A final CNN is fed
with heat maps derived from the predictions of multiple CNNs trained to classify individual
regions of an image for northern leaf blight lesions. This process allows for the classification
of the entire image. The authors of [194] suggest an automatic method to identify cherry crop
leaves infected by powdery mildew disease. Using GoogLeNet network with transfer learning
techniques, the CNN achieves the best precision performance compared to traditional methods
like SVM, KNN, and BP neural network. The study [98] addresses the significant losses caused
by diseases in Ginkgo biloba, emphasizing the importance of automatically identifying disease
degrees to mitigate losses. The authors employed CNNs, specifically VGGNet-16 and Inception
V3, to classify different degrees of ginkgo leaf disease using two datasets: field-acquired and
laboratory-acquired. Depending on the dataset, the authors observed different behaviors. The
authors of [102] propose a novel method for rice blast recognition using CNN. Through compara-
tive experiments, they demonstrate the effectiveness of CNN-based high-level feature extraction
over traditional handcrafted features such as local LBPH and Haar-WT (Wavelet Transform).
Quantitative evaluations show that CNNs with Softmax and CNNs with SVM perform similarly,
both outperforming LBPH with SVM and Haar-WT with SVM classifiers. In [143] the authors
address Fusarium head blight in wheat. They focused on creating a method that uses deep learn-
ing and image processing techniques to correctly identify diseased areas in color images of wheat
spikes. They utilized a pre-trained Mask RCNN network with transfer learning for spike detec-
tion. Additionally, they applied a new color feature to obtain grayscale images of spikes, and a
modified region-growing algorithm effectively segmented and detected a wide variety of disease
forms and sizes. To address the challenge of early disease detection, the paper [22] proposes a
new hybrid model combining Convolutional Autoencoder (CAE) and CNN for automatic detec-
tion of Bacterial Spot disease in peaches. The proposed system outperforms existing approaches
while requiring fewer parameters, thus reducing training time and improving efficiency in disease
detection. The work proposed in [191] deployed CNN models along with an imaging method
developed for detecting bacteriosis from peach leaf images. The imaging method quantifies the
disease-affected area and applies an adaptive operation to a suitable color image channel. Gray-
level slicing is utilized for the segmentation and identification of bacterial lesions disease in peach
crops. The study compares the outcomes of the CNN method and the imaging method, finding
that various deep learning algorithms produce the best results. The paper [193] employs a CNN
to recognize peach leaf disease caused by Xanthomonas campestris. Transfer learning is utilized
to fine-tune AlexNet, with feature visualization demonstrating CNN’s excellent ability to learn
features autonomously. Comparative experiments were conducted, contrasting the CNN’s per-
formance with other classification methods including SVM, KNN, and Back Propagation (BP).
CNN demonstrates superiority over these methods in recognizing unhealthy peach leaves.
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Table 2.5: Comparative analysis of deep learning-based methods for detecting a specific disease
in a particular crop.

Ref Crop Disease Dataset Deep Learning model

[39] Corn Northern leaf blight Self CNN (AlexNet, GoogLeNet Incep-
tion)

[194] Cheery Powdery mildew PlantVillage CNN (GoogLeNet)

[98] Ginkgo biloba Ginkgo leaf Self CNN (VGGNet-16, InceptionV3)

[102] Rice Rice blast Self New CNN

[143] Wheat Fusarium Head Blight Self CNN (Mask-RCNN)

[22] Peach Bacterial spot PlantVillage new CNN, new CAE

[191] Peach Bacteriosis PlantVillage,Land
Grant Universities

CNN (AlexNet, VGGNet, YOLO-
v3)

[193] Peach Xanthomonas
campestris

PlantVillage CNN (AlexNet)

[39]
[194]
[98]

[102]
[143]
[22]

[191]
[193]

96.7

99.6

98.44

95.83

92.01

98.38

98.75

100

Figure 2.5: Bar chart of accuracy for deep learning-based methods for detecting a specific
disease in a particular crop.

2.4.2.2 Techniques for detecting multiple diseases in a particular crop

This section includes relevant papers that address multiple diseases within a single crop using
deep learning techniques. Table 2.6 provides an overview of the latest studies in the recogni-
tion of multiple diseases in a specific crop, while Figure 2.6 presents their obtained accuracies.
The paper [25] introduces a low-cost, stable, and high-precision method for identifying apple
leaf diseases, employing the MobileNet model. It validates the method through experiments,
comparing its efficiency and precision with established CNN models such as ResNet152 and In-
ceptionV3. The study [104] introduced a novel CNN architecture for the detection of apple leaf
diseases. The model comprised a concatenation of an AlexNet network and an Inception net-
work. In this configuration, the Inception network substituted the fully connected layers of the
AlexNet model. Optimization of network parameters was achieved by employing the Nesterov’s
Accelerated Gradient (NAG) algorithm. In [174], four apple leaf diseases are classified by using
the ResNet50 CNN network, which has been pre-trained on ImageNet, and a Plant Pathology
Challenge dataset. There were two experiments carried out: One focused on the classification
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of a single disease, while the other involved a combination of multiple diseases. The paper [76]
introduces a deep learning approach based on enhanced CNNs for real-time detection, named
INAR-SSD. This is accomplished by integrating the GoogLeNet Inception module and incorpo-
rating Rainbow concatenation to improve the performance of small diseased object detection and
multi-scale disease object detection. In [97], the authors adapted the Faster R-CNN to enhance
the detection of tiny targets associated with balsam pear leaf diseases in field conditions. This
was achieved by enlarging the size of the regional proposal frame and integrating the Feature
Pyramid Network (FPN) based on ResNet50. The results showed that the model incorporating
the FPN outperformed the original model. In [48], a deep learning approach is presented for
identifying and classifying bean leaf diseases utilizing the MobileNet model. The method’s goal
is to effectively classify bean leaf diseases while establishing an optimized network architecture,
encompassing hyperparameters and optimization methods. The findings indicate that the Mo-
bileNet model achieves good classification performance. The work performed by [106] presented
a study on camellia leaf diseases, comparing two training approaches: training from scratch
and transfer learning. The results demonstrated that transfer learning significantly enhances
the convergence speed and classification performance of the models. The paper [16] presents an
end-to-end deep learning model designed to differentiate between unhealthy and healthy corn
leaves. Two pre-trained CNNs, EfficientNetB0 and DenseNet121, are employed to extract deep
features from corn leaf images. These features are then combined using concatenation to create
a more sophisticated feature set, enhancing the model’s ability to learn from the data. Com-
parative analysis with other pre-trained CNN models, including ResNet152 and InceptionV3,
underscores the effectiveness of the proposed model. To achieve image recognition of corn leaf
diseases in complex field backgrounds with limited samples, the authors of [189] propose a CNN
model (VGG16) based on transfer learning. In [196], the authors introduce a Global Pooling
Dilated Convolutional Neural Network (GPDCNN) to tackle the problems of excessive param-
eters in the AlexNet model and the constraint of a single feature scale, particularly for plant
disease identification. The work [198] introduced a novel approach to address challenges en-
countered in traditional CNNs when segmenting cucumber leaf lesions in images. The proposed
method aimed to mitigate issues such as prolonged training duration, inadequate segmentation
outcomes, and susceptibility to variations in illumination and background. Important changes
included replacing the Exponential Linear Unit (ELU) activation function with the RELU acti-
vation function, employing batch normalization to enhance model stability during training, and
replacing the softmax layer of the CNN with SVM classifier. To identify various degrees of grape
diseases, the authors of [187] developed a multi-scale ResNet CNN based on ResNet18. This
entailed modifying the first convolution layer to include a combination of multiple convolution
kernels and integrating the SENet module into ResNet18. The proposed model has the highest
average accuracy when compared to ResNet model. In [50], the authors introduced a model for
recognizing maize leaf diseases with similar spots amidst complex real-world backgrounds. This
was accomplished by modifying Faster R-CNN, which involved incorporating a batch normal-
ization processing layer and introducing a center cost function. The improved model exhibited
effectiveness in terms of both recognition accuracy and detection time compared to other CNN
architectures employed. An efficient method for identifying four distinct rice leaf diseases was
presented in the work [75]. The method involved the mean shift algorithm to segment disease
spots, followed by shape feature extraction through artificial calculation and color feature ex-
traction via CNN. Ultimately, the SVM classifier was employed to identify the diseases. The
findings demonstrated that the combination of CNN and SVM produced superior results. In the
work [7], the authors employed CNN techniques to classify and identify tomato leaf diseases.
Four CNN architectures (VGG-19, VGG-16, ResNet, and Inception V3) were taken into con-
sideration. Feature extraction and parameter tuning were employed for disease identification
and classification using two datasets acquired from the field and laboratory. In both datasets,
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Inception V3 was found to be the most effective model. The authors of [137] developed a mobile
application presented on heat maps for identifying wheat diseases in real conditions. To improve
the ResNet50 network, they replaced the softmax layer with a sigmoid activation function and
replaced the first 7 × 7 convolutional layer with two 3 × 3 convolutions. For the detection of
tomato leaf diseases at different stages, the authors of [59] introduced a multi-receptive field
recognition model known as Multi-Scale AlexNet, which is derived from AlexNet. This model
involved the removal of the local response normalization layer from the AlexNet network, adap-
tation of its fully connected layers, and integration of a multi-scale convolution kernel to extract
features. The authors in [148] propose a new model called the deconvolution-guided VGG net-
work for identifying tomato leaf diseases and segmenting disease spots. The proposed model is
designed to address various issues that can arise in images, such as shadows, low light conditions,
and occlusions. In [69], a technique for identifying early and late fine-grained tomato diseases
was outlined. The authors introduced a novel CNN model that utilizes the ARNet architecture
in conjunction with attention and residuals to extract features from fine regions. The findings
of the investigation indicated that, when compared to existing models like VGG16, the ARNet
exhibited superior classification performance. For the recognition of tomato leaf diseases, the
authors in [5] developed a new CNN architecture consisting of three convolutional and three
max-pooling layers followed by two fully connected layers. This novel CNN model outperforms
pre-trained VGG16, MobileNet, and Inception V3. The work presented in [152] aims to differ-
entiate between images of unhealthy and healthy tomato leaves to identify tomato leaf diseases
using two pre-trained CNNs: Inception V3 and Inception ResNet V2. Various dropout rates
were tested during the investigation. The main findings indicated that the Inception V3 model
achieved optimal performance with a dropout rate of 50%, while the Inception ResNet V2 model
performed best with a dropout rate of 15%. In [121], an approach was proposed for timely lo-
calization and recognition of tomato diseases, employing a robust deep learning based approach,
namely ResNet-34-based Faster R-CNN. ResNet-34, along with the Convolutional Block Atten-
tion Module (CBAM), was implemented as a feature extraction component within Faster R-CNN
to identify significant features within the tomato leaf images. For the detection of diseases in
tomato plants, the authors of [163] proposed a deep learning approach using a combination of In-
ceptionNet for classification and semantic segmentation techniques, namely U-Net and Modified
U-Net. InceptionNet was utilized for the classification task employing supervised learning, while
for segmentation, U-Net and Modified U-Net semantic segmentation models were employed. In-
ceptionNet, combined with the modified U-Net, showcased exceptional accuracy. In [35], two
CNN architectures were employed for the classification of segmented tomato leaf images. The
EfficientNet model was employed for the classification task, while a modified U-Net architecture
was tasked with segmenting the tomato leaves. The results underscored the superiority of deeper
networks trained on segmented images, resulting in enhanced disease classification accuracy. In
order to achieve real-time detection of tomato diseases, the study in [142] proposed a tomato dis-
ease recognition and classification method based on an improved MobileNetV3. By leveraging
pretrained MobileNetV3 and transfer learning, the approach fine-tunes MobileNetV3 to miti-
gate model overfitting due to limited data. The results demonstrate a significant enhancement
in tomato disease detection efficiency and a reduction in the time required for disease detection.
The authors of [135] proposed the Dense Inception MobileNet-V2 Parallel Convolutional Block
Attention Module Network (DIMPCNET). The network was specifically created to address issues
related to the identification of tomato diseases, such as complex backgrounds, subtle distinctions
between tomato diseases, and significant differences even among the same disease.
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Table 2.6: Comparative analysis of deep learning-based methods for detecting multiple dis-
eases in a particular crop.

Ref Crop Disease Dataset Deep Learning model

[25] Apple Alternaria leaf blotch,
rust

Self CNN (MobileNet, RestNet152, In-
ceptionV3)

[104] Apple 4 Diseases Self CNN (AlexNet, GoogLeNe Incep-
tion)

[174] Apple 4 Diseases Plant Pathology Chal-
lenge, self

CNN (ResNet50)

[76] Apple 5 Diseases Self INAR-SSD

[97] Balsam pear 5 Diseases Self R-CNN (Improved Fater R-CNN)

[48] Bean 3 Diseases iBean CNN (MobileNet, Mobilev2)

[106] Camellia
oleifera

4 Diseases Self CNN(AlexNet)

[16] Corn 4 Diseases PlantVillage CNN (EfficientNetB0, DenseNet121)

[189] Corn Leaf blight, rust Self CNN(VGG-16)

[196] Cucumber 6 Diseases Self CNN(GPDCNN)

[198] Cucumber 6 Diseases Self Full CNNk

[187] Grape 8 Diseases AI challenger, Self CNN (Multi-Scale ResNet)

[50] Maize 9 Diseases Self R-CNN (Improved Faster R-CNN)

[75] Rice 4 Diseases Self New CNN, SVM

[7] Tomato 6 Diseases Self CNN (VGG-16, VGG-19, RestNet,
InceptionV3)

[137] Wheat 3 Diseases Self CNN (ResNet50)

[59] Tomato 7 Diseases PlantVillage, Self CNN (Improved Multi-Scale
AlexNet)

[148] Tomato 10 Diseases PlantVillage CNN (Deconvolution Guided VG-
GNet)

[69] Tomato 5 Diseases AI challenger CNN (New CNN ARNet based)

[5] Tomato 9 Diseases PlantVillage New CNN

[152] Tomato 3 Diseases PlantVillage, self CNN (Inception V3, Inception
ResNet V2)

[121] Tomato 14 Diseases PlantVillage CNN (ResNet-34-based Faster-
RCNN)

[163] Tomato 6 Diseases PlantVillage CNN (Inception Net)

[35] Tomato 10 Diseases PlantVillage CNN (EfficientNet)

[142] Tomato 10 Diseases PlantVillage CNN (MobileNetV3)

[135] Tomato 5 Diseases Self CNN (PCBAM)
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Figure 2.6: Bar chart of accuracy for deep learning-based methods for detecting multiple
diseases in a particular crop.

2.4.2.3 Techniques for detecting multiple diseases in multiple crops

The works reviewed in this section predominantly focused on the application of deep learning
techniques for diagnosing various diseases across multiple crops. Table 2.7 provides an overview
of the latest studies in the recognition of multiple diseases in multiple crops, while Figure 2.7
presents their obtained accuracies. The study in [83] introduced a real-time plant detection model
based on CNN to optimize hyper-parameters for classifying and detecting healthy and unhealthy
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leaf parts. Comparative experiments demonstrated the effectiveness of YOLOv5 compared with
EfficientDET and FasterRCNN. Results showcased the model’s capacity to rapidly and precisely
identify even minor disease patches on plant leaves. The authors of [32] focus on transferring
pre-trained models, specifically, VGGNet trained on large datasets like ImageNet, to the task
of identifying plant leaf diseases, creating INC-VGGN. The comparative experimental results
validate the effectiveness and efficiency of the proposed approach compared to other CNN mod-
els, including DenseNet-201, ResNet-50, Inception V3, and VGGNet-19. The study presented
in [185] introduces an enhanced Multi-scale ResNet model for lightweight disease recognition.
This model tackles the challenge of deploying CNN on hardware with limited resources, by re-
fining network architecture, feature extraction, and complexity reduction. The proposed model
achieves notable accuracy while substantially reducing model size and training parameters. The
proposed method in [197] addresses the challenge of lower segmentation accuracy in traditional
CNN for crop disease leaf image segmentation by introducing a cascade CNN approach. The
network consists of two components: a regional disease spot segmentation network based on
the encoder-decoder model and a regional disease spot detection network based on VGG16.
The results illustrated the effectiveness of the proposed approach in segmenting crop diseases
in diverse environments. In [138], three CNN architectures RESNET-MC-1, RESNET-MC-2,
and RESNET-MC-3 are introduced to combine contextual non-image meta-data such as crop
information with image-based CNN. This integration facilitates the simplification of disease clas-
sification complexity while maintaining high accuracy across various environmental conditions.
In [84], a DeepLens Classification and Detection Model (DCDM) is introduced to overcome
limitations such as limited scalability, inefficiency in realistic use, and reliance on sophisticated
hardware. It employs automatic detection and classification of leaf diseases by leveraging scalable
transfer learning on Amazon Web Services (AWS) SageMaker, and subsequently importing it
into AWS DeepLens for real-time functional usability. In [127], the proposed method involves ap-
plying pixel-based operations to leaf images to enhance their information. Subsequently, feature
extraction is carried out, followed by image segmentation, and ultimately, disease classification
based on the extracted patterns from the diseased leaves. CNNs are utilized for disease classifi-
cation. The study outlined in [49] introduces a deep learning-based method for detecting crop
leaf diseases utilizing CNN-based pre-trained models. Specifically, the research concentrates
on fine-tuning the hyperparameters of established pre-trained models, such as DenseNet-121,
ResNet-50, VGG-16, and Inception V4. Comparative analysis validates the effectiveness of the
proposed approach. In [96], the authors presented a disease recognition method that emphasizes
disease identification irrespective of crop type, using common disease names. Three methods
were used to train the system: pre-training with ImageNet, pre-training with PlantCLEF2015,
and training from scratch. The results showcased the model’s ability to identify diseases across
all crops, including those not included in the experiment, thereby underscoring the efficacy of
pre-trained models from plant datasets. The work proposed in [20] suggests focusing on indi-
vidual spots and lesions rather than entire leaves, thereby increasing data variability without
necessitating additional images and enabling the identification of multiple diseases on the same
leaf. After isolating these lesions and spots from the overall leaf image, tests were conducted
to classify the lesions and identify any diseases. The findings suggest that, with sufficient data,
deep learning techniques prove effective in disease detection and classification. The study [80]
introduces a depthwise separable convolution architecture for plant disease recognition, featur-
ing two variants: modified MobileNet and reduced MobileNet. Comparative experiments were
conducted to assess their performance against MobileNet, AlexNet, and VGG. The compact size
of these models makes them ideal for real-time crop diagnosis on resource-constrained mobile
devices.
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Table 2.7: Comparative analysis of deep learning-based methods for detecting multiple dis-
eases in multiple crops.

Ref Crop Disease Dataset Deep Learning model

[83] Bell pepper,
potato

2 Diseases PlantVillage, self CNN (YOLOv5)

[32] Rice, corn 9 Diseases PlantVillage, self CNN (INC-VGGN)

[185] 4 Crops 15 Diseases PlantVillage, AI Chal-
lenge, self

CNN (Multi-scale ResNet)

[197] 3 Crops 9 Diseases Self Regional disease detection network
(RD-net)

[138] 5 Crops 17 Diseases Self CNN (RESNET-MC-1, RESNET-
MC-2,RESNETMC-3)

[84] 6 Crops 25 Diseases PlantVillage CNN (DeepLens)

[127] 14 Crops 38 Diseases PlantVillage CNN (naïve network)

[49] 14 Crops 38 Diseases PlantVillage CNN (DenseNet-121, ResNet-50,
VGG-16, Inception V4)

[96] 14 Plant
species

26 Diseases PlantVillage, IPM,
Bing

CNN (GoogLeNet, VGG-16, Incep-
tionV3)

[20] 14 Plant
species

79 Diseases PDDB CNN (GoogLeNet)

[80] 24 Plants 55 Diseases PlantVillage CNN (Modified MobileNet, Reduced
MobileNet)

[83]

[32]

[185]

[197]

[138]

[84]

[127]

[49]

[96]

[20]

[80]

93

92

95.95

87.04

98

98.78

81.4

99.81

91.97

94.2

98.34

Figure 2.7: Bar chart of accuracy for deep learning-based methods for detecting multiple
diseases in multiple crops.
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2.5 Challenges and issues

From our comparative review of various research works on plant leaf disease detection and
classification with both deep learning and machine learning techniques, several key observations
emerge. Both deep learning and machine learning techniques have proven effective in these tasks,
with deep learning-based methods generally outperforming machine learning-based approaches.
This superiority is primarily attributed to deep learning’s reliance on automatic feature extrac-
tion, contrasting with machine learning’s dependence on human feature selection. However,
the success of deep learning methods is heavily contingent on the availability of large training
datasets. Among machine learning classifiers, SVM is widely used and considered highly effec-
tive. Conversely, CNN is the most commonly utilized deep learning architecture for plant disease
detection, with models like Inception or GoogLeNet demonstrating notable effectiveness.

The majority of the aforementioned research works yield promising results, underscoring the
efficacy of machine learning and deep learning in plant disease recognition. However, a common
limitation across much of this prior work is a lack of robustness and generalization. Many meth-
ods are tailored to specific crops or diseases present in the dataset used for each study, limiting
their applicability across diverse agricultural contexts. Furthermore, the issue of data scarcity
is often addressed through techniques such as data augmentation or transfer learning, rather
than tackling the root problem of insufficient data availability. Indeed, there is a noticeable gap
in concurrently addressing multi-disease infections occurring within the same leaf. While many
studies concentrate on detecting and classifying single diseases, the consideration of scenarios
involving simultaneous disease infections is scarce. Even among the few studies that touch upon
this issue, the focus tends to be narrow, typically concentrating on a single crop or a limited set
of crops. As a result, these approaches often lack the necessary generalization and robustness
required for practical application in real-world agricultural settings.

The challenges stemming from the lack of generalized models that can handle all crop and disease
types, the variety of plant species, and the wide range of disease symptoms present in various
plant and crop species present significant obstacles in creating a universal model. Deep learning
and machine learning models frequently face challenges in generalizing across various plant types
and diseases that were not seen in the training dataset. Additionally, the lack of labeled datasets
for plant leaf diseases hinders training and may result in biased models. Additionally, because
environmental conditions are dynamic, there is variability in the visual characteristics of diseased
and healthy leaves, making it difficult for models to distinguish between them.

2.6 Conclusion

In this chapter, we’ve conducted a comprehensive review of the application of machine learn-
ing and deep learning techniques in plant disease detection. We delved into the field of plant
pathology, exploring various types of diseases that affect agriculture and explaining the symp-
toms associated with each type. Then we illustrated the commonly used datasets in the plant
disease field. Additionally, we introduced a taxonomy aimed at structuring the application of
machine learning and deep learning in automatic disease detection. This taxonomy categorizes
the works of both machine learning and deep learning into three subcategories: the detection
of a singular disease from a single crop, the identification of multi-diseases within a particular
crop, and the detection of multi-diseases across multiple crops. Through a comparative analysis
of the proposed methodologies, We’ve addressed the challenges and limitations encountered in
the realm of plant disease detection and classification.
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3.1 Introduction

In this chapter, we will propose a generalized system capable of recognizing diseased and healthy
leaves across different crops while also determining the extent of the disease in the leaves. The
main objectives of our proposed approach are to generalize the disease detection process to all
crop types, generalize the process to all disease types, and incorporate the calculation of disease
extent. Several issues need to be addressed to design this system for identifying unhealthy leaves
across different crops.

3.1.1 Research questions and hypotheses

RQ1. What is the chosen approach for our system: deep learning or machine learn-
ing?

Plant disease detection using machine learning and deep learning techniques is a rapidly
evolving field with promising outcomes [165]. Deep learning methods, which rely on au-
tomatic feature extraction instead of human feature selection, have demonstrated greater
effectiveness compared to other machine learning techniques, especially in image recog-
nition [104]. Several research studies have proposed deep learning-based techniques for
identifying and diagnosing plant diseases. However, many obstacles prevent the better use
of this technology.

RQ2. How to generalize the disease detection process across different types of dis-
eases and crops?
To develop a generalized deep-learning model capable of detecting diseases across different
disease types and crop types, a comprehensive dataset encompassing all types of crops and
diseases is essential. This requirement is underscored by the findings in work [192], which
demonstrated that the model’s learning process is influenced not only by the characteristics
of the disease but also by those of the crop. This suggests that the model’s performance
is influenced by both disease-related features and crop-specific attributes as it undergoes
the learning process. Additionally, it implies that the model’s ability to accurately detect
diseases relies on its understanding of the unique features associated with both the disease
and the crop. Furthermore, this indicates that the features extracted from a particular
crop and disease cannot be generalized to other crops and diseases. Moreover, a system
trained to detect a specific disease within a particular crop may not effectively identify the
same disease in a different crop type. This limitation emphasizes the need for a diverse
dataset encompassing various crop types and diseases to effectively train the model.
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Unfortunately, the absence of such a dataset presents a considerable challenge, as con-
structing one is a difficult task if not an impossible one. With millions of plant species and
crops in the world, along with millions of diseases that can impact them, gathering com-
prehensive data requires significant time and effort. These challenges directly impact the
performance of deep learning-based systems due to a lack of data. The system’s capacity
to generalize learned patterns in plant disease recognition is hindered by the absence of
access to sufficient datasets.

To resolve this challenge, the emphasis should not only be on acquiring a comprehensive
dataset. Rather, the training model should focus on extracting common features present
in both healthy and diseased leaves, irrespective of plant species or disease type. By priori-
tizing the recognition of these shared characteristics, the model can effectively differentiate
between healthy and diseased leaves across a wide range of plant species and diseases.

RQ3. How to prevent the deep learning model from extracting crop-specific features
during the learning process?

Preventing a deep learning model from extracting crop-specific features during training is
crucial for its generalization across diverse crop types. Our proposed approach involves
training the model on smaller leaf pieces devoid of crop-specific features, instead of entire
images containing leaves with distinct crop characteristics. These leaf pieces, extracted
from the leaves, serve to mitigate the influence of specific crop structures and characteris-
tics.

This novel approach involves splitting the image of a leaf into smaller patches, thereby
facilitating the extraction of leaf pieces that lack crop-specific characteristics and features.
By training the model on these extracted leaf pieces, we aim to ensure that it learns
features that are applicable across different crop types and agricultural contexts. This
methodology not only prevents the model from learning crop-specific features but also
promotes the acquisition of more generalized representations of leaf features.

Furthermore, our proposed methodology advocates for training deep-learning models on
small leaf patches extracted from diverse crop types. This approach ensures the complete
elimination of crop-specific influences during training, thereby enabling the extracted dis-
ease features from a specific crop to extend to other crops.

RQ4. How to train the deep learning model to focus on extracting the common fea-
tures of healthy and diseased leaves?

Training the deep learning model to focus on extracting the common features of healthy and
diseased leaves is crucial for its generalization across diverse disease types. Our approach
emphasizes recognizing the disease itself rather than solely relying on the visual appearance
of the diseased leaf. It particularly emphasizes recognizing the healthiness or infection in
small pieces of the leaf. Our suggestion involves using two distinct sets of patches: one
comprising patches from healthy leaves and another from infected leaves. By employing
healthy leaf patches, the model can extract common features indicative of leaf health, thus
learning to recognize the generalized characteristics of a healthy leaf. Similarly, utilizing
infected leaf patches enables the model to capture distinguishing features associated with
diseased or unhealthy leaves.

This strategy allows the model to differentiate between healthy and unhealthy leaves based
on their shared and contrasting features, rather than becoming specialized in the charac-
teristics of specific diseases. By training on these distinct sets of patches, the model can
learn to generalize its extracted features of healthy and unhealthy leaves to any disease
type.
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RQ5. How to calculate the extent of disease in the leaves?

Our proposed system incorporates a feature that allows for the calculation of the disease’s
extent on the leaf, providing valuable insights for further analysis and decision-making.
Splitting the leaf into small patches enables the determination of the percentage of healthy
and infected parts within the leaf. This allows for the quantification of the extent to which
the leaf is affected by the disease, offering a quantitative measure of disease severity.

Based on the research questions, we established criteria for the proposed system. The system
should be based on the deep learning approach, as this strategy has demonstrated its effectiveness
in the context of plant disease detection (RQ1). It should generalize the disease detection process
across different types of diseases and crops, with the training model focusing on extracting
common features present in both healthy and diseased leaves, regardless of plant species or
disease type (RQ2). To prevent the deep learning model from extracting crop-specific features
during the learning process, we need to divide the leaf into small patches and utilize them in the
training process (RQ3). To train the deep learning model to focus on extracting the common
features of healthy and diseased leaves, we need to use all the extracted healthy patches to
represent the healthy class and the unhealthy patches to represent the unhealthy class (RQ4).
By counting the unhealthy patches extracted from the leaf, we can calculate the extent of disease
in the leaf (RQ5).

The remainder of the chapter is organized as follows. Section 3.2 presents the proposed methods
and the materials used. Section 3.3 presents the analysis of the obtained results. Finally, section
3.4 concludes our chapter.

3.2 Materials and methods

3.2.1 Dataset

In our study, we chose the PlantVillage dataset (For more details, please see Section 2.3.1). No-
tably selected for its diversity, comprehensiveness, annotations, benchmark status, accessibility,
and relevance to real-world agricultural challenges, this dataset is widely utilized in research.
We utilized an updated version of the PlantVillage dataset, as detailed in [117], where the leaves
are segmented from the background. Figure 3.1 shows examples of images with and without
backgrounds.

(a) (b)

Figure 3.1: Examples of PlantVillage dataset images: (a) images with background, (b) images
segmented from the background.
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3.2.2 The proposed approach

This section presented a detailed explanation of the methodology used to develop a generalized
plant disease classification system. The initial phase of the proposed system involves applying
the designated methods to the dataset, followed by training the model with the updated dataset.
Subsequently, utilizing the trained model, the system is capable of identifying the presence of
infections in the leaves without necessitating specific crop or disease-type information. Addi-
tionally, the system provides an assessment of the disease’s severity within the leaf. Figure 3.2
summarizes the workflow of the proposed system and shows the main phases that are involved
in its functioning.

Figure 3.2: Flowchart of the proposed model-based CNN.
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3.2.2.1 Generalization of the disease detection process to any crop type

To generalize the process of disease detection across any crop type, our aim is to ensure that
the deep learning model, during the training process, is exclusively influenced by disease-related
features and remains unaffected by crop-related features. To achieve this objective, we propose a
novel method. Our approach involves splitting the leaf into small patches representing small leaf
pieces, which do not contain any specific leaf type information, and utilizing them to detect the
presence of the disease, rather than relying on the entire leaf in the detection process. These small
patches effectively eliminate features related to crop type, ensuring the complete elimination of
influences from crop type and structure. This approach guarantees that the disease features
extracted from a specific crop can be applied to other crops. By processing small leaf pieces
without any crop type information, we ensure the generalization of the disease detection process
to any crop type, even those not seen during the training process.

To implement the proposed method, the image (I) is split into square patches (P ) with dimen-
sions of 32 × 32 pixels. This particular size was selected to align with the input size of smaller
CNN architectures. In cases where the image size is not a multiple of 32, the image is resized
to the nearest multiple of 32. This ensures that the system can process images of any size, as
demonstrated in Equations 3.1 and 3.2.

I = {P1, P2, . . . , PN_P } (3.1)

N_p = (H/h)× (W/w) (3.2)

Where N_p is the number of patches extracted from one image, H is the image width, W is the
image height, h is the proposed patches width, and W is the proposed patches height.

Each image in the PlantVillage dataset, initially sized at 256 × 256 pixels, must be divided
into a set of patches with dimensions of 32 × 32 pixels. Dividing the image width (height) by
the patch width (height) results in a quotient of 8, indicating that each image is split into a
grid of 8 rows and 8 columns, thus creating a total of 64 patches. Equation 3.3 and 3.4 offer a
mathematical representation of the procedure for this splitting process.

N_p = (256/32)× (256/32)

N_p = 8× 8

N_p = 64

(3.3)

I =
8∑

i=1

8∑
j=1

Pij

I = {P11, P12, . . . , P88}

(3.4)

Some criteria were applied to the patches following image splitting to remove noise from the
dataset and retain only the useful ones. To determine whether a patch contains noise and
should be eliminated, we calculated the percentage of black pixels in each patch based on the
RGB color of each pixel, as described in Equation 3.5.
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B =
N∑
i=1

δ(Ri = 0 ∧Gi = 0 ∧Bi = 0)

B_p =
B

TotalNumberofP ixels
× 100

(3.5)

Where B is the black pixel number in the patch, B_p is the black pixel percentage of the
patch, N is the total image pixels number of, R_i, G_i, and B_i are the red, green, and blue
components of the i-th pixel, respectively. δ() is the counter delta function, which is equal to 1
if the condition inside is true and 0 otherwise.

As illustrated in Equation 3.6, patches with a black pixel percentage of 100% were eliminated
because they do not contain any leaf pieces and consist entirely of black pixels. For the remaining
patches, those with a black pixel percentage exceeding 50% were also eliminated. This threshold
was chosen to closely align with the characteristics of the PlantVillage dataset, particularly
the estimated black pixel percentage of the original image, which is approximately 50%. This
approach ensures that the results closely resemble the characteristics of the original image, thus
maintaining consistency with the dataset. Figure 3.3 presents the detailed processes of image
splitting and the removal of unuseful patches.

I = {P | P ∈ I, and black pixels percentage B_p ≤ selected black pixels persentage} (3.6)

(a)

(b)

Figure 3.3: Image splitting examples: (a) infected grape leaf image, (b) healthy strawberry
leaf image.

3.2.2.2 Generalization of the disease detection process to any disease type

Because of the limited data available for numerous disease types, detecting the presence of these
diseases can be challenging. Initially, the focus should be on detecting the presence of infection
without necessarily identifying the specific disease type. To detect the presence of infection
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without determining the disease type, the system must be trained to differentiate between un-
healthy and healthy leaves regardless of the specific disease type, even if not encountered during
the learning process. This entails extracting features of both healthy and unhealthy leaves with-
out considering any disease type. To achieve this, all healthy patches extracted from various
crop types were grouped into one healthy class, and all unhealthy patches from different disease
types were grouped into one unhealthy class. This approach enables the generalization of disease
detection for any disease type.

All split patches from the PlantVillage dataset were labeled as either healthy or unhealthy
based on specific criteria established through visual inspection. The labeling criteria were as
follows: patches labeled as ’healthy’ must contain healthy leaf pieces without any disease signs
or symptoms. These healthy patches could be extracted from either healthy leaves or from
unhealthy leaves that still have healthy parts, thereby benefiting from the presence of healthy
patches within unhealthy leaves. unhealthy leaves. Conversely, patches labeled as ’unhealthy’
must contain leaf pieces presenting signs or symptoms of disease. Equation 3.7 and Figure 3.4
provide a detailed explanation of the labeling process.

I = {P | P ∈ I, and healthy} ∪ {P | P ∈ I, and infected} (3.7)

(a)

(b)

Figure 3.4: Data labeling examples: (a) infected grape leaf image, (b) healthy strawberry leaf
image.

At the end of this process, we have a new PlantVillage dataset labeled into two classes: healthy
(H) and unhealthy (U), where:

H =

N_c∑
c=1

N_i_c∑
i=1

{P | P ∈ Ii, and healthy} (3.8)

U =

N_c∑
c=1

N_i_c∑
i=1

{P | P ∈ Ii, and unhealthy} (3.9)
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Where N_c is the dataset classes number, N_i_c is the class C images number.

The new dataset consists of 1860316 samples: 846162 healthy and 1014154 unhealthy. The
details of the new dataset are illustrated in Table 3.1. As observed from the table, the classes
Huanglongbing (Citrus greening), Leaf blight (Isariopsis Leaf spot), and powdery mildew do
not generate unhealthy patches. This is because these diseases affect all regions of the leaves.
Therefore, all extracted patches from these images were labeled as unhealthy.

Table 3.1: The new PlantVillage dataset details.

Disease name Crop name Number
of sam-
ples

Number
of patches

Number
of un-
healthy
patches

Number
of healthy
patches

Healthy Apple 1645 48693 0 48693

Healthy Blueberry 1502 38080 0 38080

Healthy Cherry (including
sour)

854 28465 0 28465

Healthy Corn (maize) 1162 74030 0 74030

Healthy Grape 423 16136 0 16136

Healthy Peach 360 7081 0 7081

Healthy Pepper, bell 1478 54876 0 54876

Healthy Potato 152 5505 0 5505

Healthy Raspberry 371 12723 0 12723

Healthy Soybean 5090 190448 0 190448

Healthy Strawberry 456 16904 0 16904

Healthy Tomato 1591 48173 0 48173

Bacterial spot Peach 2297 60889 40187 20702

Bacterial spot Pepper, bell 997 36250 19097 17153

Bacterial spot Tomato 2127 72774 38222 34552

Black rot Apple 621 20671 4992 15679

Black rot Grape 1180 41174 18757 22417

Cedar apple rust Apple 275 8104 5831 2273

Cercospora leaf spot gray leaf spot Corn (maize) 513 25138 22738 2400

Common rust Corn (maize) 1192 59798 56887 2911

Early blight Potato 1000 37306 19097 17153

Early blight Tomato 1000 30999 16850 14149

Esca (black measles) Grape 1384 47236 27737 19499

Haunglonbing (Citrus greening) Orange 5507 194626 194626 0
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Table 3.1: The new PlantVillage dataset details.

Disease name Crop name Number
of sam-
ples

Number
of patches

Number
of un-
healthy
patches

Number
of healthy
patches

Late bligh Potato 1000 33730 16242 17488

Late blight Tomato 1909 49721 28769 20952

Leaf mold Tomato 952 22370 14596 7774

Leaf blight (Isariopsis leaf spot) Grape 1075 43106 43106 0

Leaf scorch Strawberry 1109 41062 39752 1310

North leaf blight Corn (maize) 985 46769 40987 5782

Powdery mildew Cherry (including
sour)

105 35822 35822 0

Powdery mildew Squash 1835 83457 83457 0

Septoria leaf spot Tomato 1771 51360 34377 16983

Spider mites two spotted spider
mite

Tomato 1667 41933 15110 26823

Target spot Tomato 1404 44800 6086 38714

Tomato yellow leaf curl virus Tomato 5357 155739 155739 0

Tomato mosaic virus Tomato 373 7384 5209 2175

Scab Apple 630 22984 10998 11986

Total Total 54305 1860316 1014154 846162

3.2.2.3 Detecting and determining the extent of the disease

To identify the presence of disease in a leaf, we propose splitting the leaf image into non-
overlapping patches of 32 × 32 pixels, as outlined in Section 3.2.2.1. Subsequently, all unusable
patches are eliminated using the same method presented in Section 3.2.2.1.

The classifier is then supplied with each retained patch to predict the healthiness or infection
status of the corresponding section of the leaf. By predicting each leaf patch separately from the
whole leaf, we can estimate the percentage of unhealthy parts of the leaves, thereby determining
the extent of disease on the leaf. The number of unhealthy patches is the first step in calculating
the prevalence rate of the disease (P ). Then, as Equation 3.10 illustrates, the percentage of
these patches in relation to all the patches that make up the complete leaf is computed.

P =
PU ∗ 100
PH + PU

(3.10)

Where PU is the unhealthy patches number and PH is the healthy patches number
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3.2.3 CNN Network

The success of the GoogLeNet Inception model in the domain of plant disease detection influ-
enced our decision to choose it for classifying the extracted leaf patches. Considering the small
size of these patches, we opted for the smaller Inception model. The Small Inception architecture
is an adapted version of the GoogLeNet Inception architecture, It was specially designed to fit
the small input sizes. It features an adapted version of the Inception module, as shown in Figure
3.5. Consisting of three modules - the Conv module, the Inception module, and the Downsample
module - each module’s specifics are depicted in the accompanying figure.

Figure 3.5: The Small Inception model architecture.

3.2.4 Experimental setup

The mechanism employed to train the model was training from scratch. After conducting numer-
ous tests and trying various combinations of hyperparameter values, we determined the optimal
combinations empirically. These selections were based on experimental observations, aiming to
achieve the best performance on the proposed dataset while maintaining the system’s ability to
generalize to other datasets and avoiding overfitting. The Table 3.2 outlines the hyperparameters
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explorer, alongside the selected values. The optimization technique utilized was adaptive mo-
ment estimation (ADAM) [86], employing its default parameters. The model was implemented
in Python using the TensorFlow library, and the experiments were conducted on Google Colab
using the Graphics Processing Unit (GPU).

Table 3.2: Hyperparameters configuration

Hyperparameter Values explored Selected values

Batch size 16, 32, 64, 128, 256 32

Epochs 1,2,...,1000 300

Learning rate 0.00005, 0.00002, 0.00001, 0.0005, 0.0002, 0.0001, 0.005,
0.002, 0.001, 0.01

0.001

Two sets of data were extracted from the dataset: a training set that included 80% of the images
from the healthy class (676929 images) and 80% of the images from the unhealthy class (811323
images); the other set was used for testing and validation and contained 20% of the images
from the unhealthy class (202831 images) and 20% of the images from our healthy class (169233
images).

3.3 Results and discussion

This section evaluates the proposed techniques for identifying disease infection without specifying
the specific disease type and regardless of the crop type. Subsequently, we demonstrate the
ability of the developed deep learning model to extend infection detection techniques to new
diseases and crops that were not encountered during the learning phase. Finally, we compare
the obtained results with those of the highest-ranked methods on the PlantVillage dataset to
properly contextualize our work relative to other state-of-the-art techniques.

Since most papers testing their approaches on PlantVillage use classification performance met-
rics such as accuracy, loss, and confusion matrix, we employed them to evaluate our proposed
system as well. Using the same evaluation criteria as previous studies conducted on the PlantVil-
lage dataset ensures consistency and allows for meaningful comparisons of the performance of
our proposed system with existing state-of-the-art methods. Furthermore, in order to address
unbalanced datasets and carry out a more thorough examination of the model’s functionality,
we employed diverse evaluation metrics, including precision, recall, and the F1 score.

3.3.1 Evaluation of the proposed methods

The results for the accuracy and loss function on both the testing and training sets are sum-
marized in Table 3.3. Furthermore, Figure 3.6 illustrates the progression of the training loss
function and accuracy across the training epochs. Finally, Figure 3.7 presents the confusion ma-
trix of the proposed model. As depicted in Figure 3.6, the model’s accuracy experiences rapid
progress during the initial training epochs. However, after a certain number of epochs, this
progression stabilizes, ultimately reaching an optimal performance of 94.66% after 300 epochs.
The loss function exhibits an inverse curve, gradually decreasing at the beginning of the training
epochs, then stabilizing, and ultimately reaching the lowest possible value.
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Table 3.3: Performance on training and testing Sets

# Accuracy Loss

Train 0.9466 0.1336

Test 0.9404 0.1462

Figure 3.6: Training set loss and accuracy progression

The CNN achieved a testing classification performance of 94.04%. the recognition accuracy of the
unhealthy class is better than that of the healthy class. This performance was distributed among
the two classes as follows: 94.15% of samples from the healthy class were correctly predicted,
while the error rate was 5.85%. Similarly, in the unhealthy class, 93.95% of samples were
correctly predicted, with an error rate of 6.05%. For the purpose of identifying classification
failures made by the model, each class, healthy and unhealthy, underwent careful analysis.
The findings were as follows: mislabeling errors in the healthy class were primarily attributed
to patches extracted from tomato crops. Conversely, patches originally from diseases such as
Powdery mildew, Huanglongbing (Citrus greening), Toamto yellow leaf curl virus, Spider mites,
two-spotted spider mites, and Bacterial spot were the main contributors to classification errors
in the unhealthy class.

The misclassification observed in the model’s predictions can be attributed to several factors. In
particular, the mislabeling error observed in the healthy class can be explained by the notable
similarity between healthy tomato leaves and squash leaves affected by powdery mildew disease,
as depicted in Figure 3.8. This visual resemblance between the appearance of tomato leaves and
the symptoms of powdery mildew in squash can lead to patches extracted from tomato crops
closely resembling those from the squash powdery mildew class. The confusion results from The
similarity between the epidermal hairs, or specialized tissues, present on tomato leaves and the
symptoms of powdery mildew leads to confusion. These epidermal hairs can sometimes resemble
the powdery appearance associated with mildew infection, leading to misclassification. Hence,
both epidermal hairs and powdery mildew can contribute to a white or powdery appearance on
the leaf surface, posing a challenge for accurate classification. On the other hand, the misclas-
sification observed in the unhealthy class was influenced by two main factors: Firstly, powdery
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Figure 3.7: The new PlantVillage dataset confusion matrix.

mildew causes white powdery spots to develop on the leaves. However, patches containing only
a small number of these white powder spots were not classified as unhealthy. This was mainly
because of the difficulty in detecting this limited proportion of white powder spots. Secondly,
patches originally taken from disease classes characterized by symptoms involving shoots ap-
pearing between light green and yellow, as illustrated in Figure 3.8, specifically those containing
only small shoots of these disease symptoms, led to confusion in their classification by the CNN
model. This was because it was very challenging for the model to recognize these small shoots.

(a) (b) (c)

Figure 3.8: Data examples: (a) healthy tomato leaf image, (b) Powdery mildew-infected
squash leaf image, (c) Huanglongbing (Citrus greening) infected orange leaf image.

As presented in Table 3.1, the newly created PlantVillage dataset exhibits some level of im-
balance. To thoroughly assess the impact of this imbalance and delve deeper into the model’s
performance, particularly in distinguishing between diseased and healthy plants, we employed
three critical metrics: precision, recall, and F1 score. Table 3.4 displays the results for these
metrics, thus results can be explained as follows: Firstly, as indicated in the table, the precision,
recall, and F1 score results demonstrate a balanced performance of the classification model.
This conclusion is drawn from the close alignment of the three performance metrics. Secondly,
a precision of 0.9505 indicates that 95.05% of the instances predicted as positive by the model
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are actually correct. With a recall of 0.9395, the model can accurately identify approximately
93.95% of actual positive cases. An F1 score of 0.9450 indicates a robust balance between pre-
cision and recall, which indicates better model performance. In conclusion, all these findings
collectively demonstrate that the model’s performance remains consistent and robust, even in
the presence of imbalances in the dataset.

Table 3.4: Performance on testing set

# Precision Recall F1 score

Test 0.9505 0.9395 0.9450

3.3.2 Evaluation on new crop and new disease

Testing the proposed model on additional unknown datasets is essential to demonstrate its
generalizability. This includes assessing its performance on novel crops and diseases that are not
included in the PlantVillage dataset. To evaluate the model’s generalizability, we considered
three unseen situations: Firstly, a crop type not included in the training data infected with
a disease type absent in the training dataset, such as cotton infected with Soreshin disease.
Secondly, we assessed a situation where a crop seen during training was infected with a disease
not encountered in the training process, like soybean affected by southern blight disease. Lastly,
we investigated a situation where a new crop, unseen by the classification model, was infected
with a disease present in the training dataset, such as soybean infected with southern blight
disease. The new crop type and disease were selected from the challenging dataset PDDB (For
more details, please see Section 2.3.4). From the cotton images, we randomly selected 19 images,
while 62 images were chosen from the soybean images, and 27 images from coffee plants, resulting
in a total of 108 images for evaluation. After applying the same preprocessing steps as those
used for the PlantVillage dataset, we created a new test dataset from these images. This dataset
contains 1619 patches in total, with 495 patches classified as healthy and 1124 patches classified
as unhealthy. Examples of PDDB dataset images are presented in Figure 3.9.

(a) (b) (c)

Figure 3.9: PDDB dataset examples: (a) cotton leaf (b) soybean leaf (c) coffee leaf.

The results of the model evaluation on the newly created dataset were illustrated in Figure 3.10.
The model successfully achieved an accuracy of 97.22%. Notably, The model performed better
in the unhealthy class compared to the healthy class, with recognition accuracies of 99.55% and
91.91%, respectively. In investigating the system’s classification failures, we carefully analyzed
the misclassified patches from the PDDB dataset. In comparison to the correctly classified
patches, these elements were identified as the primary causes of misclassification: Firstly, the
mislabeling errors in the healthy class were attributed to the challenge in distinguishing healthy
patches with light green colors, as they visually resembled symptoms of diseases characterized
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by shoots appearing between light green and yellow. Additionally, patches containing only small
disease symptom spots were the most challenging for classification in the unhealthy class.

Figure 3.10: PDDB dataset confusion matrix.

3.3.3 Comparison with other state-of-the-art methods

Table 3.5 provides a comparison between our system’s results and those of the highest-ranked
state-of-the-art methods on the PlantVillage dataset, considering various comparison criteria.
While our proposed method may not have achieved the highest accuracy score, it demonstrates
robust and strong performance, showcasing its effectiveness compared to state-of-the-art meth-
ods. Our approach encompasses the entirety of the PlantVillage dataset, ensuring comprehensive
coverage and broadening its applicability. This is unlike other state-of-the-art methods, which
focus solely on specific portions of the dataset. The standout feature of this system is its remark-
able capability to identify leaf infections without considering the specific crop or disease type,
making it a comprehensive solution suitable for multiple crops and diseases. This adaptability
allows the system to recognize new types of crops and diseases that were not part of the training
dataset, making it adaptable to novel crop and disease types. Unlike the proposed method, other
state-of-the-art methods are specialized in the specific set of crops or diseases encountered dur-
ing the training process. As a result, they do not possess the ability to serve as multi-crop and
multi-disease solutions. This limitation means that they are unable to recognize other types of
crops and diseases not included in the training dataset. In comparison, the suggested approach
demonstrates a greater degree of adaptability and robustness in handling a wide variety of crops
and diseases.
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Table 3.5: A comparative study with state-of-the-art methods using the PlantVillage dataset

Ref All dataset Multi-crop Multi-
disease

Generalized
to new crop

Generalized
to new dis-
ease

Accuracy
(mean)

[194] × × × × × 99.6%

[22] × × × × × 98.38%

[191] × × × × × 98.75%

[193] × × × × × 100 %

[185]
√

× × × × 95.95%

[148] × × × × × 93.25%

[59] × × × × × 92.7%

[5] × × × × × 91.2%

[96]
√ √

×
√

× 91.97%

[32] × × × × × 92%

[80]
√

× × × × 98.34%

[121] × × × × × 99.97%

[84] × × × × × 98.78%

[49]
√

× × × × 99.81%

[152] × × × × × 99.22%

[16] × × × × × 98.56%

[35] × × × × × 99.89%

[163] × × × × × 99.12%

[127]
√

× × × × 90.40%

[83] × × × × × 93%

[142] × × × × × 98.25%

Proposed
√ √ √ √ √

94,04%

3.3.4 Discussion

There are several deductions that can be made from the aforementioned findings. Firstly, The
primary reason behind most of the failures in classifying healthy patches is the significant sim-
ilarity between certain disease symptoms and the natural characteristics of some crop leaves.
It poses a challenge for the system to distinguish between these symptoms and characteristics,
especially in discerning the light green shoots in the unhealthy patches resulting from infection
with some diseases and the natural light green color present in some healthy patches. Concern-
ing the unhealthy class, the majority of errors occurred in classifying patches containing small
disease spots, as the system struggled to identify these minor abnormalities.
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Secondly, assessing the trained CNN model on a new dataset containing previously unseen disease
and crop types illustrates the system’s capability to identify novel diseases and crops not en-
countered during training. This highlights the system’s generalization capacity to accommodate
any crop or disease type, demonstrating its robustness and adaptability to diverse agricultural
scenarios.

Furthermore, our system has attained a prominent status among other state-of-the-art methods
that employ the PlantVillage dataset. What distinguishes our program from others is its ability
to tackle any disease found on diverse types of crop leaves, thus making it a versatile solution
capable of handling multiple crops and diseases.

In conclusion, despite the dataset’s diversity, the proposed system performs well. There is a no-
table diversity among patches within the same class, with each class containing various crop types
and disease types. Each crop type’s leaves display unique shapes and textures, while noticeable
variations exist in the vein patterns of leaves. Moreover, diseases exhibit distinct symptoms, with
significant differences observed among them. Some symptoms manifest as spots, while others
cause changes in the color and texture of the images. Figure 3.11 illustrates the diversity present
in the dataset. The proposed system provides an adaptable and highly beneficial solution for
agriculture. Its ability to detect disease infections in crops, regardless of the specific disease
or crop type, makes it applicable across various crops and diseases. This versatility is particu-
larly advantageous in real-world farming scenarios characterized by diverse crops and potential
threats from various diseases. In such situations, the system aids in the timely identification and
efficient management of diseases.

Figure 3.11: Dataset samples: Examples.

Imane BOUACIDA Ph.D. Dissertation



Chapter 3. Deep Learning Approach for Cross-Crop Plant Disease Detection 81

3.4 Conclusion

This chapter presents a new, generalized system to address the plant disease recognition problem
based on a novel approach. This approach relies on a modified version of a deep convolutional
network designed for a small input size, known as the Small Inception. The proposed system
demonstrates the capability to distinguish between unhealthy and healthy leaves, irrespective
of leaf crop type or disease. This achievement is facilitated by an additional preprocessing step
introduced before the classification process, which involves processing patches of the leaf rather
than the entire leaf. The splitting of images into small patches helps remove the classifier’s
reliance on the leaf structure while also enhancing the dataset with real data. Furthermore, the
system exhibits the ability to generalize the detection process of infections across various leaf
and disease types, even those not encountered during the classifier’s training phase.

The proposed system also surpasses other state-of-the-art techniques, which often rely on special-
ized methods for particular crops or diseases. In contrast, our system is a generalized approach
that utilizes the same model for different crop and disease types. This distinction highlights the
versatility and effectiveness of our approach compared to methods that are limited to specific
applications.
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4.1 Introduction

As mentioned in the previous chapter, the deep learning approach is the preferred method in
plant disease detection. Building upon the approach outlined previously, we propose a new
generalized system for detecting multiple diseases from the same leaf, along with determining
the extent of all diseases present on the leaf. The main objectives of our proposed approach are
to detect the presence of multiple diseases in the leaf simultaneously, identify each disease type,
generalize the process of multi-disease detection to all crop types, calculate the prevalence rate
of each disease, and assess the overall extent of all diseases present on the leaf. To design such
a system, several questions need to be addressed.

4.1.1 Research questions and hypotheses

RQ1. How to detect the presence of multiple diseases in a leaf simultaneously from
any crop type?

Sometimes, the issue of plant disease infection exacerbates and poses a greater threat when
a plant is infected with multiple diseases at the same time. To automatically recognize
this multi-disease infection based on deep learning, it is necessary to have a dataset en-
compassing all possible infection scenarios, including diverse plant types and diseases. As
demonstrated in the previous chapter and proven by research [192], the model’s training
can be influenced by the crop disease type, and the extracted features may not be extend-
able to other types of diseases and crops. Therefore, the model for recognizing multi-disease
infections needs to be trained on such cases. However, obtaining images of various diseases
affecting different crops is very challenging, but it is not impossible because there are mil-
lions of plants in the world that can be infected with millions of diseases, so it requires a lot
of effort, time, money, and luck. Consequently, the challenge of simultaneous multi-disease
detection is not yet adequately addressed.

In response to these challenges, we propose a method to identify each disease separately
from others present on the same leaf, regardless of the crop type. Our approach involves
isolating each disease instance from others and from the crop type. By isolating each disease
separately and eliminating the influence of crop type extension, our solution enhances the
generalizability and applicability of the model across diverse agricultural contexts.

RQ2. How to isolate each disease type from other diseases affecting the same leaf
and from the crop type?
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To ensure the effective isolation of each disease type from other diseases and crop types,
the approach involves training the model on small leaf pieces. These pieces isolate each
disease-specific feature, rather than relying on entire images containing leaves with distinct
diseases and crop characteristics. These pieces extracted from the leaves serve to mitigate
the influence of specific crop structures and characteristics while also isolating each disease
symptom.

This novel approach involves splitting the image of a leaf into smaller patches, thereby
facilitating the extraction of leaf pieces that isolate each disease type and eliminate crop-
specific characteristics and features. By training the model on these isolated leaf pieces, we
aim to ensure that it learns features that are specific to each disease type and applicable
across different crop types and agricultural contexts. This approach prevents the model
from being influenced by specific crop characteristics and promotes the acquisition of more
generalized disease detection capabilities.

Furthermore, by training deep-learning models to learn features specific to each disease
type from patches extracted from diverse crop types, we guarantee the complete elimination
of crop-specific influences during training. This ensures that the disease features extracted
from a specific crop can extend to other crops.

RQ3. How to calculate the prevalence rate of each disease and assess the overall
extent of all diseases present on the leaf?

Our proposed system integrates a feature enabling the calculation of the prevalence rate of
each disease on the leaf, thereby assessing the overall extent of all diseases present. This
provides valuable insights for further analysis and decision-making. Dividing the leaf into
small patches allows the determination of the percentage of healthy and disease-infected
parts within the leaf, facilitating the quantification of each disease’s prevalence rate and
its impact on the leaf.

According to the research questions, we have defined criteria for the proposed system. The
system to detect the presence of multiple diseases in a leaf simultaneously, regardless of the
crop type, involves recognizing each disease type separately from others and disregarding the
crop type (RQ1). To achieve this, we need to isolate each disease type from others affecting
the same leaf and from the crop type. This can be accomplished by splitting the leaf image
into small patches and using all patches extracted from the same disease to extract the features
of that disease, along with using healthy patches extracted from all crop types to extract the
features of healthy leaves. Subsequently, the deep learning model should be trained on these
patches (RQ2). By counting disease-specific patches, we can calculate the prevalence rate of
each disease, thereby determining the extent of all diseases present in the leaf (RQ3).

The structure of the remaining chapter is as follows. Section 4.2 outlines the proposed methods
and the materials employed. Section 4.3 provides an analysis of the results obtained. Finally,
Section 4.4 offers the conclusion of our chapter.

4.2 Materials and methods

4.2.1 Dataset

The PlantVillage dataset was utilized in this contribution. For more details, please see Sections
3.2.1 and 2.3.1.
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4.2.2 A generalized method for simultaneous multi-disease recognition from
the same leaf

Several factors contribute to plants becoming infected with multiple diseases simultaneously
during their life cycle. Each disease exhibits its own set of external and internal symptoms,
which typically manifest in the internal or external characteristics of the plant. These symptoms
can result from exposure to various pathogens such as bacteria, fungi, microscopic animals, and
viruses [96]. Leaves are commonly the first part of the plant where external symptoms appear
[47]. The symptoms of diseases are often distinctive, aiding in the differentiation of specific
diseases from others. However, these distinctive symptoms of the disease affect all plants in
the same way, causing the same apparent symptoms. As depicted in Figure 4.1, examples of
the infection of two diseases, Black rot, and Bacterial spot, on two different crops, potato, and
pepper leaves, produce similar symptoms.

Detecting infections with multiple diseases simultaneously is a complex and challenging task.
Since each disease exhibits its unique set of symptoms, our approach involves identifying the
symptoms of each disease individually, independent of other diseases affecting the leaf. Fur-
thermore, considering that each disease affects all plants uniformly, we propose identifying them
solely based on their symptoms, irrespective of the crop type. This lays the foundation for our
proposed method, which aims to simultaneously identify multiple diseases from the same leaf.
We suggest detecting each disease’s symptoms independently, without consideration of the crop
type.

(a) (b) (c) (d)

Figure 4.1: The examples of disease symptoms include: (a) Black rot infection on a potato
leaf, (b) Black rot infection on a tomato leaf, (c) Bacterial spot infection on a peach leaf, and

(d) Bacterial spot infection on a pepper leaf.

4.2.3 Proposed system

We have introduced a system designed to identify infections with multiple diseases simultane-
ously, regardless of the crop type, based on the method mentioned above. We implemented the
proposed method in a real-world scenario and developed an approach to isolate each disease
independently from others, without considering the crop type. After applying this approach to
the dataset, we trained the CNN model with the new dataset. Upon completion of the training
process, the resulting system can detect and classify diseases while providing information about
the extent of the disease in the leaves. The details of the proposed approach and model are
presented as follows. Figure 4.2 provides a general presentation of the proposed model.

4.2.3.1 Isolation technique

This technique involves dividing each leaf into smaller patches and processing them individually.
Each patch will undergo separate prediction, and the results of all the patches will be combined
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Figure 4.2: Flowchart of the proposed classification model based CNN

to determine the set of diseases present in the leaf or the overall health status of the leaf. This
approach is employed instead of analyzing the entire leaf to detect the set of diseases infecting
it. These patches ensure that each disease is effectively and separately isolated from others.
Furthermore, these patches do not contain any information about the crop type, eliminating the
characteristics related to the crop type. This allows for the generalization of the multi-disease
detection process to any crop type. During the learning process, the CNN model extracts
features related to both the disease and the crop. However, by processing patches that do not
contain any crop type information, we focus solely on the disease. This ensures that only features
relevant to the disease are extracted, and these features can be extended to new types of crops,
as demonstrated in [96].

To implement the proposed method, each leaf image (I_D) from class (D) in the dataset is
divided into equal square patches (P ) sized as 32 × 32 pixels, as demonstrated in Equations 4.1
and 4.2. The criteria for choosing this size are to make the patches as small as possible while
ensuring that each patch can represent one specific disease and to maintain compatibility with
smaller CNN architectures. If the image dimensions are not a multiple of 32, a modification is
made to allow the system to process images of any size. The resizing of the image is done to the
closest multiple of 32.

ID = {P1, P2, . . . , PN_P } (4.1)

N_p = (H/h)× (W/w) (4.2)
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Where N_p is the number of patches extracted from one image, H is the image width, W is the
image height, h is the proposed patches width, and W is the proposed patches height.

Every image in the PlantVillage dataset, which was originally sized at 256 × 256 pixels, needs
to be split into a set of patches that are 32 × 32 pixels in size. A quotient of 8 is obtained by
dividing the image width (height) by the patch width (heigh). This indicates that each image
is divided into a grid consisting of 8 rows and 8 columns, resulting in a total of 64 patches. A
mathematical depiction of the process for this splitting is provided by Equations 4.3 and 4.4.

N_p = (256/32)× (256/32)

N_p = 8× 8

N_p = 64

(4.3)

ID =

8∑
i=1

8∑
j=1

Pij

ID = {P11, P12, . . . , P88}

(4.4)

After the image is split, noise may be present in the dataset. To remove this noise, we calculate
the percentage of black pixels in each patch based on the RGB color of each pixel, as described
in Equation 4.5. Using this percentage, we determine whether or not to remove the patch as
follows: First, completely black patches (100% black pixel percentage) are removed because they
don’t contain any leaf parts. Second, we establish a pixel percentage threshold to closely match
the attributes of the PlantVillage dataset, especially the approximate black pixel percentage in
the original image, which is around 50%. Patches with a black pixel percentage exceeding this
threshold are also eliminated, as illustrated in Equation 4.6. This strategy ensures that the
outcomes closely resemble the attributes of the original image, thereby maintaining consistency
with the dataset. Figure 4.3 illustrates the detailed processes of image splitting and the removal
of unnecessary patches from two leaves, grape and apple, infected with the Black rot disease.

B =

N∑
i=1

δ(Ri = 0 ∧Gi = 0 ∧Bi = 0)

B_P =
B

TotalNumberofP ixels
× 100

(4.5)

Where B is the black pixel number in the patch, B_P is the black pixel percentage of the
patch, N is the total image pixels number of, R_i, G_i, and B_i are the red, green, and blue
components of the i-th pixel, respectively. δ() is the counter delta function, which is equal to 1
if the condition inside is true and 0 otherwise.

ID = {PD | PD ∈ ID, and black pixels percentage B_P ≤ selected black pixels persentage}
(4.6)

All split patches from the PlantVillage dataset underwent visual inspection to determine their
class label. The labeling criteria were as follows: patches originally split from healthy leaves
were labeled as healthy. Patches split from each disease-type leaf contained two types of patches:
patches containing healthy leaf pieces without any signs or symptoms of the disease type, and
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(a)

(b)

Figure 4.3: Image splitting examples : (a) Black rot infected grape leaf, (b) Black rot infected
apple leaf.

patches containing infected leaf pieces presenting signs or symptoms of that disease type, as
presented in Equation 4.7. The healthy patches were labeled as healthy, while the infected
patches were labeled with the respective disease type of the original image from which the patch
was extracted, as illustrated in Equations 4.8 and 4.9. An example of labeling of split patches
extracted from two leaves, grape and apple leaves infected with the black rot disease, is presented
in Figure 4.4. The infected patches extracted from the two leaves are identified as belonging to
the black rot class, while the healthy patches extracted from both leaves are designated as the
healthy class.

ID = {PH | PH ∈ ID, and healthy} ∪ {PD | PD ∈ ID, and Infected with diseas D} (4.7)

H =

N_c∑
c=1

N_i_c∑
i=1

{PH | PH ∈ IDi, and healthy} (4.8)

D =

N_c∑
c=1

N_i_c∑
i=1

{PD | PD ∈ IDi, and infected with disease D} (4.9)

Where N_c is the number of dataset classes, N_i_c is the number of class C images.

4.2.3.2 The new PlantVillage dateset

Table 4.1 presents the outcomes of each class in the PlantVillage dataset after splitting all the
images and removing all unnecessary patches.
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Figure 4.4: Data labeling examples : (a) Black rot infected grape leaf, (b) Black rot infected
apple leaf.

Table 4.1: The PlantVillage dataset class details.

Disease name Crop name Number
of sam-
ples

Number
of patches

Number
of un-
healthy
patches

Number
of healthy
patches

Bacterial spot Peach 2297 60889 40187 20702

Bacterial spot Pepper, bell 997 36250 19097 17153

Bacterial spot Tomato 2127 72774 38222 34552

Black rot Apple 621 20671 4992 15679

Black rot Grape 1180 41174 18757 22417

Cedar apple rust Apple 275 8104 5831 2273

Cercospora leaf spot gray leaf spot Corn (maize) 513 25138 22738 2400

Common rust Corn (maize) 1192 59798 56887 2911

Early blight Potato 1000 37306 19097 17153

Early blight Tomato 1000 30999 16850 14149

Esca (black measles) Grape 1384 47236 27737 19499

Haunglonbing (Citrus greening) Orange 5507 194626 194626 0

Healthy Apple 1645 48693 0 48693

Healthy Blueberry 1502 38080 0 38080

Healthy Cherry (including
sour)

854 28465 0 28465

Healthy Corn (maize) 1162 74030 0 74030

Healthy Grape 423 16136 0 16136
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Table 4.1: The PlantVillage dataset class details.

Disease name Crop name Number
of sam-
ples

Number
of patches

Number
of un-
healthy
patches

Number
of healthy
patches

Healthy Peach 360 7081 0 7081

Healthy Pepper, bell 1478 54876 0 54876

Healthy Potato 152 5505 0 5505

Healthy Raspberry 371 12723 0 12723

Healthy Soybean 5090 190448 0 190448

Healthy Strawberry 456 16904 0 16904

Healthy Tomato 1591 48173 0 48173

Late bligh Potato 1000 33730 16242 17488

Late blight Tomato 1909 49721 28769 20952

Leaf mold Tomato 952 22370 14596 7774

Leaf blight (Isariopsis leaf spot) Grape 1075 43106 43106 0

Leaf scorch Strawberry 1109 41062 39752 1310

North leaf blight Corn (maize) 985 46769 40987 5782

Powdery mildew Cherry (including
sour)

105 35822 35822 0

Powdery mildew Squash 1835 83457 83457 0

Septoria leaf spot Tomato 1771 51360 34377 16983

Spider mites two spotted spider
mite

Tomato 1667 41933 15110 26823

Target spot Tomato 1404 44800 6086 38714

Tomato yellow leaf curl virus Tomato 5357 155739 155739 0

Tomato mosaic virus Tomato 373 7384 5209 2175

Scab Apple 630 22984 10998 11986

Total Total 54305 1860316 1014154 846162

The Table 4.2 illustrates the distribution details of the patches in the newly generated dataset
after labeling. The dataset comprises a total of 1860316 patches, categorized into 21 classes,
including 20 disease classes, each representing a specific disease type, and one healthy class.
Among these, 8416162 patches belong to the healthy class, while the remaining 1014154 patches
are distributed among the disease classes.
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Table 4.2: The new PlantVillage dataset details.

Class Disease name Crop name Number of
patches

Total num-
ber of class
patches

C0 Bacterial spot Peach 40187

Pepper, bell 19097

Tomato 38222 97506

C1 Black rot Apple 4992

Grape 18757 23749

C2 Cedar apple rust Apple 5831 5831

C3 Cercospora leaf spot gray leaf spot Corn (maize) 22738 22738

C4 Common rust Corn (maize) 56887 56887

C5 Early blight Potato 37980

Tomato 16850 54830

C6 Esca (black measles) Grape 27737 27737

C7 Haunglonbing (citrus greening) Orange 194626 194626

C8 Healthy Apple 78631

Blueberry 38080

Cherry (including sour) 28465

Corn (maize) 85123

Grape 58052

Peach 27783

Pepper, bell 72029

Potato 26319

Raspberry 12723

Soybean 190448

Strawberry 18214

Tomato 210295 846162

C9 Late blight Potato 16242

Tomato 28769 45011

C10 Leaf mold Tomato 14596 14596

C11 Leaf blight (isariopsis leaf spot) Grape 43106 43106

C12 Leaf scorch Strawberry 39752 39752

C13 North leaf blight Corn (maize) 40987 40987
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Table 4.2: The new PlantVillage dataset details.

Class Disease name Crop name Number of
patches

Total num-
ber of class
patches

C14 Powdery mildew Cherry (including sour) 35822

Squash 83457 119279

C15 Septoria leaf spot Tomato 34377 34377

C16 Spider mites two spotted spider mite Tomato 15110 15110

C17 Target spot Tomato 6086 6086

C18 Tomato Yellow leaf curl virus Tomato 155739 155739

C19 Tomato mosaic virus Tomato 5209 5209

C20 Scab Apple 10998 10998

Total 1860316 1860316

4.2.3.3 Classification and assessment of diseases extent

We propose processing the image to detect diseases, as outlined in Section 4.2.3.1. The image
is split into non-overlapping patches of size 32 × 32 pixels, and all the unusful patches are
eliminated. Each patch is predicted separately, and after predicting all the patches, the set of
disease classes that infect the processed image is defined, as presented in Figure 4.5. Predicting
each leaf patch separately allows us to determine the number of patches presenting each disease
type, effectively determining the prevalence rate of each disease type and thus assessing the
extent of all diseases affecting the leaf. As depicted in Equation 4.10, the prevalence rate (PDr)
for each disease (D) is calculated by dividing the number of patches infected with the disease
(D) by the total number of patches. The overall extent of all diseases in the leaf (E) is then
determined by summing up the prevalence rates of all diseases infecting the leaf.

PDr =
PD ∗ 100
PH + PU

E =
n∑

i=1

PDri

(4.10)

Where PD is the number of patches infected with the disease type D, PU is the number of all
infected patches and PH is the number of healthy patches, i is the number of diseases infecting
the leaf.

4.2.4 CNN networks

The small Inception architecture was chosen as the CNN architecture in our proposed model.
The detailed architecture of the model and the rationale for choosing this structure are outlined
in Section 3.2.3. Two other CNN architectures, MiniVGGNet and LeNet5, were selected to
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Figure 4.5: Flowchart of the prediction process and calculation of prevalence rate and extent
of the diseases in the leaf.

perform two additional experiments with the new dataset. This enabled a comparison of the
results obtained with these two CNN models with the results of the small Inception architecture,
thereby evaluating the effectiveness of the smaller Inception architecture.

4.2.5 Experimental setup

The three models were trained from scratch using a mechanism that involved extensive experi-
mentation with various hyperparameter combinations. Through empirical testing, we identified
the optimal parameter values for each model, aiming to achieve the best performance on our
dataset while ensuring generalizability and preventing overfitting. Table 4.3 provides an overview
of the explored hyperparameters and the selected values for the three models. We employed the
ADAM optimization technique, utilizing its default parameters for all three models. Implemen-
tation was done in Python using the TensorFlow library, and experiments were conducted on
Google Colab with GPU support.

Table 4.3: Hyperparameters configuration

Hyperparameter Values explored Small Incep-
tion selected
values

MiniVGGNet
Selected val-
ues

LeNet5 se-
lected values

Batch size 16, 32, 64, 128, 256 32 32 32

Epochs 1,2,...,1000 451 505 200

Learning rate 0.00005, 0.00002, 0.00001, 0.0005,
0.0002, 0.0001, 0.005, 0.002, 0.001,
0.01

0.001 0.00002 0.0001

The dataset was split into two sets as follows: 80% of the dataset (1,488,261 images) was allocated
for the training set, while the remaining 20% (372,055 images) was reserved for the testing and
validation set.

Imane BOUACIDA Ph.D. Dissertation



Chapter 4. Deep Learning Approach for Simultaneous Multi-Disease Detection on the Same
Leaf 94

4.3 Results and discussion

This section evaluates the proposed techniques, focusing on the generalization of multi-disease
detection from the same leaf. Firstly, the results of the comparative experiment were assessed
to demonstrate the performance of the employed CNN architectures. The evaluation was based
on several classification performance metrics, including accuracy, loss function, and individual
class accuracy. Secondly, to address imbalanced datasets and conduct a more comprehensive
assessment of the model’s performance, confusion matrices and individual class accuracy were
utilized. Finally, the effectiveness of the model’s performance was analyzed based on the evalu-
ation process.

4.3.1 Results of the comparative experiments evaluating the performance
of CNN models

Table 4.4 presents the training outcomes of the chosen CNNs. Figures 4.6, 4.7, and 4.8 illustrate
the evolution of accuracy and loss function on the training set for all the different models.
Initially, all CNN models exhibit rapid progress during the training phase. However, as the
number of epochs increases, the convergence rate slows down, eventually leading to optimal
performance for each model. Similarly, the loss function initially decreases quickly, followed by
a gradual decline until reaching the minimum.

Although the Small Inception model does not demonstrate the fastest convergence, it outper-
forms the other CNNs, achieving an accuracy exceeding 0.9181. Conversely, MiniVGGNet model
fails to surpass the accuracy threshold of 0.8338 and exhibits slower convergence. LeNet5 model,
while converging rapidly, achieves the lowest recognition accuracy, peaking at 0.8306.

In terms of the loss function, the Small Inception model outperforms both MiniVGGNet and
LeNet5 models. Specifically, the Small Inception model achieves a minimum loss function value
of 0.2385, while MiniVGGNet and LeNet5 models reach higher loss function results of 0.5177
and 0.5223, respectively.

Table 4.4: Training performances of the three CNN models

CNN model Accuracy Loss

Small Inception 0.9181 0.2385

MiniVGGNet 0.8338 0.5177

LeNet5 0.8306 0.5223

The classification performance of the three CNN models on the testing set is displayed in Table
4.5. It shows that while the LeNet5 and MiniVGGNet models perform similarly, the Small
Inception model significantly outperforms them. The Small Inception model achieved a test
accuracy above 0.9057 and minimized the loss function to 0.2954. In contrast, the accuracy of
the MiniVGGNet model was 0.8024 with a minimized loss of 0.6006, while LeNet5 achieved an
accuracy of 0.8072 with a minimized loss of 0.6099.

Table 4.6 presents a comprehensive overview of the overall accuracies achieved for each dis-
ease class across all three CNN architectures. Small Inception stands out as the top performer,
exhibiting the highest accuracies across all disease classes. The robust performance of Small
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Figure 4.6: Evolution of loss and accuracy on the training set for Small Inception

Figure 4.7: Evolution of loss and accuracy on the training set for MiniVGGNet

Figure 4.8: Evolution of loss and accuracy on the training set for LeNet5

Inception is particularly notable, as it demonstrates notable disparities when compared to the
accuracies achieved by the other two CNN architectures. These results demonstrate the ef-
fectiveness and superior discriminative capabilities of the Small Inception model in accurately
classifying instances across a diverse range of disease classes within the dataset.

In summary, the evaluation results highlight the Small Inception model as the top performer
among the three CNN models. Its higher accuracy and superior performance in identifying
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multi-disease infections on the same leaf validate its effectiveness in our proposed system.

Table 4.5: Testing performances of the three CNN models

CNN model Accuracy Loss

Small Inception 0.9057 0.2954

MiniVGGNet 0.8024 0.6006

LeNet5 0.8072 0.6099

Table 4.6: Accuracies obtained for individual disease classes using the employed CNNs.

ClasslDisease name Small Incep-
tion

MiniVGGNet LeNet5 Small In-
ception with
class weight

C0 Bacterial spot 80.87 64.33 61.39 84.56

C1 Black rot 73.97 56.00 36.87 78.73

C2 Cedar apple rust 74.37 39.67 42.45 86.97

C3 Cercospora leaf spot Gray leaf spot 67.04 37.40 55.24 73.30

C4 Common rust 93.21 85.53 86.80 92.07

C5 Early blight 76.97 48.21 50.63 75.46

C6 Esca (Black Measles) 82.82 70.58 73.80 89.52

C7 Haunglongbing (Citrus greening) 93.72 84.86 74.80 91.20

C8 Healthy 96.03 94.25 95.03 91.87

C9 Late blight 67.54 48.11 52.42 72.38

C10 Leaf Mold 73.25 39.89 41.55 83.56

C11 Leaf blight (Isariopsis Leaf Spot) 89.13 75.55 77.33 86.47

C12 Leaf scorch 91.18 73.77 78.44 96.05

C13 Northern Leaf Blight 78.65 69.33 54.30 80.65

C14 Powdery mildew 93.04 67.89 74.82 92.88

C15 Septoria leaf spot 71.75 57.09 57.48 80.64

C16 Spider mites Two spotted spider mite 73.36 32.46 35.27 74.32

C17 Target Spot 45.89 20.11 18.73 59.60

C18 Tomato Yellow Leaf Curl Virus 93.54 81.04 78.82 91.89

C19 Tomato mosaic virus 73.89 42.51 41.97 79.84

C20 Scab 77.45 40.04 43.11 85.81
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4.3.2 Results of imbalanced dataset handling and performance analysis of
the proposed method

To analyze the performance of the proposed method in recognizing disease symptoms from
patches, each class’s results and failures have been analyzed separately. Based on the individual
class accuracies of the Small Inception model presented in Table 4.6 and the top values of the
confusion matrix presented in Figure 4.9, it is evident that the results are biased for some classes,
indicating the clear impact of class imbalance. In the following sections, we delve into the selected
solution to address the dataset’s imbalance and thoroughly examine the final outcomes of the
proposed system, focusing on its performance.

4.3.2.1 Imbalanced dataset handling results

To mitigate the challenge of the dataset imbalanced, a widely employed algorithmic technique
involves incorporating class weights during model training. This strategy is presented by assign-
ing specific weights to each of the 21 classes represented in the dataset. Classes with a larger
proportion of images are assigned lower weights, while classes with a smaller representation
are assigned higher weights. Consequently, the CNN model prioritizes the accurate prediction
of instances from the minority classes, thereby addressing the imbalance in the dataset. The
Small Inception model was trained with class weights, following the same rigorous experimen-
tal setup and methodology. To implement class weights effectively during model training, the
class_weight module from sklearn.utils library was employed. This module facilitates the com-
putation of class weights based on the distribution of class labels in the dataset, ensuring a
balanced representation during training.

As depicted in the confusion matrix presented in Figure 4.9, the utilization of class weights is
observed to have a good impact on the performance of the model. By assigning specific weights
to each class, the model demonstrates a significant improvement in its ability to recognize and
classify the symptoms associated with various diseases. This approach effectively addresses the
challenge of severe class imbalance, allowing the model to allocate more attention to the accurate
prediction of instances from minority classes. Consequently, the model’s overall performance is
notably enhanced, resulting in more reliable and robust disease recognition and classification.

4.3.2.2 Performance analysis of the proposed method

To thoroughly assess the performance of the new system (Small Inception with class weights),
we conducted a detailed analysis of the results and failures for each class. This involved studying
the misclassification errors derived from the confusion matrix (bottom values in Figure 4.9). The
analysis uncovered the following findings:

Bacterial spot class (C0): The presence of Bacterial spot disease manifests as spots on the
leaves, initially appearing as light green and potentially transitioning to yellow or brown hues
over time. In some cases, patches containing small, light green, and yellow spots are misclassified
as healthy or mistaken for another disease exhibiting similar symptoms.

Black rot class (C1): The manifestation of brown spots is a common symptom of black
rot disease. However, these spots can be mistaken for those induced by Esca (Black Measles)
disease due to their similar appearance. This resemblance occasionally results in challenges when
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Figure 4.9: Comparison of confusion matrices from the Small Inception CNN: unbalanced
(top values) vs. balanced (bottom values)

distinguishing between the two diseases, particularly when dealing with patches that exhibit
smaller spots.

Cedar apple rus class (C2): Patches showing small spots and initial signs of discoloration,
characteristic of these diseases, were incorrectly categorized as other diseases sharing similar
symptoms, such as scab, healthy, late blight, and bacterial spot.

Cercospora leaf spot Gray leaf spot (C3): The notable resemblance among the symptoms
seen in the patches exhibiting small disease spots affected by cercospora leaf spot, gray leaf
spot, and northern leaf blight, results in the misclassification of patches initially identified as
cercospora leaf spot or gray leaf spot, which are erroneously labeled as northern leaf blight.
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Common rust class (C4): The occurrence of small brown spots, a shared symptom between
common rust and northern leaf blight diseases, resulted in misidentifying common rust patches
with these spots as northern leaf blight infections.

Early blight class (C5): The symptoms characteristic of early blight disease involve the
appearance of lesions on leaves, accompanied by browning or yellowing of the affected leaf
tissue, along with leaf curling. These manifestations resemble the symptoms of late blight
disease, potentially causing confusion between the two conditions. Furthermore, the occurrence
of small yellowing areas within the patches can exacerbate the misclassification, labeling them
as healthy.

Esca (Black Measles) class (C6): Similarly to black rot disease, some patches with small
spots were misclassified as black rot due to the similarity of the brown spots caused by both
diseases.

Haunglongbing (Citrus greening) class (C7): The yellowing of leaves is a prominent symp-
tom of huanglongbing, which can be difficult to distinguish from the normal variation in leaf
color. This ambiguity surrounding the yellow blotchy mottling of leaves has led to uncertainty
and misidentification between healthy patches and those impacted by huanglongbing disease.

Healthy class (C8): Misinterpretation of patches displaying a light green hue is the most
frequent misclassification error encountered in the healthy class. This confusion stems from the
fact that several diseases manifest symptoms such as leaf yellowing, and in certain instances, the
early stages of yellowing may resemble a light green color.

Late blight class (C9): As previously discussed, the symptoms of both early blight and late
blight diseases exhibit remarkable similarity, which can lead to identical misclassification errors.

Leaf Mold class (C10): Leaf mold typically manifests with initial symptoms of leaf yellowing.
Instances where this yellowing is not distinctly visible or apparent may have been misclassified
as healthy.

Leaf blight (Isariopsis leaf spot) class (C11): The presence of leaf wilting, accompanied
by browning and yellowing of leaves, may result in the misclassification of certain patches as
leaf scorch disease. This misidentification arises due to the similarity between the symptoms
observed in these patches and those characteristic of leaf scorch disease, leading to confusion
and failure in classification.

Leaf scorch class (C12): The existence of small yellowing patches can indeed lead to mis-
classifying Septoria leaf spot as a healthy condition. This misinterpretation may arise because
the small yellow patches might not be clearly distinguishable from patches affected by Septoria
leaf spot and those considered healthy.

Northern Leaf Blight class (C13): The model encountered similar challenges when classi-
fying patches affected by northern leaf blight and cercospora leaf spot gray leaf spot disease.
In several instances, the model failed to differentiate between the two diseases and misclassified
several patches as cercospora leaf spot gray leaf spot disease.

Powdery mildew class (C14): Powdery mildew results in the development of white powdery
spots on the leaves. However, patches with relatively small and indistinct symptoms were mis-
classified. Extracting disease characteristics from these patches proved challenging, leading to
their classification as healthy.
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Septoria leaf spot class (C15): The resemblance in symptoms between Septoria leaf spot
and late blight or early blight, including the presence of lesions on the leaves and the browning
or yellowing of affected tissue, results in the misclassification of Septoria leaf spot patches as
late blight or early blight.

Spider mites Two spotted spider mites class (C16): are recognized by the appearance
of small yellow or white spots on the leaves, which can lead to leaf yellowing and browning.
However, patches containing only small spots are often categorized as healthy due to the difficulty
in recognizing these subtle symptoms.

Target Spot class (C17): The quality of the image dataset proved crucial in distinguishing
this disease class. Leaves captured in the image dataset often exhibited unclear symptoms,
particularly those with small spots. This contributed to the system’s failure in recognizing a
significant number of patches in this class.

Tomato Yellow Leaf Curl Virus class (C18): This disease may occasionally cause subtle
changes that are difficult to identify, like yellowing. This can make it difficult for the model to
recognize and categorize those patches as Tomato Yellow Leaf Curl Virus infected. Because of
this, there may be misclassifications in which the model considers certain patches as healthy.

Tomato mosaic virus class (C19): The initial yellowing symptoms of tomato mosaic virus
infection can sometimes appear similar to light green, leading to the misclassification of the
patches as healthy.

Scab class (C20): The appearance of small, olive-green to black lesions or spots on the leaves is
one of the symptoms of this disease. However, some of the patches that contain small olive-green
spots are misclassified as healthy.

4.3.3 Discussion

Numerous deductions can be made from the aforementioned findings. First, the results of the
comparative experiments highlight the superiority of the Small Inception model in terms of clas-
sification performance among the three CNN architectures evaluated (Small Inception, MiniVG-
GNet, and LeNet5). Specifically, the accuracy achieved by the Small Inception model surpassed
that of the other models. Additionally, the model exhibited exceptional proficiency in accurately
classifying the patches, as evidenced by its ability to minimize the loss function to the lowest
possible value. As a result, the strong performance of the Small Inception architecture validates
our choice and underscores its suitability for our proposed system.

Second, the incorporation of class weights played a fundamental role in enhancing the models
performance. Assigning weights to each class according to its relative imbalance within the
dataset enabled the model to learn more efficiently and differentiate between different classes.
This adaptive strategy effectively addressed the challenges arising from severe class imbalance,
ultimately leading to more precise and dependable classification outcomes.

The detailed examination of the failures made by the Small Inception model with class weights
aimed to analyze the misclassification errors for each individual class. Through this analysis, we
deduced that A significant cause of misclassification by the classifier is attributed to patches ex-
hibiting small spots and lesions associated with disease infection. The classifier encountered chal-
lenges in effectively recognizing and precisely classifying such patches. Another significant factor
contributing to misclassification was the classifier’s difficulty in distinguishing between healthy
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patches and those displaying early stages of yellowing symptoms caused by various diseases.
This challenge arose because both healthy patches and those affected by the diseases exhibited a
similar light green coloration. Furthermore, some diseases exhibit overlapping symptoms, such
as similar patterns of spots, lesions, or discoloration. This similarity between symptoms added
complexity for the classifier in accurately distinguishing between different diseases.

In conclusion, despite facing challenges and limitations, the proposed agricultural solution re-
mains adaptable and highly advantageous. Its capacity to detect multiple disease infections
within a single leaf, regardless of the crop type, is especially beneficial in practical farming set-
tings characterized by diverse crops and simultaneous disease threats. In such contexts, the
system plays a crucial role in promptly identifying diseases and effectively managing them.

4.4 Conclusion

This chapter presents an innovative approach utilizing CNN to identify multiple diseases on the
same leaf across different crop types. The method autonomously identifies the symptoms of each
disease without interference from other diseases affecting the same leaf. To achieve this, the leaf is
split into numerous patches, and each patch is analyzed individually. This segmentation process
allows the model to accurately classify each disease based on its corresponding leaf patch. By
adopting this approach, the proposed method effectively overcomes the limitations of traditional
methods, which attempt to identify multiple diseases from the entire leaf.

To validate the effectiveness of our approach, we conducted experiments with three distinct
CNN models: Small Inception, MiniVGGNet, and LeNet5, using the PlantVillage dataset. Re-
sults clearly demonstrated the superiority of the Small Inception architecture over the other two
CNNs. The Small Inception model achieved the highest accuracy and minimized the loss func-
tion, showcasing its proficiency in recognizing leaf patches. Furthermore, we implemented class
weights to address the significant class imbalance in the dataset. This technique significantly
enhanced the model’s ability to discern and classify different classes, leading to improved overall
performance.

Overall, our proposed method, which integrates leaf splitting, the Small Inception architecture,
and class weights, successfully identifies individual disease symptoms within leaf patches. It
offers the advantage of generalizing disease detection across various leaf crop types and disease
categories, even those not present in the training data.
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5.1 Introduction

In this chapter, we propose an intelligent system based on AI to detect diseases on apple tree
branches. The main objectives of our proposed approach are to develop a system that can
automatically detect and segment disease spots on apple tree branches using machine learning
and image processing techniques. However, to design a system capable of identifying diseases
on apple tree branches, several issues must be addressed.

5.1.1 Research questions and hypotheses

RQ1. Why apple tree branches?
Apple trees hold significant economic value globally, contributing significantly to the agri-
cultural and food industry. Apples rank among the most popular and widely consumed
fruits in numerous countries, making them highly sought after in both local and interna-
tional markets. However, apple trees are susceptible to various diseases, which can impede
their growth and productivity. Early and accurate detection of these diseases is crucial for
implementing rapid and effective measures to prevent their spread and minimize losses for
farmers. Traditionally, agricultural experts manually detect diseases affecting apple crops,
a process that is time-consuming, costly, and prone to human errors. In such circum-
stances, AI emerges as a viable solution. Leveraging advancements in machine learning,
image processing, and deep learning algorithms, it becomes feasible to develop AI systems
capable of automatically and accurately detecting disease apple plant.

While many proposed disease detection systems primarily focus on leaf diseases [13, 31,
36, 55, 68, 85, 101, 103, 179, 190] because leaves are typically the first site where plant
diseases appear, others concentrate on detecting fruit diseases [1, 23, 45, 78, 100, 112, 155,
172, 176, 177]. However, it’s worth noting that diseases affecting branches also present
significant challenges. Despite this, research on branch diseases remains relatively scarce.
To address this gap, our work focuses on detecting common apple branch diseases, such as
Nectria cinnabarina, characterized by the development of orange cankers on branches.

RQ2. What is the chosen machine learning approach for our system?
The GMM is proposed because a single-model disease model encounters difficulties when
confronted with issues like image acquisition noise, changes in lighting conditions, and the
existence of multiple surfaces for a given pixel, all at once. Put differently, a unimodal
model would face challenges in accurately depicting the intricate and varied features of
images. This deficiency underscores the requirement for a more advanced approach, such
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as the multimodal GMM [184], which has the capability to more effectively capture the
complex features of disease-related variations in images.

Based on the research questions, we have established criteria for the proposed system. The
system must focus on identifying diseases from trees branches rather than solely from the
leaves, with a specialization in apple trees due to their significant economic importance
(RQ1). It should be built upon a machine learning approach, specifically utilizing the
GMM model, given its capability to capture the multifaceted nature of disease-related
variations in images (RQ2). The remaining chapters are organized as follows: Section 5.2
describes the materials and proposed system. The results obtained are analyzed in Section
5.3. Section 5.4 concludes our chapter.

5.2 Materials and methods

5.2.1 Dataset

The dataset utilized in this contribution was generated by us. This decision was driven by
the absence of a suitable dataset comprising a significant number of images presenting diseased
branches of apple trees. The dataset was collected from various internet sources, comprising 500
images depicting different cases of apple branches infected with Nectria cenabrina disease. The
images displayed diversity in both the color shades of the disease spots and the backgrounds.
The disease spots exhibited various color shades, including light yellow, orange, dark orange,
light red, and dark red. Meanwhile, the backgrounds varied, ranging from blank or single-color
backgrounds to those containing leaves and branches. The Tables 5.1 and 5.2 provide a summary
of the distinctions observed among the images within our dataset.

Table 5.1: Number of images per background variant

Image Type Total Train Test

Trees and leaves Background 116 80 36

Empty background or other 384 264 120

Total 500 344 156

Table 5.2: Number of images per disease variant

Image Type Total Train Test

Dark orange 230 170 60

Light orange 100 60 40

Dark red 60 40 20

Light red 80 50 30

Yellow 30 24 6

Total 500 344 156
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5.2.2 Proposed system

The proposed system for detecting Nectria cenabrina from images of apple tree branches begins
with image acquisition, followed by preprocessing to enhance image quality and precision, thus
facilitating classification. Subsequently, relevant information extraction employs classification
based entirely on GMM, allowing the generation of the segmentation mask by determining the
probability distribution of the disease color. The final step involves disease spot segmentation
based on the created segmentation mask. Figure 5.1 illustrates the proposed system.
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Figure 5.1: General diagram of the disease spot detection process.

5.2.2.1 Acquisition

The input data for the proposed system comprises RGB images captured using either a smart-
phone or a camera affixed to a surveillance drone. Whether acquired from the ground using a
smartphone or remotely via a surveillance drone, these images facilitate the study and diagnosis
of diseases in apple tree branches, providing a comprehensive and detailed perspective of the
situation.

5.2.2.2 Preprocessing

During the preprocessing phase, each image undergoes a series of operations, as illustrated in
Figure 5.2, aimed at enhancing the images and uncovering essential information required for
detecting elements of interest. Following the application of these preprocessing operations, the
images are prepared for analysis and detection, thereby maximizing the precision and reliability
of our system. These operations encompass filtering techniques, contrast enhancement, noise
reduction, among other advanced methods. Through the integration of these preprocessing
steps, we achieve images that are ready for analysis and detection, thereby maximizing the
accuracy and reliability of our system.
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Figure 5.2: The proposed preprocessing process.

The preprocessing phase consists of the following sequence of operations:

5.2.2.2.1 Conversion of color space
The images color spaces were converted from RGB to LAB to represent colors in a more percep-
tually uniform manner. The LAB color space comprises three components: L for luminosity, A
for the green-magenta component, and B for the blue-yellow component. This conversion enables
the extraction of relevant color features by segregating luminosity and color information. LAB
is less susceptible to lighting variations compared to RGB [51], thereby enhancing the robust-
ness of image processing. Therefore, this conversion is effective for tasks disease detection. The
conversion of images from the RGB color space to the LAB color space is accomplished using
the following formula:

L = 0, 299 ·R+ 0, 587 ·G+ 0, 114 ·B
a = (R− L) · 0, 5 + 128

b = (B − L) · 0, 5 + 128

(5.1)

Where R, G, and B denote the red, green, and blue RGB image color channels, and L, A, and
B, represent the LAB image corresponding channels.

5.2.2.2.2 Contrast enhancement
The contrast of the image was enhanced using Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) [120] applied to the luminance channel L within the LAB color space. This
technique aims to improve image quality by increasing the local contrast while minimizing noise.
The CLAHE algorithm works by dividing the image into small regions, called tiles, and equaliz-
ing the histogram of each tile adaptively. This means that histogram equalization is performed
locally on each region, taking into account the specific characteristics of that region. By limit-
ing the enhanced contrast to a predefined level, the CLAHE algorithm preserves the structural
details of the image while avoiding excessive noise amplification. The following pseudo-code
outlines the general steps of the contrast enhancement:

1. Divide the image into fixed-size tiles.

2. Compute the histogram of each tile.

3. Equalize the histogram using an adaptive transfer function for each tile.

4. Perform bilinear interpolation between values of neighboring tiles to avoid edge artifacts.
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5. Reassemble the equalized tiles to obtain the final image with enhanced contrast.

Applying CLAHE to the L channel of the LAB color space enhances the visual quality of the
image by highlighting details and increasing the perception of local luminance variations. This
preprocessing step helps improve the accuracy of disease detection by highlighting important
features in the interest regions.

5.2.2.2.3 Noise reduction
The noise in the "a" and "b" channels of the LAB image was reduced through median filter-
ing. This approach entails substituting pixel values with the medians of adjacent pixels, thus
diminishing unwanted fluctuations. By estimating the current pixel’s value relative to neighbor-
ing pixels, this nonlinear method eliminates outliers and sudden variations, thereby conserving
image contours and vital details. The following pseudo-code outlines the general steps of the
median filtering:

1. Traverse each pixel of the image in the "a" and "b" channels.

2. Each pixel, extracts the neighborhood around the pixel using a defined window size.

3. Sort the values of neighboring pixels in ascending order.

4. Select the median value from the sorted values.

5. Replace the value of the pixel being processed with the obtained median value.

6. Repeat the above steps for all pixels in the image.

Applying median filtering to LAB images aids in noise reduction, preserving crucial color and
texture details while improving overall image quality. This procedure substantially enhances
disease detection accuracy by mitigating undesired variations.

5.2.2.2.4 Threshold and morphological operations
Thresholding is applied to the LAB image’s B channel to generate a binary image. In this
image, pixels surpassing a specific threshold are identified as probable blue areas, indicating
the potential presence of Nectria cinnabarina disease. The following pseudo-code outlines the
general steps of the threshold operation:

1. Traverse each pixel of the image in the B channel.

2. Compare the pixel value with a predefined threshold.

3. If the pixel value is greater than the threshold, assign the value 1 (blue area) to that pixel
in the binary image; otherwise, assign the value 0 (non-blue area).

4. Repeat the above steps for all pixels in the image.

After generating the binary image, morphological operations are employed to improve detection
quality. The closing operation connects disjointed blue areas, resulting in more robust shapes,
while the opening operation eliminates small gaps within the blue regions, leading to smoother
and more uniform shapes. The following pseudo-code outlines the typical procedures involved
in morphological operations:
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1. Apply morphological closing to the binary image.

2. Use a structuring element (e.g., a circular-shaped kernel) to expand and connect blue areas.

3. Repeat this operation for a predefined number of iterations.

4. Apply morphological opening to the resulting image from closing.

5. Use a structuring element to remove small holes within the blue areas.

6. Repeat this operation for a predefined number of iterations.

5.2.2.2.5 Operation "AND" bit-by-bit
To emphasize the region of interest, the "AND" bit-by-bit operation is executed between the
binary image and the original image. This process retains only the binary blue pixels while
masking out the rest of the processed image. Below are the general steps of the "AND" bit-by-
bit operation outlined in pseudo-code:

1. Traverse each pixel of the processed image and the binary image.

2. Perform a "AND" bit-by-bit operation between the pixel values corresponding to both
images.

3. Assign the resulting value to that pixel in a new image that will serve as a mask.

4. Repeat the above steps for all pixels in both images.

The "AND" bit-by-bit operation generates a masked image that accentuates blue pixel areas
present in the binary image, thereby facilitating the detection of Nectria cinnabarina. This
approach improves the accuracy of disease detection by prioritizing pertinent regions.

5.2.2.3 Gaussian Mixture Model

Figure 5.3 illustrates the stages involved in the GMM. The following steps outline the procedures
involved in implementing the GMM model:

5.2.2.3.1 Initialization
First, the intensity of each pixel (Xt) in the LAB color space is utilized for its description.
Subsequently, the probability distribution of the pixel’s value is computed. At the onset of the
disease detection process, the distributions of K Gaussians are initialized with low weight, high
variance, and a predetermined mean for each pixel. We utilized multiple images for Gaussian
mixture learning to acquire a stable model.

5.2.2.3.2 Parameters update
Model updating was done using the K-Means approximation algorithm for possible real-time
applications. Equation 5.2 illustrates how each value of a new pixel is evaluated using the k
Gaussian distributions to observe if the distance between the pixel and each Gaussian is less
than the distribution’s standard deviation.

|Pt − µi|
σi

< 2.5 (5.2)
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In the event that none of the distributions meet the requirements of Equation 5.2, the pixel is
assigned to the branch instead of the disease. The mean, variance, and weight of the current
pixel are substituted for the parameters of the least probable Gaussian using Equations 5.3, 5.4,
and 5.5.

µk = Xt (5.3)

σ2
k = a large initial variance (5.4)

ωk = low weight (5.5)

The following equation is used to update the weights of all Gaussian distributions:

ωk,t = (1− α) · ωk,t−1 + αMk,t (5.6)

where α is the learning coefficient that controls the model’s rate of adaptation. For the Gaussian
corresponding to the disease, Mk,t is 1; for other Gaussian, it is 0. A normalization step follows
weight updating to guarantee that the total of the weights is always equal to 1.

The other parameters of the distributions, as specified in Equation 5.2, are updated using Equa-
tions 5.7, 5.8, and 5.9.

µk,t = (1− φk) · µk,t−1 + φk · Pt (5.7)

σ2
k,t = (1− φk) · σ2

k,t−1 + φk (Pt − µk,t)
T (Pt − µk,t) (5.8)

Where:
φt = α · η (Pt|µk, σk) (5.9)

5.2.2.4 Creation of the mask

Based on the value wk,t/σk,t, the distributions are sorted to ascertain if Xt represents a disease.
Since the disease color tends to stay relatively constant, this order is based on the assumption
that a disease pixel corresponds to a high weight with low variance. The disease is represented
by the first B distributions that satisfy Equation 5.10:

B = argmin
b

b∑
k=1

ωk,t > T (5.10)

The threshold T denotes the lowest percentage of the overall weight that is assigned to the disease
model. When a low T value is selected, the disease turns unimodal. When a scene has both
dynamic and static areas, the model’s use of a single threshold T results in poor classification. In
a dynamic environment, a higher threshold improves classification, but it also leads to inaccurate
disease detections.
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5.2.2.5 Detection

The binary masks obtained for each component are resized to align with the original image
dimensions. Subsequently, these resized binary masks are utilized to mask the original image
through a logical AND operation. This process yields a masked image that accentuates areas
affected by Nectria cinnabarina. The resulting masked image can be visually inspected and
analyzed to evaluate the detection results.

Figure 5.3: GMM stages.

Imane BOUACIDA Ph.D. Dissertation



Chapter 5. Intelligence System for Detecting Diseases in Apple Tree Branches 111

5.2.3 Experimental setup

We conducted extensive testing and empirically adjusted the model configuration parameters to
achieve the best possible results. After thorough analysis, we determined the values presented
in Table 5.3 to optimize the proposed system.

Table 5.3: System parameters

Parameters Values

The number of components of the mixture 2

The type of covariance full

The convergence threshold 1e-3

Non-negative regularization added to the covariance diago-
nal

1e-6

The number of initializations to perform 1

The method used to initialize the weights, means, and accu-
racies

Kmeans

Number of iterations performed before the next print 10

For the parameters of the other methods, we used the default values from the Python APIs.
The experiments were performed on a laptop computer running Windows 10, equipped with an
i7 7700HQ processor operating at 2.80 GHz and 8 GB of DDR4 RAM. We implemented the
algorithms using the Python language in both Jupyter and Google Colab development environ-
ments.

5.3 Results and discussion

5.3.1 Qualitative results

In this section, we will highlight the qualitative and visual aspects of the results achieved by the
proposed system, as detailed in Table 5.4.
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Table 5.4: Results of Nectria cinnabarina disease detection in apple tree branches for selected
test images

# Original image Ground truth Detection

1

2

3

4
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Table 5.4: Results of Nectria cinnabarina disease detection in apple tree branches for selected
test images

# Original image Ground truth Detection

5

6

7

8
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Table 5.4: Results of Nectria cinnabarina disease detection in apple tree branches for selected
test images

# Original image Ground truth Detection

9

10

11

12
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Table 5.4: Results of Nectria cinnabarina disease detection in apple tree branches for selected
test images

# Original image Ground truth Detection

13

14

15

16
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Table 5.4: Results of Nectria cinnabarina disease detection in apple tree branches for selected
test images

# Original image Ground truth Detection

17

18

19

Certainly, the system effectively identified the disease in all test images, showcasing the robust-
ness of the applied method. This proficiency stems from its capability to memorize the proba-
bility distribution of disease-representing pixels. Nevertheless, we observed instances where the
system detected pixels beyond the diseased region, particularly especially in images presenting
abundant vegetation.

This observation may be explained by a reduction in color distinctions when transitioning from
the RGB image representation to the LAB image representation. In the RGB representation,
when aiming to detect the color orange, we modify the values of the Red and Green channels,
maintaining the Blue channel at zero. A common set of RGB values for generating orange is Red
= 255, Green = 165, Blue = 0. Hence, it’s valid to observe the presence of green hues within
the detected orange color.

This could potentially cause The detection system could encounter confusion because certain
plant parts might share color values similar to the color orange. This could clarify why pixels
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outside the affected area are detected, particularly in areas with vegetation. It is imperative to
take this limitation into account when assessing and interpreting the detection system’s results.

5.3.2 Quantitative results

In this section, we will present the results in terms of F-score, recall, and precision to evaluate
the performance of our apple tree branch disease detection system in Table 5.5. These metrics
will allow us to quantify the effectiveness of our approach and identify areas that may require
potential improvements.

Table 5.5: Results in terms of F1-score, recall, and precision for selected test images

# F1-score Recall Precision

1 0.7990421455938698 0.7845387002727359 0.8140919293451742

2 0.7801719325667077 0.8515720204728248 0.7198187062216729

3 0.650347705146036 0.5089246843709185 0.9006163328197226

4 0.9366577906882918 0.893679267072138 0.9839789777061965

5 0.7502691065662002 0.6619183285849952 0.8658385093167702

6 0.8581730769230769 0.8521068576149821 0.8643262873638141

7 0.6115045526810232 0.46205089002948563 0.9038666951506088

8 0.7705454545454545 0.6440729483282674 0.9588235294117647

9 0.7088399605652317 0.7060556464811784 0.7116463213460904

10 0.7140992167101827 0.5723753051970701 0.9491035280508965

11 0.2976092333058532 0.1791563275434243 0.878345498783455

12 0.7486553578816715 0.6263412945655936 0.9303341902313624

13 0.6421428571428572 0.5461725394896719 0.7790294627383015

14 0.6818613485280152 0.7223340040241448 0.64568345323741

15 0.7759965022225461 0.8534220227600577 0.7114510956707643

16 0.37337461300309593 0.23399755524942276 0.923359620243473

17 0.6354403025391681 0.4762714609653385 0.9543979227523531

18 0.7845248685175648 0.6551202856621576 0.9776351614157915

19 0.7160828333655893 0.6441504178272981 0.8061002178649237

Average (all test im-
ages)

0.6792 0.6410 0.8018

5.4 Conclusion

This chapter delved into the utilization of AI for detecting diseases on apple tree branches. An
intelligent AI-driven system was introduced, employing image analysis and machine learning
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techniques to automatically identify disease symptoms on apple tree branches.

The outcomes from our system demonstrate its effectiveness in detecting diseases affecting apple
trees, highlighting its potential to enhance fruit tree health and optimize agricultural yield.
Through the integration of image processing and machine learning techniques, we developed a
system adept at accurately identifying disease symptoms. This empowers farmers to receive
timely alerts, enabling them to take proactive measures to prevent disease spread and minimize
crop losses and fostering agricultural sustainability.
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CONCLUSION AND PERSPECTIVES

In our thesis, we employed AI techniques for detecting plant diseases, with a particular focus on
utilizing machine learning and deep learning methods to identify plant diseases affecting leaves
and branches depicted in crop and plantation images. Following this conclusion, our aim is to
provide an overview of the contributions made in this thesis and to suggest potential future
directions.

The first part of this thesis was dedicated to the state of the art on different AI techniques.
This study allowed us to categorize AI techniques into machine learning and deep learning
as fundamental components. ANNs were highlighted as the bridge between these concepts.
The first chapter addressed this connection, while the second chapter provided an overview of
plant pathology and recent developments in the field of plant disease through deep learning and
machine learning methods. Subsequently, this examination of recent methodologies proposed in
this area allowed us to extract the problems and challenges encountered by existing plant disease
identification and classification systems in the literature.

The second part of this thesis introduces the proposed systems for plant disease detection, which
aim to address the challenges and issues identified during the comparative study conducted in
the first part. This section is divided into three chapters.

Based on the literature reviews, we have identified that the proposed systems lack robustness and
generalization due to inadequate datasets. To address these challenges, in the third chapter, we
proposed a plant disease detection system capable of recognizing healthy and unhealthy leaves
regardless of crop pieces and disease type. The aim of this system is to generalize plant disease
detection across all plant pieces and disease types. This is achieved by splitting the images
into small patches, each containing a small leaf piece. This step removes crop characteristics
and emphasizes disease-related features from the patches. This allows the system to utilize the
extracted features from the training process, initially extracted on very specific types of crops
and diseases, to be extended to all leaves and disease types, even those not seen during the
training phase. Additionally, by predicting each leaf patch separately from the whole leaf, we
can estimate the percentage of unhealthy parts of the leaves, thereby determining the extent of
disease on the leaf. To demonstrate the effectiveness of the proposed system, it was evaluated
using a set of seen crop and disease types during the training process, as well as a set of unseen
crop and disease types during the training process. The results demonstrated the performance
of our system in both sets, outperforming state-of-the-art methods.
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The second challenge identified is that plants can become infected with multiple diseases simulta-
neously during their life cycle. In the fourth chapter, we propose a system capable of recognizing
these simultaneous infections across different plant types. This is achieved by isolating each dis-
ease symptom separately from others infecting the same leaf and minimizing crop-related char-
acteristics. The key to this capability lies in splitting the leaf into small patches, each containing
individual disease symptoms and devoid of crop characteristics. This allows the system to extract
features specific to each disease and extend these features to recognize multi-disease occurrences
across all crop types, even those not seen during the training phase. Additionally, predicting
each leaf patch separately enables the determination of the number of patches infected with a
specific disease, effectively determining the prevalence rate of each disease type and assessing
the extent of all disease types affecting the leaf. Several experiments were conducted to improve
the performance of the proposed system. The results of these experiments were then used to
evaluate the system’s performance, demonstrating the effectiveness of the proposed approach in
identifying individual disease symptoms within leaf patches rather than using the entire leaf.

Another issue not addressed in the literature is the detection of diseases on tree branches,
which we tackled in the fifth chapter by proposing a system capable of detecting such diseases.
This system employs a combination of image processing and machine learning techniques to
automatically identify disease symptoms on tree branches. The image processing techniques
include color space conversion, contrast enhancement, various filtering techniques, thresholding,
and morphological operations such as closing and opening operations. Additionally, the "AND"
bit-by-bit operation is performed between the binary image and the original image, enhancing the
images and revealing essential information necessary for detecting elements of interest. In terms
of machine learning, we utilized a GMM to calculate the probability distribution, enabling the
creation of a segmentation mask used for the detection and segmentation of disease spots. The
model was trained and evaluated using images of tree branches infected with Nectria cinnabarina
disease, and the results of the evaluation demonstrated its adeptness at accurately identifying
disease symptoms.

However, certain challenges hinder the system’s optimal performance. One of these challenges is
its inability to adapt to environmental conditions in real-world scenarios. Therefore, our future
research aims to ensure the model’s performance quality in real-world situations and enhance its
adaptability to various environmental conditions. Additionally, for the deep learning approach
for cross-crop plant disease detection and the deep learning approach for simultaneous multi-
disease detection on the same leaf, instead of employing our current splitting method, a sliding
window approach has the potential to generate multiple patches, thereby enhancing the system’s
disease detection capabilities. Indeed, for the intelligent system for detecting diseases in apple
tree branches, future endeavors are essential to further enhance the performance and accuracy
of disease detection, advancing the system’s robustness and expanding its capability to detect a
broader range of diseases on a wide range of tree branches. This includes exploring new datasets
and conducting comparisons with deep learning algorithms.
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