
Ministry of Higher Education and Scientific Research 

University 8 Mai 1945 Guelma 

Faculty of Sciences and Engineering 

 
 

 
ELECTRONIC, MAGNETO-OPTICAL AND THE MAGNETIC PROPERTIES OF 

THE COMPOUNDS BASED ON THE TRANSITION METALS AND THE 

ELEMENTS OF THE GROUPS III, IV AND VI. 

 

 

A thesis presented to the Physics Department at the Faculty of Sciences and 

Engineering at the University 08 Mai 1945 in partial fulfilment of the requirements for 

the degree of  ‘’Doctorat en Sciences’’ in Physics. 

 

By 

Ali HAMIDANI 

 

Examining board: 

 

   President:  Ahmed BOUFELFEL       Prof.      University of Guelma 

                     Supervisor: Badis BENNECER            Prof.      University of Guelma 

                     Examiners: Abdelhamid LAYADI         Prof.      University of Setif 

                                        Bachir BOUHAFS             Prof.      University of SBA 

 

 

 

 

*2010* 



 i

ABSTRACT 

      We have studied the different properties of two kinds of materials; the first one is 

composed of two transition metals and one non-metallic sp element and the second contains 

one transition metal and two non-metallic elements. In this thesis we focused on the 

electronic, optical, magnetic and magneto-optical properties of the Pd based compounds 

PdMnSb, Pd2MnSb, PdX2 and PdPX where (X=S and Se). We are also investigate the 

structural, electronic and magneto-optical properties of the IrMnZ, with (Z=Al, Sn and Sb). 

The calculations are based on the total-energy calculations within the full-potential 

augmented plane-wave plus local orbitals (FP-LAPW + LO) method. We have used both the 

local density approximation (LDA) and generalized gradient approximation (GGA) for the 

exchange and correlation potential with and without including the spin-orbit effect. In order to 

investigate the importance of correlation, we have used the (LSDA+U) and (GGA+U). The 

structural properties are determined through the total energy minimization and interatomic 

forces calculations. 

The results exhibit that IrMnZ are ferromagnetic and they are mechanically stable at zero 

pressure. The local spin density approximation (LSDA) predicts that the IrMnSb is a half 

metallic and the IrMnAl compound has negligible magnetic moment. Furthermore, the 

LSDA+U and the GGA+U predict a large magnetic moment. Furthermore, the GGA gives 

good values compared with the experimental ones. Our results show that the highest Kerr 

rotation arises in the IrMnSb compound, while weak values are found in IrMnAl with all the 

approximations used. 

We have also investigated the electronic and magneto-optical properties of the Heusler 

compounds PdMnSb and Pd2MnSb. Our LSDA calculations reveal a gap at EF, predicting a 

half metallic nature in PdMnSb, but the LSDA+U and the GGA+U destroy this gap. We show 

also that the LSDA+U can produce accurately the optical properties, while the magneto-

optical properties are well reproduced with the LSDA. Furthermore, we found that the 

magnetic and magneto-optical properties are sensitive to the change of the U parameter. 

The structural and electronic properties of PdX2 (X=P, S and Se) are investigated. Our results 

show that the studied compounds exhibit a metallic character with LDA. Furthermore, the 

LDA+U predicts that PdS2 compound is a semiconductor with a narrow gap. The calculated 

anisotropic frequency dependent dielectric functions, reflectivity, refractive index and 

absorption spectra are obtained and discussed for PdPX where(X=S and Se). 
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RESUME  

      Nous avons étudié les différentes propriétés de deux types de matériaux, le premier est 

composé de deux métaux de transition et un élément non métallique sp et le second contient 

un élément de transition et deux éléments non-métalliques. Dans cette thèse nous avons 

focalisé sur l’étude des propriétés l'électronique, optiques, magnéto-optiques des composés à 

base de Pd; Pd2MnSb, PdMnSb, PdX2 et PdPX où X = S et Se, nous avons également étudié 

les propriétés des composés IrMnZ, avec Z = Al , Sn et Sb. Le calcul a été effectué en 

utilisant la méthode linéaire des ondes planes augmentées à potentiel total plus les orbitales 

locales (FP-LAPW + LO). Nous avons utilisé l'approximation de la densité locale (LDA) et 

l’approximation du gradient généralisé (GGA) pour le potentiel d'échange et de corrélation, 

avec et sans l’inclusion de l'effet de spin-orbite. En outre on a étudié l’effet de la corrélation, 

nous avons utilisé l’approximation de la densité de spin locale plus le paramètre de Hubbard 

U (LSDA + U) et  l’approximation du gradient généralisé de la densité plus le paramètre de 

Hubbard U (GGA + U) 

Les résultats montrent que les composés IrMnZ sont ferromagnétiques et ils sont 

mécaniquement stable à pression nulle. L’approximation de la densité de spin locale (LSDA) 

prédit que la IrMnSb est un semi-métal et le composé IrMnAl possède un moment 

magnétique négligeable. En outre, LSDA+U (GGA+U) donnent un moment magnétique 

important. Alors que les valeurs obtenues avec la GGA sont proches de celles mesurées. Nos 

résultats montrent que le composé IrMnSb possède une grande valeur de rotation de Kerr, par 

contre celle de  IrMnAl est la plus petite avec toutes les approximations utilisées. 

      Nous avons également étudié les propriétés électroniques et magnéto-optiques des 

composés de Heusler PbMnSb et Pb2MnSb. Nos calculs LSDA révèlent un gap à EF, donnant 

ainsi la  nature semi-métallique de PbMnSb, mais la LSDA+U et la GGA+U détruisent ce 

gap. Nous avons aussi montré que la LSDA+U produit des propriétés optiques précises, tandis 

que les propriétés magnéto-optiques sont bien reproduites avec la LSDA. En outre, nos 

résultats montrent que les propriétés magnétiques et magnéto-optiques sont sensibles à la 

variation du paramètre U.  

      Les propriétés structurales et électroniques des composés PdX2 (X = P, S et Se) sont 

étudiées. Nos résultats montrent que les composés étudiés présentent un caractère métallique 

avec la LDA, par contre PdS2 devient un semi-conducteurs LDA+U. Finalement, les 

structures de bande, les éléments du tenseur diélectrique, la réflectivité, l'indice de réfraction 

et les spectres d'absorption sont obtenues et analysées pour les composés ternaires PdPX  (X = 

S et Se). 
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  ملخص

 الأولى تحتوي على عنصرين من العناصر .آباتا بدراسة مختلف الخصائص لنوعين من المرقمن      

الإنتقالية و الآخر من العناصر الغير معدنية أما النوع الثاني يحتوي على عنصرين من العناصر الغير 

الضوئية ,  رآزنا على دراسة الخصائص الإلكترونية هذه الأطروحةفي. معدنية و الآخر معدني

للمرآبات التي تحتوي على عنصر  ,ال حسابات المبدأ الأولباستعم ,الضوئية الممغنطة و المغناطيسية

  إضافة إلى)Se, S=X  ( حيت ان   PdPX وPdMnSb , MnSb2Pd  2PdXالبالديوم وهي المرآبات

 بإستعمال ذلك و)  Sn, Al= Z و Sb ( حيث ان    IrMnZدلك قمنا بدراسة خصائص المرآبات 

  GGA و تقريب التدرج  العامLDAة المحلي الكثافة تقريب استعمالآما تم FP-LAPW+LO  الطريقة

 و ةالمحلي الكثافة تقريبقمنا بإستعمال ,  أهمية الترابطمنمن أجل التحقق . التعالق و التبادل مونآ لتحديد

 الفعل إدخال مع.U(LSDA+(LDAو )GGA)+U تقريب التدرج  العام مضاف إليه ثابت هيبارد   

 الكلية للمرآب و ةاص البنيوية  تم تحديدها عن طريق التقليل من الطاق  الخو .spin-orbitمدار -سبين

الانكسار وأطياف الامتصاص   معاملالانعكاسية،  بالنسبة للخواص الضوئية؛. راتذالقوى المؤثرة على ال

  تم الحصول عليها ومناقشتها

من .  في إنعدام الضغطتَقِرّمُسْميكانيكيا و ferromagnetic   مغناطيسي حديدي IrMnZالنتائج بينت ان  

 . half metallic نصف ناقل IrMnSb ان العزم المغناطيسي مهمل و ان LDAجهة اخرى بينت 

)U+GGA(U +LSDAعزم مغناطيسي آبيرعكس   تعطيGGA  التي اعطت قيم متوافقة مع

 .التجريبي

  halfنصف ناقل PbMnSb  تنبأت بأن LDAفإن MnSb2 Pbو PbMnSb بالنسبة للمرآبات 

metallicلكن )U+GGA(U +LSDA آما ان هده الأخيرة اعطت نتائج جيدة بالنسبة . بينت انه معدني

 ثابت الخصائص المغناطيسية والضوئية الممغنطة ، حساسة لتغييرللخواص الضوئية إضافة إلى دلك أن 

 .هيبارد

   حيت ان PdPX و2PdX  للمرآبات الإلكترونية و البنيويةالخصائص في هده الأطروحة قمنا بدراسة

)Se وS=X( 2  أن علاوة على ذلك نجدوSPd   بهاتأشباه الموصلات على عكس النتائج التي تنبأمن  

LDA  و .GGA 
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INTRODUCTION 

      Transition metals comprise roughly half of the periodic table of elements; they are 

found between the group IIA elements and the Group IIB elements in the periodic 

table. The group IIB is sometimes considered transition elements. This class of 

elements is also known as the d-block elements, because the outermost main levels 

have incompletely filled d sub-orbitals. Transition Metals are rarely applied in their 

pure state; they are most often put in use in the form of alloys that exploit or 

strengthen desirable properties and overcome characteristics that limit performance. 

These elements readily form alloys with each other [1] or with other non-metals 

elements [2]. 

      Over the past two decades, considerable progress has been made in the synthesis 

and characterization of compounds containing transition metals. Furthermore, various 

types of alloys containing transition metals exhibit special physical, chemical and 

mechanical properties that result from choice of the metal and/or manipulation of 

composition and manufacturing processes. 

      In the past few years several compounds with XYZ phase (where one or more 

elements are transition elements) have been studied and their crystal structure, 

electronic and magnetic properties have been reported in a large number of papers 

[3,4]. The interest in these phases represents a normal development of research from 

binary to ternary alloys. Since the XY2 compounds form the most numerous family in 

the binary systems, and new structures are found with the replacement of a partner 

atom Y by another partner Z. In most cases the ternary compounds have ordered 

structures. When a ternary phase crystallizes with a disordered structure and the Y and 

Z atoms are statistically distributed on the same sites, this is a structure already found 

in binary systems [5,6]. Moreover, many alloys which are established from the 

mixtures of transition metal and non-metallic element have gained great scientific and 

technological interest recently, due to their use in different areas. 

      Among this class of materials we find the Heusler alloys. These alloys have two 

distinct families; one of which crystallizes in the L21 structure. This family is known 

as the full-Heusler alloy and possesses an X2YZ formula [7]. The second family is the 

half-Heusler alloy with XYZ formula [8], we will treat it in detail in the next chapter, 

and their electronic structure can range from metallic to semi-metallic or 

semiconducting behaviour [9]. The Heusler alloys are particularly interesting due to 

their very high Curie temperature [10,11] and some of them are already in use as 
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elements in multilayered magneto-electronic devices such as magnetic tunnel 

junctions and also as giant magnetoresistance spin valves [12]. Several papers have 

been devoted to the calculation of the structural, electronic and magnetic properties of 

these alloys and recently there has been an increased interest in thin films of this 

material both experimentally [13-15] and using first-principles calculations [16,17]. 

The Mn-based Heusler alloys (XMnZ) belong to a class with interesting magnetic 

properties, exhibiting ferromagnetic features like magneto-optical effects and giant 

magneto-resistance, a comprehensive study of Mn based compounds have been 

performed by Brown et al. [18] and Plogmann et al. [19].  

      For the other application, the technical development effort directed at layered 

transition metal chalcogenides (LTMCs) and their intercalation compounds. This in 

part is due to the structural and physical properties of these two-dimensional (2D) 

inorganic materials [20-23]. In the general case, these structures consist of infinite 

metal chalcogenide layers; within each layer the atoms are bound by strong covalent 

interactions, but the layers themselves interact only by weaker van der Waals forces. 

Transition-metal chalcogenides, in terms of composition, provide a wide variety of 

compounds which crystallize in different structure and many of the chemical and 

physical properties of these materials derive from this anisotropic layered structure. 

Moreover, these compounds can be used as substrate for other materials and one of 

the interesting properties of these materials is the formation of intercalation 

complexes with foreign atoms or molecules, organic or inorganic, between the layers 

[24-25], because this offers perspectives for the realization of new materials 

especially those that can combine different properties in a single material. 

Optical recording in general and magneto-optical recording in particular is the subject 

of great significance in optical data storage. In this thesis we focused on the effect of 

the metal and non-metal elements on the different properties; electronic, optical and 

magneto optical properties, using the FPLAPW method within the local spin density 

approximation (LSDA) and the generalized gradient approximation (GGA) and with 

the on-site Coulomb correction GGA+U and LSDA+U.     

      This thesis is organized as follows; we briefly review in chapter 1 some of the 

most basic understandings of the Heusler alloys and transition metal chalcogenide 

compounds and their crystalline structure. In Chapter 2, the formalism of Density 

Functional Theory is presented including the essential of the methods and the 

approximations for the practical calculations such as the Kohn-Sham-LDA scheme, 
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which is used in this work.   Furthermore, the linearized augmented plane wave 

method used throughout this thesis is discussed in chapter 3. The results of this thesis 

are divided essentially into two parts which have been mainly devoted to the 

calculations of the different properties and the relationship between structural, 

electronic, optical and magneto-optical properties in different structures. In Chapter 4 

the results of the ab initio calculations for Heusler alloys IrMnZ (Z=Al, Sn and Sb) 

are presented. In chapter 5 the electronic and magneto-optical properties and the 

influence of the electron-electron interaction and the double-counting corrections on 

these properties of the PdMnSb and Pd2MnSb compounds are presented. The last two 

chapters (6 and 7) are devoted to the layered transition metal chalcogenides; the sixth 

chapter gives the structural and electronic properties of the pseudo-binary compounds 

PdX2 (X= P, S and Se), while in the chapter 7 we present the electronic and optical 

properties of the orthorhombic compounds PdPX (X= S and Se). Finally, we provide 

a summary of the ideas presented here and their discussion. 
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1. HEUSLER ALLOYS  

     The Heusler alloys have been the subject of many investigations ever, since the discovery 

by Heusler [1] that some alloys of copper-manganese bronze and B subgroup elements, such 

as tin, were ferromagnetic although the constituents were themselves non ferromagnetic. 

These alloys are a superstructure, at the stoichiometric composition X2YZ, named after its 

original discoverer and which are now defined as ternary intermetallic compounds. The first 

Heusler alloys studied were crystallizing in the L21 structure which consists of 4 fcc 

sublattices. Afterwards, it was discovered that it is possible to leave one of the four sublattices 

unoccupied to form the Clb. structure. Later, Bradley and Rodgers investigated an alloy near 

the composition Cu2InAl which was ferromagnetic when quenched, but practically 

nonmagnetic when slow-cooled and were able to show that the changes in magnetic 

properties were related to an almost complete change in chemical structure. In 1983 De Groot 

et al.[2] predicted some of the X2YZ type Heusler alloys, where X is a high valent transition 

metal atom, Y is a low valent transition metal atom, and Z is an sp element, to be half-

metallic. These classes share simultaneously the property of an energy gap between valence 

and conduction bands for electrons of one spin polarization and the property of continuous 

bands for the electrons of the other spin polarization. This asymmetric band character reflects 

the character of the C1b structure itself; the minority spin electrons are semiconducting while 

the majority-spin electrons keep their normal metallic character. As a consequence, we have 

the remarkable situation here that the conduction electrons at the Fermi level are 100% spin 

polarized. 

Moreover, these compounds are structurally matching with substrate materials and have a 

crystal structure compatible with the industrially used zinc blend semiconductors and possess 

a high Curie temperature to allow the applications in the devices operating at room 

temperature.  Consequently, and due to these properties which have been confirmed 

experimentally, Heusler alloys are  promising materials for technological applications [3-13] 

and become one of the major research interests in the spintronics community as key materials 

to develop spin polarized current sources for spintronics devices due to the possibility to study 

in the same family of alloys a series of interesting diverse magnetic phenomena like itinerant 

and localized magnetism, antiferromagnetism, helimagnetism, Pauli paramagnetism or heavy-

fermionic behavior. The half-metallicity of a Heusler alloy was most convincingly 

demonstrated by the high tunneling magnetoresistance (TMR) value [14] 
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1.1 CRYSTALLINE STRUCTURE AND COMPOSITION 

      A comprehensive crystallographic investigation of the structure of this alloy has been 

carried out by Bradley and Rodgers on Cu2MnAl [15]. The Heusler alloys are generally 

ternary alloys of stoichiometric composition bearing the general formula, X2YZ which have 

the L21, structure (Fig. 1.1). In this class of alloys, X and Y are transition elements like Ni, 

Co, Pd, Pt, Fe,…etc and Z is an sp-element like Si, Al, Ge,….etc. Although the elements X, 

Y, and Z, when combined, may form a single phase structure but there are in principle several 

ways of distributing the atoms amongst the four sublattices, where in all cases the chemical 

order is preserved. The non-metal Z-coordination of X and Y are of  tetrahedral and 

octahedral types, respectively, with the shortest metal–metal distances not so much expanded 

in comparison with those existing in the pure metals. More generally, these elements can be 

denoted by A, B, C and D giving an alloy of the formula ABCD. The unit cell (Fig. 1.1) is 

comprised of four interpenetrating free sublattices A, B, C and D with origins at (0 0 0), (l/4 

l/4 l/4), (l/2 l/2 l/2) and (¾ ¾ ¾). Since these structures are verified experimentally [16]. 

                               .  

Figure 1.1 The atom position in Heusler alloys (L21 structure). 

Furthermore, the Heusler alloys are structurally similar to the zinc blende lattice as shown in 

figure 1.2. Zinc blende structures, being composed of two interpenetrating face centered cubic 

fcc sublattices, have a considerable volume of open space. Heusler alloys fill up these voids 

with additional fcc sublattice. The so called half-Heusler alloys, such as XYZ, contain three 

fcc sublattices. While the full Heusler alloys, such as X2YZ, where X≡(B,D), Y≡C and Z≡A, 

contain four fcc sublattices which fill up the voids (figure 1.3). In addition to the structural 

similarity of Heusler alloys with zincblende structure, some of them have similar lattice 

constants. This makes them good candidates for synthesizing single epitaxial layers. 

Moreover, several Heusler alloys have been grown on the zinc blende structure [17].  

 

X (B/D) 

Y (C) 

Z (A) 
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Figure 1.2 The different ways of filling the four sublattices in the Zinc blende structure, half-
Heusler and full-Heusler alloys 
 

In addition, there are seven well-known principal possible ordered structures, formed from 

four interpenetrating fcc sub-lattices A, B, C and D. figure 1.4 show the principal ordered 

structures;  A2: All lattices identically filled; B2: A filled as C, B filled as D; B32: A filled as B, 

C filled as D; L2: B filled as D; D03,: B, C, and D identically filled; C1: A filled as C, D void; 

Clb: D void. In this later, i.e., half Heusler alloys, very different types of behaviour were 

observed, from semiconductor to metal from constant paramagnetism to Curie-Weiss 

behaviour, from weak ferromagnet to strong half metallic ferromagnet. Since adding three 

metals can be give rise to a semiconducting compound when the valence electron 

concentration by formula (EC) is 18. Adding (subtracting) one electron on (from) one 

crystallographic site gives rise to a metal.  

 

                                            
Figure 1.3 The four sublatices in the Heusler alloys (L21 structure). 

 

Although it is not often possible uniquely to determine the proportion of each element on each 

of the four sub-lattices, an indication of the existing order may be deduced from the 

X2(D) 

Y (C) 

Z (A) 

X1(B) 

Zinc blende 
XY 

Half-Heusler 
XYZ 

Full-Heusler 
X2YZ 
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measurement of X-ray and neutron structure factors. The extent to which the sites as a whole 

are filled, or have vacancies, can be ascertained from accurate measurements of the density of 

the alloy. In another way several Heusler systems exhibit a martensitic phase transition, 

including Ni2MnGa [18].  

1.2 ORDER-DISORDER PROCESS 

      The phenomenon of the ordering of atoms in alloys has been well known for a long time 

and it has been investigated experimentally as well as theoretically [19-22]. Its essence may 

be defined most generally as the differentiation of the occupation probabilities of various 

lattice points by atoms of various alloying components. Thus, a crystal of an alloy is in the 

state of order of atoms if such differentiation occurs. It is often connected with the division of 

the crystalline lattice into sublattices. In such a situation there may occur a difference between 

the occupation probabilities of the lattice points of various sublattices by atoms of various 

elements. The state of atomic disorder occurs in a crystal if all lattice points are occupied 

randomly by all kinds of atoms. The process of the ordering of atoms in an alloy is a 

complicate phenomenon and its detailed description is very difficult and complicated. 

A general theory of order in the ternary alloys has been given by Wojciechowski [23,24]. It is 

consider the whole crystal, divide the crystalline lattice into sublattices and investigate the 

possibilities of the occupation of their lattice points by various kinds of atoms. In the more 

general case of these alloys there are considerable ways of arranging the atoms in these 

sublattices. 

Owing to the infinite possibilities for the ordering of alloys of the X2YZ type Pauly et al. 

(1968) chose to consider initially only these arrangements in which each superlattice is filled 

either solely by one element or by equal amounts of two elements. In effect, the 13 such 

ordering possibilities which they found sample ordering space at discrete points, namely those 

points at which the occupation parameters have the discrete values 0, ½ and 1. Although the 

elements X, Y, and Z, when combined, may form a single phase structure there is in principle 

an infinite number of ways of distributing the atoms amongst the four sub lattices. In another 

way, some Heusler structure is formed essentially from the ordered combination of two binary 

B2 compounds XY and XZ, each of which may have the CsCl structure, for example CoTi and 

CoAl yields Co2TiAl. Thus the possibility of forming a new Heusler alloy may be indicated 

by the ability of the components to form the B2 structure. 
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Figure 1.4 The principal ordered structures in Heusler alloys. 

      The effects of the temperature on the processes order-disorder of atoms in the some 

Heusler alloys have been investigated in which the L21 B2 A2 type of disorder is prevalent. 

The critical temperatures for A2 B2 and B2 L21 order have been obtained from 

measurements of relative intensities of superlattice reflections [25] and the results have been 

analysed using a Bragg-Williams model for order-disorder transitions assuming a Lennard-

Jones pair potential [26]. These studies indicated that the transitions proceed according to the 

following scheme: L21 B2 A2, i.e. two transitions occur: from the structure L21 to B2 and 

from the structure B2 to A2 but the possibility of one stage of the process L21  A2 was 

excluded. 

Moreover we can recapitulate the transition from the ordered to the most prominent 

disordered structures as will be explained in the following: If the Y and the Z atoms are 

evenly distributed, the 4a and 4b positions become equivalent. This leads to a CsCl-like 

structure, also known as B2-type disorder. The symmetry is reduced and the resulting space 

group is mPm3 . The random distribution of the X and the Y or the X and the Z atoms results 

in the BiF3-type disorder (Space group no. 216: mFm3 , DO3). The NaTl-type structure is 

C1b 

L21 B2 

C1

A2 
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observed very rarely. In this structure type the X-atoms, which occupy one fcc sub-lattice, are 

mixed with the Y atoms, whereas the X-atoms on the other sub-lattice are mixed with the Z 

atoms. This kind of disorder is also known as B32 a disorder (Space group no. 227, mFd 3 ). 

The X-atoms are placed at the Wyckoff position 8a (0, 0, 0), the Y and Z randomly 

distributed at position 8b (1/2, 1/2, 1/2). In contrast to these partial disorder phenomena all 

positions become equivalent in the tungsten-type structure with a bcc lattice and reduced 

symmetry m3Im (A2).  

1.3 SPIN POLARIZATION AND HALF METALICITY  

      For both scientific and technological reasons it is useful to define the electron spin 

polarization at Fermi energy of a material,  although it is difficult to measure it and must be 

calculated from an indirect measurement [27]. The spin polarization at EF is given by 

( ) ( )
( ) ( )FF

FFP
ερερ
ερερ

↓↑

↓↑

+
−

=  

where ρ↑(εF) and ρ↓(εF) are the spin dependent density of states at the εF . The arrows ↑, and 

↓, assign states of opposite spin that are majority and minority states, respectively. P vanishes 

for paramagnetic or in anti-ferromagnetic materials even below the magnetic transition 

temperature. However, it has a finite value in ferromagnetic or ferrimagnetic materials below 

the Curie temperature. The electrons at εF are fully spin polarized (P=100%) when either 

ρ↑(εF) or ρ↓(εF) equals zero. A magnetic material in this case is labelled as “half-metallic” 

since one spin band exhibits metallic behavior while the other spin band acts as a 

semiconductor but most importantly both bands exist in a single material. Simply, half-

metallic ferromagnets are materials that possess conduction electrons being 100% spin 

polarized at the Fermi energy. 

1.4 HALF METALLIC HEUSLER ALLOYS  

      There are many ferromagnetic materials that are predicted to be half metallic like the 

CrO2, Fe3O4,…etc [28]. Of these materials, the oxides require considerable effort to fabricate 

in thin film form. Furthermore some binary compounds have a Curie temperature around 

room temperature, making it difficult to realize the use of these materials in a thermally stable 

device application [29,30]. In contrast to the Heusler alloys which prove that it very 

preferment half metallic material with a height Curie temperature. Since, as we notice before, 

several combinations of elements occupying the X, Y, and Z sites are possible and in all cases 

chemical order is preserved. For the Y-element Heusler alloys usually contain Mn, the X 

element, for example, can be X=Fe, Co, Ni, Cu, Pd, or Rh and Z a pnictide or stannide ion 
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(Sb,Sn) or sp in general case. Mn-based Heusler alloys, where the Manganese considered one 

of the strangest of the 3d metals and has many features that are not well understood, have 

been found at most in a ferromagnetic ground state. They offer the unique possibility to study 

manganese compounds where the Mn atom has only other transition X metals as nearest 

neighbours (L21) and non transition Z elements group III-V in the second coordination sphere. 

Webster et al.[31,32], have investigated the crystal structure of these alloys in detail. In 

addition a variety of mutual substitutions of atoms in the corresponding sublattices has been 

studied by the same authors. Furthermore, it has been shown that some disorder [33] is often 

appearing in Mn-based Heusler alloys and that in total up to 10% of the Mn atoms change 

places with elements from a different sublattice. Nevertheless, the neighbourhood of Mn 

atoms is mainly built by X and Z elements. Mn-based Heusler alloys have a magnetic moment 

of about 2.5μB–4.4μB localized at the Mn site. Traditionally they are considered as ideal 

systems with local magnetic moments and many compounds are known experimentally to be 

ferromagnets with high Curie temperatures ranging between 500 and 700K such as for the Co, 

Ni, Pd, and Pt compounds. 

1.5 THE MAGNETO-OPTICAL EFFECTS 

      M. Faraday [34] and J. Kerr [35] were the first to study the influence of magnetized media 

on the polarization of transmitted and reflected light respectively. When linearly polarized 

light is transmitted through a magnetized medium, the polarization of the transmitted light 

rotates by an angle θ. This is named the Magneto-Optic Faraday Effect (MOFE); when 

linearly polarized light is reflected from the surface of a magnetized medium, the reflected 

light becomes elliptically polarized with a rotation of the polarization plane. This rotation can 

be understood in term of a difference of the refractive indices for the left and right circularly 

polarized components, produced by the interaction of light with the magnetic field, since a 

linearly polarized beam of light can be decomposed into a sum of left and right circularly 

polarized light. These two magneto-optic effects are due to the interaction between light and 

the magnetized medium, and give the information on  
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Figure 1.5 Geometry for longitudinal, equatorial and polar Kerr effects 

 

the electronic and magnetic structure of the medium. For metallic systems magneto-optical 

studies made by means of the Kerr effect have a certain number of advantages relative to 

studies by means of the Faraday Effect. This latter effect can be studied only on sufficiently 

thin films.  

Depending on the orientation of the magnetization vector relative to the sample surface, the 

Kerr effect can be classified into three types: longitudinal (meridional), and transverse 

(equatorial) effects and polar Kerr effects. The three geometries relevant to the Kerr effect are 

illustrated in Figure (1.5); 

1) Polar MOKE (see Fig. 1.5(a)): the magnetization direction is perpendicular to the surface 

of the medium and parallel to the plane of incidence; 

2) Longitudinal MOKE (see Fig. 1.5(b)): the magnetization is parallel to the surface of the 

medium and parallel to the plane of light incidence; 

3) 'Transverse MOKE (see Fig. 1.5(c)): the magnetization lies in the surface of the medium 

and is normal to the plane of incidence. 

For the rest of this thesis, it will be referred to as just the "Kerr effect". The polar Kerr effect 

can conveniently be described in terms of the dielectric tensor (or conductivity tensor) [36]. In 

materials for which the net magnetization M is aligned parallel to an axis of three-fold or 

higher-symmetry, the dielectric tensor can be written as 

 
Here the magnetization direction is parallel to the z direction. The off-diagonal terms 

represent the magneto-optical Kerr effect contribution to ε. The diagonal components have an 
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even powered dependence on the magnetization. The various elements εαβ are composed of 

real and imaginary parts, which may be represented by the relations 

εαβ=ε1
αβ+iε2

αβ  

where α, β≡x,y,z, εxx=(n+ik)2, n and k are refractive index and extinction coefficient, 

respectively. The optical conductivity tensor 21
αβαβαβ σσσ i+=  is related to the dielectric 

tensor εαβ through the equation  

( )ωσ
ω
πδε αβαβαβ

i4
+=  

where δ is the Kronecker’s symbol. 

A complete description of MO effects in this formalism is given by the four non-zero 

elements of the dielectric tensor or, equivalently, by the complex refractive index N(ω) where 

the refractive indices are related to the dielectric tensor elements by: 

xyxx in εε ±=±  
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With this approximation and in terms of the conductivity (
ω
πσ
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ω
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4
1+= ) the complex Kerr angle, φ, is given by[37]:
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i
i

41+

−
=+= , 

the real part kθ  is the rotation of polarization plane while the imaginary part kε  gives the 

ellipticity of the reflected light. 
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 2. TRANSITION-METAL CHALCOGENIDES 

      Transition-metal chalcogenides, in terms of composition, provide a wide variety of 

compounds which crystallize in the pyrite structure [38], in its ternary ordered versions 

(cobaltite, ullmannite) [39], and in the marcasite and distorted marcasite (arsenopyrite) one 

[40]. These layer-type materials, with their interesting quasi-two dimensional structures, can 

be used as a substrate for other materials [41] and for the formation of intercalated complexes 

with foreign atoms or molecules, organic or inorganic, between the layers offering the 

possibility of combining different properties in a single material [42]. These compounds have 

attracted considerable attention for their magnetic [43] and optical properties [44,45]. They 

have shown a wide applicability in many technologically important areas such as 

hydrodesulfurization catalysts [46], solid state lubricant [47] and photoactive materials [48].  

 
2.1 CRYSTALLINE STRUCTURE AND COMPOSITION 
 
      The transition metal dichalcogenides compounds form a structurally and chemically well-

defined family and about two-third of this family assume layer structures. The basic structure 

of loosely coupled Ch-TM-Ch sheets makes such materials extremely interesting. Within a 

layer, the bonds are strong, while between adjacent layers they are remarkably weak. 

The crystal structures of the layered chalcogenides of formal stoichiometry TMCh2 

(TM=metal, Ch=chalcogen) are shown in Figure 1.6. They are characterized by two-

dimensional sandwich units of Ch-TM-Ch atomic layers along the crystallographic a-axis (the 

chalcogenides are close-packed). Along the crystallographic c-direction the sandwich units 

are separated from each other by the so-called van der Waals gap. The close-packed and 

chemically saturated chalcogenide atoms form the inner surfaces. The bonding interaction 

within the sandwich units is very strong and is based on covalent bonds with some ionic 

contribution depending on the ionicity of the TM-Ch bonds.  

 
Figure 1.6 The crystal structures of the layered transition metal chalcogenides 
 

Ch 
TM 

Van der Waals gap 

Layer (sheet) 
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The TMCh2 structures fall into two classes: layered and non-layered; the non-layered 

members are found in groups VII and VIII; they are MnCh2. FeCh2, RuCh2. OsCh2, CoCh2, 

RhCh2, IrS2, IrSe2, NiS2 and NiSe2, The ditellurides of Co and Rh can also adopt a CdI2-type 

of structure, the others occur in one or more of the following structure types: pyrite, 

marcasite, IrSe2 and the PdS2-type.  

In many cases the same compound forms different phases (polytypes) which may deviate 

from each other by a different metal coordination and/or by a different stacking of the 

sandwich units. The polytypes are labeled according to the number of repeating units along 

the c axis (normal to the layer) In which the compound formula is preceded by a number 

denoting how many slabs are in the unit cell and a capital letter giving the overall symmetry 

of the structure (T: trigonal. H: hexagonal, R: rhombohedral), for example 2H-MoS2 and 2R-

MoS2. Small Letters distinguish between different stacking sequences in the same structural 

family. 

Depending on the relative orientation of the sheets, two different coordinations are obtained 

around each metal ion, one approximately octahedral where the metal atom is surrounded 

octahedrally by the chalcogen and another where the metal atom is surrounded in a trigonal 

prismatic which found in the MoS2-type of structure. Both of these are shown in Figure 1.7, 

The metals are found in a trigonal prismatic coordination for more covalent bound 

chalcogenides to optimize the covalent overlap, whereas more ionic compounds prefer 

octahedral coordination minimizing the electrostatic repulsion. Although a mixture of the 

two is sometimes found, whereas the 'mixtures' contain alternatingly prismatic and 

octahedral coordinated layers. 

                                 

                           Figure 1.7 The different coordinations around each metal ion. 

 

Octahedral Trigonal prismatic 
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2.2 PREFERRED STRUCTURE  

      The three-dimensional framework structure of the transition metal chalcogenides 

compounds is converted first into a slab structure and then into a sheet structure due to the 

population of d orbital, the main d-electron configurations that we consider. The first cases 

are d0, d5-high spin, and d10 ions, such as V5+ (d0) high-spin Fe+3(d5), and Cu+ and Zn+2 (both 

d10). These three configurations give symmetrical noble-gas-like cations that prefer the highly 

symmetric coordination of a tetrahedron of anions. 

ZnS occurs as sphalerite or wurtzite, both of which have tetrahedral coordination of the Zn2+ 

(d10) ion. Zn, Cd. and Hg all occur in at least one polymorph of their mono-sulphides with 

tetrahedral metal coordination; Fe3+ is almost always tetrahedrally coordinated in its 

sulphides. Cu+ is often found in tetrahedral holes of a sulphur lattice, but it sometimes 

displays more complicated coordination, as does Ag+. 

Other configurations are d3, d6-low spin, and d8. For octahedral coordination geometry, these 

three cases will give evenly filled orbitals, and thereby allow for undistorted ligand 

environments. Examples include Cr2S3, which is derived from the NiAs structure and has an 

octahedral surrounding for the d3; Cr3+ ions; pyrite, FeS2 which also has an octahedral 

environment for the d6 Fe2+ ions; and high-temperature NiS, which again has octahedral 

metal coordination for the (high-spin) d8 Ni2+ ion. Because these metal ions have evenly filled 

t2g or eg orbitals, their compounds are all semiconducting. 

d8 configurations can also give rise to square-planar coordination geometry, as in cooperate 

(PtS), PdS, and PdS2 [49]. Square-planar ligand fields result in a four below-one splitting of 

the d-orbitals, so all the d-electrons are paired and relatively low in energy for a fit ling of 

eight electrons. The rationale for why nickel does not resemble its congeners in assuming this 

geometry is that the pairing energy is too high; it prefers the high-spin configuration allowed 

by the eg orbitals of an octahedral ligand field. Whereas octahedral coordination is the most 

popular geometry for six coordinations, a few important sulphides instead have trigonal-

prismatic coordination. This occurs only for low d-electron count (d1 to d2), and is found in, 

for example, NbS2 (dl) and MoS2 (d2).  

A1though there is a relationship between the different binary and ternary transition metal 

chalcogenide structures, only a few are unique; most of the others can be viewed as 

derivatives of these classified derivative structures as occurring by four main mechanisms: 

i) Substitution of one atom for another; 

ii) Ordered omission of atoms;  

iii) Addition of atoms to previously unoccupied sites; and distortion of an array. 
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2.3 INTERCALATION  

particularly important of these material is the discoveries, the so-called intercalation, that 

many atoms and molecules can be inserted between the adjacent layers, thus forming 

intercalation compounds, due to the weak interlayer forces which allowed extra ions and even 

fairly large organic molecules inside. Since, recently, much interest has focused on the 

inorganic organic hybrid compounds because this offers perspectives for the realization of 

molecular-based materials, especially those that can combine different properties such as 

metal-like conductivity and bulk ferromagnetic property in a single material [50]. 

Intercalation of organic species into layered inorganic solids represents one of the useful 

approaches to create the ordered molecular-based materials with some novel properties [51]. 
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2.1 INTRODUCTION 

      A solid can be described as a many-atom system composed of electrons and nuclei which 

are interacting with each other. An exact mathematical treatment of the Schrödinger equation 

of this many-body-system is highly complex and virtually impossible. Nevertheless, suitable 

methods to derive a wide range of physical properties of material are available. In order to 

study many atom problems with moderate computational effort a range of approximations is 

introduced. We can cite the approximation which is called Born Oppenheimer (or adiabatic) 

approximation [1], which separate the calculation of the electronic structure from the ionic 

motion. The Hartree-Fock approximation [2,3] which provides an approximate solution to the 

many-body problem and uses a single Slater determinant to express the many electron wave 

functions. The so-called Hartree-Fock equation which has to be solved includes a Coulomb 

term (or Hartree term) and an exchange term (or Fock term), which arises from the 

antisymmetry of the wave function with respect to two-particle permutation, due to Pauli's 

exclusion principle. The effects of electron correlation, beyond that of exchange energy are 

completely neglected in this method. In contrast to the other methods, the Density Functional 

Theory (DFT) [4] provides an exact solution of the many-body problem. Furthermore, this 

method is proved to be a powerful way to determine the ground state energy of atoms, 

molecules, and extended systems with reducing the many-body-problem of interacting 

particles to a single-particle problem. An important part of the theory requires one to 

determine the kinetic energy of ground state of a system of N no interacting electrons in a 

general external field. Kohn and Sham [5] showed how this can be numerically calculated 

very accurately using a set of N orbitals. However this prevents the simple linear scaling in N 

that would arise if the kinetic energy could be directly expressed as a functional of the 

electron density, as it is done with other components of the total energy like the exchange 

correlation energy.  

 

2.2 DENSITY-FUNCTIONAL THEORY 

   2.2.1 THE HOHENBERG-KOHN THEOREMS 

Density functional theory (DFT) considers the particle density to be the fundamental variable 

to describe the state of a system in an external potential. Historically, the density functional 

approach initiated with the idea that locally the behavior of a collection of particles, the 

electron cloud, could be represented and approximated by that of a free electron gas of the 

same density at that point. The Thomas Fermi (TF) model [6] was in many aspects very 

successful and showed the basic steps to obtain the density functional for the total energy: 
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using standard quantum mechanics based on wave functions to obtain from a well defined 

model a direct relationship, functional, between the total energy, E, and the density ρ(r). The 

fundament of this concept was derived by Hohenberg and Kohn [4]. They proved that the 

following theorem holds exactly: 

a) There is a universal functional F[ρ(r)] of the electron density distribution ρ(r), that defines 

the total energy of the electronic system, given by: 

( ) ( ) ( )[ ]rFdrrrVE ρρ += ∫                                                               (2.1) 

b) The total energy E has a minimum when the charge density ρ(r) coincides with the true 

charge density in the external potential v(r). This theorem is exact if the ground state has no 

degeneracy. Thus the Hohenberg-Kohn theorem states that the ground state energy E is a 

universal functional of the charge density and that the ground state charge density can be 

obtained by applying the variation principle to the energy. If we note the Hamiltonian of the 

system H, the functional of the ground state energy is given by: 

( )[ ]
( )

ψψρ
ρ

HrE
r

min=                                                                      (2.2) 

under the constraint, that the wave functions used for variation reproduce the charge density 

distribution ρ(r) 

( ) ( )∑ −=
i

rrr ψδψρ ' ,                                                                 (2.3) 

this leads to the relation 

( )[ ] ( )[ ] 00 ErErE =≥ ρρ                                                                     (2.4) 

At this point the exact form of the total energy functional remains undetermined, however the 

scheme used to derive electronic ground state properties can already be outlined here. First of 

all one has to find a suitable approximation of E[ρ0(r)] and then apply the variation principle 

to the total energy functional 

( )[ ] 0=rE ρδ                                                                                     (2.5) 

under the constraint, that the number of particles is conserved 

( )∫ = Ndrrρ                                                                                   (2.6) 

2.3 KOHN-SHAM EQUATIONS 

      In 1965, Kohn and Sham [5] proposed the idea of replacing the kinetic energy of the 

interacting electrons with that of an equivalent non-interacting system, because the latter can 
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be easily calculated. In this case and if the ground state is non-degenerate, the ground state 

charge density can be expressed in terms of single particle orbitals φi 

( ) ( )∑
=

=
N

i
i rr

1

2φρ  ,                                                                      (2.7) 

and the kinetic energy functional ( )( )rTs ρ for the system is, 

( )[ ]

∑

∑

=

=

∇−=

∇−=

N

i
ii

ii

N

i
is rT

1

2

2

1

2
1
2
1

ψψ

ψψρ

                                                           (2.8) 

The universal functional ( )( )rF ρ  can be rewritten as 

 (2.9) 

    

where ( )( )rC ρ represents the classical electron Coulomb interaction, 

( )( ) ( ) ( )
∫ −

= '
'

'

2
1 drdr

rr
rrrC ρρρ

                                                       (2.10) 

and ( )( )rEXC ρ is the so called exchange-correlation energy, this term consists of two parts. 

The first part comes from the correction of the kinetic energy from the non-interacting 

fictitious system. The other part comes from the non-classical effects of the electron-electron 

interactions. 

      By applying the variational principle, Kohn-Sham effective potential Veff(r) is defined as 

( ) ( ) [ ]
( )

[ ]
( )

( ) ( ) ( )rvdr
rr

rrv

r
E

r
CrvrV

xc

XC
eff

+
−

+=

++=

∫ '
'

'ρ
δρ

ρδ
δρ

ρδ

                                             (2.11) 

In the above equation, v(r) is the external Coulomb potential due to the nuclei. The second 

term,    

( )[ ]
( )

( )
∫ −

= '
'

'

dr
rr

r
r
rC ρ

δρ
ρδ

                                                               (2.12) 

is the potential resulted from the electron-electron Coulomb repulsion. The last term represent 

the exchange and correlation potential Vxc which given by:  

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]
( )( ) ( )( ) ( )( )rErCrT

rCrVrTrTrCrT
rVrTrF

XCs

eess

ee

ρρρ
ρρρρρρ

ρρρ

++=
++−++=

+=
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( ) [ ]
( )r

E
rv XC

xc δρ
ρδ

=
                                                                        (2.13) 

Writing out the total energy functional within this approximation and applying the variational 

principle, one generates a set of N single electron equations known as the KS equations. 

( ) ( ) ( )rrrv iiieff φεφ =⎟
⎠
⎞

⎜
⎝
⎛ +∇− 2

2
1

                                                      (2.14) 

with  

( ) ( )∑
=

=
N

i
i rr

1

2
0 φρ                                                                            (2.15) 

( )[ ] ( ) ( ) ( ) ( )
∫∫∑

−
−−+= '

'
00

0
'

2
1 drdr

rr
rr

drrrvrEE xcxci
ρρ

ρρε    (2.16) 

These equations can be solved exactly using self-consistent methods. Such knowledge of Exc 

is unavailable however, so approximations must necessarily be made. 

 

2.4 SELF-CONSISTENT ITERATION 

To solve the Kahn-Sham equations self consistently we start with a guess potential, ( )rVin
0

, By 

using some approximate form for the functional dependence of Exc on density, we must 

compute Vxc as a function of r. The set of Kohn-Sham equations are then solved to obtain an 

initial set of Kahn-Sham orbital. This set of orbital is then used to compute an improved 

density from Eqn. (2.15). From this solution, a new initial potential is generated, 
( )1+n

inV , so 

that the sequence of  
( )n

inV  and 
( )1+n

outV  converges to the self-consistent potential scfV , which is 

defined as the potential for which outin VV =  and the process is repeated until the density and 

exchange correlation energy converge to within some tolerance as shown in figure 3.1. One 

way to give better solutions is to mix input and output potentials linearly: 
( ) ( )1 1n n n

in in outV V Vβ β+ = − +                                                                  (2.17) 

where β is set between 0-1 (usually β=0.7-0.9 but must be reduced where convergence is 

difficult to achieve). Another way is to use Anderson method: 
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]111 111 −−+ +−++−−= n

outn
n

outn
n

inn
n

inn
n

in VVVVV θθβθθβ         (2.18) 

( ) ( ) ( )( ) ( )( ) 211 −+−−= n
inn

n
out

n
innn VVV θθθ

                                                (2.19) 
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This method is usually used to handle difficult calculation for complex system consists of 

many atoms in the unit cell. 

  
Figure 2.1 Steps of the self consistent calculation. 

 

2.5 LOCAL-DENSITY AND GENERALIZED GRADIENT APPROXIMATIONS  

      The Kohn-Sham formulation of density functional theory is, to this point, still exact. All 

the complications arising from the many-body nature of the problem are contained in 

Exc[ρ(r)]. The power of density functional theory is that approximate forms for Exc are 

possible to construct which lead to an accurate description of real systems. 

The most widely used and most simple approximation is the local density approximation 

(LDA). In their pioneering work Kohn and Sham pointed out that many solids are well 

approximated by a homogeneous electron gas, such that the exchange and correlation energy 

at r depends only on the electron density at r. They introduced the local density approximation 

that generalizes to the local spin density approximation (LSDA)  

Choose Vin

Solve Hφ=Eφ 
(H=P2+ Vin)

Calculate density ρ=Σ ⎢φ ⎢2

Solve Poisson equation 
VH=4πρ(G)

Calculate exchange correlation 
potential Vxc=f[ρ] 

STOP

Vout=VH+Vxc
Mix potential 
Vin, Vout Vnew Vin=Vout ? 
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( ) ( )[ ] ( ) ( ) ( )( ) 3hom ,, ∫ ↓↑↓↑ = drrrrrrE xc
LSDA
xc ρρερρρ                          (2.20) 

where εhom
xc is the spatially constant exchange-correlation density of the  homogeneous gas. 

For unpolarized system, the LDA energy is given by the same formula with   

( ) ( ) ( )
2
rrr ρρρ == ↓↑                                                                     (2.22) 

 The form of the potential is then given by 

( )[ ]( ) ( )[ ]
( )

( ) ( )[ ]
( )r

rr
r

rE
rV

LDA
xc

LDA
xcLDA

xc δρ
ερδ

δρ
ρδ

ρ ==                                 (2.21)            

The simplest form of the LDA to the exchange-correlation potential has been proposed by 

Slater et al. [7], usually called Xα method, where Vxc becomes 

( ) 3
1

3
2

3
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

π
ραρxcV           

Other commonly used parameterization based on the results by Ceperley and Adler [9] has 

been proposed by Perdew and Zunger [10].                                          

In addition, non local effects may be included by considering functionals that depend on the 

local gradient of the density in the exchange-correlation energy. This leads to a class of 

functionals known as “generalized gradient approximations” (GGA) [12,13]. 

The basic idea of GGA is to express the exchange-correlation energy in the following 

form   

( )[ ] ( ) ( ) ( )( )∫ ∇= drrrrrE GGA
xc

GGA
xc ρρερρ ,                                           (2.23) 

2.6 LDA+U 

      The simulation of strongly correlated systems requires techniques beyond the LDA or 

GGA for this raison many researcher refine the LDA by introducing new scheme which so 

called ‘LDA+U’. The idea of this method is to include the Coulomb interaction between 

strongly localized d and f electrons in the spirit of a mean-field Hubbard model [14], whereas 

the interactions between the less localized s and p electrons are treated within the standard 

local spin density approximation. To achieve this, a Hubbard-like interaction term EU, which 

depends on the occupation of the localized orbitals, is added to the LSDA total energy, and an 

additional double counting correction Edc is introduced to subtract that part of the electron-

electron interaction between the localized orbitals. In terms of this idea, we define the 

generalized LDA+U functional as follows: 

( ) { }[ ] ( )[ ] { }[ ] { }[ ]σσσσσ ρρ nEnErEnrE dc
ULSDAULDA −+=+ ,                (2.24)    
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where ( )rσρ  is the charge density for spin-σ electrons and ( )[ ]rE LSDA σρ  is the standard 

LSDA functional. 

The Hubbard-like interaction term or the orbital polarizations are described by the mean-field 

(Hartree-Fock) type of theory: 

{ }[ ] ( ){ }
∑

⎪⎭

⎪
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mmmmeeU

nnmmVmmmmVmm

nnmmVmm
nE  (2.25) 

where Vee are the screened Coulomb interactions among the nl electrons. m and σ designate 

the orbital and spin, respectively.  The last term in Eq. (2.25) corrects for double counting part 

Edc which is diagonal in spin and it given by  

( ) ( )∑
↓=↑

−−−=
,22 σ

σ
σσ ηη nnJnnUEdc                                                      (2.26)     

( )↓↑
↓↑

−=

+=+== ∑ ηηησσσ

2
1;; nnnnn

l

lm
mm                                           (2.27) 

where U and J are screened Coulomb and exchange parameters [15]and ησ=1 in the fully 

localized limit [16] while in around the mean field version [17] ησ=<nσ>. 

The potential are usually determined for the effective single-particle potentials which used in 

the effective single-particle Hamiltonian H 
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 (2.28) 
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3.1 INTRODUCTION 

      During the past fifteen years the techniques for solving the band structure problem have 

reached the point at which, with the aid of large computers, an accurate solution may be obtained. 

Among these techniques we can site the augmented plane wave (APW) method, which has 

allowed the solution of the band-structure problem for a wide class of materials, which requires a 

computational effort. This is powerful also in the calculation of ground-state properties of 

compounds and magnetic crystals, where self-consistency is imperative, and in the calculation of 

excitation spectra, where matrix elements are needed. Furthermore, the APW method has the 

characteristics of numerical techniques, well suited for accurate calculations on particular 

crystals. 

3.2 THE AUGMENTED PLANEWAVE METHOD  

      The augmented planewave (APW) method as originally formulated by Slater [1,2 ], expands a 

trial wave function in a set of energy-dependent basis functions : 

( )∑=
n

nnk kC 0,εφψ        (3.1)     

with    nn Gkk +=   

Where k is a point in the first Brillouin zone, Gn is a reciprocal lattice vector, and ε is the energy 

used to construct the APW radial functions. The Cn are the plane wave expansion coefficients, 

which are determined by applying the standard Rayleigh-Ritz variational procedure [3,4]. The 

basis functions in this way satisfy the cellular boundary conditions and the connectivity 

conditions across the muffin-tin spheres. Thus the variation yields the simple secular problem [5] 

HC=ESC                     (3.2) 

where H and S are the Hamiltonian and overlap matrices for a given basis set φk 

with: 

( ) ( )mnnm GHGH φφ=                      (3.3) 

( ) ( )mnnm GGS φφ=                          (3.4) 

denoting Hamilton and overlap matrix, respectively, 

 In this method, the unit cell is partitioned into an interstitial region (I) and non-overlapping 

muffin-tin spheres (labelled α) centred on the atomic nuclei (Fig. 3.1). In the latter region, 

potential, density and wave functions are strongly varying, i.e., similar to the situation in an atom, 

therefore atomic-like basis functions are an appropriate choice. 
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However, the same quantities are much smoother in the interstitial region and can be well 

described by plane waves which are the basis functions in the interstitial region. Within the APW 

method, the corresponding basis functions are defined as, 

( ) ( ) Irer rGki
Gk ∈

Ω
= +

+
.1φ   (3.5) 

and 

( ) ( ) ( ) ( ) αφ αα ∈+= ∑+ rrYEruGkAr lml
lm

lmGk ,ˆ,                     (3.6)  

where ( )rYlm ˆ  are the spherical harmonics. The radial function ( )Erul ,α  is the regular solution of 

the equation: 

 

                                               
Figure 3.1 Partitioning of the unit-cell volume into atomic spheres and the interstitial region. 
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ll

dr
d

l
αα                                 (3.7) 

with Vα(r), being the radial symmetric part of the potential in the atomic sphere. Provided that E 

is equal to the eigenvalue, ( )Erul ,α  is the solution of Schrödinger’s equation in the spherical 

potential, while plane waves are solutions for a constant potential. Therefore, this choice of basis 

functions is in particular well suited for the so-called muffin-tin (MT) approximation, where such 

a shape approximation, spherical symmetric inside the spheres and constant outside, is assumed 

for the potential. Indeed most of the APW codes still make use of this approximation which is, 

however, only good for closed packed structures. The reason is that it is quite complicated to 

extend the scheme to a general potential inside the atomic spheres [6]. A general potential outside 

the spheres, however, can be more easily achieved. 

I

α
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The coefficient ( )GkAlm +α  is determined for each atom by imposing the requirement that the 

values of the planewave (3.5) and the atomic-orbital like function (3.6) have to match each other 

on the sphere boundary.  

( )
( ) ( )∑ ++

Ω
=

G
lmlG

l

l

lm GkYGkjc
Ru

iA *

2
1

4π                                         (3.8) 

 It depends on E which is a variational parameter in this scheme. Therefore, the APWs as defined 

in Eq. (3.6) are not simply a basis set, but give rise to severe complications: Most important, E 

has to be set equal to the band energy. This requirement makes the basis functions energy-

dependent and thus the solution of the secular equation does not correspond to a linear 

eigenvalues problem. It has to be solved by finding the roots of the secular determinant which is a 

very time-consuming procedure. Since the APWs are not orthogonal they lead to an overlap 

matrix in Eq. (3.2) which is not the unity matrix, a fact which is common to all APW-related 

methods.  

In general there are two major computational difficulties connected with the standard augmented 

plane wave (APW) method originally proposed by Slater (1937); the first is the energy 

dependence of the secular equation resulting from the nonlinear energy parameter used in setting 

up the radial solutions inside the muffin-tin spheres. The second is the singular behaviour of the 

secular equation which occurs when a node of the radial solution falls at the muffin-tin-sphere 

boundary (the so called asymptotes). This makes it necessary to use more sophisticated methods. 

An overview over further difficulties and related numerical problems, as well as respective 

modifications of the APW method can be found in Ref. [7,8]. Koelling et al. [9] demonstrated 

that an APW constructed with a linear combination of the radial function and its energy 

derivative eliminates the older numerical problems which encounter this method. 

3.3 LINEARIZED AUGMENTED PLANE-WAVE METHOD (LAPW) 

      There were several attempts to improve the energy dependence of the secular equations but 

the first really successful one was the linearization by Andersen [10-13]. This work led to the first 

implementation of the linearized augmented plane-wave (LAPW) method.  In the LAPW method 

the energy dependence of the radial functions inside each sphere is removed by using a fixed set 

of suitable muffin tin radial functions. Within Andersen’s approach, inside each atomic sphere, 
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the radial solutions of the Kohn-Sham equation at fixed energies El and their energy derivatives 

are used as basis functions. 

The derivate quantity is used to make the continuity of the wave function on the boundary, which 

distinguishes this approach from the APW method and there is no need for explicit core state 

orthogonalizations, because the radial solutions and their energy derivatives are exactly 

orthogonal to the core states of the muffin tin. The wave function in the interstitial region is 

expressed in the form of equ. 3.5 and the solution of the Schrödinger equation is a linear 

combination of these bases (Equ. 3.1) where the coefficients cn are determined by the variational 

principle. The linear APW (LAPW) method has all the advantages of the OPW method often 

used for semiconductor. 

3.3.1 THE LAPW BASIS  

      The LAPW and APW bases differ only within the spherical regions. Thus in the LAPW and 

inside atomic sphere α of radius Rα, each φ is a linear combination of radial functions times 

spherical harmonics Ylm(r)  

( ) ( ) ( ) ( )( ) ( ),ˆ,, rYEruGkBEruGkA lm
lm

llmllmGk ∑ +++=+
ααααφ &                          (3.9) 

where ( )Erul ,α ) is (as in APW) the regular solution of the radial Schrödinger equation for the 

spherical part of the potential in sphere α, but now for fixed energy El. The second set of radial 

functions, which appears in the LAPW but not the APW, consists of the energy derivatives, 

( )Erul ,α&  which given by 

( ) ( )
lE

ll
ll E

Eru
Eru

∂
∂

=• ,
,

                                                                              (3.10) 

As with the original APW basis, the radial functions, ( )Erul ,α  and ( )Erul ,α&  are obtained by 

numerical integration on a radial mesh inside each sphere. However, the El parameter in the 

LAPW is not required to match the Kohn-Sham eigenvalue 0
ikε  but is fixed instead to an expected 

value, for example, to be roughly in the middle of the occupied eigenvalues which are 

predominantly of angular momentum type l.  
The coefficients ( )GkAlm +α and ( )GkBlm +α  are determined by requiring that value and slope of 

the basis functions are continuous at the surface of the muffin tin sphere (sphere boundaries); by 

expanding each plane-wave into Bessel functions lj  at the muffin tin spheres. 
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Here, the G denotes the reciprocal lattice vectors and k a vector within the first Brillouin zone. 

Note that ( )rYlm ˆ  represents a complex spherical harmonic with ( ) ( ) ( )rYrY lm
m

ml ˆ1ˆ *−=− . The radial 

functions ( )ll ru εα ,  and ( )ll ru εα ,&  are solutions of the equations 

( ) ( )lllll
sph ruruH εεε αα ,, =                                                                           (3.11) 

( ) ( ) ( )[ ]lllllll
sph rururuH εεεε ααα ,,, += &&                                                        (3.12) 

The operator Hsph contains only the spherical average, i.e. the l=0 component, of the effective 

potential within the muffin tin. The El should be chosen near the center of the energy band with 

the corresponding l-character. 

The full-potential LAPW method generally expands the potential and the charge density in a 

Fourier representation 

( )
( )
( )

⎪
⎩

⎪
⎨

⎧
=
∑

∑

+

+
+

Gk

rGki
Gk

lm
lmlm

spheretheoutsideeV

spheretheinsiderYV
rV

ˆ
                                     (3.13) 

Thus, no shape approximation is introduced. The quality of this full-potential description is 

controlled by the wave function cut-off Gwf limits the number of the G vectors and thus the size 

of the basis set and the size of the (l,m) representation inside muffin tins. 

3.3.2 ROLE OF THE LINEARIZATION ENERGIES 

      In LAPW method and inside the spheres the LAPWs have more variational freedom than 

APWs. This is because, if El differs slightly from the band energy, ε, a linear combination, will 

reproduce the APW radial function constructed at the band energy. 

( ) ( ) ( ) ( ) ( )( )2,,, llllll EruErEuru −Θ+−+= εεεε &                                    (3.14) 

where ( )( )2
lE−Θ ε  denotes errors that are quadratic in this energy difference. For a converged 

planewave set and a muffin-tin potential, the APW method yields exactly the correct wave 

function. In this case, going to the LAPW method introduces errors of order ( )2lE−ε in the wave 

function; this, combined with the variational principle, yields errors of order ( )4
lE−ε in the band 

energy. Thus it would seem that one needs simply to set the El near the centers of the bands of 

interest to be assured of reasonable results, and one could in fact optimize the choice by 

computing the appropriate moments of the density of states and using the known order of the 
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errors to optimize the El. Alternatively, one could envisage computing the total energy for several 

reasonable choices of El and selecting the set that gave the lowest energy. However, these 

strategies work well in many cases but they fail miserably in many others. The reason for this 

failure is related to the presence of the semi-core states in many elements, particularly, the alkali 

metals, the rare earths, the early transition metals and the actinides.  

3.3.3 REPRESENTATIONS OF POTENTIAL AND CHARGE DENSITY  

      Charge density can be constructed by summing over the occupied states: 

  ( ) ∑=
lk

lklkr
,

,
*

,ψψρ                                                                    (3.15) 

The sum it should be carried out over the full Brillouin zone (BZ). But in practice we work in an 

irreducible wedge of the BZ (IBZ). However the charge density is not so behaved and therefore 

the density obtained from the irreducible zone does not necessarily have the full symmetry of the 

lattice. To obtain the properly symmetrized density it is necessary to using the space group 

operators. { }tRS =  

where R is a rotation and t a translation. 

In order to treat the charge density correctly, we follow a variant of the scheme used by Weinert 

[14]. This scheme is based on the fact that to use a dual representation for the charge as well as 

the wave functions: the interstitial charge is smooth and hence amenable to a Fourier expansion 

and that in the spheres to be in a spherical harmonic representation, which is the natural 

representation near an atomic site. 

( ) ( ) ( ) ( ) ( )∑ ∈+∈=
spheres

I SrrIrrr αα θρθρρ                                                 (3.16)                     

However, because of the rapid variation of the charge density near the nuclei, the charge density 

given by (3.16) will have a slowly convergent Fourier expansion, whereas the interstitial charge 

density can be continued into the spheres in such a way that it has a rapidly convergent Fourier 

expansion. We can make use of this observation and solve the problem of obtaining the Coulomb 

potential in two steps; obtain the potential in the interstitial and then solve the boundary value 

problem inside the sphere. Since the potential outside the muffin-tin spheres does not depend on 

the real shape of the charge density inside the spheres but only on the multipole moments of this 

charge. Hence, we can replace the true rapidly varying charge inside the MT spheres by another, 
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smoother charge without changing the potential outside the spheres if the full pseudo-charge-

density is required to have the correct multi-pole moments. 

( ) ( ) ( ) ( ) ( ) ( )∑ ∈+∈=→
spheres

I SrrIrrrr αα θρθρρρ ~~                               (3.17) 

The replacement of the original charge density by a smooth pseudocharge inside the spheres is 

done in two steps:  

(I) The expansion of the charge density in the interstitial region, ( )rPWρ , is extended into 

the muffin-tin spheres.  

(II) The difference charge density ( ) ( ) ( )rrr PWρρρ −=Δ  for r inside sphere is replaced 

by a smooth charge density ( )rρ~Δ  (the difference pseudo-charge-density), which has 

the same multipole moments as ( )rρΔ . 

This pseudocharge density will give the correct interstitial potential, but not the correct potential 

in the spheres 

3.4 THE LAPW+LO BASIS SET 

Sometimes, it is necessary to extend the LAPW basis set with so-called local orbitals (LO), as 

introduced by Singh [6]. The local orbital extension to the LAPW basis is directed a better 

description of the so called semi-core states, low-lying valence states which cannot be treated as 

part of the core states, i.e., they can have some charge leaking out of the atomic spheres. As the 

computation of Eq. (3.9) gives good results only for energy values near the linearization energy 

El we need to add another basis to threat these semi core states. This LO scheme avoids the 

problem of non-orthogonality that can occur in calculations in which the semi-core states are 

either frozen or treated in a separate energy windows. An LO is chosen such that it vanishes in 

values and slope at the muffin tin radius and includes an additional radial function. This 

procedure is done only in the atomic sphere region. The local orbital expansion when x∈α is 

given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ),ˆ,,, rYEruGkCEruGkBEruGkArS lm
lm

lollmllmllmLO ∑ +++++=+ αααααα
αφ    (3.18) 

where Aα
lm, Bα

lm and Cα
lm are determined by requiring that the local orbitals have zero value and 

slope at the atomic sphere boundary. Local orbitals are not required to match the basis functions 

in the interstitial as a result they do not have k + G dependence. The inclusion of local orbitals 

results in just a small increase of the size of the basis and it allows the proper treatment of 
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localized semicore states. Compared to other schemes within the local density approximation, the 

FLAPW can be applied to a wide range of systems due to the use of mixed basis sets by 

including core electrons. 

2.5 WIEN2K CODE 

      the linearized-augmented-plane-wave (LAPW) method is one among the most precise 

schemes to solve the so-called Kohn–Sham (KS) equations it has proven to be one of the most 

accurate methods for the computation of the electronic structure of solids, in general (metals, 

insulators, semiconductors, minerals, etc.),  within density functional theory. This method is 

employed in many computer codes like FLEUR, WIEN2k [15] to study crystal properties on the 

atomic scale (see www.wien2k.at). This later code which called WIEN in the first copyrighted 

version has reached a high level of sophistication in the newest versions this progress led to a 

significant improvement in the possibilities of simulating relatively large systems. 

The WIEN2k package consists of several independent programs, written in FORTRAN 90, which 

are linked via C-SHELL SCRIPTS and requires a UNIX operating system. The flow and usage of 

the different programs is illustrated in the following diagram (Fig. 3.2). 
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Figure 3.2 Program flow in WIEN2K as illustrated in the user guide of this code  
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3.6. CALCULATION OF THE PROPERTIES 

3.6 .1. Total energy 

 Within wien2k code, the ground state total energy is given by the minimum of a total energy 

functional with respect to the electron density n(r), 

( )[ ] ( ) ( ) ( ) ( )
∫∫∑

−
−−+= '

'
00

0
'

2
1 drdr

rr
rr

drrrvrEE xcxci
ρρ

ρρε           (3.19) 

3.6 .2. ELASTIC PROPERTIES 

      The cubic crystal has three independent elastic constant c11, c12, and c44. To determine these 

constant three equations are needed. This means three types of strain must be applied; calculating 

the bulk modulus, performing volume conservative tetragonal strain and applying rhombohedral 

distortion. Then, from the expression of the energy as function of the strain the elastic constants 

are derived.  

Using the individual elastic constants, we have estimated the following parameters:  

The shear anisotropy factor [16]. 

1211

442
cc

cA
−

=                                                                                             (3.20) 

The Voigt’s shear modulus (GV ) [17] and the Reuss’s one GR[18]  for the cubic polycristals are 

given by:  

( )441211 3
5
1 cccGV +−=                                                                           (3.21) 

and 

( )
( )121144

121144

34
5

ccc
cccGR −+

−
=                                                                          (3.22) 

According to Hill [19], the Voigt’s and Reuss’s expressions represent the upper and lower limit 

for the polycrystalline crystals, respectively. The estimate value is given by the average of these 

values:  

( )Rv GGG +=
2
1                                                                                    (3.23) 

The Young’s modulus, E, and Poisson’s ratio, ν, are given by the following relations: 

GB
BGE
+

=
3
9                                                                                           (3.24) 
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and 

( )GB
GB

+
−

=
32

23ν                                                                                         (3.25) 

The average sound velocity, vm, by the following equation [20]: 

m
A

D M
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h ν

ρ
π
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3/1
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3
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⎞

⎜
⎝
⎛=                                                                      (3.26) 

where h is Plank’s constant, k the Boltzman’s constant, NA the Avogadro nomber’s, ρ the density, 

M the molecular weight and n is the number of atoms in the molecule. The average sound 

velocity is given by 

3
1
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⎛
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m vv

ν                                                                             (3.27) 

where vl and vt are the longitudinal and transverse sound velocity, respectively, which are given 

by 

ρ3
43 GBvl

+
=                                                                                      (3.28) 

and  

ρ
Gvt =                                                                                               (3.29) 

3.6 .3. OPTICAL PROPERTIES 

      The linear optical properties in solids are described by the dielectric tensor, the interband 

contribution to the imaginary part of its elements are calculated by summing transitions from 

occupied to unoccupied states over the BZ, weighted with the appropriate momentum matrix 

elements as given in reference [21]: 

( ) ( ) ( ) kdEEWWfPiiPf
m

e
iffi

fi

3

,
22

22

2 14 ωδ
ω

πωε βααβ η−−−×= ∑∫   (3.30) 

in this expression, ipf α  and fpi β  are the dipole matrix elements corresponding 

to the α and β directions of the crystal (x, y or z), and f, i are the final and initial states, 

respectively. Wn is the Fermi distribution function for the nth state, and En is the electron energy 

in the nth state. The real part of the elements of the dielectric tensor is obtained using the Kramer-

Kronig relation: 
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( ) ( )
ω

ωω
ωεω
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ωε αα

αα ′
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+= ∫
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22
2

1
21                                                          (3.31) 

where P is the principal value of the integral. With the knowledge of the complex dielectric 

tensor components all other frequency dependent optical constants can be obtained. The most 

often used ones are the coefficient of the absorption α (ω) which is defined as: 

( ) ( ) ( )[ ] 2
1

2
Re2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
= αααα

αα

ωεωεωωα
c

                                              (3.32) 

and the reflectivity R(ω) as 

( ) ( )
( )αα

αα
αα ω

ω
ω

n
n

R
ˆ1
ˆ1

+
−

= ,                                                                           (3.33) 

where ( )ωn̂  is the complex refraction index which is given by the expression: 

( ) ( ) ( )αααααα ωωω iknn +=ˆ                                                                     (3.34) 

with n(ω) is the ordinary refraction index and k(ω) is the coefficient of extinction, obtained from 

( )[ ] ( ) ( )αααααα ωεωεω 21
2ˆ in +=                                                              (3.35) 

 

3.6 .4 MAGNETO-OPTICAL PROPERTIES 

  The complex Kerr angle φ is calculated by using the relation [24]  

φ=

ω
πσσ

σ
εθ

xx
xx

xy
kk

i
i

41+

−
=+ ,                                                                    (3.36) 

where xxσ   and xyσ are the diagonal and the off diagonal elements of the optical conductivity 

tensor, respectively, ω is the photon frequency and θk and εk are the Kerr rotation and ellipticity 

respectively. 

 

 

 

 

 

 



Chapter 03                                                                                THEORETICAL METHOD (FP-LAPW) 
 

 41

REFERENCES 

1- J. C. Slater Phys. Rev. 92, 603 (1953)  

2- M. M. Saffren and J. C. Slater Phys. Rev. 92, 1126 (1953) 

3- W. Kohn,  Phys. Rev. 71 9024  1947  

4- Phys. Rev 7.4 1763-72 1948 

5- D. D. Koelling and G. O. Arbman  J. Phys. F: Metal Phys 5 2041 (1975) 

6- David J. Singh, Planewaves, Pseudopotentials and the LAPW Method, Kluwer Academic 7- 

Publishers, Boston/Dordrecht/London, 1994 

7- D. D. Koelling  phys Rev. B 2, (1970) 290. 

8- D. D. Koelling, Solid State Commun. 9 (1971) 523. 

9- D. D. Koelling, G. O. Arbman, J. Phys. F 5, (1975) 2041. 

10- O. K. Andersen, Phys Rev B 12, (1975) 3060.  

11- D. D. Koelling, G. O. Arbman, J. Phys. F 5, (1975) 2041.  

12- D.R. Hamann, Phys. Rev. Lett. 42, (1979) 662. 

13- E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman, Phys. Rev. B 24, (1981) 864. 

14- M. Weinert, J. Math. Phys. 22, (1981) 2433. 

15- P. Blaha, K. Schwarz, P. Sorantin, and  S. B. Trickey, in Comput. Phys. Commun. 59, (1990) 

399. 

18- Z. Suna, S. Li, R. Ahujab, J.M. Schneider, Solid State Commun. 129 (2004) 589. 

19- W. Voigt, Lehrbuch der kristallphysik, Taubner, Leipzig, 1928. 

20- A. Reuss, Z. Angew. Math. Mech. 9 (1929) 55. 

21- R. Hill, Proc. Phys. Soc. Lond. 65 (1953) 909. 

22- Y.-J. Hao, X.-R. Chen, H.-L. Cui, Y.-L. Bai, Physica B 382 (2006) 118. 

23- C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175 (2006) 1. 

24- M. Kumar, T. Nautiyal and S. Auluck, J. Phys. Condens. Matter 21, (2009) 196003. 
 

 



 
 
 
 
 
 
 
 

Chapter: 04 
 

Results and Discussion 

HALF HEUSLER ALLOYS IrMnZ 
(Z=Al, Sn AND Sb) 



Chapter 04                                        RESULTS AND DISCUSSIONS:  

                                                           HALF HEUSLER ALLOYS IrMnZ (Z=Al, Sn AND Sb) 

 

 42

4.1. INTRODUCTION 

     As we have mentioned previously, the Heusler alloys are particularly interesting 

due to their very high Curie temperature [1,2] and some of them are already in use as 

elements in multilayered magnetoelectronic devices such as magnetic tunnel junctions 

and also as giant magnetoresistance spin valves [3,4]. Several papers have been 

devoted to the calculation of the structural, electronic and magnetic properties of these 

alloys and recently there has been an increased interest in thin films of this material 

both experimentally [4-7] and using first-principle calculations [8,9]. The Mn-based 

Heusler alloys (XMnZ) belong to a class with interesting magnetic properties; 

exhibiting ferromagnetic features like magneto-optical effects and giant magneto-

resistance, a comprehensive study of Mn based compounds have been performed by 

Brown et al. [10] and Plogmann et al. [11]. Among these, the half-Heusler alloys 

IrMnZ (Z = Al, Sn and Sb) for which few papers have been devoted to the calculation 

of the different properties. One of the old works on these alloys is of Masumoto and 

Watanabe [12], who determined their structural and magnetic properties. 

Krishnamurthy et al. [13], reported on the X-ray magnetic circular dichroism 

measurements, performed at the Ir L2,3 edges at room temperature, in IrMnAl. 

Galanakis [14] has studied the orbital magnetism in IrMnSb using the Dirac 

formalism within the framework of the Korringa–Kohn–Rostoker Green’s function 

method. More recently, Antonov et al. [15] have studied by means of the ab initio 

fully relativistic spin-polarized Dirac linear muffin-tin orbital method the electronic 

structure and XMCD spectra of IrMnAl at the Ir L2,3 edge. However, the elastic 

constants and moduli which have not yet been calculated or measured for the studied 

compounds are of extreme interest in both condensed matter theory and technological 

fields. The elastic constants (cij) determine the response of the materials to the 

external forces and play an important role in determining the strength of the 

compounds, which is the key in high temperature and pressure applications. 

Therefore, knowledge of the elastic constants will be of great interest in 

understanding their behaviour under different constraints. In addition the knowledge 

of the fundamental structural and mechanical properties can be helpful to understand 

the electronic, optical, and magneto-optical behaviour. These two later properties 

have not yet been calculated theoretically.  
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      Our aim in this chapter is to investigate the elastic, electronic and magneto-optical 

properties of the IrMnZ (Z = Al, Sn and Sb) in the C1b type ordered structure using 

the state of the art full potential linearized augmented plane wave method (FP-LAPW) 

[16,17], in the framework of the density functional theory (DFT) within the 

generalized gradient approximation [18–20]. 

4.2. CRYSTAL STRUCTURE AND DETAILS OF CALCULATIONS 

      The crystal structure used in the calculation for these half-Heusler compounds is 

of the AlLiSi type [21], space group mF 34  (No. 216). In this structure, one discerns 

four types of sites τ1(0, 0, 0)a, τ2(1/4, 1/4, 1/4)a, τ3(1/2, 1/2, 1/2)a and τ4(3/4, 3/4, 

3/4)a, where a denotes the lattice parameter, occupied as follows: Ir at τ1, Mn at τ2 

and Z at τ4, while τ3 is empty. Furthermore, this structure is similar to the β-phase of 

the Nowontny-Juza compounds [22]. Our calculations are performed using the full 

potential linearized augmented plane wave plus local orbitals method, FP-LAPW+LO 

[16,17] within the generalized gradient approximation GGA (GGA+U) and the local 

density approximation LSDA (LSDA+U) [20]. In this method the space is divided 

into non-overlapping muffin-tin (MT) spheres separated by an interstitial region. In 

this context, the basis functions are expanded in combinations of spherical harmonic 

functions inside the muffin-tin spheres and Fourier series in the interstitial region. In 

this work we treat the core electrons fully relativistically, and the valence electrons 

semi-relativistically. In the calculations, The muffin-tin radii are chosen to be 2.1 

Bohr for Al and Mn and 2.3 Bohr for Ir, Sn and Sb. The basis functions are expanded 

up to Rmt × Kmax= 8 (where Kmax is the plane wave cutoff and Rmt is the smallest of all 

MT sphere radii), and up to lmax=10 in the expansion of the non-spherical charge and 

potential. We use the Perdew, Burk and Ernzerhof scheme [20], for the exchange and 

correlation interaction. The integrations over the Brillouin zone are performed with 

14×14×14 k mesh and the self-consistent calculations are considered to be converged 

when the total energy is stable within 0.1 mRy. The theoretical equilibrium total 

energy, lattice parameter a and bulk modulus B are determined by fitting the total 

energy as a function of volume for both the non magnetic and magnetic (spin 

polarized) phases to the Murnaghan’s equation of state (eos) [23]. 

In crystals with the C1b structure the elastic tensor has only three independent elastic 

constants, namely c11, c12 and c44. Their determination requires knowledge of the 
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curvature of the energy as a function of strain for selected deformations of the unit 

cell, as mentioned in previous chapter.  

The calculation of the optical and magneto-optical properties has been performed 

using 8000 k-points with 20×20×20 k mesh. In order to consider the effect of finite 

lifetimes, as well as of the experimental resolution, a Lorentzian broadening equal to 

δL= 0.7 eV was applied for both the interband and intraband contributions. Drude 

broadening equal to δD= 0.1 eV in the intraband contributions and we also added 

empirical intraband Drude conductivity, σ0 to the calculated interband conductivity. 

We have used the value of U calculated using the method of Anisimov [32]. The 

calculated values are given in table 4.1, and knowing that there are many methods to 

estimate this value. The only external parameter needed for LSDA+U (GGA+U) is 

the effective value of the on-site Coulomb parameter, Ueff, for each affected orbital. 

The effective parameter Ueff = U - J is adopted as an only input parameter, where U 

and J are the Coulomb and exchange parameters, respectively. In this work J has been 

assumptive set equal 0.   

Table 4.1 The calculated U (eV) values of Ir and Mn of IrMnZ (Z = Al, Sn and Sb). 

 GGA LSDA 

Ir 0.28 0.30 IrMnAl 

Mn 3.62 3.66 

Ir 0.24 0.23 IrMnSn 

Mn 4.20 4.44 

Ir 0.3 0.3 IrMnSb 

Mn 2.89 3.12 

 

4.3. STRUCTURAL PROPERTIES 

      The calculated energy curves as a function of volume for the magnetic (spin-

polarized) and non-magnetic configurations, using the generalized gradient 

approximation (GGA) of the three compounds are displayed in Fig. 4.1.  

The obtained total energy differences Enon-magnetic − Emagnetic (in meV per formula) 

using GGA are: 39, 100 and 128 mRy for IrMnAl, IrMnSn and IrMnSb, respectively, 

indicating that the magnetic phase is the energetically favourable one, and this result 
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agrees with the one reported by Offernes et al. [21]. As it is clear from Fig. 4.1, the 

rest of this chapter will be devoted to the magnetic phase only. 

Table 4.2 Calculated and experimental lattice constants of IrMnZ (Z =Al, Sn and Sb). 

 a (A°)  
GGA GGA+U LSDA LSDA+U Expt.a 

IrMnAl 5.669 5.956 5.566 5.806 5.992 

IrMnSn 6.197 6.307 6.029 6.160 6.182 

IrMnSb 6.155 6.258 6.012 6.115 6.164 
aRef  [21] 

Table 4.3 Calculated bulk modulus of IrMnZ (Z = Al, Sn and Sb). 

 B(GPa)  
GGA GGA+U LSDA LSDA+U Expt.a 

IrMnAl 156.72 109.81 208.05 127.40    -- 

IrMnSn 112.74 106.18 141.47 136.45    -- 

IrMnSb 128.16 117.95 175.40 153.29    -- 

 

The equilibrium lattice constant and bulk modulus were calculated using both LSDA 

and GGA for these half-Heusler compounds in the cubic C1b structure; the results are 

compared with available experimental data in Table 4.2. A comparison between the 

equilibrium lattice constants predicted using LSDA and GGA for the exchange and 

correlation functional shows that GGA is reproduce well the equilibrium structural 

properties of these half-Heusler alloys. In fact, LSDA underestimates the equilibrium 

volume by about -7.17% -2.47% and -2.46% with respect to experiment, whereas the 

GGA error are −5.5%, −0.28% and +0.17% for IrMnAl, IrMnSn and IrMnSb, 

respectively. The obtained values follow the same trend as the measured ones. Thus 

leading to a better agreement with experiment compared to LSDA.  

The prediction of some properties probably can not be reproduced by the GGA and 

LSDA methods. The standard LSDA does not consider the correlated behavior of 

electrons in the d shell. The modified LSDA (GGA), which is called LSDA+U 

(GGA+U), was used explicitly including the on site Coulomb interaction U in the 

conventional model Hamiltonian for the band states. The structural parameters are 
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also given in table 4.2 and 4.3. From these tables, it is clear that the GGA gives good 

results compared to the other approximations. 

 

 
Figure 4.1 Total energy of the IrMnZ (Z=Al,Sn and Sb) compounds vs. volume per 
unit cell using the GGA. 
 
4.4. ELASTIC PROPERTIES 

      The calculated elastic constants with the GGA are listed in Table 4.4. The bulk 

modulus calculated from the theoretical values of the elastic constants 

( )1211 2
3
1 ccB +=  is also listed in this table, and it has nearly the same value as the 

one obtained from energy minimization (see Table 4.3 for comparison). This might be 

an estimate of the reliability of the predicted results for the studied materials. 
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Table 4.4. Elastic constants (in GPa), the bulk modulus ( )1211 2
3
1 ccB +=  (in GPa) 

and the anisotropy factor A for the IrMnZ (Z=Al, Sn and Sb). 
 
Compound C11 (GPa) C12 (GPa) C44 (GPa) B (GPa) A 

IrMnAl 212.94 122.25 148.94 152.48 3.28 

IrMnSn 134.06 103.46 43.45 113.65 2.84 

IrMnSb 158.39 122.00 98.34 134.13 5.40 

 

 The requirement of mechanical stability in a cubic crystal leads to the following 

restrictions on the elastic constants [25,26]; (c11−c12)>0, c11>0, c44>0, B>0. All the 

calculated elastic constants in Table 4.4 satisfy these mechanical stability criteria, 

including the fact that c12 must be smaller than c11, which leads to a restriction on the 

magnitude of B; c12 < B < c11.We have also listed in Table 4.4 the shear anisotropy 

factor [27], which is the ratio between the shear modulus for the {001} planes along 

the [100] direction (G{001}=c44) and the one for {110} planes along the direction [110] 

(G{110} = (1/2)(c11 − c12)). The value of A is equal to one for an isotropic crystal, while 

any deviation from unity provides a measure of the degree of anisotropy of the 

electronic charge distribution [28]. From Table 4.4, the values of A for IrMnAl, 

IrMnSn and IrMnSb are 3.28, 2.84 and 5.40, respectively, which are greater than one 

(i.e., G{001}>G{110}) this is an indication that the studied compounds shear easier on 

the {110} rather than on the {001} planes. Furthermore, IrMnSb is characterized by a 

strong anisotropy for the shear planes described above compared to the other two 

compounds. 

Table 4.5. The calculated shear moduli Gv GR and G and Young’s modulus E (in 

GPa) and Poisson’s ratio v for  the IrMnZ (Z=Al, Sn and Sb) compounds. 

Compound Gv GR G E ν 

IrMnAl 107.502 77.82 92.66 231.15 0.247 

IrMnSn 32.190 25.03 28.61 79.19 0.331 

IrMnSb 66.282 35.61 50.94 135.65 0.383 
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4.4.1. ELASTIC PROPERTIES AND DEBYE TEMPERATURE FOR 

POLYCRYSTALS 

    Using the individual elastic constants, we have estimated the shear modulus (G) 

(Equ. 3.23) by the Voigt’s approximation (Equ. 3.21) and the Reuss’s one (Equ. 3.22). 

According to Hill [28], the Voigt’s and Reuss’s expressions represent the upper and 

lower limit for the polycrystalline crystals, respectively, and the arithmetic mean 

value can then be taken for estimation of the shear modulus (Equ. 3.23). We have 

estimated also The Young’s modulus, E (Equ. 3.24), and Poisson’s ratio, ν(Equ. 3.25) 

The calculated results are given in table 4.5. We show that all these parameters have 

the same trend and decrease with increasing the lattice parameter. 

  Debye temperature (θD) is a fundamental physical property and correlates with many 

physical properties of solids, such as specific heat and the thermal expansion 

coefficient [30]. It is used to distinguish between high and low temperature regions 

for a solid. If the temperature T>θD, we expect all modes to have the energy of kBT, 

and if T<θD, one expects the high-frequency modes to be frozen [31], i.e. the 

vibrational excitations arise solely from the acoustic vibrations. We estimated the 

Debye temperature θD of the studied compounds IrMnZ using the relation (3.26). 

Table 4.6. The calculated density (ρ in g.cm-3), the longitudinal, transverse and 

average sound velocities (νl,νT, νm in ms-1) and the Debye temperatures θD (in K) for 

the IrMnZ (Z=Al, Sn and Sb). 

Compound ρ νl νT νm θD 

IrMnAl 09.993 5255.66 3045.09 3379.58 406.53 

IrMnSn 10.210 3855.95 1673.96 1890.76 208.06 

IrMnSb 10.507 4049.19 1650.11 1868.07 206.96 

 

The calculated densities, longitudinal, transverse, average velocities and the Debye 

temperature are listed in Table 4.6. The IrMnAl has the largest value of θD, while 

IrMnSn and IrMnSb have almost the same value. Debye temperature is directly 

related to the elastic constants, (Equ. 3.32), via average wave velocity, and the 

decreasing of wave velocity causes the increase in Debye temperature. Unfortunately, 

as far as we know, there are no experimental data available related to this property in 
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the literature for the IrMnZ compounds, therefore our calculated values can be 

considered as prediction of these properties for the IrMnZ compounds.  

4.5. ELECTRONIC PROPERTIES  

      Before starting this discussion we should mention that the generalized gradient 

approximation GGA and the local spin density approximation LSDA are used to 

calculate the different properties, but we have based our discussion on the GGA 

results and for a comparative study of our calculated results for electronic and 

magneto-optical properties we have presented our LSDA results in some cases only. 

      Our endeavor is to calculate the electronic properties with and without the 

inclusion of Coulomb interaction in the standard density functional formalism. 
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Figure 4.2a Band structure of the IrMnAl and IrMnSb along the high cubic symmetry 

lines without spin orbit effect. 
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Figure 4.2b Band structure of the IrMnAl and IrMnSb compounds along the high 

cubic symmetry lines with spin orbit effect.  
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Figure 4.3 Total density of states, by LSDA and GGA, for the majority and the 
minority spins in half-Heusler alloys: IrMnZ (Z=Al, Sn, Sb). The vertical doted line at 
zero energy indicates the Fermi level. 
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Figure 4.4 Comparison of the total density of state between the LSDA(LSDA+U) and 
GGA (GGA+U), for the majority and the minority spins in half-Heusler alloys 
IrMnAl. The vertical doted line at zero energy indicates the Fermi level. 
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                                      Figure 4.5. Same as in figure 4.4 but for IrMnSn 
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                                       Figure 4.6. Same as in figure 4.4 but for IrMnSb 
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Figure 4.7. Total density of state of each element, by GGA, for the majority and the 

minority spins in half-Heusler alloys: IrMnZ (Z=Al, Sn, Sb).  
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Figure 4.8. Partial density of state, by GGA, for the majority and the minority spins 

in half-Heusler alloys IrMnAl.  
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                                       Figure 4.9. Same as in figure 4.8 but for IrMnSn and IrMnSb 
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      Using the optimized structural parameters for half-Heusler IrMnZ compounds, the 

electronic structure, is calculated by the GGA. The energy band structures are 

calculated for these compounds along the high-symmetry lines in the fcc Brillouin 

zone for the majority and minority spins, where ↑ and ↓designate the majority-spin 

electrons and the minority-spin ones, respectively, as shown in figure 4.2. We note 

that the spin–orbit coupling is significant for these compounds, since it destroys the 

half-metallic band gap. The total density of states (TDOS) and the partial DOS 

(PDOS) are plotted in figures 4.3-9, where the vertical line is the Fermi level (EF). 

From the figures, it can be seen that the spin-polarized calculation with the GGA 

shows that IrMnAl, IrMnSn and IrMnSb are not half-metallic; since IrMnAl IrMnSn 

show metallic behavior because of the magnitude N(EF) of the density of states (see 

Table 4.7) at the Fermi level in both spins up and down. The IrMnSb alloy although it 

presents a spin-down gap, but it is not half-metallic, since EF is slightly below the gap. 

Table 4.7. Calculated density of states at the Fermi level (states/eV/atoms) for the 

IrMnZ compounds. 

 IrMnAl IrMnSn IrMnSb 

Up 1.069 0.925 1.114 GGA 

Down 1.355 2.315 0.522 

Up 0.842 0.740 1.0 GGA+U 

Down 1.647 1.104 1.013 

Up 2.016 0.740 1.04 LSDA 

Down 1.963 2.571 0 

Up 0.747 0.703 0.953 LSDA+U 

Down 1.336 1.120 0.992 

 

The Fermi level crosses both the majority and minority-spin energy bands, because in 

these compounds, the repulsive interaction with the non-metal band shifts this band to 

higher energies above the Fermi level. In contrast to the LSDA which predicts that the 

IrMnSb is a half-metallic ferromagnet, in this approximation, similar metallic 

electronic band structures were also predicted IrMnAl and IrMnSn and the DOS for 

the spin-up and spin down of IrMnAl are nearly identical with small polarization 

compared to the GGA. In this compound, figure 4.8, the DOS of Mn(Ir) d and Mn(Ir) 
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p states  have nearly the same peaks. This means that there is a significant 

hybridization between d and p states. Furthermore  at the vicinity of the Fermi level 

the characteristic feature of the electronic structure of IrMnAl alloy is the strong 

hybridization of Mn 3d and Ir 5d states, the latter being more delocalized due to the 

hybridization, the nonmagnetic Ir atom in IrMnAl becomes magnetic (see table 4.8). 

Table 4.8. Calculated magnetic moments in μB for the IrMnZ compounds. 

 IrMnAl IrMnSn IrMnSb 

Ir 0.015a --- --- 

Mn 0.4b 2.25 b --- 

Z --- --- --- 

Expt. 

Tot. 0.123a --- 3.1 

Ir 0.04 0.008 -0.139 

Mn 0.529 3.527 3.337 

Z -0.002 -0.046 -0.076 

GGA 

Tot. 0.558 3.628 3.110 

Ir 0.174 -0.027 -0.162 

Mn 3.901 4.324 4.210 

Z -0.046 -0.028 -0.070 

GGA+U 

Tot. 4.157 4.522 4.046 

Ir -0.002 -0.007 -0.076 

Mn 0.006 3.275 3.161 

Z 0.000 -0.041 -0.051 

LSDA 

Tot. 0.004 3.215 3.010 

Ir 0.170 -0.004 -0.142 

Mn 3.620 4.211 4.020 

Z -0.03 -0.028 -0.070 

LSDA+U 

Tot. 3.889 4.445 3.890 
aRef. [13], bRef. [33],  

As remarked, the density of states indicates that for the LSDA+U (GGA+U) these 

compounds are still gapless, i.e., metallic phase with a finite Fermi level density of 

states. The spin down gap in IrMnSb is shifted to higher energies compared to the 
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standard LSDA (GGA). From the figures 4.6-9, we show also that the d-DOS bonding 

state peak is shifting towards the lower energy side while the antibonding state peak is 

shifting towards the higher energy. 

Table 4.7 shows the calculated values of the density of states at the Fermi level N(EF). 

The results display the same trend, i.e., values of N(EF) for the spin up and down, for 

all the approximations used. For IrMnSn, the value of N(EF) for spin down is larger 

than the one for spin up, while for the other tow compounds the inverse is observed. 

The calculated magnetic moment, independently of the approximation used, is in 

agreement with the commonly accepted picture of the magnetism of the Mn based 

Heusler alloys, we obtain a strong localization of the magnetization on the Mn 

sublattice with a value of the Mn moment near to 4 μB. Table 4.8 summarises the 

calculated magnetic moments for a series IrMnZ a function of the Z constituent, 

where Z=Al, Sn and Sb. The induced moment of the Z element is positive in IrMnAl 

while is negative in IrMnSn and IrMnSb. The induced moments as a function of the Z 

constituent follow closely the behavior of the Mn moment (increase with increasing 

Mn moment). 

We also find that for the IrMnSb compounds the total moment is about 3.11 μB. Here, 

the local moment of Mn is higher than the total moment by at most 0.22 μB. The 

reduction of the total moment is therefore accompanied by negative Ir and Sb spin 

moments, i.e., these atoms couple antiferromagnetically to the Mn moments. The 

magnetic moment of the Z atom can be neglected compared to Mn ones. 

4.6. MAGNETO-OPTICAL PROPERTIES 

      The optical properties in the metallic system are generally due to both interband 

and intraband transitions. In the low-energy regime, the optical transitions can be 

ascribed to both inter band and intraband transitions. However, in the higher energy 

regime, the contributions from the interband dominate. For this reason and to give a 

good accuracy we have calculated both kinds of transitions.   

The real and imaginary parts of the diagonal components of optical conductivity 

tensor, including the intra band contribution, of IrMnZ are presented in Figure 4.10 as 

a function of photon energy, The lower panels of the figure display the GGA+U 

results. From these results we note that, in GGA+U there is a dominant peak at almost 
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the same photon energy between 6 and 6.5eV for both IrMnSn and IrMnSb. This 

pronounced peak appeared in IrMnAl at about 4 eV in GGA or GGA+U. 

Comparatively we note that the σ1xx(ω) is larger than the σ2xx(ω) part in the whole 

energy range. 
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Figure 4.10 Absorptive and dispersive part of the optical conductivity of the diagonal 

component of the IrMnZ compounds 
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Figure 4.11 Off diagonal component of the conductivity tensor for IrMnZ compound 
with and without intraband contribution in GGA and GGA+U.  
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Figure 4.12 Off diagonal component of the conductivity tensor for IrMnZ 
compounds, multiplied by ω with and without intraband contribution in GGA and 
GGA+U.  
 

The dispersive part, σ2xx shows a first pronounced peak at 0.5 eV IrMnAl. The same 

peak can be seen in the IrMnSn and IrMnSb spectra at a slightly higher energy 1.7 

and 1.8 eV respectively. This is the main peak observed in our spectral range. While 

in GGA+U this peak shift to lower energy in IrMnSn. In IrMnSb this peak turned to 

pronounced structure shifted to the higher energies.  In GGA, σ2xx increases above 2 

eV with the appearance of the second pronounced peak at 4 eV, in IrMnAl. This peak 

vanishes in the GGA+U with arising of a pronounced peak at 5.7 eV. 

      The conductivity can be understood from the density of states. As can be seen 

from the figure 4.3-6 of the total density, the density of states of IrMnAl and IrMnSn 

for minority and majority electrons have a large structure above the Fermi energy. 

Thus the transitions into these unoccupied states from occupied states below the 

Fermi energy are responsible for structure of the conductivity at low energy which has 

the same contribution of both spin. While in IrMnSb the majority electron responsible 

to the transition in this region. Furthermore, in IrMnSn and IrMnSb the trend in the 

conductivity is almost the same because it has nearly the same electronic 

configuration. The slightly difference is due to the positions of occupied and 

unoccupied states. Inspection of the corresponding σ1xx and σ2xy curves shows that the 
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spin–orbit coupling influences the Kerr rotation spectrum nearly exclusively via σ2xy. 

While the various curves described above have only a very minor impact of the σ1xx 

spectrum 
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Figure 4.13 Kerr rotation of IrMnZ compounds with and without intraband 
contribution in GGA and GGA+U.  
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Figure 4.14 Kerr rotation of the IrMnZ compounds with and without intraband 

contribution with LSDA and LSDA+U. 
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      The absorptive part of the off-diagonal optical conductivity, ωσ2xy, has a direct 

physical interpretation. It is proportional to the difference in absorption rate of left and 

right circularly polarized light. If we compare ωσ2xy with σ1xx we notice that the 

transition between 2-2.5 eV also appears in the off-diagonal conductivity. In IrMnSn 

and IrMnSb ωσ2xy has a large value at 2.2 eV and 5 eV, as shown in figure 4.12, with 

one shoulder (negative peak) between them at around 4 eV which correlates well with 

the positive peak in the Kerr rotation spectrum. In contrast to this situation, there are 

in general some few weaker features found in the whole spectra of IrMnAl. 

The polar Kerr rotation spectra are calculated for these compounds, and the results are 

shown in figure 4.13. We note that it is assumed that the Kerr rotation angle θK is 

directly proportional to the spin–orbit coupling strength and the magnetization or 

spin-polarization. The largest Kerr rotation is found in IrMnSb and the smallest 

rotation angle is observed for IrMnAl. This later, and as we have seen previously, has 

small magnetic moment this leads to a strong reduction of the Kerr rotation and 

changes in the shape of the spectrum. The magnitude of the Kerr effect is rather small 

using GGA, reaching a minimum rotation of nearly -0.15° at 8 eV. This value is 

increased to 0.55° when we use the GGA+U. For the other compounds the spectra for 

both are very similar, showing a negative Kerr rotation about 0.84° at 1.3 and 0.86 at 

1.5 eV in IrMnSn and IrMnSb respectively but when we use GGA+U the amplitude 

of the Kerr rotation becomes more than twice in IrMnSb than that found in IrMnSn 

and we notice also a significant shift of the peaks in IrMnSn to the higher energies. 

Below 6 eV we have other weaker peaks in the Kerr rotation which can be identified 

as a shoulder in the ellipticity data. There is another weak minimum at 3.8 eV. At 

higher energies the Kerr rotation goes to zero. 

In figures 4.15 and 4.16 it is seen that the calculated ellipticity spectra for IrMnSb and 

IrMnSn are very similarly to each other. It is clearly seen that when the Kerr 

ellipticity crosses the zero line, a peak always appears in the Kerr rotation spectra and 

vice versa due to the Kramers-Kronig relations. 
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Figure 4.15 Kerr ellipticity of the IrMnZ compounds with and without intraband 

contribution in GGA and GGA+U. 
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Figure 4.16 Kerr ellipticity of IrMnZ compounds with and without intraband 

contribution in LSDA and LSDA+U. 
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4.7. CONCLUSION 

      We have calculated the structural, elastic, electronic and magneto-optical 

properties of the half-Heusler compounds IrMnZ (Z = Al, Sn and Sb) by means of the 

full potential linearized augmented plane wave plus local orbitals, FP-LAPW+LO, 

method within the generalized gradient approximation. We have also calculated the 

shear modulus, Young’s moduli, and Poisson’s ratio, for polycrystalline IrMnZ. The 

results show that IrMnAl are metallic and ferromagnetic. They are mechanically 

stable at zero pressure and possess the highest bulk, shear and Young’s modulus, the 

sound velocities and the Debye temperatures are derived for the IrMnZ compounds. 

We have also applied the LSDA+U(GGA+U) functional as adapted to the linearized 

augmented plane wave method. The inclusion of Coulomb interaction in d states 

mainly changes the bottom of the conduction band by upward energy shifting from 

original position due to Hubbard Ud, i.e. shift unoccupied bands up and occupied 

bands down. 

      We also find that in these compounds, the local moment of Mn is higher than the 

total moment. The reduction of the total moment is therefore accompanied by 

negative in Ir or in Z elements or in both, i.e., these atoms couple 

antiferromagnetically to the Mn moments. The hybridization between Ir and Mn is 

considerably larger. 

      The local spin density approximation (LSDA) predict that the IrMnAl have 

negligible magnetic moment. Furthermore, they predict that IrMnSb is a half metallic. 

While the LSDA+U (GGA+U) predict a large magnetic moment comparing to the 

experimental ones. Our results predict that the spin–orbit coupling is significant for 

these compounds, since they destroy the half-metallic band gap. 

      We found the highest Kerr rotation at IrMnSb compound with weak values in 

IrMnAl in all the approximations used. The quite large Kerr rotation near 2.0 eV, in 

IrMnSb compound, would find possible applications of this compound in the infrared 

laser light magneto-optical effect devices. 
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5.1. INTRODUCTION 

      Mn-based Heusler alloys of the formula XMnSb, belong to a class with interesting 

magnetic properties, exhibiting ferromagnetic features like magneto-optical effects and giant 

magneto-resistance. Their electronic structure can range from metallic to half metallic. The 

electronic structure, magnetic and magneto optical properties of various XMnSb compounds 

have been reported [1-3] and showing that many of them can be used in technological 

applications such as magnetic tunnel junctions [4] and also as giant magneto resistance spin 

valves [5]. 

      For XMnSb (X = Pt. Pd, Ni) and especially PdMnSb, there are several works on these 

compounds. Kang et al.[6] have investigated  the electronic structures of the valence band and 

Sb 4d core levels of these Heusler alloys using photoemission spectroscopy (PES) and self-

consistent spin-polarized band structure calculations (LMTO band calculations). Moreover 

the magneto-optical properties have been investigated experimentally and theoretically [7-8]. 

The compact structure of this compound is the full Heusler alloy Pd2MnSb. The magnetic and 

crystallographic structure of this alloy was investigated in detail by Webster and Tebble [9] 

and recently the complex impedance measurements on polycrystalline samples of Pd2MnSb 

were reported as function of temperature and external magnetic field [10]. Furthermore, the 

hyperfine field at the antimony site in Pd2MnSb is one of the largest [11,12] 

5.2. DETAILS OF CALCULATIONS 

      The crystal structure of (half Heusler) PdMnSb alloys is a C1b structure, space group 

3m4F (No. 116). The Pd2MnSb (full Heusler) compound has a cubic L21 structure with the 

space group Fm3m (No. 225). This is a close packed complex face-centred cubic structure. 

 The lack of information on the electronic structure of these compounds has motivated us to 

perform first-principles calculations of the magneto-optical properties by using the full-

potential linearized augmented plane wave plus local orbitals method (FP-LAPW+LO). Wave 

functions, charge density, and potential are expanded in spherical harmonics within non-

overlapping atomic spheres of radius RMT and in plane waves in the remaining space of the 

unit cell (interstitial region). The basis set is split into core and valence parts. Local orbitals 

were used, as implemented in the WIEN2k package, to treat some semi-core states with the 

valence states in a single-energy window. 

      The Kohn-Sham equations were solved within the local-spin-density approximation 

(LSDA) [13], and also within the generalized-gradient approximation (GGA) [14]. The 

relativistic effects were treated within the scalar relativistic approximation but we have 
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checked the influence of spin–orbit coupling. The spin-orbit coupling (SOC) is taken into 

account by using the second-variation method self-consistently [15-17], without including the 

p1/2 local orbital corrections. In our calculations, the magnetization is taken along (001) 

direction for the structures when the SOC is included. For the Brillouin zone (BZ) integration, 

a modified tetrahedron method [18] with 403 special k points in the irreducible wedge (IW) 

(3000 k points in the full BZ) was used in constructing the charge density in each self-

consistency step. We have carefully checked that with these parameters the calculations 

converge. 

      The correlated d-electron states of Pd and Mn are taken into account by using the 

LSDA+U (GGA+U) methods with self-interaction correction method (SIC) to account the 

double-counting corrections. The meaning of the U parameter was discussed by Anisimov 

and Gunnarsson [19]. In this work we take, the polar Kerr effect which is given by the well-

known formula for the complex Kerr angle (see chapter 1) 

The calculation of the optical and magneto-optical properties has been performed using 8000 

k-points with 20×20×20 k mesh. In order to consider the effect of finite lifetimes, as well as 

of the experimental resolution, a Lorentzian broadening equal to δL= 0.7 eV was applied for 

both the interband and intraband contributions and Drude broadening equal to δD= 0.1 eV in 

the intraband contributions. We have used also Lorentzian broadening equal to δL= 0.1 eV in 

some cases to distinguished between the spin up and spin down contributions. 
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5.3. STRUCTURAL PROPERTIES 

      The optimized lattice constant a (Å), the bulk modulus B (GPa) and the corresponding 

experimental data are listed in Table 5.1 using the different approximations. The calculated 

values of U for Pd and Mn atoms are displayed in table 5.2. The results show that the GGA 

gives closed parameters compared to experiment and the LSDA+U provides a better estimate 

of the lattice constants than the LSDA. Furthermore, the lattice constant is severely over 

estimated by GGA+U. The value of bulk modulus is inversely proportional to the lattice 

parameter one (volume effect) and there are no experimental data to compare our predicted 

results with them. But, one can conclude that the GGA describes more accurately the 

structural properties than the other approximations as far as the lattice parameter is concerned. 

The calculated values of U are obtained using the method of Anisimov, but there are other 

methods to estimate the value of U. These facts stimulated us to take into account the 

correlation effects of the d electrons for different values of U. The results used for U varying 

from 1 to 6 eV, the latter value is probably an upper limit for Mn in an intermetallic 

compounds, are reported in table 5.3. It appears from the comparison of the calculated results 

with the experimental ones that the GGA+U (U=1) gives better results and the LSDA+U with 

U=6 but with a lesser extent. 

Table 5.1 Calculated and experimental lattice constants and bulk modulus of PdMnSb and 

Pd2MnSb compounds. 

LSDA LSDA+Ucal. GGA GGA+Ucal.  

a(A°) B(GPa) a(A°) B(GPa) a(A°) B(GPa) a(A°) B(GPa) 

aExp. 

PdMnSb 6,06 129.29 6.165 114.26 6.247 93.78 6.35 89.16 6.28 

Pd2MnSb 6.304 166.7 6.373 149.22 6.465 136.43 6.532 123.65 6.42 

 

Table 5.2 Calculated U parameters for the PdMnSb and Pd2MnSb compounds. 

LSDA GGA  

U(Pd) U(Mn) U(Pd) U(Mn) 

PdMnSb 0.3 3.8 0.4 3.5 

Pd2MnSb 0.3 3.8 0.39 3.53 
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Table 5.3 Dependence of the lattice parameter on the U parameter for the for the PdMnSb 

and Pd2MnSb compounds. 

 U=1 U=2 U=3 U=4 U=5 U=6 

PdMnSb 6.270 6.299 6.334 6.355 6.37 6.38 GGA 

Pd2MnSb 6.482 6.504 6.522 6.54 6.55 6.563 

PdMnSb 6.08 6.119 6.146 6.168 6.186 6.2 LSDA 

Pd2MnSb 6.321 6.34 6.357 6.364 6.373 6.38 

 

5.4. ELECTRONIC PROPERTIES 

      In this section, we present our calculated band structure for PdMnSb and Pd2MnSb 

compounds using different approximations and taking into account the spin-orbit interaction. 

We also present our studies of the electronic structure for different values of U, due to its 

effects on the magnetic and magneto-optical properties. Furthermore, our discussion will be 

focussed on the LSDA results, but for comparison we present our GGA ones. 

      The band structures for spin up and down electrons at the high symmetry points as well as 

in the lines joining them in the Brillouin zone are shown in figures 5.1a and 5.1b for  PdMnSb 

and Pd2MnSb using the LSDA and LSDA+Ucal.. The LSDA spin polarized calculations 

predict that PdMnSb is half metallic and Pd2MnSb is metallic, while the LSDA+Ucal destroys 

the half metallicity for the first compound and gives the same nature as the LSDA for the 

second one.  

      The band structure calculation using the LSDA are very similar to those obtained using 

GGA, except around the Fermi level for the spin down electrons where smaller changes 

appear (see figure 5.2).  

      The band structure with spin-orbit coupling (SO) demonstrates that SO effect is 

significant for this compound, whereas the introduction of this effect split the bands and 

destroys the half-metallic band gap because the spin-orbit coupling introduce states in the 

half-metallic gap of the minority states (spin-down direction). 

      We find it very convenient for the comparison to present our results in the same figure. 

Figure 5.2 displays the spin polarized density of states (DOS) of the PdMnSb and Pd2MnSb 

compounds using different approximations, i.e., LSDA, GGA, LSDA+Ucal and GGA+Ucal. 

The difference between these results is a clear manifestation of the differences in the band 

structures using the different approximations. 
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Figure 5.1a Band structure of PdMnSb along the high cubic symmetry lines in Brillouin zone 

using the LSDA and the LSDA+U. 
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Figure 5.1b Band structure of Pd2MnSb along the high cubic symmetry lines in Brillouin 

zone using the using the LSDA and the LSDA+U. 
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For PdMnSb (with LSDA), the Fermi level is very close to the edge of the gap (thus it is a 

half metal), in contrast to the LSDA+U where it is below the gap. The majority spin density 

of states has a metallic character, and the number of electronic states at the Fermi level is 0.68 

sates/eV/cell. The minority spin present occupied and unoccupied states obviously separated 

by a gap.  

The value of the gap in the minority band of PdMnSb is approximately 0.45 and 0.13 eV, for 

LSDA and LSDA+U, respectively, which is an indirect gap, with the maximum of  the 

valence at the Γ points and the minimum of the conduction band at the X-point. 

      Figure 5.3, gives the projected density of states of the atoms. In the majority (spin ↑) band 

the Mn d states are shifted to lower energies and form a common d band with the Pd d states, 

while in the minority band (spin ↓) the Mn states are shifted to higher energies and are 

unoccupied, so that the band gap at EF is formed separating the occupied d bonding from the 

unoccupied d-type antibonding states. 

     The projected densities of states (PDOS) shows that the Sb atom with the sp atomic 

configuration introduces a deep lying s band located at about -12 eV and the p-bands between 

0-2 eV below the Fermi level.  

The bonding hybrids are mostly a mixture of Pd and Mn character, while the antibounding 

empty ones have mostly Mn character with a small mixture of Pd states. In the LSDA+U the 

DOS peaks in the neighbourhood of EF due the Mn atom in the majority spin, observed in the 

LSDA, are shifted to lower energies, resulting in the suppression of these peaks in the total 

DOS (see figure 5.2) while in the minority spin the structures located above the Fermi level 

are shifted to higher energies. Furthermore, in this case the bonding hybrids are mostly of Pd 

character with a small Mn mixture but for the antibonding states we have the same behaviour, 

i.e., the dominance of the Mn d states. 
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Figure 5.2 The total density of states DOS with LSDA (LSDA+U) and GGA (GGA+U) of 

the PdMnSb compound. 

-3

-2

-1

0

1

2

3

D
O

S
 (

st
at

es
/e

V
/a

to
m

)

Tot. Pd
Tot. Mn
Tot. Sb

-10 -8 -6 -4 -2 0 2 4

Energy (eV)

-4

-3

-2

-1

0

1

2

3

4

PdMnSbLSDA

LSDA+U
cal.

-4

-3

-2

-1

0

1

2

3

4

D
O

S 
(s

ta
te

s/
eV

/a
to

m
)

-12 -10 -8 -6 -4 -2 0 2 4

Energy (eV)

-4

-3

-2

-1

0

1

2

3

Pd
2
MnSbLSDA

LSDA+U
cal.

 
Figure 5.3 The total density of states (DOS) per atom of Pd, Mn and Sb species with LSDA 

and LSDA+Ucal. 
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      As it is seen from the figure 5.4 the density of states depends strongly on the U used. The 

inclusion of Coulomb interaction in d states mainly changes the top of the valance density by 

shifting the peaks to lower energies from original position and the bottom of the conduction 

band by upward energy shifting from original position. We note that this effect is very strong 

in PdMnSb than Pd2MnSb compounds. 
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Figure 5.4a Dependence of the total density of states (DOS) on the value of U for PdMnSb. 
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Figure 5.4b Dependence of the total density of states (DOS) on the value of U for Pd2MnSb. 
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      In agreement with the commonly accepted picture of the magnetism of the Mn based 

Heusler alloys, we obtain a strong localization of the magnetization on the Mn sublattice with 

a value of the Mn moment around 4μB. We find that the spin contribution of the Mn atom to 

the total magnetic moment is large. Table 5.4 summarises the calculated magnetic moments 

for the different approximations LSDA, GGA, LSDA+U and GGA+U for U calculated and 

when this parameter extends from 1 to 6 eV. The total magnetic moment per unit cell is 

located mostly at the Mn atom. The local moment of Mn is higher than the total moment by at 

most 0.01-0.05 μB. In contrast with IrMnZ compounds, see chapter 4, where the difference 

goes to more than 0.22 μB. The reduction of the total moment is therefore accompanied by 

negative Sb spin moments. This is induced by the hybridization of Sb-p states with Mn-3d 

states. Furthermore, the magnetic moment in Mn in Pd2MnSb compound is lower than the 

total magnetic moment. 

Table 5.4 Dependence of the magnetic moment on the U parameter for the PdMnSb and 

Pd2MnSb compounds. The values between brackets represent the magnetic moment in Mn 

atom. 

 SA Ucal. U=1 U=2 U=3 U=4 U=5 U=6 Exp 

PdMnSb 4.086 

(4.02) 

4.637 

(4.68) 

4.202 

(4.21) 

4.358 

(4.40) 

4.461 

(4.51) 

4.517 

(4.60) 

4.632 

(4.68) 

4.66 

(4.72) 

4.0a 

(3.95)b 

 

 

GGA Pd2MnSb 4.316 

(3.99) 

4.664 

(4.43) 

4.442 

(4.25) 

4.544 

(4.39) 

4.617 

(4.34) 

4.722 

(4.60) 

4.767 

(4.66) 

4.784 

(4.60) 

4.4c 

(4.2)c 

PdMnSb 4.01 

(3.78) 

4.456 

(4.46) 

4.09 

(3.99) 

4.253 

(4.18) 

4.360 

(4.33) 

4.461 

(4.44) 

4.545 

(4.52) 

4.63 

(4.64) 

  

 

LSDA 
Pd2MnSb 4.178 

(3.79) 

4.616 

(4.35) 

4.333 

(4.00) 

4.462 

(4.16) 

4.563 

(4.29) 

4.644 

(4.39) 

4.682 

(4.46) 

4.752 

(4.62) 

 

a Ref. [20];  b Ref. [21], c Ref. [22] 

 SA: standard approximation  

 

5.5. OPTICAL AND MAGNETO-OPTECAL PROPERTIES 

      In this section we present first our calculated results for the optical and magneto optical 

properties for the half Heusler alloys PdMnSb for which the experimental data are available 

and reported in Ref. [23] and discuss them, then the predicted results for Pd2MnSb will be 

given. 
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      The calculated imaginary part of the dielectric function which represents a way to assess 

how energy is taken when an electromagnetic wave interacts with a material medium, is 

shown in figure 5.5 using different approximations, together with the measured spectrum for 

PdMnSb. The calculated spectra are the sum of the both intra and inter contributions. In the 

Drude term, the phenomenological life time, δ, is 0.1 eV. First, the agreement between the 

two computational approaches is rather good. Second, the LSDA+Ucal gives better agreement 

with experimental, i.e., the experimental trend is reasonably reproduced. 

      In order to give a complete description of the origin of the different peaks and structures 

in the spectra, first we decompose ε2 into spin up and spin down, with and without intraband  
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Figure 5.5 Calculated and experimental [23] imaginary part of the dielectric function of the 

PdMnSb compound. The Lorentzian broadening is equal to δL= 0.1 eV. 

transitions, in doing so we neglect the spin orbit interaction and the results are given in figure 

5.6. Secondly, we perform the decomposition of ε2 into individual pair contribution in figure 

5.7. The band structure for PdMnSb is displayed in figure 5.8. 

      From the interband curve of ε2 (figure 5.6), it is clear that for 0< ωη <1.1 eV the spectrum 

closely resembles the contribution from the metallic channel and the peak at 0.4 eV is 

produced by the spin up transition. At higher energies the spectra follow the semiconducting 

channel. Furthermore, when the intraband contribution is added, it dominates the lower 

energy behaviour of the ε2, but the same trend is conserved at higher energies. After the 

regular decrease due to the intra contribution, three prominent peaks follow at 1, 3.4 and 4.8 
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eV with minimum in between. The first peak is due to transitions 2-3 and 2-4 from spin down 

bands, the second is caused by the transition 1-6 with a contribution of the 4-5 one from the 

spin up and the third one results from transition from the band 2 to the band 8 of the spin 

down. In the LSDA+Ucal, the first minimum in the calculated spectra is located around 2 eV. 

The minimum in measured spectra is at lower energy, is due mainly to transition in the spin 

down channel and the main peak at 3.4 is caused by transition in the spin up channel. 

We have also studied the influence of U on ε2 for U varying from 1 to 6 eV and the results are 

given in figures 5.9. We note that the results for U= 3 are close to the experiment data. 

Bearing in mind that this values is close to the one calculated. The real part of dielectric 

function ε1 is obtained from imaginary part by the Kramer-Kronig relation and is shown in 

figures 5.10. 
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Figure 5.6 Spin decomposition of the imaginary part of the dielectric tensor of PdMnSb 

compound. The total dependence is shown by the solid line, spin-majority contribution by the 

dotted line (red color), and spin-minority contribution by the dashed line (bleu colour). 
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Figure 5.7 The decomposition of the imaginary part of the dielectric function of PdMnSb 

compound with LSDA and LSDA+U. 
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Figure 5.8 the band which contributed to the interband transition of PdMnSb compound with 

LSDA and LSDA+U. 
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Figure 5.9 Comparison between the experimental [23] and the calculated imaginary part of  
The dielectric function for different values of U for PdMnSb. The Lorentzian                   
broadening is equal to δL= 0.1 eV. 
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Figure 5.10 Calculated and experimental [23] real part of the dielectric tensor of PdMnSb 

compound. The Lorentzian broadening equal to δL= 0.1 eV. 
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      After having shown the optical spectra, we turn to the magneto-optical spectra. According 

to the relation giving the Kerr rotation, this later can be enhanced by larger off-diagonal 

conductivity and a smaller diagonal part. In order to give more detailed insight into the origin 

of the features in MO spectra in terms of electronic structure, the complex diagonal optical 

conductivity σxx without the spin orbit coupling for both contributions intra and inter are 

shown in figures 5.11 and 5.12. 
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Figure 5.11 Spin decomposition of the diagonal optical conductivity σ1xx(ω) of PdMnSb. The 

total dependence is shown by the solid line, spin-majority contribution by the dotted line (red 

colour), and spin-minority contribution by the dashed line (blue colour) with LSDA and 

LSDA+U. The Lorentzian broadening equal to δL= 0.1 eV 

 

      It is clear that the intra contribution is significant at lower energies, while at higher 

energies the conductivity is due mainly to the inter transition of the minority spin channel. 

      To understand the effect of interband transition on the magneto-optic properties, 

experimentalist often display ωσxy instead of σxy . So, we present ωσxy spectra in figure 5.13, 

the life time used for these spectra is 0.7 eV. In the LSDA+U the spectrum is shifted to higher 

energies, while conserving the same shape as the one obtained using the LSDA. The Imωσxy 

spectra compares very well with that obtained by Antonov et al. [3]. 
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Figure 5.12 Spin decomposition of the diagonal optical conductivity σ2xx(ω) of PdMnSb. The 

total dependence is shown by the solid line, spin-majority contribution by the dotted line (red 

colour), and spin-minority contribution by the dashed line (blue colour) with LSDA and 

LSDA+U. The Lorentzian broadening equal to δL= 0.1eV. 
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Figure 5.13 Diagonal and off diagonal optical conductivity σ(ω) of PdMnSb. The Lorentzian 

broadening is equal to δL= 0.7 eV. 
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      The imaginary part of the conductivity, Im[ωσxy], has a direct physical interpretation. It is 

proportional to the difference of absorption rate of left and right circularly polarization light 

[24] and its zeros correspond to the equality of the absorption coefficient for right and left 

circularly polarization light. 
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Figure 5.14 The calculated LSDA and GGA and experimental [8] Kerr rotation and 

ellipticity. The Lorentzian broadening equal to δL= 0.7 eV  
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Figure 5.15 The calculated LSDA+U and GGA+U and experimental [8] Kerr rotation and 

ellipticity. The Lorentzian broadening equal to δL= 0.7 eV. 
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     The polar Kerr rotation and Kerr ellipticity for PdMnSb are shown in figure 5.14 and 5.15 

for different approximations and with Lorientzan broadening equals to 0.7 eV, which is nearly 

equal to the one used by Kübler in Ref [1]. The experimental spectrum [8] is also included in 

this figure. It is clear that there is an excellent agreement between the calculated (with LSDA) 

and the measured spectra; the only difference is being larger amplitude of the calculated Kerr 

angle. This is a common phenomena and can be ascribed to a sample surface that is not ideal, 

i.e., it my have dislocations, an oxide overlayer, or distortions due to surface treatment. 

Furthermore, our calculation reproduces the first peak position better than that reproduced by 

Antonov et al.[3], they used the LMTO method. 

      In order to get insight into the origin of the peaks in the Kerr rotation spectra, we compare 

them with the curve of diagonal and off diagonal part of the optical conductivity. The Kerr 

rotation displays the same slope as Im[ωσxy] being enhanced at 1-2 eV by the contribution 

from the denominator. Inspection of σ1xx and σ2xx curves shows that the spin orbit coupling 

and the spin polarization influnces the first rotation peak. While the others peaks are caused 

by Im[ωσxy]. The Kerr ellipticity spectra are well reproduced by our calculations. Moreover, 

it is clearly seen that when the Kerr ellipticity cross the zero line, a peak always appears in the 

Kerr rotation spectra and vice versa due to the Kramer-Kronig relation. 

     When we use the LSDA+U (GGA+U) and exactly when U ranges from 1-3 there is no 

essential change in the shape of Kerr spectra with only the shift of the peaks to the higher 

energies as seen in figure 5.16.  

Finaly we present our predicted MO results for the full Heusler alloys Pd2MnSb and compare 

them to those of PdMnSb in figure 5.17. It is obvious that there exists four main peaks in the 

Kerr rotation spectra in Pd2MnSb in the energy range 0-10eV, the same number as in 

PdMnSb. The overall shape of the Kerr rotation and ellipticity spectra is similar in both 

compounds. But at low energy, they have different signees. From the comparison of the 

spectra of PdMnSb with experiment, Pd2MnSb, shows week Kerr rotation.  
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Figure 5.16 The calculated (LSDA+U) and (GGA+U) and experimental Kerr rotation and 

ellipticity with U ranged from 1 to 6 eV. 
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Figure 5.17 Comparison of the calculated LSDA (LSDA+U) Kerr rotation and ellipticity of 

PdMnSb and Pd2MnSb compound. 

 

CONCLUSION  

      We have investigated the electronic, optical and magneto-optical properties of the Heusler 

compounds PbMnSb, and Pb2MnSb using the FP-LAPW method within LSDA (GGA) and 

with the on-site Coulomb correction LSDA+U (GGA+U).  

Our LSDA calculations reveal a gap in the EF, predicting half metallic nature. On the other 

hand, the LSDA+U results move the d states away from the Fermi level but the shift of the 

unoccupied states make this compound metallic in both spin (up and down).  

We show that the LSDA+U can produce accurate optical properties; the calculated optical 

spectra using LSDA and LSDA+U are give good results as compared with the experimental 

data. Our calculations suggest that the magneto-optical are reproduce very well the 

experimental one  when broadening is taken as 0.7 eV, i.e., with a larger impact of the finite 

lifetime effects. 

The magnetic moments calculated by LSDA+U (GGA+U) for the present compounds are 

found to be very large. Moreover, there is a very good agreement of our GGA values with the 

experimental values for the magnetic moment. Furthermore, we found that the main 

contribution to the magnetic moments comes from Mn atom. 
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We have observed that LSDA gives an overall improvement of Kerr spectra with experiments 

whereas with LSDA+U the agreement is relatively poor. In another hand, a small difference 

in Kerr spectra appeared when we calculated it with and without inclusion of the Drude 

(intraband) contribution. 
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6.1. INTRODUCTION  

      During the last decade a considerable number of experimental and theoretical studies have 

been reported on the Transition-metal dichalcogenides with pyrite [1-5], marcasite [6-8] and 

loellingite[9] structures which have attracted considerable attention due to their electrical, 

magnetic, and optical properties and they have shown to have applications in many 

technologically important areas, such as photovoltaic solar cells[10,11] and as substrate for 

semiconductor growth[12]. The three dimensional pyrite structures can be transformed to the 

layer structure in a strong crystal field; in the transition metal diselenides and disulphide or 

transition metal diphosphided the d8 cations such as Pd which preferentially adopt a square-planar 

coordination can be regarded as stacking of two-dimensional sandwiches. These crystal structures 

were confirmed by many researchers [13,14]. Bither et al. have described the preparation and 

studied the electrical and optical properties of new PdPyS2-y (0<y<2) compounds between the 

known end members PdP2 and PdS2 [15]. Burdett et al. have investigated the relationships 

between electronic and geometrical structure for the series Pd(XY), where XY=P2, PS and S2 by 

using molecular orbital calculations and tight-binding computations based on the extended 

Hückel method[16]. 

6.2. CRYSTAL STRUCTURE AND CALCULATIONS DETAILS 

      Figure 6.1 shows the unit cells of the compounds PdP2 and PdSe2. The crystal structure of 

Palladium diphosphide, PdP2, is a monoclinic body-centered with the space group I2/a. The 4 Pd 

atoms positions are ±(1/4, 3/4, 1/4) and the 8 P atoms occupy the positions ±(xyz)(x,−y, 1/2 + z) 

with x = 0.1886, y = 0.1237, z = 0.3537 [14]. The P atoms form continuous zig-zag chains along 

one of the axis; each palladium atom is bonded to four phosphorus atoms and each phosphorus 

atom to two palladium atoms and to two phosphorus atoms. In the present calculations, we have 

used the space group B2/b instead of I2/a, the later basis vectors (a′, b′, c′) can be obtained from 

the former ones (a, b, c) by the transformation (a′, b′, c′) = P(a, b, c) with P is a rotation matrix 

given by : 



  Chapter 06                                                    RESULTS AND DISCUSSION:                                   

PSEUDO-BINARY COMPOUNDS PdX2 (X=P, S AND Se) 

 

 89

  
 

The PdS2 and PdSe2 compounds crystallize in an orthorhombic structure with space group Pbca− 

D15
2h, the unit cell contains four palladium atoms and eight selenium (sulphur) atoms. The 

Wyckoff positions of Pd are (a): (0, 0, 0); (1/2, 1/2, 0); (0, 1/2, 1/2); (1/2, 0, 1/2) and the Se and S 

ones are (c): ±[(x, y, z); (1/2+x, 1/2−y,−z); (−x, 1/2+y, 1/2−z); (1/2−x,−y, 1/2+z)], where x, y and 

z are the internal free coordinates; x = 0.112(0.107) y = 0.117(0.112) and z = 0.407(0.425) for 

Se(S) [13]. This structure is considered as a deformed pyrite-like type. The nearly regular 

octahedral arrangement around the metal atom, characteristic of the pyrite-type structure, is 

transformed into a square arrangement as two of the six metalloid atoms have moved away. At 

the same time, the configuration around the metalloid atom has lost its regular tetrahedral 

character. 

 
Figure 6.1 crystal structure PdP2 and PdSe2 compounds 

The present calculations are performed using the all-electron full potential linear augmented 

plane wave plus local orbitals (FP-LAPW+LO) method [17] as implemented in WIEN2K code 

[18] within the local density approximation (LDA) [19,20]. This method described previously in 

chapter 4. In this work we treat the core electrons fully relativistically, and the valence electrons 
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semi relativistically (all relativistic effect are taken into account except the spin-orbit coupling). 

The MT sphere radii are chosen to be 1.9, 1.5 1.9 and 2.0 Bohr for S, P, Se and Pd respectively. 

The basis functions are expanded up to RmtKmax=8, (where Rmt is the smallest of the MT sphere 

radii and Kmax is the largest reciprocal lattice vector used in the plane wave expansion) and up to 

Lmax =10 in the expansion of non spherical charge and potential. We were used the Perdew and 

Wang [21] functional for the exchange and correlation potential. For the Brillouin zone 

integration we have used 6 × 5 × 6 k points mesh for PdP2 and 11 × 10 × 8 k points mesh for 

PdSe2(S) in all the calculation. The self consistent calculations are considered to be convergent 

when the total energy is stable within 0.1 mRy and the forces are less than 1mRy/Bohr 

6.3. STRUCTURAL PROPERTIES 

      To investigate the electronic properties of PdX2 compounds, one has to determine accurately 

the ground state parameters. In this context, we have used the total energy approach to determine 

the positions of the atoms and the lattice parameters.  
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Figure 6.2 Total energy vs the variation of the unit cell volume of PdX2 (P, S and Se) 

compounds. 

 

The experimental lattice constants and positions are used as the starting point to perform the 

structural calculations. For PdP2 compound and due to its complex monoclinic structure, the unit 

cell relaxed, according to the Newton’s laws, by varying the a, b and c lattice parameters and the 
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angle beta simultaneously at a series of fixed volumes and the total energies were calculated for 

each volume and the optimized structural parameters corresponding to the lowest energy. While 

for the orthorhombic lattice parameters of PdS2 and PdSe2, we performed the structural 

optimization by calculating the total energies for different c/a and b/a ratio around the 

equilibrium cell. We have fixed these two equilibrium parameters by calculating the equilibrium 

volume using Murnaghan’s equation of state as shown in figure 6.2. The positions of the atoms in 

the relaxed compounds are determined by minimizing the total energy and the forces acting on 

every atom of the system using the Hellman-Feynman theorem. The forces on the atoms are 

geometrically relaxed by allowing them to move according to Newton’s laws in the presence of 

fictitious damping force. The system evolves until equilibrium geometry is obtained. In table 6.1 

 

Table 6.1 Calculated equilibrium lattice constants (a, b and c), bulk moduli (B) and the engle β 

for the PdP2, PdS2 and PdSe2 compounds and the available experimental data              

 
the calculated values of the lattice constants a, b, c are compared with the experimental results, 

this table displays also the obtained values of the bulk modulus (B). The deviations of the 

absolute values of the lattice parameters are smaller than 4.5% for all parameters. The bulk 

modulus decreases in going from P to Se compounds, this is a normal behavior related to the 

increase in the equilibrium volume V0. Since there are no reported experimental data for the bulk 

modulus, our results represent a prediction. One point needs to be added is that the obtained 
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results of the atom positions show no significant change between the calculated values and the 

experimental ones as shown in table 6.2. The optimized inter atomic positions are displayed in 

table 6.3 together with the experimental ones. 

Table 6.2 Positional parameters of PdP2, PdS2 and PdSe2 compounds and available experimental 

data.  

 
 
Table 6.3 Shortest interatomic distances (Å) for the PdP2, PdS2 and PdSe2 compounds and the 
available experimental data. 
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6.4. ELECTRONIC STRUCTURE 

      Figure 6.3 shows the calculated band structures at equilibrium volume and for the optimized 

atomic positions for the PdX2 (X=P, S and Se) compounds along the high symmetry lines in the 

corresponding Brillouin zone. It is clear from this figure that in the PdP2 compound, there is no  
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Figure 6.3 Band structure of PbX2 compounds along high symmetry directions in the Brillouin 
Zone. The Fermi energy is at zero. 
 
gap which separates the valence and the conduction states, i.e., the conduction band drops 

towards the Fermi level (EF) which suggests that this system is a metal in contrast with the 
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experimental results [22-24] which were derived from resistivity measurements; 0.6-0.7 eV [23]. 

This discrepancy between the experimental and the theoretical data is due, as it is well known, to 

the approximation used (LDA) which underestimates the band gaps. Our calculations show that 

PdS2 and PdSe2 have similar band structures. In PdS2 the conduction band drops towards the 

valence one but no band crossing the Fermi level; which makes the pseudo-gap exactly at the 

Fermi level, while, in PdSe2 we observe an important feature which is the existence of a band that 

lies just above the Fermi level in the directions Z-Γ and Γ-X, which can be attributed to the fact 

that when we move from S to Se there is a significant increase in the valence band towards EF. 

The experimental values of the gaps for PdS2 and PdSe2 which where also obtained from 

resistivity measurements are 0.7-0.8 eV and 0.4 eV [24], respectively. However, the smaller 

experimental value of the gap for PdSe2 is translated by the occurrence of the overlap between 

the conduction and the valence bands in the calculated band structure for this compound 

compared to PdS2. For this reason we have used the LDA+U, with U ranging from 1 to 3 eV, 

which predicts that PdS2 is a semiconductor as shown in figure 6.4, with a gap value of 0.14 eV, 

while PdP2 and PdSe2 stay metallic.  
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Figure 6.4 Band structure of the PbS2 compound along high symmetry directions in the Brillouin 

zone with the LDA+U. The Fermi energy is set to zero. 
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      The qualitative similarity of the electronic structure of these two compounds is also evident in 

the total density of states (DOS) as shown in figures 6.5, where the vertical dashed line represents 

the Fermi level. The whole shapes of the DOS are nearly identical, with some smaller 

differences. Te Fermi levels are located in the pseudo-gap region with a clear separation of 

bonding and antibonding states. For PdSe2 and PdS2 the density of state DOS, i.e., the bands, can 

be divided into four main energy regions. In order to understand the above-mentioned results, 

figure 6.6 displays the calculated partial density of states. We note that the lowest part which lies 

between 11−12.5 eV below EF comprises the Se-s states, while the second group extending from 

7 eV below EF up to EF, which contains a  
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Figure 6.4 Total densities of states (DOS) of PdX2 (X=P,S and Se) compounds. 

 

sharp pick at about 3 eV, is arising from the Pd-d and Se(S)-p states, where the Pd-d states 

contribution dominates and these states are shifted up in energy in PdSe2 compared with the ones 

in PdS2. These states represent the initial states for the optical transitions. The third region 

extending from EF to 5 eV above EF has significant contribution from Pd-d and Se-p states. The 

last group, at about 3.5 − 10 eV above EF, has contributions from Se(S)-s, and Se(S)-p states 

where the latter has the major component. The DOS of PdP2 shows less structure and the low 

lying P-s and Pd-s states are delocalized and show strong dispersion, spreading from -14 to -6 eV,  
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Figure. 6.5 Partial densities of states (DOS) of PdX2 (X=P,S and Se) compounds 
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while in the other two compounds these bands are narrow and flat, reflected in the pronounced 

peaks. The calculated density of states for the studied compounds shows that the absorption starts 

with a modest intensity in the infrared region (IR) then it gets stronger at higher energies. 

Furthermore, the calculated density of the states at the bottom of the conduction bands and the 

top of the valence ones for PdS2 might causes only a weak absorption in the IR region compared 

to PdP2. 

CONCLUSION 

      In conclusion, we have carried out first principles calculations to investigate the structural and 

electronic properties of PdX2 (X=P, S and Se), using the FP_LAPW+LO method. The structural 

properties are determined through total energy and interatomic forces minimization. The 

calculated lattice constants agree well with the experimental ones. Our results show that the 

studied compounds exhibit a metallic character with LDA. In another hand the LDA+U predict 

that PdS2 is a semiconductor with narrow gap while PdP2 and PdSe2 have metallic character. The 

calculated density of states suggests that the absorption increases rapidly in the IR regions for 

PdP2. 
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7.1. INTRODUCTION 

      As we have mentioned in the previous chapter, transition-metal chalcogenides, in terms of 

composition, provide a wide variety of compounds which crystallize in the pyrite structure [1], in 

ternary ordered versions (cobaltite, ullmannite) [2], and in the marcasite and distorted marcasite 

(arsenopyrite) one [3]. Moreover, the ternary pnictide chalcogenides MZX of the d8 transition 

metals compounds with the ullmannite structure such as the palladium phosphide sulfide PdPS 

and the palladium phosphide selenide PdPSe which also belong to the class of layered inorganic 

materials and were firstly synthesized by Bither et al. [4], are less investigated compared to the 

transition-metal dichalcogenides. The crystal structure of these materials is closely related to the 

pseudobinary compounds PdS2 and PdSe2 [5,6]. Marzik et al. [7] have prepared and studied the 

electrical and optical properties of PdPSe single crystals. They have shown that this compound 

has quantum efficiency below 800 nm and an indirect optical gap of 1.29 eV. Burdett and 

Coddens [5] have used molecular orbital and tightbinding computations based on the extended 

Hückel method to investigate the relationship between the electronic and the geometrical 

structure for the series PdP2, PdPS and PdS2. Despite of few significant experimental 

achievements, our knowledge on their electronic and optical properties which will be of primary 

importance for their use in technological applications is still rather limited. Thus, further 

theoretical investigations of these properties are needed. 

7.2. CRYSTAL STRUCTURE AND CALCULATION DETAILS 

      The palladium phosphide sulfide PdPS and the palladium phosphide selenide PdPSe 

compounds belong to the group of layered pnictide chalcogenides transition metal. They 

crystallize in an orthorhombic structure, space group Pbcn (D14
 2h) [8], the crystallographic 

structure is shown in figure 7.1. The lattice parameters a, b and c (shown as x, y and z in figure 

7.1) correspond to Γ− X, Γ− Y and Γ− Z directions in the first Brillouin zone (BZ), respectively. 

In these structures the three-dimensional pyrite structure transforms to the slab one. These 

square-planar coordinations can be thought to evolve from an octahedral coordination by strongly 

elongating the octahedron of nearest anion neighbours along one diagonal. The palladium Pd 

elements in square-planar coordination with two Se and two P atoms. Pd atom above and below 

the coordination plane extend the coordination geometry to an extremely elongated octahedron. 
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Phosphorous is tetrahedrally coordinated to two Pd, one Se, and one P atom. Selenium is 

tetrahedrally coordinated to two Pd and one P and a lone pair of electrons as fourth ligand [8]. 

 

 
Figure 7.1 Optimized orthorhombic crystal structure of PdPSe 

      The present calculations are performed using the all-electron full potential linear augmented 

plane wave plus local orbitals (FP-LAPW+lo) method [9] as implemented in WIEN2K code [10] 

within the local density approximation (LDA) [11,12]. The MT sphere radii are chosen to be 1.9, 

1.9, 2 and 2.2 Bohr for P, S, Se and Pd respectively. The basis functions are expanded up to 

RmtKmax=8, (where Rmt is the smallest of the MT sphere radii and Kmax is the largest reciprocal 

lattice vector used in the plane wave expansion) and up to Lmax = 10 in the expansion of non 

spherical charge and potential. In order to keep the same degree of convergence for all lattice 

constants studied, we kept the values of the sphere radius and Kmax constants over all the range 

of lattice spacing considered. We used the Perdew and Wang functional [13] for the exchange 

and correlation potential. For the Brillouin zone integration and after performing convergence 

tests, we used 5×13×13 k point mesh in all the calculations. The self consistent calculations were 

considered to be convergent when the total energy is stable within 0.1 mRy and the forces are 

less than 1 mRy/bohr.  

The calculated optical spectra depend strongly on the BZ sampling, therefore a sufficiently dense 

k-mesh is used in the calculations of optical spectra, which consists of 8×19×19 k points mesh.  
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7.3. STRUCTURAL PROPERTIES  

      We first analyze the structural properties of PdPX (X=S and Se) compounds. In order to 

determine the ground state parameters in this total energy approach the experimental lattice 

constants and atomic positions are used as starting points. We have performed the structural 

optimization by calculating the total energy for different c/a and b/a ratio around the experimental 

ones. We have fixed the values of these two parameters by calculating the equilibrium volume 

using Murnaghan’s equation of state. The positions of the atoms are determined by minimizing 

the total energy and the forces acting on every atom of the system. The obtained results are 

displayed in table 7.1 together with the experimental ones. The calculated values of the atomic 

positions in the relaxed structures are very close to the measured ones. 

 

Table 7.1 Calculated positional parameters of PdPS and PdPSe compounds compared with the 

available experimental data (1 and 2 correspond to PdPS and PdPSe respectively). 

 Pd(1)    Pd(2) P(1) P(2) S Se 

This work 
x 

Exp1 

0.11300 

0.11372 

0.11045

-- 

0.41818

0.416 

0.42072

-- 

0.34634 

0.34624 

0.34203 

-- 

This work 
y 

Exp1 

0.25085 

0.25292 

0.25848

-- 

0.13030

0.12974

0.12334

-- 

0.36400 

0.36324 

0.36681 

-- 

This work 
z 

Exp1 

0.16024 

0.15907 

0.15606

-- 

0.28145

0.28111

0.28717

-- 

0.04506 

0.04553 

0.04136 

-- 

1 Ref [8] 

      Furthermore, the calculated Pd-Se bond length is 2.443 Å, slightly larger than the Pd-S one 

2.336 Å (Exp.: 2.356 Å [8]) in PdPS which might be attributed to the larger size of the Se atom 

relative to the S one. The Pd-Pd and P-Pd distances in PdPSe are 3.167 Å and 2.292 Å 

respectively, which are also slightly larger than the corresponding ones in PdPS; 3.165 Å and 

2.285 Å (Exp.: 3.198 Å and 2.205 Å respectively [8]). While we found that the P-P bond length is 

2.193 Å and 2.177 Å in PdPS and PdPSe respectively. Table 7.2 shows the calculated values of 

the lattice parameters and the bulk modulus together with the available experimental data. 

Bearing in mind the underestimation of the LDA to the lattice parameter, the agreement between 

the theoretical and the measured values is good. The PdPS bulk modulus value is greater than the 
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corresponding one for PdPSe, this is understood in the context of volume effect due to the 

difference in size of the chalcogenide atoms. 

Table 7.2: calculated equilibrium lattice constants (a,b,c) of PdPS and PdPSe compounds 

compared with  the available experimental data 

PdPS PdPSe  

 Exp1 This work Exp1 This  

a  (A°) 

b  (A°) 

c  (A°) 

V (A°) 

B (GPa) 

13.304 

5.677 

5.693 

429.974 

-- 

13.262 

5.638 

5.661 

423.27 

133.93 

13.569 

5.824 

5.856 

462.775 

-- 

13.459 

5.812 

5.820 

455.261 

122.55 

1 Ref [3] 

7.4. ELECTRONIC STRUCTURE 

      Since the optical properties are closely related to the electronic structure, it is of interest to 

describe it first and then use it in analysing the different optical spectra. The band structure of 

PdPS and PdPSe along the high symmetry lines in the Brillouin zone corresponding to the 

orthorhombic structure is displayed in figure 7.2, while the corresponding total density of states 

(TDOS) and the site and angular momentum decomposed DOS are shown in figure 7.3.  

It is clear from these figures that both compounds are semiconductors and their overall band 

profiles are similar. The conduction bands shift towards the Fermi level when one moves from S 

to Se causing a reduction in the energy gap and leading to an increase in the width of the  

conduction band (see figure 7.3). According to our results there is a small dispersion of the 

energy bands observed parallel and perpendicular to the layers translated by the flat band around 

the top of the valence band but at lower energies some bands have significant.  
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Figure 7.2 band structure of PdPS and PdPSe compounds and the corresponding orthorhombic 

Brillouin zone with the axis X, Y and Z corresponding to the crystal axes x, y and z respectively. 

The Fermi energy is set to zero.  

      The main features of the electronic structure can be followed in figures 7.2 and 7.3. From the 

calculated DOS and starting from lower energies, the first two peaks corresponding to the lower 

two energy band groups have mainly chalcogenes and P-s states origin. However, small 

contribution to these bands from p states of all atoms can be observed. The structure between -7 

eV and Fermi level (EF) characterizes the strong p-d hybridization, while the contribution from 

the s states are also significant in this region and can not be neglected. A closer inspection of the 

partial density of states shows that the upper valence. 
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Figure 7.3a Total density of states (states/eV unit cell) for PdPS and PdPSe 

      The energy band gaps are found to be indirect, i.e., 0.87 eV and 0.66 eV of PdPS and PdPSe, 

respectively. The nature of the gaps is consistent with the experimental one reported in Refs. 

[3,7]. The top of the valence band is situated between Γ and Z points of the Brillouin zone and 

the bottom of the conduction band is located between S and R points for both compounds. It is 

also worth mentioning that the theoretical gaps are smaller than the experimental values 1.38 eV 

[3] and 1.29 eV [7] for PdPS and PdPSe respectively, this discrepancy is attributed to the LDA 

method which always underestimates the band gap. 
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Figure 7.3b Partial density of states (states/eV unit cell) for PdPS and PdPSe compounds 
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Figure 7.4 Imaginary part of the dielectric function ε2(ω)for PdPS and PdPSe compounds  
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Figure 7.5 Real part of the dielectric function ε1 for PdPS and PdPSe compounds 
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7.5. OPTICAL PROPERTIES 

      The compounds with orthorhombic symmetry have three non-zero components of the 

dielectric tensor. These compounds correspond to an electric field perpendicular and parallel to 

the z-axis which are indexed as εxx, εyy and εzz. The calculated imaginary parts for PdPS and 

PdPSe are shown in figure 7.4. These spectra are not broadened. It is clear from this figure that 

there is a considerable anisotropy between the three spectra corresponding to different 

polarisations for each compound. To analyse the calculated optical spectra and determine the 

origins of the 

Table 7.3 Optical transition in the PdPSe compound.       

 
 

different peaks and features, each spectrum is decomposed to its individual pair contribution, i.e.,  

he contribution from each pair of valence vi and cj bands (vi-cj) (see figures 7.6a and 7.6b) and 

plotting the transition band structure, i.e., the transition energy E(k) = Ecj(k) − Evi(k) along the 

high symmetry lines (not shown here). The counting of the bands is from the top (bottom) for the 

valence (conduction) bands. These techniques which have been used to analyse the spectra of the 

binary [25,26], the ternary [27,28] compounds and superlattices [29], allow the knowledge of the  

bands which contribute more to the peaks and their location in the BZ. 
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Table 7.4 Optical transition in the PdPSe compound.       

 
 

The threshold energy occurs at 1.04 eV and 0.71 eV for PdPS and PdPSe and they are due to the 

v1-c1 transition along the (S−R) and (Γ−Y ) directions respectively. For PdPS just above the 

absorption edge the three spectra are practically the same and this shoulder originates mainly 

from the v1-c1,2,3 transitions in the regions (S−R), (Γ−Z) in the BZ. Then xx
2ε  becomes smaller 

than the other two components of the dielectric tensor, i.e., yy
2ε  and zz

2ε . However, for PdPSe 
xx
2ε raises rapidily before becoming also smaller than yy

2ε  and zz
2ε . The strongest absorption peak 

in PdPS is in yy
2ε , yyE1 , which has almost the same height as zzE4 , while in PdPSe is in zz

2ε , zzE2  . 
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Figure 7.6a. Decomposition of xx
2ε , yy

2ε  and zz
2ε  in partial band to band contribution. The upper 

panels show the total imaginary part in the direction x, y and z of PdPSe compound. 
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Figure 7.6b Decomposition of xx
2ε , yy

2ε  and zz
2ε  in partial band to band contribution. The upper 

panels show the total imaginary part in the direction x, y and z of PdPS compound. 
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These peaks can be identified as due to the v6-c7 in the (S−R) and (T −Z) directions in PdPS and 

from v5-c4 and v6-c4 ones in the (Γ−Z), (Γ−Y ) and (X −R) directions in PdPSe. All the calculated 

spectra have two main features and a minimum between them (see figure 7.4; for example in 

PdPSe the two features are xxE2  and xxE3  in xx
2ε  , yyE1  and yyE2  in yy

2ε and zzE2  and zzE3  in zz
2ε ).  

Table 7.5 Static value of ( )ωε1  of PdPS and PdPSe compounds  

PdPS PdPSe  

uncorrected corrected uncorrected corrected 

xx 15.74 12.66 11.75 10.21 

yy     19.68 16.08 17.09 1.67 

 

 

ε1(0) zz 19.20 15.78 16.78 14.46 
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Figure 7.7 Calculated total absorption spectral response as a function of photon energy for 

different polarization planes for PdPS and  PdPSe compounds. 

 

      The calculated energies of the peaks as well as the extended regions giving the dominent 

contributions to the elements of the structure in optical spectra are given in table 7.3 and 7.4. At 

higher photon energies the spectra decay rapidly with almost the same rate. 
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Figure 7.8 Calculated reflectivity, refractive index and the extinction coefficient spectra for 

PdPX compounds.  

 

The real part of the elements of the dielectric tensor for PdPS and PdPSe were also calculated 

from the imaginary part using the Kramers-Kronig relations, but they are not shown here. We just 

give the static dielectric constants )0(1
xxε , )0(1

yyε and )0(1
zzε . However, the values of the static 

dielectric constants are overestimated by the LDA as a consequence of the band gap 

underestimation [30,31]. It is found that a rigid shift of all conduction bands so as to match the 

calculated bandgaps with the experimental data can produce reliable results, i.e., very close to the 

measured ones (see table 6 of Ref. [27]). The theoretical values of the static dielectric constants 

(with and without shift) of the studied compounds are summarized in table 5. The values of 

)0(1
yyε and )0(1

zzε  are almost the same for both compounds. The calculated results of the 

absorption, reflectivity and the indice of refraction and the extinction coefficients are shown in 

figures 7.7- 7.8. It is clear that there is a close resemblance between these spectra in the two 

compounds. 
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Table 7.6 Value and energy of the complex index of refraction (n). 

PdPS PdPSe  

nxx nyy nzz nxx nyy nzz 

n(0) 3.4289 4.13403 4.09712 3.96802 4.43711 4.3823 

E(n=1) 11.06 10.51 10.43 11.14 10.19 9.37 

 

The reason for this is the similar band structures of the two materials. For each compound, the 

absorption coefficients grow at different rates: zzα being the fastest and xxα the slowest. In the UV 

region xxα  is smaller than the other two absorption cofficients in both compounds. With regard to 

reflectivity, which represents another way which assesses how the electromagnetic energy is 

taken when interacting with a material medium, in both materials the one in the x direction Rxx is 

lower than Ryy and Rzz, except around 23 eV where it gets larger. This is in consistently with the 

absorption coefficients. The maximum of the reflectivity occurs in Rzz with a value of 54 % at 

4.23 eV and 55 % at 3.55 eV in PdPS and PdPSe respectively. The values of refractive index n, 

which is an other optical parameter besides ε1 which indicates how electromagnetic energy is 

dispersed when it penetrates in crystal, at zero energy are summarized in table 7.6, together with 

the energies for which n=1 ; i.e. no dispersion. There is an energy interval centred around these 

values for which n is close to one.  

Table 7.6 The values of the birefringence Δn at zero energy. 

PdPS PdPSe  

Δna Δnb Δnc Δna Δnb Δnc 

Δn(0) 0.036   0.668   -0.705   0.039   0.413 -0.452 

 

From the calculated refractive indices, we evaluated the birefringences along the three axes 

which are given by Δna = (nb − nc), Δnb = (nc − na) and Δnc = (na − nb). The obtained results for 

the spectral behaviour of the birefringence ( )ωinΔ  for the studied compounds are shown in figure 

7.9. The birefringence is important only in the non absorbing region (below the energy gap) [32]. 

One may note that the general shape of the curves is similar and this is due to the similarity of the 
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underlying band structures. The Δna(ω) spectral dependence shows strong oscillations around 

zero in the energy range up to 10 eV. The values of the birefringence at zero energy are given in 

table 7.7. 
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Figure 7.9 Calculated birefringence Δn(ω) for PdPX compounds 

 

7.6. CONCLUSION 

In conclusion, we have employed the all-electron full potential linear augmented plane wave plus 

local orbitals (FP-LAPW + lo) method with the LDA form of exchange and correlation to 

determine the structural and electronic properties of the orthorhombic compounds PdPS and 

PdPSe at normal pressure. The calculated equilibrium lattice constants and bulk moduli for these 

compounds were compared with the available experimental data when available, in all cases our 

results are in good agreement with the experimental data. The electronic properties are very well 

described by our calculations and show that these compounds have similar structures and the 

energy gap is indirect and decreases when S is replaced by Se. The anisotropic frequency 

dependent dielectric function, reflectivity, refractive index and absorption spectra are obtained 

and discussed in detail. 
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CONCLUSION 

      In the last four chapters we have presented the main results of this thesis which based on 

the total-energy calculations within the full-potential augmented plane-wave plus local 

orbitals (FP-LAPW + lo) method. We have used both the local density approximation (LDA) 

and generalized gradient approximations (GGA) for the exchange and correlation potential 

with including the spin-orbit effect. The correlated d-electron states are taken in the account 

by using the LSDA+U (GGA+U) methods with self-interaction correction method (SIC).  

      In Chapter 4 we have calculated the structural, elastic, electronic, magnetic and magneto-

optical properties of the Mn-based half Heusler alloys (IrMnZ) where Z=Al, Sn and Sb. The 

energy minimization of these compounds indicates that the magnetic phase is the 

energetically favourable. The results show that IrMnAl are metallic and ferromagnetic. They 

are mechanically stable at zero pressure and possess the highest bulk, shear and Young’s 

modulus, the sound velocities and the Debye temperatures are derived for the IrMnZ 

compounds. We have also found that in these compounds, the local moment of Mn is higher 

than the total moment. The reduction of the total moment is therefore accompanied by 

negative in Ir or in Z elements or in both, i.e., these atoms couple antiferromagnetically to the 

Mn moments. The hybridization between Ir and Mn is considerably larger. The local spin 

density approximation (LSDA) predicts that the IrMnAl have negligible magnetic moment. 

Furthermore, they predict that IrMnSb is a half metallic. While the LSDA+U (GGA+U) 

predict a large magnetic moment comparing to the experimental ones. Our results predict that 

the spin–orbit coupling is significant for these compounds, since they destroy the half-metallic 

band gap. We found the highest Kerr rotation arises at IrMnSb compound with weak values in 

IrMnAl in all the approximations used. 

      In Chapter 5 we have investigated the electronic, optical and magneto-optical properties of 

the Heusler compounds PbMnSb, and Pb2MnSb. Our LSDA calculations reveal a gap in the 

EF for PdMnSb, predicting half metallic nature. On the other hand, the LSDA+U move the d 

states away from the Fermi level but the shift of the unoccupied states make this compound 

metallic in both spin (up and down). The magnetic moments calculated by LSDA+U 

(GGA+U) for the present compounds are found to be very large comparing with the 

experimental ones. While the GGA give a good results. Furthermore, we found that the main 

contribution to the magnetic moments comes from Mn atom. We show that the LSDA+U can 

produce accurate optical properties; the calculated optical spectra using LSDA and LSDA+U 

are give good results as compared with the experimental data. We have observed that 
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LSDA+U gives an overall improvement of Kerr spectra with experiments. In another hand, a 

small difference in Kerr spectra appeared when we calculated it with and without inclusion of 

the Drude (intraband) contribution. Our calculations suggest that the magneto-optical are 

reproduce very well the experimental one  when broadening is taken as 0.7 eV. 

      In Chapter 6 the structural and electronic properties of PdX2 (X=P, S and Se), are 

investigated. The structural properties are determined through total energy and interatomic 

forces minimization. The calculated lattice constants and the atomic positions agree well with 

the experimental ones. Our results show that the studied compounds exhibit a metallic 

character with LDA. In another hand the LDA+U predict that PdS2 is a semiconductor with 

narrow gap while PdP2 and PdSe2 have metallic character. The calculated density of states 

suggests that the absorption increases rapidly in the IR regions for PdP2. 

      In Chapter 7 the structural, electronic and optical properties of the orthorhombic 

compounds PdPS and PdPSe at normal pressure are investigated. The calculated equilibrium 

lattice constants and bulk moduli for these compounds were compared with the available 

experimental data. Our results are in good agreement with the experimental data. The 

electronic properties are very well described by our calculations and show that these 

compounds have similar structures and the energy gap is indirect and decreases when S is 

replaced by Se. The anisotropic frequency dependent dielectric function, reflectivity, 

refractive index and absorption spectra are obtained and discussed in detail. 


