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Introduction

Optimization is central to any problem involving decision making, whether in engineer-
ing or in economics. The task of decision making entails choosing between various alter-
natives. This choice is governed by our desire to make the "best" decision. The measure of
goodness of the alternatives is described by an objective function or performance index.
Optimization theory and methods deal with selecting the best alternative in the sense of
the given objective function.

The area of optimization has received enormous attention in recent years, primarily be-
cause of the rapid progress in computer technology, including the development and avail-
ability of user-friendly software, high-speed and parallel processors, and artificial neural
networks. A clear example of this phenomenon is the wide accessibility of optimization
software tools such as the Optimization Toolbox of MATLABI1 and the many other com-
mercial software packages. There are currently several excellent graduate textbooks on
optimization theory and methods (e.g., [1l, [51, [6], [8], [9], [10l, [12], [15]), as well as un-
dergraduate textbooks on the subject with an emphasis on engineering design (e.g., [1]).
However, there is a need for an introductory textbook on optimization theory and methods
at a senior undergraduate or beginning graduate level. The present text was written with
this goal in mind. The material is an outgrowth of our lecture notes for a one-semester

course in optimization methods for seniors and beginning
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0.1 Type of Optimization

The classification of optimization is not well established and there is some confusion in
literature, especially about the use of some terminologies. Here we will use the most widely
used terminologies. However, we do not intend to be rigorous in classifications; rather we
would like to introduce all relevant concepts in a concise manner. Loosely speaking, clas-
sification can be carried out in terms of the number of objectives, number of constraints,
function forms, landscape of the objective functions, type of design variables, uncertainty

in values, and computational effort (see Figure 0.1 [16]).

rF

— single objective
objective {multiobjective
unconstrained

constraint :
{constralned

unimodal (convex)
mulimodal

linear
optimization { function form {quadratic

landscape {

nonlinear

integer

discrete {

variables /response { continuous

mixed
deterministic (all the above)
determinacy

\ stochastic

Figure 0.1: Classification of optimization problems.
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Chapter 1

Basic Concepts of Unconstrained
Optimization

1.1 Euclidean Space R”

The vector space R” is the set of n-dimensional column vectors with real components

endowed with the component-wise addition operator

X1 N X1+ 0N
X2 Y2 X2+ )2
+ .| = .
Xn Yn Xn+ Yn
and the scalar-vector product
X1 /1)61
X2 )le
A = . )
Xn Axy,

where in the above xi, x,,...x,, A are real numbers. Throughout the Handout we will be
mainly interested in problems over R”, although other vector spaces will be considered in

a few cases. We will denote the standard basis of R” by ey, ey, ... e,,, where ¢; is the n-length
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column vector whose ith component is one while all the others are zeros. The column vec-
tors of all ones and all zeros will be denoted by e and 0, respectively, where the length of

the vectors will be clear from the context.

For given x, y € R", the closed line segment between x and y is a subset of R” denoted
by [x, y] and defined as
[x,yl=x+a(y—x):ael0,1].

The open line segment (x, y) is similarly defined as
[x,yl=x+a(y—x):ac(0,1).

1.1.1 Inner Products and Norms

Definition 1.1.1. (inner product). An inner product onR" isa map/<.,.) : R" x R" — R with
the following properties:

1. (symmetry) {x,y) = (y, x) forany x,y € R".

2. (additivity) (x,y + z) = (x, ¥) + (X, z) forany x, y,z € R".

3. (homogeneity) (Ax,y) = A{y, x) forany L e R and x,y € R".

4. (positive definiteness) (x, x) > 0 for any x e R and (x, x) =0 ifand only if x = 0.

Example 1.1.1. Perhaps the most widely used inner product is the so-called dot product
defined by
n
Cyy=x"y=Y xiyi xyeR"
i=1
Since this is in a sense the "standard" inner product.

Definition 1.1.2. (norm). Anorm||.| onR" is a function |.| : R" — R satisfying the follow-

ing:

Lecture Notes 2 Author : Dr. Rabah DEBBAR
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1. (nonnegativity) | x|| = 0 for any x € R" and | x|| = 0 if and only if x = 0.
2. (positive homogeneity) || Ax|| = |Alll x|l for any x e R and A € R.
3. (triangle inequality) | x + y|| < | x|l + | y|l for any x,y € R".

One natural way to generate a norm on Rn is to take any inner product ¢.,.) on R"” and

define the associated norm

x|l = v/{x, x) for allx e R",

which can be easily seen to be a norm. If the inner product is the dot product, then the

associated norm is the so-called Euclidean norm or />-norm :

n
lxllz =1/ x7 for allx € R".
i=1

The Euclidean norm belongs to the class of /,norm (for p > 1) defined by

n
lxllp =" 'Y |x;|P for allx € R™.
i=1

Another important norm is the /,onorm given by
lxlloo = max |x;|for allx € R".
i=1,2,n
Lemma 1.1.1. (Cauchy-Schwarz inequality). For any x,y € R",
lx"yl < llxllz- 1l

Equality is satisfied if and only if x and y are linearly dependent.

1.2 Matrices
1.2.1 Positive and Negative Definite or Semi Definite Matrix

Definition 1.2.1. An n x n symmetric real matrix M and x of order n x 1 column vector, M

is said to be:

Lecture Notes 3 Author : Dr. Rabah DEBBAR
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1. positive definite if xT Mx > 0 for all x # 0

2. negative definite if x” Mx < Ofor all x £ 0

3. positive semidefinite if x” Mx = 0 for all x

4. negative semidefinite if x' Mx <0 for all x

5. indefinite if it is neither positive nor negative semidefinite(i.e.if x Mx > 0 for some x and

xT Mx <0 for some x).

Remark 1.2.1. Test for Positive and Negative (Definite or Semi Definite) Matrix

1. A matrix M is positive definite if it is Symmetric and all its eigenvalues are positive
2. All Upper Left (Leading ) determinants are positive

3. A matrix M is positive definite if it is Symmetric and all its pivots are positive

4.8 = MT M Independent Columns (Means No Zero Column)

1.3 Topology

Definition 1.3.1. (Open ball). Let a € R" and ¢ > 0. The open ball of radius € centered at a
is

Be(a):={xeR":|x—all <e€}.
Definition 1.3.2. (Open sets). A set U < R" is open if
VYaeU,3e>0 such that B.(a)<U.

In other words, U is open if every point of U is the center of an open ball contained in U.

Definition 1.3.3. (closed sets). A set U < R" is said to be closed if it contains all the limits
of convergent sequences of points in U; that is, U is closed if for every sequence of points

{xi}i=1 € U satisfying x; — x* as i — oo, it holds that x* € U.

Lecture Notes 4 Author : Dr. Rabah DEBBAR
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Definition 1.3.4. (Boundary). Let A<R" . The boundary of A is the set of all points a € R"
such that,

Ve>0 BelaNAZ@ and Be(a)\AZ@.)

We denote the boundary of A by 0 A.

Definition 1.3.5. (boundedness and compactness).
1. Aset U <R" is called bounded if there exists M > 0 for which U < B(O, M).

2. Aset U < R" is called compact if it is closed and bounded.

Examples of compact sets are closed balls and line segments. The positive orthant is
not compact since it is unbounded, and open balls are not compact since they are not

closed.

1.4 Differentiability
1.4.1 Partial derivative

Definition 1.4.1. For a real-valued function f : U — R defined on an open set U in R" and
apointaofU: Ifi =1,2,...,n, the partial derivative of [ at a with respect to x; is defined

by:
ﬁ(a) ~lim fla+he;) - f(a)

0x; h—0 h

Note that a+ he; = (ay,...,a; + h, ..., ay), so a+ he; and a differ only in the ith coordinate.
Thus the partial derivative is defined by the one-variable difference quotient for the deriva-
tive with variable x;. Other common notations for the partial derivative are fx,(a), (D; f)(a)

andV,f(a).

Lecture Notes 5 Author : Dr. Rabah DEBBAR
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Geometric interpretation

Tangent line of

slope j;r (xg 0 %)

Tangent line of
slope [ (xg ¥,
2= flx,y) y o Yo -

X (xq: ¥g) ¥y

Figure: Graph of z = f(x,y) and geometric interpretation of d.f(xo, yo). Figure: Graph of z = f(x. y) and geometric interpretation of &, f(xg, o).

Example 1.4.1. Let

3.2 2
fx1,x2) = x7 + x5 +4x1x5

) 0
Then, since a— treats x, as a constant,

X1
of 2., ,2
— =3x] +4x
axl 1 2
) 0
and, since — treats x, as a constant,
X2

of

— =2X2+8x1Xx2

6x2

In particular, at (x1, x2) = (1,0) these partial derivatives take the values

of
—(1,00=3
Oxl( )
af
—(1,0)=0
6x2( )
Lecture Notes 6 Author : Dr. Rabah DEBBAR
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1.4.2 The Gradient

Definition 1.4.2. Let Q c R" be the domain of a real-valued functions f : Q — R If f is
differentiable we define the gradient of f to be the vector field V f : Q — R" defined by

)
ox
Vix)=| 0x2 =Y L (x)e;.
f zzzi axi
of
0x, (x)

The notation grad f =V f is also common.

Remark 1.4.1. Since the gradient is a vector it can be written as either a row or a column
unless it is used in conjunction with matrix multiplication. In that case it is assumed to
be a column or an n x 1 matrix. Note the relationship between the gradient and the total

derivative, the 1 x n (row) matrix

of . 9f of
o1 (x), 3% (x),..0y o, (x)

Df(x) =
We can think of the gradient as the transpose of the total derivative
Vf=DfT.

Example 1.4.2. Let

3, .2 2
f(x1,x2) = x7) + x5 +4x1%5

of (x)
_ E _ Bxf + 4x§
vf(X) B afl B ( 2X2 +8x1X
—(x)
0)62
0
a—f(l, 0) 3
Via,0=| G4 :(0)
axg
Lecture Notes 7 Author : Dr. Rabah DEBBAR
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1.4.3 Hessian Matrix

Definition 1.4.3. The Hessian Matrix, H(x) or V2 f(x) is defined to be the square matrix of

second partial derivatives:

0° 0° G
/ (x) / (x) ... —f(x)
6x126x1 6x120x2 6x]26xn
o7 (x) o7 (x) o7 (x)
H(x)=V2f(x)=| 0x20x 0x20x7 " 0x20xp ,
o’ f o’ f ' o’ f
0x,0x1 (x) 0x,0x2 ). 0x,0%, (x)

We can also obtain the Hessian by applying the gradient operator on the gradient trans-

pose,

——x) |(of _ of of
H(x) \V, f(x) V(vf(x) ) X2 (axl (x)) 6x2 (x)y ceey axﬂ (x)

The Hessian is a symmetric matrix. The Hessian matrix gives us information about the cur-

vature of a function, and tells us how the gradient is changing.

Example 1.4.3. Let
F(x1,X0) = X3 + X5 +4x, %5

6x1 8.)C2 )

)= VZf(X) B ( 8xy 8x1+2

6 0
H(1,0):v2f(1,0)=( 0 10 )

Lecture Notes 8 Author : Dr. Rabah DEBBAR
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1.5 Directional Derivatives

The gradient can be used to define a generalization of the partial derivative called the

directional derivative(see [14] ).

Definition 1.5.1. Let Q € R" be the domain of a real-valued functions f : Q — R, and let
vinR"™ be a unit vector. If f is differentiable we define the directional derivative of [ at

x € Q in the direction v to be

_a o [+t - f)
D,,f(x)—dtf(x+tv) to—lt% ” .

Partial derivatives are also directional derivatives

The partial derivative % = D, f for u=(1,0), i.e., when u is the

unit vector along the direction of x axis.

The partial derivative ?Ti = D, f foru=(0,1), i.e., when u is the

unit vector along the direction of y axis.

_~"|plane y = b

(zr.f:l. ,l’(a,b))

I

z = fx, y)

(a‘ b. fla. b])

The following theorem gives us an easy way to calculate directional derivatives.

Theorem 1.5.1. Let Q € R" be the domain of a real-valued functions f : Q — R, and let

v € R" be a unit vector. If f is differentiable then
D,f(x)=Vf(x)-v.
Proof. For x € Q and any unit vector v € R" define g: Q — R by

glt)y=x+tv.

Lecture Notes 9 Author : Dr. Rabah DEBBAR
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Note that Dg = v, g(0) = x, and that f(x + tv) = f(g(#)). Thus, using the chain rule for
mappings and the relationship between the total derivative and the gradient, we can com-

pute

d
D,f(x)= Ef(g(t))
=Df(g(t)Dg (=0
=Df(x)-v

=Vf(x)-v.

Example 1.5.1. Note that when v is one of the standard basis vectors e; we get

0
De, f(x) = a—j;(x).

Thus, partial derivatives are special cases of the directional derivative.

The following theorem gives us some geometric information about the gradient.

Theorem 1.5.2. Suppose [ : Q2 — R is a differentiable function andV f (x) # 0. Then the di-
rectional derivative is maximized when v points in the direction of V f (x) and is minimized
when v points in the direction of —V f (x). That is, V f (x) points in the direction of steepest

increase of [ while -V f(x) points in the direction of steepest decrease.

Proof. Using the fact that v is a unit vector, we get
Dyf(x) =Vf(x)-v=cosO|VfX)|-lvl.

where 0 is the angle between V f(x) and v. Thus D, f(x) depends on v only through
the angle 8. Thus, D, f(x) is maximized when the cosine is maximized (6 = 0, v in the di-
rection of V f (x)) and minimized when the cosine is minimized (6 = =, v in the direction of
-V f(x)). The next theorem describes the relationship between the gradient of a function

and the level sets of that function.

Lecture Notes 10 Author : Dr. Rabah DEBBAR
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Theorem 1.5.3. Suppose [ : Q — Ris differentiable. Then V f(xy) is normal to the level
surface of f at xy € Q. That is, suppose f(xy) = ¢, and g(t) is a curve that lies entirely in the

level set f(x) = c. If g(ty) = x¢ then V f (xp) is orthogonal to the tangent vector g'(to).

Proof. Suppose f(g(t)) = cand g(f) = xp: Since the composition is constant, its deriva-

tive is zero. Thus, using the chain rule we get

d
0= %f(g(t)) s
=Df(g()Dg()s=o
=D f(x0)g (%)

=Vf(x0)T-g’(t0),

A2

v=Dg(tp)

V(o)
f(x4,%0)=C

Figure . 1.1 Orthogonality of the gradient to the level set

Lecture Notes 11 Author : Dr. Rabah DEBBAR
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Example 1.5.2. To find the equation for the tangent plane to the sphere
X’ +y*+2°=14.
at the point xo = (Xo, Yo, 20) = (1,2, 3) we calculate the gradient of f (x; y; z) = X+ y2 + 272
Vf=(02x,2y2z2).
We evaluate this at the point (1,2,3) to get the normal vector n = (2,4,6), and use this to
derive the equation for the tangent plane

2 x—1
O=nx-x0)=| 4 || y-2 |=2x+4y+6z-28,
6 z—3

or2x+4y+6z=28.

We can use the gradient to give a version of the Mean Value Theorem for scalar func-

tions on R".

Theorem 1.5.4. Let Q) € R” contain the entire line connecting x, € Q to x, € Q, and suppose
f:Q— R is€'. Then there is a point X € Q on the line segment between x; and X, such

that
fx2) = f(x1) =Vf(X) - (x2 —x1).

Proof.We define a real valued function of a single variable by
g)=fUxa+(1-10x1), tel0,1].

We note that this function is €' and therefore the mean value theorem for real valued

functions of a single variable says there exists 7€ (0,1) such that

g)—-g0)=g'"®HAa-0.

Lecture Notes 12 Author : Dr. Rabah DEBBAR
3rd Year Degree in Mathematics Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

Note that g(1) = f(x2) and g(0) = f(x;). The chain rule gives us
g =fltxa+ Q- 0)x1)- (x2— x1).

So if we let

f:?xg+(1—ﬂx1

this gives us the desired result.

1.6 Descent Direction

Definition 1.6.1. Let f : R” — R be a continuously differentiable function over R". A vec-
tor 0 # d € R"is called a descent direction of f at x if the directional derivative D f (x) is

negative, meaning that

Dyf(x)=Vf(x)-d<0.

The most important property of descent directions is that taking small enough steps

along these directions lead to a decrease of the objective function.

Lemma 1.6.1. (descent property of descent directions). Let f be a continuously differen-
tiable function over R", and let x € R". Suppose that d is a descent direction of f at x. Then

there exists € > 0 such that

fx+td)< f(x)

forany 7 € (0, €].
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Proof. Since D, f(x) <0, it follows from the definition of the directional derivative that

lim flx+td)—f(x)

t—0 t

=Dy f(x)<0.

Therefore, there exists an € > 0 such that

flx+ tci)—f(x) -

0.

for any ¢ € (0, €], which readily implies the desired result.

1.7 Multivariate Taylor Expansion

We now turn to the Taylor series expansion of a real-valued function f : R” — R about
the point xy € R”. Suppose f € €. Let x and x, be points in R”, and let z(a) = xo + a(x —

x0)/llx = xoll. Define ¢ : R — R by:
P(a) = f((a)) = f(xo+ alx—xp)/llx—xoll).

Using the chain rule, we obtain

o) = 9P
¢ (a) = o (a)
=Df(z(a))Dz(a)
(x — xo)
=D
T
_ T T
= =zl (x—x0)" Df(z(a))",
Lecture Notes 14 Author : Dr. Rabah DEBBAR
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and
2
¢"(a) = —('b(a)
_ ¢
_ da( )( )
- Df(z(a) X2
1= %ol
(x x0)T d
= el da Dl E@
T
G o) —(a)
"ol
= (x—x) D*flz(a) T (x - x0)
1% — %ol
=l o)D) (k- xo),
1% — %ol

D?f =(D?*f)T since f € €2. Observe that

Fx)=¢Ulx—xo0l)

lx lx—xol?

=¢(0) + (P 0) + 2—(/5 0) + o(llx — xo1%).

Hence,
1
f(x) = f(xp) + FDf(xo)(X— Xo)
1
+ E(X—XO)TDZf(xo)(X—Xo) +o(llx = xol1%).
o(lx—xol)* _
x—=xo |lx—xoll?
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Theorem 1.7.1. (Taylor’s Theorem)[11|]. Suppose that [ : R" — R is continuously differ-

entiable and that p € R". Then we have that

fax+p)=f@)+Vfx+ep)lp,
forsome t € (0,1). Moreover, if f is twice continuously differentiable, we have that
1
Vfx+p)=Vf(x) +f V2 f(x+tp)pdt,
0

and that

1
fx+p) =f)+Vfx)ip+ E;9Tv2f(x+ tp)p,

forsomete(0,1).

1.8 Convex functions of several variables
1.8.1 Convex Sets

Definition 1.8.1. A set S € R" is called a convex set if for every choice of X1, X, € S, the points
AXi+(1-M)Xe VA€[0,1]liesinSi.e, if X, X, € S then line segment joining the points X,

and X, must lie inside S.

comvex: .

not convex: * e
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1.8.2 Conex Combination(Generalization of line segment)

Definition 1.8.2. Convex combination of points X1, Xz, ..., X, € R" is given by

n n
X:Z/liXi, VA; =0 and Z/liZI.

i=1 i=1
i.e., A linear combination become a convex combination if all the Scalar's are non-negative

and are such that their sum is equal to 1.

Remark 1.8.1. 1. Empty set, singleton set and whole of R" are trivially convex sets,
2. Triangles, circles, ellipse, parabola with their interior are also convex sets,

3. Some convex sets in R* are shown below.

1.8.3 Convex Function

Definition 1.8.3. Let f : S — R be a function, where S is a non-empty convex set inR". Then

f is said to be a convex function on the set S if
FAX1+Q-DX) =Af(X1)+(1-A)f(X2)

For all X, X, € S and for each A € (0,1).

Non-convex function
does not always lie
below the straight line

Convex function
lies below the
straight line that

fly)

flz) flx) joins any two fix) that joins two points
floz+(1-a)y) points
b aT + (l = O!)y Y -4 -2 K.-| o 7 :;'; a 4 2 %0 2 Ny 4
C " X

Remark 1.8.2. 1. f is said to be a concave function on the set S if

FAXi+(1-D)X) zAf(X1)+ (1 -1 f(X2)
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For all X, X, € S and for each A € (0,1),

al-)4

Convex

g(-) 4

Concave

-+

2. f is said to be strictly convex function on S if

y

Convex Concave

T

Inflection
Point

FAXi+(1 - X)) <Af(X1)+(A-A)f(X2)

forallX;,X, €S, Xyj#X,andAe(0,1).

Properties 1.8.1. 1) If f(x) is (strictly) convex, then — f(x) is (strictly) concave (and vice

versa).

2) If f1(x), ..., fx(x) are convex (concave) functions and a, ..., ax > 0, then

g(x) = ay fi(x) +... + ay fr(x)

is also convex (concave).

3) If (at least) one of the functions f;(x) is strictly convex (strictly concave), then g(x) is

strictly convex (strictly concave).

1.8.4 Strongly Convex Function

Definition 1.8.4. f is strongly convex with parameter m >0 if

1
fltx+Q-DY <tfX)+A-0f() - Emt(l— Dllx—yll5

for

all x,yeS,

te[0,1].
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Remark 1.8.3. If f strongly convex (with any parameter m > 0), then f is strictly convex.
The converse is not true: for example, the function f(x) = exp(x) is strictly convex but not

strongly convex .

Example 1.8.1. 1-The function f(x) = |x|, x e R f is convex bat is not strictly convex
2-Every affine function f(x) = ax + b, x € R is convex, but not strictly convex

3- f(x) = x*, x € R is strictly convex.

1.8.5 First-Order and Second-Order Characterization of Convex Func-
tions

Differentiable Functions

Definition 1.8.5. f isdifferentiable (i.e., its gradientV f exists at each pointin dom f, which

isopen). at X €R", we write:
VxeR", fx)=f@+VF® (x-%)+o(x—-ZzI)

where by definition:
o(llx-xI)
—x |lx=X|

Twice Differentiable Function

Definition 1.8.6. f is twice differentiable, that is, its Hessian or second derivative V? f exists

at each point in dom f, which is open. at X € R", we write:
1
VXeR", f)=f@+Vf® (x-%)+ 5(x—55)THf(55)(x—55) +o(lx— %%

where by definition:

. o(lx—xI1%
lim ST =0
—x ||x—=X|
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Theorem 1.8.1. Let S < R" be convex and open. Then, for a function f : S — R, the following

are equivalent.
i) f is convex;

ii) forallx,y €S,

f) =z fX)+H(Vfx),y—x)

iii) for all x, y € S,(monotonicity)

(Vfx)-Vf(y,x-y)=0

Proof.

i)=ii) Let x,yeS§S, 0<sA<l1

= f(A-VNx+ A=A -V f )+ Af(y)
= flx+Ay-x) - f(X) A - f(x)
:>f(x+/l(y/—1x))—f(x) < FO) - )

= A—=0 (Vf(x),y-x)<f()-fx).

ii)=1iii) Let x,yeS§
= f(=2f)+(Vfx),y—x) and f(x)=fy)—Vfy),y—x)
= (Vf(x)-Vf),x—y)=0.

iii)=i)Letx,yeS0=<1<1
A

d
fa+Ay—x)-f(x) :fo Ef(x+ ty—x)dt
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p)
:fo Vfx+t(y—x),y—x)dt

A
sf (Vflx+Ay—x),y—x)dt
0
Because: (Vf(x+A(y—x)-Vf(x+t(y—x), A-0D(y—x)) E,Qa
=0 leq(iii)

=MVf(x+Ay—x),y— x).

flnalogouslyi fE+AY=—x)-fO)=A-AVfx+A(y—x),x—).

(x—y an; A=1-1)
Multiply the first ineq, with (1 — A) the 2nd with A.

fE+Ay-0)-A-Nf)-Af(y) <0.

Theorem 1.8.2. Ler S < R" be convex and open, and let f : S — R be twice differentiable

then f is convex if and only if V* f (x)is positive semidefinite for all x € S

Proof.

Let f be convex, let d € R”
o -ty YO D=V
= (d,sz(x)d) = ltir%%(Vf(x+ td)-Vf(x),(x+td)—x)

=>=0

bay property (iii)of the previous thm.

Let V2 f(x) be positlve semidefinite for all x € S, by Taylor’s thm,
VX, yeS: f(y)=fxX)+(Vf(x),y—x)+ %(y—x,vzf(z)(y—x))
Withz=(1-A)x+Ayforsome0<A<1
fFMzf)+(Vfx),y—x

= fis convex.

(ii) of the previous thm
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Chapter 2

Unconstrained Optimization Theory

2.1 Introduction

In this chapter, we consider the optimization problem

minimize f(x)
{subject to xeQ.

The function f : R" — R that we wish to minimize is a real-valued function, and is called
the objective function, or cost function. The vector x is an n-vector of independent vari-
ables, that is, x = (x1,X2,...,X%,) " € R™. The variables x;, Xy, ..., X, are often referred to as
decision variables. The set Q is a subset of R”, called the constraint set or feasible set.
The optimization problem above can be viewed as a decision problem that involves find-
ing the "best" vector x of the decision variables over all possible vectors in Q. By the "best"
vector we mean the one that results in the smallest value of the objective function. This
vector is called the minimizer of f over Q. It is possible that there may be many minimiz-
ers. In this case, finding any of the minimizers will suffice.

There are also optimization problems that require maximization of the objective function.

These problems, however, can be represented in the above form because maximizing f

22
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is equivalent to minimizing — f. Therefore, we can confine our attention to minimization

problems without loss of generality(see [4],[13],[2] ).

fix)
fix)

x*, Minimum of fix)

x*

1
1
1
!
|

.
S ~

- \

g
S x* Maximum of - fix)
/

’

,’r“’* fix

The above problem is a general form of a constrained optimization problem, because the
decision variables are constrained to be in the constraint set Q. If Q = R”, then we refer to
the problem as an unconstrained optimization problem. In this chapter, we discuss basic

properties of the general optimization problem above,

A f(x)

X4 Xo X3 x

Examples of minimizers: 2, strict global minimizer; 5 strict local minimizer;
x3: local (not strict) minimizer

Definition 2.1.1. Local minimizer. Suppose that f : R" — R is a real-valued function de-

fined on some set Q < R". A point X is a local minimizer of f over Q if there exists € > 0 such
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that f(X) < f(x) forall x e Q\{X} and || x — X|| <€.

Definition 2.1.2. Global minimizer. A point X € Q, is a global minimizer of f over Q if

f(X) < f(x) forall x e Q\ {x}.

Remark 2.1.1. If, in the above definitions, we replace "<" with "<", then we have a strict

local minimizer and a strict global minimizer, respectively.

Remark 2.1.2. Of course, a global minimum (maximum) point is also a local minimum
(maximum) point. As with global minimum and maximum points, we will also use the ter-
minology local minimizer and local maximizer for local minimum and maximum points,

respectively.

Another important issue is the one of deciding on whether a function actually has a
global minimizer or maximizer. This is the issue of attainment or existence. A very well
known result is due to Weierstrass, stating that a continuous function attains its minimum

and maximum over a compact set.

2.2 Existence and Uniqueness of Optimal Solutions

Theorem 2.2.1. (Weierstrass theorem). Let [ be a continuous function defined over a nonempty
and compact set Q € R". Then there exists a global minimum point off over Q and a global

maximum point off over Q).

When the underlying set is not compact, the Weierstrass theorem does not guarantee
the attainment of the solution, but certain properties of the function f can imply attain-
ment of the solution even in the noncompact setting. One example of such a property is

coerciveness.
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Definition 2.2.1. (coerciveness). Let f : R" — R be a continuous function defined over R".

The function fis called coercive if

| lﬁm f(x) =o0.

The important property of coercive functions that will be frequently used in this lecture-

notes is that a coercive function always attains a global minimum point on any closed set.

Theorem 2.2.2. (attainment under coerciveness). Let f : R" — R be a continuous and
coercive function and let S € R be a nonempty closed set. Then f has a global minimum

point over S.

Proof. Let xy € S be an arbitrary point in S. Since the function is coercive, it follows

that there exists an M > 0 such that
f(x)> f(x9) forany x suchthat |x|> M. (2.1)

Since any global minimizer x* off over S satisfies f(x*) < f(x), it follows from (2.1) that
the set of global minimizers off over S is the same as the set of global minimizers of f over
SN B[O, M]. The set SN B[O, M] is compact and nonempty, and thus by the Weierstrass

theorem, there exists a global minimizer off over SN B[O, M] and hence also over S.

Theorem 2.2.3. (strict convexity and uniqueness of sptimal solutions). where f :R" — R
is strictly convex on Q and Q is a convex set. Then the optimal solution (assuming it exists)

must be unique.

Proof. Suppose there were two optimal solutions x, y € R”. This means that x, y € Q

and

fX=f)=sf(z), VzeQ. (2.2)
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X+
But consider z = Ty By convexity of Q , we have z € Q. By strict convexity, we have

r@=r(=7)

< %f(x)+%f(y)

= %f(x)+%f(x)
= f(x).

But this contradicts (2.2)

2.3 Conditions for optimality
Definition 2.3.1. A pointx € R" at which V f(X) = 0 is called a stationary point.

2.3.1 Necessary optimality conditions

Theorem 2.3.1. [3] Let x,,i, be a local minimum of a function f :R" — R. If f is differen-

tiable in an open neighborhood V of Xmin, then,
Vf(Xmin) = 0. (2.3)
If, in addition, f is twice differentiable on V, then
V2 f (Xmin) is positive semidefinite. (2.4)

Condition (2.1) is said to be a first-order necessary condition, and condition (2.2) is said to

be a second-order necessary condition.

Proof. We recall that —V f (%) is the direction of the steepest descent in X (Lemma 1.6.1)
and assume by contradiction that V f(X) # 0. We can then use Theorem 1.5.2 with the de-

scent direction d = —V f(X) to obtain € such that
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fER-1VFR) < fR), Vieloel,

which contradicts the optimality of X and demonstrates the first-order condition. To demon-
strate the second-order condition, we invoke Taylor’s theorem in X, with an arbitrary di-
rection d and an arbitrary step ¢t > 0 such that X+ td € V.
As

fE+td)— fR) =td'VfER) + %tszvzf(sa)d +0(l £d|I?)

we have

1
fE+td)- f(®) = Erszvzf(fc)al +0(I£dl®)  from (2.3)
1
= > tszVZf(f)d +0(%) |d| does not depend ont
>0 X isoptimal.

When we divide by ¢, we get

2
0(r°) >0
tZ

1

> ATV f(x)d +
Intuitively, as the second term can be made as small as desired, the result must hold.
More formally, let us assume by contradiction that d” V2 f (%) d is negative and that its value

is —2n, with 7 > 0. According to the Landau notation o(.) ,

for all n > 0, there exists € such that

0% VO <f<
2 < <isé
and
1 openp, 00 1 5 5 O3] 1
Fd Vf@d+—7=<sd V' fRd+—3— <-72n+n=0,

which contradicts and proves that d I'y? f(X)d = 0. Since d is an arbitrary direction, v? f(x)

is positive semidefinite
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2.3.2 Sufficient optimality conditions

Theorem 2.3.2. Consider a function f :R" — R twice differentiable in an open subset V of

R" and let X € V satisfy the conditions
Vf(x) =0. (2.5)

and

V2 f(%) is positive definite. (2.6)
In this case, X is a local minimum of f.
Proof.

We assume by contradiction that there exists a direction d and € > 0 such that, for any

0<t<eg f(X+1td) < f(X). With an identical approach to the proof of Theorem 2.3.1, we

have
fE+td)-fR) 1 7 5. o(?)

r2 :Ed VA (R)d + 2
and

1 2

~dV f(Rd+ 0(; ) <o
or

ldTvzf(?c)d+0(t2)+ =0

2 2 =

with 17 > 0.According to the definition of the Landau notation o(.)

there exists € such that
lo(1?)]
t2

<n, Vi,0<t<Eg,

and then, for any ¢ < min(e, €), we have
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such that

o(t?) lo(t?)]
g ST g

)

o(t?)
2

1
EdTVZf(?c)d:— <0,

which contradicts the fact that V2 f (%) is positive definite.
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Chapter 3

Unconstrained Optimization Methods

3.1 Steepest Descent (CAUCHY) Method

The use of the negative of the gradient vector as a direction for minimization was first
made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X; and
iteratively move along the steepest descent directions until the optimum point is found.

The steepest descent method can be summarized by the following steps:
1. Start with an arbitrary initial point X . Set the iteration number as i = 1.

2. Find the search direction S; as

Si=-Vfi=-Vf(X;) (3.1)

3. Determine the optimal step length A; iin the direction S; and set

Xit1 :X,-+)T,-S,- :X,-—Z,-Vf,- (3.2)

S

. Testthe new point, X;, for optimality. If X;, is optimum, stop the process. Otherwise,

go to step 5.
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5. Set the new iteration number i = i + 1 and go to step 2.
The method of steepest descent may appear to be the best unconstrained minimiza-
tion technique since each one-dimensional search starts in the "best" direction.
However, owing to the fact that the steepest descent direction is a local property,

the method is not really effective in most problems.

Example 3.1.1. Minimize f(x,X2) = X1 — X2 + fo +2x1X0 + xg starting from the point X =

0,0).

SOLUTION

Iteration 1

The gradient of f is given by

—(x)
_| ox [ 1+4x1+2x
Vf(X) B afl B ( —14+2x1+2x )

1
vhi=vio={
Therefore,
1
a=-sse( 4
To find X», we need to find the optimal step length /All. For this, we minimize f(X;+A,81) =
f(=A1, ) = ﬂtf — 2\, with respectto A;. Since df/dA; =0 at 11 =1, we obtain

X2:X1+1151:(8)+1( _11 ):( _11)

1 0
1 ) # ( 0 ), Xy is not optimum.

AszZ:Vf(Xg):(:

Iteration 2
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—

To minimize

F(Xo+2285) = f(=1+ A2, 1+ A3) =515 —24, -1

~ 1
we set d f/A, =0. This gives 1, = = and hence

~ -1 1(1 -0.8
et o432

Since the components of the gradient at X3, Vf3 = ( , are not zero, we proceed to

0.2
-0.2
the next iteration.

Iteration 3
-0.2
As
f(X3+A3S83) = f(—0.8+0.213,1.2+0.213) = 0.047L§ —-0.0813 —1.2.
af ~
—— =0atA3=1.0
drs s
Therefore,

~ -0.8 -0.2 -1.0
X4:X3+/1383:( 1.2 )+1.0( 0.2 ):( 1.4 )

The gradient at X} is given by

N Iy
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Since Vfj # ( 0

0 ) X,is not optimum and hence we have to proceed to the next itera-

-1.0
, is found.
1.5 )
Convergence Criteria : The following criteria can be used to terminate the iterative pro-

tion. This process has to be continued until the optimum point, X = (

Cess.

1. When the change in function value in two consecutive iterations is small:

X)) = f(XD)
f(Xi)

<& (3.3)

2. When the partial derivatives (components of the gradient) of f are small:

(S—Q <&, (3.4)

3. When the change in the design vector in two consecutive iterations is small:

| Xiv1—Xil<é€3 (3.5)

3.2 Conjugate Gradient (FLETCHER-REEVES) Method

The convergence characteristics of the steepest descent method can be improved greatly
by modifying it into a conjugate gradient method (which can be considered as a conju-
gate directions method involving the use of the gradient of the function). That any mini-
mization method that makes use of the conjugate directions is quadratically convergent.
This property of quadratic convergence is very useful because it ensures that the method
will minimize a quadratic function in n steps or less. Since any general function can be
approximated reasonably well by a quadratic near the optimum point, any quadratically

convergent method is expected to find the optimum point in a finite number of iterations.
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We have seen that Powell’s conjugate direction method requires n single-variable mini-
mizations per iteration and sets up a new conjugate direction at the end of each iteration.
Thus it requires, in general, n? single-variable minimizations to find the minimum of a
quadratic function. On the other hand, if we can evaluate the gradients of the objective
function, we can set up a new conjugate direction after every one-dimensional minimiza-
tion, and hence we can achieve faster convergence. The construction of conjugate direc-

tions and development of the Fletcher-Reeves method are discussed in this section.

3.2.1 Development of the Fletcher-Reeves Method

The Fletcher-Reeves method is developed by modifying the steepest descent method to
make it quadratically convergent. Starting from an arbitrary point X;, the quadratic func-
tion

f(X)= %XT[A]X+ B'x+cC (3.6)

can be minimized by searching along the search direction S; = -V f (steepest descent

direction) ,
~ Si VA
A== 3.7
1 S1T n 3.7)
The second search direction S, is found as a linear combination of S; and -V f5:
Sy = —sz + ,6281 (3.8)

where the constant §, can be determined by making S; and S, conjugate with respect to

[A].
VIV _ VIV
vf1TSI vflval

This process can be continued to obtain the general formula for the ith search direction

po=-

(3.9
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as
Si==-Vfi+BiSi1 (3.10)
where r
VIiV{f;
;= —fl fi (3.11)
Vi Vi

Thus the Fletcher-Reeves algorithm can be stated as follows.

3.2.2 Fletcher-Reeves Method

The iterative procedure of Fletcher-Reeves method can be stated as follows:
1. Start with an arbitrary initial point Xj.
2. Set the first search direction §; = -V f(X;) = -V fi.

3. Find the point X, according to the relation
X5 :X1+;1\1$1 (3.12)
where 1, is the optimal step length in the direction S;. Set i = 2 and go to the next step.

4.Find Vf; = Vf(X;), and set

IV fil?
Sl‘:—Vfl"l‘lvfilzsl'_l (3.13)
i—-1

5. Compute the optimum step length A; in the direction S;, and find the new point
Xjs1=Xi +4;S; (3.14)

6. Test for the optimality of the point X; . If X;, is optimum, stop the process. Otherwise,

set the value of i = i + 1 and go to step 4.

Example 3.2.1. Minimize f(x1,X2) = X1 — X2 + fo +2x1X0 + x§ starting from the point X, =

0,0).
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SOLUTION
Iteration 1

The gradient of f is given by

—af (x)
_| ox [ 1+4x1+2x
Vf(X) B afl B ( —1+2x1+2x )
—(x)
axz

Vflzvf(Xl):( _11 )

The search direction is taken as

1
a=-sse( 4
To find the optimal step length 11 along S, we minimize f(X; +1;S;) with respect to 1.
Here
FX3+ 2181 = f(=A1, A = A5 =24
af ~
— =0 at A;=1
an,
Therefore,
~ 0 -1 -1
Xg—Xl-l-ﬂlSl—( 0 )-l—l( 1 )—( 1 )
Iteration 2

Since Vfo =V [f(Xy) = ( 1 ), Eq. (3.13) gives the next search direction as

IV foI?
S,=-VfHio+———§;
J IV fil?
where
IVAil’=2 and |Vf[*=2
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Therefore,

To find A,, we minimize

FXo+A282) = f(=1,1+2A)
=—1-(1+4+2A)+2-2(1+2A2)+(1 +2/12)2

=452, -1

~ 1
with respectto Ay. Asdf/dA, =81, —2=0at A, = 7 we obtain

—~ -1 1(0 -1
et 222 (2

Thus the optimum point is reached in two iterations. Even if we do not know this point to
be optimum, we will not be able to move from this point in the next iteration. This can be
verified as follows.

Iteration 3

Now
0
Vfgzvf(Xg):(O), Isz|2:2, and |Vf3|2:0

Thus

0 210 0

This shows that there is no search direction to reduce f further, and hence X3 is optimum.

ss:—vf3+(|Vf3I2/|Vf2'2)Sz:_( : )+9( ! ):( : )

3.3 NEWTON’S Method

Newton’s method can be extended for the minimization of multivariable functions. For

this, consider the quadratic approximation of the function f(X) at X = X; using the Tay-
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lor’s series expansion
1
fXO=fX)+VI(X-X)+ 5 (X = X)) X - X (3.15)

where [/;] = [J]|X; is the matrix of second partial derivatives (Hessian matrix) of f eval-
uated at the point X;. By setting the partial derivatives of Eq. (3.15) equal to zero for the

minimum of f(X), we obtain

of .
—=0, j=12,...,n (3.16)
ax]'
Equations (3.16) and (3.15) give
Vf=VfilJil(X-X;)=0 (3.17)

If [J;] is nonsingular, Egs. (3.17) can be solved to obtain an improved approximation

(X = Xj+1) as

Xiv1=Xi— U7V (3.18)

Since higher-order terms have been neglected in Eq. (3.15), Eq. (3.18) is to be used itera-
tively to find the optimum solution X.

The sequence of points X, X, ..., Xj+1 can be shown to converge to the actual solution
X from any initial point X; sufficiently close to the solution X, provided that [/;] is non-
singular. It can be seen that Newton’s method uses the second partial derivatives of the

objective function (in the form of the matrix [/;]) and hence is a second-order method.

Example 3.3.1. Show that the Newton’s method finds the minimum of a quadratic function

in one iteration.
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SOLUTION

Let the quadratic function be given by
f(x)= %XT[A]X +BTx+cC
The minimum of f(X) is given by
Vfi=[AIX+B=0

or

X=-[A"'B

The iterative step of Eq. (3.18) gives
Xis1 = Xi — A" ([A1X; + B) (E1)
where X; is the starting point for the ith iteration. Thus Eq. (E;) gives the exact solution

~[A]"'B

Xit1 = X
Figure 3.01 illustrates this process.

Example 3.3.2. Minimize f(x1,x2) = X1 — X2 + fo +2X1 X2 + x% by taking the starting point

as X; =(0,0).

SOLUTION
To find X, according to Eq. (3.18), we require [/;]~}, where

0°f 0°f
| 0x%0x; 0x10x> _( 4 2 )
=1 TR T =y 5
6x26x1 Oxzaxg X,
Lecture Notes 39 Author : Dr. Rabah DEBBAR

3rd Year Degree in Mathematics Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

S=-1AI"'Vfy

Figure 3.0] Minimization of a quadratic function in one step.

Therefore,

As
[ 0f10x: [ 1+4x1+2x [ +1
817\ afroxy ), T\ —1+2m 421 J o T\ -1
Equation (3.18) gives

1

_ 0 +to -5 1 -1
X2:X1_[]1] lg]:(o)_ 21 2 ( 1 ):
1

2
To see whether or not X5 is the optimum point, we evaluate

g ( Ofldxl ) ( 1+4x1+2x ) ( 0 )
2 = = =
Of/axg X, —1+2x;1+2x (-1,3/2) 0
As g» =0, X, is the optimum point. Thus the method has converged in one iteration for

this quadratic function.
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If f(X) is a nonquadratic function, Newton’s method may sometimes diverge, and it may
converge to saddle points and relative maxima. This problem can be avoided by modifying
Eq. (3.18) as

Xiv1 = Xi +AiSi = Xi = LilJi 'V f; (3.19)

where 1; is the minimizing step length in the direction S; = —1;[J;]~'V f;. The modifica-
tion indicated by Eq. (3.19) has a number of advantages. First, it will find the minimum in
lesser number of steps compared to the original method. Second, it finds the minimum
point in all cases, whereas the original method may not converge in some cases. Third, it
usually avoids convergence to a saddle point or a maximum. With all these advantages,
this method appears to be the most powerful minimization method. Despite these ad-
vantages, the method is not very useful in practice, due to the following features of the
method:

1. It requires the storing of the n x n matrix [/;].

2. It becomes very difficult and sometimes impossible to compute the elements of the ma-
trix [/;].

3. It requires the inversion of the matrix [/;] at each step.

4. Tt requires the evaluation of the quantity [/;] 'V f; at each step.

These features make the method impractical for problems involving a complicated objec-

tive function with a large number of variables.
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4.1 TP No. 01

TP1RABAH

Extreme point analysis
For the function f:

R 5K Définie f(x,y)= 21 + 2y3 —9x%+ 3y2 -12y

To find the critical points, we use the symbolic variables syms of
Matlab (Symbolic Toolbox) which make it easy to find partial derivativesl

(Command Window
>> SymsS X ¥
E=2*x"3+2*y"3-0*x"2+3*y 2-12*%y;
fx=diff (£, x)
£y=diff (£, ¥)

fx =

6*x"~2 - 18*x

£y =

6*y™2 + G*y — 12

We use the solve command to find the place where the partial drifts are
simultaneously equal to zero

>> S=solwe (fx, £v)
s=

Xx: [4x1 sym]
v: [4x1 sym]
To examine the S camps, we write..
s [Si=, S ]

ans =

o, 1]
[ o -2]
[3 1]
[3 -2]

To classify the points we use the second derivative test, which consists
of evaluating the sign of the determinant of the Hessian matrix

H|= fo (o) fi, ()= f o (x.y)

We define
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> fxx=diff(f=x,x)
fyy=diff (fy,v)
fry=diff (fx, v)

fux =

12#x - 18

fyy =
12%y + &
fry =

0

And we evaluate them at each point found previously. As f is defined as
a value
symbolic, the command to write is:

>» a=subs (L, [x,v].[0,1]1) >>» a=subs (L, [x,v],[3,1])
a = a =
-7 -34
»» a=subs(f, [=.v], [0,-2]) >» a=subs=(f, [x,v], [3,-21)
a = a =
20 =7
(x, y) folx,v) fulxoy)* folxy)—f 2 X y) | Classification
(0,1) =7 N -324 Saddle point
(0,=-2) 20 324 Local minimum
(3,1) -34 324 Local maximum
(3,-2) -7 -324 Saddle point

To visualize the solutions and ensure the correct classification of the
points, we create a mesh of points, and we define the function:
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>> [X,v]=meshgrid(-5:0.1:5);

Z=2%x 342 Ry M3-0%x, “243%y, 2124y
mesh (X, ¥, Z)

xlabel('x")

ylabel('v')

zlabel({z="f(=x,v)")

B et

File Edit View Insert Tools Desktop Window Help

NEd&|&|RTDEL-(3|0

To better locate the points we use a contour map and locate the points
there:

> contour (X,v,z,50)

hold on

plo}: (0,1,"c%");

File Edit View Inset Tools Deskiop Window Help El

NEEL b ANUDEL- G 0E|aD

fy)=A—-x)?*+ 100(y — x%)?
Example: For the function
Find the critical points.

e
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4.2 TP No. 02

TP2RABAH

Optimization Optimization
Optimization is based on finding the minimum of a given criteria * Optimization is important in modelling, control and
function. simulation applications.

* Optimization is based on finding the minimum of a given
criteria function.

* Itis typically used with Model based Control (MPC)

* MATLAB functions: :

f)

df(x) _ 0 - fminbnd() - Find minimum of single-variable function
dx on fixed interval
“—————— Minimum - fminsearch() - this function is similar to fminbnd()
- x except that it handles functions of many variables
Optimization

Example: ¥(x) = 2x? + 20x — 22
We want to find for what value of x the function has its minimum value:

THE fplot COMMAND

The fplot command plots a function with the form y = fix) between specified
limits. The command has the form:

fplot (‘*function’, li‘mits, ‘line specifiers’ )]
ra -

The function to/ The domain of x. and Specifiers that define the
be plotted. optionally. the limits type and color of the line
of the y axis. and markers (optional).

Méthodel

>> fplot('2*xA2+20*x-22',[-20 20], '--r')
Méthode2

>> x=[-20:0.1:20];
y=2.%x.A2420.*x-22;

plot(x,y)

Méthode3

Editor Window ( TP2RABAH1.m) and Figure Window
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1200
1000 [ -- - - -t -memmme b b
LT e SRR
L T B T S S
T i) EETETETE EEPPEEFR) CAREPERE FERREEN -
S
1- x=[-20:0.1:20]: 0 \\// """"""""""""""
2 — y=2.%H."2+20.%x-22; 0
20 -15 10 -5 0 5 10 15 20
3- rplot (x, V)
4 - grid
il= x=l—20:0.1:20]; ans =
2 - y=2.%x."2420.%*x-22;
all= plot (X,V) -5
4 - grid
Sl= i=1;
6 - while (y(i} > y(i+1}) ans =
7 - i=i+1;
8- end -72
3 - x[1)
] vz} Command Window: clad
Mysimplefunc.m and TP2RABAH2.m
1= ® = -20:0.1:20
2 - £ o= 2.%x."2430.%x-232
3 — plot (x, f)
1
H|= xmin = fminbnd(@mysimplefunc, -20, 20)
1 function £ = mysimplefunc(x) F -
2 - f = 2.%x.72+20.7x-22; 7 - ymin = mysimplefunc (xmin)
Optimization
Example: y(x) = 2x? +20x — 22 We have that:
G SR dy Optimization
JGWMe & NAODPWL- Q00 =0 — =4x+20
dx
e Minimumwhen:  Given the following function:
x dy _
- dx f(x) =x3—4x
,.: | | A1 ] This gives: We will:
e .k\. —— 4x+20=0 « plotthe function
i i Y x=-5 * Find the minimum for this function
2
»
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4.3 TP No. 03

TP3RABAH

Optimization - Rosenbrock's Banana Function

" R . Rosenbrock’s banana function is a famous
Given the following function: | test case for optimization software

fCay) = (1 —x)* +100(y — x%)?

This function is known as

Rosenbrock's banana function.
We will:
—> Plot the function | -
- Find the minimum for this function .. .. .. . . "
= clear,cle
2
= [%,v] = meshgrid(-2:0.1:2, -1:0.1:3):
4
Si|= f = (1-x).72 +100.*(y-x."2)."2;
[
U= figure (1)
8= surf(x, v, f)
9
10 - figure(2)
11 - mesh(x,v, f)
12
&ll= figure (3)
14 — surfl (x,v,£)
== shading interp:
16 — colormap (hot) ;

Banana_plot.m

B Figure 1 oI5| e =
File Edit View Insert Tools Desktop Window Help File Edt View Incet Teols Desktop Window Help
VSR |MAKNUPRLA- |G 0E|nD DEEAS bR UDEL- R0 uD

s

\\\\,‘\\\\\\\\‘Q\\\\\\

U,
Y
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B Figure 3

File Edit View Insert Tools Deskiop Window Help

DEde kR0 EA- B I 0D

Méthode 1 et 2

[

>» banana = @(x)100% (x(2)-x(1)*2) "2+ (1-x (1)) "Z;

¥ [%,fval] = fminsearch(banana,[-1.2, 1]) 2

z =

Tfunctiun £ = bananafunc(x)

£ = 100% (x(2)-x(1)"2)"2+(1-x(1))"2:

4\ MATLAB 7.10.0 (R2010a)

X File Edit Debug Parallel Desktop Window Help
ME | smB2 0 BB |@ ||C:\U;ar;\,2014\[)ocun
1,0000  1.0000 * Shortcuts 2] Howto Add (2] What's New

>> banana = @(x)100% (x(2)—x(1)*2) "2+ (1-x(1)}~2;
>> [%,fval] = fminsearch(banana, [-1.2, 11}
==

fval =

1.0000 1.0000
8.1777e-010
fval —
f{ > 8.1777e-010

function £ = bananafunc(x)

£f= (1-x(1)) .2 + 100.*(x(2)-x(1) .%2).42;

[x,fval) = fminsearch (@bananafunc, [-1.2;1])

From MATLAB we get: 3 :I susune e -
X = 1.0000 1.0000 =

fval = 8.1777e-10 .

Which is correct

)
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44 TP No. 04

(see [7])

TP4ARABAH
MATLAB Code of Steepest

Descent (Cauchy) Method

Perform 4 iterations of Steepest
Descent Algorithm to

Minimize f(x1,x,)
=x, — X, + 2x}
+2x,%, + x2
starting from the point
X, =@1)

Perform 4 iterations of Steepest
Descent Algorithm to

Minimize f(xy,x,)
=x;—x, + 2x}
+2x,%, + X3
starting from the point
X, =2

I: Calculate S; =—Vf; at X;

sTs;
sTHS
Xiv1 = Xi + 4iS;

2: Caleulate 4; = and

Working Steps

3: Check the optimum of X;,
by Vf(Xiyq) = 0.

MATLAB CODE: EXPLANATION

format short % Display output upto 4 digits

clear all % Clear all the Stored Variable

cle % Clear the screen

syms x1 x2

% Define Objective function

fl = X1-X2+2*xX172+2*X1*X2+X2"2;

fx = inline(fl); % Convert to function
fobj=@(x) fx(x(:,1),x(:,2));

% Gradient of f

grad = gradient (f1); % Compute gradient
G = inline(grad); % Convert to function
gradx=@(x) G(x(:,1),x(:,2));

% Hessian Matrix

H1 = hessian(fl); % Compute Hessian

while norm(gradx(x0))>tol && iter<maxiter

X = [X;x0]; % Save all vectors

S = -gradx(x0); % Compute Gradient at X
H = Hx(x0); % Compute Hessian at X
lam = S'*S./(S'*H*S); % Compute Lambda
Xnew = x0+lam.*S'; % Update X

X0 = Xnew; % Save new X

iter = iter+l; % Update iteration
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%%% PRINT the Solution

fprintf ('Optimal Solution x = [%f,

fprintf ('Optimal value f(x)

]

$f1\n',x0(1), x0(2));

$f \n',fobj(x0));

Optimal Solution x = [-0.981216, 1.495304]
Optimal value f(x) = -1.249449
5> X
x =
1.0000 1.0000
-0.3624 0.4161
-0.8062 1.4515
-0.9382 1.3950
>>
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4.5 TP No. 05

(see [7])

TP5RABAH

Conjugate Gradient (Fletcher - Reeves) Method
MATLAB CODE

Optimize

Minimize f (x1,%2) MATLAB CODE: EXPLANATION

=x; — X, + 2x}

+2x1%, + X3 format short % Display output upto 1 digits
starting from the point
Xy =09
using Conjugate Gradient
(Fletcher - Reeves) Method
>> format short >> format long MATLAB CODE
>> 10/3 >> 2/5
ans = ans = /: & E
E = =
= <>
3.3333 0.400000000000000 * S
=Tr =z m
>> 2/5 >> 10/3 ‘; i g %
ans = s £ 5§ =
ans = g "3’ = =
£ 3 =
0.4000 N =
3.333333333333334 g s =
MATLAB CODE: EXPLANATION
,l' syms x1 x2
At X, ; Set initial S = 0 % Define Objective function
« | 1: Calculate S; = —Vf; + BiSi—y
g where f; = 2
@ U
P v’,rv,, % Gradient of f
] 2: Calculate: 2; = -smand
§ Xisy = Xi + A4S
3: Check the optimum of X;,,
by Af(Xi41) = 0 % Hessian Matrix
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>> r1

syms x1 x2 f1l

% Define Objective function

fl = X1-X2+42*X1 2+2*X1*X2+X2"2; 2%x]142 + 2*x1*x2 + x1 + =272 - %2

% Gradient of f % Hessian Matrix
grad = gradient (f1); % Compute gradient Hl = hessian(fl); % Compute Hessia
>> gradient (f1) % hessian{fl)
ans =
ans =
4*x]1 + 2*x2 + 1
2%xX1 -+ 2*x2. — A
i [ 4, 2]
>> grad=gradient (fl)
(2, 2)
grad =
4%*x] * 2*x%2 *+ 1
2*x]1 + 2%*x2 - 1
% Define Objective function pribasinl tna(El)
fl = X1-X2+2*X1"2+42*X1*xX2+x2"2; fx =
fx = inline(fl); % Convert to function
. Inline function:
EObJ =@ (x) fx (X(:, 1) X (: ’ 2) ): fx(x1,%2) = x1-x2+x1.*x2.*2.0+x1.72.*2.04x2.”2
> £x(0,1)
ans =
0
>> £x(2,7)
ans =
80
>> £x(2,-6)
ans =
28
>> fobj
fobj =
a(x) fx(x(:,1),%(:,2))
% Gradient of f >> grad
grad = gradient (fl); % Compute gradient grad =
G = inline(grad); % Convert to function | 4*X1 + 2%x2 + 1
gradx=@(x) G(x(:,1),x(:,2)); 2%xl + 2%*x2 - 1

)
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% Hessian Matrix
Hl = hessian(fl); % Compute Hessian
Hx = inline(H1); % Crgertt_o_ﬂmction
%0 = [1 1); % Set initial vector >> x0
maxiter = 4; % Set maximum iteratio| *° *
tol = le-3; % maximum tolerance =ke0R00 = E+5000
. A s
iter = 1; % initial counter T
. v s =
X=1[]; % initial vector array
em -0.4964
pty 0.8438

Algorithm

At X; ; Set initial S5 = 0

vril?
19f¢-11%

where f; =

Working Steps

( B
1: Calculate S; = =Vf; + BiSi—,

v
2: Calculate: A; = ??”—s"‘ and
Xivy = Xi +4;S;

by Af(X;+y) =0

3: Check the optimum of X;,,

%%% PRINT the Solution
fprintf ('Optimal Solution x

fprintf ('Optimal value f(x)

%%% Conjugate Gradient

$%% MATLAB CODE

MATLAB CODE: EXPLANATION

5 =0; % Initial Search Direction
Gpr = -gradx(x0); % Compute initial vfi_,
while norm(gradx(x0))>tol && iter<maxiter

X = [X;x0); % Save all vectors
Gi = -gradx(x0); % Compute Gradient at X
H = Hx(x0); % Compute Hessian at X
bet = norm(Gi).~2./norm(Gpr) .”2;

S = Gi + bet.*S; % Compute direction "S"
lam = Gi'*Gi./(S'*H*S); % Compute Lambda
Xnew = x0+lam.*S'; % Update X
x0 = Xnew; % Save new X
Gpr = Gi; % Update Vfi-,
iter = iter+l; % Update iteration
end S

[%£, %*f]\n',x0(1), x0(2));

$f \n',fobj(x0));

(Flecter-Reeves) METHOD (Quadratic function only)

L/
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- format short
= clear all
- clc

= syms x1 x2
= X0 = (1 1);
= tol = le-3;
- maxiter = 4;
% Objective function:

$ £l = X1.~2-X].*%X2+3.%x2.42;

"% Gradient of f
= grad = gradient (f1);
= G = inline(grad);

= gradx = @(x) G(x(:,1), x(:,2)):

% Hessian matrix
- Hl = hessian(fl);
= Hx = inline(Hl);

%%% MAIN CODE Fleetcher-Reeves method

T X =1):
- s=0; % initial S 0 =0
= iter = 1; %$for iteration

= Gpr = -gradx(x0);
- if norm(Gpr)==0

= disp('Change x0');

- X0 = input('Provide New x0=');

= Gpr = -gradx(x0);
= end

% initial Gradient at i-1

E while norm(gradx(x0))>tol && iter<maxiter

- X = [X;x0];
= Gi = -gradx(x0);

Optimal Solution x = l—1.006000, 1.500000)
Optimal value f(x) = -1.250000

>> X

X =

1.0000 1.0000
-0.3624 0.4161

Change x0
p Change x0
Provide New x0=[0 0.6) Prcoiie e w0=1 9 B
gPtf"‘ai S°i““‘;“ = [;:gggggo' 1.500000) opt5ma) solution x = (-1.000000, 1.500000)
ptimal value f(x) = -1. optimal value f(x) = -1.250000
>> X >> X
X= X =
0 0.6000 $.0000  2.0000
-0.5064  0.5540) 1.1265 -2.0328
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Chapter 5

Tutorials

5.1 TD Series No. 01

Exercise 5.1.1. 1. Calculate the gradient of f (x, y, z) in the following cases.

a. f(x,3,2)=x>+y +2"
b. f(x,y,2) =x*y3z"
c. f(x,y,2)=e"sinylnz.

2. Determine the stationary points of the function f of two variables defined by

Flx,y) =x(x+1)% -2

3. Calculate the derivative or gradient of (go f) by two methods in the following cases
a. f(x,y) =exp(x)+cos(y), gx)=4x+1.

b. f(x) = (exp(x),cos(x)), g(x,y)=4x+2y.
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Exercise 5.1.2. 1. Show that

V(f.g)=gVf+fVg

g

2. Show the following equality
Vi f(x)h=V(Vf(x),h); xeDfcR" VheR"

Exercise 5.1.3. 1. Calculate the directional derivative of f(x,y) := e*” ’ at the point (1,2) in
the direction forming a angle of 30° with the positive x-axis.
2. Let T(x,y) = x>+ y* —2xy + 1 be the temperature at point (x,y). In which direction to the

point (1, 3), the temperature T

a. is it increasing the fastest and at what rate ?

b. is it decreasing the fastest and at what rate ?

Exercise 5.1.4. Determine the Taylor expansion of the following functions
. 71: 71- non

a. f(x,y)=—cosxcosy in(0,0) and (E’ E) to order "2

b. f(x,y)=e*cosy in(0,0) to order "2"

Exercise 5.1.5. Calculate the directional derivative of the following functions at the points

indicated.
2 2
a. fx,y)=x+y in(0,0)andd= (g,_g T
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b. f(x,y)=x+y*+2 in(1,-2) andd=3,-4)".

c. f(x,y)=e cosy in(0,0)andd=(-1,1)T.

Exercise 5.1.6. Calculate the gradient, the Hessian matrix and the Directional derivative
1. i:R"—Rx— fi(x)=a.

2. fL:R"—Rx— fo(x)={(a,x)+b acR" beR.

3. f3:R" —R;yx— f3(x) =a{b,x)+c beR" aandceR.

4, f1:R" —>Ryx— fu(x)=a{x,x)+b aandbeR.

m
5 f5:R" —Ryx— f5(x) = Z gi(x)such as
i=1
gi :R" — R is twice differentiable.

6. fo:R" —Rjx— fo(x) = i(g,- (x))2such as
gi :R" — R is twice d;':jfizrentiable.
Exercise 5.1.7. we assume that it exists L > 0 such thatV x, y € R", we have
IVf(x)=VfI<Llx-yllieVfis Lipschitzian or fis class € (R
Then
Fle+ W= F@ = @, < SIRIE Vo eR"
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5.2 TD Series No. 02

Exercise 5.2.1. Show that a norm is convex.

Exercise 5.2.2. Show that the indicator function; of a set ) defined by
0 if xeQ
lg = .
+00 if x¢Q
is convex if and only if Q) is convex.

Exercise 5.2.3. Let U be a convex part of a vector space V. Show that f: UcV — R is

convex if and only if the following set:
epi(f) ={v, @) cU xR a = f(v)}
is a convex part of U x R.

Exercise 5.2.4. Let F be a function from R" in R. we define the following function from R}

toR:

Flu+av)—F(u
Va>0, VY(uv)eR"xR" @)= ( )~ Flw)

Show that if F is convex then ® is increasing.

Exercise 5.2.5. Let (f;)ic; be any family of convex functions of U c V. — R. Prove that the

function sup f; is convex.
xeRn

1 1
Exercise 5.2.6. Show Young's inequality¥a,b>0 Yp,q €N suchas—+ E =1
p

1 1
ab<—a” +—b1
q

Exercise 5.2.7. Let f be a convex function fromR" toR. To show that:

p p
Y(A)izisp € RMP suchas ) Ai=1, Y(x)i<i<p€ (R")p;f(z Aixi) <

p
i=1 i=1 P

Aif(x)).

i=1
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Exercise 5.2.8. (Characterization of convexity)

LetC) € R" be an open oneU c Q with U convex and f : Q — R R a function of class €. Then
the following 3 propositions are equivalent: 1. f is convex on U
2.f=fx)+(Vf(x);y—-x) Vx,yeU

3.V fis monotonous on U

Exercise 5.2.9. Let f is of class €° then f is convex on U (convex) if and only if

(VPO (y-x)y—x); Vx,yeU
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5.3 TD Series No. 03

Exercise 5.3.1. Show that if X is a max (local or global) of f, then X is a min (local or global)

of —f

Exercise 5.3.2. Are the following functions coercive?

1. fi:R—Rx— fi(x)=x>—x*+5.

2. L:R" —>Rx— folx)=(a,x)+b acR",beR.

3. 3:R" —>Ryx— fs(x)=a{x,x)+b aandbeR.

4. f1:R* —Ryx— f1(x) =2x5 +x2 -5

5. f5:R* — R;x— f5(x) = x7 +2% + X5 — X1

6. f5:R* — R;x— fs(x) = x5 +2x1 + X5

7. f7:R2 —Ryx— f7(x) = x%+x§—3x2—5

8. f3:R" —Rjx— fg(x)=(x,x)+{(a,x)+b acR" beR

Exercise 5.3.3. We consider the function f defined on R* by

f,y) =xt+yt—2(x-y)?

1. Show that there exists (a, p) € Ri such that

fenzal@l®+p (xy) eR?

Deduce that the following problem has at least one solution,

(P1) min(xyy)esz(x, y)
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f is it convex onR*?

3. Solve the problem (Py).

Exercise 5.3.4. Letf :R* — R;x— f(x,y) =x*+ y*+ax+by+c
We consider the problem
(P)min yere f(x,¥)
1) Show that f is elliptical.
2) Solve the problem (P»).

Exercise 5.3.5. Consider a cloud of n points M;(t;,x;) € R* i=1,2,...,10 given by the table

following

10
ti |11 23456 |7]8]9/|10]) =
i=1

10
xi |0|-3|6|-36[38[5|-2|14|8]) x=
=
2 llo 2
2 > ti=
i=1

We are looking for the regression line of this cloud. For this we use the method of least

squares, as we do not have x; = at; + b foralli =1,2,...,,10, we seek to minimize the square
of differences. We therefore want to find a pair of reals (a, b) solution of

min_¢(a,b)
P3) =
() {(a,b) e R?

Or #(a,b) = i(xi —at; — b).

1. Complelt:e1 the table.
2. Calculate the gradient and the Hessian matrix of the function ¢ .
3. Does the problem (P3) have a solution? Is it unique?

4. Solve the problem (Ps3) , deduce the equation of the regression line.
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Exercise 5.3.6. We consider the following minimization problem

(Py) = {minj(v)

veR"

1
Or #(v) = E<AU’ v) — (b, v). and A is a positive definite symmetric matrix of R" in R"
andveR".

1. Demonstrate that
a. The function _¢ is strictly convex.
b. _# is a coercive function.

2. Calculate the gradient and the Hessian matrix of the function _¢.
3. Show that the problem (P4) admits a single solution.

4. Solve the problem (Py), deduce the minimum value of ¢ .
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Chapter 6

Corrected Tutorials

6.1 TD Series No. 01 Corrected

Answer 6.1.1. a. f(x,y,2z) :x2+y3+z4.

of

—(x,¥,2)
gf 2X
Vf(x, y) Z) = @(xy y,Z) = 3y
af 4z
&(x,y,Z)
b. f(x,y,2) =x*y°z"
%(x )
g?? v 2xy°z*
Vix,y2=| =52 =] 3x%)*2*
oy 4x2 1323
of x“y’z
—(x,¥,2)
0z

c. f(x,y,2)=e"sinylnz.
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af
g(x’ %2 e*sinylnz
X

Vispa=| Smna |=| ¢ L5y

ﬂ(x ¥, 2) z

oz

2. f(x,y) =x(x+1)* -y

of

5y 3x%>+4x+1
Vi =| §f :( 2y )

5?mw

3x°+4x+1 0

Vf@JO—O::( o )_(0)

-1
(x,J/) = (_1)0) \% (?)0)

3. Calculate the derivative or gradient of (go f) by two methods in the following cases

a. f(x,y) =exp(x)+cos(y), gx)=4x+1.

(gof(x,y)=g(f(x,y)
= g(exp(x) +cos(y))

=4(exp(x) +cos(y)) + 1.

Author : Dr. Rabah DEBBAR
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Vigof)(x,y) =g (f(x,y)Vf(x,y)

of
—(x, )
=gy | §F
E(x, ¥)
:g'(exp(x)+cos(y))( —6211(8) )’ g'x) =4
—4 exp(x)
7\ =sin(y) )
2nd method
0
‘gof(x, ¥)
Vigof) ) =| agof
dy (x,y)
[ 4exp(x)
| —4sin(y)

b. f(x) = (exp(x),cos(x)), g(x,y)=4x+2y.

(gof)(x)=g(f(x)
=g(filx), f2(x)
= g(exp(x),cos(x))

=4exp(x) +2cos(x).

(gof) (x) =4exp(x) —2sin(x)

66 Author : Dr. Rabah DEBBAR
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2nd method

(gof)(x)= f(x)Vg(f(x)
0
28 (r

= (e, fon| 3% '
@ (f(x)

4
= (exp(x), —sin(x)) ( 5 )

=4exp(x) —2sin(x).

Answer 6.1.2. 1.

a.
o(f.
(f.8) -
o)
_'g( X)
V(f.g) = 0x>
A(f.g)
0xy, (x)
0 0
0x 0x;
of og
—(x) —(x)
=g 0xo + f 0x>
of g
9%, (x) ox, (x)
=gVf+fVg
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b.
a(f) of .08
g 0x; 0x;
(x) 0 0
ax; g2 ¢ 2 -7 98
o) GO 08 Ju T om
v(f): &y | _ M(’C) 1 ga_)Cg(x)_fa_JCz(X)
4 0x; g g* :
. . af ag
a(i) 3% 8, Y 5,
g . 0x, 0x, )
0x, g?
_ gVf-fVg
g2
2.
Vi f(x)h=V(Vf(x),hy; xeDfcR" VheR"
V2f(x)h=VVIf(x)h
=V(Vf(x),h)
Answer 6.1.3. 1. f: R> — R, and let v € R* be a unit vector
or o V3, 1
v=r(cos30°i+sin30°j) = r(Tz + E)
be a unitvector = r=1
of
—(x, ) 2 xy?
oo e 222
@(x, ¥) y
Dyf(x)=Vf(x)-v
V3of V1af
=2e*(V3+1).
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—(x y)
VTt =| % :( 3x% -2y )
y(x:y) 2y—2x

a. increasing the fastest

-3
VT(1,3 =
YIS s | andtherate 1VT(,3)1=5
IVT(1,3)] =
5
b. decreasing the fastest
3
VT(1,3 =
__VIA3) _ 5, | andtherate —|VT(1,3)|=-5
IVT(,3)] _—
5

, T T
Answer 6.1.4. a. f(x, y) =-—C0SxCcosy In (0,0) and (E’ E) to order "2"

2 2 2 2
fx,y) = fO, 0)+x—f(0 0)+ya—f(o 0+ L 00+ %L 0.0+ Yy:

S 3. 2 &y 0,0)+(x*+y*)e(x, )

2 2

f,y= —1+x7+y +(x*+y?)e(x,y) suchthat &e(x,y) — 0

(x,y)—(0,0)

flx+ E,y+ Z) =—xy+(x*+yHe(x,y) suchthat &e(x,y)— 0
2 2 (x,9)— (0,0

b. f(x,y)=e"cosy in(0,0) to order "2"

2 2

X
f,=1+x+—- Y, (x*+y»e(x,y) suchthat e(x,y) — 0
2 2 (x,5)—(0,0)
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Vi Vi,

Answer 6.1.5. a. f(x,y)=x+y in(0,0) andd:(T,—T) .

vinR? be a unit vector (||| = 1)

d
D, f(x) —Ef(x+ tv) .
:limf(x+ tv)— f(x)
1—0 t
(2420 £(0,0)
=lim
t—0 t
VZp_MZp_g

=lim
—0 t

2nd method

D, f(0,0) = (V£(0.0).v)

b. fx,y)=x+y*+2 in(1,-2) andd=3,-4)".
i—(§ __4 T

v= ,
a5 5

Dyf(1,-2)=(Vf(1,-2).v)

“304 _4( 4)
5 5
19
==
c. f(x,y)=e cosy in(0,0)andd=(-1,1)T.
v=——=(—,—)
ldl - v2 V2
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Dy f(0,0)=(Vf(0,0).v)

R T
V22 V2
-1
=5
Answer 6.1.6. 1. f1:R" —R;x— fi(x) = a.
%(x)
6x1 0
Vi) =| ox =| . |=0, 0eR"
ofi 0
0x, (x)
02 02 02
A A L LI
6x£6x1 6x£6x2 Gxiaxn 0 0
0°fi 0°fi 0°fi
) (x) (x) (x) 0 0
Hx)=V°fi(x)=| 0x20x1 0x20x> 0x20x,, )
52 52 52 00
LA LA Sy
0x,0x; 0x,0x> 0x,0xy
2. L:R" —>Rx— folx)=(a,x)+b acR",beR.
n
Lx)=) aixi+b
i=1
0
%(x)
of @
—(x) ap "
Vhix) = 0x2 = =a, acR
of an
ox, (x)
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0O 0 ... 0
) 0 0 0
Hx)=V-fo(x)= :
0O 0 ... 0
3. f3:R" —>Ryx— f3(x)=ab,x)+c beR" aandceR.
n
fx)=a)_ bixi+c
i=1
0
aﬁ(x)
o aby
—(x) ab,
Vix)=| 0x2 = " |=ab acR, beR"
6 ’ abn
f?’(x)
0xy,
0O 0 ... 0
) o ... 0
H(x)=V*f3(x) = :
0O 0 ... 0
4. f1:R" —>Ryx— fu(x)=a{x,x)+b aandbeR.
n
fih=ad x*+b
i=1
0
g;ﬁi 2ax;
—(x) 2axy
Vhix)=| 0x = _ =2ax, acR xeR"
of 2ax,
f4(x)
0xy,
2a 0 ... O
) 0 2a ... 0
H(x) =V~ fa(x) = .
00 2a
72 Author : Dr. Rabah DEBBAR
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m
5. fs:R" —R;x— f5(x) =) gi(x)such as
i=1
gi :R" — R is twice differentiable.

f0) =) gix)
i=1

Vfs(x) =) Vgix)

i=1

H(x) = VA f5(x) = ) V?gi(x)
i=1

m
6. fo:R" —Ryx— fo(x) = (gi(x))*suchas
i=1
gi :R" — R is twice differentiable.

Vis(x)=2) gi(x)Vg;(x)
i=1

Hx)=Vifs(x)=2) gi(x)Vg;(x)
i=1

1
Answer 6.1.7. f(x+ h) :f(x)+f (Vf(x+th),hydt
0

1
f(x+h)—f(x)—(Vf(x),h>:f0 (Vf(x+th)-Vf(x),h)dt
1
|fx+h) - f(x)=(Vf(x),h)| = UO (Vf(x+th)-Vf(x),h)dt|.
1
sf (Vf(x+th)-Vf(x),h)dt|.
0
1
Sj(; |Vfx+th)-Vfx)|lIhlde
1
sf Llix+th—x|hldt
0
1
:f Lt|lh|*dt
0
1
:L||h||2f tdt
0
_L

== hl?.
2|| |
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6.2 TD Series No. 02 Corrected

Answer 6.2.1. Let|.|| :R" — R be a norm, Then |.|| is said to be a convex if
IAX:+(A-ADXel <AIXall+ A -DIX|

For all X, X, € S and for each A € (0,1).

INX;+ (A -ADXoll < IAXq 1+ 1A=V Xzl (triangle inequality)
S |AMIXl+ 1A =D XNl (positive homogeneity)
s AUXal+ A =D Xl
Answer 6.2.2. 1 isconvex— Q isconvex ?
lo isconvex= 1g(AX;+(1-1)X2) < Ala(X1)+ (1 -2 1a(X2)

= Forall X;,X,e€Q [1q(X1)=1q(X2)=0| andforeach A€]0,1]

= 0<1gAX;+(1-A1)X2)<0+0

= 1oAX1+(1-1)X2) =0

= A1X+1-1)XeQ

= () isconvex.

Q isconvex— lqg isconvex ?

Q isconvex= Forall X,,X,€Q andforeach A€0,1] AX;+(1-1)X>€Q
= Forall X;,X,eQ 1Q(X1):1Q(X2):O), (IQ(/IX1+(1—)L)X2):0
=0=<0+0
= 1oA X1+ (1 -1 Xp) < Ao (X1) + (1 -N1a(X2)

— 1n isconvex
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Q isconvex— Forall X;,X>¢Q (IQ(XI) =1(Xo) = oo),
(IQ(/IXl +(1-1)X,) = O) or(lg(/le +(1-1)X) = oo)

- (OSoo+oo)0r(ooSoo+oo)

— 1q isconvex

Q isconvex— Forall X;€Q,X,¢Q) (].Q(Xl) =0, 1lo(Xy)= oo),
(IQ(AXl +(1-1)X5) = 0) or(lg(/le +(1-1)X5) = oo)

:(0S0+00

0r(oo$0+oo

— 1 isconvex

Answer 6.2.3. [ isconvex—= epi(f) isconvex ?

[ isconvex= Forall (u,a),(v,p)E€epi(f), (f(u)sa, f(v)sﬁ),
= f(tu+(Q-nNv)<tfw+QA-0f(v)

= f(tu+(A-nHv)<ta+1-1)p, (tu+(1—t)v€ Uconvex)

= (tu+(1 -y, ta+(1- t)ﬁ) eepi(f)
= t(u,a)+ 1 -1t)(v,p) €epi(f)

= epi(f) isconvex.
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epi(f) isconvex—= [ isconvex ?

epi(f) isconvex= (u, f(u)), (v, f(v))€epi(f)
tu, f) + (1 -0, f(v) € epi(f)
= |tu+(1 -y, tf(W)+AQ-0)f(w)|€epi(f)
= f(tu+(A-Dv)<tfwW+QA-1f(v)

= f isconvex
Answer 6.2.4. F isconvex— ® isincreasing ?

t
F isconvex=let t, =1t >0 on pose t:t—le(O,l]
2

Flu+hv)=Fu+thbv)=Fu+tu—tu+ttov)=F(1-0Du+t(u+ L))
<(A-HFwu+tFu+tnv)

= f isconvex
4

= Flu+hv)—-Fu <t

Fu+tnv)—F(u)

Fu+tnv)—F(u)
2

Fu+tv)—F(u) Fu+ tnv)—F(u)

—

4] %)
= ®(11) = D(1r)

= ® isincreasing

Answer 6.2.5. (f;);c; beany family of convex= sup f; isconvex ?
xeR”

Lecture Notes 76 Author : Dr. Rabah DEBBAR
3rd Year Degree in Mathematics Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

fi(x) < sup fi(x) = tfi(x) < t sup f;(x)

xeR” xeR”
fi=sup fi(y) =>A-0)fi(y) =A—-1)sup fi(y)
yeR” yeR”
fitx+A-Dy)<tfix)+ Q-0 fi(y) < tsup fi(x)+ (1 —1t)sup fi(y)
xeR” yeR?
fi convex

sup fi(tx+ (1 -1)y)<tsup fi(x)+ 1 —1t)sup fi(y)
x,yER" xeR” yeR”"

1 1
Answer 6.2.6. ab< —aP + qu ?
p

InaP+ilinpr 1 r 1 g 1 1
ab = eXplnab — explna+lnb = exp? na+-In < - Ing? | 1 np? _ L b

exp Isconvex.
Answer 6.2.7. Reasoning by recurrence
a. 22 (2) (verifies the property): this is the initialization (or base) of the recurrence;
b. For any integer p, 2 (p) = PP (p + 1)): this is heredity (we say that & is hereditary).

a p=2
2 2 2

V(A i<i<2 € R™? suchas Y A;=1, VY(x;)i<i<2€ (R”)Z;f(z Aixi) <Y Aif(xi)
j=1 i=1 i=1

(f be a convex function ig =1-A 92Q2), istrue). l l

b) 2(p)=P(p+1)) ?

p+1

V(A)1<isp+1 € R™MP such as Z Ai=1, andletiye{l,2,..., p+1} be such that
i=1

p+1 p+1
Y Ai#0laid Y Ai=p.Sop+A;,=landu>0,1;=0
i=1,1#i i=1,1#i
p+1 p+l
Y Ai #0 then there exists x € R" (Barycenter) Y AiXx;=pux
i=1,i#ig i=1,i#ig
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[ convex= f(Aj xi, +ux) < A, f(xi,) + pf(x)

p+1
= () Aixi) < Ao f(xip) + pf (x)
i=1

ptl 9. ptl 9.
f=7F0Y =x)= Y =flx)
i=1,izip M i=1,i#io
p+1 p+1
= f()_Aix) < D Aif(xi)
i=1 i=1

= (P(p+1),istrue)

Answer 6.2.8. (See theorem 1.8.1)

Answer 6.2.9. (See theorem 1.8.2)

(P(p),is true)
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6.3 TD Series No. 03 Corrected

Answer 6.3.1. Let X is a max (local or global) of f then

f(X)=max{f(x), xeR"(orxev)} veV(X)

= f(0)=<f(®), VxeR" (xev)
= -f@®=<-f(x), VxeR" (xev)
<~ —f(X) =min{—f(x), VxeR" (xewv)}

< f(X) =-—min{-f(x), VxeR" (xev)}

Answer 6.3.2. 1. fi:R— R;x— fi(x) = x> —x*+5.

lim fi(x) lim x° = +oo

Xtoo =] Aot o is not coercive
lim x° =-o0
X——00

2. L:R" —>Rx— folx)=(a,x)+b acR",beR.

lim fo(x) = is not coercive

x| —o0

—00 if a#0
a#0=3iy#0suchthata=(0---a;,---0) xx=(0---—ka;,---0)

{ b if a=0

fola) =—ka; +b  lxill = +oo0  folxy) = —00

3. 3:R" —>Rx— fz3(x)=alx,x)+b beR"aandbeR.

—00 if a<0 isnotcoercive
lim f3(x)= lim (allx||®>+b) = b if a=0 isnotcoercive
[[xl|—o0 [lxl|—o0 . . .
+00 if a>0 iscoercive
4. f4:[F{22 — Ry x— fa(x) :2xf+x2—5
we take the sequence x, = (0.—n), n=0

|xpll=n— 400 f(x,) =—n—-5— —oco then f,is not coercive
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5. f5:RZ —Ryx— f5(x) = X7 +2x5 + X5 — X
we take the sequence x, = (0.—n), n=0

lxpll=n— 400 f(x,)= —2n3 + n® - —co then f5is not coercive

6. fG:R2—>[R€;fo6(x)=xf+2x1+x§

2 1,
We have (x1+2) 20=>2x12—5x1—2
1,
—X
22)

1 1
fe(x)zixf+x§—2 —(F+x5) -2, (5=

1
fe(x) = 5” (x1, %) 17 =2, [1(x1,%2) || — +00 => f(x) — +o0, then fsis coercive

7. f7:IR€2—>[R€;fo7(x):xf+x§—3x2—5

2 1, 9
We have (xp—3) 20=>—3x22—5x2——

2
1 9 1
f7(x)2x%+§x§—525(xf+x§)—§, (x? = 2xf)
1 9
fi(x) = 5| (x1, %) 1 = 5 @)l — +oo= f7(x) — +oo, then f7is coercive

8. fig:R" —Rx— fg(x)=(x,x)+{(a,x)+b acR",beR
n
fo@) = x>+ ) aix;+b
= 1 1
We have (x;+a;)?=20=> a;x; = _EXZ_EaIZ
n
1

n
Za,x, 2——Zx —Eg -—5||x||2—5||a||

i:1

fa(x) = Ellxll - Ellall +b, x| — +oo= fg(x) — +oo, then fgis coercive

Answer 6.3.3. 1. Wehave VY(x,&) (x°—¢)*20=x"=2ex*-¢* (1)
and VY(y,¢) (y2_€)2203y4228y2_€2 2)

and (x+y)220:xy2—%(x2+y2) 3)

bay 1,2 and 3 We have f(x,y) = (2e — 4) (x> + y*) — 2¢*

there exists (a, fB) € IRQ%r such that (a, ) = (2 — 4, —2€%)

|l (x, YI| — +oo = f(x,y) — +oo, then f(x,y)is coercive
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f(x,y) be a continuous and coercive function defined on all R? , Then f(x,y) has at least
one global minimizer.
2.

f is convex ifand only if V> f (x, y) is positive semidefinite for all (x, y) € R

o2 _(3x*-1 1
Hx)=V f(x,y)—4(1 3y2_1),
5 (-1 1 2 o 42 4
Vf(O,O)—4(1 _1)=>v £(0,0) /11_(4 _4_A)

det(VZ£(0,0)—A) =A(A+8)=0=>A1=0 or A=-8

A =-8<0=V2£(0,0) is not positive semidefinite => f is not convex.

_ 4x3—4(x—y) _ _
3.Vf—0:( 1+ 40— y) )_o:(x,y)_(0,0)v(\/§,—\f2)v(—\/§,\/§)

a. (0,0), detV>f(0,00=0 saddel point.

b. (V2,-v2), detV*f(V2,-V2)=384>0and fx=20>0 ming e f(x,y) = f(V2,-V2) =
-8

c. (-V2,v2), detV*f(-V2,V2)=384>0and frx=20>0 ming, e f(x,y) = f(-V2,v2) =
-8

Answer 6.3.4. Vf(x,y) =

2x+a 2 (2 0
2y+b :vf(x’y)‘(z 0)

<V2f(x,y)( Z )( ZL )>=<( 2 8 )( llf )( Zl )>=2(uz+vz)=2|I(u,1/)||2zocll(u,l/)ll2

such that a €]0,2]. Then f is elliptical

2. f iselliptical = f is coercive and strictly convex

= the problem (P,) have a solution unique.
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2x+a

P . a b

Vfilx,y)=0=

Answer 6.3.5. 1.

10

516 | 7|8| 9|10 > =5
=1
10

38| 5|-2|14| 8 | ) x;=222

| 1] 2|3 4

xi|0|-3/6|-3]6]3
i=1
10

211 4]9|16|25)36|49|64| 81 |100| Y =385
i=1

10
Fla,b)= Z(xi —at; — b)>.

i=1

0¥ 10 10 10 10
S she is diff = (a, b) =2) (~t)((xi—ati-b)=2a) 2 +2bY -2 t;x;
i=1 i=1 i=1 i=1
6j 10 10 10
%(d, b)=2 Z(—l)((x, —at; — b) = ZaZ ti +20b_22 X;
i=1 i=1 i=1
10 10 10
ai(a b) 2a) 17+2b) ;-2 1;x;
vj(a) b) = ; = i=1 10 i=1 1l0=1
55 @D ZaZiti+20b—ZZixi
1= 1=

62] 10
—Z-(a,b)=2) ¢
da? =1’

10

0° ¢
yb)=2) t;
da0b > ,.zzll
0° 7 . N :
W(a,b):zo Itis clear that _¢ is twice diff (polyane in a and b)
) ) 10 10
L b L an | |20 2L
0a? dadb izl izl 770 110
H7@b) = 5y g | 1 = 110 20 |
—Z (a,b) —Z-(a,b .
saap @V Gz @? | |2 20
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The Hessian matrix is positive semi-definite because 2T* = 0 .
(the positive eigenvalues)=—> _¢ is strictly convex (convex) then the solution is unique (global).
We have f is diff and convex then any stationary point is a global min = the pb admits a

single solution.

2aT?+2bT-2TX =0

Vf(“’b):()@{ 2aT +20b-2X =0

10 10 10 10
Tzzzt?‘ T:Zti TX:Ztix,- X:Zx,-

i=1 i=1 i=1 i=1
The system admits a unique solution if

10
1072 _ _ 32
T 10 | =0T -TT#0 (TT—(Ztl))

i=1
T XT
10 X
a=————
1072-TT
T XT
T X
~10T2-TT

So the general case if 10T>—TT #0 = A™! exists = the pb admits a solution.

Answer 6.3.6. Let x, y € R" such that x # y and t €]0,1]

t(r—-1)

a. ftu+(Q-nv)-tfw-1-1_¢w)=

is a positive definite) = _¢ is strictly convex.

(Alu—v),u—-v)y>0 (((t-1)>0andA
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b. A is symmetric there exists an orthonormal base (u;)1<i<n and A positive definite there-

fore the associated eigenvalues are all strictly positive therefore
n

x=) XU, X=X up)
i=1
n n
Ax = 2:.XPALU = EZ,Aixiui
i=1 i=1

n n n
(Ax,x) =Y Aixixj(ug,uj) =Y Aix; =min{d;} Y x7
i=1 i=1 i=1
1 in{A;
S(Ax,2) = AP (L= %{’} > 0)

(b, x) = |Ib|l.Ixll = —<b, x) = —|Ibll.ll x|l

b
Z(x) = Alx|* = bl N xIl = | x[I*(A - m) — 400 [|x]| = +o0

# is a coercive function.

2. View the course

¥ is differentiable.

VZ(x)=Ax-Db

Hfx)=A

3. we have

F is strictly convex and coercive so (P4) admits only one solution.
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4.
VZx)=0=Ax-b=0=x=A"1h.
A~Y exists because A is positive definite and detA # 0 => A™! exists
Al exists & We are not an eigenvalue of A and A defines positive < all non-zero
eigenvalues = 0 is not a vp
Even if A negative definite and detA # 0 = 0 We're not vyp = A™! exists.
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7.1 Final Exam 2017-2018

Exercice 1  (Examen et interrogation ) (05.00 points)
Etudies les solutions optimales locales de f, défmie par

flr.y) =2 +4* — 3zy

Exercice 2 (Examen et interrogation ) (05.00 points)
On considere la fonetion
' i & @ &
flz.y) = 22° — 2y 4 yz
En partant du point initial (Tp; un) i(1;1) et en appliquant la méthode du gradient avec pp optimale,
caleulez (x1;w); (Toiwe) et (zg;vg). Puis Images correspondant 4 sous points parf .

Exercice 3 (04.00 points)
Soit J: O H— K , Giteanx différentiable sur O, avec C convexe. J est convexe =i et seulement si

Yuv)e = C Jiv) = Jiu) + (V0 {u),v —u)

Exercice 4 (06.00 points)

Une firme atronautique fabrique des avions gu’elle vend sur deux marchés étrangers. Soit gy le nombre
d’avions vendus sur le premier marché et go le nombre d'avions vendus sur le deuxiéme marché Les
fonctions de demande dans les deux marchés respectifs sont -

m = 60 —2q

p2 = B0 —4g

pp et po sont les dewx prix de vente. La fonction de coit total de la firme est © & = 50 + 40g oi g est
le nombre total d'avions produits. 11 faut trouver le nombre d’avions que la firme doit vendre sur chague
marché pour maximizer son bénéfice.
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7.2 Final Exam 2018-2019

Exercice 1 (05.00 points)

Soit la fonction f(z) = 100(x2 — 27)% + (1 — 1) et les points a = (1,1) et b= (—1,2).

a) Caleuler f(a), f(b), Vf(a) et Vf(b)

b) Discuter les conditions d’optimalité en a et en b sur la base des résultats obtenus en a).
¢) La direction d = a — b est-elle une direction de descente en b7 Justifier.

Exercice 2 (05.00 points)
On considere la fonetion

flz.y) = 42% — day + 29

En partant du point initial (2g;yp) = (2:3) et en appliquant la méthode du gradient avec p; optimale,
caleulez (z1;y1); (22;y2) et (xa; ya). Puis Images correspondant & sous points parf .

Exercice 3 (05.00 points)
Soit f € CI(RN,R)(_-'\T = 1). On suppose que [ vérifie

Ja>0 tg. (Vi@)=Viw)(z—yza|lz—y[, YryeR", (1)

IM >0 tq. |Vf@)—-Viy)|=M|z—y| Vr,yeR". (2)

1. Montrer que f(y) — f(z) = Vf(z).(y — x) +% |y — |2_. Yo,y e BV,
2. Montrer que f est strictement convexe et que f(z) —+ coquand | r |—+ oco.En déduire qu'il existe
un et un seul & € RVtq. f(z) < f(z) pour tout = € RV,

3. Soient p €]0, (2a/M?)[ et z9 € RY. Montrer que la suite (2 )nen définie par Tn41 = xn — pV fl2a)
(pour n € ) converge vers 7.
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Exercice 4 (05.00 points)

U'n industriel produic simuleanément 2 biens A er B dont il a le monopole de la production et de la venre
dans un pays. Soit ¥ la quantité produic du premier bien et y la quanticé produice du second. Les prix py
et pp amoquels il vend les bien A et B sont fonction des quantités écoulfes selon les relations :

{!-'.-1 = f(x)
pe = g(y)

Le coit de production total des quanticés x ef v est une fonction oz, y).

Le Béndéfice de entreprise 2i elle vend les quantités > et i est done la fonction
m(z,¥) = zf(x) + voly) — clz,v)

Trouves les quantités qui maximisent le bénéfice de Pentreprise, la valeur maximale du bénéfice ainsi que
less prix de vente de chacun des biens

pA=1—-2
pr=1-y
clx.y) = xy

Buena Suerie BGA SOrte
H‘ ana I*nrtunlﬂ

.....

L Glhrliduk ]::i*i‘EJ(

Bonne Lhan
Ljpes Menann :v’cncim
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7.3 Final Exam 2019-2020

Exercice 1 (03.00 points)

Soit f : I — R une fonction convexe et strictement croissante. Etudier la convexité de f=: f(I) — I .

Exercice 2 (07.00 points)
On considere la fonction
f@.y) = (22 —y)® +0°
1- Trouver 'extremum local X*).
2- En partant du point initial X© = (zg;y0) = (0;1). Calculez X(V; X2 et X©). Puis les images
F(XW®)) k=%0,1,2,3 et comparez-les. Appliquant

1
1. Méthode du gradient a pas constant p = 10°

2. Méthode du gradient & pas optimal py.
3- Déduire limX Pet fF(X ™),k — +00

Exercice 3 (06.00 points)
Considérons la fonction f : R? —s R définie par

f(a,y) = 52* + acos(y)
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1. Trouvez les points stationnaires.
2. Trouvez les points qui vérifient la condition suffisante d’optimalité.

3. Trouvez les solutions minimales locales strictes.

Exercice 4 (04.00 points)
Considérer la fonetion suivante :

flz,y) = 2% — 2y + 2° — 22 + "1V

1. Est-ce que X(® = (0;0) est un minimum local de la fonction f? Justifier.

2. Si oui, est-ce aussi un minimum global 7 Si non, trouver une direction de descente pour f en X 0,

Bii

(; .....

e

0 a
Veel Geluk: o Ivi Sanslar =
06d Liick
. Bonne Chance
3.jpeg - #Keirdio Yemexa

Ljpg ek
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