People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research University of 8 Mai 1945 Guelma

جامعة 8 عاي 1945 تالهة UNIVERSITE 8 MAl 1945 GUELMA

Faculty: Mathematics, Computer Science and Science of Matter
Department of Mathematics

Lecture Notes

3rd Year Degree in Mathematics

Title

Unconstrained Optimization

Presented by:
Dr. Rabah DEBBAR

Academic year
2023/2024

Semestre: 5

Unité d'enseignement : Méthodologie
 Matière: Optimisation sans contraintes
 Crédits: 5

Coefficient : 2

Objectifs de l'enseignement: Ce cours traite les principaux outils et résultats de l'optimisation reposant sur des techniques d'analyse convexe et de dualité. Il présente les bases de la programmation dynamique.
Connaissances préalables recommandées: Bases d'analyse fonctionnelles, de topologie et d'algèbre linéaire. I'UE "Analyse convexe" est fortement recommandée.

Contenu de la matière :
Chapitre1 : Quelques rappels de calcul différentiel, Convexité
1.1 Différentiable, gradient, matrice hessienne
1.2 Développement de Taylor
1.3 Fonctions convexes

Chapitre2 : Minimisation sans contraintes
2.1 Résultats d'existence et d'unicité
2.2 Conditions d'optimalité du $1^{\text {er }}$ ordre
2.3 Conditions d'optimalité du $2^{\text {ème }}$ ordre

Chapitre3: Algorithmes

3.1 Méthode du gradient
3.2 Méthode du gradient conjugué
3.3 Méthode de Newton
3.4 Méthode de relaxation
3.5 Travaux pratiques

Mode d'évaluation : Examen (60\%), contrôle continu (40\%)
Références :

1. M. Bierlaire, Introduction à l'optimisation différentiable, PPUR, 2006.
2. J-B. Hiriart-Urruty, Optimisation et analyse convexe, exercices corrigés, EDP Sciences, 9009.

$$
\begin{aligned}
& \text { REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE }
\end{aligned}
$$

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université 8 mai 1945 Guelma
Faculté des Mathématiques et de l'Informatique et des Sciences de la Matière

$$
\begin{aligned}
& \text { وزارة التعليـم العالـــي و البحث العلمـي } \\
& \text { جامـعة } 8 \text { هـــاي } 1945 \text { قِالمــــة } \\
& \text { كليــة الرياضيــات و الإعـلام الآلـي } \\
& \text { و عكــوم المــادة }
\end{aligned}
$$

Département: Mathématiques

SYLLABUS

Unité d'Enseignement : UEM5.1.1, Matière : Optimisation sans contraintes
Domaine/Filière : 3ème année mathématiques
Semestre : 05 Année Universitaire : 2023-2024
Crédits: 05, Coefficient: 02
Volume Horaire Hebdomadaire Total : 67h30

- Cours Magistral (Nombre d'heures par semaine) : 01h30
- Travaux Dirigés (Nombre d'heures par semaine) :01h30
- Travaux Pratiques (Nombre d'heures par semaine) : 01h30

Langue d'enseignement: Français
Enseignant responsable de la matière : Dr. Rabah. DEBBAR Grade : MCA
Bureau : E 5.9 B
Email : rabah.debbar@yahoo.fr Téléphone
Périodes de consultation :
Objectifs :
Le module propose une introduction à l'optimisation sans contraintes. Un étudiant ayant suivi ce cours saura reconnaître les outils et résultats de base en optimisation ainsi que les principales méthodes utilisées dans la pratique. Des séances de travaux pratiques sont proposées pour être notamment implémentés sous le logiciel de calcul scientifique Matlab et ce, afin d'assimiler les notions théoriques des algorithmes vues en cours.
Programme du cours théorique :
Chapitre1: Quelques rappels de calcul différentiel, Convexité
1.1 Différentiabilité, gradient, matrice hessienne
1.2 Développement de Taylor
1.3 Fonctions convexes

Chapitre2 : Minimisation sans contraintes
2.1 Résultats d'existence et d'unicité
2.2 Conditions d'optimalité du ler ordre
2.3 Conditions d'optimalité du 2nd ordre

Chapitre3: Algorithmes
3.1 Méthode du gradient
3.2 Méthode du gradient conjugué
3.3 Méthode de Newton
3.4 Méthode de relaxation
3.5 Travaux pratiques

Evaluation : Contrôles des connaissances \& Pondérations

Contrôle	Pondération (\%)
Examen final Travaux Dirigés (Présence \& Participation)	60%
Micro-Intérrogations Devoirs a Domicile Total	40%

Références bibliographiques (Livres et polycopiés, sites internet, etc.).

1. M. Bierlaire, Introduction à l'optimisation différentiable, PPUR, 2006.
2. J-B. Hiriart-Urruty, Optimisation et analyse convexe, exercices corrigés, EDP sciences, 2009.

Les paroles s'envolent mais les écrits restent... À cet effet ce polycopié!

To my thesis director Mr. Abdelkader DEHICI and To my parents
May God have mercy on them
and make them dwell in His spacious gardens

Contents

Introduction v
0.1 Type of Optimization vi
1 Basic Concepts of Unconstrained Optimization 1
1.1 \quad Euclidean Space \mathbb{R}^{n} 1
1.1.1 Inner Products and Norms 2
1.2 Matrices 3
1.2.1 Positive and Negative Definite or Semi Definite Matrix 3
1.3 Topology 4
1.4 Differentiability 5
1.4.1 Partial derivative 5
1.4.2 The Gradient 7
1.4.3 Hessian Matrix 8
1.5 Directional Derivatives 9
1.6 Descent Direction 13
1.7 Multivariate Taylor Expansion 14
1.8 Convex functions of several variables 16
1.8.1 Convex Sets 16
1.8.2 Conex Combination(Generalization of line segment) 17
1.8.3 Convex Function 17
1.8.4 Strongly Convex Function 18
1.8.5 First-Order and Second-Order Characterization of Convex Functions 19
2 Unconstrained Optimization Theory 22
2.1 Introduction. 22
2.2 Existence and Uniqueness of Optimal Solutions 24
2.3 Conditions for optimality 26
2.3.1 Necessary optimality conditions 26
2.3.2 Sufficient optimality conditions 28
3 Unconstrained Optimization Methods 30
3.1 Steepest Descent (CAUCHY) Method 30
3.2 Conjugate Gradient (FLETCHER-REEVES) Method 33
3.2.1 Development of the Fletcher-Reeves Method 34
3.2.2 Fletcher-Reeves Method 35
3.3 NEWTON'S Method 37
4 Practical Work 42
4.1 TPNo. 01 43
4.2 TP No. 02 46
4.3 TP No. 03 48
4.4 TP No. 04 50
4.5 TP No. 05 52
5 Tutorials 56
5.1 TD Series No. 01 56
5.2 TD Series No. 02 59
5.3 TD Series No. 03 61
6 Corrected Tutorials 64
6.1 TD Series No. 01 Corrected 64
6.2 TD Series No. 02 Corrected 74
6.3 TD Series No. 03 Corrected 79
7 Final Exam 86
7.1 Final Exam 2017-2018 87
7.2 Final Exam 2018-2019 88
7.3 Final Exam 2019-2020 90
Bibliographie 91

Introduction

Optimization is central to any problem involving decision making, whether in engineering or in economics. The task of decision making entails choosing between various alternatives. This choice is governed by our desire to make the "best" decision. The measure of goodness of the alternatives is described by an objective function or performance index. Optimization theory and methods deal with selecting the best alternative in the sense of the given objective function.

The area of optimization has received enormous attention in recent years, primarily because of the rapid progress in computer technology, including the development and availability of user-friendly software, high-speed and parallel processors, and artificial neural networks. A clear example of this phenomenon is the wide accessibility of optimization software tools such as the Optimization Toolbox of MATLAB1 and the many other commercial software packages. There are currently several excellent graduate textbooks on optimization theory and methods (e.g., [1], [5], [6], [8], [9], [10], [12], [15]), as well as undergraduate textbooks on the subject with an emphasis on engineering design (e.g., [1]). However, there is a need for an introductory textbook on optimization theory and methods at a senior undergraduate or beginning graduate level. The present text was written with this goal in mind. The material is an outgrowth of our lecture notes for a one-semester course in optimization methods for seniors and beginning

0.1 Type of Optimization

The classification of optimization is not well established and there is some confusion in literature, especially about the use of some terminologies. Here we will use the most widely used terminologies. However, we do not intend to be rigorous in classifications; rather we would like to introduce all relevant concepts in a concise manner. Loosely speaking, classification can be carried out in terms of the number of objectives, number of constraints, function forms, landscape of the objective functions, type of design variables, uncertainty in values, and computational effort (see Figure 0.1 [16]).

Figure 0.1: Classification of optimization problems.

Chapter 1

Basic Concepts of Unconstrained Optimization

1.1 Euclidean Space \mathbb{R}^{n}

The vector space \mathbb{R}^{n} is the set of n-dimensional column vectors with real components endowed with the component-wise addition operator

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right)
$$

and the scalar-vector product

$$
\lambda\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda x_{1} \\
\lambda x_{2} \\
\vdots \\
\lambda x_{n}
\end{array}\right)
$$

where in the above $x_{1}, x_{2}, \ldots x_{n}, \lambda$ are real numbers. Throughout the Handout we will be mainly interested in problems over \mathbb{R}^{n}, although other vector spaces will be considered in a few cases. We will denote the standard basis of \mathbb{R}^{n} by $e_{1}, e_{2}, \ldots e_{n}$, where e_{i} is the n-length
column vector whose ith component is one while all the others are zeros. The column vectors of all ones and all zeros will be denoted by e and 0 , respectively, where the length of the vectors will be clear from the context.

For given $x, y \in \mathbb{R}^{n}$, the closed line segment between x and y is a subset of \mathbb{R}^{n} denoted by $[x, y]$ and defined as

$$
[x, y]=x+\alpha(y-x): \alpha \in[0,1] .
$$

The open line segment (x, y) is similarly defined as

$$
[x, y]=x+\alpha(y-x): \alpha \in(0,1) .
$$

1.1.1 Inner Products and Norms

Definition 1.1.1. (inner product). An inner product on \mathbb{R}^{n} is a map $\langle.,\rangle:. \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ with the following properties:

1. (symmetry) $\langle x, y\rangle=\langle y, x\rangle$ for any $x, y \in \mathbb{R}^{n}$.
2. (additivity) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ for any $x, y, z \in \mathbb{R}^{n}$.
3. (homogeneity) $\langle\lambda x, y\rangle=\lambda\langle y, x\rangle$ for any $\lambda \in \mathbb{R}$ and $x, y \in \mathbb{R}^{n}$.
4. (positive definiteness) $\langle x, x\rangle>0$ for any $x \in \mathbb{R}$ and $\langle x, x\rangle=0$ if and only if $x=0$.

Example 1.1.1. Perhaps the most widely used inner product is the so-called dot product defined by

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \quad x, y \in \mathbb{R}^{n} .
$$

Since this is in a sense the "standard" inner product.
Definition 1.1.2. (norm). A norm $\|$.$\| on \mathbb{R}^{n}$ is a function $\|\|:. \mathbb{R}^{n} \longrightarrow \mathbb{R}$ satisfying the following:

1. (nonnegativity) $\|x\| \geq 0$ for any $x \in \mathbb{R}^{n}$ and $\|x\|=0$ if and only if $x=0$.
2. (positive homogeneity) $\|\lambda x\|=|\lambda|\|x\|$ for any $x \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.
3. (triangle inequality) $\|x+y\| \leq\|x\|+\|y\|$ for any $x, y \in \mathbb{R}^{n}$.

One natural way to generate a norm on Rn is to take any inner product $\langle.,$.$\rangle on \mathbb{R}^{n}$ and define the associated norm

$$
\|x\|=\sqrt{\langle x, x\rangle} \text { for all } x \in \mathbb{R}^{n}
$$

which can be easily seen to be a norm. If the inner product is the dot product, then the associated norm is the so-called Euclidean norm or l_{2}-norm :

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \text { for all } x \in \mathbb{R}^{n}
$$

The Euclidean norm belongs to the class of l_{p} norm (for $p \geq 1$) defined by

$$
\|x\|_{p}=^{p} \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{p}} \text { for all } x \in \mathbb{R}^{n} .
$$

Another important norm is the l_{∞} norm given by

$$
\|x\|_{\infty}=\max _{i=1,2, \cdots n}\left|x_{i}\right| \text { for all } x \in \mathbb{R}^{n}
$$

Lemma 1.1.1. (Cauchy-Schwarz inequality). For any $x, y \in \mathbb{R}^{n}$,

$$
\left|x^{T} y\right| \leq\|x\|_{2} \cdot\|y\|_{2} .
$$

Equality is satisfied if and only if x and y are linearly dependent.

1.2 Matrices

1.2.1 Positive and Negative Definite or Semi Definite Matrix

Definition 1.2.1. An $n \times n$ symmetric real matrix M and x of order $n \times 1$ column vector, M is said to be:

1. positive definite if $x^{T} M x>0$ for all $x \neq 0$
2. negative definite if $x^{T} M x<0$ for all $x \neq 0$
3. positive semidefinite if $x^{T} M x \geq 0$ for all x
4. negative semidefinite if $x^{T} M x \leq 0$ for all x
5. indefinite if it is neither positive nor negative semidefinite(i.e.if $x^{T} M x>0$ for some x and $x^{T} M x<0$ for some x).

Remark 1.2.1. Test for Positive and Negative (Definite or Semi Definite) Matrix

1. A matrix M is positive definite if it is Symmetric and all its eigenvalues are positive
2. All Upper Left (Leading) determinants are positive
3. A matrix M is positive definite if it is Symmetric and all its pivots are positive
4. $S=M^{T} M$ Independent Columns (Means No Zero Column)

1.3 Topology

Definition 1.3.1. (Open ball). Let $a \in \mathbb{R}^{n}$ and $\epsilon>0$. The open ball of radius ϵ centered at a is

$$
B_{\epsilon}(a):=\left\{x \in \mathbb{R}^{n}:\|x-a\|<\epsilon\right\} .
$$

Definition 1.3.2. (Open sets). A set $U \subseteq \mathbb{R}^{n}$ is open if

$$
\forall a \in U, \exists \epsilon>0 \quad \text { such that } \quad B_{\epsilon}(a) \subseteq U .
$$

In other words, U is open if every point of U is the center of an open ball contained in U.

Definition 1.3.3. (closed sets). A set $U \subseteq \mathbb{R}^{n}$ is said to be closed if it contains all the limits of convergent sequences of points in U; that is, U is closed if for every sequence of points $\left\{x_{i}\right\}_{i \geq 1} \subseteq U$ satisfying $x_{i} \rightarrow x^{*}$ as $i \rightarrow \infty$, it holds that $x^{*} \in U$.

Definition 1.3.4. (Boundary). Let $A \subseteq \mathbb{R}^{n}$. The boundary of A is the set of all points $a \in \mathbb{R}^{n}$ such that,

$$
\forall \epsilon>0 \quad\left(B_{\epsilon}(a) \cap A \neq \varnothing \quad \text { and } \quad B_{\epsilon}(a) \backslash A \neq \varnothing .\right)
$$

We denote the boundary of A by ∂A.

Definition 1.3.5. (boundedness and compactness).

1. A set $U \subseteq \mathbb{R}^{n}$ is called bounded if there exists $M>0$ for which $U \subseteq B(O, M)$.
2. A set $U \subseteq \mathbb{R}^{n}$ is called compact if it is closed and bounded.

Examples of compact sets are closed balls and line segments. The positive orthant is not compact since it is unbounded, and open balls are not compact since they are not closed.

1.4 Differentiability

1.4.1 Partial derivative

Definition 1.4.1. For a real-valued function $f: U \rightarrow \mathbb{R}$ defined on an open set U in \mathbb{R}^{n} and a point \boldsymbol{a} of U : If $i=1,2, \ldots, n$, the partial derivative of f at \boldsymbol{a} with respect to x_{i} is defined by:

$$
\frac{\partial f}{\partial x_{i}}(a)=\lim _{h \rightarrow 0} \frac{f\left(a+h e_{i}\right)-f(a)}{h}
$$

Note that $a+h e_{i}=\left(a_{1}, \ldots, a_{i}+h, \ldots, a_{n}\right)$, so $a+h e_{i}$ and \boldsymbol{a} differ only in the ith coordinate. Thus the partial derivative is defined by the one-variable difference quotient for the derivative with variable x_{i}. Other common notations for the partial derivative are $f_{x_{i}}(a),\left(D_{i} f\right)(a)$ and $\nabla_{i} f(a)$.

Geometric interpretation

Figure: Graph of $z=f(x, y)$ and geometric interpretation of $\partial_{x} f\left(x_{0}, y_{0}\right)$.

Figure: Graph of $z=f(x, y)$ and geometric interpretation of $\partial_{y} f\left(x_{0}, y_{0}\right)$.

Example 1.4.1. Let

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{2}+4 x_{1} x_{2}^{2}
$$

Then, since $\frac{\partial}{\partial x_{1}}$ treats x_{2} as a constant,

$$
\frac{\partial f}{\partial x_{1}}=3 x_{1}^{2}+4 x_{2}^{2}
$$

and, since $\frac{\partial}{\partial x_{2}}$ treats x_{1} as a constant,

$$
\frac{\partial f}{\partial x_{2}}=2 x_{2}+8 x_{1} x_{2}
$$

In particular, at $\left(x_{1}, x_{2}\right)=(1,0)$ these partial derivatives take the values

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}(1,0)=3 \\
& \frac{\partial f}{\partial x_{2}}(1,0)=0
\end{aligned}
$$

1.4.2 The Gradient

Definition 1.4.2. Let $\Omega \subset \mathbb{R}^{n}$ be the domain of a real-valued functions $f: \Omega \rightarrow \mathbb{R}$ If f is differentiable we define the gradient of f to be the vector field $\nabla f: \Omega \rightarrow \mathbb{R}^{n}$ defined by

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\frac{\partial f}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) e_{i}
$$

The notation grad $f=\nabla f$ is also common.
Remark 1.4.1. Since the gradient is a vector it can be written as either a row or a column unless it is used in conjunction with matrix multiplication. In that case it is assumed to be a column or an $n \times 1$ matrix. Note the relationship between the gradient and the total derivative, the $1 \times n$ (row) matrix

$$
D f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)
$$

We can think of the gradient as the transpose of the total derivative

$$
\nabla f=D f^{T}
$$

Example 1.4.2. Let

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{2}+4 x_{1} x_{2}^{2} \\
\nabla f(x)=\binom{\frac{\partial f}{\partial x_{1}}(x)}{\frac{\partial f}{\partial x_{2}}(x)}=\binom{3 x_{1}^{2}+4 x_{2}^{2}}{2 x_{2}+8 x_{1} x_{2}} \\
\nabla f(1,0)=\binom{\frac{\partial f}{\partial x_{1}}(1,0)}{\frac{\partial f}{\partial x_{2}}(1,0)}=\binom{3}{0}
\end{gathered}
$$

1.4.3 Hessian Matrix

Definition 1.4.3. The Hessian Matrix, $H(x)$ or $\nabla^{2} f(x)$ is defined to be the square matrix of second partial derivatives:

$$
H(x)=\nabla^{2} f(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \ldots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \ldots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) \\
& \vdots & & \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(x)
\end{array}\right)
$$

We can also obtain the Hessian by applying the gradient operator on the gradient transpose,

$$
H(x)=\nabla^{2} f(x)=\nabla\left(\nabla f(x)^{T}\right)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\frac{\partial f}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)
$$

The Hessian is a symmetric matrix. The Hessian matrix gives us information about the curvature of a function, and tells us how the gradient is changing.

Example 1.4.3. Let

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{2}+4 x_{1} x_{2}^{2} \\
H(x)=\nabla^{2} f(x)=\left(\begin{array}{cc}
6 x_{1} & 8 x_{2} \\
8 x_{2} & 8 x_{1}+2
\end{array}\right), \\
H(1,0)=\nabla^{2} f(1,0)=\left(\begin{array}{cc}
6 & 0 \\
0 & 10
\end{array}\right),
\end{gathered}
$$

1.5 Directional Derivatives

The gradient can be used to define a generalization of the partial derivative called the directional derivative(see [14]).

Definition 1.5.1. Let $\Omega \in \mathbb{R}^{n}$ be the domain of a real-valued functions $f: \Omega \longrightarrow \mathbb{R}$, and let $v i n \mathbb{R}^{n}$ be a unit vector. If f is differentiable we define the directional derivative of f at $x \in \Omega$ in the direction v to be

$$
D_{\nu} f(x)=\left.\frac{d}{d t} f(x+t v)\right|_{t_{0}}=\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}
$$

Partial derivatives are also directional derivatives

The following theorem gives us an easy way to calculate directional derivatives.
Theorem 1.5.1. Let $\Omega \in \mathbb{R}^{n}$ be the domain of a real-valued functions $f: \Omega \longrightarrow \mathbb{R}$, and let $v \in \mathbb{R}^{n}$ be a unit vector. If f is differentiable then

$$
D_{v} f(x)=\nabla f(x) \cdot v
$$

Proof. For $x \in \Omega$ and any unit vector $v \in \mathbb{R}^{n}$ define $g: \Omega \longrightarrow \mathbb{R}$ by

$$
g(t)=x+t v .
$$

Note that $D_{g}=v, \quad g(0)=x$, and that $f(x+t v)=f(g(t))$. Thus, using the chain rule for mappings and the relationship between the total derivative and the gradient, we can compute

$$
\begin{aligned}
D_{\nu} f(x) & =\frac{d}{d t} f(g(t)) \\
& =\left.D f(g(t)) D g(t)\right|_{t=0} \\
& =D f(x) \cdot v \\
& =\nabla f(x) \cdot v .
\end{aligned}
$$

Example 1.5.1. Note that when v is one of the standard basis vectors e_{i} we get

$$
D_{e_{i}} f(x)=\frac{\partial f}{\partial x_{i}}(x) .
$$

Thus, partial derivatives are special cases of the directional derivative.
The following theorem gives us some geometric information about the gradient.
Theorem 1.5.2. Suppose $f: \Omega \longrightarrow \mathbb{R}$ is a differentiable function and $\nabla f(x) \neq 0$. Then the directional derivative is maximized when v points in the direction of $\nabla f(x)$ and is minimized when v points in the direction of $-\nabla f(x)$. That is, $\nabla f(x)$ points in the direction of steepest increase of f while $-\nabla f(x)$ points in the direction of steepest decrease.

Proof. Using the fact that v is a unit vector, we get

$$
D_{\nu} f(x)=\nabla f(x) \cdot v=\cos \theta\|\nabla f(x)\| \cdot\|v\| .
$$

where θ is the angle between $\nabla f(x)$ and v. Thus $D_{\nu} f(x)$ depends on v only through the angle θ. Thus, $D_{\nu} f(x)$ is maximized when the cosine is maximized $\theta=0, v$ in the direction of $\nabla f(x)$) and minimized when the cosine is minimized $\theta=\pi, \nu$ in the direction of $-\nabla f(x))$. The next theorem describes the relationship between the gradient of a function and the level sets of that function.

Theorem 1.5.3. Suppose $f: \Omega \longrightarrow \mathbb{R}$ is differentiable. Then $\nabla f\left(x_{0}\right)$ is normal to the level surface of f at $x_{0} \in \Omega$. That is, suppose $f\left(x_{0}\right)=c$, and $g(t)$ is a curve that lies entirely in the level set $f(x)=c$. If $g\left(t_{0}\right)=x_{0}$ then $\nabla f\left(x_{0}\right)$ is orthogonal to the tangent vector $g^{\prime}\left(t_{0}\right)$.

Proof. Suppose $f(g(t))=c$ and $g\left(t_{0}\right)=x_{0}$: Since the composition is constant, its derivative is zero. Thus, using the chain rule we get

$$
\begin{aligned}
0 & =\left.\frac{d}{d t} f(g(t))\right|_{t=t_{0}} \\
& =\left.D f(g(t)) D g(t)\right|_{t=0} \\
& =D f\left(x_{0}\right) g^{\prime}\left(t_{0}\right) \\
& =\nabla f\left(x_{0}\right)^{T} \cdot g^{\prime}\left(t_{0}\right) .
\end{aligned}
$$

Figure 1.1 Orthogonality of the gradient to the level set

Example 1.5.2. To find the equation for the tangent plane to the sphere

$$
x^{2}+y^{2}+z^{2}=14 .
$$

at the point $x_{0}=\left(x_{0}, y_{0}, z_{0}\right)=(1,2,3)$ we calculate the gradient of $f(x ; y ; z)=x^{2}+y^{2}+z^{2}$

$$
\nabla f=(2 x, 2 y, 2 z)
$$

We evaluate this at the point $(1,2,3)$ to get the normal vector $n=(2,4,6)$, and use this to derive the equation for the tangent plane

$$
0=n\left(x-x_{0}\right)=\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right) \cdot\left(\begin{array}{l}
x-1 \\
y-2 \\
z-3
\end{array}\right)=2 x+4 y+6 z-28,
$$

or $2 x+4 y+6 z=28$.

We can use the gradient to give a version of the Mean Value Theorem for scalar functions on \mathbb{R}^{n}.

Theorem 1.5.4. Let $\Omega \in \mathbb{R}^{n}$ contain the entire line connecting $x_{1} \in \Omega$ to $x_{2} \in \Omega$, and suppose $f: \Omega \longrightarrow \mathbb{R}$ is \mathscr{C}^{1}. Then there is a point $\hat{x} \in \Omega$ on the line segment between x_{1} and x_{2} such that

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\nabla f(\widehat{x}) \cdot\left(x_{2}-x_{1}\right) .
$$

Proof.We define a real valued function of a single variable by

$$
g(t)=f\left(t x_{2}+(1-t) x_{1}\right), \quad t \in[0,1] .
$$

We note that this function is \mathscr{C}^{1} and therefore the mean value theorem for real valued functions of a single variable says there exists $\widehat{t} \in(0,1)$ such that

$$
g(1)-g(0)=g^{\prime}(\widehat{t})(1-0)
$$

Note that $g(1)=f\left(x_{2}\right)$ and $g(0)=f\left(x_{1}\right)$. The chain rule gives us

$$
g^{\prime}(t)=f\left(t x_{2}+(1-t) x_{1}\right) \cdot\left(x_{2}-x_{1}\right) .
$$

So if we let

$$
\widehat{x}=\widehat{t} x_{2}+(1-\widehat{t}) x_{1}
$$

this gives us the desired result.

1.6 Descent Direction

Definition 1.6.1. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^{n}. A vector $0 \neq d \in \mathbb{R}^{n}$ is called a descent direction of f at x if the directional derivative $D_{d} f(x)$ is negative, meaning that

$$
D_{d} f(x)=\nabla f(x) \cdot d<0 .
$$

The most important property of descent directions is that taking small enough steps along these directions lead to a decrease of the objective function.

Lemma 1.6.1. (descent property of descent directions). Let f be a continuously differentiable function over \mathbb{R}^{n}, and let $x \in \mathbb{R}^{n}$. Suppose that d is a descent direction of f at x. Then there exists $\varepsilon>0$ such that

$$
f(x+t d)<f(x)
$$

for any $t \in(0, \varepsilon]$.

Proof. Since $D_{v} f(x)<0$, it follows from the definition of the directional derivative that

$$
\lim _{t \rightarrow 0} \frac{f(x+t d)-f(x)}{t}=D_{d} f(x)<0 .
$$

Therefore, there exists an $\varepsilon>0$ such that

$$
\frac{f(x+t d)-f(x)}{t}<0 .
$$

for any $t \in(0, \varepsilon]$, which readily implies the desired result.

1.7 Multivariate Taylor Expansion

We now turn to the Taylor series expansion of a real-valued function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ about the point $x_{0} \in \mathbb{R}^{n}$. Suppose $f \in \mathscr{C}^{2}$. Let x and x_{0} be points in \mathbb{R}^{n}, and let $z(\alpha)=x_{0}+\alpha(x-$ $\left.x_{0}\right) /\left\|x-x_{0}\right\|$. Define $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ by:

$$
\phi(\alpha)=f((\alpha))=f\left(x_{0}+\alpha\left(x-x_{0}\right) /\left\|x-x_{0}\right\|\right)
$$

Using the chain rule, we obtain

$$
\begin{aligned}
\phi^{\prime}(\alpha) & =\frac{d \phi}{d \alpha}(\alpha) \\
& =D f(z(\alpha)) D z(\alpha) \\
& =D f(z(\alpha)) \frac{\left(x-x_{0}\right)}{\left\|x-x_{0}\right\|} \\
& =\frac{1}{\left\|x-x_{0}\right\|}\left(x-x_{0}\right)^{T} D f(z(\alpha))^{T}
\end{aligned}
$$

and

$$
\begin{aligned}
\phi^{\prime \prime}(\alpha) & =\frac{d^{2} \phi}{d^{2} \alpha}(\alpha) \\
& =\frac{d}{d \alpha}\left(\frac{d \phi}{d \alpha}\right)(\alpha) \\
& =D f(z(\alpha)) \frac{\left(x-x_{0}\right)}{\left\|x-x_{0}\right\|} \\
& =\frac{\left(x-x_{0}\right)^{T}}{\left\|x-x_{0}\right\|} \frac{d}{d \alpha} D f(z(\alpha))^{T} \\
& \left.=\frac{\left(x-x_{0}\right)^{T}}{\left\|x-x_{0}\right\|} D(D f) z(\alpha)\right)^{T} \frac{d z}{d \alpha}(\alpha) \\
& =\frac{1}{\left\|x-x_{0}\right\|}\left(x-x_{0}\right)^{T} D^{2} f(z(\alpha))^{T}\left(x-x_{0}\right) \\
& =\frac{1}{\left\|x-x_{0}\right\|}\left(x-x_{0}\right)^{T} D^{2} f(z(\alpha))\left(x-x_{0}\right),
\end{aligned}
$$

$D^{2} f=\left(D^{2} f\right)^{T}$ since $f \in \mathscr{C}^{2}$. Observe that

$$
\begin{aligned}
f(x) & =\phi\left(\left\|x-x_{0}\right\|\right) \\
& =\phi(0)+\frac{\left\|x-x_{0}\right\|}{1!} \phi^{\prime}(0)+\frac{\left\|x-x_{0}\right\|^{2}}{2!} \phi^{\prime \prime}(0)+o\left(\left\|x-x_{0}\right\|^{2}\right) .
\end{aligned}
$$

Hence,

$$
\begin{gathered}
f(x)=f\left(x_{0}\right)+\frac{1}{1!} D f\left(x_{0}\right)\left(x-x_{0}\right) \\
+\frac{1}{2!}\left(x-x_{0}\right)^{T} D^{2} f\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left\|x-x_{0}\right\|^{2}\right) . \\
\lim _{x \rightarrow x_{0}} \frac{o\left(\left\|x-x_{0}\right\|\right)^{2}}{\left\|x-x_{0}\right\|^{2}}=0
\end{gathered}
$$

Theorem 1.7.1. (Taylor's Theorem) [11]. Suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is continuously differentiable and that $p \in \mathbb{R}^{n}$. Then we have that

$$
f(x+p)=f(x)+\nabla f(x+t p)^{T} p,
$$

for some $t \in(0,1)$. Moreover, if f is twice continuously differentiable, we have that

$$
\nabla f(x+p)=\nabla f(x)+\int_{0}^{1} \nabla^{2} f(x+t p) p d t,
$$

and that

$$
f(x+p)=f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} \nabla^{2} f(x+t p) p
$$

for some $t \in(0,1)$.

1.8 Convex functions of several variables

1.8.1 Convex Sets

Definition 1.8.1. A set $S \subseteq \mathbb{R}^{n}$ is called a convex set iffor every choice of $X_{1}, X_{2} \in S$, the points $\lambda X_{1}+(1-\lambda) X_{2} \quad \forall \lambda \in[0,1]$ lies in S i.e., if $X_{1}, X_{2} \in S$ then line segment joining the points X_{1} and X_{2} must lie inside S.

Lecture Notes

Author : Dr. Rabah DEBBAR Academic year 2023/2024

1.8.2 Conex Combination(Generalization of line segment)

Definition 1.8.2. Convex combination of points $X_{1}, X_{2}, \ldots, X_{n} \in \mathbb{R}^{n}$ is given by

$$
X=\sum_{i=1}^{n} \lambda_{i} X_{i}, \quad \forall \lambda_{i} \geq 0 \quad \text { and } \quad \sum_{i=1}^{n} \lambda_{i}=1 .
$$

i.e., A linear combination become a convex combination if all the Scalar's are non-negative and are such that their sum is equal to 1.

Remark 1.8.1. 1. Empty set, singleton set and whole of \mathbb{R}^{n} are trivially convex sets,
2. Triangles, circles, ellipse, parabola with their interior are also convex sets,
3. Some convex sets in \mathbb{R}^{2} are shown below.

1.8.3 Convex Function

Definition 1.8.3. Let $f: S \rightarrow \mathbb{R}$ be a function, where S is a non-empty convex set in \mathbb{R}^{n}. Then f is said to be a convex function on the set S if

$$
f\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda f\left(X_{1}\right)+(1-\lambda) f\left(X_{2}\right)
$$

For all $X_{1}, X_{2} \in S$ and for each $\lambda \in(0,1)$.

Remark 1.8.2. 1. f is said to be a concave function on the set S if

$$
f\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \geq \lambda f\left(X_{1}\right)+(1-\lambda) f\left(X_{2}\right)
$$

For all $X_{1}, X_{2} \in S$ and for each $\lambda \in(0,1)$,

2. f is said to be strictly convex function on S if

$$
f\left(\lambda X_{1}+(1-\lambda) X_{2}\right)<\lambda f\left(X_{1}\right)+(1-\lambda) f\left(X_{2}\right)
$$

for all $X_{1}, X_{2} \in S, \quad X_{1} \neq X_{2}$ and $\lambda \in(0,1)$.
Properties 1.8.1. 1) If $f(x)$ is (strictly) convex, then $-f(x)$ is (strictly) concave (and vice versa).
2) If $f_{1}(x), \ldots, f_{k}(x)$ are convex (concave) functions and $a_{1}, \ldots, a_{k}>0$, then

$$
g(x)=a_{1} f_{1}(x)+\ldots+a_{k} f_{k}(x)
$$

is also convex (concave).
3) If (at least) one of the functions $f_{i}(x)$ is strictly convex (strictly concave), then $g(x)$ is strictly convex (strictly concave).

1.8.4 Strongly Convex Function

Definition 1.8.4. f is strongly convex with parameter $m>0$ if

$$
\begin{gathered}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} m t(1-t)\|x-y\|_{2}^{2} \\
\text { for all } x, y \in S, \quad t \in[0,1] .
\end{gathered}
$$

Remark 1.8.3. If f strongly convex (with any parameter $m>0$), then f is strictly convex. The converse is not true: for example, the function $f(x)=\exp (x)$ is strictly convex but not strongly convex .

Example 1.8.1. 1 -The function $f(x)=|x|, x \in \mathbb{R} f$ is convex bat is not strictly convex
2-Every affine function $f(x)=a x+b, x \in \mathbb{R}$ is convex, but not strictly convex 3- $f(x)=x^{2}, x \in \mathbb{R}$ is strictly convex.

1.8.5 First-Order and Second-Order Characterization of Convex Functions

Differentiable Functions

Definition 1.8.5. f is differentiable (i.e., its gradient ∇f exists at each point in dom f, which is open). at $\quad \widehat{x} \in \mathbb{R}^{n}$, we write:

$$
\forall x \in \mathbb{R}^{n}, \quad f(x)=f(\widehat{x})+\nabla f(\widehat{x})^{\top}(x-\widehat{x})+o(\|x-\widehat{x}\|)
$$

where by definition:

$$
\lim _{x \rightarrow \widehat{x}} \frac{o(\|x-\widehat{x}\|)}{\|x-\widehat{x}\|}=0
$$

Twice Differentiable Function

Definition 1.8.6. f is twice differentiable, that is, its Hessian or second derivative $\nabla^{2} f$ exists at each point in $\operatorname{dom} f$, which is open. at $\quad \widehat{x} \in \mathbb{R}^{n}$, we write:

$$
\forall x \in \mathbb{R}^{n}, \quad f(x)=f(\widehat{x})+\nabla f(\widehat{x})^{\top}(x-\widehat{x})+\frac{1}{2}(x-\widehat{x})^{\top} H_{f}(\widehat{x})(x-\widehat{x})+o\left(\|x-\widehat{x}\|^{2}\right)
$$

where by definition:

$$
\lim _{x \rightarrow \widehat{x}} \frac{o\left(\|x-\widehat{x}\|^{2}\right)}{\|x-\widehat{x}\|^{2}}=0
$$

Theorem 1.8.1. Let $S \subseteq \mathbb{R}^{n}$ be convex and open. Then, for a function $f: S \rightarrow \mathbb{R}$, the following are equivalent.
i) f is convex;
ii) for all $x, y \in S$,

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle
$$

iii) for all $x, y \in S$,(monotonicity)

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0
$$

Proof.

$$
\begin{aligned}
i) & \Rightarrow \text { Lii) } \quad \text { Let } \quad x, y \in S, \quad 0 \leq \lambda \leq 1 \\
& \Rightarrow f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y) \\
& \Longrightarrow f(x+\lambda(y-x))-f(x) \leq \lambda(f(y)-f(x)) \\
& \Longrightarrow \frac{f(x+\lambda(y-x))-f(x)}{\lambda} \leq f(y)-f(x) \\
& \Longrightarrow \lambda \rightarrow 0 \quad\langle\nabla f(x), y-x\rangle \leq f(y)-f(x) .
\end{aligned}
$$

$$
\begin{aligned}
\text { ii } & \Longrightarrow \text { iii) } \quad \text { Let } \quad x, y \in S \\
& \Longrightarrow f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle \quad \text { and } \quad f(x) \geq f(y)-\langle\nabla f(y), y-x\rangle \\
& \Longrightarrow\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0 .
\end{aligned}
$$

$$
\begin{gathered}
\text { iii) } \Longrightarrow i) \text { Let } x, y \in S, 0 \leq \lambda \leq 1 \\
f(x+\lambda(y-x))-f(x)=\int_{0}^{\lambda} \frac{d}{d t} f(x+t(y-x)) d t
\end{gathered}
$$

$=\int_{0}^{\lambda}\langle\nabla f(x+t(y-x)), y-x\rangle d t$
$\leq \int_{0}^{\lambda}\langle\nabla f(x+\lambda(y-x), y-x\rangle d t$
Because: $\langle\nabla f(x+\lambda(y-x))-\nabla f(x+t(y-x)), \underbrace{(\lambda-t)}_{\geq 0}(y-x)\rangle \underbrace{\geq 0}_{\text {leq }(i i i)}$ $=\lambda\langle\nabla f(x+\lambda(y-x)), y-x\rangle$.
$\underbrace{\text { Analogously: }}_{(x \leftrightarrow y \text { and } \lambda \mapsto 1-\lambda)} f(x+\lambda(y-x))-f(y) \leq(1-\lambda)\langle\nabla f(x+\lambda(y-x)), x-y\rangle$.
Multiply the first ineq, with $(1-\lambda)$ the 2 nd with λ.
$f(x+\lambda(y-x))-(1-\lambda) f(x)-\lambda f(y) \leq 0$.
Theorem 1.8.2. Let $S \subseteq \mathbb{R}^{n}$ be convex and open, and let $f: S \rightarrow \mathbb{R}$ be twice differentiable then f is convex if and only if $\nabla^{2} f(x)$ is positive semidefinite for all $x \in S$

Proof.

Let f be convex, let $d \in \mathbb{R}^{n}$
$\nabla^{2} f(x) d=\lim _{t \rightarrow 0} \frac{\nabla f(x+t d)-\nabla f(x)}{t}$
$\Rightarrow\left\langle d, \nabla^{2} f(x) d\right\rangle=\lim _{t \rightarrow 0} \frac{1}{t}\langle\nabla f(x+t d)-\nabla f(x),(x+t d)-x\rangle$
$\Rightarrow \geq 0$
bay property (iii) of the previous thm.
Let $\nabla^{2} f(x)$ be positlve semidefinite for all $x \in S$, by Taylor's thm,
$\forall x, y \in S: f(y)=f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2}\left\langle y-x, \nabla^{2} f(z)(y-x)\right\rangle$
With $z=(1-\lambda) x+\lambda y$ for some $0<\lambda<1$
$f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$
$\Rightarrow \mathrm{f}$ is convex.
(ii) of the previous thm

Chapter 2

Unconstrained Optimization Theory

2.1 Introduction

In this chapter, we consider the optimization problem

$$
\begin{cases}\text { minimize } & f(x) \\ \text { subject to } & x \in \Omega .\end{cases}
$$

The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that we wish to minimize is a real-valued function, and is called the objective function, or cost function. The vector x is an n-vector of independent variables, that is, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$. The variables $x_{1}, x_{2}, \ldots, x_{n}$ are often referred to as decision variables. The set Ω is a subset of \mathbb{R}^{n}, called the constraint set or feasible set. The optimization problem above can be viewed as a decision problem that involves finding the "best" vector x of the decision variables over all possible vectors in Ω. By the "best" vector we mean the one that results in the smallest value of the objective function. This vector is called the minimizer of f over Ω. It is possible that there may be many minimizers. In this case, finding any of the minimizers will suffice.

There are also optimization problems that require maximization of the objective function. These problems, however, can be represented in the above form because maximizing f
is equivalent to minimizing $-f$. Therefore, we can confine our attention to minimization problems without loss of generality(see [4],[13],[2]).

The above problem is a general form of a constrained optimization problem, because the decision variables are constrained to be in the constraint set Ω. If $\Omega=\mathbb{R}^{n}$, then we refer to the problem as an unconstrained optimization problem. In this chapter, we discuss basic properties of the general optimization problem above,

Examples of minimizers: \boldsymbol{x}_{1} : strict global minimizer; \boldsymbol{x}_{2} : strict local minimizer;
x_{3} : local (not strict) minimizer

Definition 2.1.1. Local minimizer. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a real-valued function defined on some set $\Omega \subset \mathbb{R}^{n}$. A point \widehat{x} is a local minimizer of fover Ω if there exists $\epsilon>0$ such
that $f(\widehat{x}) \leq f(x)$ for all $x \in \Omega \backslash\{\widehat{x}\}$ and $\|x-\widehat{x}\|<\epsilon$.

Definition 2.1.2. Global minimizer. A point $\widehat{x} \in \Omega$, is a global minimizer of f over Ω if $f(\widehat{x}) \leq f(x)$ for all $x \in \Omega \backslash\{\widehat{x}\}$.

Remark 2.1.1. If, in the above definitions, we replace " \leq " with " $<$ ", then we have a strict local minimizer and a strict global minimizer, respectively.

Remark 2.1.2. Of course, a global minimum (maximum) point is also a local minimum (maximum) point. As with global minimum and maximum points, we will also use the terminology local minimizer and local maximizer for local minimum and maximum points, respectively.

Another important issue is the one of deciding on whether a function actually has a global minimizer or maximizer. This is the issue of attainment or existence. A very well known result is due to Weierstrass, stating that a continuous function attains its minimum and maximum over a compact set.

2.2 Existence and Uniqueness of Optimal Solutions

Theorem 2.2.1. (Weierstrass theorem). Let f be a continuous function defined over a nonempty and compact set $\Omega \subseteq \mathbb{R}^{n}$. Then there exists a global minimum point off over Ω and a global maximum point off over Ω.

When the underlying set is not compact, the Weierstrass theorem does not guarantee the attainment of the solution, but certain properties of the function f can imply attainment of the solution even in the noncompact setting. One example of such a property is coerciveness.

Definition 2.2.1. (coerciveness). Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous function defined over \mathbb{R}^{n}.

The function f is called coercive if

$$
\lim _{\|x\| \rightarrow \infty} f(x)=\infty
$$

The important property of coercive functions that will be frequently used in this lecturenotes is that a coercive function always attains a global minimum point on any closed set.

Theorem 2.2.2. (attainment under coerciveness). Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous and coercive function and let $S \subseteq \mathbb{R}$ be a nonempty closed set. Then f has a global minimum point over S.

Proof. Let $x_{0} \in S$ be an arbitrary point in S. Since the function is coercive, it follows that there exists an $M>0$ such that

$$
\begin{equation*}
f(x)>f\left(x_{0}\right) \quad \text { for any } \quad x \text { such that } \quad\|x\|>M . \tag{2.1}
\end{equation*}
$$

Since any global minimizer x^{*} off over S satisfies $f\left(x^{*}\right)<f\left(x_{0}\right)$, it follows from (2.1) that the set of global minimizers off over S is the same as the set of global minimizers of f over $S \cap B[O, M]$. The set $S \cap B[O, M]$ is compact and nonempty, and thus by the Weierstrass theorem, there exists a global minimizer off over $S \cap B[O, M]$ and hence also over S.

Theorem 2.2.3. (strict convexity and uniqueness of sptimal solutions). where $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is strictly convex on Ω and Ω is a convex set. Then the optimal solution (assuming it exists) must be unique.

Proof. Suppose there were two optimal solutions $x, y \in \mathbb{R}^{n}$. This means that $x, y \in \Omega$ and

$$
\begin{equation*}
f(x)=f(y) \leq f(z), \quad \forall z \in \Omega . \tag{2.2}
\end{equation*}
$$

But consider $z=\frac{x+y}{2}$. By convexity of Ω, we have $z \in \Omega$. By strict convexity, we have

$$
\begin{aligned}
f(z) & =f\left(\frac{x+y}{2}\right) \\
& <\frac{1}{2} f(x)+\frac{1}{2} f(y) \\
& =\frac{1}{2} f(x)+\frac{1}{2} f(x) \\
& =f(x) .
\end{aligned}
$$

But this contradicts (2.2)

2.3 Conditions for optimality

Definition 2.3.1. A point $\widehat{x} \in \mathbb{R}^{n}$ at which $\nabla f(\widehat{x})=0$ is called a stationary point.

2.3.1 Necessary optimality conditions

Theorem 2.3.1. [3] Let $x_{\text {min }}$ be a local minimum of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If f is differentiable in an open neighborhood V of $x_{\text {min }}$, then,

$$
\begin{equation*}
\nabla f\left(x_{\text {min }}\right)=0 . \tag{2.3}
\end{equation*}
$$

If, in addition, f is twice differentiable on V, then

$$
\begin{equation*}
\nabla^{2} f\left(x_{\min }\right) \text { is positive semidefinite. } \tag{2.4}
\end{equation*}
$$

Condition (2.1) is said to be a first-order necessary condition, and condition (2.2) is said to be a second-order necessary condition.

Proof. We recall that $-\nabla f(\widehat{x})$ is the direction of the steepest descent in \widehat{x} (Lemma 1.6.1) and assume by contradiction that $\nabla f(\widehat{x}) \neq 0$. We can then use Theorem 1.5 .2 with the descent direction $d=-\nabla f(\widehat{x})$ to obtain ε such that

$$
f(\widehat{x}-t \nabla f(\widehat{x}))<f(\widehat{x}), \quad \forall t \in] 0, \varepsilon],
$$

which contradicts the optimality of \hat{x} and demonstrates the first-order condition. To demonstrate the second-order condition, we invoke Taylor's theorem in \widehat{x}, with an arbitrary direction d and an arbitrary step $t>0$ such that $\widehat{x}+t d \in V$.

As

$$
f(\widehat{x}+t d)-f(\widehat{x})=t d^{T} \nabla f(\widehat{x})+\frac{1}{2} t^{2} d^{T} \nabla^{2} f(\widehat{x}) d+0\left(\|t d\|^{2}\right)
$$

we have

$$
\begin{aligned}
f(\widehat{x}+t d)-f(\widehat{x}) & =\frac{1}{2} t^{2} d^{T} \nabla^{2} f(\widehat{x}) d+0\left(\|t d\|^{2}\right) \quad \text { from }(2.3) \\
& =\frac{1}{2} t^{2} d^{T} \nabla^{2} f(\widehat{x}) d+0\left(t^{2}\right) \quad\|d\| \quad \text { does not depend ont } \\
& \geq 0 \quad \widehat{x} \quad \text { is optimal. }
\end{aligned}
$$

When we divide by t^{2}, we get

$$
\frac{1}{2} d^{T} \nabla^{2} f(\widehat{x}) d+\frac{0\left(t^{2}\right)}{t^{2}} \geq 0
$$

Intuitively, as the second term can be made as small as desired, the result must hold.
More formally, let us assume by contradiction that $d^{T} \nabla^{2} f(\widehat{x}) d$ is negative and that its value is -2η, with $\eta>0$. According to the Landau notation $o($.$) ,$
for all $\eta>0$, there exists ε such that

$$
\frac{\left|0\left(t^{2}\right)\right|}{t^{2}}<\eta, \quad \forall 0<t \leq \varepsilon,
$$

and

$$
\frac{1}{2} d^{T} \nabla^{2} f(\widehat{x}) d+\frac{0\left(t^{2}\right)}{t^{2}} \leqslant \frac{1}{2} d^{T} \nabla^{2} f(\widehat{x}) d+\frac{\left|0\left(t^{2}\right)\right|}{t^{2}}<-\frac{1}{2} 2 \eta+\eta=0,
$$

which contradicts and proves that $d^{T} \nabla^{2} f(\widehat{x}) d \geq 0$. Since d is an arbitrary direction, $\nabla^{2} f(\widehat{x})$ is positive semidefinite

2.3.2 Sufficient optimality conditions

Theorem 2.3.2. Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice differentiable in an open subset V of \mathbb{R}^{n} and let $\hat{x} \in V$ satisfy the conditions

$$
\begin{equation*}
\nabla f(\widehat{x})=0 . \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} f(\widehat{x}) \text { is positive definite. } \tag{2.6}
\end{equation*}
$$

In this case, \widehat{x} is a local minimum of f.

Proof.

We assume by contradiction that there exists a direction d and $\varepsilon>0$ such that, for any $0<t \leq \varepsilon, f(\widehat{x}+t d)<f(\widehat{x})$. With an identical approach to the proof of Theorem 2.3.1, we have

$$
\frac{f(\widehat{x}+t d)-f(\widehat{x})}{t^{2}}=\frac{1}{2} d^{T} \nabla^{2} f(\widehat{x}) d+\frac{o\left(t^{2}\right)}{t^{2}}
$$

and

$$
\frac{1}{2} d^{T} \nabla^{2} f(\widehat{x}) d+\frac{o\left(t^{2}\right)}{t^{2}}<0
$$

or

$$
\frac{1}{2} d^{T} \nabla^{2} f(\widehat{x}) d+\frac{o\left(t^{2}\right)}{t^{2}}+\eta=0
$$

with $\eta>0$.According to the definition of the Landau notation $o($.
there exists $\bar{\varepsilon}$ such that

$$
\frac{\left|o\left(t^{2}\right)\right|}{t^{2}}<\eta, \quad \forall t, 0<t \leq \bar{\varepsilon},
$$

and then, for any $t \leq \min (\varepsilon, \bar{\varepsilon})$, we have

$$
-\frac{o\left(t^{2}\right)}{t^{2}} \leq \frac{\left|o\left(t^{2}\right)\right|}{t^{2}}<\eta,
$$

such that

$$
\frac{1}{2} d^{T} \nabla^{2} f(\hat{x}) d=-\frac{o\left(t^{2}\right)}{t^{2}}-\eta<0
$$

which contradicts the fact that $\nabla^{2} f(\widehat{x})$ is positive definite.

Chapter 3

Unconstrained Optimization Methods

3.1 Steepest Descent (CAUCHY) Method

The use of the negative of the gradient vector as a direction for minimization was first made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X_{1} and iteratively move along the steepest descent directions until the optimum point is found. The steepest descent method can be summarized by the following steps:

1. Start with an arbitrary initial point X_{1}. Set the iteration number as $i=1$.
2. Find the search direction S_{i} as

$$
\begin{equation*}
S_{i}=-\nabla f_{i}=-\nabla f\left(X_{i}\right) \tag{3.1}
\end{equation*}
$$

3. Determine the optimal step length $\widehat{\lambda}_{i} \mathrm{i}$ in the direction S_{i} and set

$$
\begin{equation*}
X_{i+1}=X_{i}+\widehat{\lambda}_{i} S_{i}=X_{i}-\widehat{\lambda}_{i} \nabla f_{i} \tag{3.2}
\end{equation*}
$$

4. Test the new point, X_{i+1}, for optimality. If X_{i+1} is optimum, stop the process. Otherwise, go to step 5.
5. Set the new iteration number $i=i+1$ and go to step 2 .

The method of steepest descent may appear to be the best unconstrained minimization technique since each one-dimensional search starts in the "best" direction. However, owing to the fact that the steepest descent direction is a local property, the method is not really effective in most problems.

Example 3.1.1. Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ starting from the point $X_{1}=$ $(0,0)$.

SOLUTION

Iteration 1

The gradient of f is given by

$$
\begin{gathered}
\nabla f(x)=\binom{\frac{\partial f}{\partial x_{1}}(x)}{\frac{\partial f}{\partial x_{2}}(x)}=\binom{1+4 x_{1}+2 x_{2}}{-1+2 x_{1}+2 x_{2}} \\
\nabla f_{1}=\nabla f\left(X_{1}\right)=\binom{1}{-1}
\end{gathered}
$$

Therefore,

$$
S_{1}=-\nabla f_{1}=\binom{1}{-1}
$$

To find X_{2}, we need to find the optimal step length $\widehat{\lambda}_{1}$. For this, we minimize $f\left(X_{1}+\lambda_{1} S_{1}\right)=$ $f\left(-\lambda_{1}, \lambda_{1}\right)=\lambda_{1}^{2}-2 \lambda_{1}$ with respect to λ_{1}. Since $d f / d \lambda_{1}=0$ at $\hat{\lambda}_{1}=1$, we obtain

$$
X_{2}=X_{1}+\widehat{\lambda}_{1} S_{1}=\binom{0}{0}+1\binom{-1}{1}=\binom{-1}{1}
$$

As $\nabla f_{2}=\nabla f\left(X_{2}\right)=\binom{-1}{-1} \neq\binom{ 0}{0}, X_{2}$ is not optimum.

Iteration 2

$$
S_{2}=-\nabla f_{2}=\binom{1}{1}
$$

To minimize

$$
f\left(X_{2}+\lambda_{2} S_{2}\right)=f\left(-1+\lambda_{2}, 1+\lambda_{2}\right)=5 \lambda_{2}^{2}-2 \lambda_{2}-1
$$

we set $d f / \lambda_{2}=0$. This gives $\widehat{\lambda}_{2}=\frac{1}{5}$, and hence

$$
X_{3}=X_{2}+\hat{\lambda}_{2} S_{2}=\binom{-1}{1}+\frac{1}{5}\binom{1}{1}=\binom{-0.8}{1.2}
$$

Since the components of the gradient at $X_{3}, \nabla f_{3}=\binom{0.2}{-0.2}$, are not zero, we proceed to the next iteration.

Iteration 3

$$
S_{3}=-\nabla f_{3}=\binom{-0.2}{0.2}
$$

As

$$
f\left(X_{3}+\lambda_{3} S_{3}\right)=f\left(-0.8+0.2 \lambda_{3}, 1.2+0.2 \lambda_{3}\right)=0.04 \lambda_{3}^{2}-0.08 \lambda_{3}-1.2 .
$$

$\frac{d f}{d \lambda_{3}}=0$ at $\hat{\lambda}_{3}=1.0$
Therefore,

$$
X_{4}=X_{3}+\hat{\lambda}_{3} S_{3}=\binom{-0.8}{1.2}+1.0\binom{-0.2}{0.2}=\binom{-1.0}{1.4}
$$

The gradient at X_{4} is given by

$$
\nabla f_{4}=\binom{-0.20}{-0.20}
$$

Since $\nabla f_{4} \neq\binom{ 0}{0} X_{4}$ is not optimum and hence we have to proceed to the next iteration. This process has to be continued until the optimum point, $\widehat{X}=\binom{-1.0}{1.5}$, is found. Convergence Criteria : The following criteria can be used to terminate the iterative process.

1. When the change in function value in two consecutive iterations is small:

$$
\begin{equation*}
\left|\frac{f\left(X_{i+1}\right)-f\left(X_{i}\right)}{f\left(X_{i}\right)}\right| \leq \varepsilon_{1} \tag{3.3}
\end{equation*}
$$

2. When the partial derivatives (components of the gradient) of f are small:

$$
\begin{equation*}
\left|\frac{\partial f}{\partial x_{i}}\right| \leq \varepsilon_{2} \tag{3.4}
\end{equation*}
$$

3. When the change in the design vector in two consecutive iterations is small:

$$
\begin{equation*}
\left|X_{i+1}-X_{i}\right| \leq \varepsilon_{3} \tag{3.5}
\end{equation*}
$$

3.2 Conjugate Gradient (FLETCHER-REEVES) Method

The convergence characteristics of the steepest descent method can be improved greatly by modifying it into a conjugate gradient method (which can be considered as a conjugate directions method involving the use of the gradient of the function). That any minimization method that makes use of the conjugate directions is quadratically convergent. This property of quadratic convergence is very useful because it ensures that the method will minimize a quadratic function in n steps or less. Since any general function can be approximated reasonably well by a quadratic near the optimum point, any quadratically convergent method is expected to find the optimum point in a finite number of iterations.

We have seen that Powell's conjugate direction method requires n single-variable minimizations per iteration and sets up a new conjugate direction at the end of each iteration. Thus it requires, in general, n^{2} single-variable minimizations to find the minimum of a quadratic function. On the other hand, if we can evaluate the gradients of the objective function, we can set up a new conjugate direction after every one-dimensional minimization, and hence we can achieve faster convergence. The construction of conjugate directions and development of the Fletcher-Reeves method are discussed in this section.

3.2.1 Development of the Fletcher-Reeves Method

The Fletcher-Reeves method is developed by modifying the steepest descent method to make it quadratically convergent. Starting from an arbitrary point X_{1}, the quadratic function

$$
\begin{equation*}
f(X)=\frac{1}{2} X^{T}[A] X+B^{T} X+C \tag{3.6}
\end{equation*}
$$

can be minimized by searching along the search direction $S_{1}=-\nabla f_{1}$ (steepest descent direction)

$$
\begin{equation*}
\widehat{\lambda}_{1}=-\frac{S_{1}^{T}}{S_{1}^{T}} \frac{\nabla f_{1}}{A S_{1}} \tag{3.7}
\end{equation*}
$$

The second search direction S_{2} is found as a linear combination of S_{1} and $-\nabla f_{2}$:

$$
\begin{equation*}
S_{2}=-\nabla f_{2}+\beta_{2} S_{1} \tag{3.8}
\end{equation*}
$$

where the constant β_{2} can be determined by making S_{1} and S_{2} conjugate with respect to [A].

$$
\begin{equation*}
\beta_{2}=-\frac{\nabla f_{2}^{T} \nabla f_{2}}{\nabla f_{1}^{T} S_{1}}=\frac{\nabla f_{2}^{T} \nabla f_{2}}{\nabla f_{1}^{T} \nabla f_{1}} \tag{3.9}
\end{equation*}
$$

This process can be continued to obtain the general formula for the i th search direction
as

$$
\begin{equation*}
S_{i}=-\nabla f_{i}+\beta_{i} S_{i-1} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{i}=\frac{\nabla f_{i}^{T} \nabla f_{i}}{\nabla f_{i-1}^{T} \nabla f_{i-1}} \tag{3.11}
\end{equation*}
$$

Thus the Fletcher-Reeves algorithm can be stated as follows.

3.2.2 Fletcher-Reeves Method

The iterative procedure of Fletcher-Reeves method can be stated as follows:

1. Start with an arbitrary initial point X_{1}.
2. Set the first search direction $S_{1}=-\nabla f\left(X_{1}\right)=-\nabla f_{1}$.
3. Find the point X_{2} according to the relation

$$
\begin{equation*}
X_{2}=X_{1}+\widehat{\lambda}_{1} S_{1} \tag{3.12}
\end{equation*}
$$

where $\widehat{\lambda}_{1}$ is the optimal step length in the direction S_{1}. Set $i=2$ and go to the next step.
4. Find $\nabla f_{i}=\nabla f\left(X_{i}\right)$, and set

$$
\begin{equation*}
S_{i}=-\nabla f_{i}+\frac{\left|\nabla f_{i}\right|^{2}}{\left|\nabla f_{i-1}\right|^{2}} S_{i-1} \tag{3.13}
\end{equation*}
$$

5. Compute the optimum step length $\hat{\lambda}_{i}$ in the direction S_{i}, and find the new point

$$
\begin{equation*}
X_{i+1}=X_{i}+\widehat{\lambda}_{i} S_{i} \tag{3.14}
\end{equation*}
$$

6. Test for the optimality of the point X_{i+1}. If X_{i+1} is optimum, stop the process. Otherwise, set the value of $i=i+1$ and go to step 4 .

Example 3.2.1. Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ starting from the point $X_{1}=$ $(0,0)$.

SOLUTION

Iteration 1

The gradient of f is given by

$$
\begin{gathered}
\nabla f(x)=\binom{\frac{\partial f}{\partial x_{1}}(x)}{\frac{\partial f}{\partial x_{2}}(x)}=\binom{1+4 x_{1}+2 x_{2}}{-1+2 x_{1}+2 x_{2}} \\
\nabla f_{1}=\nabla f\left(X_{1}\right)=\binom{1}{-1}
\end{gathered}
$$

The search direction is taken as

$$
S_{1}=-\nabla f_{1}=\binom{1}{-1}
$$

To find the optimal step length $\hat{\lambda}_{1}$ along S_{1}, we minimize $f\left(X_{1}+\lambda_{1} S_{1}\right)$ with respect to λ_{1}. Here

$$
\begin{gathered}
f\left(X_{1}+\lambda_{1} S_{1}\right)=f\left(-\lambda_{1}, \lambda_{1}\right)=\lambda_{1}^{2}-2 \lambda_{1} \\
\frac{d f}{d \lambda_{1}}=0 \quad \text { at } \quad \hat{\lambda}_{1}=1
\end{gathered}
$$

Therefore,

$$
X_{2}=X_{1}+\widehat{\lambda}_{1} S_{1}=\binom{0}{0}+1\binom{-1}{1}=\binom{-1}{1}
$$

Iteration 2

Since $\nabla f_{2}=\nabla f\left(X_{2}\right)=\binom{-1}{-1}$, Eq. (3.13) gives the next search direction as

$$
S_{2}=-\nabla f_{2}+\frac{\left|\nabla f_{2}\right|^{2}}{\left|\nabla f_{1}\right|^{2}} S_{1}
$$

where

$$
\left|\nabla f_{1}\right|^{2}=2 \quad \text { and } \quad\left|\nabla f_{2}\right|^{2}=2
$$

Therefore,

$$
S_{2}=-\binom{-1}{-1}+\frac{2}{2}\binom{-1}{1}=\binom{0}{+2}
$$

To find $\hat{\lambda}_{2}$, we minimize

$$
\begin{aligned}
f\left(X_{2}+\lambda_{2} S_{2}\right) & =f\left(-1,1+2 \lambda_{2}\right) \\
& =-1-\left(1+2 \lambda_{2}\right)+2-2\left(1+2 \lambda_{2}\right)+\left(1+2 \lambda_{2}\right)^{2} \\
& =4 \lambda_{2}^{2}-2 \lambda_{2}-1
\end{aligned}
$$

with respect to λ_{2}. As $d f / d \lambda_{2}=8 \lambda_{2}-2=0$ at $\hat{\lambda}_{2}=\frac{1}{4}$, we obtain

$$
X_{3}=X_{2}+\widehat{\lambda}_{2} S_{2}=\binom{-1}{-1}+\frac{1}{4}\binom{0}{2}=\binom{-1}{1.5}
$$

Thus the optimum point is reached in two iterations. Even if we do not know this point to be optimum, we will not be able to move from this point in the next iteration. This can be verified as follows.

Iteration 3

Now

$$
\nabla f_{3}=\nabla f\left(X_{3}\right)=\binom{0}{0}, \quad\left|\nabla f_{2}\right|^{2}=2, \quad \text { and } \quad\left|\nabla f_{3}\right|^{2}=0
$$

Thus

$$
S_{3}=-\nabla f_{3}+\left(\left|\nabla f_{3}\right|^{2} /\left|\nabla f_{2}\right|^{2}\right) S_{2}=-\binom{0}{0}+\frac{0}{2}\binom{0}{0}=\binom{0}{0}
$$

This shows that there is no search direction to reduce f further, and hence X_{3} is optimum.

3.3 NEWTON'S Method

Newton's method can be extended for the minimization of multivariable functions. For this, consider the quadratic approximation of the function $f(X)$ at $X=X_{i}$ using the Tay-
lor's series expansion

$$
\begin{equation*}
f(X)=f\left(X_{i}\right)+\nabla f_{i}^{T}\left(X-X_{i}\right)+\frac{1}{2}\left(X-X_{i}\right)^{T}\left[J_{i}\right]\left(X-X_{i}\right) \tag{3.15}
\end{equation*}
$$

where $\left[J_{i}\right]=[J] \mid X_{i}$ is the matrix of second partial derivatives (Hessian matrix) of f evaluated at the point X_{i}. By setting the partial derivatives of Eq. (3.15) equal to zero for the minimum of $f(X)$, we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}=0, \quad j=1,2, \ldots, n \tag{3.16}
\end{equation*}
$$

Equations (3.16) and (3.15) give

$$
\begin{equation*}
\nabla f=\nabla f_{i}\left[J_{i}\right]\left(X-X_{i}\right)=0 \tag{3.17}
\end{equation*}
$$

If $\left[J_{i}\right.$] is nonsingular, Eqs. (3.17) can be solved to obtain an improved approximation ($X=X_{i+1}$) as

$$
\begin{equation*}
X_{i+1}=X_{i}-\left[J_{i}\right]^{-1} \nabla f_{i} \tag{3.18}
\end{equation*}
$$

Since higher-order terms have been neglected in Eq. (3.15), Eq. (3.18) is to be used iteratively to find the optimum solution \widehat{X}.

The sequence of points $X_{1}, X_{2}, \ldots, X_{i+1}$ can be shown to converge to the actual solution \widehat{X} from any initial point X_{1} sufficiently close to the solution \widehat{X}, provided that $\left[J_{1}\right]$ is nonsingular. It can be seen that Newton's method uses the second partial derivatives of the objective function (in the form of the matrix $\left[J_{i}\right]$) and hence is a second-order method.

Example 3.3.1. Show that the Newton's method finds the minimum of a quadratic function in one iteration.

SOLUTION

Let the quadratic function be given by

$$
f(X)=\frac{1}{2} X^{T}[A] X+B^{T} X+C
$$

The minimum of $f(X)$ is given by

$$
\nabla f=[A] X+B=0
$$

or

$$
\widehat{X}=-[A]^{-1} B
$$

The iterative step of Eq. (3.18) gives

$$
\begin{equation*}
X_{i+1}=X_{i}-[A]^{-1}\left([A] X_{i}+B\right) \tag{1}
\end{equation*}
$$

where X_{i} is the starting point for the i th iteration. Thus Eq. (E_{1}) gives the exact solution

$$
X_{i+1}=\widehat{X}=-[A]^{-1} B
$$

Figure 3.01 illustrates this process.

Example 3.3.2. Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ by taking the starting point as $X_{1}=(0,0)$.

SOLUTION

To find X_{2} according to Eq. (3.18), we require $\left[J_{1}\right]^{-1}$, where

$$
\left[J_{1}\right]=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}
\end{array}\right)_{X_{1}}=\left(\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right)
$$

Figure 3.01 Minimization of a quadratic function in one step.

Therefore,

$$
\left[J_{1}\right]^{-1}=\frac{1}{4}\left(\begin{array}{cc}
+2 & -2 \\
-2 & 4
\end{array}\right)=\left(\begin{array}{cc}
+\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right)
$$

As

$$
g_{1}=\binom{\partial f / \partial x_{1}}{\partial f / \partial x_{2}}_{X_{1}}=\binom{1+4 x_{1}+2 x_{2}}{-1+2 x_{1}+2 x_{2}}_{(0,0)}=\binom{+1}{-1}
$$

Equation (3.18) gives

$$
X_{2}=X_{1}-\left[J_{1}\right]^{-1} g_{1}=\binom{0}{0}-\left(\begin{array}{cc}
+\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right)\binom{1}{-1}=\binom{-1}{\frac{3}{2}}
$$

To see whether or not X_{2} is the optimum point, we evaluate

$$
g_{2}=\binom{\partial f / \partial x_{1}}{\partial f / \partial x_{2}}_{X_{2}}=\binom{1+4 x_{1}+2 x_{2}}{-1+2 x_{1}+2 x_{2}}_{(-1,3 / 2)}=\binom{0}{0}
$$

As $g_{2}=0, X_{2}$ is the optimum point. Thus the method has converged in one iteration for this quadratic function.

If $f(X)$ is a nonquadratic function, Newton's method may sometimes diverge, and it may converge to saddle points and relative maxima. This problem can be avoided by modifying Eq. (3.18) as

$$
\begin{equation*}
X_{i+1}=X_{i}+\widehat{\lambda}_{i} S_{i}=X_{i}-\widehat{\lambda}_{i}\left[J_{i}\right]^{-1} \nabla f_{i} \tag{3.19}
\end{equation*}
$$

where $\widehat{\lambda}_{i}$ is the minimizing step length in the direction $S_{i}=-\widehat{\lambda}_{i}\left[J_{i}\right]^{-1} \nabla f_{i}$. The modification indicated by Eq. (3.19) has a number of advantages. First, it will find the minimum in lesser number of steps compared to the original method. Second, it finds the minimum point in all cases, whereas the original method may not converge in some cases. Third, it usually avoids convergence to a saddle point or a maximum. With all these advantages, this method appears to be the most powerful minimization method. Despite these advantages, the method is not very useful in practice, due to the following features of the method:

1. It requires the storing of the $n \times n$ matrix $\left[J_{i}\right]$.
2. It becomes very difficult and sometimes impossible to compute the elements of the ma$\operatorname{trix}\left[J_{i}\right]$.
3. It requires the inversion of the matrix $\left[J_{i}\right]$ at each step.
4. It requires the evaluation of the quantity $\left[J_{i}\right]^{-1} \nabla f_{i}$ at each step.

These features make the method impractical for problems involving a complicated objective function with a large number of variables.

Chapter 4

Practical Work

4.1 TP No. 01

TP1RABAH

Extreme point analysis

$$
\begin{aligned}
& \text { For the function } f: \\
& \Re^{2} \longrightarrow \Re \text { Définie } f(x, y)=2 x^{3}+2 y^{3}-9 x^{2}+3 y^{2}-12 y
\end{aligned}
$$

To find the critical points, we use the symbolic variables syms of
Matlab(Symbolic Toolbox) which make it easy to find partial derivativesl
Command Window
S3 syms $\mathrm{x} y$
$f=2 * x^{\wedge} 3+2 * y^{\wedge} 3-9 * x^{\wedge} 2+3 * y^{\wedge} 2-12 * y$;
fx=diff(f, x)
$\mathrm{f}_{\mathrm{Y}}=\operatorname{diff}(\mathrm{f}, \mathrm{y})$
$\mathrm{fx}=$
$6 * x^{*} 2-18 * x$
$\mathrm{f}_{\mathrm{y}}=$
$6 * y^{\wedge} 2+6 * y-12$
We use the solve command to find the place where the partial drifts are
simultaneously equal to zero
>>s=solve (fx, fy)
$s=$
$\mathrm{x}:$ [4x1 3 ym]
$\mathrm{y}:\left[\begin{array}{lll}4 \times 1 & \mathrm{yym}\end{array}\right]$
To examine the S camps, we write...
> [S.x,S.y]
ans $=$
$\left[\begin{array}{ll}0, & 1]\end{array}\right.$
$[0,-2]$
$\left[\begin{array}{ll}3, & 1]\end{array}\right.$
$[3,-2]$
To classify the points we use the second derivative test, which consists
of evaluating the sign of the determinant of the Hessian matrix
$|H|=f_{x x}(x, y) * f_{y y}(x, y)-f_{x y}^{2}(x, y)$

We define
>> $\mathrm{fxx}=\mathrm{diff}(\mathrm{fx}, \mathrm{x})$ $\mathrm{f}_{\mathrm{y}} \mathrm{y}=\mathrm{diff}(\mathrm{f} \mathrm{y}, \mathrm{y})$ $\mathrm{fxy}=\mathrm{diff}(\mathrm{fx}, \mathrm{y})$
$\mathrm{f} \mathrm{xx}=$
$12 * \mathrm{x}-18$
$\mathrm{f}_{\mathrm{YY}}=$
$12 * y+6$
$\mathrm{fxy}=$
0
And we evaluate them at each point found previously. As f is defined as a value
symbolic, the command to write is:

(x, y)	$f_{x x}(x, y)$	$f_{x x}(x, y) * f_{y y}(x, y)-f_{x y}^{2}(x, y)$	Classification
$(0,1)$	-7	-324	Saddle point
$(0,-2)$	20	324	Local minimum
$(3,1)$	-34	324	Local maximum
$(3,-2)$	-7	-324	Saddle point

To visualize the solutions and ensure the correct classification of the points, we create a mesh of points, and we define the function:

```
>> [x,y]=meshgrid(-5:0.1:5);
z=2*x. }\mp@subsup{}{}{\wedge}3+2*y.\mp@subsup{}{}{\wedge}3-9*x. A2+3*y. '^2-12*y
mesh(x,Y,z)
xlabel('x")
Ylabel ('Y')
zlabel(z='f(x,y)")
```

| Figure 1 | \square | |
| :--- | :--- | :--- | :--- |

File Edit View Insert Tools Desktop Window Help v

To better locate the points we use a contour map and locate the points
there:
\gg contour $(\mathrm{x}, \mathrm{y}, \mathrm{z}, 50)$
hold on
plot ($0,1, \mathrm{r}^{*}{ }^{\prime}$)

Example: For the function f : $f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}$ Find the critical points.

4.2 TP No. 02

TP2RABAH

Example: $y(x)=2 x^{2}+20 x-22$
We want to find for what value of x the function has its minimum value:

THE fplot COMMAND

The fplot command plots a function with the form $y=f(x)$ between specified limits. The command has the form:

Méthode1
>> fplot('2* $\left.{ }^{\wedge}{ }^{\wedge} 2+20^{*} x-22^{\prime},[-2020], ~ '--r '\right)$
Méthode2
$\gg x=[-20: 0.1: 20] ;$
$y=2 .{ }^{*} x .{ }^{\wedge} 2+20 .{ }^{*} x-22$;
$\operatorname{plot}(x, y)$
Méthode3
Editor Window (TP2RABAH1.m) and Figure Window

Mysimplefunc.m and TP2RABAH2.m

Optimization

We have that:
$\frac{d y}{d x}=4 x+20$
Minimum when: Given the following function:
$\frac{d y}{d x}=0$
This gives: We will:
$4 x+20=0 \quad$ - Plot the function
$x=-5 \quad$ - Find the minimum for this function

4.3 TP No. 03

TP3RABAH

Optimization - Rosenbrock's Banana Function

Banana_plot.m

Méthode 1 et 2

$$
\begin{aligned}
& \text { function } f=\text { bananafunc }(x) \\
& f=(1-x(1)) \cdot \wedge 2+100 \cdot \star(x(2)-x(1) \cdot \wedge 2) \cdot \wedge 2
\end{aligned}
$$

```
[x,fval] = fminsearch (@bananafunc, [-1.2;1])
```

From MATLAB we get:

```
x = 1.0000 1.0000
fval = 8.1777e-10
    Which is correct
```


4.4 TP No. 04

(see [7])

TP4RABAH

MATLAB Code of Steepes \dagger Descent (Cauchy) Method

Perform 4 iterations of Steepest Descent Algorithm to

$$
\begin{aligned}
& \text { Minimize } f\left(x_{1}, x_{2}\right) \\
& =x_{1}-x_{2}+2 x_{1}^{2} \\
& \quad+2 x_{1} x_{2}+x_{2}^{2} \\
& \text { starting from the point } \\
& \quad X_{1}=(1,1)
\end{aligned} \text { Perform } 4 \text { iterations of Steepest } \quad \begin{aligned}
& \text { Descent Algorithm to } \\
& \text { Minimize } f\left(x_{1}, x_{2}\right) \\
& =x_{1}-x_{2}+2 x_{1}^{2} \\
& \quad+2 x_{1} x_{2}+x_{2}^{2} \\
& \text { starting from the point } \\
& \quad X_{1}=(1,1)
\end{aligned}
$$

MATLAB CODE: EXPLANATION

format short \% Display output upto 4 digits
clear all \% Clear all the Stored Variable
clc \quad \% Clear the screen
syms $\times 1 \times 2$
\% Define Objective function
$\mathrm{f} 1=\mathrm{x} 1-\mathrm{x} 2+2^{\star} \mathrm{x} 1^{\wedge} 2+2^{\star} \mathrm{x} 1^{\star} \mathrm{x} 2+\mathrm{x} 2^{\wedge} 2$;
$\mathrm{fx}=$ inline (f1); \% Convert to function
fobj $=@(x)$ fx $(x(:, 1), x(:, 2))$;
\% Gradient of f
grad $=$ gradient(f1); \% Compute gradient
$\mathrm{G}=$ inline (grad); \% Convert to function
gradx $=@(x)$ G(x(:,1), $x(:, 2))$;
\% Hessian Matrix
H1 = hessian (f1); \% Compute Hessian

$\begin{aligned} & \text { n } \\ & \text { ~ } \\ & \text { ? } \end{aligned}$	$\text { 1: Calculate } S_{i}=-\nabla$
	$\text { 2: Calculate } \lambda_{i}=\frac{S_{T}^{T} s_{i}}{S_{S}^{T} H_{i} S_{i}} \text { and }$
	3: Check the optimum of X_{i+1} by $\nabla f\left(X_{i+1}\right) \cong 0$.

[$\mathrm{x} ; \mathrm{x} 0]$; \% Save all vectors		
	$\mathrm{S}=-\mathrm{gradx}(\mathrm{x} 0)$;	\% Compute Gradient at X
	$\mathrm{H}=\mathrm{Hx}(\mathrm{x} 0)$;	\% Compute Hessian at X
lam $=S^{\prime} * \mathrm{~S} . /\left(\mathrm{S}^{\prime *} \mathrm{H}^{*} \mathrm{~S}\right)$; \% Compute Lambda		
	xnew $=x 0+1 \mathrm{am}$.*	; \% Update X
	x0 = Xnew;	\% Save new X
	iter = iter+1;	\% Update iteration
end		

```
%%% PRINT the Solution
fprintf('Optimal Solution x = [%f, %f]\n',x0(1), x0(2));
fprintf('Optimal value f(x) = %f \n',fobj(x0));
    =========== END of the CODE ==============
Optimal Solution x = [-0.981216, 1.495304]
Optimal value f(x) = -1.249449
> X
X =
\begin{tabular}{rr}
1.0000 & 1.0000 \\
-0.3624 & 0.4161 \\
-0.8062 & 1.4515 \\
-0.9382 & 1.3950
\end{tabular}
>>
```


4.5 TP No. 05

(see [7])

TP5RABAH

Conjugate Gradient (Fletcher - Reeves) Method
MATLAB CODE

Optimize
Minimize $f\left(x_{1}, x_{2}\right)$
$=x_{1}-x_{2}+2 x_{1}^{2}$
$+2 x_{1} x_{2}+x_{2}^{2}$
starting from the point $X_{1}=(1,1)$
using Conjugate Gradient
(Fletcher - Reeves) Method

>> format short	>> format long	MATLAB CODE
$\begin{array}{r} \begin{aligned} \gg 10 / 3 \\ \text { ans }= \\ 3.3333 \end{aligned} \\ \gg 2 / 5 \\ \text { ans }= \\ 0.4000 \end{array}$	```>> 2/5 ans = 0.400000000000000 >> 10/3 ans = 3.333333333333334```	

MATLAB CODE: EXPLANATION

\% Define Objective function
\% Gradient of f
\% Hessian Matrix

\% Gradient of f grad $=$ gradient(f1); \% Compute gradient	\% Hessian Matrix H1 = hessian(f1); \% Compute Hessia
$\begin{aligned} & \gg \text { gradient(f1) } \\ & \text { ans }= \\ & 4^{\star} \times 1+2 \star \times 2+1 \\ & 2^{\star} \times 1+2 \star \times 2-1 \\ & \gg \text { grad=gradient (f1) } \\ & \text { grad }= \\ & 4^{\star} \times 1+2^{\star} \times 2+1 \\ & 2^{\star} \times 1+2^{\star} \times 2-1 \end{aligned}$	$\begin{aligned} & \gg \text { hessian (f1) } \\ & \text { ans }= \\ & {[4,2]} \\ & {[2,2]} \end{aligned}$
\% Define Objective function $\begin{aligned} & f 1=x 1-x 2+2^{\star} \times 1^{\wedge} 2+2^{\star} \times 1^{\star} \times 2+x 2^{\wedge} 2 ; \\ & \text { fx }=\text { inline }(f 1) ; \quad \% \text { Convert to function } \\ & \text { fobj }=@(x) \text { fx }(x(:, 1), x(:, 2)) ; \end{aligned}$	```>> fx=inline(f1) fx = Inline function: fx(x1,x2) = x1-x2+x1.*x2.*2.0+x1.^2.*2.0+x2.^2 >> fx(0,1) ans = 0 fx(2,7) ans = 8 0 >> fx(2,-6) ans = 28 >> fobj fobj = @(x) fx(x (:, 1), x(:,2))```
```% Gradient of f grad = gradient(f1); % Compute gradient G = inline(grad); % Convert to function gradx=@(x) G(x(:,1), x(:,2));```	$\begin{aligned} & \gg \text { grad } \\ & \text { grad }= \\ & 4^{\star} \mathrm{x} 1+2^{\star} \mathrm{x} 2+1 \\ & 2^{\star} \mathrm{x} 1+2^{\star} \mathrm{x} 2-1 \end{aligned}$

Lecture Notes
3rd Year Degree in Mathematics

Author : Dr. Rabah DEBBAR Academic year 2023/2024


\%\%\% PRINT the Solution
fprintf('Optimal Solution $\left.x=[8 f, \% f] \backslash n^{\prime}, x 0(1), x 0(2)\right)$;
fprintf('optimal value $\left.f(x)=8 f \backslash n^{\prime}, f o b j(x 0)\right)$;
=========== END of the CODE ==============
\%\%\% Conjugate Gradient (Flecter-Reeves) METHOD (Quadratic function only)
\%웅ㅇㅇ MATLAB CODE

```
- format short
- clear all
- clc
syms x1 x2
 x0 = [1 1];
 tol = 1e-3;
 maxiter = 4;
 % Objective function:
 8 f1 = x1.^2-x1.*x2+3.* *2.^2;
% Gradient of f
 grad = gradient(f1);
 G = inline(grad);
 gradx = e(x) G(x(:,1), x(:,2));
 % Hessian matrix
 H1 = hessian(f1);
 Hx = inline(H1);
 88% MAIN CODE Fleetcher-Reeves method
 X = [];
 S = 0; % initial S_0 = 0
 iter = 1; %for iteration
 Gpr = -gradx (x0); % initial Gradient at i-1
 if norm(Gpr)==0
 disp('Change x0');
 x0 = input('Provide New x0=');
 Gpr = - gradx (x0);
 end
 while norm(gradx (x0))>tol && iter<maxiter
 X = [X;x0];
 Gi = -gradx (x0);
Optimal solution x = [-1.000000, 1.500000]
Optimal value f(x) = -1.250000
> X
x =
 1.0000 1.0000
 -0.3624 0.4161
Change x0
Provide New }\textrm{x}0=[\begin{array}{ll}{0}&{0.6}\end{array}
Optimal Solution }x=[-1.000000, 1.500000]
Optimal value f(x) = -1.250000
>> X
X= X=
\begin{tabular}{rr}
0 & 0.6000 \\
-0.5064 & 0.5540
\end{tabular}
```

Change $x 0$
Provide New $x 0=\left[\begin{array}{ll}9 & 2\end{array}\right]$
Optimal Solution $\mathrm{x}=[-1.000000,1.500000]$
Optimal value $f(x)=-1.250000$
> X
$x=$

9.0000	2.0000
1.1265	-2.0328

## Chapter 5

## Tutorials

### 5.1 TD Series No. 01

Exercise 5.1.1. 1. Calculate the gradient of $f(x, y, z)$ in the following cases.
a. $f(x, y, z)=x^{2}+y^{3}+z^{4}$.
b. $f(x, y, z)=x^{2} y^{3} z^{4}$.
c. $f(x, y, z)=e^{x} \sin y \ln z$.
2. Determine the stationary points of the function $f$ of two variables defined by

$$
f(x, y)=x(x+1)^{2}-y^{2}
$$

3. Calculate the derivative or gradient of (gof) by two methods in the following cases
a. $f(x, y)=\exp (x)+\cos (y), \quad g(x)=4 x+1$.
b. $f(x)=(\exp (x), \cos (x)), \quad g(x, y)=4 x+2 y$.

Exercise 5.1.2. 1. Show that
a.

$$
\nabla(f . g)=g . \nabla f+f . \nabla g
$$

b.

$$
\nabla\left(\frac{f}{g}\right)=\frac{g \cdot \nabla f-f \cdot \nabla g}{g^{2}}
$$

2. Show the following equality

$$
\nabla^{2} f(x) h=\nabla\langle\nabla f(x), h\rangle ; \quad x \in D f \subset \mathbb{R}^{n} \quad \forall h \in \mathbb{R}^{n} .
$$

Exercise 5.1.3. 1. Calculate the directional derivative of $f(x, y):=e^{x y^{2}}$ at the point $(1,2)$ in the direction forming a angle of $30^{\circ}$ with the positive $x$-axis.
2. Let $T(x, y)=x^{3}+y^{2}-2 x y+1$ be the temperature at point $(x, y)$. In which direction to the point $(1,3)$, the temperature $T$
a. is it increasing the fastest and at what rate ?
b. is it decreasing the fastest and at what rate ?

Exercise 5.1.4. Determine the Taylor expansion of the following functions
a. $f(x, y)=-\cos x \cos y \quad$ in $(0,0)$ and $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ to order " 2 "
b. $f(x, y)=e^{x} \cos y$ in $(0,0)$ to order "2"

Exercise 5.1.5. Calculate the directional derivative of the following functions at the points indicated.
a. $f(x, y)=x+y \quad$ in $(0,0)$ and $d=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)^{T}$.
b. $f(x, y)=x+y^{2}+2 \quad$ in $(1,-2)$ and $d=(3,-4)^{T}$.
c. $f(x, y)=e^{x} \cos y \quad \operatorname{in}(0,0)$ and $d=(-1,1)^{T}$.

Exercise 5.1.6. Calculate the gradient, the Hessian matrix and the Directional derivative

1. $f_{1}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{1}(x)=a$.
2. $f_{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{2}(x)=\langle a, x\rangle+b \quad a \in \mathbb{R}^{n}, b \in \mathbb{R}$.
3. $f_{3}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{3}(x)=a\langle b, x\rangle+c \quad b \in \mathbb{R}^{n}$, a and $c \in \mathbb{R}$.
4. $f_{4}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{4}(x)=a\langle x, x\rangle+b \quad$ a and $b \in \mathbb{R}$.
5. $f_{5}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{5}(x)=\sum_{i=1}^{m} g_{i}(x)$ such as
$g_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is twice differentiable.
6. $f_{6}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{6}(x)=\sum_{i=1}^{m}\left(g_{i}(x)\right)^{2}$ such as
$g_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is twice differentiable.
Exercise 5.1.7. we assume that it exists $L>0$ such that $\forall x, y \in \mathbb{R}^{n}$, we have
$\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|$ i.e. $\nabla$ fis Lipschitzian or fis class $\mathscr{C}^{1}\left(\mathbb{R}^{n}\right)$
Then

$$
|f(x+h)-f(x)-\langle\nabla f(x), h\rangle| \leq \frac{L}{2}\|h\|^{2} \quad \forall x, h \in \mathbb{R}^{n}
$$

### 5.2 TD Series No. 02

Exercise 5.2.1. Show that a norm is convex.

Exercise 5.2.2. Show that the indicator function; of a set $\Omega$ defined by
$1_{\Omega}=\left\{\begin{array}{l}0 \quad \text { if } \quad x \in \Omega \\ +\infty \quad \text { if } \quad x \notin \Omega\end{array}\right.$
is convex if and only if $\Omega$ is convex.
Exercise 5.2.3. Let $U$ be a convex part of a vector space $V$. Show that $f: U \subset V \longrightarrow \mathbb{R}$ is convex if and only if the following set:

$$
e p i(f)=\{(\nu, \alpha) \subset U \times \mathbb{R} / \alpha \geq f(\nu)\}
$$

is a convex part of $U \times \mathbb{R}$.
Exercise 5.2.4. Let $F$ be a function from $\mathbb{R}^{n}$ in $\mathbb{R}$. we define the following function from $\mathbb{R}_{+}^{*}$ to $\mathbb{R}$ :

$$
\forall \alpha>0, \quad \forall(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \quad \Phi(\alpha)=\frac{F(u+\alpha v)-F(u)}{\alpha}
$$

Show that if $F$ is convex then $\Phi$ is increasing.

Exercise 5.2.5. Let $\left(f_{i}\right)_{i \in I}$ be any family of convex functions of $U \subset V \rightarrow \mathbb{R}$. Prove that the function $\sup _{x \in \mathbb{R}^{n}} f_{i}$ is convex.

Exercise 5.2.6. Show Young's inequality $\forall a, b>0 \quad \forall p, q \in \mathbb{N}$ such as $\frac{1}{p}+\frac{1}{q}=1$

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q}
$$

Exercise 5.2.7. Let $f$ be a convex function from $\mathbb{R}^{n}$ to $\mathbb{R}$. To show that:
$\forall\left(\lambda_{i}\right)_{1 \leq i \leq p} \in\left(\mathbb{R}^{n}\right)^{p}$ such as $\sum_{i=1}^{p} \lambda_{i}=1, \quad \forall\left(x_{i}\right)_{1 \leq i \leq p} \in\left(\mathbb{R}^{n}\right)^{p} ; f\left(\sum_{i=1}^{p} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(x_{i}\right)$.

Exercise 5.2.8. (Characterization of convexity)
Let $\Omega \in \mathbb{R}^{n}$ be an open one $U \subset \Omega$ with $U$ convex and $f: \Omega \rightarrow \mathbb{R}$ R a function of class $\mathscr{C}^{1}$. Then the following 3 propositions are equivalent: 1. $f$ is convex on $U$
2. $f(y) \geq f(x)+\langle\nabla f(x) ; y-x\rangle \quad \forall x, y \in U$
3. $\nabla$ fis monotonous on $U$

Exercise 5.2.9. Let $f$ is of class $\mathscr{C}^{2}$ then $f$ is convex on $U$ (convex) if and only if

$$
\left\langle\nabla^{2} f(x)(y-x) ; y-x\right\rangle ; \quad \forall x, y \in U
$$

### 5.3 TD Series No. 03

Exercise 5.3.1. Show that if $\hat{x}$ is a max (local or global) of $f$, then $\hat{x}$ is a min (local or global) of $-f$

Exercise 5.3.2. Are the following functions coercive?

1. $f_{1}: \mathbb{R} \longrightarrow \mathbb{R} ; x \mapsto f_{1}(x)=x^{3}-x^{2}+5$.
2. $f_{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{2}(x)=\langle a, x\rangle+b \quad a \in \mathbb{R}^{n}, b \in \mathbb{R}$.
3. $f_{3}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{3}(x)=a\langle x, x\rangle+b \quad$ a and $b \in \mathbb{R}$.
4. $f_{4}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{4}(x)=2 x_{1}^{2}+x_{2}-5$
5. $f_{5}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{5}(x)=x_{1}^{2}+2 x_{2}^{3}+x_{2}^{2}-x_{1}$
6. $f_{6}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{6}(x)=x_{1}^{2}+2 x_{1}+x_{2}^{2}$
7. $f_{7}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{7}(x)=x_{1}^{2}+x_{2}^{2}-3 x_{2}-5$
8. $f_{8}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{8}(x)=\langle x, x\rangle+\langle a, x\rangle+b \quad a \in \mathbb{R}^{n}, b \in \mathbb{R}$

Exercise 5.3.3. We consider the function $f$ defined on $\mathbb{R}^{2}$ by

$$
f(x, y)=x^{4}+y^{4}-2(x-y)^{2}
$$

1. Show that there exists $(\alpha, \beta) \in \mathbb{R}_{+}^{2}$ such that

$$
f(x, y) \geq \alpha\|(x, y)\|^{2}+\beta \quad(x, y) \in \mathbb{R}^{2}
$$

Deduce that the following problem has at least one solution,

$$
\left(P_{1}\right) \min _{(x, y) \in \mathbb{R}^{2}} f(x, y)
$$

$f$ is it convex on $\mathbb{R}^{2}$ ?
3. Solve the problem $\left(P_{1}\right)$.

Exercise 5.3.4. Letf $: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f(x, y)=x^{2}+y^{2}+a x+b y+c$
We consider the problem

$$
\left(P_{2}\right) \min _{(x, y) \in \mathbb{R}^{2}} f(x, y)
$$

1) Show that $f$ is elliptical.
2) Solve the problem $\left(P_{2}\right)$.

Exercise 5.3.5. Consider a cloud of $n$ points $M_{i}\left(t_{i}, x_{i}\right) \in \mathbb{R}^{2} \quad i=1,2, \ldots, 10$ given by the table following

$t_{i}$	1	2	3	4	5	6	7	8	9	10	$\sum_{i=1}^{10} t_{i}=$
$x_{i}$	0	-3	6	-3	6	3.8	5	-2	1.4	8	$\sum_{i=1}^{10} x_{i}=$
$t_{i}^{2}$											$\sum_{i=1}^{10} t_{i}^{2}=$

We are looking for the regression line of this cloud. For this we use the method of least squares, as we do not have $x_{i}=a t_{i}+b$ for all $i=1,2, \ldots, 10$, we seek to minimize the square of differences. We therefore want to find a pair of reals $(a, b)$ solution of

$$
\left(P_{3}\right)=\left\{\begin{array}{l}
\min \mathscr{J}(a, b) \\
(a, b) \in \mathbb{R}^{2}
\end{array}\right.
$$

Or $\mathscr{J}(a, b)=\sum_{i=1}^{10}\left(x_{i}-a t_{i}-b\right)^{2}$.

1. Complete the table.
2. Calculate the gradient and the Hessian matrix of the function $\mathscr{J}$.
3. Does the problem $\left(P_{3}\right)$ have a solution? Is it unique?
4. Solve the problem $\left(P_{3}\right)$, deduce the equation of the regression line.

Exercise 5.3.6. We consider the following minimization problem

$$
\left(P_{4}\right)=\left\{\begin{array}{l}
\min \mathscr{J}(\nu) \\
v \in \mathbb{R}^{n}
\end{array}\right.
$$

Or $\mathscr{J}(\nu)=\frac{1}{2}\langle A \nu, v\rangle-\langle b, v\rangle$. and $A$ is a positive definite symmetric matrix of $\mathbb{R}^{n}$ in $\mathbb{R}^{n}$ and $v \in \mathbb{R}^{n}$.

1. Demonstrate that
a. The function $\mathscr{J}$ is strictly convex.
b. $\mathscr{J}$ is a coercive function.
2. Calculate the gradient and the Hessian matrix of the function $\mathscr{F}$.
3. Show that the problem $\left(P_{4}\right)$ admits a single solution.
4. Solve the problem $\left(P_{4}\right)$, deduce the minimum value of $\mathscr{J}$.

## Chapter 6

## Corrected Tutorials

### 6.1 TD Series No. 01 Corrected

Answer 6.1.1. $\mathbf{a}$. $f(x, y, z)=x^{2}+y^{3}+z^{4}$.

$$
\nabla f(x, y, z)=\left(\begin{array}{l}
\frac{\partial f}{\partial x}(x, y, z) \\
\frac{\partial f}{\partial y}(x, y, z) \\
\frac{\partial f}{\partial z}(x, y, z)
\end{array}\right)=\left(\begin{array}{c}
2 x \\
3 y \\
4 z
\end{array}\right)
$$

b. $f(x, y, z)=x^{2} y^{3} z^{4}$.

$$
\nabla f(x, y, z)=\left(\begin{array}{l}
\frac{\partial f}{\partial x}(x, y, z) \\
\frac{\partial f}{\partial y}(x, y, z) \\
\frac{\partial f}{\partial z}(x, y, z)
\end{array}\right)=\left(\begin{array}{c}
2 x y^{3} z^{4} \\
3 x^{2} y^{2} z^{4} \\
4 x^{2} y^{3} z^{3}
\end{array}\right)
$$

c. $f(x, y, z)=e^{x} \sin y \ln z$.

$$
\nabla f(x, y, z)=\left(\begin{array}{l}
\frac{\partial f}{\partial x}(x, y, z) \\
\frac{\partial f}{\partial y}(x, y, z) \\
\frac{\partial f}{\partial z}(x, y, z)
\end{array}\right)=\left(\begin{array}{c}
e^{x} \sin y \ln z \\
e^{x} \cos y \ln z \\
\frac{e^{x} \sin y}{z}
\end{array}\right)
$$

2. $f(x, y)=x(x+1)^{2}-y^{2}$

$$
\begin{gathered}
\nabla f(x, y)=\binom{\frac{\partial f}{\partial x}(x, y}{\frac{\partial f}{\partial y}(x, y)}=\binom{3 x^{2}+4 x+1}{-2 y} \\
\nabla f(x, y)=0 \Longrightarrow\binom{3 x^{2}+4 x+1}{-2 y}=\binom{0}{0} \\
(x, y)=(-1,0) \vee\left(\frac{-1}{3}, 0\right)
\end{gathered}
$$

3. Calculate the derivative or gradient of (gof) by two methods in the following cases
a. $f(x, y)=\exp (x)+\cos (y), \quad g(x)=4 x+1$.

$$
\begin{aligned}
(g o f)(x, y) & =g(f(x, y)) \\
& =g(\exp (x)+\cos (y)) \\
& =4(\exp (x)+\cos (y))+1 .
\end{aligned}
$$

$$
\begin{aligned}
\nabla(g o f)(x, y) & =g^{\prime}(f(x, y)) \nabla f(x, y) \\
& =g^{\prime}(f(x, y))\binom{\frac{\partial f}{\partial x}(x, y)}{\frac{\partial f}{\partial y}(x, y)} \\
& =g^{\prime}(\exp (x)+\cos (y))\binom{\exp (x)}{-\sin (y)}, \quad\left(g^{\prime}(x)=4\right) \\
& =4\binom{\exp (x)}{-\sin (y)} .
\end{aligned}
$$

## 2nd method

$$
\begin{aligned}
\nabla(g o f)(x, y) & =\binom{\frac{\partial g o f}{\partial x}(x, y)}{\frac{\partial g o f}{\partial y}(x, y)} \\
& =\binom{4 \exp (x)}{-4 \sin (y)}
\end{aligned}
$$

b. $f(x)=(\exp (x), \cos (x)), \quad g(x, y)=4 x+2 y$.

$$
\begin{aligned}
(g o f)(x) & =g(f(x)) \\
& =g\left(f_{1}(x), f_{2}(x)\right) \\
& =g(\exp (x), \cos (x)) \\
& =4 \exp (x)+2 \cos (x) . \\
(g o f)^{\prime}(x) & =4 \exp (x)-2 \sin (x)
\end{aligned}
$$

## 2nd method

$$
\begin{aligned}
(g o f)^{\prime}(x) & =f^{\prime}(x) \nabla g(f(x)) \\
& =\left(f_{1}^{\prime}(x), f_{1}^{\prime}(x)\right)\binom{\frac{\partial g}{\partial x}(f(x))}{\frac{\partial g}{\partial y}(f(x))} f^{\prime}(x) \\
& =(\exp (x),-\sin (x))\binom{4}{2} \\
& =4 \exp (x)-2 \sin (x) .
\end{aligned}
$$

Answer 6.1.2. 1 .
a.

$$
\begin{aligned}
\nabla(f . g) & =\left(\begin{array}{c}
\frac{\partial(f . g)}{\partial x_{1}}(x) \\
\frac{\partial(f . g)}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial(f . g)}{\partial x_{n}}(x)
\end{array}\right) \\
& =g\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\frac{\partial f}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)+f\left(\begin{array}{c}
\frac{\partial g}{\partial x_{1}}(x) \\
\frac{\partial g}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial g}{\partial x_{n}}(x)
\end{array}\right) \\
& =g . \nabla f+f . \nabla g
\end{aligned}
$$

b.

$$
\begin{aligned}
\nabla\left(\frac{f}{g}\right) & =\left(\begin{array}{c}
\frac{\partial\left(\frac{f}{g}\right)}{\partial x_{1}}(x) \\
\frac{\partial\left(\frac{f}{g}\right)}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial\left(\frac{f}{g}\right)}{\partial x_{n}}(x)
\end{array}\right)=\left(\begin{array}{c}
\frac{g \frac{\partial f}{\partial x_{1}}-f \frac{\partial g}{\partial x_{1}}}{g^{2}}(x) \\
\frac{g \frac{\partial f}{\partial x_{2}}-f \frac{\partial g}{\partial x_{2}}}{g^{2}}(x) \\
\vdots \\
\frac{g \frac{\partial f}{\partial x_{n}}-f \frac{\partial g}{\partial x_{n}}}{g^{2}}(x)
\end{array}\right)=\frac{1}{g^{2}}\left(\begin{array}{c}
g \frac{\partial f}{\partial x_{1}}(x)-f \frac{\partial g}{\partial x_{1}}(x) \\
g \frac{\partial f}{\partial x_{2}}(x)-f \frac{\partial g}{\partial x_{2}}(x) \\
\vdots \\
g \frac{\partial f}{\partial x_{n}}(x)-f \frac{\partial g}{\partial x_{n}}(x)
\end{array}\right) \\
& \vdots \\
& =\frac{g . \nabla f-f . \nabla g}{g^{2}}
\end{aligned}
$$

2. 

$$
\begin{aligned}
& \nabla^{2} f(x) h=\nabla\langle\nabla f(x), h\rangle ; \quad x \in D f \subset \mathbb{R}^{n} \quad \forall h \in \mathbb{R}^{n} . \\
& \begin{aligned}
\nabla^{2} f(x) h & =\nabla \nabla^{T} f(x) h \\
& =\nabla\langle\nabla f(x), h\rangle
\end{aligned}
\end{aligned}
$$

Answer 6.1.3. 1. $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$, and let $v \in \mathbb{R}^{2}$ be a unit vector.
$v=r\left(\cos 30^{\circ} i+\sin 30^{\circ} j\right)=r\left(\frac{\sqrt{3}}{2} i+\frac{1}{2}\right)$
be a unit vector $\Longrightarrow \quad r=1$

$$
\begin{aligned}
\nabla f(x, y) & =\binom{\frac{\partial f}{\partial x}(x, y)}{\frac{\partial f}{\partial y}(x, y)}=\binom{y^{2} e^{x y^{2}}}{2 y e^{x y^{2}}} \\
D_{\nu} f(x) & =\nabla f(x) \cdot v \\
& =\frac{\sqrt{3}}{2} \frac{\partial f}{\partial x}(1.2)+\frac{\sqrt{1}}{2} \frac{\partial f}{\partial y}(1.2) \\
& =2 e^{4}(\sqrt{3}+1)
\end{aligned}
$$

2. 

$$
\begin{aligned}
\nabla T(x, y)= & \binom{\frac{\partial T}{\partial x}(x, y)}{\frac{\partial T}{\partial y}(x, y)}=\binom{3 x^{2}-2 y}{2 y-2 x} \\
& \nabla T(1,3)=\binom{-3}{4}
\end{aligned}
$$

a. increasing the fastest

$$
\frac{\nabla T(1,3)}{\|\nabla T(1,3)\|}=\binom{\frac{-3}{5}}{\frac{4}{5}} \quad \text { and the rate } \quad\|\nabla T(1,3)\|=5
$$

b. decreasing the fastest

$$
-\frac{\nabla T(1,3)}{\|\nabla T(1,3)\|}=\binom{\frac{3}{5}}{\frac{-4}{5}} \text { and the rate }-\|\nabla T(1,3)\|=-5
$$

Answer 6.1.4. a. $f(x, y)=-\cos x \cos y \quad$ in $(0,0)$ and $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ to order " 2 "

$$
\begin{gathered}
f(x, y)=f(0,0)+x \frac{\partial f}{\partial x}(0,0)+y \frac{\partial f}{\partial y}(0,0)+\frac{x^{2}}{2} \frac{\partial^{2} f}{\partial^{2} x}(0,0)+\frac{y^{2}}{2} \frac{\partial^{2} f}{\partial^{2} y}(0,0)+\frac{x y}{2} \frac{\partial^{2} f}{\partial x \partial y}(0,0)+\left(x^{2}+y^{2}\right) \varepsilon(x, y) \\
f(x, y)=-1+\frac{x^{2}}{2}+\frac{y^{2}}{2}+\left(x^{2}+y^{2}\right) \varepsilon(x, y) \quad \text { such that } \underset{(x, y) \rightarrow(0,0)}{\varepsilon(x, y) \rightarrow 0} \\
f\left(x+\frac{\pi}{2}, y+\frac{\pi}{2}\right)=-x y+\left(x^{2}+y^{2}\right) \varepsilon(x, y) \quad \text { such that } \underset{(x, y) \rightarrow(0,0)}{\varepsilon(x, y) \longrightarrow 0}
\end{gathered}
$$

b. $f(x, y)=e^{x} \cos y$ in $(0,0)$ to order "2"

$$
f(x, y)=1+x+\frac{x^{2}}{2}-\frac{y^{2}}{2}+\left(x^{2}+y^{2}\right) \varepsilon(x, y) \quad \text { such that } \quad \underset{(x, y) \rightarrow(0,0)}{\varepsilon(x, y)} 0
$$

Answer 6.1.5. a. $f(x, y)=x+y \quad$ in $(0,0)$ and $d=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)^{T}$.
$\operatorname{vin} \mathbb{R}^{2}$ be a unit vector $(\|\|=1)$

$$
\begin{aligned}
D_{\nu} f(x) & =\left.\frac{d}{d t} f(x+t v)\right|_{t_{0}} \\
& =\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(\frac{\sqrt{2}}{2} t,-\frac{\sqrt{2}}{2} t\right)-f(0,0)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\frac{\sqrt{2}}{2} t-\frac{\sqrt{2}}{2} t-0}{t}
\end{aligned}
$$

## 2nd method

$$
\begin{aligned}
D_{\nu} f(0,0) & =\langle\nabla f(0.0) \cdot v\rangle \\
& =1 \cdot \frac{\sqrt{2}}{2}+1\left(-\frac{\sqrt{2}}{2}\right) \\
& =0 .
\end{aligned}
$$

b. $f(x, y)=x+y^{2}+2 \quad$ in $(1,-2)$ and $d=(3,-4)^{T}$.

$$
\begin{aligned}
& \nu=\frac{d}{\|d\|}=\left(\frac{3}{5}, \frac{-4}{5}\right)^{T} \\
& D_{\nu} f(1,-2)=\langle\nabla f(1,-2) \cdot v\rangle \\
&=\frac{3}{5} \cdot 1+\frac{-4}{5}(-4) \\
&=\frac{19}{5} .
\end{aligned}
$$

c. $f(x, y)=e^{x} \cos y \quad \operatorname{in}(0,0)$ and $d=(-1,1)^{T}$.
$\nu=\frac{d}{\|d\|}=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{T}$

$$
\begin{aligned}
D_{\nu} f(0,0) & =\langle\nabla f(0,0) \cdot v\rangle \\
& =\frac{-1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{-1}{\sqrt{2}} \cdot 0 \\
& =\frac{-1}{2} .
\end{aligned}
$$

Answer 6.1.6. 1. $f_{1}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{1}(x)=a$.

$$
\begin{gathered}
\nabla f_{1}(x)=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}}(x) \\
\frac{\partial f_{1}}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f_{1}}{\partial x_{n}}(x)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)=0, \quad 0 \in \mathbb{R}^{n} \\
H(x)=\nabla^{2} f_{1}(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f_{1}}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f_{1}}{\partial x_{1} \partial x_{2}}(x) & \ldots & \frac{\partial^{2} f_{1}}{\partial x_{1} \partial x_{n}}(x) \\
\frac{\partial^{2} f_{1}}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f_{1}}{\partial x_{2} \partial x_{2}}(x) & \ldots & \frac{\partial^{2} f_{1}}{\partial x_{2} \partial x_{n}}(x) \\
\frac{\partial^{2} f_{1}}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f_{1}}{\partial x_{n} \partial x_{2}}(x) & \ldots & \frac{\partial^{2} f_{1}}{\partial x_{n} \partial x_{n}}(x)
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
& & \vdots & \\
0 & 0 & \ldots & 0
\end{array}\right) .
\end{gathered}
$$

2. $f_{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{2}(x)=\langle a, x\rangle+b \quad a \in \mathbb{R}^{n}, b \in \mathbb{R}$.

$$
\begin{aligned}
f_{2}(x)=\sum_{i=1}^{n} a_{i} x_{i}+b & \\
& \nabla f_{2}(x)=\left(\begin{array}{c}
\frac{\partial f_{2}}{\partial x_{1}}(x) \\
\frac{\partial f_{2}}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f_{2}}{\partial x_{n}}(x)
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=a, \quad a \in \mathbb{R}^{n}
\end{aligned}
$$

$$
H(x)=\nabla^{2} f_{2}(x)=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
& & \vdots & \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

3. $f_{3}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{3}(x)=a\langle b, x\rangle+c \quad b \in \mathbb{R}^{n}$, a and $c \in \mathbb{R}$.

$$
\begin{gathered}
f_{3}(x)=a \sum_{i=1}^{n} b_{i} x_{i}+c \\
\nabla f_{3}(x)=\left(\begin{array}{c}
\frac{\partial f_{3}}{\partial x_{1}}(x) \\
\frac{\partial f_{3}}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f_{3}}{\partial x_{n}}(x)
\end{array}\right)=\left(\begin{array}{c}
a b_{1} \\
a b_{2} \\
\vdots \\
a b_{n}
\end{array}\right)=a b \quad a \in \mathbb{R}, \quad b \in \mathbb{R}^{n} \\
H(x)=\nabla^{2} f_{3}(x)=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
& & \vdots & \\
0 & 0 & \ldots & 0
\end{array}\right)
\end{gathered}
$$

4. $f_{4}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{4}(x)=a\langle x, x\rangle+b \quad$ a and $b \in \mathbb{R}$.

$$
\begin{gathered}
f_{4}(x)=a \sum_{i=1}^{n} x_{i}^{2}+b \\
\nabla f_{4}(x)=\left(\begin{array}{c}
\frac{\partial f_{4}}{\partial x_{1}}(x) \\
\frac{\partial f_{4}}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f_{4}}{\partial x_{n}}(x)
\end{array}\right)=\left(\begin{array}{c}
2 a x_{1} \\
2 a x_{2} \\
\vdots \\
2 a x_{n}
\end{array}\right)=2 a x, \quad a \in \mathbb{R} \quad x \in \mathbb{R}^{n} . \\
H(x)=\nabla^{2} f_{4}(x)=\left(\begin{array}{cccc}
2 a & 0 & \ldots & 0 \\
0 & 2 a & \ldots & 0 \\
& & \vdots & \\
0 & 0 & \ldots & 2 a
\end{array}\right) .
\end{gathered}
$$

5. $f_{5}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{5}(x)=\sum_{i=1}^{m} g_{i}(x)$ such as

$$
\begin{aligned}
& g_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R} \text { is twice differentiable. } \\
& f_{5}(x)=\sum_{i=1}^{m} g_{i}(x) \\
& \nabla f_{5}(x)=\sum_{i=1}^{m} \nabla g_{i}(x) \\
& H(x)=\nabla^{2} f_{5}(x)=\sum_{i=1}^{m} \nabla^{2} g_{i}(x)
\end{aligned}
$$

6. $f_{6}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{6}(x)=\sum_{i=1}^{m}\left(g_{i}(x)\right)^{2}$ such as
$g_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is twice differentiable.
$\nabla f_{6}(x)=2 \sum_{i=1}^{m} g_{i}(x) \nabla g_{i}(x)$
$H(x)=\nabla^{2} f_{6}(x)=2 \sum_{i=1}^{m} g_{i}(x) \nabla g_{i}(x)$
Answer 6.1.7. $f(x+h)=f(x)+\int_{0}^{1}\langle\nabla f(x+t h), h\rangle d t$

$$
\begin{aligned}
f(x+h)-f(x)-\langle\nabla f(x), h\rangle & =\int_{0}^{1}\langle\nabla f(x+t h)-\nabla f(x), h\rangle d t \\
|f(x+h)-f(x)-\langle\nabla f(x), h\rangle| & =\left|\int_{0}^{1}\langle\nabla f(x+t h)-\nabla f(x), h\rangle d t\right| . \\
& \leq \int_{0}^{1}|\langle\nabla f(x+t h)-\nabla f(x), h\rangle d t| . \\
& \leq \int_{0}^{1}\|\nabla f(x+t h)-\nabla f(x)\|\|h\| d t \\
& \leq \int_{0}^{1} L\|x+t h-x\|\|h\| d t \\
& =\int_{0}^{1} L t\|h\|^{2} d t \\
& =L\|h\|^{2} \int_{0}^{1} t d t \\
& =\frac{L}{2}\|h\|^{2} .
\end{aligned}
$$

### 6.2 TD Series No. 02 Corrected

Answer 6.2.1. Let $\|\|:. \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a norm, Then $\|$.$\| is said to be a convex if$

$$
\left\|\lambda X_{1}+(1-\lambda) X_{2}\right\| \leq \lambda\left\|X_{1}\right\|+(1-\lambda)\left\|X_{2}\right\|
$$

For all $X_{1}, X_{2} \in S$ and for each $\lambda \in(0,1)$.

$$
\begin{aligned}
\left\|\lambda X_{1}+(1-\lambda) X_{2}\right\| & \leq\left\|\lambda X_{1}\right\|+\left\|(1-\lambda) X_{2}\right\| \quad \text { (triangle inequality) } \\
& \leq|\lambda|\left\|X_{1}\right\|+|(1-\lambda)|\left\|X_{2}\right\| \quad \text { (positive homogeneity) } \\
& \leq \lambda\left\|X_{1}\right\|+(1-\lambda)\left\|X_{2}\right\| .
\end{aligned}
$$

Answer 6.2.2. $1_{\Omega}$ is convex $\Longrightarrow \Omega$ is convex ?

$$
\begin{aligned}
1_{\Omega} \text { is convex } & \Longrightarrow 1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda 1_{\Omega}\left(X_{1}\right)+(1-\lambda) 1_{\Omega}\left(X_{2}\right) \\
& \Longrightarrow \text { For all } \quad X_{1}, X_{2} \in \Omega \quad\left(1_{\Omega}\left(X_{1}\right)=1_{\Omega}\left(X_{2}\right)=0\right) \text { and for each } \lambda \in[0,1] \\
& \Longrightarrow 0 \leq 1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq 0+0 \\
& \Longrightarrow 1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right)=0 \\
& \Longrightarrow \lambda X_{1}+(1-\lambda) X_{2} \in \Omega \\
& \Longrightarrow \Omega \quad \text { is convex. }
\end{aligned}
$$

$\Omega \quad$ is convex $\Longrightarrow 1_{\Omega}$ is convex ?
$\Omega$ is convex $\Rightarrow$ For all $X_{1}, X_{2} \in \Omega$ and for each $\lambda \in[0,1] \quad \lambda X_{1}+(1-\lambda) X_{2} \in \Omega$

$$
\begin{aligned}
& \Rightarrow \text { For all } X_{1}, X_{2} \in \Omega \quad\left(1_{\Omega}\left(X_{1}\right)=1_{\Omega}\left(X_{2}\right)=0\right), \quad\left(1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right)=0\right) \\
& \Rightarrow 0 \leq 0+0 \\
& \Rightarrow 1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda 1_{\Omega}\left(X_{1}\right)+(1-\lambda) 1_{\Omega}\left(X_{2}\right) \\
& \Rightarrow 1_{\Omega} \quad \text { is convex }
\end{aligned}
$$

$$
\begin{aligned}
\Omega \text { is convex } & \Longrightarrow \text { For all } X_{1}, X_{2} \notin \Omega \quad\left(1_{\Omega}\left(X_{1}\right)=1_{\Omega}\left(X_{2}\right)=\infty\right), \\
& \left(1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right)=0\right) \text { or }\left(1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right)=\infty\right) \\
& \Longrightarrow(0 \leq \infty+\infty) \text { or }(\infty \leq \infty+\infty) \\
& \Longrightarrow 1_{\Omega} \text { is convex }
\end{aligned}
$$

$$
\begin{aligned}
\Omega \text { is convex } & \Longrightarrow \text { For all } \quad X_{1} \in \Omega, X_{2} \notin \Omega \quad\left(1_{\Omega}\left(X_{1}\right)=0, \quad 1_{\Omega}\left(X_{2}\right)=\infty\right), \\
& \left(1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right)=0\right) \text { or }\left(1_{\Omega}\left(\lambda X_{1}+(1-\lambda) X_{2}\right)=\infty\right) \\
& \Longrightarrow(0 \leq 0+\infty) \text { or }(\infty \leq 0+\infty) \\
& \Longrightarrow 1_{\Omega} \quad \text { is convex }
\end{aligned}
$$

Answer 6.2.3. $f$ is convex $\Longrightarrow$ epi $(f)$ is convex ?

$$
\begin{aligned}
f \text { is convex } & \Longrightarrow \text { For all } \quad(u, \alpha),(v, \beta) \in \text { epi }(f), \quad(f(u) \leq \alpha, \quad f(v) \leq \beta) \\
& \Longrightarrow f(t u+(1-t) v) \leq t f(u)+(1-t) f(v) \\
& \Longrightarrow f(t u+(1-t) v) \leq t \alpha+(1-t) \beta, \quad(t u+(1-t) v \in U \text { convex }) \\
& \Longrightarrow(t u+(1-t) v, t \alpha+(1-t) \beta) \in \text { epi }(f) \\
& \Longrightarrow t(u, \alpha)+(1-t)(v, \beta) \in \operatorname{epi}(f) \\
& \Longrightarrow e p i(f) \quad \text { is convex. }
\end{aligned}
$$

epi $(f)$ is convex $\Longrightarrow f$ is convex ?

$$
\begin{aligned}
\text { epi }(f) \quad \text { is convex } & \Longrightarrow(u, f(u)),(v, f(\nu)) \in \operatorname{epi}(f) \\
& t(u, f(u))+(1-t)(v, f(v)) \in \text { epi }(f) \\
& \Longrightarrow(t u+(1-t) v, t f(u)+(1-t) f(\nu)) \in \text { epi }(f) \\
& \Longrightarrow f(t u+(1-t) v) \leq t f(u)+(1-t) f(v) \\
& \Longrightarrow f \text { is convex }
\end{aligned}
$$

Answer 6.2.4. $F$ is convex $\Longrightarrow \Phi$ is increasing ?

$$
\begin{aligned}
F \text { is convex } & \Longrightarrow \text { let } t_{2} \geq t_{1}>0 \quad \text { on pose } \quad t=\frac{t_{1}}{t_{2}} \in(0,1] \\
& F\left(u+t_{1} v\right)=F\left(u+t t_{2} v\right)=F\left(u+t u-t u+t t_{2} v\right)=F\left((1-t) u+t\left(u+t_{2} v\right)\right) \\
& \leq(1-t) F(u)+t F\left(u+t_{2} v\right) \\
& \Longrightarrow f \text { is convex } \\
& \Longrightarrow F\left(u+t_{1} v\right)-F(u) \leq t\left[F\left(u+t_{2} v\right)-F(u)\right]=\frac{t_{1}}{t_{2}}\left[F\left(u+t_{2} v\right)-F(u)\right] \\
& \Longrightarrow \frac{\left[F\left(u+t_{1} v\right)-F(u)\right]}{t_{1}} \leq \frac{\left[F\left(u+t_{2} v\right)-F(u)\right]}{t_{2}} \\
& \Longrightarrow \Phi\left(t_{1}\right) \leq \Phi\left(t_{2}\right) \\
& \Longrightarrow \Phi \quad \text { is increasing }
\end{aligned}
$$

Answer 6.2.5. $\left(f_{i}\right)_{i \in I} \quad$ be any family of convex $\Longrightarrow \sup _{x \in \mathbb{R}^{n}} f_{i} \quad$ is convex $\quad$ ?

$$
\begin{gathered}
f_{i}(x) \leq \sup _{x \in \mathbb{R}^{n}} f_{i}(x) \Longrightarrow t f_{i}(x) \leq t \sup _{x \in \mathbb{R}^{n}} f_{i}(x) \\
f_{i}(y) \leq \sup _{y \in \mathbb{R}^{n}} f_{i}(y) \Longrightarrow(1-t) f_{i}(y) \leq(1-t) \sup _{y \in \mathbb{R}^{n}} f_{i}(y) \\
f_{i}(t x+(1-t) y) \leq t f_{i}(x)+(1-t) f_{i}(y) \leq t \sup _{x \in \mathbb{R}^{n}} f_{i}(x)+(1-t) \sup _{y \in \mathbb{R}^{n}} f_{i}(y) \\
f_{i} \text { convex } \\
\sup _{x, y \in \mathbb{R}^{n}} f_{i}(t x+(1-t) y) \leq t \sup _{x \in \mathbb{R}^{n}} f_{i}(x)+(1-t) \sup _{y \in \mathbb{R}^{n}} f_{i}(y)
\end{gathered}
$$

Answer 6.2.6. $a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} \quad$ ?

$$
a b=\exp ^{\ln a b}=\exp ^{\ln a+\ln b}=\exp ^{\frac{1}{p} \ln a^{p}+\frac{1}{q} \ln b^{q}} \leq \frac{1}{p} \exp ^{\ln a^{p}}+\frac{1}{q} \exp ^{\ln b^{q}}=\frac{1}{p} a^{p}+\frac{1}{q} b^{q}
$$

$$
\exp \text { is convex. }
$$

## Answer 6.2.7. Reasoning by recurrence

a. $\mathscr{P}(2)$ (verifies the property): this is the initialization (or base) of the recurrence;
b. For any integer $p, \mathscr{P}(p) \Longrightarrow \mathscr{P}(p+1))$ : this is heredity (we say that $\mathscr{P}$ is hereditary).
a) $p=2$
$\forall\left(\lambda_{i}\right)_{1 \leq i \leq 2} \in\left(\mathbb{R}^{n}\right)^{2}$ such as $\sum_{i=1}^{2} \lambda_{i}=1, \quad \forall\left(x_{i}\right)_{1 \leq i \leq 2} \in\left(\mathbb{R}^{n}\right)^{2} ; f\left(\sum_{i=1}^{2} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{2} \lambda_{i} f\left(x_{i}\right)$ (f be a convex function $\quad \lambda_{2}=1-\lambda_{1} \quad \mathscr{P}(2)$, is true ).
b) $\mathscr{P}(p) \Longrightarrow \mathscr{P}(p+1))$ ?
$\forall\left(\lambda_{i}\right)_{1 \leq i \leq p+1} \in\left(\mathbb{R}^{n}\right)^{p+1}$ such as $\sum_{i=1}^{p+1} \lambda_{i}=1, \quad$ and let $i_{0} \in\{1,2, \ldots, p+1\}$ be such that
$\sum_{i=1, i \neq i_{0}}^{p+1} \lambda_{i} \neq 0$ laid $\sum_{i=1, i \neq i_{0}}^{p+1} \lambda_{i}=\mu$. So $\mu+\lambda_{i_{0}}=1$ and $\mu>0, \lambda_{i_{0}} \geq 0$
$\sum_{i=1, i \neq i_{0}}^{p+1} \lambda_{i} \neq 0$ then there exists $x \in \mathbb{R}^{n}$ (Barycenter) $\sum_{i=1, i \neq i_{0}}^{p+1} \lambda_{i} x_{i}=\mu x$

$$
\begin{aligned}
f \text { convex } & \Longrightarrow f\left(\lambda_{i_{0}} x_{i_{0}}+\mu x\right) \leq \lambda_{i_{0}} f\left(x_{i_{0}}\right)+\mu f(x) \\
& \Longrightarrow f\left(\sum_{i=1}^{p+1} \lambda_{i} x_{i}\right) \leq \lambda_{i_{0}} f\left(x_{i_{0}}\right)+\mu f(x) \\
& f(x)=f\left(\sum_{i=1, i \neq i_{0}}^{p+1} \frac{\lambda_{i}}{\mu} x_{i}\right) \leq \sum_{i=1, i \neq i_{0}}^{p+1} \frac{\lambda_{i}}{\mu} f\left(x_{i}\right) \quad(\mathscr{P}(p), \text { is true }) \\
& \Longrightarrow f\left(\sum_{i=1}^{p+1} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{p+1} \lambda_{i} f\left(x_{i}\right) \\
& \Longrightarrow(\mathscr{P}(p+1), \text { is true })
\end{aligned}
$$

Answer 6.2.8. (See theorem 1.8.1)

Answer 6.2.9. (See theorem 1.8.2)

### 6.3 TD Series No. 03 Corrected

Answer 6.3.1. Let $\widehat{x}$ is a max (local or global) of $f$ then
$f(\widehat{x})=\max \left\{f(x), \quad x \in \mathbb{R}^{n}(\right.$ or $\left.x \in v)\right\} \quad v \in V(\widehat{x})$

$$
\begin{aligned}
& \Longleftrightarrow f(x) \leq f(\widehat{x}), \quad \forall x \in \mathbb{R}^{n} \quad(x \in v) \\
& \Longleftrightarrow-f(\widehat{x}) \leq-f(x), \quad \forall x \in \mathbb{R}^{n} \quad(x \in v) \\
& \Longleftrightarrow-f(\widehat{x})=\min \left\{-f(x), \quad \forall x \in \mathbb{R}^{n} \quad(x \in v)\right\} \\
& \Longleftrightarrow f(\widehat{x})=-\min \left\{-f(x), \quad \forall x \in \mathbb{R}^{n} \quad(x \in v)\right\}
\end{aligned}
$$

Answer 6.3.2. 1. $f_{1}: \mathbb{R} \longrightarrow \mathbb{R} ; x \mapsto f_{1}(x)=x^{3}-x^{2}+5$.

$$
\lim _{\|x\| \rightarrow \infty} f_{1}(x)=\left\{\begin{array}{l}
\lim _{x \rightarrow+\infty} f_{1}(x) \\
\lim _{x \rightarrow-\infty} f_{1}(x)
\end{array}=\left\{\begin{array}{l}
\lim _{x \rightarrow+\infty} x^{3}=+\infty \\
\lim _{x \rightarrow-\infty} x^{3}=-\infty
\end{array}\right. \text { is not coercive }\right.
$$

2. $f_{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{2}(x)=\langle a, x\rangle+b \quad a \in \mathbb{R}^{n}, b \in \mathbb{R}$.

$$
\left.\begin{array}{l}
\lim _{\|x\| \rightarrow \infty} f_{2}(x)=\left\{\begin{array}{cc}
b & \text { if } \\
-\infty & a=0 \\
-\infty & \text { if }
\end{array}\right. \text { if not coercive }
\end{array} \text { is } \begin{array}{l}
a \neq 0 \Longrightarrow \exists i_{0} \neq 0 \text { such that } a=\left(0 \cdots a_{i_{0}} \cdots 0\right) \quad x_{k}=\left(0 \cdots-k a_{i_{0}} \cdots 0\right)
\end{array}\right)
$$

3. $f_{3}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{3}(x)=a\langle x, x\rangle+b \quad b \in \mathbb{R}^{n}, a$ and $b \in \mathbb{R}$.

$$
\lim _{\|x\| \rightarrow \infty} f_{3}(x)=\lim _{\|x\| \rightarrow \infty}\left(a\|x\|^{2}+b\right)=\left\{\begin{array}{cc}
-\infty & \text { if } a<0 \text { is not coercive } \\
b & \text { if } a=0 \text { is not coercive } \\
+\infty & \text { if } a>0 \text { is coercive }
\end{array}\right.
$$

4. $f_{4}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{4}(x)=2 x_{1}^{2}+x_{2}-5$
we take the sequence $x_{n}=(0 .-n), \quad n \geq 0$
$\left\|x_{n}\right\|=n \rightarrow+\infty \quad f\left(x_{n}\right)=-n-5 \rightarrow-\infty$ then $f_{4}$ is not coercive
5. $f_{5}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{5}(x)=x_{1}^{2}+2 x_{2}^{3}+x_{2}^{2}-x_{1}$
we take the sequence $x_{n}=(0 .-n), \quad n \geq 0$

$$
\left\|x_{n}\right\|=n \rightarrow+\infty \quad f\left(x_{n}\right)=-2 n^{3}+n^{2} \rightarrow-\infty \text { then } f_{5} \text { is not coercive }
$$

6. $f_{6}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{6}(x)=x_{1}^{2}+2 x_{1}+x_{2}^{2}$

We have $\left(x_{1}+2\right)^{2} \geq 0 \Longrightarrow 2 x_{1} \geq-\frac{1}{2} x_{1}^{2}-2$
$f_{6}(x) \geq \frac{1}{2} x_{1}^{2}+x_{2}^{2}-2 \geq \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)-2, \quad\left(x_{2}^{2} \geq \frac{1}{2} x_{2}^{2}\right)$
$f_{6}(x) \geq \frac{1}{2}\left\|\left(x_{1}, x_{2}\right)\right\|^{2}-2, \quad\left\|\left(x_{1}, x_{2}\right)\right\| \longrightarrow+\infty \Longrightarrow f_{6}(x) \longrightarrow+\infty, \quad$ then $f_{6}$ is coercive
7. $f_{7}: \mathbb{R}^{2} \longrightarrow \mathbb{R} ; x \mapsto f_{7}(x)=x_{1}^{2}+x_{2}^{2}-3 x_{2}-5$

We have $\quad\left(x_{2}-3\right)^{2} \geq 0 \Longrightarrow-3 x_{2} \geq-\frac{1}{2} x_{2}^{2}-\frac{9}{2}$

$$
\begin{aligned}
& f_{7}(x) \geq x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\frac{9}{2} \geq \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{9}{2}, \quad\left(x_{1}^{2} \geq \frac{1}{2} x_{1}^{2}\right) \\
& f_{7}(x) \geq \frac{1}{2}\left\|\left(x_{1}, x_{2}\right)\right\|^{2}-\frac{9}{2}, \quad\left\|\left(x_{1}, x_{2}\right)\right\| \longrightarrow+\infty \Longrightarrow f_{7}(x) \longrightarrow+\infty, \quad \text { then } f_{7} \text { is coercive }
\end{aligned}
$$

8. $f_{8}: \mathbb{R}^{n} \longrightarrow \mathbb{R} ; x \mapsto f_{8}(x)=\langle x, x\rangle+\langle a, x\rangle+b \quad a \in \mathbb{R}^{n}, b \in \mathbb{R}$
$f_{8}(x)=\|x\|^{2}+\sum_{i=1}^{n} a_{i} x_{i}+b$
We have $\quad\left(x_{i}+a_{i}\right)^{2} \geq 0 \Longrightarrow a_{i} x_{i} \geq-\frac{1}{2} x_{i}^{2}-\frac{1}{2} a_{i}^{2}$
$\sum_{i=1}^{n} a_{i} x_{i} \geq-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{2} \sum_{i=1}^{n} a_{i}^{2}=-\frac{1}{2}\|x\|^{2}-\frac{1}{2}\|a\|^{2}$
$f_{8}(x) \geq \frac{1}{2}\|x\|^{2}-\frac{1}{2}\|a\|^{2}+b, \quad\|x\| \longrightarrow+\infty \Longrightarrow f_{8}(x) \longrightarrow+\infty, \quad$ then $f_{8}$ is coercive
Answer 6.3.3. 1 . We have $\forall(x, \varepsilon) \quad\left(x^{2}-\varepsilon\right)^{2} \geq 0 \Longrightarrow x^{4} \geq 2 \varepsilon x^{2}-\varepsilon^{2}$
and $\quad \forall(y, \varepsilon) \quad\left(y^{2}-\varepsilon\right)^{2} \geq 0 \Longrightarrow y^{4} \geq 2 \varepsilon y^{2}-\varepsilon^{2}$
and $(x+y)^{2} \geq 0 \Longrightarrow x y \geq-\frac{1}{2}\left(x^{2}+y^{2}\right)$
bay 1,2 and 3 We have $f(x, y) \geq(2 \varepsilon-4)\left(x^{2}+y^{2}\right)-2 \varepsilon^{2}$
there exists $(\alpha, \beta) \in \mathbb{R}_{+}^{2}$ such that $(\alpha, \beta)=\left(2 \varepsilon-4,-2 \varepsilon^{2}\right)$
$\|(x, y)\| \longrightarrow+\infty \Longrightarrow f(x, y) \longrightarrow+\infty$, then $f(x, y)$ is coercive
$f(x, y)$ be a continuous and coercive function defined on all $\mathbb{R}^{2}$, Then $f(x, y)$ has at least one global minimizer.
9. 

$f$ is convex if and only if $\nabla^{2} f(x, y)$ is positive semidefinite for all $(x, y) \in \mathbb{R}^{2}$

$$
\begin{gathered}
H(x)=\nabla^{2} f(x, y)=4\left(\begin{array}{cc}
3 x^{2}-1 & 1 \\
1 & 3 y^{2}-1
\end{array}\right), \\
\nabla^{2} f(0,0)=4\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right) \Longrightarrow \nabla^{2} f(0,0)-\lambda I=\left(\begin{array}{ccc}
-4-\lambda & 4 \\
4 & -4-\lambda
\end{array}\right)
\end{gathered}
$$

$\operatorname{det}\left(\nabla^{2} f(0,0)-\lambda I\right)=\lambda(\lambda+8)=0 \Longrightarrow \lambda=0 \quad$ or $\quad \lambda=-8$
$\lambda=-8<0 \Longrightarrow \nabla^{2} f(0,0)$ is not positive semidefinite $\Longrightarrow f$ is not convex.
3. $\nabla f=0 \Longrightarrow\binom{4 x^{3}-4(x-y)}{4 y^{3}+4(x-y)}=0 \Longrightarrow(x, y)=(0,0) \vee(\sqrt{2},-\sqrt{2}) \vee(-\sqrt{2}, \sqrt{2})$
a. $(0,0), \quad \operatorname{det} \nabla^{2} f(0,0)=0 \quad$ saddel point.
b. $(\sqrt{2},-\sqrt{2}), \quad \operatorname{det} \nabla^{2} f(\sqrt{2},-\sqrt{2})=384>0$ and $f_{x x}=20>0 \quad \min _{(x, y) \in \mathbb{R}^{2}} f(x, y)=f(\sqrt{2},-\sqrt{2})=$ -8
c. $(-\sqrt{2}, \sqrt{2}), \quad \operatorname{det} \nabla^{2} f(-\sqrt{2}, \sqrt{2})=384>0$ and $f_{x x}=20>0 \quad \min _{(x, y) \in \mathbb{R}^{2}} f(x, y)=f(-\sqrt{2}, \sqrt{2})=$ -8

Answer 6.3.4. $\nabla f(x, y)=\binom{2 x+a}{2 y+b} \Longrightarrow \nabla^{2} f(x, y)=\left(\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right)$
$\left\langle\nabla^{2} f(x, y)\binom{u}{v},\binom{u}{v}\right\rangle=\left\langle\left(\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right)\binom{u}{v},\binom{u}{v}\right\rangle=2\left(u^{2}+v^{2}\right)=2\|(u, v)\|^{2} \geq \alpha\|(u, v)\|^{2}$ such that $\alpha \in] 0,2]$. Then $f$ is elliptical
2. $f$ is elliptical $\Longrightarrow f$ is coercive and strictly convex

$$
\Longrightarrow \text { the problem }\left(P_{2}\right) \text { have a solution unique. }
$$

$$
\nabla f(x, y)=0 \Longrightarrow\binom{2 x+a}{2 y+b}=0 \Longrightarrow(x, y)=\left(-\frac{a}{2},-\frac{b}{2}\right)
$$

## Answer 6.3.5. 1 .

$t_{i}$	1	2	3	4	5	6	7	8	9	10	$\sum_{i=1}^{10} t_{i}=55$
$x_{i}$	0	-3	6	-3	6	3.8	5	-2	1.4	8	$\sum_{i=1}^{10} x_{i}=22.2$
$t_{i}^{2}$	1	4	9	16	25	36	49	64	81	100	$\sum_{i=1}^{10} t_{i}^{2}=385$

$$
\mathscr{J}(a, b)=\sum_{i=1}^{10}\left(x_{i}-a t_{i}-b\right)^{2} .
$$

$\mathscr{J}$ she is diff $\frac{\partial \mathscr{J}}{\partial a}(a, b)=2 \sum_{i=1}^{10}\left(-t_{i}\right)\left(\left(x_{i}-a t_{i}-b\right)=2 a \sum_{i=1}^{10} t_{i}^{2}+2 b \sum_{i=1}^{10} t_{i}-2 \sum_{i=1}^{10} t_{i} x_{i}\right.$

$$
\frac{\partial^{2} \mathscr{J}}{\partial a^{2}}(a, b)=2 \sum_{i=1}^{10} t_{i}^{2}
$$

$$
\frac{\partial^{2} \mathscr{Z}}{\partial a \partial b}(a, b)=2 \sum_{i=1}^{10} t_{i}
$$

$$
\frac{\partial^{2} \mathscr{J}}{\partial b^{2}}(a, b)=20 \text { It is clear that } \mathscr{J} \text { is twice diff (polyane in a and b) }
$$

$$
H \mathscr{J}(a, b)=\left(\begin{array}{ll}
\frac{\partial^{2} \mathscr{J}}{\partial a^{2}}(a, b) & \frac{\partial^{2} \mathscr{J}}{\partial a \partial b}(a, b) \\
\frac{\partial^{2} \mathscr{J}}{\partial a \partial b}(a, b) & \frac{\partial^{2} \mathscr{J}}{\partial b^{2}}(a, b)
\end{array}\right)=\left(\begin{array}{cc}
2 \sum_{i=1}^{10} t_{i}^{2} & 2 \sum_{i=1}^{10} t_{i} \\
2 \sum_{i=1}^{10} t_{i} & 20
\end{array}\right)=\left(\begin{array}{cc}
770 & 110 \\
110 & 20
\end{array}\right) .
$$

$$
\begin{aligned}
& \frac{\partial \mathscr{J}}{\partial b}(a, b)=2 \sum_{i=1}^{10}(-1)\left(\left(x_{i}-a t_{i}-b\right)=2 a \sum_{i=1}^{10} t_{i}+20 b-2 \sum_{i=1}^{10} x_{i}\right. \\
& \nabla \mathscr{J}(a, b)=\binom{\frac{\partial \mathscr{J}}{\partial g}(a, b)}{\frac{\partial \mathscr{J}}{\partial b}(a, b)}=\binom{2 a \sum_{i=1}^{10} t_{i}^{2}+2 b \sum_{i=1}^{10} t_{i}-2 \sum_{i=1}^{10} t_{i} x_{i}}{2 a \sum_{i=1}^{10} t_{i}+20 b-2 \sum_{i=1}^{10} x_{i}} .
\end{aligned}
$$

The Hessian matrix is positive semi-definite because $2 T^{2} \geq 0$.
(the positive eigenvalues) $\Longrightarrow \mathscr{J}$ is strictly convex (convex) then the solution is unique (global). We have $f$ is diff and convex then any stationary point is a global min $\Longrightarrow$ the $p b$ admits $a$ single solution.

$$
\nabla \mathscr{J}(a, b)=0 \Leftrightarrow\left\{\begin{array}{c}
2 a T^{2}+2 b T-2 T X=0 \\
2 a T+20 b-2 X=0
\end{array}\right.
$$

$T^{2}=\sum_{i=1}^{10} t_{i}^{2} \quad T=\sum_{i=1}^{10} t_{i} \quad T X=\sum_{i=1}^{10} t_{i} x_{i} \quad X=\sum_{i=1}^{10} x_{i}$
The system admits a unique solution if

$$
\left|\begin{array}{cr}
T^{2} & T \\
T & 10
\end{array}\right|=10 T^{2}-T T \neq 0 \quad\left(T T=\left(\sum_{i=1}^{10} t_{i}\right)^{2}\right)
$$

$a=\frac{\left|\begin{array}{cc}T & X T \\ 10 & X\end{array}\right|}{10 T_{2}^{2}-T T}$
$b=\frac{\left|\begin{array}{cc}T^{2} & X T \\ T & X\end{array}\right|}{10 T^{2}-T T}$

So the general case if $10 T^{2}-T T \neq 0 \Longrightarrow A^{-1}$ exists $\Longrightarrow$ the $p b$ admits a solution.

Answer 6.3.6. Let $x, y \in \mathbb{R}^{n}$ such that $x \neq y$ and $\left.t \in\right] 0,1[$
1.
a. $\mathscr{J}(t u+(1-t) v)-t \mathscr{J}(u)-(1-t) \mathscr{J}(v)=\frac{t(t-1)}{2}\langle A(u-v), u-v\rangle>0 \quad(t(t-1)>0$ and $A$ is a positive definite) $\Rightarrow \mathscr{J}$ is strictly convex.
b. A is symmetric there exists an orthonormal base $\left(u_{i}\right)_{1 \leq i \leq n}$ and A positive definite therefore the associated eigenvalues are all strictly positive therefore

$$
\begin{aligned}
& x=\sum_{i=1}^{n} x_{i} u_{i}, \quad x_{i}=\left\langle x, u_{i}\right\rangle \\
& A x=\sum_{i=1}^{n} x_{i} A u_{i}=\sum_{i=1}^{n} \lambda_{i} x_{i} u_{i} \\
& \langle A x, x\rangle=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{j}\left\langle u_{i}, u_{j}\right\rangle=\sum_{i=1}^{n} \lambda_{i} x_{i}^{2} \geq \min \left\{\lambda_{i}\right\} \sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

$$
\frac{1}{2}\langle A x, x\rangle \geq \lambda\|x\|^{2} \quad\left(\lambda=\frac{\min \left\{\lambda_{i}\right\}}{2}>0\right)
$$

$$
\langle b, x\rangle \leq\|b\| \cdot\|x\| \Rightarrow-\langle b, x\rangle \geq-\|b\| \cdot\|x\|
$$

$\mathscr{J}(x) \geq \lambda\|x\|^{2}-\|b\| \cdot\|x\|=\|x\|^{2}\left(\lambda-\frac{b}{\|x\|}\right) \rightarrow+\infty \quad\|x\| \rightarrow+\infty$
$\mathscr{J}$ is a coercive function.
2. View the course
$\mathscr{J}$ is differentiable.

$$
\begin{gathered}
\nabla \mathscr{J}(x)=A x-b \\
H \mathscr{J}(x)=A
\end{gathered}
$$

3. we have
$\mathscr{J}$ is strictly convex and coercive so $\left(P_{4}\right)$ admits only one solution.
4. 

$$
\nabla \mathscr{J}(x)=0 \Longrightarrow A x-b=0 \Longrightarrow x=A^{-1} b .
$$

$A^{-1}$ exists because $A$ is positive definite and $\operatorname{det} A \neq 0 \Longrightarrow A^{-1}$ exists
$A^{-1}$ exists $\Leftrightarrow$ We are not an eigenvalue of $A$ and $A$ defines positive $\Leftrightarrow$ all non-zero eigenvalues $\Longrightarrow 0$ is not a $v p$
Even if A negative definite and $\operatorname{det} A \neq 0 \Longrightarrow 0$ We're not $v p \Longrightarrow A^{-1}$ exists.

## Chapter 7

## Final Exam

### 7.1 Final Exam 2017-2018

## Exercice 1 (Examen et interrogation) (05.00 points)

Etudiez les solutions optimales locales de $f$, défnie par

$$
f(x, y)=x^{3}+y^{3}-3 x y
$$

## Exercice 2 (Examen et interrogation ) (05.00 points)

On considere la fonction

$$
f(x, y)=2 x^{2}-2 x y+y^{2}
$$

En partant du point initial $\left(x_{0} ; y_{0}\right)=(1 ; 1)$ et en appliquant la méthode du gradient avec $\rho_{k}$ optimale, calculez $\left(x_{1} ; y_{1}\right) ;\left(x_{2} ; y_{2}\right)$ et $\left(x_{3} ; y_{3}\right)$. Puis Images correspondant à sous points par $f$.

## Exercice 3 ( 04.00 points)

Soit $J: C \subset H \longrightarrow \mathbb{R}$, Gâteaux différentiable sur $C$, avec $C$ convexe. $J$ est convexe si et seulement si

$$
\forall(u, v) \in C \times C \quad J(v) \geq J(u)+\langle\nabla J(u), v-u\rangle
$$

## Exercice 4 ( 06.00 points)

Une firme aéronautique fabrique des avions qu'elle vend sur deux marchés étrangers. Soit $q_{1}$ le nombre d'avions vendus sur le premier marché et $q_{2}$ le nombre d'avions vendus sur le deuxième marché Les fonctions de demande dans les deux marchés respectifs sont :

$$
\begin{aligned}
& p_{1}=60-2 q_{1} \\
& p_{2}=80-4 q_{2}
\end{aligned}
$$

$p_{1}$ et $p_{2}$ sont les deux prix de vente. La fonction de coût total de la firme est : $C=50+40 q$ où $q$ est le nombre total d'avions produits. Il faut trouver le nombre d'avions que la firme doit vendre sur chaque marché pour maximiser son bénéfice.

### 7.2 Final Exam 2018-2019

## Exercice 1 ( 05.00 points)

Soit la fonction $f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$ et les points $a=(1,1)$ et $b=(-1,2)$.
a) Calculer $f(a), f(b), \nabla f(a)$ et $\nabla f(b)$
b) Discuter les conditions d'optimalité en $a$ et en $b$ sur la base des résultats obtenus en a).
c) La direction $d=a-b$ est-elle une direction de descente en $b$ ? Justifier.

## Exercice 2 ( 05.00 points)

On considere la fonction

$$
f(x, y)=4 x^{2}-4 x y+2 y^{2}
$$

En partant du point initial $\left(x_{0} ; y_{0}\right)=(2 ; 3)$ et en appliquant la méthode du gradient avec $\rho_{k}$ optimale, calculez $\left(x_{1} ; y_{1}\right) ;\left(x_{2} ; y_{2}\right)$ et $\left(x_{3} ; y_{3}\right)$. Puis Images correspondant à sous points par $f$.

## Exercice 3 ( 05.00 points)

Soit $f \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)(N \geq 1)$. On suppose que $f$ vérifie :

$$
\begin{align*}
& \exists \alpha>0 \quad \text { tq. } \quad(\nabla f(x)-\nabla f(y)) \cdot(x-y) \geq \alpha|x-y|^{2}, \quad \forall x, y \in \mathbb{R}^{N},  \tag{1}\\
& \exists M>0 \quad \text { tq. } \quad|\nabla f(x)-\nabla f(y)| \leq M|x-y|, \quad \forall x, y \in \mathbb{R}^{N} . \tag{2}
\end{align*}
$$

1. Montrer que $f(y)-f(x) \geq \nabla f(x) .(y-x)+\frac{\alpha}{2}|y-x|^{2}, \quad \forall x, y \in \mathbb{R}^{N}$.
2. Montrer que $f$ est strictement convexe et que $f(x) \longrightarrow \infty$ quand $|x| \longrightarrow \infty$. En déduire qu'il existe un et un seul $\bar{x} \in \mathbb{R}^{N}$ tq. $f(\bar{x}) \leq f(x)$ pour tout $x \in \mathbb{R}^{N}$.
3. Soient $\rho \in] 0,\left(2 \alpha / M^{2}\right)\left[\right.$ et $x_{0} \in \mathbb{R}^{N}$. Montrer que la suite $\left(x_{n}\right)_{n \in \mathbb{N}}$ définie par $x_{n+1}=x_{n}-\rho \nabla f\left(x_{n}\right) \subset$ (pour $n \in \mathbb{N}$ ) converge vers $\bar{x}$.

## Exercice 4 (05.00 points)

Un industriel produit simultanément 2 biens A et B dont il a le monopole de la production et de la vente dans un pays. Soit $x$ la quantité produit du premier bien et $y$ la quantité produite du second. Les prix $p_{A}$ et $p_{B}$ auxquels il vend les bien A et B sont fonction des quantités écoulées selon les relations :

$$
\left\{\begin{array}{l}
p_{A}=f(x) \\
p_{B}=g(y)
\end{array}\right.
$$

Le coutt de production total des quantités $x$ et $y$ est une fonction $c(x, y)$.

Le Bénéfice de l'entreprise si elle vend les quantités $x$ et $y$ est donc la fonction
$\pi(x, y)=x f(x)+y g(y)-c(x, y)$
Trouvez les quantités qui maximisent le bénéfice de l'entreprise, la valeur maximale du bénéfice ainsi que les prix de vente de chacun des biens

$$
\left\{\begin{array}{c}
p_{A}=1-x \\
p_{B}=1-y \\
c(x, y)=x y
\end{array}\right.
$$


2.jpeg


Buepa Suerte Bōã Sorte Búona Fortuna Good Luck Bonne Chance 3.jpeg

### 7.3 Final Exam 2019-2020

Exercice 1 ( 03.00 points)
Soit $f: I \longrightarrow \mathbb{R}$ une fonction convexe et strictement croissante. Étudier la convexité de $f^{-1}: f(I) \longrightarrow I$.

## Exercice 2 (07.00 points)

On considere la fonction

$$
f(x, y)=(2 x-y)^{2}+y^{2}
$$

1- Trouver l'extremum local $X^{(*)}$.
2- En partant du point initial $X^{(0)}=\left(x_{0} ; y_{0}\right)=(0 ; 1)$. Calculez $X^{(1)} ; X^{(2)}$ et $X^{(3)}$. Puis les images $f\left(X^{(k)}\right) \quad k=*, 0,1,2,3$ et comparez-les. Appliquant

1. Méthode du gradient à pas constant $\rho=\frac{1}{10}$.
2. Méthode du gradient à pas optimal $\rho_{k}$.

3- Déduire $\lim X^{(k)} \operatorname{etf}\left(X^{(k)}\right), k \longrightarrow+\infty$
Exercice 3 ( 06.00 points)
Considérons la fonction $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ définie par

$$
f(x, y)=\frac{1}{2} x^{2}+x \cos (y)
$$

1. Trouvez les points stationnaires.
2. Trouvez les points qui vérifient la condition suffisante d'optimalité.
3. Trouvez les solutions minimales locales strictes.

Exercice 4 ( 04.00 points)
Considérer la fonction suivante :

$$
f(x, y)=x^{2}-x y+2 y^{2}-2 x+e^{x+y}
$$

1. Est-ce que $X^{(0)}=(0 ; 0)$ est un minimum local de la fonction $f$ ? Justifier.
2. Si oui, est-ce aussi un minimum global? Si non, trouver une direction de descente pour $f$ en $X^{(0)}$.

3.jpeg

Buèn suere BöäSorte
Buona Fortuna
Good Luck
Bonne Chance ctiver Windows

## Bibliography

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms. New York: Wiley, second ed.,1993.
[2] A. Beck, Introduction to Nonlinear Optimization - Theory, Algorithms and Applications, 2014.
[3] Miche. Bierlaire, Optimization: Principles and Algorithms, 2018.
[4] Edwin K. P. Chong, and Stanislaw Zak, An Introduction to Optimization, 2nd Edition, 2002.
[5] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[6] R. Fletcher, Practical Methods of Optimization. Chichester: Wiley, second ed., 1987.
[7] Harish Garg sites.google.com/site/harishg58iitr.
[8] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. London: Academic Press, 1981.
[9] D. G. Luenberger, Linear and Nonlinear Programming. Reading, MA: Addison-Wesley, second ed., 1984
[10] D. G. Luenberger, Optimization by Vector Space Methods. New York: Wiley, 1969.
[11] Jorge Nocedal , Stephen J. Wright, Numerical Optimization 2006.
[12] A. L. Peressini, F. E. Sullivan, and J. J. Uhl, Jr.,The Mathematics of Nonlinear Programming. New York: Springer-Verlag, 1988.
[13] Singiresu S. Rao, Engineering Optimization Theory and Practice 2009.
[14] Robert C. Rogers , The Calculus of Several Variables, 2011.
[15] P. P. Varaiya, Notes on Optimization. New York: Van Nostrand Reinhold Co., 1972.
[16] Xin-She Yang, Engineering Optimization: An Introduction with Metaheuristic Applications, (2011).

