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ABSTRACT

We have studied the different properties of two kinds of materials; the first one is
composed of two transition metals and one non-metallic Sp element and the second contains
one transition metal and two non-metallic elements. In this thesis we focused on the
electronic, optical, magnetic and magneto-optical properties of the Pd based compounds
PdMnSb, Pd;MnSb, PdX, and PdPX where (X=S and Se). We are also investigate the
structural, electronic and magneto-optical properties of the [rMnZ, with (Z=Al, Sn and Sb).
The calculations are based on the total-energy calculations within the full-potential
augmented plane-wave plus local orbitals (FP-LAPW + LO) method. We have used both the
local density approximation (LDA) and generalized gradient approximation (GGA) for the
exchange and correlation potential with and without including the spin-orbit effect. In order to
investigate the importance of correlation, we have used the (LSDA+U) and (GGA+U). The
structural properties are determined through the total energy minimization and interatomic
forces calculations.
The results exhibit that [rMnZ are ferromagnetic and they are mechanically stable at zero
pressure. The local spin density approximation (LSDA) predicts that the [rMnSb is a half
metallic and the IrMnAl compound has negligible magnetic moment. Furthermore, the
LSDA+U and the GGA+U predict a large magnetic moment. Furthermore, the GGA gives
good values compared with the experimental ones. Our results show that the highest Kerr
rotation arises in the IrMnSb compound, while weak values are found in IrMnAl with all the
approximations used.
We have also investigated the electronic and magneto-optical properties of the Heusler
compounds PdMnSb and Pd,;MnSb. Our LSDA calculations reveal a gap at Ef, predicting a
half metallic nature in PAMnSb, but the LSDA+U and the GGA+U destroy this gap. We show
also that the LSDA+U can produce accurately the optical properties, while the magneto-
optical properties are well reproduced with the LSDA. Furthermore, we found that the
magnetic and magneto-optical properties are sensitive to the change of the U parameter.
The structural and electronic properties of PdX, (X=P, S and Se) are investigated. Our results
show that the studied compounds exhibit a metallic character with LDA. Furthermore, the
LDA+U predicts that PdS, compound is a semiconductor with a narrow gap. The calculated
anisotropic frequency dependent dielectric functions, reflectivity, refractive index and

absorption spectra are obtained and discussed for PAPX where(X=S and Se).



RESUME

Nous avons étudié les différentes propriétés de deux types de matériaux, le premier est

composé de deux métaux de transition et un ¢lément non métallique Sp et le second contient
un élément de transition et deux éléments non-métalliques. Dans cette thése nous avons
focalisé sur I’étude des propriétés 1'électronique, optiques, magnéto-optiques des composés a
base de Pd; Pd,MnSb, PdMnSb, PdX, et PAPX ou X = S et Se, nous avons également étudié
les propriétés des composés [rMnZ, avec Z = Al , Sn et Sb. Le calcul a été effectué¢ en
utilisant la méthode linéaire des ondes planes augmentées a potentiel total plus les orbitales
locales (FP-LAPW + LO). Nous avons utilis¢ 1'approximation de la densité locale (LDA) et
I’approximation du gradient généralis¢ (GGA) pour le potentiel d'échange et de corrélation,
avec et sans I’inclusion de l'effet de spin-orbite. En outre on a étudié I’effet de la corrélation,
nous avons utilisé¢ I’approximation de la densité de spin locale plus le paramétre de Hubbard
U (LSDA + U) et I’approximation du gradient généralisé de la densité plus le paramétre de
Hubbard U (GGA + U)
Les résultats montrent que les composés IrMnZ sont ferromagnétiques et ils sont
mécaniquement stable a pression nulle. L’approximation de la densité de spin locale (LSDA)
prédit que la IrMnSb est un semi-métal et le composé¢ IrMnAl posséde un moment
magnétique négligeable. En outre, LSDA+U (GGA+U) donnent un moment magnétique
important. Alors que les valeurs obtenues avec la GGA sont proches de celles mesurées. Nos
résultats montrent que le composé [IrMnSb posseéde une grande valeur de rotation de Kerr, par
contre celle de IrMnAl est la plus petite avec toutes les approximations utilisées.

Nous avons ¢également ¢étudié les propriétés électroniques et magnéto-optiques des
composés de Heusler PbMnSb et Pb,MnSb. Nos calculs LSDA révelent un gap a Er, donnant
ainsi la nature semi-métallique de PbMnSb, mais la LSDA+U et la GGA+U détruisent ce
gap. Nous avons aussi montré que la LSDA+U produit des propriétés optiques précises, tandis
que les propriétés magnéto-optiques sont bien reproduites avec la LSDA. En outre, nos
résultats montrent que les propriétés magnétiques et magnéto-optiques sont sensibles a la
variation du parametre U.

Les propriétés structurales et électroniques des composés PdX, (X = P, S et Se) sont
étudiées. Nos résultats montrent que les composés étudiés présentent un caractére métallique
avec la LDA, par contre PdS, devient un semi-conducteurs LDA+U. Finalement, les
structures de bande, les éléments du tenseur diélectrique, la réflectivité, 1'indice de réfraction
et les spectres d'absorption sont obtenues et analysées pour les composés ternaires PAPX (X =

S et Se).
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General introduction

INTRODUCTION

Transition metals comprise roughly half of the periodic table of elements; they are
found between the group IIA elements and the Group 1IB elements in the periodic
table. The group IIB is sometimes considered transition elements. This class of
elements is also known as the d-block elements, because the outermost main levels
have incompletely filled d sub-orbitals. Transition Metals are rarely applied in their
pure state; they are most often put in use in the form of alloys that exploit or
strengthen desirable properties and overcome characteristics that limit performance.
These elements readily form alloys with each other [1] or with other non-metals
elements [2].

Over the past two decades, considerable progress has been made in the synthesis
and characterization of compounds containing transition metals. Furthermore, various
types of alloys containing transition metals exhibit special physical, chemical and
mechanical properties that result from choice of the metal and/or manipulation of
composition and manufacturing processes.

In the past few years several compounds with XYZ phase (where one or more
elements are transition elements) have been studied and their crystal structure,
electronic and magnetic properties have been reported in a large number of papers
[3,4]. The interest in these phases represents a normal development of research from
binary to ternary alloys. Since the XY, compounds form the most numerous family in
the binary systems, and new structures are found with the replacement of a partner
atom Y Dby another partner Z. In most cases the ternary compounds have ordered
structures. When a ternary phase crystallizes with a disordered structure and the Y and
Z atoms are statistically distributed on the same sites, this is a structure already found
in binary systems [5,6]. Moreover, many alloys which are established from the
mixtures of transition metal and non-metallic element have gained great scientific and
technological interest recently, due to their use in different areas.

Among this class of materials we find the Heusler alloys. These alloys have two
distinct families; one of which crystallizes in the L2; structure. This family is known
as the full-Heusler alloy and possesses an X,YZ formula [7]. The second family is the
half-Heusler alloy with XYZ formula [8], we will treat it in detail in the next chapter,
and their electronic structure can range from metallic to semi-metallic or
semiconducting behaviour [9]. The Heusler alloys are particularly interesting due to

their very high Curie temperature [10,11] and some of them are already in use as
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elements in multilayered magneto-electronic devices such as magnetic tunnel
junctions and also as giant magnetoresistance spin valves [12]. Several papers have
been devoted to the calculation of the structural, electronic and magnetic properties of
these alloys and recently there has been an increased interest in thin films of this
material both experimentally [13-15] and using first-principles calculations [16,17].
The Mn-based Heusler alloys (XMnZ) belong to a class with interesting magnetic
properties, exhibiting ferromagnetic features like magneto-optical effects and giant
magneto-resistance, a comprehensive study of Mn based compounds have been
performed by Brown et al. [18] and Plogmann et al. [19].

For the other application, the technical development effort directed at layered

transition metal chalcogenides (LTMCs) and their intercalation compounds. This in
part is due to the structural and physical properties of these two-dimensional (2D)
inorganic materials [20-23]. In the general case, these structures consist of infinite
metal chalcogenide layers; within each layer the atoms are bound by strong covalent
interactions, but the layers themselves interact only by weaker van der Waals forces.
Transition-metal chalcogenides, in terms of composition, provide a wide variety of
compounds which crystallize in different structure and many of the chemical and
physical properties of these materials derive from this anisotropic layered structure.
Moreover, these compounds can be used as substrate for other materials and one of
the interesting properties of these materials is the formation of intercalation
complexes with foreign atoms or molecules, organic or inorganic, between the layers
[24-25], because this offers perspectives for the realization of new materials
especially those that can combine different properties in a single material.
Optical recording in general and magneto-optical recording in particular is the subject
of great significance in optical data storage. In this thesis we focused on the effect of
the metal and non-metal elements on the different properties; electronic, optical and
magneto optical properties, using the FPLAPW method within the local spin density
approximation (LSDA) and the generalized gradient approximation (GGA) and with
the on-site Coulomb correction GGA+U and LSDA+U.

This thesis is organized as follows; we briefly review in chapter 1 some of the
most basic understandings of the Heusler alloys and transition metal chalcogenide
compounds and their crystalline structure. In Chapter 2, the formalism of Density
Functional Theory is presented including the essential of the methods and the

approximations for the practical calculations such as the Kohn-Sham-LDA scheme,



General introduction

which is used in this work.  Furthermore, the linearized augmented plane wave
method used throughout this thesis is discussed in chapter 3. The results of this thesis
are divided essentially into two parts which have been mainly devoted to the
calculations of the different properties and the relationship between structural,
electronic, optical and magneto-optical properties in different structures. In Chapter 4
the results of the ab initio calculations for Heusler alloys IrMnZ (Z=Al, Sn and Sh)
are presented. In chapter 5 the electronic and magneto-optical properties and the
influence of the electron-electron interaction and the double-counting corrections on
these properties of the PAMnSb and Pd,MnSb compounds are presented. The last two
chapters (6 and 7) are devoted to the layered transition metal chalcogenides; the sixth
chapter gives the structural and electronic properties of the pseudo-binary compounds
PdX, (X= P, S and Se), while in the chapter 7 we present the electronic and optical
properties of the orthorhombic compounds PdPX (X= S and Se). Finally, we provide
a summary of the ideas presented here and their discussion.
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1. HEUSLER ALLOYS

The Heusler alloys have been the subject of many investigations ever, since the discovery
by Heusler [1] that some alloys of copper-manganese bronze and B subgroup elements, such
as tin, were ferromagnetic although the constituents were themselves non ferromagnetic.
These alloys are a superstructure, at the stoichiometric composition X,YZ, named after its
original discoverer and which are now defined as ternary intermetallic compounds. The first
Heusler alloys studied were crystallizing in the L2; structure which consists of 4 fcc
sublattices. Afterwards, it was discovered that it is possible to leave one of the four sublattices
unoccupied to form the Cly. structure. Later, Bradley and Rodgers investigated an alloy near
the composition CuyInAl which was ferromagnetic when quenched, but practically
nonmagnetic when slow-cooled and were able to show that the changes in magnetic
properties were related to an almost complete change in chemical structure. In 1983 De Groot
et al.[2] predicted some of the X,YZ type Heusler alloys, where X is a high valent transition
metal atom, Y is a low valent transition metal atom, and Z is an Sp element, to be half-
metallic. These classes share simultaneously the property of an energy gap between valence
and conduction bands for electrons of one spin polarization and the property of continuous
bands for the electrons of the other spin polarization. This asymmetric band character reflects
the character of the C1,, structure itself; the minority spin electrons are semiconducting while
the majority-spin electrons keep their normal metallic character. As a consequence, we have
the remarkable situation here that the conduction electrons at the Fermi level are 100% spin
polarized.
Moreover, these compounds are structurally matching with substrate materials and have a
crystal structure compatible with the industrially used zinc blend semiconductors and possess
a high Curie temperature to allow the applications in the devices operating at room
temperature.  Consequently, and due to these properties which have been confirmed
experimentally, Heusler alloys are promising materials for technological applications [3-13]
and become one of the major research interests in the spintronics community as key materials
to develop spin polarized current sources for spintronics devices due to the possibility to study
in the same family of alloys a series of interesting diverse magnetic phenomena like itinerant
and localized magnetism, antiferromagnetism, helimagnetism, Pauli paramagnetism or heavy-
fermionic behavior. The half-metallicity of a Heusler alloy was most convincingly

demonstrated by the high tunneling magnetoresistance (TMR) value [14]



Chapter 01 LITERATURE SURVEY

1.1 CRYSTALLINE STRUCTURE AND COMPOSITION

A comprehensive crystallographic investigation of the structure of this alloy has been
carried out by Bradley and Rodgers on Cu,MnAl [15]. The Heusler alloys are generally
ternary alloys of stoichiometric composition bearing the general formula, X,YZ which have
the L2, structure (Fig. 1.1). In this class of alloys, X and Y are transition elements like Ni,
Co, Pd, Pt, Fe,...etc and Z is an sp-element like Si, Al, Ge,....etc. Although the elements X,
Y, and Z, when combined, may form a single phase structure but there are in principle several
ways of distributing the atoms amongst the four sublattices, where in all cases the chemical
order is preserved. The non-metal Z-coordination of X and Y are of tetrahedral and
octahedral types, respectively, with the shortest metal-metal distances not so much expanded
in comparison with those existing in the pure metals. More generally, these elements can be
denoted by A, B, C and D giving an alloy of the formula ABCD. The unit cell (Fig. 1.1) is
comprised of four interpenetrating free sublattices A, B, C and D with origins at (0 0 0), (I/4
1/4 1/4), (/2 1/2 1/2) and (*4 % %). Since these structures are verified experimentally [16].

@ X (B/D)

O v (@©) ¢

@ Z()

Figure 1.1 The atom position in Heusler alloys (L2, structure).
Furthermore, the Heusler alloys are structurally similar to the zinc blende lattice as shown in
figure 1.2. Zinc blende structures, being composed of two interpenetrating face centered cubic
fcc sublattices, have a considerable volume of open space. Heusler alloys fill up these voids
with additional fcc sublattice. The so called half-Heusler alloys, such as XYZ, contain three
fcc sublattices. While the full Heusler alloys, such as X,YZ, where X=(B,D), Y=C and Z=A,
contain four fcc sublattices which fill up the voids (figure 1.3). In addition to the structural
similarity of Heusler alloys with zincblende structure, some of them have similar lattice
constants. This makes them good candidates for synthesizing single epitaxial layers.

Moreover, several Heusler alloys have been grown on the zinc blende structure [17].
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Figure 1.2 The different ways of filling the four sublattices in the Zinc blende structure, half-
Heusler and full-Heusler alloys

In addition, there are seven well-known principal possible ordered structures, formed from
four interpenetrating fcc sub-lattices A, B, C and D. figure 1.4 show the principal ordered
structures; Az: All lattices identically filled; By: A filled as C, B filled as D; Bj3,: A filled as B,
C filled as D; L,: B filled as D; DO0s,: B, C, and D identically filled; C1: A filled as C, D void;
Clp: D void. In this later, i.e., half Heusler alloys, very different types of behaviour were
observed, from semiconductor to metal from constant paramagnetism to Curie-Weiss
behaviour, from weak ferromagnet to strong half metallic ferromagnet. Since adding three
metals can be give rise to a semiconducting compound when the valence electron
concentration by formula (EC) is 18. Adding (subtracting) one electron on (from) one

crystallographic site gives rise to a metal.

@ Xi(B)
® X,(D)

Cvy©

@ ZA)

Figure 1.3 The four sublatices in the Heusler alloys (L2 structure).

Although it is not often possible uniquely to determine the proportion of each element on each

of the four sub-lattices, an indication of the existing order may be deduced from the
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measurement of X-ray and neutron structure factors. The extent to which the sites as a whole
are filled, or have vacancies, can be ascertained from accurate measurements of the density of
the alloy. In another way several Heusler systems exhibit a martensitic phase transition,

including Ni,MnGa [18].

1.2 ORDER-DISORDER PROCESS

The phenomenon of the ordering of atoms in alloys has been well known for a long time
and it has been investigated experimentally as well as theoretically [19-22]. Its essence may
be defined most generally as the differentiation of the occupation probabilities of various
lattice points by atoms of various alloying components. Thus, a crystal of an alloy is in the
state of order of atoms if such differentiation occurs. It is often connected with the division of
the crystalline lattice into sublattices. In such a situation there may occur a difference between
the occupation probabilities of the lattice points of various sublattices by atoms of various
elements. The state of atomic disorder occurs in a crystal if all lattice points are occupied
randomly by all kinds of atoms. The process of the ordering of atoms in an alloy is a
complicate phenomenon and its detailed description is very difficult and complicated.
A general theory of order in the ternary alloys has been given by Wojciechowski [23,24]. It is
consider the whole crystal, divide the crystalline lattice into sublattices and investigate the
possibilities of the occupation of their lattice points by various kinds of atoms. In the more
general case of these alloys there are considerable ways of arranging the atoms in these
sublattices.
Owing to the infinite possibilities for the ordering of alloys of the X,YZ type Pauly et al.
(1968) chose to consider initially only these arrangements in which each superlattice is filled
either solely by one element or by equal amounts of two elements. In effect, the 13 such
ordering possibilities which they found sample ordering space at discrete points, namely those
points at which the occupation parameters have the discrete values 0, 2 and 1. Although the
elements X, Y, and Z, when combined, may form a single phase structure there is in principle
an infinite number of ways of distributing the atoms amongst the four sub lattices. In another
way, some Heusler structure is formed essentially from the ordered combination of two binary
B, compounds XY and XZ, each of which may have the CsCl structure, for example CoTi and
CoAl yields Co,TiAl. Thus the possibility of forming a new Heusler alloy may be indicated

by the ability of the components to form the B, structure.
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A2 B2

Cl Cly

Figure 1.4 The principal ordered structures in Heusler alloys.

The effects of the temperature on the processes order-disorder of atoms in the some
Heusler alloys have been investigated in which the L2,>B,> A, type of disorder is prevalent.
The critical temperatures for A,>B, and B,>L2; order have been obtained from
measurements of relative intensities of superlattice reflections [25] and the results have been
analysed using a Bragg-Williams model for order-disorder transitions assuming a Lennard-
Jones pair potential [26]. These studies indicated that the transitions proceed according to the
following scheme: L2,>B,2>A,, i.e. two transitions occur: from the structure L2; to B, and
from the structure B, to A, but the possibility of one stage of the process L2,=> A, was
excluded.

Moreover we can recapitulate the transition from the ordered to the most prominent
disordered structures as will be explained in the following: If the Y and the Z atoms are
evenly distributed, the 4a and 4b positions become equivalent. This leads to a CsCl-like

structure, also known as Bs-type disorder. The symmetry is reduced and the resulting space
group is Pm3m . The random distribution of the X and the Y or the X and the Z atoms results

in the BiF;-type disorder (Space group no. 216: Fm3m, DOs). The NaTl-type structure is

10
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observed very rarely. In this structure type the X-atoms, which occupy one fcc sub-lattice, are
mixed with the Y atoms, whereas the X-atoms on the other sub-lattice are mixed with the Z
atoms. This kind of disorder is also known as Bj, a disorder (Space group no. 227, Fd3m).
The X-atoms are placed at the Wyckoff position 8a (0, 0, 0), the Y and Z randomly
distributed at position 8b (1/2, 1/2, 1/2). In contrast to these partial disorder phenomena all
positions become equivalent in the tungsten-type structure with a bec lattice and reduced
symmetry Im3m (A,).
1.3 SPIN POLARIZATION AND HALF METALICITY

For both scientific and technological reasons it is useful to define the electron spin
polarization at Fermi energy of a material, although it is difficult to measure it and must be
calculated from an indirect measurement [27]. The spin polarization at Eg is given by
o ple)-piler)

p?(gF)+p¢(‘9F)

where pT(&r) and p|(gr) are the spin dependent density of states at the &= . The arrows 1, and
|, assign states of opposite spin that are majority and minority states, respectively. P vanishes
for paramagnetic or in anti-ferromagnetic materials even below the magnetic transition
temperature. However, it has a finite value in ferromagnetic or ferrimagnetic materials below
the Curie temperature. The electrons at & are fully spin polarized (P=100%) when either
pT(&r) or pl(&r) equals zero. A magnetic material in this case is labelled as “half-metallic”
since one spin band exhibits metallic behavior while the other spin band acts as a
semiconductor but most importantly both bands exist in a single material. Simply, half-
metallic ferromagnets are materials that possess conduction electrons being 100% spin

polarized at the Fermi energy.

1.4 HALF METALLIC HEUSLER ALLOYS

There are many ferromagnetic materials that are predicted to be half metallic like the
CrO;, Fe;0.,...etc [28]. Of these materials, the oxides require considerable effort to fabricate
in thin film form. Furthermore some binary compounds have a Curie temperature around
room temperature, making it difficult to realize the use of these materials in a thermally stable
device application [29,30]. In contrast to the Heusler alloys which prove that it very
preferment half metallic material with a height Curie temperature. Since, as we notice before,
several combinations of elements occupying the X, Y, and Z sites are possible and in all cases
chemical order is preserved. For the Y-element Heusler alloys usually contain Mn, the X

element, for example, can be X=Fe, Co, Ni, Cu, Pd, or Rh and Z a pnictide or stannide ion

11



Chapter 01 LITERATURE SURVEY

(Sb,Sn) or sp in general case. Mn-based Heusler alloys, where the Manganese considered one
of the strangest of the 3d metals and has many features that are not well understood, have
been found at most in a ferromagnetic ground state. They offer the unique possibility to study
manganese compounds where the Mn atom has only other transition X metals as nearest
neighbours (L2;) and non transition Z elements group III-V in the second coordination sphere.
Webster et al.[31,32], have investigated the crystal structure of these alloys in detail. In
addition a variety of mutual substitutions of atoms in the corresponding sublattices has been
studied by the same authors. Furthermore, it has been shown that some disorder [33] is often
appearing in Mn-based Heusler alloys and that in total up to 10% of the Mn atoms change
places with elements from a different sublattice. Nevertheless, the neighbourhood of Mn
atoms is mainly built by X and Z elements. Mn-based Heusler alloys have a magnetic moment
of about 2.5u—4.4up localized at the Mn site. Traditionally they are considered as ideal
systems with local magnetic moments and many compounds are known experimentally to be
ferromagnets with high Curie temperatures ranging between 500 and 700K such as for the Co,

Ni, Pd, and Pt compounds.

1.5 THE MAGNETO-OPTICAL EFFECTS

M. Faraday [34] and J. Kerr [35] were the first to study the influence of magnetized media
on the polarization of transmitted and reflected light respectively. When linearly polarized
light is transmitted through a magnetized medium, the polarization of the transmitted light
rotates by an angle 0. This is named the Magneto-Optic Faraday Effect (MOFE); when
linearly polarized light is reflected from the surface of a magnetized medium, the reflected
light becomes elliptically polarized with a rotation of the polarization plane. This rotation can
be understood in term of a difference of the refractive indices for the left and right circularly
polarized components, produced by the interaction of light with the magnetic field, since a
linearly polarized beam of light can be decomposed into a sum of left and right circularly
polarized light. These two magneto-optic effects are due to the interaction between light and

the magnetized medium, and give the information on

12
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Figure 1.5 Geometry for longitudinal, equatorial and polar Kerr effects

the electronic and magnetic structure of the medium. For metallic systems magneto-optical
studies made by means of the Kerr effect have a certain number of advantages relative to
studies by means of the Faraday Effect. This latter effect can be studied only on sufficiently
thin films.

Depending on the orientation of the magnetization vector relative to the sample surface, the
Kerr effect can be classified into three types: longitudinal (meridional), and transverse
(equatorial) effects and polar Kerr effects. The three geometries relevant to the Kerr effect are
illustrated in Figure (1.5);

1) Polar MOKE (see Fig. 1.5(a)): the magnetization direction is perpendicular to the surface
of the medium and parallel to the plane of incidence;

2) Longitudinal MOKE (see Fig. 1.5(b)): the magnetization is parallel to the surface of the
medium and parallel to the plane of light incidence;

3) "Transverse MOKE (see Fig. 1.5(c)): the magnetization lies in the surface of the medium
and is normal to the plane of incidence.

For the rest of this thesis, it will be referred to as just the "Kerr effect". The polar Kerr effect
can conveniently be described in terms of the dielectric tensor (or conductivity tensor) [36]. In
materials for which the net magnetization M is aligned parallel to an axis of three-fold or

higher-symmetry, the dielectric tensor can be written as

Err €Ezy U
€= | —€ry € 0
0 0 €

Here the magnetization direction is parallel to the z direction. The off-diagonal terms

represent the magneto-optical Kerr effect contribution to €. The diagonal components have an

13



Chapter 01 LITERATURE SURVEY

even powered dependence on the magnetization. The various elements €,5 are composed of
real and imaginary parts, which may be represented by the relations
8aﬂ:(€1aﬂ-'-i€2aﬁ

where a, P=x.y,z, gXX:(n+ik)2, n and k are refractive index and extinction coefficient,

respectively. The optical conductivity tensor o, = G}w +i0'§ﬂ is related to the dielectric

tensor g,g through the equation

4
Eap = Ogp +70aﬂ(a’)

where 0 is the Kronecker’s symbol.
A complete description of MO effects in this formalism is given by the four non-zero
elements of the dielectric tensor or, equivalently, by the complex refractive index N(w) where

the refractive indices are related to the dielectric tensor elements by:

n, = tig,

+ XX —

& & &

XX

2
L€ 1(¢ . &
Sowehave n_—n, =—i—- and n,n_= 1+Z(ij &, » since [iJ nm 1.

XX XX

Aro,,

With this approximation and in terms of the conductivity (&, =1+I and

@

4ro,, -o

g,y =1+i———=) the complex Kerr angle, ¢, is given by[37]:p =6, +ig, = <
@

4o,
UXX\/I +1 X
W

the real part 6, is the rotation of polarization plane while the imaginary part &, gives the

ellipticity of the reflected light.
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2. TRANSITION-METAL CHALCOGENIDES

Transition-metal chalcogenides, in terms of composition, provide a wide variety of
compounds which crystallize in the pyrite structure [38], in its ternary ordered versions
(cobaltite, ullmannite) [39], and in the marcasite and distorted marcasite (arsenopyrite) one
[40]. These layer-type materials, with their interesting quasi-two dimensional structures, can
be used as a substrate for other materials [41] and for the formation of intercalated complexes
with foreign atoms or molecules, organic or inorganic, between the layers offering the
possibility of combining different properties in a single material [42]. These compounds have
attracted considerable attention for their magnetic [43] and optical properties [44,45]. They
have shown a wide applicability in many technologically important areas such as

hydrodesulfurization catalysts [46], solid state lubricant [47] and photoactive materials [48].

2.1 CRYSTALLINE STRUCTURE AND COMPOSITION

The transition metal dichalcogenides compounds form a structurally and chemically well-
defined family and about two-third of this family assume layer structures. The basic structure
of loosely coupled Ch-TM-Ch sheets makes such materials extremely interesting. Within a
layer, the bonds are strong, while between adjacent layers they are remarkably weak.

The crystal structures of the layered chalcogenides of formal stoichiometry TMCh,
(TM=metal, Ch=chalcogen) are shown in Figure 1.6. They are characterized by two-
dimensional sandwich units of Ch-TM-Ch atomic layers along the crystallographic a-axis (the
chalcogenides are close-packed). Along the crystallographic c-direction the sandwich units
are separated from each other by the so-called van der Waals gap. The close-packed and
chemically saturated chalcogenide atoms form the inner surfaces. The bonding interaction
within the sandwich units is very strong and is based on covalent bonds with some ionic

contribution depending on the ionicity of the TM-Ch bonds.

A8}
oo le)

Figure 1.6 The crystal structures of the layered transition metal chalcogenides

Van der Waals gap
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The TMCh;, structures fall into two classes: layered and non-layered; the non-layered
members are found in groups VII and VIII; they are MnCh,. FeCh,, RuCh,. OsCh,, CoChy,,
RhChy, IrS,, IrSe,, NiS, and NiSe,, The ditellurides of Co and Rh can also adopt a Cdl,-type
of structure, the others occur in one or more of the following structure types: pyrite,

marcasite, [rSe; and the PdS,-type.

In many cases the same compound forms different phases (polytypes) which may deviate
from each other by a different metal coordination and/or by a different stacking of the
sandwich units. The polytypes are labeled according to the number of repeating units along
the ¢ axis (normal to the layer) In which the compound formula is preceded by a number
denoting how many slabs are in the unit cell and a capital letter giving the overall symmetry
of the structure (T: trigonal. H: hexagonal, R: rhombohedral), for example 2H-MoS; and 2R-
MoS,. Small Letters distinguish between different stacking sequences in the same structural

family.

Depending on the relative orientation of the sheets, two different coordinations are obtained
around each metal ion, one approximately octahedral where the metal atom is surrounded
octahedrally by the chalcogen and another where the metal atom is surrounded in a trigonal
prismatic which found in the MoS,-type of structure. Both of these are shown in Figure 1.7,
The metals are found in a trigonal prismatic coordination for more covalent bound
chalcogenides to optimize the covalent overlap, whereas more ionic compounds prefer
octahedral coordination minimizing the electrostatic repulsion. Although a mixture of the
two is sometimes found, whereas the 'mixtures' contain alternatingly prismatic and

octahedral coordinated layers.

Octahedral Trigonal prismatic

Figure 1.7 The different coordinations around each metal ion.
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2.2 PREFERRED STRUCTURE

The three-dimensional framework structure of the transition metal chalcogenides
compounds is converted first into a slab structure and then into a sheet structure due to the
population of d orbital, the main d-electron configurations that we consider. The first cases
are d°, d>-high spin, and d'® ions, such as V°* (d°) high-spin Fe™(d’), and Cu” and Zn™ (both
d'®). These three configurations give symmetrical noble-gas-like cations that prefer the highly
symmetric coordination of a tetrahedron of anions.
ZnS occurs as sphalerite or wurtzite, both of which have tetrahedral coordination of the Zn**
(d'%) ion. Zn, Cd. and Hg all occur in at least one polymorph of their mono-sulphides with
tetrahedral metal coordination; Fe’™ is almost always tetrahedrally coordinated in its
sulphides. Cu’ is often found in tetrahedral holes of a sulphur lattice, but it sometimes
displays more complicated coordination, as does Ag".
Other configurations are d*, d®low spin, and d®. For octahedral coordination geometry, these
three cases will give evenly filled orbitals, and thereby allow for undistorted ligand
environments. Examples include Cr,Ss, which is derived from the NiAs structure and has an
octahedral surrounding for the d’; Cr’" ions; pyrite, FeS, which also has an octahedral
environment for the d6 Fe*™ ions; and high-temperature NiS, which again has octahedral
metal coordination for the (high-spin) d® Ni*" ion. Because these metal ions have evenly filled
toe Or € orbitals, their compounds are all semiconducting.
d® configurations can also give rise to square-planar coordination geometry, as in cooperate
(PtS), PdS, and PdS, [49]. Square-planar ligand fields result in a four below-one splitting of
the d-orbitals, so all the d-electrons are paired and relatively low in energy for a fit ling of
eight electrons. The rationale for why nickel does not resemble its congeners in assuming this
geometry is that the pairing energy is too high; it prefers the high-spin configuration allowed
by the eg orbitals of an octahedral ligand field. Whereas octahedral coordination is the most
popular geometry for six coordinations, a few important sulphides instead have trigonal-
prismatic coordination. This occurs only for low d-electron count (d' to d*), and is found in,
for example, NbS, (d') and MoS; (d%).
Although there is a relationship between the different binary and ternary transition metal
chalcogenide structures, only a few are unique; most of the others can be viewed as
derivatives of these classified derivative structures as occurring by four main mechanisms:
1) Substitution of one atom for another;
i) Ordered omission of atoms;

111) Addition of atoms to previously unoccupied sites; and distortion of an array.
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2.3 INTERCALATION

particularly important of these material is the discoveries, the so-called intercalation, that
many atoms and molecules can be inserted between the adjacent layers, thus forming
intercalation compounds, due to the weak interlayer forces which allowed extra ions and even
fairly large organic molecules inside. Since, recently, much interest has focused on the
inorganic organic hybrid compounds because this offers perspectives for the realization of
molecular-based materials, especially those that can combine different properties such as
metal-like conductivity and bulk ferromagnetic property in a single material [50].
Intercalation of organic species into layered inorganic solids represents one of the useful

approaches to create the ordered molecular-based materials with some novel properties [51].

18



Chapter 01 LITERATURE SURVEY

REFERENCE

1- F. Heusler, Verh. Dtsch. Phys. Ges. 5, (1903) 219

2- R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50

(1983) 2024.

3-J. Q. Xie, J. W. Dong, J. Lu, C. J. Palmstrom, and S. McKernan, Appl. Phys. Lett. 79,
(2001) 1003.

4- M. Kurfiss and R. Anton, J. Alloy. Compd. 361, (2003) 17

5- M. N. Kirillova, A. A. Makhnev, E. I. Shreder, V. P. Dyakina, and N. B. Gorina, Phys.
Stat. Solidi B 187, (1995) 231

6- K. E. H. M. Hanssen and P. E. Mijnarends, Phys. Rev. B 34, (1986) 5009.

7- K. E. H. M. Hanssen, P. E. Mijnarends, L. P. L. M. Rabou, and K. H. J. Buschow, Phys.
Rev. B. 42, (1990) 1533.

8- S. Kédmmerer, A. Thomas, A. Hiitten, and G. Reiss, Appl. Phys. Lett. 85, (2004) 79.

9- S. Okamura, R. Goto, S. Sugimoto and K. Inomata, J. Appl. Phys. 96, (2004) 6561.

10- E. Girgis, P. Bach, C. Riister, C. Gould, G. Schmidt, and L. W.Molenkamp, Appl. Phys.
Lett. 86, (2005) 142503.

11- B. Balke, G. H. Fecher, H. C. Kandpal, C. Felser, K. Kobayashi, E. Ikenaga, J.-J. Kim,
and S. Ueda, Phys. Rev. B 74, (2006) 104405.

12- H. C. Kandpal, G. H. Fecher and G. Schonhense, Phys. Rev. B 73, (2006) 094422.

13- S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser, and H. J. Lin,
Appl. Phys. Lett. 88, (2006) 032503.

14- Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T.Miyazaki, and H.
Kubota, Appl. Phys. Lett. 88, (2006) 192508.

15- A. J. Bradley and J.W. Rodgers, Proc Roy Soc A144, (1934) 340.

16- G.P. Felcher, J. W. Cable and M.K. Wilkinson, J. Phys. Chem Solids 24, (1963) 1663

17- W. H. Wang, M. Przybylsh, W. Kuch, L. I. Chelaru, J. Wang, Y. F. Lu Barthel H. L
Meyer Hein and J. Kirschner Phys. Rev. B 71 (2005) 144416

18- R. D. James and M. Wuttig, Phil. Mag. A. 77, (1998) 1273

19- E. Jr. F. Jaumot and H. S. Charles Acta Metall. 2, (1954) 63.

20- J. Soltys, phys. stat. sol. (a) 63, (1981) 401

21- S.H. Wei, L. G. Ferreira, James E. Bernard, and A. Zunger, Phys. Rev. B 42 (1990) 9622.

22- R.P. McCormack, D. de Fontaine, and J.J. Hoyt J. Phas. Equi. 18, (1995) 580.
23- K. F. Wojciechowskit, Act. Metal. 6, (1958) 396

24- K. F. Wojciechowskit, Act. Metal. 7 (1959) 376

19



Chapter 01 LITERATURE SURVEY

25-J. Soltys, phys. stat. sol. (a) 66, (1981) 485.

26- J. Soltys, R. Kozubski, Phys. Stat. Sol. (a) 63, (1981) 35.

27- R.J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R.
Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, J. M. D. Coey, Science 282
(1998) 85.

28- W.H. Xie, Y.Q. Xu, B.G. Liu and G. Pettrifor, Phys. Rev. Lett. 91, (2003) 037204

29- K. Schwarz, J. Phys. F Met. Phys. 16, (1986) L211

30- Y.S. Dedkov, U. Rudiger, and G. Guntherodt: Phys. Rev. B 65, (2002) 64417

31- P. J. Webster, M. R. I. Ramadan, J. Magn. Magn. Mater. 5 (1977) 51

32- P.J. Webster and R.D. Tebble, J. Appl. Phys. 39 (1968) 471.

33- P. J. Webster and K. R. A. Ziebeck, in Alloys and Compounds of d-Elements with Main
Group Elements. Part 2., edited by H. R. J. Wijn, Landolt-Boo rnstein, New Series, Group III,
Vol. 19, Springer-Verlag, Berlin, pp. 75-184

34- M. Faraday, Phil. Trans. R. Soc. 136, (1846) 1

35- J. Kerr, Philos. Mag. 3 (1877) 321.

36- M. J. Freiser, IEEE Trans. Magn., MAG-4, (1968) 152.
37- V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and Magneto-Optical

Properties of Solids (Kluwer Academic, Dordrecht, 2004).

38- D.W. Bullett, J. Phys. C: Solid State Phys. 15, (1982) 6163.

39- A.J. Foecker, W. Jeitschko, J. Solid State Chem. 162, (2001) 69.

40- S.L. Harmer, H.W. Nesbitt, Surf. Sci. 564, (2004) 38

41- A. Yamada, K.P. Ho, T. Maruyama, K. Akimoto, Appl. Phys. A 69, (1999) 89

42- R. Brec, G. Ouvrard, A. Louisy, J. Rouxel, Solid State Ion. 101-103, (1997) 9.

43- A. Olivas, 1. Villalpando and O. Pérez, S. Fuentes, Mater. Lett. 61, (2007) 4336.

44- D. Dumcenco, Y.S. Huang, C.H. Liang, K.K. Tiong, J. Appl. Phys. 104, (2008) 063501.
45- D. Dumcenco, Y.S. Huang, J. Appl. Phys. 102, (2007) 083523

46- S.E. Skrabalak, k.S. Suslick, J. Am. Chem. Soc. 127, (2005) 9990

47- T.W. Scharf, S.V. Prasad, M.T. Dugger, P.G. Kotula, R.S. Goeke, R.K. Grubbs, Acta
Mater. 54, (2006) 4731.

48- C. Ballif, M. Regula, F. levy, Sol. Energy. Mater. Sol. Cells 57, (1999) 189

49- A. Hamidani, B. Bennecer, K. Zanat, J. Phys. Chem. Solids 71, (2010) 42

50- E. Coronado, J.R. Galan-Mascaros, C.J. Gomez-Garcia and V. Laukhin: Nature, 408,
(2000) 470.

51- R. Chollhorn, Chem. Mater. 8, (1996) 1747.

20



Chapter 02

THEORETICAL BACKGROUND



Chapter 02 THEORETICAL BACKGROUND

2.1 INTRODUCTION

A solid can be described as a many-atom system composed of electrons and nuclei which
are interacting with each other. An exact mathematical treatment of the Schrédinger equation
of this many-body-system is highly complex and virtually impossible. Nevertheless, suitable
methods to derive a wide range of physical properties of material are available. In order to
study many atom problems with moderate computational effort a range of approximations is
introduced. We can cite the approximation which is called Born Oppenheimer (or adiabatic)
approximation [1], which separate the calculation of the electronic structure from the ionic
motion. The Hartree-Fock approximation [2,3] which provides an approximate solution to the
many-body problem and uses a single Slater determinant to express the many electron wave
functions. The so-called Hartree-Fock equation which has to be solved includes a Coulomb
term (or Hartree term) and an exchange term (or Fock term), which arises from the
antisymmetry of the wave function with respect to two-particle permutation, due to Pauli's
exclusion principle. The effects of electron correlation, beyond that of exchange energy are
completely neglected in this method. In contrast to the other methods, the Density Functional
Theory (DFT) [4] provides an exact solution of the many-body problem. Furthermore, this
method is proved to be a powerful way to determine the ground state energy of atoms,
molecules, and extended systems with reducing the many-body-problem of interacting
particles to a single-particle problem. An important part of the theory requires one to
determine the kinetic energy of ground state of a system of N no interacting electrons in a
general external field. Kohn and Sham [5] showed how this can be numerically calculated
very accurately using a set of N orbitals. However this prevents the simple linear scaling in N
that would arise if the kinetic energy could be directly expressed as a functional of the
electron density, as it is done with other components of the total energy like the exchange

correlation energy.

2.2 DENSITY-FUNCTIONAL THEORY
2.2.1 THE HOHENBERG-KOHN THEOREMS

Density functional theory (DFT) considers the particle density to be the fundamental variable
to describe the state of a system in an external potential. Historically, the density functional
approach initiated with the idea that locally the behavior of a collection of particles, the
electron cloud, could be represented and approximated by that of a free electron gas of the
same density at that point. The Thomas Fermi (TF) model [6] was in many aspects very
successful and showed the basic steps to obtain the density functional for the total energy:
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using standard quantum mechanics based on wave functions to obtain from a well defined
model a direct relationship, functional, between the total energy, E, and the density p(r). The
fundament of this concept was derived by Hohenberg and Kohn [4]. They proved that the
following theorem holds exactly:

a) There is a universal functional F[o(r)] of the electron density distribution p(r), that defines
the total energy of the electronic system, given by:

E = jV(r)p(r)dr + F[p(r)] (2.1)

b) The total energy E has a minimum when the charge density p(r) coincides with the true
charge density in the external potential v(r). This theorem is exact if the ground state has no
degeneracy. Thus the Hohenberg-Kohn theorem states that the ground state energy E is a
universal functional of the charge density and that the ground state charge density can be

obtained by applying the variation principle to the energy. If we note the Hamiltonian of the
system H, the functional of the ground state energy is given by:

Elp(r)]=min(y|Hly) (2.2)

under the constraint, that the wave functions used for variation reproduce the charge density

distribution p(r)

p(r)=<w‘25(r—r‘)w>, (23)

this leads to the relation

E[p(r)]> Ep,(r)]= E, (2.4)

At this point the exact form of the total energy functional remains undetermined, however the
scheme used to derive electronic ground state properties can already be outlined here. First of
all one has to find a suitable approximation of E[py(r)] and then apply the variation principle

to the total energy functional

SE[p(r)]=0 (2.5)
under the constraint, that the number of particles is conserved
[ p(r)dr = N (2.6)

2.3 KOHN-SHAM EQUATIONS
In 1965, Kohn and Sham [5] proposed the idea of replacing the Kkinetic energy of the
interacting electrons with that of an equivalent non-interacting system, because the latter can
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be easily calculated. In this case and if the ground state is non-degenerate, the ground state

charge density can be expressed in terms of single particle orbitals ¢;
N
=l 2.7)
i=1
and the kinetic energy functional T (p (r ))for the system is,
N 1 )
= <l//i |Z_§vi |l//i>
i=1
N 1_,
Z<‘//i|—§V v,)

= (2.8)

The universal functional F (/’(r )) can be rewritten as

F(p(r)=T(p(r)+7..(p(r)) (2.9)
=T,(p(r)+ C(p(r)+ [T (o(r) - T,(p(r))+ V.. (o(r)+ C(o(r))]
=T,(p(r))+ C(p(r))+ E 1 (p(r))

where C(p(r )) represents the classical electron Coulomb interaction,

plr d dr
\ \ (210)

and Exe (p (r ))is the so called exchange-correlation energy, this term consists of two parts.
The first part comes from the correction of the kinetic energy from the non-interacting
fictitious system. The other part comes from the non-classical effects of the electron-electron
interactions.

By applying the variational principle, Kohn-Sham effective potential Ve(r) is defined as

_ n 5C[p] n OF yc [p]
alt)=t) ] ol

.[ dr +v_(r)
‘ ‘ (2.12)
In the above equation, v(r) is the external Coulomb potential due to the nuclei. The second

term,

:I 'D(r‘.) dr
r=r| (2.12)

is the potential resulted from the electron-electron Coulomb repulsion. The last term represent

the exchange and correlation potential V. which given by:
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v (r) — éEXC [,0]
T oplr) (2.13)
Writing out the total energy functional within this approximation and applying the variational

principle, one generates a set of N single electron equations known as the KS equations.

(2.14)

po(r)=2 16 (r)" (2.15)

E, 2251. +E, [P(’”)]__[ch (r) (r Iwmfdr (2.16)

I"—I"

These equations can be solved exactly using self-consistent methods. Such knowledge of Ex.

is unavailable however, so approximations must necessarily be made.

2.4 SELF-CONSISTENT ITERATION

To solve the Kahn-Sham equations self consistently we start with a guess potential, Vi ( ) , By
using some approximate form for the functional dependence of E,. on density, we must
compute V. as a function of r. The set of Kohn-Sham equations are then solved to obtain an
initial set of Kahn-Sham orbital. This set of orbital is then used to compute an improved

(n+1)
density from Eqgn. (2.15). From this solution, a new initial potential is generated, Vi , SO

(n) (n+1)
that the sequence of Vil and Vou converges to the self-consistent potential Ve , which is
defined as the potential for Whlch i =Vou and the process is repeated until the density and

exchange correlation energy converge to within some tolerance as shown in figure 3.1. One

way to give better solutions is to mix input and output potentials linearly:
n+l n
V (1 ﬂ)Vm +ﬁ out (217)

where B is set between 0-1 (usually p=0.7-0.9 but must be reduced where convergence is

difficult to achieve). Another way is to use Anderson method:
v =@-pla-o, W +o i |+ pla-o, W +or5]

n° out

(2.18)

0, =|a-o, Wi -vl))+ o, 1‘2 (2.19)
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This method is usually used to handle difficult calculation for complex system consists of

many atoms in the unit cell.

Choose V;,

Solve H)=E¢
(H=P*+ V)

Calculate density p=2 | ¢ 12

v
Solve Poisson equation
Vu=4np(G)

v

Calculate exchange correlation
potential Vy.=f[p]

v
Vour=VhtVyc
Mix potential J
Vin, Vo2V

In out new Vinzvout f)

v

STOP

Figure 2.1 Steps of the self consistent calculation.

2.5 LOCAL-DENSITY AND GENERALIZED GRADIENT APPROXIMATIONS

The Kohn-Sham formulation of density functional theory is, to this point, still exact. All
the complications arising from the many-body nature of the problem are contained in
Ex[p(r)]. The power of density functional theory is that approximate forms for E,. are
possible to construct which lead to an accurate description of real systems.
The most widely used and most simple approximation is the local density approximation
(LDA). In their pioneering work Kohn and Sham pointed out that many solids are well
approximated by a homogeneous electron gas, such that the exchange and correlation energy
at » depends only on the electron density at r. They introduced the local density approximation

that generalizes to the local spin density approximation (LSDA)
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3

E2 o) o) = [ o)z o) o) i (2.20)
where "™, is the spatially constant exchange-correlation density of the homogeneous gas.

For unpolarized system, the LDA energy is given by the same formula with

o) = plr) =21 @22)

The form of the potential is then given by

i ([p(r)]) _ 5E [/7(’” )] _ o [,0(’” )5 . (” )] 2.21)

op(r) op(r)
The simplest form of the LDA to the exchange-correlation potential has been proposed by

Slater et al. [7], usually called X, method, where V. becomes

V(p)= —(37“]( 37;) jé

Other commonly used parameterization based on the results by Ceperley and Adler [9] has
been proposed by Perdew and Zunger [10].

In addition, non local effects may be included by considering functionals that depend on the
local gradient of the density in the exchange-correlation energy. This leads to a class of
functionals known as “generalized gradient approximations” (GGA) [12,13].

The basic idea of GGA is to express the exchange-correlation energy in the following

form
EZp(r)]= [ plr)e 2 (o), V o (r))dr (2.23)
2.6 LDA+U

The simulation of strongly correlated systems requires techniques beyond the LDA or
GGA for this raison many researcher refine the LDA by introducing new scheme which so
called ‘LDA+U’. The idea of this method is to include the Coulomb interaction between
strongly localized d and f electrons in the spirit of a mean-field Hubbard model [14], whereas
the interactions between the less localized s and p electrons are treated within the standard
local spin density approximation. To achieve this, a Hubbard-like interaction term Ey, which
depends on the occupation of the localized orbitals, is added to the LSDA total energy, and an
additional double counting correction Egc is introduced to subtract that part of the electron-
electron interaction between the localized orbitals. In terms of this idea, we define the

generalized LDA+U functional as follows:
EP o7 (1), 407 = EX1 o7 (r)]+ EV [In” |- E. |07 |] (2.24)
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where p°(r) is the charge density for spin-c electrons and £ [p"(r)] is the standard
LSDA functional.
The Hubbard-like interaction term or the orbital polarizations are described by the mean-field

(Hartree-Fock) type of theory:

o -0

V,m,m >n n

EV )] %{%“G <+”E<: . (2.25)

m ,m >)n” ne. .
mm m m

where V. are the screened Coulomb interactions among the »/ electrons. m and o designate

v, m,m> —<m,m"

VE e

the orbital and spin, respectively. The last term in Eq. (2.25) corrects for double counting part

Eqc which is diagonal in spin and it given by

U J
Ey=nln=n)=2 30" ~1,) (2.26)
o=T{
n":in;;; n:nT+n¢;77:%(nT+77¢) (2.27)
m=—1

where U and J are screened Coulomb and exchange parameters [15]and 77,=1 in the fully
localized limit [16] while in around the mean field version [17] 77,=<ns>.
The potential are usually determined for the effective single-particle potentials which used in

the effective single-particle Hamiltonian H

Ve =(mm V. |m,m )n? .
mm ee mm

Vee

m,m> —<m,m" V..
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3.1 INTRODUCTION

During the past fifteen years the techniques for solving the band structure problem have
reached the point at which, with the aid of large computers, an accurate solution may be obtained.
Among these techniques we can site the augmented plane wave (APW) method, which has
allowed the solution of the band-structure problem for a wide class of materials, which requires a
computational effort. This is powerful also in the calculation of ground-state properties of
compounds and magnetic crystals, where self-consistency is imperative, and in the calculation of
excitation spectra, where matrix elements are needed. Furthermore, the APW method has the
characteristics of numerical techniques, well suited for accurate calculations on particular
crystals.
3.2 THE AUGMENTED PLANEWAVE METHOD

The augmented planewave (APW) method as originally formulated by Slater [1,2 ], expands a

trial wave function in a set of energy-dependent basis functions :

l//k :ch¢(kn750) (31)

with Kk =k+G,

Where k is a point in the first Brillouin zone, G, is a reciprocal lattice vector, and ¢ is the energy

used to construct the APW radial functions. The C,, are the plane wave expansion coefficients,

which are determined by applying the standard Rayleigh-Ritz variational procedure [3,4]. The

basis functions in this way satisfy the cellular boundary conditions and the connectivity

conditions across the muffin-tin spheres. Thus the variation yields the simple secular problem [5]
HC=ESC (3.2)

where H and S are the Hamiltonian and overlap matrices for a given basis set ¢

with:
Hom = (4G, )|H|4(G,,)) (3.3)
Sum = (#(G,)|#(G,,)) (3.4)

denoting Hamilton and overlap matrix, respectively,

In this method, the unit cell is partitioned into an interstitial region (I) and non-overlapping
muffin-tin spheres (labelled o) centred on the atomic nuclei (Fig. 3.1). In the latter region,
potential, density and wave functions are strongly varying, i.e., similar to the situation in an atom,

therefore atomic-like basis functions are an appropriate choice.
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However, the same quantities are much smoother in the interstitial region and can be well
described by plane waves which are the basis functions in the interstitial region. Within the APW

method, the corresponding basis functions are defined as,

boo(r)=—=e™® el 33)

B

and

e (r):ZA,%(k+G)u;’(r,E)Y,m(f), rea (3.6)

whereY,, (F) are the spherical harmonics. The radial function u®(r,E) is the regular solution of

the equation:

Figure 3.1 Partitioning of the unit-cell volume into atomic spheres and the interstitial region.

dr? r?

{_i+ L +1)+V“(r)—E}r “u(r,E)=0 67)

with V¥(r), being the radial symmetric part of the potential in the atomic sphere. Provided that E
is equal to the eigenvalue, U/ (r, E) is the solution of Schrddinger’s equation in the spherical

potential, while plane waves are solutions for a constant potential. Therefore, this choice of basis
functions is in particular well suited for the so-called muffin-tin (MT) approximation, where such
a shape approximation, spherical symmetric inside the spheres and constant outside, is assumed
for the potential. Indeed most of the APW codes still make use of this approximation which is,
however, only good for closed packed structures. The reason is that it is quite complicated to
extend the scheme to a general potential inside the atomic spheres [6]. A general potential outside

the spheres, however, can be more easily achieved.
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The coefficient A, (k +G) is determined for each atom by imposing the requirement that the

values of the planewave (3.5) and the atomic-orbital like function (3.6) have to match each other

on the sphere boundary.

Am =¢ZCGJ|QK+G|)Y|;(|<+G) (3.8)

Q2y,(R) ©

It depends on E which is a variational parameter in this scheme. Therefore, the APWs as defined
in Eq. (3.6) are not simply a basis set, but give rise to severe complications: Most important, E
has to be set equal to the band energy. This requirement makes the basis functions energy-
dependent and thus the solution of the secular equation does not correspond to a linear
eigenvalues problem. It has to be solved by finding the roots of the secular determinant which is a
very time-consuming procedure. Since the APWs are not orthogonal they lead to an overlap
matrix in Eq. (3.2) which is not the unity matrix, a fact which is common to all APW-related
methods.

In general there are two major computational difficulties connected with the standard augmented
plane wave (APW) method originally proposed by Slater (1937); the first is the energy
dependence of the secular equation resulting from the nonlinear energy parameter used in setting
up the radial solutions inside the muffin-tin spheres. The second is the singular behaviour of the
secular equation which occurs when a node of the radial solution falls at the muffin-tin-sphere
boundary (the so called asymptotes). This makes it necessary to use more sophisticated methods.
An overview over further difficulties and related numerical problems, as well as respective
modifications of the APW method can be found in Ref. [7,8]. Koelling et al. [9] demonstrated
that an APW constructed with a linear combination of the radial function and its energy

derivative eliminates the older numerical problems which encounter this method.

3.3LINEARIZED AUGMENTED PLANE-WAVE METHOD (LAPW)

There were several attempts to improve the energy dependence of the secular equations but
the first really successful one was the linearization by Andersen [10-13]. This work led to the first
implementation of the linearized augmented plane-wave (LAPW) method. In the LAPW method
the energy dependence of the radial functions inside each sphere is removed by using a fixed set

of suitable muffin tin radial functions. Within Andersen’s approach, inside each atomic sphere,

31



Chapter 03 THEORETICAL METHOD (FP-LAPW)

the radial solutions of the Kohn-Sham equation at fixed energies E, and their energy derivatives
are used as basis functions.

The derivate quantity is used to make the continuity of the wave function on the boundary, which
distinguishes this approach from the APW method and there is no need for explicit core state
orthogonalizations, because the radial solutions and their energy derivatives are exactly
orthogonal to the core states of the muffin tin. The wave function in the interstitial region is
expressed in the form of equ. 3.5 and the solution of the Schrodinger equation is a linear
combination of these bases (Equ. 3.1) where the coefficients C, are determined by the variational
principle. The linear APW (LAPW) method has all the advantages of the OPW method often

used for semiconductor.

3.3.1 THE LAPW BASIS
The LAPW and APW bases differ only within the spherical regions. Thus in the LAPW and
inside atomic sphere a of radius R, each ¢ is a linear combination of radial functions times

spherical harmonics Yim(r)

Beio = 2 (A (k + Gui (1 E)+ By (k + G e (1 E))Y,, (7). (3.9)

Im
where u,‘”(r, E)) is (as in APW) the regular solution of the radial Schrodinger equation for the
spherical part of the potential in sphere o, but now for fixed energy E;. The second set of radial
functions, which appears in the LAPW but not the APW, consists of the energy derivatives,
W& (r,E) which given by

. au, (r,E,)
ur (r,E ) =—"2=
ok (3.10)
As with the original APW basis, the radial functions, u/ (r, E) and L&(r, E) are obtained by
numerical integration on a radial mesh inside each sphere. However, the E| parameter in the

LAPW is not required to match the Kohn-Sham eigenvalue ¢, but is fixed instead to an expected

value, for example, to be roughly in the middle of the occupied eigenvalues which are

predominantly of angular momentum type .
The coefficients A”(k+G)and B (k +G) are determined by requiring that value and slope of

the basis functions are continuous at the surface of the muffin tin sphere (sphere boundaries); by

expanding each plane-wave into Bessel functions j, at the muffin tin spheres.
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Here, the G denotes the reciprocal lattice vectors and k a vector within the first Brillouin zone.

Note that Y, (f) represents a complex spherical harmonic with Y, (f)=(=1)"Y,. (f). The radial
functions u’(r,, ) and & (r,&, ) are solutions of the equations
H*us(r,e)=guf(r,e) (3.11)

H (r6,) = o, (1 )+ u (1) (3.12)

The operator H*" contains only the spherical average, i.e. the I=0 component, of the effective
potential within the muffin tin. The E; should be chosen near the center of the energy band with
the corresponding |-character.

The full-potential LAPW method generally expands the potential and the charge density in a

Fourier representation

> Vi Y (F) inside the sphere
Im

v(r)

= : . (3.13)
> V,,erer outside the sphere
k+G
Thus, no shape approximation is introduced. The quality of this full-potential description is
controlled by the wave function cut-off G*' limits the number of the G vectors and thus the size

of the basis set and the size of the (I,m) representation inside muffin tins.

3.3.2 ROLE OF THE LINEARIZATION ENERGIES
In LAPW method and inside the spheres the LAPWs have more variational freedom than
APWs. This is because, if E; differs slightly from the band energy, €, a linear combination, will

reproduce the APW radial function constructed at the band energy.

U (e,1)=u,(E,,r)+ (s - E, Mle. 1)+ O((e - E, ) (3.14)

where ®((5 - E, )2) denotes errors that are quadratic in this energy difference. For a converged
planewave set and a muffin-tin potential, the APW method yields exactly the correct wave

function. In this case, going to the LAPW method introduces errors of order (& —E, )’ in the wave

function; this, combined with the variational principle, yields errors of order (5 -E, )4 in the band

energy. Thus it would seem that one needs simply to set the E; near the centers of the bands of
interest to be assured of reasonable results, and one could in fact optimize the choice by

computing the appropriate moments of the density of states and using the known order of the
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errors to optimize the E,. Alternatively, one could envisage computing the total energy for several
reasonable choices of E; and selecting the set that gave the lowest energy. However, these
strategies work well in many cases but they fail miserably in many others. The reason for this
failure is related to the presence of the semi-core states in many elements, particularly, the alkali

metals, the rare earths, the early transition metals and the actinides.

3.3.3 REPRESENTATIONS OF POTENTIAL AND CHARGE DENSITY

Charge density can be constructed by summing over the occupied states:

p(r)=> v v, (3.15)
k.1

The sum it should be carried out over the full Brillouin zone (BZ). But in practice we work in an
irreducible wedge of the BZ (IBZ). However the charge density is not so behaved and therefore
the density obtained from the irreducible zone does not necessarily have the full symmetry of the

lattice. To obtain the properly symmetrized density it is necessary to using the space group
operators. S = {R|t}

where R is a rotation and t a translation.

In order to treat the charge density correctly, we follow a variant of the scheme used by Weinert
[14]. This scheme is based on the fact that to use a dual representation for the charge as well as
the wave functions: the interstitial charge is smooth and hence amenable to a Fourier expansion
and that in the spheres to be in a spherical harmonic representation, which is the natural

representation near an atomic site.

plr)=p (o (ren)+ > p,(r)e  (res,) (3.16)

spheres
However, because of the rapid variation of the charge density near the nuclei, the charge density
given by (3.16) will have a slowly convergent Fourier expansion, whereas the interstitial charge
density can be continued into the spheres in such a way that it has a rapidly convergent Fourier
expansion. We can make use of this observation and solve the problem of obtaining the Coulomb
potential in two steps; obtain the potential in the interstitial and then solve the boundary value
problem inside the sphere. Since the potential outside the muffin-tin spheres does not depend on
the real shape of the charge density inside the spheres but only on the multipole moments of this

charge. Hence, we can replace the true rapidly varying charge inside the MT spheres by another,
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smoother charge without changing the potential outside the spheres if the full pseudo-charge-

density is required to have the correct multi-pole moments.

p(r)=>pr)=p (o (ret)+ > 5,(r)o  (res,) (3.17)

spheres
The replacement of the original charge density by a smooth pseudocharge inside the spheres is
done in two steps:
1)) The expansion of the charge density in the interstitial region, p™" (r), is extended into
the muffin-tin spheres.
(IT)  The difference charge density Ap(r)z p(r)— o™ (r) for r inside sphere is replaced
by a smooth charge density A,B(r) (the difference pseudo-charge-density), which has
the same multipole moments as Ap(r).

This pseudocharge density will give the correct interstitial potential, but not the correct potential

in the spheres

3.4 THE LAPW+LO BASIS SET

Sometimes, it is necessary to extend the LAPW basis set with so-called local orbitals (LO), as
introduced by Singh [6]. The local orbital extension to the LAPW basis is directed a better
description of the so called semi-core states, low-lying valence states which cannot be treated as
part of the core states, i.e., they can have some charge leaking out of the atomic spheres. As the
computation of Eq. (3.9) gives good results only for energy values near the linearization energy
E, we need to add another basis to threat these semi core states. This LO scheme avoids the
problem of non-orthogonality that can occur in calculations in which the semi-core states are
either frozen or treated in a separate energy windows. An LO is chosen such that it vanishes in
values and slope at the muffin tin radius and includes an additional radial function. This
procedure is done only in the atomic sphere region. The local orbital expansion when xea is

given by
b0(S, +1)= Y |As (k+ Gy (r,E)+ By (k + Gy (r,E)+ C (k + Gy (1, E,, )] Y, (F), (3:18)

where A%, B%m and C%, are determined by requiring that the local orbitals have zero value and
slope at the atomic sphere boundary. Local orbitals are not required to match the basis functions
in the interstitial as a result they do not have k + G dependence. The inclusion of local orbitals

results in just a small increase of the size of the basis and it allows the proper treatment of
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localized semicore states. Compared to other schemes within the local density approximation, the
FLAPW can be applied to a wide range of systems due to the use of mixed basis sets by

including core electrons.

2.5 WIEN2K CODE

the linearized-augmented-plane-wave (LAPW) method is one among the most precise
schemes to solve the so-called Kohn—Sham (KS) equations it has proven to be one of the most
accurate methods for the computation of the electronic structure of solids, in general (metals,
insulators, semiconductors, minerals, etc.), within density functional theory. This method is
employed in many computer codes like FLEUR, WIEN2k [15] to study crystal properties on the
atomic scale (see www.wien2k.at). This later code which called WIEN in the first copyrighted

version has reached a high level of sophistication in the newest versions this progress led to a
significant improvement in the possibilities of simulating relatively large systems.

The WIENZ2K package consists of several independent programs, written in FORTRAN 90, which
are linked via C-SHELL SCRIPTS and requires a UNIX operating system. The flow and usage of
the different programs is illustrated in the following diagram (Fig. 3.2).
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Figure 3.2 Program flow in WIEN2K as illustrated in the user guide of this code
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3.6. CALCULATION OF THE PROPERTIES
3.6 .1. Total energy

Within wien2k code, the ground state total energy is given by the minimum of a total energy

functional with respect to the electron density n(r)

0 =26 +E[p(r)] Ich I’OO drdr (3.19)

s \

3.6 .2. ELASTIC PROPERTIES

The cubic crystal has three independent elastic constant c;;, 12, and cs44. To determine these
constant three equations are needed. This means three types of strain must be applied; calculating
the bulk modulus, performing volume conservative tetragonal strain and applying rhombohedral
distortion. Then, from the expression of the energy as function of the strain the elastic constants
are derived.
Using the individual elastic constants, we have estimated the following parameters:
The shear anisotropy factor [16].

2c,,

A=—4
C,—Cp

(3.20)

The Voigt’s shear modulus (Gy ) [17] and the Reuss’s one Gg[18] for the cubic polycristals are

given by:
G, =%(c11 ~c, +3c,,) (3.21)
and

R = 30u(C —C) (3.22)

4044 + 3(C11 —Cp )
According to Hill [19], the Voigt’s and Reuss’s expressions represent the upper and lower limit
for the polycrystalline crystals, respectively. The estimate value is given by the average of these

values:
G:%(GV+GR) (3.23)

The Young’s modulus, E, and Poisson’s ratio, v, are given by the following relations:

£_ 9BG (3.24)
3B+G
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and
, - B-2G (3.25)
2(3B+G)
The average sound velocity, Vy, by the following equation [20]:
1/3
g, =30 Napd (3.26)
k| 4z\ M

where h is Plank’s constant, K the Boltzman’s constant, N the Avogadro nomber’s, p the density,
M the molecular weight and n is the number of atoms in the molecule. The average sound

velocity is given by

v :F(%+i3ﬂ 3 (3.27)
3lv, v

where V| and V; are the longitudinal and transverse sound velocity, respectively, which are given

by
v, = /w (3.28)
3p
and
v, = G (3.29)
P

3.6 .3. OPTICAL PROPERTIES

The linear optical properties in solids are described by the dielectric tensor, the interband
contribution to the imaginary part of its elements are calculated by summing transitions from
occupied to unoccupied states over the BZ, weighted with the appropriate momentum matrix
elements as given in reference [21]:

& (@), =‘r:f2—wi2j<f|Pa|i><i\Pﬂ\f>xwi (1-w, (E, —E, —mew)d’k (3.30)

in this expression, < f |pa | i> and <i | p ﬁ| f > are the dipole matrix elements corresponding

to the o and B directions of the crystal (x, y or z), and f, i are the final and initial states,
respectively. Wy, is the Fermi distribution function for the nth state, and E, is the electron energy
in the nth state. The real part of the elements of the dielectric tensor is obtained using the Kramer-

Kronig relation:
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&(®),, = 1+3Pf4dw g,i(a) )Z“ o' (3.31)

T oy 0 -0
where P is the principal value of the integral. With the knowledge of the complex dielectric
tensor components all other frequency dependent optical constants can be obtained. The most

often used ones are the coefficient of the absorption a (m) which is defined as:

c 2
and the reflectivity R(w) as
_ 1 B ﬁ(a))aa
R(®),, = o) (3.33)

where ﬁ(a)) is the complex refraction index which is given by the expression:

(@) =n(@),, +ikle), (3.34)
with n() is the ordinary refraction index and k() is the coefficient of extinction, obtained from
(@) ] =2/(0)., +ie (@), (335)

3.6 .4 MAGNETO-OPTICAL PROPERTIES
The complex Kerr angle ¢ is calculated by using the relation [24]

— O-xy

, (3.36)
\/ .4ro,,
O [1+1

¢=6, +ig, =

w

whereo,, and o, are the diagonal and the off diagonal elements of the optical conductivity

tensor, respectively, o is the photon frequency and 6k and g are the Kerr rotation and ellipticity

respectively.
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Chapter 04 RESULTS AND DISCUSSIONS:
HALF HEUSLER ALLOYS IrMnZ (Z=Al, Sn AND Sb)

4.1. INTRODUCTION

As we have mentioned previously, the Heusler alloys are particularly interesting
due to their very high Curie temperature [1,2] and some of them are already in use as
elements in multilayered magnetoelectronic devices such as magnetic tunnel junctions
and also as giant magnetoresistance spin valves [3,4]. Several papers have been
devoted to the calculation of the structural, electronic and magnetic properties of these
alloys and recently there has been an increased interest in thin films of this material
both experimentally [4-7] and using first-principle calculations [8,9]. The Mn-based
Heusler alloys (XMnZ) belong to a class with interesting magnetic properties;
exhibiting ferromagnetic features like magneto-optical effects and giant magneto-
resistance, a comprehensive study of Mn based compounds have been performed by
Brown et al. [10] and Plogmann et al. [11]. Among these, the half-Heusler alloys
IrMnZ (Z = Al, Sn and Sb) for which few papers have been devoted to the calculation
of the different properties. One of the old works on these alloys is of Masumoto and
Watanabe [12], who determined their structural and magnetic properties.
Krishnamurthy et al. [13], reported on the X-ray magnetic circular dichroism
measurements, performed at the Ir L,3; edges at room temperature, in IrMnAl.
Galanakis [14] has studied the orbital magnetism in IrMnSb using the Dirac
formalism within the framework of the Korringa—Kohn—Rostoker Green’s function
method. More recently, Antonov et al. [15] have studied by means of the ab initio
fully relativistic spin-polarized Dirac linear muffin-tin orbital method the electronic
structure and XMCD spectra of IrMnAl at the Ir L3 edge. However, the elastic
constants and moduli which have not yet been calculated or measured for the studied
compounds are of extreme interest in both condensed matter theory and technological
fields. The elastic constants (cij) determine the response of the materials to the
external forces and play an important role in determining the strength of the
compounds, which is the key in high temperature and pressure applications.
Therefore, knowledge of the elastic constants will be of great interest in
understanding their behaviour under different constraints. In addition the knowledge
of the fundamental structural and mechanical properties can be helpful to understand
the electronic, optical, and magneto-optical behaviour. These two later properties

have not yet been calculated theoretically.
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Our aim in this chapter is to investigate the elastic, electronic and magneto-optical
properties of the IrMnZ (Z = Al, Sn and Sb) in the C1, type ordered structure using
the state of the art full potential linearized augmented plane wave method (FP-LAPW)
[16,17], in the framework of the density functional theory (DFT) within the

generalized gradient approximation [18-20].

4.2. CRYSTAL STRUCTURE AND DETAILS OF CALCULATIONS

The crystal structure used in the calculation for these half-Heusler compounds is
of the AILiSi type [21], space group F43m (No. 216). In this structure, one discerns
four types of sites 11(0, 0, 0)a, t2(1/4, 1/4, 1/4)a, t5(1/2, 1/2, 1/2)a and t4(3/4, 3/4,
3/4)a, where a denotes the lattice parameter, occupied as follows: Ir at t;, Mn at 1,
and Z at 14, while 13 is empty. Furthermore, this structure is similar to the B-phase of
the Nowontny-Juza compounds [22]. Our calculations are performed using the full
potential linearized augmented plane wave plus local orbitals method, FP-LAPW+LO
[16,17] within the generalized gradient approximation GGA (GGA+U) and the local
density approximation LSDA (LSDA+U) [20]. In this method the space is divided
into non-overlapping muffin-tin (MT) spheres separated by an interstitial region. In
this context, the basis functions are expanded in combinations of spherical harmonic
functions inside the muffin-tin spheres and Fourier series in the interstitial region. In
this work we treat the core electrons fully relativistically, and the valence electrons
semi-relativistically. In the calculations, The muffin-tin radii are chosen to be 2.1
Bohr for Al and Mn and 2.3 Bohr for Ir, Sn and Sb. The basis functions are expanded
up to Ryt X Kiax= 8 (Where Kyax 1s the plane wave cutoff and Ry, is the smallest of all
MT sphere radii), and up to 1;,x=10 in the expansion of the non-spherical charge and
potential. We use the Perdew, Burk and Ernzerhof scheme [20], for the exchange and
correlation interaction. The integrations over the Brillouin zone are performed with
14x14x14 k mesh and the self-consistent calculations are considered to be converged
when the total energy is stable within 0.1 mRy. The theoretical equilibrium total
energy, lattice parameter a and bulk modulus B are determined by fitting the total
energy as a function of volume for both the non magnetic and magnetic (spin
polarized) phases to the Murnaghan’s equation of state (eos) [23].
In crystals with the C1y, structure the elastic tensor has only three independent elastic

constants, namely c¢;j, ¢ and csq. Their determination requires knowledge of the
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curvature of the energy as a function of strain for selected deformations of the unit
cell, as mentioned in previous chapter.

The calculation of the optical and magneto-optical properties has been performed
using 8000 k-points with 20%x20%20 k mesh. In order to consider the effect of finite
lifetimes, as well as of the experimental resolution, a Lorentzian broadening equal to
L= 0.7 eV was applied for both the interband and intraband contributions. Drude
broadening equal to op= 0.1 eV in the intraband contributions and we also added
empirical intraband Drude conductivity, oy to the calculated interband conductivity.
We have used the value of U calculated using the method of Anisimov [32]. The
calculated values are given in table 4.1, and knowing that there are many methods to
estimate this value. The only external parameter needed for LSDA+U (GGA+U) is
the effective value of the on-site Coulomb parameter, U.s, for each affected orbital.
The effective parameter Uesr = U - J is adopted as an only input parameter, where U
and J are the Coulomb and exchange parameters, respectively. In this work J has been

assumptive set equal 0.

Table 4.1 The calculated U (eV) values of Ir and Mn of IrMnZ (Z = Al, Sn and Sb).

GGA LSDA
IrMnAl Ir 0.28 0.30
Mn 3.62 3.66
IrMnSn Ir 0.24 0.23
Mn 4.20 4.44
IrMnSb Ir 0.3 0.3
Mn 2.89 3.12

4.3. STRUCTURAL PROPERTIES

The calculated energy curves as a function of volume for the magnetic (spin-
polarized) and non-magnetic configurations, using the generalized gradient
approximation (GGA) of the three compounds are displayed in Fig. 4.1.
The obtained total energy differences E,on-magneic — Emagnesic (in meV per formula)
using GGA are: 39, 100 and 128 mRy for [rMnAl, IrMnSn and IrMnSb, respectively,

indicating that the magnetic phase is the energetically favourable one, and this result
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agrees with the one reported by Offernes et al. [21]. As it is clear from Fig. 4.1, the

rest of this chapter will be devoted to the magnetic phase only.

Table 4.2 Calculated and experimental lattice constants of IrMnZ (Z =Al, Sn and Sb).

a(A)
GGA GGA+U | LSDA LSDA+U | Expt.?
IrMnAl | 5.669 | 5956 |5.566 |5.806 5.992
IrMnSn | 6.197 | 6.307 | 6.029 | 6.160 6.182
IrMnSb | 6.155 6.258 | 6.012 |6.115 6.164
“Ref [21]
Table 4.3 Calculated bulk modulus of IrMnZ (Z = Al, Sn and Sb).
B(GPa)
GGA GGA+U | LSDA LSDA+U Expt.?
IrMnAl | 156.72 | 109.81 | 208.05 | 127.40 --
IrMnSn | 112.74 | 106.18 | 141.47 | 136.45 --
IrMnSb | 128.16 | 117.95 | 175.40 | 153.29 --

The equilibrium lattice constant and bulk modulus were calculated using both LSDA
and GGA for these half-Heusler compounds in the cubic Cly, structure; the results are
compared with available experimental data in Table 4.2. A comparison between the
equilibrium lattice constants predicted using LSDA and GGA for the exchange and
correlation functional shows that GGA is reproduce well the equilibrium structural
properties of these half-Heusler alloys. In fact, LSDA underestimates the equilibrium
volume by about -7.17% -2.47% and -2.46% with respect to experiment, whereas the
GGA error are —5.5%, —0.28% and +0.17% for IrMnAl, IrMnSn and IrMnSb,
respectively. The obtained values follow the same trend as the measured ones. Thus
leading to a better agreement with experiment compared to LSDA.

The prediction of some properties probably can not be reproduced by the GGA and
LSDA methods. The standard LSDA does not consider the correlated behavior of
electrons in the d shell. The modified LSDA (GGA), which is called LSDA+U
(GGA+U), was used explicitly including the on site Coulomb interaction U in the

conventional model Hamiltonian for the band states. The structural parameters are
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also given in table 4.2 and 4.3. From these tables, it is clear that the GGA gives good

results compared to the other approximations.
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Figure 4.1 Total energy of the IrMnZ (Z=Al,Sn and Sb) compounds vs. volume per
unit cell using the GGA.

4.4. ELASTIC PROPERTIES
The calculated elastic constants with the GGA are listed in Table 4.4. The bulk

modulus calculated from the theoretical values of the elastic constants

B = %(c11 "‘2012) is also listed in this table, and it has nearly the same value as the

one obtained from energy minimization (see Table 4.3 for comparison). This might be

an estimate of the reliability of the predicted results for the studied materials.
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Table 4.4. Elastic constants (in GPa), the bulk modulus B =%(c11 +2¢,,) (in GPa)
and the anisotropy factor A for the IrMnZ (Z=Al, Sn and Sb).

Compound Ci1 (GPa) Ci2 (GPa) Cas (GPa) B (GPa) A
IrMnAl 212.94 122.25 148.94 152.48 3.28
[rMnSn 134.06 103.46 43.45 113.65 2.84
IrMnSb 158.39 122.00 98.34 134.13 5.40

The requirement of mechanical stability in a cubic crystal leads to the following
restrictions on the elastic constants [25,26]; (c11—¢12)>0, ¢11>0, c44>0, B>0. All the
calculated elastic constants in Table 4.4 satisfy these mechanical stability criteria,
including the fact that ¢, must be smaller than c;;, which leads to a restriction on the
magnitude of B; cj2 < B < ¢;;.We have also listed in Table 4.4 the shear anisotropy
factor [27], which is the ratio between the shear modulus for the {001} planes along
the [100] direction (Gyoo1;=C44) and the one for {110} planes along the direction [110]
(Gyi10y = (1/2)(c11 — c12)). The value of 4 is equal to one for an isotropic crystal, while
any deviation from unity provides a measure of the degree of anisotropy of the
electronic charge distribution [28]. From Table 4.4, the values of 4 for IrMnAl,
IrMnSn and I[rMnSb are 3.28, 2.84 and 5.40, respectively, which are greater than one
(i-e., Gy001;>Gy110y) this is an indication that the studied compounds shear easier on
the {110} rather than on the {001} planes. Furthermore, IrMnSb is characterized by a
strong anisotropy for the shear planes described above compared to the other two

compounds.

Table 4.5. The calculated shear moduli G, Ggr and G and Young’s modulus E (in
GPa) and Poisson’s ratio v for the IrMnZ (Z=Al, Sn and Sb) compounds.

Compound Gy Gr G E v
IrMnAl 107.502 77.82 92.66 231.15 0.247
[rMnSn 32.190 25.03 28.61 79.19 0.331
[rMnSb 66.282 35.61 50.94 135.65 0.383
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Chapter 04

44.1. ELASTIC PROPERTIES AND DEBYE TEMPERATURE FOR
POLYCRYSTALS

Using the individual elastic constants, we have estimated the shear modulus (G)
(Equ. 3.23) by the Voigt’s approximation (Equ. 3.21) and the Reuss’s one (Equ. 3.22).
According to Hill [28], the Voigt’s and Reuss’s expressions represent the upper and
lower limit for the polycrystalline crystals, respectively, and the arithmetic mean
value can then be taken for estimation of the shear modulus (Equ. 3.23). We have
estimated also The Young’s modulus, £ (Equ. 3.24), and Poisson’s ratio, v(Equ. 3.25)
The calculated results are given in table 4.5. We show that all these parameters have
the same trend and decrease with increasing the lattice parameter.

Debye temperature (Op) is a fundamental physical property and correlates with many
physical properties of solids, such as specific heat and the thermal expansion
coefficient [30]. It is used to distinguish between high and low temperature regions
for a solid. If the temperature T>0p, we expect all modes to have the energy of kgr,
and if T<Op, one expects the high-frequency modes to be frozen [31], i.e. the
vibrational excitations arise solely from the acoustic vibrations. We estimated the

Debye temperature Op, of the studied compounds IrMnZ using the relation (3.26).

Table 4.6. The calculated density (p in g.cm™), the longitudinal, transverse and

average sound velocities (v, v, Vi in ms”) and the Debye temperatures 0y (in K) for

the IrMnZ (Z=Al, Sn and Sb).

Compound P 2 VT Vm Op
[rMnAl 09.993 5255.66 3045.09 3379.58 406.53
[rMnSn 10.210 3855.95 1673.96 1890.76 208.06
[rMnSb 10.507 4049.19 1650.11 1868.07 206.96

The calculated densities, longitudinal, transverse, average velocities and the Debye
temperature are listed in Table 4.6. The IrMnAl has the largest value of 0p, while
IrMnSn and IrMnSb have almost the same value. Debye temperature is directly
related to the elastic constants, (Equ. 3.32), via average wave velocity, and the
decreasing of wave velocity causes the increase in Debye temperature. Unfortunately,

as far as we know, there are no experimental data available related to this property in
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the literature for the IrMnZ compounds, therefore our calculated values can be

considered as prediction of these properties for the IrMnZ compounds.

4.5. ELECTRONIC PROPERTIES
Before starting this discussion we should mention that the generalized gradient
approximation GGA and the local spin density approximation LSDA are used to
calculate the different properties, but we have based our discussion on the GGA
results and for a comparative study of our calculated results for electronic and
magneto-optical properties we have presented our LSDA results in some cases only.
Our endeavor is to calculate the electronic properties with and without the

inclusion of Coulomb interaction in the standard density functional formalism.
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Figure 4.3 Total density of states, by LSDA and GGA, for the majority and the
minority spins in half-Heusler alloys: IrMnZ (Z=Al, Sn, Sb). The vertical doted line at
zero energy indicates the Fermi level.
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Using the optimized structural parameters for half-Heusler [rMnZ compounds, the
electronic structure, is calculated by the GGA. The energy band structures are
calculated for these compounds along the high-symmetry lines in the fcc Brillouin
zone for the majority and minority spins, where 1 and |designate the majority-spin
electrons and the minority-spin ones, respectively, as shown in figure 4.2. We note
that the spin—orbit coupling is significant for these compounds, since it destroys the
half-metallic band gap. The total density of states (TDOS) and the partial DOS
(PDOS) are plotted in figures 4.3-9, where the vertical line is the Fermi level (Ef).
From the figures, it can be seen that the spin-polarized calculation with the GGA
shows that IrMnAl, IrMnSn and IrMnSb are not half-metallic; since IrMnAl IrMnSn
show metallic behavior because of the magnitude N(Er) of the density of states (see
Table 4.7) at the Fermi level in both spins up and down. The IrMnSb alloy although it

presents a spin-down gap, but it is not half-metallic, since Er is slightly below the gap.

Table 4.7. Calculated density of states at the Fermi level (states/eV/atoms) for the

IrMnZ compounds.
IrMnAl [rMnSn [rMnSb
GGA Up 1.069 0.925 1.114
Down 1.355 2.315 0.522
GGA+U | Up 0.842 0.740 1.0
Down 1.647 1.104 1.013
LSDA Up 2.016 0.740 1.04
Down 1.963 2.571 0
LSDA+U | Up 0.747 0.703 0.953
Down 1.336 1.120 0.992

The Fermi level crosses both the majority and minority-spin energy bands, because in
these compounds, the repulsive interaction with the non-metal band shifts this band to
higher energies above the Fermi level. In contrast to the LSDA which predicts that the
IrMnSb is a half-metallic ferromagnet, in this approximation, similar metallic
electronic band structures were also predicted IrMnAl and IrMnSn and the DOS for
the spin-up and spin down of IrMnAl are nearly identical with small polarization

compared to the GGA. In this compound, figure 4.8, the DOS of Mn(Ir) d and Mn(Ir)
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p states have nearly the same peaks. This means that there is a significant
hybridization between d and p states. Furthermore at the vicinity of the Fermi level
the characteristic feature of the electronic structure of IrMnAl alloy is the strong
hybridization of Mn 3d and Ir 5d states, the latter being more delocalized due to the

hybridization, the nonmagnetic Ir atom in IrMnAl becomes magnetic (see table 4.8).

Table 4.8. Calculated magnetic moments in ug for the [rMnZ compounds.

IrMnAl [rMnSn IrMnSb
Expt. Ir 0.015° --- ---
Mn 0.4° 2.25°
7 — — —
Tot. 0.123° --- 3.1
GGA Ir 0.04 0.008 -0.139
Mn 0.529 3.527 3.337
Z -0.002 -0.046 -0.076
Tot. 0.558 3.628 3.110
GGA+U Ir 0.174 -0.027 -0.162
Mn 3.901 4.324 4.210
Z -0.046 -0.028 -0.070
Tot. 4.157 4.522 4.046
LSDA Ir -0.002 -0.007 -0.076
Mn 0.006 3.275 3.161
Z 0.000 -0.041 -0.051
Tot. 0.004 3.215 3.010
LSDA+U Ir 0.170 -0.004 -0.142
Mn 3.620 4.211 4.020
Z -0.03 -0.028 -0.070
Tot. 3.889 4.445 3.890

"Ref. [13], °Ref. [33],
As remarked, the density of states indicates that for the LSDA+U (GGA+U) these
compounds are still gapless, i.e., metallic phase with a finite Fermi level density of

states. The spin down gap in IrMnSb is shifted to higher energies compared to the
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standard LSDA (GGA). From the figures 4.6-9, we show also that the d-DOS bonding
state peak is shifting towards the lower energy side while the antibonding state peak is
shifting towards the higher energy.

Table 4.7 shows the calculated values of the density of states at the Fermi level N(EF).
The results display the same trend, i.e., values of N(EF) for the spin up and down, for
all the approximations used. For [rMnSn, the value of N(Er) for spin down is larger
than the one for spin up, while for the other tow compounds the inverse is observed.
The calculated magnetic moment, independently of the approximation used, is in
agreement with the commonly accepted picture of the magnetism of the Mn based
Heusler alloys, we obtain a strong localization of the magnetization on the Mn
sublattice with a value of the Mn moment near to 4 uB. Table 4.8 summarises the
calculated magnetic moments for a series IrMnZ a function of the Z constituent,
where Z=Al, Sn and Sb. The induced moment of the Z element is positive in [rMnAl
while is negative in IrMnSn and IrMnSb. The induced moments as a function of the Z
constituent follow closely the behavior of the Mn moment (increase with increasing
Mn moment).

We also find that for the IrMnSb compounds the total moment is about 3.11 uB. Here,
the local moment of Mn is higher than the total moment by at most 0.22 uB. The
reduction of the total moment is therefore accompanied by negative Ir and Sb spin
moments, i.e., these atoms couple antiferromagnetically to the Mn moments. The

magnetic moment of the Z atom can be neglected compared to Mn ones.

4.6. MAGNETO-OPTICAL PROPERTIES

The optical properties in the metallic system are generally due to both interband
and intraband transitions. In the low-energy regime, the optical transitions can be
ascribed to both inter band and intraband transitions. However, in the higher energy
regime, the contributions from the interband dominate. For this reason and to give a
good accuracy we have calculated both kinds of transitions.
The real and imaginary parts of the diagonal components of optical conductivity
tensor, including the intra band contribution, of [rMnZ are presented in Figure 4.10 as
a function of photon energy, The lower panels of the figure display the GGA+U

results. From these results we note that, in GGA+U there is a dominant peak at almost
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the same photon energy between 6 and 6.5¢V for both IrMnSn and IrMnSb. This
pronounced peak appeared in IrMnAl at about 4 eV in GGA or GGA+U.

Comparatively we note that the o (®) is larger than the oy« (®) part in the whole

energy range.
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Figure 4.10 Absorptive and dispersive part of the optical conductivity of the diagonal

component of the IrMnZ compounds
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Figure 4.11 Off diagonal component of the conductivity tensor for [rMnZ compound
with and without intraband contribution in GGA and GGA+U.
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Figure 4.12 Off diagonal component of the conductivity tensor for IrMnZ

compounds, multiplied by ® with and without intraband contribution in GGA and
GGA+U.

The dispersive part, G,xx shows a first pronounced peak at 0.5 eV IrMnAl. The same
peak can be seen in the IrMnSn and [rMnSb spectra at a slightly higher energy 1.7
and 1.8 eV respectively. This is the main peak observed in our spectral range. While
in GGA+U this peak shift to lower energy in IrMnSn. In IrMnSb this peak turned to
pronounced structure shifted to the higher energies. In GGA, oy increases above 2
eV with the appearance of the second pronounced peak at 4 eV, in IrMnAl. This peak
vanishes in the GGA+U with arising of a pronounced peak at 5.7 eV.

The conductivity can be understood from the density of states. As can be seen
from the figure 4.3-6 of the total density, the density of states of [rMnAl and IrMnSn
for minority and majority electrons have a large structure above the Fermi energy.
Thus the transitions into these unoccupied states from occupied states below the
Fermi energy are responsible for structure of the conductivity at low energy which has
the same contribution of both spin. While in IrMnSb the majority electron responsible
to the transition in this region. Furthermore, in IrMnSn and IrMnSb the trend in the
conductivity is almost the same because it has nearly the same electronic
configuration. The slightly difference is due to the positions of occupied and

unoccupied states. Inspection of the corresponding G1xx and G2y, curves shows that the
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spin—orbit coupling influences the Kerr rotation spectrum nearly exclusively via Gay.

While the various curves described above have only a very minor impact of the o xx

spectrum
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Figure 4.13 Kerr rotation of IrMnZ compounds with and without intraband
contribution in GGA and GGA+U.
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The absorptive part of the off-diagonal optical conductivity, Gy, has a direct
physical interpretation. It is proportional to the difference in absorption rate of left and
right circularly polarized light. If we compare wGyy, with Gixx we notice that the
transition between 2-2.5 eV also appears in the off-diagonal conductivity. In IrMnSn
and IrMnSb G2y has a large value at 2.2 eV and 5 eV, as shown in figure 4.12, with
one shoulder (negative peak) between them at around 4 eV which correlates well with
the positive peak in the Kerr rotation spectrum. In contrast to this situation, there are
in general some few weaker features found in the whole spectra of IrMnAl.

The polar Kerr rotation spectra are calculated for these compounds, and the results are
shown in figure 4.13. We note that it is assumed that the Kerr rotation angle 6k is
directly proportional to the spin—orbit coupling strength and the magnetization or
spin-polarization. The largest Kerr rotation is found in IrMnSb and the smallest
rotation angle is observed for IrMnAl. This later, and as we have seen previously, has
small magnetic moment this leads to a strong reduction of the Kerr rotation and
changes in the shape of the spectrum. The magnitude of the Kerr effect is rather small
using GGA, reaching a minimum rotation of nearly -0.15° at 8 eV. This value is
increased to 0.55° when we use the GGA+U. For the other compounds the spectra for
both are very similar, showing a negative Kerr rotation about 0.84° at 1.3 and 0.86 at
1.5 eV in IrMnSn and IrMnSb respectively but when we use GGA+U the amplitude
of the Kerr rotation becomes more than twice in IrMnSb than that found in IrMnSn
and we notice also a significant shift of the peaks in IrMnSn to the higher energies.
Below 6 eV we have other weaker peaks in the Kerr rotation which can be identified
as a shoulder in the ellipticity data. There is another weak minimum at 3.8 eV. At
higher energies the Kerr rotation goes to zero.

In figures 4.15 and 4.16 it is seen that the calculated ellipticity spectra for [rMnSb and
IrMnSn are very similarly to each other. It is clearly seen that when the Kerr
ellipticity crosses the zero line, a peak always appears in the Kerr rotation spectra and

vice versa due to the Kramers-Kronig relations.
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Figure 4.15 Kerr ellipticity of the [rMnZ compounds with and without intraband
contribution in GGA and GGA+U.

A (LSDA)
Intrat+Inter.

X

v L | ]
) |
> ;-0.4— \ i
i) ST N ] - — Invinal
=N = .06 -/ — IrMn
= 8¢ ¥, — IrMnSb
w w
g Los+ (LSDA+U)

4 ‘ 6 8 4 6
Energy (eV) Energy (eV)
Figure 4.16 Kerr ellipticity of IrMnZ compounds with and without intraband

contribution in LSDA and LSDA+U.

62



Chapter 04 RESULTS AND DISCUSSIONS:
HALF HEUSLER ALLOYS IrMnZ (Z=Al, Sn AND Sb)

4.7. CONCLUSION

We have calculated the structural, elastic, electronic and magneto-optical
properties of the half-Heusler compounds I[rMnZ (Z = Al, Sn and Sb) by means of the
full potential linearized augmented plane wave plus local orbitals, FP-LAPW+LO,
method within the generalized gradient approximation. We have also calculated the
shear modulus, Young’s moduli, and Poisson’s ratio, for polycrystalline rMnZ. The
results show that IrMnAl are metallic and ferromagnetic. They are mechanically
stable at zero pressure and possess the highest bulk, shear and Young’s modulus, the
sound velocities and the Debye temperatures are derived for the [rMnZ compounds.
We have also applied the LSDA+U(GGA+U) functional as adapted to the linearized
augmented plane wave method. The inclusion of Coulomb interaction in d states
mainly changes the bottom of the conduction band by upward energy shifting from
original position due to Hubbard Uy, i.e. shift unoccupied bands up and occupied
bands down.

We also find that in these compounds, the local moment of Mn is higher than the
total moment. The reduction of the total moment is therefore accompanied by
negative in Ir or in Z elements or in both, ie., these atoms couple
antiferromagnetically to the Mn moments. The hybridization between Ir and Mn is
considerably larger.

The local spin density approximation (LSDA) predict that the IrMnAl have
negligible magnetic moment. Furthermore, they predict that [rMnSb is a half metallic.
While the LSDA+U (GGA+U) predict a large magnetic moment comparing to the
experimental ones. Our results predict that the spin—orbit coupling is significant for
these compounds, since they destroy the half-metallic band gap.

We found the highest Kerr rotation at IrMnSb compound with weak values in
IrMnAl in all the approximations used. The quite large Kerr rotation near 2.0 eV, in
IrMnSb compound, would find possible applications of this compound in the infrared

laser light magneto-optical effect devices.
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Chapter 05 RESULTS AND DISCUSSION:
HEUSLER ALLOYS PdMnSb and Pd,MnSb

5.1. INTRODUCTION

Mn-based Heusler alloys of the formula XMnSb, belong to a class with interesting
magnetic properties, exhibiting ferromagnetic features like magneto-optical effects and giant
magneto-resistance. Their electronic structure can range from metallic to half metallic. The
electronic structure, magnetic and magneto optical properties of various XMnSb compounds
have been reported [1-3] and showing that many of them can be used in technological
applications such as magnetic tunnel junctions [4] and also as giant magneto resistance spin
valves [5].

For XMnSb (X = Pt. Pd, Ni) and especially PAMnSb, there are several works on these
compounds. Kang et al.[6] have investigated the electronic structures of the valence band and
Sb 4d core levels of these Heusler alloys using photoemission spectroscopy (PES) and self-
consistent spin-polarized band structure calculations (LMTO band calculations). Moreover
the magneto-optical properties have been investigated experimentally and theoretically [7-8].
The compact structure of this compound is the full Heusler alloy Pd,;MnSb. The magnetic and
crystallographic structure of this alloy was investigated in detail by Webster and Tebble [9]
and recently the complex impedance measurements on polycrystalline samples of Pd,MnSb
were reported as function of temperature and external magnetic field [10]. Furthermore, the

hyperfine field at the antimony site in Pd,MnSb is one of the largest [11,12]

5.2. DETAILS OF CALCULATIONS
The crystal structure of (half Heusler) PAMnSb alloys is a Cl, structure, space group

F43m (No. 116). The Pd,;MnSb (full Heusler) compound has a cubic L2; structure with the
space group Fm3m (No. 225). This is a close packed complex face-centred cubic structure.
The lack of information on the electronic structure of these compounds has motivated us to
perform first-principles calculations of the magneto-optical properties by using the full-
potential linearized augmented plane wave plus local orbitals method (FP-LAPW+LO). Wave
functions, charge density, and potential are expanded in spherical harmonics within non-
overlapping atomic spheres of radius Ryt and in plane waves in the remaining space of the
unit cell (interstitial region). The basis set is split into core and valence parts. Local orbitals
were used, as implemented in the WIEN2k package, to treat some semi-core states with the
valence states in a single-energy window.

The Kohn-Sham equations were solved within the local-spin-density approximation
(LSDA) [13], and also within the generalized-gradient approximation (GGA) [14]. The

relativistic effects were treated within the scalar relativistic approximation but we have
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checked the influence of spin—orbit coupling. The spin-orbit coupling (SOC) is taken into
account by using the second-variation method self-consistently [15-17], without including the
pi2 local orbital corrections. In our calculations, the magnetization is taken along (001)
direction for the structures when the SOC is included. For the Brillouin zone (BZ) integration,
a modified tetrahedron method [18] with 403 special k points in the irreducible wedge (IW)
(3000 k points in the full BZ) was used in constructing the charge density in each self-
consistency step. We have carefully checked that with these parameters the calculations
converge.

The correlated d-electron states of Pd and Mn are taken into account by using the
LSDA+U (GGA+U) methods with self-interaction correction method (SIC) to account the
double-counting corrections. The meaning of the U parameter was discussed by Anisimov
and Gunnarsson [19]. In this work we take, the polar Kerr effect which is given by the well-
known formula for the complex Kerr angle (see chapter 1)

The calculation of the optical and magneto-optical properties has been performed using 8000
k-points with 20x20%20 k mesh. In order to consider the effect of finite lifetimes, as well as
of the experimental resolution, a Lorentzian broadening equal to ;= 0.7 eV was applied for
both the interband and intraband contributions and Drude broadening equal to dp= 0.1 eV in
the intraband contributions. We have used also Lorentzian broadening equal to 5;= 0.1 eV in

some cases to distinguished between the spin up and spin down contributions.
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5.3. STRUCTURAL PROPERTIES

The optimized lattice constant a (A), the bulk modulus B (GPa) and the corresponding
experimental data are listed in Table 5.1 using the different approximations. The calculated
values of U for Pd and Mn atoms are displayed in table 5.2. The results show that the GGA
gives closed parameters compared to experiment and the LSDA+U provides a better estimate
of the lattice constants than the LSDA. Furthermore, the lattice constant is severely over
estimated by GGA+U. The value of bulk modulus is inversely proportional to the lattice
parameter one (volume effect) and there are no experimental data to compare our predicted
results with them. But, one can conclude that the GGA describes more accurately the
structural properties than the other approximations as far as the lattice parameter is concerned.
The calculated values of U are obtained using the method of Anisimov, but there are other
methods to estimate the value of U. These facts stimulated us to take into account the
correlation effects of the d electrons for different values of U. The results used for U varying
from 1 to 6 eV, the latter value is probably an upper limit for Mn in an intermetallic
compounds, are reported in table 5.3. It appears from the comparison of the calculated results
with the experimental ones that the GGA+U (U=1) gives better results and the LSDA+U with

U=6 but with a lesser extent.

Table 5.1 Calculated and experimental lattice constants and bulk modulus of PdMnSb and

Pd,MnSb compounds.

LSDA LSDA+U.y, GGA GGA+Uea agxp.
a(A°) | B(GPa) |a(A°) | B(GPa) | a(A°) | B(GPa) | a(A°) | B(GPa)

PdMnSb | 6,06 |129.29 | 6.165 | 11426 | 6.247 | 93.78 6.35 | 89.16 6.28

Pd;MnSb | 6.304 | 166.7 6.373 | 149.22 | 6.465 | 136.43 | 6.532 | 123.65 | 6.42

Table 5.2 Calculated U parameters for the PdMnSb and Pd,MnSb compounds.

LSDA GGA

U(Pd) | UMn) | U(Pd) | U(Mn)
PdMnSb | 0.3 | 3.8 04 |35
Pd,MnSb | 0.3 | 3.8 039 |3.53
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Table 5.3 Dependence of the lattice parameter on the U parameter for the for the PdMnSb
and Pd,MnSb compounds.

U=1 U=2 U=3 U=4 U=5 U=6

GGA PdMnSb | 6.270 6.299 6.334 6.355 6.37 6.38
Pd;MnSb | 6.482 6.504 6.522 6.54 6.55 6.563

LSDA | PdMnSb | 6.08 6.119 6.146 6.168 6.186 6.2
Pd;MnSb | 6.321 6.34 6.357 6.364 6.373 6.38

5.4. ELECTRONIC PROPERTIES

In this section, we present our calculated band structure for PAMnSb and Pd;MnSb
compounds using different approximations and taking into account the spin-orbit interaction.
We also present our studies of the electronic structure for different values of U, due to its
effects on the magnetic and magneto-optical properties. Furthermore, our discussion will be
focussed on the LSDA results, but for comparison we present our GGA ones.

The band structures for spin up and down electrons at the high symmetry points as well as
in the lines joining them in the Brillouin zone are shown in figures 5.1a and 5.1b for PdMnSb
and Pd2MnSb using the LSDA and LSDA+Ug,. The LSDA spin polarized calculations
predict that PAMnSb is half metallic and Pd,MnSb is metallic, while the LSDA+U,, destroys
the half metallicity for the first compound and gives the same nature as the LSDA for the
second one.

The band structure calculation using the LSDA are very similar to those obtained using
GGA, except around the Fermi level for the spin down electrons where smaller changes
appear (see figure 5.2).

The band structure with spin-orbit coupling (SO) demonstrates that SO effect is
significant for this compound, whereas the introduction of this effect split the bands and
destroys the half-metallic band gap because the spin-orbit coupling introduce states in the
half-metallic gap of the minority states (spin-down direction).

We find it very convenient for the comparison to present our results in the same figure.
Figure 5.2 displays the spin polarized density of states (DOS) of the PdAMnSb and Pd2MnSb
compounds using different approximations, i.e., LSDA, GGA, LSDA+U. and GGA+U,.
The difference between these results is a clear manifestation of the differences in the band

structures using the different approximations.
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2w L T X W K 2w L T X W K

Figure 5.1a Band structure of PdAMnSb along the high cubic symmetry lines in Brillouin zone
using the LSDA and the LSDA+U.
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Figure 5.1b Band structure of Pd,MnSb along the high cubic symmetry lines in Brillouin
zone using the using the LSDA and the LSDA+U.
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For PdMnSb (with LSDA), the Fermi level is very close to the edge of the gap (thus it is a
half metal), in contrast to the LSDA+U where it is below the gap. The majority spin density
of states has a metallic character, and the number of electronic states at the Fermi level is 0.68
sates/eV/cell. The minority spin present occupied and unoccupied states obviously separated
by a gap.

The value of the gap in the minority band of PAMnSb is approximately 0.45 and 0.13 eV, for
LSDA and LSDA+U, respectively, which is an indirect gap, with the maximum of the
valence at the I" points and the minimum of the conduction band at the X-point.

Figure 5.3, gives the projected density of states of the atoms. In the majority (spin T) band
the Mn d states are shifted to lower energies and form a common d band with the Pd d states,
while in the minority band (spin ¥) the Mn states are shifted to higher energies and are
unoccupied, so that the band gap at Er is formed separating the occupied d bonding from the
unoccupied d-type antibonding states.

The projected densities of states (PDOS) shows that the Sb atom with the sp atomic
configuration introduces a deep lying s band located at about -12 eV and the p-bands between
0-2 eV below the Fermi level.

The bonding hybrids are mostly a mixture of Pd and Mn character, while the antibounding
empty ones have mostly Mn character with a small mixture of Pd states. In the LSDA+U the
DOS peaks in the neighbourhood of Er due the Mn atom in the majority spin, observed in the
LSDA, are shifted to lower energies, resulting in the suppression of these peaks in the total
DOS (see figure 5.2) while in the minority spin the structures located above the Fermi level
are shifted to higher energies. Furthermore, in this case the bonding hybrids are mostly of Pd
character with a small Mn mixture but for the antibonding states we have the same behaviour,

i.e., the dominance of the Mn d states.
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Figure 5.3 The total density of states (DOS) per atom of Pd, Mn and Sb species with LSDA
and LSDA+U,,.
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As it is seen from the figure 5.4 the density of states depends strongly on the U used. The
inclusion of Coulomb interaction in d states mainly changes the top of the valance density by
shifting the peaks to lower energies from original position and the bottom of the conduction
band by upward energy shifting from original position. We note that this effect is very strong
in PAMnSb than Pd,MnSb compounds.
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Figure 5.4a Dependence of the total density of states (DOS) on the value of U for PAMnSb.
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In agreement with the commonly accepted picture of the magnetism of the Mn based
Heusler alloys, we obtain a strong localization of the magnetization on the Mn sublattice with
a value of the Mn moment around 4ug. We find that the spin contribution of the Mn atom to
the total magnetic moment is large. Table 5.4 summarises the calculated magnetic moments
for the different approximations LSDA, GGA, LSDA+U and GGA+U for U calculated and
when this parameter extends from 1 to 6 eV. The total magnetic moment per unit cell is
located mostly at the Mn atom. The local moment of Mn is higher than the total moment by at
most 0.01-0.05 uB. In contrast with [rMnZ compounds, see chapter 4, where the difference
goes to more than 0.22 pg. The reduction of the total moment is therefore accompanied by
negative Sb spin moments. This is induced by the hybridization of Sb-p states with Mn-3d
states. Furthermore, the magnetic moment in Mn in Pd;MnSb compound is lower than the

total magnetic moment.

Table 5.4 Dependence of the magnetic moment on the U parameter for the PdMnSbh and
Pd,MnSb compounds. The values between brackets represent the magnetic moment in Mn

atom.

SA Ucar, U=1 U=2 U=3 U=4 | U=5 U=6 Exp

PdMnSb | 4.086 | 4.637 | 4202 | 4.358 | 4461 | 4517 | 4.632 | 4.66 |4.0°
(4.02) | (4.68) | (4.21) | (4.40) | (4.51) | (4.60) | (4.68) | (4.72) | 395"
GGA Pd,MnSb | 4316 | 4.664 | 4.442 | 4544 | 4.617 | 4.722 | 4767 | 4.784 | 4.4°
(3.99) | (4.43) | (4.25) | (4.39) | (4.34) | (4.60) | (4.66) | (4.60) | (4.2)°
PdMnSb | 401 | 4456 | 4.09 | 4.253 | 4360 | 4461 | 4.545 | 4.63
(3.78) | (4.46) | (3.99) | (4.18) | (4.33) | (4.44) | (4.52) | (4.64)
Pd,MnSb | 4.178 | 4.616 | 4333 | 4462 | 4563 | 4.644 | 4.682 | 4.752
(3.79) | (4.35) | (4.00) | (4.16) | (4.29) | (4.39) | (4.46) | (4.62)
“ Ref. [20]; ° Ref. [21], ¢ Ref. [22]

LSDA

SA: standard approximation

5.5. OPTICAL AND MAGNETO-OPTECAL PROPERTIES

In this section we present first our calculated results for the optical and magneto optical
properties for the half Heusler alloys PdAMnSb for which the experimental data are available
and reported in Ref. [23] and discuss them, then the predicted results for PdA2MnSb will be

given.
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The calculated imaginary part of the dielectric function which represents a way to assess
how energy is taken when an electromagnetic wave interacts with a material medium, is
shown in figure 5.5 using different approximations, together with the measured spectrum for
PdMnSb. The calculated spectra are the sum of the both intra and inter contributions. In the
Drude term, the phenomenological life time, o, is 0.1 eV. First, the agreement between the
two computational approaches is rather good. Second, the LSDA+U,, gives better agreement
with experimental, i.e., the experimental trend is reasonably reproduced.

In order to give a complete description of the origin of the different peaks and structures

in the spectra, first we decompose ¢, into spin up and spin down, with and without intraband

30
PAMnSb
25+
20
2 B
\8{\1157 =, — LSDA+(U_,)
o W - GGA+(U_)
o-o Exp.
10
57
O | v oO+———T—T T T T T T T
0o 1 9 10 0 1 9 10

2 3 4 5 6 7 8 2 3 4 5 6 7 8
Photon Energy (eV) Photon Energy (eV)
Figure 5.5 Calculated and experimental [23] imaginary part of the dielectric function of the

PdMnSb compound. The Lorentzian broadening is equal to 6,= 0.1 eV.

transitions, in doing so we neglect the spin orbit interaction and the results are given in figure
5.6. Secondly, we perform the decomposition of &, into individual pair contribution in figure
5.7. The band structure for PAMnSb is displayed in figure 5.8.

From the interband curve of &, (figure 5.6), it is clear that for 0<nw <1.1 eV the spectrum
closely resembles the contribution from the metallic channel and the peak at 0.4 eV is
produced by the spin up transition. At higher energies the spectra follow the semiconducting
channel. Furthermore, when the intraband contribution is added, it dominates the lower
energy behaviour of the &, but the same trend is conserved at higher energies. After the

regular decrease due to the intra contribution, three prominent peaks follow at 1, 3.4 and 4.8
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eV with minimum in between. The first peak is due to transitions 2-3 and 2-4 from spin down
bands, the second is caused by the transition 1-6 with a contribution of the 4-5 one from the
spin up and the third one results from transition from the band 2 to the band 8 of the spin
down. In the LSDA+U,,, the first minimum in the calculated spectra is located around 2 eV.
The minimum in measured spectra is at lower energy, is due mainly to transition in the spin
down channel and the main peak at 3.4 is caused by transition in the spin up channel.

We have also studied the influence of U on g, for U varying from 1 to 6 eV and the results are
given in figures 5.9. We note that the results for U= 3 are close to the experiment data.
Bearing in mind that this values is close to the one calculated. The real part of dielectric
function ¢; is obtained from imaginary part by the Kramer-Kronig relation and is shown in

figures 5.10.
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After having shown the optical spectra, we turn to the magneto-optical spectra. According
to the relation giving the Kerr rotation, this later can be enhanced by larger off-diagonal
conductivity and a smaller diagonal part. In order to give more detailed insight into the origin
of the features in MO spectra in terms of electronic structure, the complex diagonal optical
conductivity oy without the spin orbit coupling for both contributions intra and inter are

shown in figures 5.11 and 5.12.
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Figure 5.11 Spin decomposition of the diagonal optical conductivity 6ix(®) of PAMnSb. The
total dependence is shown by the solid line, spin-majority contribution by the dotted line (red
colour), and spin-minority contribution by the dashed line (blue colour) with LSDA and

LSDA+U. The Lorentzian broadening equal to 5;= 0.1 eV

It is clear that the intra contribution is significant at lower energies, while at higher
energies the conductivity is due mainly to the inter transition of the minority spin channel.

To understand the effect of interband transition on the magneto-optic properties,
experimentalist often display wo,y instead of o4, . So, we present woyy spectra in figure 5.13,
the life time used for these spectra is 0.7 eV. In the LSDA+U the spectrum is shifted to higher
energies, while conserving the same shape as the one obtained using the LSDA. The Imwoyy

spectra compares very well with that obtained by Antonov et al. [3].
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broadening is equal to 6= 0.7 eV.
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The imaginary part of the conductivity, Im[woyy], has a direct physical interpretation. It is
proportional to the difference of absorption rate of left and right circularly polarization light
[24] and its zeros correspond to the equality of the absorption coefficient for right and left

circularly polarization light.

PdMnSh
0.1
%4 4
@ |
c |2
S 3
B o =
(@] —_
4 i
’a—s —_
V. Zo
0.1
— LSDA — LSDA
— GGA — GGA
. oo EXp. 02 L o—o EXp.
02 ' * \
LA LA L L L L I L L B T T 1T T 17 71T 71T 77171
0 1 9 10 0 1 9 10

2 3 4 5 6 7 8 2 3 4 5 6 7 8
Photon Energy (eV) Photon Energy (eV)

Figure 5.14 The calculated LSDA and GGA and experimental [8] Kerr rotation and
ellipticity. The Lorentzian broadening equal to 6;= 0.7 eV
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Figure 5.15 The calculated LSDA+U and GGA+U and experimental [8] Kerr rotation and
ellipticity. The Lorentzian broadening equal to 6;= 0.7 eV.
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The polar Kerr rotation and Kerr ellipticity for PAMnSb are shown in figure 5.14 and 5.15
for different approximations and with Lorientzan broadening equals to 0.7 eV, which is nearly
equal to the one used by Kiibler in Ref [1]. The experimental spectrum [8] is also included in
this figure. It is clear that there is an excellent agreement between the calculated (with LSDA)
and the measured spectra; the only difference is being larger amplitude of the calculated Kerr
angle. This is a common phenomena and can be ascribed to a sample surface that is not ideal,
1.e., it my have dislocations, an oxide overlayer, or distortions due to surface treatment.
Furthermore, our calculation reproduces the first peak position better than that reproduced by
Antonov et al.[3], they used the LMTO method.

In order to get insight into the origin of the peaks in the Kerr rotation spectra, we compare
them with the curve of diagonal and off diagonal part of the optical conductivity. The Kerr
rotation displays the same slope as Im[woc,y] being enhanced at 1-2 eV by the contribution
from the denominator. Inspection of oy and Gy« curves shows that the spin orbit coupling
and the spin polarization influnces the first rotation peak. While the others peaks are caused
by Im[wo,y]. The Kerr ellipticity spectra are well reproduced by our calculations. Moreover,
it is clearly seen that when the Kerr ellipticity cross the zero line, a peak always appears in the
Kerr rotation spectra and vice versa due to the Kramer-Kronig relation.

When we use the LSDA+U (GGA+U) and exactly when U ranges from 1-3 there is no
essential change in the shape of Kerr spectra with only the shift of the peaks to the higher
energies as seen in figure 5.16.

Finaly we present our predicted MO results for the full Heusler alloys Pd;MnSb and compare
them to those of PAMnSb in figure 5.17. It is obvious that there exists four main peaks in the
Kerr rotation spectra in Pd,MnSb in the energy range 0-10eV, the same number as in
PdMnSb. The overall shape of the Kerr rotation and ellipticity spectra is similar in both
compounds. But at low energy, they have different signees. From the comparison of the

spectra of PAMnSb with experiment, Pd,MnSb, shows week Kerr rotation.
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Figure 5.16 The calculated (LSDA+U) and (GGA+U) and experimental Kerr rotation and
ellipticity with U ranged from 1 to 6 eV.
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Figure 5.17 Comparison of the calculated LSDA (LSDA+U) Kerr rotation and ellipticity of
PdMnSb and Pd;MnSb compound.

CONCLUSION

We have investigated the electronic, optical and magneto-optical properties of the Heusler
compounds PbMnSb, and Pb,MnSb using the FP-LAPW method within LSDA (GGA) and
with the on-site Coulomb correction LSDA+U (GGA+U).
Our LSDA calculations reveal a gap in the Ep, predicting half metallic nature. On the other
hand, the LSDA+U results move the d states away from the Fermi level but the shift of the
unoccupied states make this compound metallic in both spin (up and down).
We show that the LSDA+U can produce accurate optical properties; the calculated optical
spectra using LSDA and LSDA+U are give good results as compared with the experimental
data. Our calculations suggest that the magneto-optical are reproduce very well the
experimental one when broadening is taken as 0.7 eV, i.e., with a larger impact of the finite
lifetime effects.
The magnetic moments calculated by LSDA+U (GGA+U) for the present compounds are
found to be very large. Moreover, there is a very good agreement of our GGA values with the
experimental values for the magnetic moment. Furthermore, we found that the main

contribution to the magnetic moments comes from Mn atom.
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We have observed that LSDA gives an overall improvement of Kerr spectra with experiments
whereas with LSDA+U the agreement is relatively poor. In another hand, a small difference
in Kerr spectra appeared when we calculated it with and without inclusion of the Drude

(intraband) contribution.
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6.1. INTRODUCTION

During the last decade a considerable number of experimental and theoretical studies have
been reported on the Transition-metal dichalcogenides with pyrite [1-5], marcasite [6-8] and
loellingite[9] structures which have attracted considerable attention due to their electrical,
magnetic, and optical properties and they have shown to have applications in many
technologically important areas, such as photovoltaic solar cells[10,11] and as substrate for
semiconductor growth[12]. The three dimensional pyrite structures can be transformed to the
layer structure in a strong crystal field; in the transition metal diselenides and disulphide or
transition metal diphosphided the d* cations such as Pd which preferentially adopt a square-planar
coordination can be regarded as stacking of two-dimensional sandwiches. These crystal structures
were confirmed by many researchers [13,14]. Bither et al. have described the preparation and
studied the electrical and optical properties of new PdPS,., (0<y<2) compounds between the
known end members PdP, and PdS, [15]. Burdett et al. have investigated the relationships
between electronic and geometrical structure for the series Pd(XY), where XY=P,, PS and S, by
using molecular orbital calculations and tight-binding computations based on the extended

Hiickel method[16].

6.2. CRYSTAL STRUCTURE AND CALCULATIONS DETAILS

Figure 6.1 shows the unit cells of the compounds PdP, and PdSe,. The crystal structure of
Palladium diphosphide, PdP,, is a monoclinic body-centered with the space group 12/a. The 4 Pd
atoms positions are +£(1/4, 3/4, 1/4) and the 8 P atoms occupy the positions +(xyz)(x,~y, 1/2 + z)
with x = 0.1886, y = 0.1237, z= 0.3537 [14]. The P atoms form continuous zig-zag chains along
one of the axis; each palladium atom is bonded to four phosphorus atoms and each phosphorus
atom to two palladium atoms and to two phosphorus atoms. In the present calculations, we have
used the space group B2/b instead of 12/a, the later basis vectors (a’, b’, ¢') can be obtained from
the former ones (a, b, c) by the transformation (a’, b’, ¢') = P(a, b, ¢) with P is a rotation matrix

given by :
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The PdS, and PdSe, compounds crystallize in an orthorhombic structure with space group Pbca—
D"y, the unit cell contains four palladium atoms and eight selenium (sulphur) atoms. The
Wyckoff positions of Pd are (a): (0, 0, 0); (1/2, 1/2, 0); (0, 1/2, 1/2); (1/2, 0, 1/2) and the Se and S
ones are (¢): £[(X, y, z); (1/2+x, 1/2—y,—z); (-, 1/2+y, 1/2-z); (1/2—x,~y, 1/2+z)], where x, y and
z are the internal free coordinates; x = 0.112(0.107) y = 0.117(0.112) and z = 0.407(0.425) for
Se(S) [13]. This structure is considered as a deformed pyrite-like type. The nearly regular
octahedral arrangement around the metal atom, characteristic of the pyrite-type structure, is
transformed into a square arrangement as two of the six metalloid atoms have moved away. At
the same time, the configuration around the metalloid atom has lost its regular tetrahedral

character.

Figure 6.1 crystal structure PdP, and PdSe, compounds

The present calculations are performed using the all-electron full potential linear augmented
plane wave plus local orbitals (FP-LAPW+LO) method [17] as implemented in WIEN2K code
[18] within the local density approximation (LDA) [19,20]. This method described previously in

chapter 4. In this work we treat the core electrons fully relativistically, and the valence electrons
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semi relativistically (all relativistic effect are taken into account except the spin-orbit coupling).
The MT sphere radii are chosen to be 1.9, 1.5 1.9 and 2.0 Bohr for S, P, Se and Pd respectively.
The basis functions are expanded up to RpnKmax=8, (Where Ry is the smallest of the MT sphere
radii and K.« is the largest reciprocal lattice vector used in the plane wave expansion) and up to
Lmax =10 in the expansion of non spherical charge and potential. We were used the Perdew and
Wang [21] functional for the exchange and correlation potential. For the Brillouin zone
integration we have used 6 x 5 x 6 k points mesh for PdP, and 11 x 10 X 8 k points mesh for
PdSe,(S) in all the calculation. The self consistent calculations are considered to be convergent

when the total energy is stable within 0.1 mRy and the forces are less than 1mRy/Bohr

6.3. STRUCTURAL PROPERTIES
To investigate the electronic properties of PdX,; compounds, one has to determine accurately
the ground state parameters. In this context, we have used the total energy approach to determine

the positions of the atoms and the lattice parameters.
073

00

-0.80
1400 1500 1600 1700 1800 1900 2000
Volume (a.u.)

Figure 6.2 Total energy vs the variation of the unit cell volume of PdX, (P, S and Se)

compounds.

The experimental lattice constants and positions are used as the starting point to perform the
structural calculations. For PdP, compound and due to its complex monoclinic structure, the unit

cell relaxed, according to the Newton’s laws, by varying the a, b and c lattice parameters and the
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angle beta simultaneously at a series of fixed volumes and the total energies were calculated for
each volume and the optimized structural parameters corresponding to the lowest energy. While
for the orthorhombic lattice parameters of PdS, and PdSe,, we performed the structural
optimization by calculating the total energies for different c/a and b/a ratio around the
equilibrium cell. We have fixed these two equilibrium parameters by calculating the equilibrium
volume using Murnaghan’s equation of state as shown in figure 6.2. The positions of the atoms in
the relaxed compounds are determined by minimizing the total energy and the forces acting on
every atom of the system using the Hellman-Feynman theorem. The forces on the atoms are
geometrically relaxed by allowing them to move according to Newton’s laws in the presence of

fictitious damping force. The system evolves until equilibrium geometry is obtained. In table 6.1

Table 6.1 Calculated equilibrium lattice constants (a, b and c), bulk moduli (B) and the engle 3

for the PdP,, PdS; and PdSe, compounds and the available experimental data

PdP, PdS, PdSe;
cal. exp. ! cal. exp. 2 cal. exp. 2
a(A) £.20 6.207 5465 5460 5 866 5.741
b (A) 5.85 5857 5.538 5541 6.0 .866
c (&) 5887 5874 7.525 7.531 7.357 7.601
a1 111.76 111.8 ; ; ; ;
B (GPa) 151.34 ; 116.51 ; 105.72 ;

TRef [14] 2 Ref [13]

the calculated values of the lattice constants a, b, ¢ are compared with the experimental results,
this table displays also the obtained values of the bulk modulus (B). The deviations of the
absolute values of the lattice parameters are smaller than 4.5% for all parameters. The bulk
modulus decreases in going from P to Se compounds, this is a normal behavior related to the
increase in the equilibrium volume V. Since there are no reported experimental data for the bulk

modulus, our results represent a prediction. One point needs to be added is that the obtained
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results of the atom positions show no significant change between the calculated values and the

experimental ones as shown in table 6.2. The optimized inter atomic positions are displayed in

table 6.3 together with the experimental ones.

Table 6.2 Positional parameters of PdP,, PdS; and PdSe, compounds and available experimental

data.
PdP PdSs PdSes
cal. exp. | cal. exp. 2 cal. exp. 2
T 0.143 .1=8 0104 0107 0112 0112
i 0.124 0.123 0109 0112 0118 0117
z (0.304 0,353 0.416 0.425 0,404 0.407

TRef [14] *Ref [13]

Table 6.3 Shortest interatomic distances (A) for the PdP2, PdS2 and PdSe2 compounds and the

available experimental data.

a

exp.

PdP= Pd— P 2.3249 2.3351
Pd — Pd 2944 -

Pr—-P 2177 22011

PdSs Pd— 5 2.320 2,300 2
Pd — Pd 3.800 ——

55— 5 2.086 2.130 2

PdSes Pd — Se 2.482 2.440 2
Pd — Pd 4.195 ——

Se — Se 2.303 2.360 2

TRef [14] 2 Ref [13]
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6.4. ELECTRONIC STRUCTURE
Figure 6.3 shows the calculated band structures at equilibrium volume and for the optimized
atomic positions for the PdX, (X=P, S and Se) compounds along the high symmetry lines in the

corresponding Brillouin zone. It is clear from this figure that in the PdP, compound, there is no
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Figure 6.3 Band structure of PbX, compounds along high symmetry directions in the Brillouin
Zone. The Fermi energy is at zero.

gap which separates the valence and the conduction states, i.e., the conduction band drops

towards the Fermi level (Er) which suggests that this system is a metal in contrast with the
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experimental results [22-24] which were derived from resistivity measurements; 0.6-0.7 eV [23].
This discrepancy between the experimental and the theoretical data is due, as it is well known, to
the approximation used (LDA) which underestimates the band gaps. Our calculations show that
PdS; and PdSe; have similar band structures. In PdS, the conduction band drops towards the
valence one but no band crossing the Fermi level; which makes the pseudo-gap exactly at the
Fermi level, while, in PdSe, we observe an important feature which is the existence of a band that
lies just above the Fermi level in the directions Z-I" and I'-X, which can be attributed to the fact
that when we move from S to Se there is a significant increase in the valence band towards Ep.
The experimental values of the gaps for PdS, and PdSe, which where also obtained from
resistivity measurements are 0.7-0.8 eV and 0.4 eV [24], respectively. However, the smaller
experimental value of the gap for PdSe; is translated by the occurrence of the overlap between
the conduction and the valence bands in the calculated band structure for this compound
compared to PdS,. For this reason we have used the LDA+U, with U ranging from 1 to 3 eV,
which predicts that PdS; is a semiconductor as shown in figure 6.4, with a gap value of 0.14 eV,

while PdP, and PdSe, stay metallic.
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e ——
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-10+ Pdsz ]
//%
S X U R T Z r X

Figure 6.4 Band structure of the PbS, compound along high symmetry directions in the Brillouin

zone with the LDA+U. The Fermi energy is set to zero.

94



Chapter 06 RESULTS AND DISCUSSION:
PSEUDO-BINARY COMPOUNDS PdX, (X=P, S AND Se)

The qualitative similarity of the electronic structure of these two compounds is also evident in
the total density of states (DOS) as shown in figures 6.5, where the vertical dashed line represents
the Fermi level. The whole shapes of the DOS are nearly identical, with some smaller
differences. Te Fermi levels are located in the pseudo-gap region with a clear separation of
bonding and antibonding states. For PdSe, and PdS, the density of state DOS, i.e., the bands, can
be divided into four main energy regions. In order to understand the above-mentioned results,
figure 6.6 displays the calculated partial density of states. We note that the lowest part which lies
between 11—12.5 eV below EF comprises the Se-s states, while the second group extending from

7 eV below EF up to Ef, which contains a
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Figure 6.4 Total densities of states (DOS) of PdX2 (X=P,S and Se) compounds.

sharp pick at about 3 eV, is arising from the Pd-d and Se(S)-p states, where the Pd-d states
contribution dominates and these states are shifted up in energy in PdSe, compared with the ones
in PdS,. These states represent the initial states for the optical transitions. The third region
extending from Er to 5 eV above EF has significant contribution from Pd-d and Se-p states. The
last group, at about 3.5 — 10 eV above Ep, has contributions from Se(S)-s, and Se(S)-p states
where the latter has the major component. The DOS of PdP, shows less structure and the low

lying P-s and Pd-s states are delocalized and show strong dispersion, spreading from -14 to -6 eV,
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while in the other two compounds these bands are narrow and flat, reflected in the pronounced
peaks. The calculated density of states for the studied compounds shows that the absorption starts
with a modest intensity in the infrared region (IR) then it gets stronger at higher energies.
Furthermore, the calculated density of the states at the bottom of the conduction bands and the
top of the valence ones for PdS, might causes only a weak absorption in the IR region compared

to Psz

CONCLUSION

In conclusion, we have carried out first principles calculations to investigate the structural and
electronic properties of PdX2 (X=P, S and Se), using the FP_ LAPW+LO method. The structural
properties are determined through total energy and interatomic forces minimization. The
calculated lattice constants agree well with the experimental ones. Our results show that the
studied compounds exhibit a metallic character with LDA. In another hand the LDA+U predict
that PdS; is a semiconductor with narrow gap while PdP, and PdSe; have metallic character. The

calculated density of states suggests that the absorption increases rapidly in the IR regions for

PdP-.
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7.1. INTRODUCTION

As we have mentioned in the previous chapter, transition-metal chalcogenides, in terms of
composition, provide a wide variety of compounds which crystallize in the pyrite structure [1], in
ternary ordered versions (cobaltite, ullmannite) [2], and in the marcasite and distorted marcasite
(arsenopyrite) one [3]. Moreover, the ternary pnictide chalcogenides MZX of the d® transition
metals compounds with the ullmannite structure such as the palladium phosphide sulfide PdPS
and the palladium phosphide selenide PdPSe which also belong to the class of layered inorganic
materials and were firstly synthesized by Bither et al. [4], are less investigated compared to the
transition-metal dichalcogenides. The crystal structure of these materials is closely related to the
pseudobinary compounds PdS; and PdSe; [5,6]. Marzik et al. [7] have prepared and studied the
electrical and optical properties of PdPSe single crystals. They have shown that this compound
has quantum efficiency below 800 nm and an indirect optical gap of 1.29 eV. Burdett and
Coddens [5] have used molecular orbital and tightbinding computations based on the extended
Hiickel method to investigate the relationship between the electronic and the geometrical
structure for the series PdP,, PdPS and PdS,. Despite of few significant experimental
achievements, our knowledge on their electronic and optical properties which will be of primary
importance for their use in technological applications is still rather limited. Thus, further

theoretical investigations of these properties are needed.

7.2. CRYSTAL STRUCTURE AND CALCULATION DETAILS

The palladium phosphide sulfide PdPS and the palladium phosphide selenide PdPSe
compounds belong to the group of layered pnictide chalcogenides transition metal. They
crystallize in an orthorhombic structure, space group Pben (D' ,;) [8], the crystallographic
structure is shown in figure 7.1. The lattice parameters a, b and ¢ (shown as x, y and z in figure
7.1) correspond to I'— X, 'Y and I'— Z directions in the first Brillouin zone (BZ), respectively.
In these structures the three-dimensional pyrite structure transforms to the slab one. These
square-planar coordinations can be thought to evolve from an octahedral coordination by strongly
elongating the octahedron of nearest anion neighbours along one diagonal. The palladium Pd
elements in square-planar coordination with two Se and two P atoms. Pd atom above and below

the coordination plane extend the coordination geometry to an extremely elongated octahedron.

99



Chapter 07 RESULTS AND DISCUSSION:
ORTHORHOMBIC COMPOUNDS PdPX (X=S AND Se)

Phosphorous is tetrahedrally coordinated to two Pd, one Se, and one P atom. Selenium is

tetrahedrally coordinated to two Pd and one P and a lone pair of electrons as fourth ligand [8].

Figure 7.1 Optimized orthorhombic crystal structure of PdPSe

The present calculations are performed using the all-electron full potential linear augmented
plane wave plus local orbitals (FP-LAPW+lo) method [9] as implemented in WIEN2K code [10]
within the local density approximation (LDA) [11,12]. The MT sphere radii are chosen to be 1.9,
1.9, 2 and 2.2 Bohr for P, S, Se and Pd respectively. The basis functions are expanded up to
RintKmax=8, (Where Ry is the smallest of the MT sphere radii and Kmax is the largest reciprocal
lattice vector used in the plane wave expansion) and up to Lmax = 10 in the expansion of non
spherical charge and potential. In order to keep the same degree of convergence for all lattice
constants studied, we kept the values of the sphere radius and Kmax constants over all the range
of lattice spacing considered. We used the Perdew and Wang functional [13] for the exchange
and correlation potential. For the Brillouin zone integration and after performing convergence
tests, we used 5x13%13 k point mesh in all the calculations. The self consistent calculations were
considered to be convergent when the total energy is stable within 0.1 mRy and the forces are
less than 1 mRy/bohr.

The calculated optical spectra depend strongly on the BZ sampling, therefore a sufficiently dense

k-mesh is used in the calculations of optical spectra, which consists of 8x19x19 k points mesh.
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7.3. STRUCTURAL PROPERTIES

We first analyze the structural properties of PdPX (X=S and Se) compounds. In order to
determine the ground state parameters in this total energy approach the experimental lattice
constants and atomic positions are used as starting points. We have performed the structural
optimization by calculating the total energy for different c/a and b/a ratio around the experimental
ones. We have fixed the values of these two parameters by calculating the equilibrium volume
using Murnaghan’s equation of state. The positions of the atoms are determined by minimizing
the total energy and the forces acting on every atom of the system. The obtained results are
displayed in table 7.1 together with the experimental ones. The calculated values of the atomic

positions in the relaxed structures are very close to the measured ones.

Table 7.1 Calculated positional parameters of PdPS and PdPSe compounds compared with the

available experimental data (1 and 2 correspond to PdPS and PdPSe respectively).

Pd(1) | Pd2) | P1) | PQ) S Se

This work | 0.11300 | 0.11045 | 0.41818 | 0.42072 | 0.34634 | 0.34203

" Expl 0.11372 | - 0.416 ~ 034624 | -
This work | 0.25085 | 0.25848 | 0.13030 | 0.12334 | 0.36400 | 0.36681

d Expl 025292 | - |0.12974| - |036324| --
This work | 0.16024 | 0.15606 | 0.28145 | 0.28717 | 0.04506 | 0.04136

i Expl 0.15907 | - | 028111 - |0.04553| -

1 Ref [8]

Furthermore, the calculated Pd-Se bond length is 2.443 A, slightly larger than the Pd-S one
2.336 A (Exp.: 2.356 A [8]) in PdPS which might be attributed to the larger size of the Se atom
relative to the S one. The Pd-Pd and P-Pd distances in PdPSe are 3.167 A and 2.292 A
respectively, which are also slightly larger than the corresponding ones in PdPS; 3.165 A and
2.285 A (Exp.: 3.198 A and 2.205 A respectively [8]). While we found that the P-P bond length is
2.193 A and 2.177 A in PdPS and PdPSe respectively. Table 7.2 shows the calculated values of
the lattice parameters and the bulk modulus together with the available experimental data.
Bearing in mind the underestimation of the LDA to the lattice parameter, the agreement between

the theoretical and the measured values is good. The PdPS bulk modulus value is greater than the

101



Chapter 07 RESULTS AND DISCUSSION:

ORTHORHOMBIC COMPOUNDS PdPX (X=S AND Se)

corresponding one for PdPSe, this is understood in the context of volume effect due to the

difference in size of the chalcogenide atoms.

Table 7.2: calculated equilibrium lattice constants (a,b,c) of PdPS and PdPSe compounds

compared with the available experimental data

PdPS PdPSe

Expl This work Expl This

a (A) 13.304 13.262 13.569 13.459

b (A) 5.677 5.638 5.824 5.812

c (A) 5.693 5.661 5.856 5.820
V(A 429.974 423.27 462.775 455.261

B (GPa) -- 133.93 -- 122.55

1 Ref [3]

7.4. ELECTRONIC STRUCTURE

Since the optical properties are closely related to the electronic structure, it is of interest to
describe it first and then use it in analysing the different optical spectra. The band structure of
PdPS and PdPSe along the high symmetry lines in the Brillouin zone corresponding to the
orthorhombic structure is displayed in figure 7.2, while the corresponding total density of states
(TDOS) and the site and angular momentum decomposed DOS are shown in figure 7.3.
It is clear from these figures that both compounds are semiconductors and their overall band
profiles are similar. The conduction bands shift towards the Fermi level when one moves from S
to Se causing a reduction in the energy gap and leading to an increase in the width of the
conduction band (see figure 7.3). According to our results there is a small dispersion of the
energy bands observed parallel and perpendicular to the layers translated by the flat band around

the top of the valence band but at lower energies some bands have significant.
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Figure 7.2 band structure of PdPS and PdPSe compounds and the corresponding orthorhombic
Brillouin zone with the axis X, Y and Z corresponding to the crystal axes X, y and z respectively.

The Fermi energy is set to zero.

The main features of the electronic structure can be followed in figures 7.2 and 7.3. From the
calculated DOS and starting from lower energies, the first two peaks corresponding to the lower
two energy band groups have mainly chalcogenes and P-s states origin. However, small
contribution to these bands from p states of all atoms can be observed. The structure between -7
eV and Fermi level (Er) characterizes the strong p-d hybridization, while the contribution from
the s states are also significant in this region and can not be neglected. A closer inspection of the

partial density of states shows that the upper valence.

103



Chapter 07 RESULTS AND DISCUSSION:
ORTHORHOMBIC COMPOUNDS PdPX (X=S AND Se)

60

Total DOS [states/eV/atom]
T

Energy [ev]
Figure 7.3a Total density of states (states/eV unit cell) for PdAPS and PdPSe

The energy band gaps are found to be indirect, i.e., 0.87 eV and 0.66 eV of PdPS and PdPSe,
respectively. The nature of the gaps is consistent with the experimental one reported in Refs.
[3,7]. The top of the valence band is situated between I' and Z points of the Brillouin zone and
the bottom of the conduction band is located between S and R points for both compounds. It is
also worth mentioning that the theoretical gaps are smaller than the experimental values 1.38 eV

[3] and 1.29 eV [7] for PdPS and PdPSe respectively, this discrepancy is attributed to the LDA

method which always underestimates the band gap.
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7.5. OPTICAL PROPERTIES

The compounds with orthorhombic symmetry have three non-zero components of the
dielectric tensor. These compounds correspond to an electric field perpendicular and parallel to
the z-axis which are indexed as ¢, & and ¢”. The calculated imaginary parts for PdPS and
PdPSe are shown in figure 7.4. These spectra are not broadened. It is clear from this figure that
there is a considerable anisotropy between the three spectra corresponding to different
polarisations for each compound. To analyse the calculated optical spectra and determine the

origins of the

Table 7.3 Optical transition in the PdPSe compound.

Peak position (eV') Transition Region Energy (eWV)
- 0.71 o —= e1) T— 2V —T) 0.71
E, 1.22 {21 — wa), (91 — ca) (T — Z), (T — Z) 1.22, 1.23
Es 1.50 (vy — cq), (va — 1) T — Z.V — Z).(T — ¥) 1.49,1.55
Ea 2.65 (11 — en), (01 — c10) (7 — X, X —S), (7 — X, X —S) 2.60,2.67
Ey 3.02 fua — col,(te — ca) (S — R). (5 — R) 2.00,3.07
(v — <10) (85— 1) 3.04
vy Fo 0,71 (v — e1) T — Z.v —T) 0.71
B 1.71 frg — 1) (T — X, (T —¥) 1.67
(w6 — e2), (v7 — e2) (T —¥Y)i5— R) 1.75,1.72
¥ 1.81 (eng — gl (o — X, 85— R 1.79
Es 2.14 (w7 — e2) (Z T, T — X 214
Ea 2.65 (w11 — ca2) v —T) 2.63
Ey 2.95 (w11 — eca). (v — c3) (2 —U), (5 — R) 2.99
== Fg 0.71 (v — e1) T —Z.v —T) 0.71
FoN 1.61 (1g — e3) (0 — X, ¥ —T,R— [ 1.61
Ea 2,42 fens — ca) T — 2.V —T,.X — 5.5 — ) 230
(v — e (5 — ) 2.43
E, 344 (0 — 2] vV —T.T — X 345

different peaks and features, each spectrum is decomposed to its individual pair contribution, i.e.,
he contribution from each pair of valence v; and ¢; bands (vi-c;) (see figures 7.6a and 7.6b) and
plotting the transition band structure, i.e., the transition energy E(k) = E¢(k) — E.i(k) along the
high symmetry lines (not shown here). The counting of the bands is from the top (bottom) for the
valence (conduction) bands. These techniques which have been used to analyse the spectra of the
binary [25,26], the ternary [27,28] compounds and superlattices [29], allow the knowledge of the

bands which contribute more to the peaks and their location in the BZ.
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Table 7.4 Optical transition in the PdPSe compound.

Peak position (V) Transition Region Energy (eV)
zx Fy 1.04 (g — 1) (5 —R) 1.04
Ey 1.79 (g — e3) (S—R.R-U) 1.76
(g — ey r—Z R—-—S R-U) 1.79
Ey 223 (va — o5 (' —Z R0 2.19
Ey 2,85 (o2 — o) (R—5,X -5 2.84
E, 3.27 (vg — w1n) (r—Z R-ULZ-T) 3.24
Ey 2.51 {2g — ea) (' —%) 3.50
wy Eqg 1.04 (g — 1) (58— R) 1.0:4
Ey 225 (vg — o7) (8 —R,T—-Z) 2.25
Ey 265 (g — ea) (=¥, 0 — X)) 2.61
Ey 2. 82 (a1 — ea) r—ZxX —9) 281
Ey 2.14 (210 — c4) (' —%) 3.13
Ey 3.26 (w4 — o), (g — €a) C—¥),(C—%) 3.21,3.22
Eg 2.64 (vyg — ca) (T —-Y.,T—2) 3.64
zzx Fg 1.04 (g — ey ) (58— R) 1.0:4
Ey 1.80 {2y — ca) (I'—¥Y, 85— R) 1.50
Ey 2.32 (vg — c3), (v — ea) (O —Z), (1T — % 2.32,2.32
E; 257 {4z — ca) (2 -T.T-Y) 2.57
E, 2,72 (vym — ca) (h—-U,.5—R) 2.70
Ex 3.36 [vgm — ) r—ZX —5) 3.35
Eg 2.74 (rag — g )yven — o) (=Y, I'—Z X -5 (C -V, I'—Z) 274,376

The threshold energy occurs at 1.04 eV and 0.71 eV for PdPS and PdPSe and they are due to the

vl-cl transition along the (S—R) and (I'-Y ) directions respectively. For PdPS just above the

absorption edge the three spectra are practically the same and this shoulder originates mainly

from the v|-c; 23 transitions in the regions (S—R), (I'—Z) in the BZ. Then &, becomes smaller

than the other two components of the dielectric tensor, i.e., &) and &,°. However, for PdPSe

&, raises rapidily before becoming also smaller than &)” and &,. The strongest absorption peak

in PdPS is in &)”, E}”, which has almost the same height as E;*, while in PdPSe is in &,", E,* .

108



Chapter 07 RESULTS AND DISCUSSION:
ORTHORHOMBIC COMPOUNDS PdPX (X=S AND Se)

25 30
20— 255
i 20—
151~ L
L 15+
10 H
L 101
5
XX XX
— &,%(PdPSe) | — &, *(PdPSe) I
V.C e
_ V2' 1 — V3™ L
V,-C, V3G, 251
o VG VG s
- ViCho 3 |
f i‘ \.:“1.5*
Lo w r
i i 1~
; i r
i i 05—
}‘:\\ L
i S a
— v, v, |
V,C, v, C, sl
L - VG - VG L
2 ; 2+ .
‘ §
1= A g 1+
ot ‘ — . 0 — M
0 1 2 3 4 0 1 2 3 4 5 1 2 3 45 0 1 2 3 4 0 1 2 3 4 01 2 3 45
Energy (eV Energy (eV
30
20—
10+
— &,”(PdPSe)
8
25 — Vl-Cl
2; V2'C1
3 °F VG,
= 15 VG
o -V,
1+ _
L VoG
05
[
L — vy
3 i V3Cq
L Lo VG
__v,C
2 4 73
1%
0 —— ‘
0 3 4 0 0 1 2 3 4 5

1 2 3 4
Energy (eV)
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panels show the total imaginary part in the direction X, y and z of PdPSe compound.
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These peaks can be identified as due to the ve-c; in the (S—R) and (T —Z) directions in PdPS and
from vs-c4 and ve-c4 ones in the (I'-Z), (I'-Y ) and (X —R) directions in PdPSe. All the calculated

spectra have two main features and a minimum between them (see figure 7.4; for example in

PdPSe the two features are E; andE,” in &, , E}” and E)” in ¢)’and E,)* and E;* in &,°).

Table 7.5 Static value of &,(w) of PdPS and PdPSe compounds

PdPS PdPSe
uncorrected | corrected | uncorrected corrected
XX 15.74 12.66 11.75 10.21
yy 19.68 16.08 17.09 1.67
€1(0) 7z 19.20 15.78 16.78 14.46
200
160; ’
k[ PdPSe
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Figure 7.7 Calculated total absorption spectral response as a function of photon energy for

different polarization planes for PAPS and PdPSe compounds.
The calculated energies of the peaks as well as the extended regions giving the dominent

contributions to the elements of the structure in optical spectra are given in table 7.3 and 7.4. At

higher photon energies the spectra decay rapidly with almost the same rate.

111



Chapter 07 RESULTS AND DISCUSSION:
ORTHORHOMBIC COMPOUNDS PdPX (X=S AND Se)

0 ‘ 5 ‘ 10 ‘ 15 ‘ 20 ‘ 25 0 ‘ 5 ‘ 10 ‘ 15 ‘ 20 ‘ 25
Energy (eV) Energy (eV)

Figure 7.8 Calculated reflectivity, refractive index and the extinction coefficient spectra for

PdPX compounds.

The real part of the elements of the dielectric tensor for PAPS and PdPSe were also calculated
from the imaginary part using the Kramers-Kronig relations, but they are not shown here. We just
give the static dielectric constants " (0), & (0)ande&”(0). However, the values of the static
dielectric constants are overestimated by the LDA as a consequence of the band gap
underestimation [30,31]. It is found that a rigid shift of all conduction bands so as to match the
calculated bandgaps with the experimental data can produce reliable results, i.e., very close to the
measured ones (see table 6 of Ref. [27]). The theoretical values of the static dielectric constants
(with and without shift) of the studied compounds are summarized in table 5. The values of
g”(0)andg*(0) are almost the same for both compounds. The calculated results of the
absorption, reflectivity and the indice of refraction and the extinction coefficients are shown in
figures 7.7- 7.8. It is clear that there is a close resemblance between these spectra in the two

compounds.
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Table 7.6 Value and energy of the complex index of refraction (n).

PdPS PdPSe
Nxx Nyy Nz Nxx Nyy Nz
n(0) 3.4289 4.13403 4.09712 3.96802 4.43711 4.3823
E(n=1) 11.06 10.51 10.43 11.14 10.19 9.37

The reason for this is the similar band structures of the two materials. For each compound, the

absorption coefficients grow at different rates: «,, being the fastest and «,, the slowest. In the UV
region «,, is smaller than the other two absorption cofficients in both compounds. With regard to

reflectivity, which represents another way which assesses how the electromagnetic energy is
taken when interacting with a material medium, in both materials the one in the x direction Ry is
lower than Ryy and R;;, except around 23 eV where it gets larger. This is in consistently with the
absorption coefficients. The maximum of the reflectivity occurs in R, with a value of 54 % at
4.23 eV and 55 % at 3.55 eV in PdPS and PdPSe respectively. The values of refractive index n,
which is an other optical parameter besides €; which indicates how electromagnetic energy is
dispersed when it penetrates in crystal, at zero energy are summarized in table 7.6, together with
the energies for which n=1 ; i.e. no dispersion. There is an energy interval centred around these

values for which n is close to one.

Table 7.6 The values of the birefringence 4n at zero energy.

PdPS PdPSe
Ana Anb Anc Ana Anb Anc
An(0) 0.036 0.668 -0.705 0.039 0.413 -0.452

From the calculated refractive indices, we evaluated the birefringences along the three axes
which are given by Any = (np — N¢), ANy = (N¢ — Na) and Ane = (Na — Np). The obtained results for
the spectral behaviour of the birefringence An, (a)) for the studied compounds are shown in figure

7.9. The birefringence is important only in the non absorbing region (below the energy gap) [32].

One may note that the general shape of the curves is similar and this is due to the similarity of the
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underlying band structures. The Ana(w) spectral dependence shows strong oscillations around
zero in the energy range up to 10 eV. The values of the birefringence at zero energy are given in

table 7.7.

An(w)

4 6
Energy (eV)

Figure 7.9 Calculated birefringence An(®) for PAPX compounds

7.6. CONCLUSION

In conclusion, we have employed the all-electron full potential linear augmented plane wave plus
local orbitals (FP-LAPW + lo) method with the LDA form of exchange and correlation to
determine the structural and electronic properties of the orthorhombic compounds PdPS and
PdPSe at normal pressure. The calculated equilibrium lattice constants and bulk moduli for these
compounds were compared with the available experimental data when available, in all cases our
results are in good agreement with the experimental data. The electronic properties are very well
described by our calculations and show that these compounds have similar structures and the
energy gap is indirect and decreases when S is replaced by Se. The anisotropic frequency
dependent dielectric function, reflectivity, refractive index and absorption spectra are obtained

and discussed in detail.
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CONCLUSION

In the last four chapters we have presented the main results of this thesis which based on
the total-energy calculations within the full-potential augmented plane-wave plus local
orbitals (FP-LAPW + lo) method. We have used both the local density approximation (LDA)
and generalized gradient approximations (GGA) for the exchange and correlation potential
with including the spin-orbit effect. The correlated d-electron states are taken in the account
by using the LSDA+U (GGA+U) methods with self-interaction correction method (SIC).

In Chapter 4 we have calculated the structural, elastic, electronic, magnetic and magneto-
optical properties of the Mn-based half Heusler alloys (IrMnZ) where Z=Al, Sn and Sb. The
energy minimization of these compounds indicates that the magnetic phase is the
energetically favourable. The results show that IrMnAl are metallic and ferromagnetic. They
are mechanically stable at zero pressure and possess the highest bulk, shear and Young’s
modulus, the sound velocities and the Debye temperatures are derived for the IrMnZ
compounds. We have also found that in these compounds, the local moment of Mn is higher
than the total moment. The reduction of the total moment is therefore accompanied by
negative in Ir or in Z elements or in both, i.e., these atoms couple antiferromagnetically to the
Mn moments. The hybridization between Ir and Mn is considerably larger. The local spin
density approximation (LSDA) predicts that the IrMnAl have negligible magnetic moment.
Furthermore, they predict that IrMnSb is a half metallic. While the LSDA+U (GGA+U)
predict a large magnetic moment comparing to the experimental ones. Our results predict that
the spin—orbit coupling is significant for these compounds, since they destroy the half-metallic
band gap. We found the highest Kerr rotation arises at IrMnSb compound with weak values in
IrMnAll in all the approximations used.

In Chapter 5 we have investigated the electronic, optical and magneto-optical properties of
the Heusler compounds PbMnSb, and Pb,MnSbh. Our LSDA calculations reveal a gap in the
Er for PAMnSDb, predicting half metallic nature. On the other hand, the LSDA+U move the d
states away from the Fermi level but the shift of the unoccupied states make this compound
metallic in both spin (up and down). The magnetic moments calculated by LSDA+U
(GGA+U) for the present compounds are found to be very large comparing with the
experimental ones. While the GGA give a good results. Furthermore, we found that the main
contribution to the magnetic moments comes from Mn atom. We show that the LSDA+U can
produce accurate optical properties; the calculated optical spectra using LSDA and LSDA+U

are give good results as compared with the experimental data. We have observed that
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LSDA+U gives an overall improvement of Kerr spectra with experiments. In another hand, a
small difference in Kerr spectra appeared when we calculated it with and without inclusion of
the Drude (intraband) contribution. Our calculations suggest that the magneto-optical are
reproduce very well the experimental one when broadening is taken as 0.7 eV.

In Chapter 6 the structural and electronic properties of PdX, (X=P, S and Se), are
investigated. The structural properties are determined through total energy and interatomic
forces minimization. The calculated lattice constants and the atomic positions agree well with
the experimental ones. Our results show that the studied compounds exhibit a metallic
character with LDA. In another hand the LDA+U predict that PdS; is a semiconductor with
narrow gap while PdP, and PdSe, have metallic character. The calculated density of states
suggests that the absorption increases rapidly in the IR regions for PdP..

In Chapter 7 the structural, electronic and optical properties of the orthorhombic
compounds PdPS and PdPSe at normal pressure are investigated. The calculated equilibrium
lattice constants and bulk moduli for these compounds were compared with the available
experimental data. Our results are in good agreement with the experimental data. The
electronic properties are very well described by our calculations and show that these
compounds have similar structures and the energy gap is indirect and decreases when S is
replaced by Se. The anisotropic frequency dependent dielectric function, reflectivity,

refractive index and absorption spectra are obtained and discussed in detail.
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