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Introduction

Optimization is central to any problem involving decision making, whether in engineer-

ing or in economics. The task of decision making entails choosing between various alter-

natives. This choice is governed by our desire to make the "best" decision. The measure of

goodness of the alternatives is described by an objective function or performance index.

Optimization theory and methods deal with selecting the best alternative in the sense of

the given objective function.

The area of optimization has received enormous attention in recent years, primarily be-

cause of the rapid progress in computer technology, including the development and avail-

ability of user-friendly software, high-speed and parallel processors, and artificial neural

networks. A clear example of this phenomenon is the wide accessibility of optimization

software tools such as the Optimization Toolbox of MATLAB1 and the many other com-

mercial software packages. There are currently several excellent graduate textbooks on

optimization theory and methods (e.g., [1], [5], [6], [8], [9], [10], [12], [15]), as well as un-

dergraduate textbooks on the subject with an emphasis on engineering design (e.g., [1]).

However, there is a need for an introductory textbook on optimization theory and methods

at a senior undergraduate or beginning graduate level. The present text was written with

this goal in mind. The material is an outgrowth of our lecture notes for a one-semester

course in optimization methods for seniors and beginning

v
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0.1 Type of Optimization

The classification of optimization is not well established and there is some confusion in

literature, especially about the use of some terminologies. Here we will use the most widely

used terminologies. However, we do not intend to be rigorous in classifications; rather we

would like to introduce all relevant concepts in a concise manner. Loosely speaking, clas-

sification can be carried out in terms of the number of objectives, number of constraints,

function forms, landscape of the objective functions, type of design variables, uncertainty

in values, and computational effort (see Figure 0.1 [16]).
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Chapter 1

Basic Concepts of Unconstrained
Optimization

1.1 Euclidean Space Rn

The vector space Rn is the set of n-dimensional column vectors with real components

endowed with the component-wise addition operator


x1

x2
...

xn

+


y1

y2
...

yn

=


x1 + y1

x2 + y2
...

xn + yn


and the scalar-vector product

λ


x1

x2
...

xn

=


λx1

λx2
...

λxn

 ,

where in the above x1, x2, . . . xn ,λ are real numbers. Throughout the Handout we will be

mainly interested in problems over Rn , although other vector spaces will be considered in

a few cases. We will denote the standard basis of Rn by e1,e2, . . .en , where ei is the n-length

1
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column vector whose ith component is one while all the others are zeros. The column vec-

tors of all ones and all zeros will be denoted by e and 0, respectively, where the length of

the vectors will be clear from the context.

For given x, y ∈Rn , the closed line segment between x and y is a subset of Rn denoted

by [x, y] and defined as

[x, y] = x +α(y −x) :α ∈ [0,1].

The open line segment (x, y) is similarly defined as

[x, y] = x +α(y −x) :α ∈ (0,1).

1.1.1 Inner Products and Norms

Definition 1.1.1. (inner product). An inner product on Rn is a map 〈., .〉 :Rn ×Rn −→Rwith

the following properties:

1. (symmetry) 〈x, y〉 = 〈y, x〉 for any x, y ∈Rn .

2. (additivity) 〈x, y + z〉 = 〈x, y〉+〈x, z〉 for any x, y, z ∈Rn .

3. (homogeneity) 〈λx, y〉 =λ〈y, x〉 for any λ ∈R and x, y ∈Rn .

4. (positive definiteness) 〈x, x〉 > 0 for any x ∈R and 〈x, x〉 = 0 if and only if x = 0.

Example 1.1.1. Perhaps the most widely used inner product is the so-called dot product

defined by

〈x, y〉 = xT y =
n∑

i=1
xi yi x, y ∈Rn .

Since this is in a sense the "standard" inner product.

Definition 1.1.2. (norm). A norm ‖.‖ on Rn is a function ‖.‖ :Rn −→R satisfying the follow-

ing:

Lecture Notes
3rd Year Degree in Mathematics

2 Author : Dr. Rabah DEBBAR
Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

1. (nonnegativity) ‖x‖ ≥ 0 for any x ∈Rn and ‖x‖ = 0 if and only if x = 0.

2. (positive homogeneity) ‖λx‖ = |λ|‖x‖ for any x ∈Rn and λ ∈R.

3. (triangle inequality) ‖x + y‖ ≤ ‖x‖+‖y‖ for any x, y ∈Rn .

One natural way to generate a norm on Rn is to take any inner product 〈., .〉 on Rn and

define the associated norm

‖x‖ =
√
〈x, x〉 for allx ∈Rn ,

which can be easily seen to be a norm. If the inner product is the dot product, then the

associated norm is the so-called Euclidean norm or l2-norm :

‖x‖2 =
√

n∑
i=1

x2
i for allx ∈Rn .

The Euclidean norm belongs to the class of lp norm (for p ≥ 1) defined by

‖x‖p =p

√
n∑

i=1
|xi |p for allx ∈Rn .

Another important norm is the l∞norm given by

‖x‖∞ = max
i=1,2,···n

|xi | for allx ∈Rn .

Lemma 1.1.1. (Cauchy-Schwarz inequality). For any x, y ∈Rn ,

|xT y | ≤ ‖x‖2 · ‖y‖2.

Equality is satisfied if and only if x and y are linearly dependent.

1.2 Matrices

1.2.1 Positive and Negative Definite or Semi Definite Matrix

Definition 1.2.1. An n ×n symmetric real matrix M and x of order n ×1 column vector, M

is said to be:
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1. positive definite if xT M x > 0 for all x 6= 0

2. negative definite if xT M x < 0for all x 6= 0

3. positive semidefinite if xT M x ≥ 0 for all x

4. negative semidefinite if xT M x ≤ 0 for all x

5. indefinite if it is neither positive nor negative semidefinite(i.e.if xT M x > 0 for some x and

xT M x < 0 for some x).

Remark 1.2.1. Test for Positive and Negative (Definite or Semi Definite) Matrix

1. A matrix M is positive definite if it is Symmetric and all its eigenvalues are positive

2. All Upper Left (Leading ) determinants are positive

3. A matrix M is positive definite if it is Symmetric and all its pivots are positive

4. S = M T M Independent Columns (Means No Zero Column)

1.3 Topology

Definition 1.3.1. (Open ball). Let a ∈ Rn and ε> 0. The open ball of radius ε centered at a

is

Bε(a) := {x ∈Rn : ‖x −a‖ < ε}.

Definition 1.3.2. (Open sets). A set U ⊆Rn is open if

∀a ∈U ,∃ε> 0 such that Bε(a) ⊆U .

In other words, U is open if every point of U is the center of an open ball contained in U .

Definition 1.3.3. (closed sets). A set U ⊆ Rn is said to be closed if it contains all the limits

of convergent sequences of points in U ; that is, U is closed if for every sequence of points

{xi }i≥1 ⊆U satisfying xi → x∗ as i →∞, it holds that x∗ ∈U .
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Definition 1.3.4. (Boundary). Let A ⊆Rn . The boundary of A is the set of all points a ∈Rn

such that,

∀ε> 0 (Bε(a)∩ A 6= ; and Bε(a)\A 6= ;.)

We denote the boundary of A by ∂A.

Definition 1.3.5. (boundedness and compactness).

1. A set U ⊆Rn is called bounded if there exists M > 0 for which U ⊆ B(O, M).

2. A set U ⊆Rn is called compact if it is closed and bounded.

Examples of compact sets are closed balls and line segments. The positive orthant is

not compact since it is unbounded, and open balls are not compact since they are not

closed.

1.4 Differentiability

1.4.1 Partial derivative

Definition 1.4.1. For a real-valued function f : U → R defined on an open set U in Rn and

a point a of U : If i = 1,2, ...,n, the partial derivative of f at a with respect to xi is defined

by:
∂ f

∂xi
(a) = lim

h→0

f (a +hei )− f (a)

h

Note that a+hei = (a1, ..., ai +h, ..., an), so a+hei and a differ only in the ith coordinate.

Thus the partial derivative is defined by the one-variable difference quotient for the deriva-

tive with variable xi . Other common notations for the partial derivative are fxi (a), (Di f )(a)

and ∇i f (a).
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Geometric interpretation

Example 1.4.1. Let

f (x1, x2) = x3
1 +x2

2 +4x1x2
2

Then, since
∂

∂x1
treats x2 as a constant,

∂ f

∂x1
= 3x2

1 +4x2
2

and, since
∂

∂x2
treats x1 as a constant,

∂ f

∂x2
= 2x2 +8x1x2

In particular, at (x1, x2) = (1,0) these partial derivatives take the values

∂ f

∂x1
(1,0) = 3

∂ f

∂x2
(1,0) = 0
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1.4.2 The Gradient

Definition 1.4.2. Let Ω ⊂ Rn be the domain of a real-valued functions f : Ω→ R If f is

differentiable we define the gradient of f to be the vector field ∇ f :Ω→Rn defined by

∇ f (x) =



∂ f

∂x1
(x)

∂ f

∂x2
(x)

...
∂ f

∂xn
(x)


=

n∑
i=1

∂ f

∂xi
(x)ei .

The notation g r ad f =∇ f is also common.

Remark 1.4.1. Since the gradient is a vector it can be written as either a row or a column

unless it is used in conjunction with matrix multiplication. In that case it is assumed to

be a column or an n × 1 matrix. Note the relationship between the gradient and the total

derivative, the 1×n (row) matrix

D f (x) =
(
∂ f

∂x1
(x),

∂ f

∂x2
(x), . . . ,

∂ f

∂xn
(x)

)
We can think of the gradient as the transpose of the total derivative

∇ f = D f T .

Example 1.4.2. Let

f (x1, x2) = x3
1 +x2

2 +4x1x2
2

∇ f (x) =


∂ f

∂x1
(x)

∂ f

∂x2
(x)

=
(

3x2
1 +4x2

2
2x2 +8x1x2

)

∇ f (1,0) =


∂ f

∂x1
(1,0)

∂ f

∂x2
(1,0)

=
(

3
0

)
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1.4.3 Hessian Matrix

Definition 1.4.3. The Hessian Matrix, H(x) or ∇2 f (x) is defined to be the square matrix of

second partial derivatives:

H(x) =∇2 f (x) =



∂2 f

∂x1∂x1
(x)

∂2 f

∂x1∂x2
(x) . . .

∂2 f

∂x1∂xn
(x)

∂2 f

∂x2∂x1
(x)

∂2 f

∂x2∂x2
(x) . . .

∂2 f

∂x2∂xn
(x)

...
∂2 f

∂xn∂x1
(x)

∂2 f

∂xn∂x2
(x) . . .

∂2 f

∂xn∂xn
(x)


,

We can also obtain the Hessian by applying the gradient operator on the gradient trans-

pose,

H(x) =∇2 f (x) =∇(∇ f (x)T ) =



∂ f

∂x1
(x)

∂ f

∂x2
(x)

...
∂ f

∂xn
(x)


(
∂ f

∂x1
(x),

∂ f

∂x2
(x), . . . ,

∂ f

∂xn
(x)

)

The Hessian is a symmetric matrix. The Hessian matrix gives us information about the cur-

vature of a function, and tells us how the gradient is changing.

Example 1.4.3. Let

f (x1, x2) = x3
1 +x2

2 +4x1x2
2

H(x) =∇2 f (x) =
(

6x1 8x2

8x2 8x1 +2

)
,

H(1,0) =∇2 f (1,0) =
(

6 0
0 10

)
,
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1.5 Directional Derivatives

The gradient can be used to define a generalization of the partial derivative called the

directional derivative(see [14] ).

Definition 1.5.1. Let Ω ∈ Rn be the domain of a real-valued functions f :Ω −→ R, and let

vi nRn be a unit vector. If f is differentiable we define the directional derivative of f at

x ∈Ω in the direction v to be

Dv f (x) = d

d t
f (x + t v)

∣∣∣
t0

= lim
t→0

f (x + t v)− f (x)

t
.

Partial derivatives are also directional derivatives

The following theorem gives us an easy way to calculate directional derivatives.

Theorem 1.5.1. Let Ω ∈ Rn be the domain of a real-valued functions f : Ω −→ R, and let

v ∈Rn be a unit vector. If f is differentiable then

Dv f (x) =∇ f (x) · v.

Proof. For x ∈Ω and any unit vector v ∈Rn define g :Ω−→R by

g (t ) = x + t v.
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Note that Dg = v, g (0) = x, and that f (x + t v) = f (g (t )). Thus, using the chain rule for

mappings and the relationship between the total derivative and the gradient, we can com-

pute

Dv f (x) = d

d t
f (g (t ))

= D f (g (t ))Dg (t )|t=0

= D f (x) · v

=∇ f (x) · v.

Example 1.5.1. Note that when v is one of the standard basis vectors ei we get

Dei f (x) = ∂ f

∂xi
(x).

Thus, partial derivatives are special cases of the directional derivative.

The following theorem gives us some geometric information about the gradient.

Theorem 1.5.2. Suppose f :Ω−→R is a differentiable function and ∇ f (x) 6= 0. Then the di-

rectional derivative is maximized when v points in the direction of ∇ f (x) and is minimized

when v points in the direction of −∇ f (x). That is, ∇ f (x) points in the direction of steepest

increase of f while −∇ f (x) points in the direction of steepest decrease.

Proof. Using the fact that v is a unit vector, we get

Dv f (x) =∇ f (x) · v = cosθ‖∇ f (x)‖ ·‖v‖.

where θ is the angle between ∇ f (x) and v . Thus Dv f (x) depends on v only through

the angle θ. Thus, Dv f (x) is maximized when the cosine is maximized (θ = 0, v in the di-

rection of ∇ f (x)) and minimized when the cosine is minimized (θ =π, v in the direction of

−∇ f (x)). The next theorem describes the relationship between the gradient of a function

and the level sets of that function.
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Theorem 1.5.3. Suppose f : Ω −→ Ris differentiable. Then ∇ f (x0) is normal to the level

surface of f at x0 ∈Ω. That is, suppose f (x0) = c, and g (t ) is a curve that lies entirely in the

level set f (x) = c. If g (t0) = x0 then ∇ f (x0) is orthogonal to the tangent vector g ′(t0).

Proof. Suppose f (g (t )) = c and g (t0) = x0: Since the composition is constant, its deriva-

tive is zero. Thus, using the chain rule we get

0 = d

d t
f (g (t ))

∣∣∣
t=t0

= D f (g (t ))Dg (t )|t=0

= D f (x0)g ′(t0)

=∇ f (x0)T · g ′(t0).
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Example 1.5.2. To find the equation for the tangent plane to the sphere

x2 + y2 + z2 = 14.

at the point x0 = (x0, y0, z0) = (1,2,3) we calculate the gradient of f (x; y ; z) = x2 + y2 + z2

∇ f = (2x,2y,2z).

We evaluate this at the point (1,2,3) to get the normal vector n = (2,4,6), and use this to

derive the equation for the tangent plane

0 = n(x −x0) =
 2

4
6

 ·
 x −1

y −2
z −3

= 2x +4y +6z −28,

or 2x +4y +6z = 28.

We can use the gradient to give a version of the Mean Value Theorem for scalar func-

tions on Rn .

Theorem 1.5.4. LetΩ ∈Rn contain the entire line connecting x1 ∈Ω to x2 ∈Ω, and suppose

f :Ω −→ R is C 1. Then there is a point x̂ ∈Ω on the line segment between x1 and x2 such

that

f (x2)− f (x1) =∇ f (x̂) · (x2 −x1).

Proof.We define a real valued function of a single variable by

g (t ) = f (t x2 + (1− t )x1), t ∈ [0,1].

We note that this function is C 1 and therefore the mean value theorem for real valued

functions of a single variable says there exists t̂ ∈ (0,1) such that

g (1)− g (0) = g ′(t̂ )(1−0).
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Note that g (1) = f (x2) and g (0) = f (x1). The chain rule gives us

g ′(t ) = f (t x2 + (1− t )x1) · (x2 −x1).

So if we let

x̂ = t̂ x2 + (1− t̂ )x1

this gives us the desired result.

1.6 Descent Direction

Definition 1.6.1. Let f : Rn −→ R be a continuously differentiable function over Rn . A vec-

tor 0 6= d ∈ Rnis called a descent direction of f at x if the directional derivative Dd f (x) is

negative, meaning that

Dd f (x) =∇ f (x) ·d < 0.

The most important property of descent directions is that taking small enough steps

along these directions lead to a decrease of the objective function.

Lemma 1.6.1. (descent property of descent directions). Let f be a continuously differen-

tiable function over Rn , and let x ∈Rn . Suppose that d is a descent direction of f at x. Then

there exists ε> 0 such that

f (x + td) < f (x)

for any t ∈ (0,ε].
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Proof. Since Dv f (x) < 0, it follows from the definition of the directional derivative that

lim
t→0

f (x + td)− f (x)

t
= Dd f (x) < 0.

Therefore, there exists an ε> 0 such that

f (x + td)− f (x)

t
< 0.

for any t ∈ (0,ε], which readily implies the desired result.

1.7 Multivariate Taylor Expansion

We now turn to the Taylor series expansion of a real-valued function f : Rn −→ R about

the point x0 ∈ Rn . Suppose f ∈ C 2. Let x and x0 be points in Rn , and let z(α) = x0 +α(x −
x0)/‖x −x0‖. Define φ :R−→R by:

φ(α) = f ((α)) = f (x0 +α(x −x0)/‖x −x0‖).

Using the chain rule, we obtain

φ′(α) = dφ

dα
(α)

= D f (z(α))Dz(α)

= D f (z(α))
(x −x0)

‖x −x0‖
= 1

‖x −x0‖
(x −x0)T D f (z(α))T ,
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and

φ′′(α) = d 2φ

d 2α
(α)

= d

dα

(
dφ

dα

)
(α)

= D f (z(α))
(x −x0)

‖x −x0‖
= (x −x0)T

‖x −x0‖
d

dα
D f (z(α))T

= (x −x0)T

‖x −x0‖
D(D f )z(α))T d z

dα
(α)

= 1

‖x −x0‖
(x −x0)T D2 f (z(α))T (x −x0)

= 1

‖x −x0‖
(x −x0)T D2 f (z(α))(x −x0),

D2 f = (D2 f )T since f ∈C 2. Observe that

f (x) =φ(‖x −x0‖)

=φ(0)+ ‖x −x0‖
1!

φ′(0)+ ‖x −x0‖2

2!
φ′′(0)+o(‖x −x0‖2).

Hence,

f (x) = f (x0)+ 1

1!
D f (x0)(x −x0)

+ 1

2!
(x −x0)T D2 f (x0)(x −x0)+o(‖x −x0‖2).

lim
x→x0

o(‖x −x0‖)2

‖x −x0‖2
= 0
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Theorem 1.7.1. (Taylor’s Theorem)[11]. Suppose that f : Rn −→ R is continuously differ-

entiable and that p ∈Rn . Then we have that

f (x +p) = f (x)+∇ f (x + t p)T p,

for some t ∈ (0,1). Moreover, if f is twice continuously differentiable, we have that

∇ f (x +p) =∇ f (x)+
∫ 1

0
∇2 f (x + t p)pd t ,

and that

f (x +p) = f (x)+∇ f (x)T p + 1

2
pT∇2 f (x + t p)p,

for some t ∈ (0,1).

1.8 Convex functions of several variables

1.8.1 Convex Sets

Definition 1.8.1. A set S ⊆Rn is called a convex set if for every choice of X1, X2 ∈ S, the points

λX1+(1−λ)X2 ∀λ ∈ [0,1] lies in S i.e., if X1, X2 ∈ S then line segment joining the points X1

and X2 must lie inside S.
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1.8.2 Conex Combination(Generalization of line segment)

Definition 1.8.2. Convex combination of points X1, X2, . . . , Xn ∈Rn is given by

X =
n∑

i=1
λi Xi , ∀λi ≥ 0 and

n∑
i=1

λi = 1.

i.e., A linear combination become a convex combination if all the Scalar‘s are non-negative

and are such that their sum is equal to 1.

Remark 1.8.1. 1. Empty set, singleton set and whole of Rn are trivially convex sets ,

2. Triangles, circles, ellipse, parabola with their interior are also convex sets,

3. Some convex sets in R2 are shown below.

1.8.3 Convex Function

Definition 1.8.3. Let f : S →R be a function, where S is a non-empty convex set in Rn . Then

f is said to be a convex function on the set S if

f (λX1 + (1−λ)X2) ≤λ f (X1)+ (1−λ) f (X2)

For all X1, X2 ∈ S and for each λ ∈ (0,1).

Remark 1.8.2. 1. f is said to be a concave function on the set S if

f (λX1 + (1−λ)X2) ≥λ f (X1)+ (1−λ) f (X2)
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For all X1, X2 ∈ S and for each λ ∈ (0,1),

2. f is said to be strictly convex function on S if

f (λX1 + (1−λ)X2) <λ f (X1)+ (1−λ) f (X2)

for all X1, X2 ∈ S, X1 6= X2 and λ ∈ (0,1).

Properties 1.8.1. 1) If f (x) is (strictly) convex, then − f (x) is (strictly) concave (and vice

versa).

2) If f1(x), ..., fk (x) are convex (concave) functions and a1, ..., ak > 0, then

g (x) = a1 f1(x)+ ...+ak fk (x)

is also convex (concave).

3) If (at least) one of the functions fi (x) is strictly convex (strictly concave), then g (x) is

strictly convex (strictly concave).

1.8.4 Strongly Convex Function

Definition 1.8.4. f is strongly convex with parameter m > 0 if

f (t x + (1− t )y) ≤ t f (x)+ (1− t ) f (y)− 1

2
mt (1− t )‖x − y‖2

2

f or al l x, y ∈ S, t ∈ [0,1].
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Remark 1.8.3. If f strongly convex (with any parameter m > 0), then f is strictly convex.

The converse is not true: for example, the function f (x) = exp(x) is strictly convex but not

strongly convex .

Example 1.8.1. 1-The function f (x) = |x|, x ∈R f is convex bat is not strictly convex

2-Every affine function f (x) = ax +b, x ∈R is convex, but not strictly convex

3- f (x) = x2, x ∈R is strictly convex.

1.8.5 First-Order and Second-Order Characterization of Convex Func-
tions

Differentiable Functions

Definition 1.8.5. f is differentiable (i.e., its gradient∇ f exists at each point in dom f , which

is open). at x̂ ∈Rn , we write:

∀x ∈Rn , f (x) = f (x̂)+∇ f (x̂)>(x − x̂)+o(‖x − x̂‖)

where by definition:

lim
x→x̂

o(‖x − x̂‖)

‖x − x̂‖ = 0

Twice Differentiable Function

Definition 1.8.6. f is twice differentiable, that is, its Hessian or second derivative ∇2 f exists

at each point in dom f , which is open. at x̂ ∈Rn , we write:

∀x ∈Rn , f (x) = f (x̂)+∇ f (x̂)>(x − x̂)+ 1

2
(x − x̂)>H f (x̂)(x − x̂)+o(‖x − x̂‖2)

where by definition:

lim
x→x̂

o(‖x − x̂‖2)

‖x − x̂‖2
= 0
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Theorem 1.8.1. Let S ⊆Rn be convex and open. Then, for a function f : S →R, the following

are equivalent.

i) f is convex;

ii) for all x, y ∈ S,

f (y) ≥ f (x)+〈∇ f (x), y −x〉

iii) for all x, y ∈ S,(monotonicity)

〈∇ f (x)−∇ f (y), x − y〉 ≥ 0

Proof.

i ) =⇒ i i ) Let x, y ∈ S, 0 ≤λ≤ 1

=⇒ f ((1−λ)x +λy) ≤ (1−λ) f (x)+λ f (y)

=⇒ f (x +λ(y −x))− f (x) ≤λ( f (y)− f (x))

=⇒ f (x +λ(y −x))− f (x)

λ
≤ f (y)− f (x)

=⇒λ→ 0 〈∇ f (x), y −x〉 ≤ f (y)− f (x).

i i ) =⇒ i i i ) Let x, y ∈ S

=⇒ f (y) ≥ f (x)+〈∇ f (x), y −x〉 and f (x) ≥ f (y)−〈∇ f (y), y −x〉
=⇒ 〈∇ f (x)−∇ f (y), x − y〉 ≥ 0.

i i i ) =⇒ i ) Let x, y ∈ S,0 ≤λ≤ 1

f (x +λ(y −x))− f (x) =
∫ λ

0

d

d t
f (x + t (y −x))d t
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=
∫ λ

0
〈∇ f (x + t (y −x)), y −x〉d t

≤
∫ λ

0
〈∇ f (x +λ(y −x), y −x〉d t

Because: 〈∇ f (x +λ(y −x))−∇ f (x + t (y −x)), (λ− t )︸ ︷︷ ︸
≥0

(y −x)〉 ≥ 0︸︷︷︸
leq(i i i )

=λ〈∇ f (x +λ(y −x)), y −x〉.

Analog ousl y :︸ ︷︷ ︸
(x↔y and λ↔1−λ)

f (x +λ(y −x))− f (y) ≤ (1−λ)〈∇ f (x +λ(y −x)), x − y〉.

Multiply the first ineq, with (1−λ) the 2nd with λ.

f (x +λ(y −x))− (1−λ) f (x)−λ f (y) ≤ 0.

Theorem 1.8.2. Let S ⊆ Rn be convex and open, and let f : S → R be twice differentiable

then f is convex if and only if ∇2 f (x)is positive semidefinite for all x ∈ S

Proof.

Let f be convex, let d ∈Rn

∇2 f (x)d = lim
t→0

∇ f (x + td)−∇ f (x)

t

⇒〈d ,∇2 f (x)d〉 = lim
t→0

1

t
〈∇ f (x + td)−∇ f (x), (x + td)−x〉

⇒≥ 0

bay property (iii)of the previous thm.

Let ∇2 f (x) be positlve semidefinite for all x ∈ S, by Taylor’s thm,

∀x, y ∈ S : f (y) = f (x)+〈∇ f (x), y −x〉+ 1

2
〈y −x,∇2 f (z)(y −x)〉

With z = (1−λ)x +λy for some 0 <λ< 1

f (y) ≥ f (x)+〈∇ f (x), y −x〉
⇒ f is convex.

(ii) of the previous thm
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Chapter 2

Unconstrained Optimization Theory

2.1 Introduction

In this chapter, we consider the optimization problem

{
minimize f (x)

subject to x ∈Ω.

The function f : Rn → R that we wish to minimize is a real-valued function, and is called

the objective function, or cost function. The vector x is an n-vector of independent vari-

ables, that is, x = (x1, x2, . . . , xn)T ∈ Rn . The variables x1, x2, . . . , xn are often referred to as

decision variables. The setΩ is a subset of Rn , called the constraint set or feasible set.

The optimization problem above can be viewed as a decision problem that involves find-

ing the "best" vector x of the decision variables over all possible vectors inΩ. By the "best"

vector we mean the one that results in the smallest value of the objective function. This

vector is called the minimizer of f overΩ. It is possible that there may be many minimiz-

ers. In this case, finding any of the minimizers will suffice.

There are also optimization problems that require maximization of the objective function.

These problems, however, can be represented in the above form because maximizing f

22
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is equivalent to minimizing − f . Therefore, we can confine our attention to minimization

problems without loss of generality(see [4],[13],[2] ).

The above problem is a general form of a constrained optimization problem, because the

decision variables are constrained to be in the constraint setΩ. IfΩ=Rn , then we refer to

the problem as an unconstrained optimization problem. In this chapter, we discuss basic

properties of the general optimization problem above,

Definition 2.1.1. Local minimizer. Suppose that f : Rn → R is a real-valued function de-

fined on some setΩ⊂Rn . A point x̂ is a local minimizer of f overΩ if there exists ε> 0 such
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that f (x̂) ≤ f (x) for all x ∈Ω\ {x̂} and ‖x − x̂‖ < ε.

Definition 2.1.2. Global minimizer. A point x̂ ∈ Ω, is a global minimizer of f over Ω if

f (x̂) ≤ f (x) for all x ∈Ω\ {x̂}.

Remark 2.1.1. If, in the above definitions, we replace "≤" with "<", then we have a strict

local minimizer and a strict global minimizer, respectively.

Remark 2.1.2. Of course, a global minimum (maximum) point is also a local minimum

(maximum) point. As with global minimum and maximum points, we will also use the ter-

minology local minimizer and local maximizer for local minimum and maximum points,

respectively.

Another important issue is the one of deciding on whether a function actually has a

global minimizer or maximizer. This is the issue of attainment or existence. A very well

known result is due to Weierstrass, stating that a continuous function attains its minimum

and maximum over a compact set.

2.2 Existence and Uniqueness of Optimal Solutions

Theorem 2.2.1. (Weierstrass theorem). Let f be a continuous function defined over a nonempty

and compact setΩ⊆ Rn . Then there exists a global minimum point off overΩ and a global

maximum point off overΩ.

When the underlying set is not compact, the Weierstrass theorem does not guarantee

the attainment of the solution, but certain properties of the function f can imply attain-

ment of the solution even in the noncompact setting. One example of such a property is

coerciveness.
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Definition 2.2.1. (coerciveness). Let f :Rn −→R be a continuous function defined over Rn .

The function f is called coercive if

lim
‖x‖→∞

f (x) =∞.

The important property of coercive functions that will be frequently used in this lecture-

notes is that a coercive function always attains a global minimum point on any closed set.

Theorem 2.2.2. (attainment under coerciveness). Let f : Rn −→ R be a continuous and

coercive function and let S ⊆ R be a nonempty closed set. Then f has a global minimum

point over S.

Proof. Let x0 ∈ S be an arbitrary point in S. Since the function is coercive, it follows

that there exists an M > 0 such that

f (x) > f (x0) for any x such that ‖x‖ > M . (2.1)

Since any global minimizer x∗ off over S satisfies f (x∗) < f (x0), it follows from (2.1) that

the set of global minimizers off over S is the same as the set of global minimizers of f over

S ∩B [O, M ]. The set S ∩B [O, M ] is compact and nonempty, and thus by the Weierstrass

theorem, there exists a global minimizer off over S ∩B [O, M ] and hence also over S.

Theorem 2.2.3. (strict convexity and uniqueness of sptimal solutions). where f :Rn −→R

is strictly convex on Ω and Ω is a convex set. Then the optimal solution (assuming it exists)

must be unique.

Proof. Suppose there were two optimal solutions x, y ∈ Rn . This means that x, y ∈ Ω
and

f (x) = f (y) ≤ f (z), ∀z ∈Ω. (2.2)
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But consider z = x + y

2
. By convexity ofΩ , we have z ∈Ω. By strict convexity, we have

f (z) = f
(x + y

2

)
< 1

2
f (x)+ 1

2
f (y)

= 1

2
f (x)+ 1

2
f (x)

= f (x).

But this contradicts (2.2)

2.3 Conditions for optimality

Definition 2.3.1. A point x̂ ∈Rn at which ∇ f (x̂) = 0 is called a stationary point.

2.3.1 Necessary optimality conditions

Theorem 2.3.1. [3] Let xmi n be a local minimum of a function f : Rn → R. If f is differen-

tiable in an open neighborhood V of xmi n , then,

∇ f (xmi n) = 0. (2.3)

If, in addition, f is twice differentiable on V , then

∇2 f (xmi n) is positive semidefinite. (2.4)

Condition (2.1) is said to be a first-order necessary condition, and condition (2.2) is said to

be a second-order necessary condition.

Proof. We recall that −∇ f (x̂) is the direction of the steepest descent in x̂ (Lemma 1.6.1)

and assume by contradiction that ∇ f (x̂) 6= 0. We can then use Theorem 1.5.2 with the de-

scent direction d =−∇ f (x̂) to obtain ε such that
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f (x̂ − t∇ f (x̂)) < f (x̂), ∀t ∈]0,ε],

which contradicts the optimality of x̂ and demonstrates the first-order condition. To demon-

strate the second-order condition, we invoke Taylor’s theorem in x̂, with an arbitrary di-

rection d and an arbitrary step t > 0 such that x̂ + td ∈V.

As

f (x̂ + td)− f (x̂) = td T∇ f (x̂)+ 1

2
t 2d T∇2 f (x̂)d +0(‖td‖2)

we have

f (x̂ + td)− f (x̂) = 1

2
t 2d T∇2 f (x̂)d +0(‖td‖2) from (2.3)

= 1

2
t 2d T∇2 f (x̂)d +0(t 2) ‖d‖ does not depend ont

≥ 0 x̂ is optimal.

When we divide by t 2, we get

1

2
d T∇2 f (x̂)d + 0(t 2)

t 2
≥ 0

Intuitively, as the second term can be made as small as desired, the result must hold.

More formally, let us assume by contradiction that d T∇2 f (x̂)d is negative and that its value

is −2η, with η> 0. According to the Landau notation o(.) ,

for all η> 0, there exists ε such that

|0(t 2)|
t 2

< η, ∀0 < t ≤ ε,

and
1

2
d T∇2 f (x̂)d + 0(t 2)

t 2
É 1

2
d T∇2 f (x̂)d + |0(t 2)|

t 2
<−1

2
2η+η= 0,

which contradicts and proves that d T∇2 f (x̂)d ≥ 0. Since d is an arbitrary direction, ∇2 f (x̂)

is positive semidefinite
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2.3.2 Sufficient optimality conditions

Theorem 2.3.2. Consider a function f : Rn → R twice differentiable in an open subset V of

Rn and let x̂ ∈V satisfy the conditions

∇ f (x̂) = 0. (2.5)

and

∇2 f (x̂) is positive definite. (2.6)

In this case, x̂ is a local minimum of f .

Proof.

We assume by contradiction that there exists a direction d and ε> 0 such that, for any

0 < t ≤ ε, f (x̂ + td) < f (x̂). With an identical approach to the proof of Theorem 2.3.1, we

have
f (x̂ + td)− f (x̂)

t 2
= 1

2
d T∇2 f (x̂)d + o(t 2)

t 2

and
1

2
d T∇2 f (x̂)d + o(t 2)

t 2
< 0

or

1

2
d T∇2 f (x̂)d + o(t 2)

t 2
+η= 0

with η> 0.According to the definition of the Landau notation o(.)

there exists ε such that
|o(t 2)|

t 2
< η, ∀t ,0 < t ≤ ε,

and then, for any t ≤ mi n(ε,ε), we have
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−o(t 2)

t 2
≤ |o(t 2)|

t 2
< η,

such that

1

2
d T∇2 f (x̂)d =−o(t 2)

t 2
−η< 0,

which contradicts the fact that ∇2 f (x̂) is positive definite.
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Chapter 3

Unconstrained Optimization Methods

3.1 Steepest Descent (CAUCHY) Method

The use of the negative of the gradient vector as a direction for minimization was first

made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X1 and

iteratively move along the steepest descent directions until the optimum point is found.

The steepest descent method can be summarized by the following steps:

1. Start with an arbitrary initial point X1. Set the iteration number as i = 1.

2. Find the search direction Si as

Si =−∇ fi =−∇ f (Xi ) (3.1)

3. Determine the optimal step length λ̂i i in the direction Si and set

Xi+1 = Xi + λ̂i Si = Xi − λ̂i∇ fi (3.2)

4. Test the new point, Xi+1, for optimality. If Xi+1 is optimum, stop the process. Otherwise,

go to step 5.
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5. Set the new iteration number i = i +1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained minimiza-

tion technique since each one-dimensional search starts in the "best" direction.

However, owing to the fact that the steepest descent direction is a local property,

the method is not really effective in most problems.

Example 3.1.1. Minimize f (x1, x2) = x1−x2+2x2
1 +2x1x2+x2

2 starting from the point X1 =
(0,0).

SOLUTION

Iteration 1

The gradient of f is given by

∇ f (x) =


∂ f

∂x1
(x)

∂ f

∂x2
(x)

=
(

1+4x1 +2x2

−1+2x1 +2x2

)

∇ f1 =∇ f (X1) =
(

1
−1

)
Therefore,

S1 =−∇ f1 =
(

1
−1

)
To find X2, we need to find the optimal step length λ̂1. For this, we minimize f (X1+λ1S1) =
f (−λ1,λ1) =λ2

1 −2λ1 with respect to λ1. Since d f /dλ1 = 0 at λ̂1 = 1, we obtain

X2 = X1 + λ̂1S1 =
(

0
0

)
+1

( −1
1

)
=

( −1
1

)
As ∇ f2 =∇ f (X2) =

( −1
−1

)
6=

(
0
0

)
, X2 is not optimum.

Iteration 2

Lecture Notes
3rd Year Degree in Mathematics

31 Author : Dr. Rabah DEBBAR
Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

S2 =−∇ f2 =
(

1
1

)
To minimize

f (X2 +λ2S2) = f (−1+λ2,1+λ2) = 5λ2
2 −2λ2 −1

we set d f /λ2 = 0. This gives λ̂2 = 1

5
, and hence

X3 = X2 + λ̂2S2 =
( −1

1

)
+ 1

5

(
1
1

)
=

( −0.8
1.2

)

Since the components of the gradient at X3, ∇ f3 =
(

0.2
−0.2

)
, are not zero, we proceed to

the next iteration.

Iteration 3

S3 =−∇ f3 =
( −0.2

0.2

)
As

f (X3 +λ3S3) = f (−0.8+0.2λ3,1.2+0.2λ3) = 0.04λ2
3 −0.08λ3 −1.2.

d f

dλ3
= 0 at λ̂3 = 1.0

Therefore,

X4 = X3 + λ̂3S3 =
( −0.8

1.2

)
+1.0

( −0.2
0.2

)
=

( −1.0
1.4

)
The gradient at X4 is given by

∇ f4 =
( −0.20
−0.20

)
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Since ∇ f4 6=
(

0
0

)
X4is not optimum and hence we have to proceed to the next itera-

tion. This process has to be continued until the optimum point, X̂ =
( −1.0

1.5

)
, is found.

Convergence Criteria : The following criteria can be used to terminate the iterative pro-

cess.

1. When the change in function value in two consecutive iterations is small:∣∣∣ f (Xi+1)− f (Xi )

f (Xi )

∣∣∣≤ ε1 (3.3)

2. When the partial derivatives (components of the gradient) of f are small:∣∣∣ ∂ f

∂xi

∣∣∣≤ ε2 (3.4)

3. When the change in the design vector in two consecutive iterations is small:

|Xi+1 −Xi | ≤ ε3 (3.5)

3.2 Conjugate Gradient (FLETCHER-REEVES) Method

The convergence characteristics of the steepest descent method can be improved greatly

by modifying it into a conjugate gradient method (which can be considered as a conju-

gate directions method involving the use of the gradient of the function). That any mini-

mization method that makes use of the conjugate directions is quadratically convergent.

This property of quadratic convergence is very useful because it ensures that the method

will minimize a quadratic function in n steps or less. Since any general function can be

approximated reasonably well by a quadratic near the optimum point, any quadratically

convergent method is expected to find the optimum point in a finite number of iterations.
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We have seen that Powell’s conjugate direction method requires n single-variable mini-

mizations per iteration and sets up a new conjugate direction at the end of each iteration.

Thus it requires, in general, n2 single-variable minimizations to find the minimum of a

quadratic function. On the other hand, if we can evaluate the gradients of the objective

function, we can set up a new conjugate direction after every one-dimensional minimiza-

tion, and hence we can achieve faster convergence. The construction of conjugate direc-

tions and development of the Fletcher-Reeves method are discussed in this section.

3.2.1 Development of the Fletcher-Reeves Method

The Fletcher-Reeves method is developed by modifying the steepest descent method to

make it quadratically convergent. Starting from an arbitrary point X1, the quadratic func-

tion

f (X ) = 1

2
X T [A]X +B T X +C (3.6)

can be minimized by searching along the search direction S1 =−∇ f1(steepest descent

direction)

λ̂1 =−ST
1

ST
1

∇ f1

AS1
(3.7)

The second search direction S2 is found as a linear combination of S1 and −∇ f2:

S2 =−∇ f2 +β2S1 (3.8)

where the constant β2 can be determined by making S1 and S2 conjugate with respect to

[A].

β2 =−∇ f T
2 ∇ f2

∇ f T
1 S1

= ∇ f T
2 ∇ f2

∇ f T
1 ∇ f1

(3.9)

This process can be continued to obtain the general formula for the i th search direction
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as

Si =−∇ fi +βi Si−1 (3.10)

where

βi =
∇ f T

i ∇ fi

∇ f T
i−1∇ fi−1

(3.11)

Thus the Fletcher-Reeves algorithm can be stated as follows.

3.2.2 Fletcher-Reeves Method

The iterative procedure of Fletcher-Reeves method can be stated as follows:

1. Start with an arbitrary initial point X1.

2. Set the first search direction S1 =−∇ f (X1) =−∇ f1.

3. Find the point X2 according to the relation

X2 = X1 + λ̂1S1 (3.12)

where λ̂1 is the optimal step length in the direction S1. Set i = 2 and go to the next step.

4. Find ∇ fi =∇ f (Xi ), and set

Si =−∇ fi + |∇ fi |2
|∇ fi−1|2

Si−1 (3.13)

5. Compute the optimum step length λ̂i in the direction Si , and find the new point

Xi+1 = Xi + λ̂i Si (3.14)

6. Test for the optimality of the point Xi+1. If Xi+1 is optimum, stop the process. Otherwise,

set the value of i = i +1 and go to step 4.

Example 3.2.1. Minimize f (x1, x2) = x1−x2+2x2
1 +2x1x2+x2

2 starting from the point X1 =
(0,0).
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SOLUTION

Iteration 1

The gradient of f is given by

∇ f (x) =


∂ f

∂x1
(x)

∂ f

∂x2
(x)

=
(

1+4x1 +2x2

−1+2x1 +2x2

)

∇ f1 =∇ f (X1) =
(

1
−1

)
The search direction is taken as

S1 =−∇ f1 =
(

1
−1

)
To find the optimal step length λ̂1 along S1, we minimize f (X1 +λ1S1) with respect to λ1.

Here

f (X1 +λ1S1) = f (−λ1,λ1) =λ2
1 −2λ1

d f

dλ1
= 0 at λ̂1 = 1

Therefore,

X2 = X1 + λ̂1S1 =
(

0
0

)
+1

( −1
1

)
=

( −1
1

)
Iteration 2

Since ∇ f2 =∇ f (X2) =
( −1
−1

)
, Eq. (3.13) gives the next search direction as

S2 =−∇ f2 + |∇ f2|2
|∇ f1|2

S1

where

|∇ f1|2 = 2 and |∇ f2|2 = 2
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Therefore,

S2 =−
( −1
−1

)
+ 2

2

( −1
1

)
=

(
0
+2

)
To find λ̂2, we minimize

f (X2 +λ2S2) = f (−1,1+2λ2)

=−1− (1+2λ2)+2−2(1+2λ2)+ (1+2λ2)2

= 4λ2
2 −2λ2 −1

with respect to λ2. As d f /dλ2 = 8λ2 −2 = 0 at λ̂2 = 1

4
, we obtain

X3 = X2 + λ̂2S2 =
( −1
−1

)
+ 1

4

(
0
2

)
=

( −1
1.5

)
Thus the optimum point is reached in two iterations. Even if we do not know this point to

be optimum, we will not be able to move from this point in the next iteration. This can be

verified as follows.

Iteration 3

Now

∇ f3 =∇ f (X3) =
(

0
0

)
, |∇ f2|2 = 2, and |∇ f3|2 = 0

Thus

S3 =−∇ f3 + (|∇ f3|2/|∇ f2|2)S2 =−
(

0
0

)
+ 0

2

(
0
0

)
=

(
0
0

)
This shows that there is no search direction to reduce f further, and hence X3 is optimum.

3.3 NEWTON’S Method

Newton’s method can be extended for the minimization of multivariable functions. For

this, consider the quadratic approximation of the function f (X ) at X = Xi using the Tay-
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lor’s series expansion

f (X ) = f (Xi )+∇ f T
i (X −Xi )+ 1

2
(X −Xi )T [Ji ](X −Xi ) (3.15)

where [Ji ] = [J ]|Xi is the matrix of second partial derivatives (Hessian matrix) of f eval-

uated at the point Xi . By setting the partial derivatives of Eq. (3.15) equal to zero for the

minimum of f (X ), we obtain

∂ f

∂x j
= 0, j = 1,2, . . . ,n (3.16)

Equations (3.16) and (3.15) give

∇ f =∇ fi [Ji ](X −Xi ) = 0 (3.17)

If [Ji ] is nonsingular, Eqs. (3.17) can be solved to obtain an improved approximation

(X = Xi+1) as

Xi+1 = Xi − [Ji ]−1∇ fi (3.18)

Since higher-order terms have been neglected in Eq. (3.15), Eq. (3.18) is to be used itera-

tively to find the optimum solution X̂ .

The sequence of points X1, X2, ..., Xi+1 can be shown to converge to the actual solution

X̂ from any initial point X1 sufficiently close to the solution X̂ , provided that [J1] is non-

singular. It can be seen that Newton’s method uses the second partial derivatives of the

objective function (in the form of the matrix [Ji ]) and hence is a second-order method.

Example 3.3.1. Show that the Newton’s method finds the minimum of a quadratic function

in one iteration.
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SOLUTION

Let the quadratic function be given by

f (X ) = 1

2
X T [A]X +B T X +C

The minimum of f (X ) is given by

∇ f = [A]X +B = 0

or

X̂ =−[A]−1B

The iterative step of Eq. (3.18) gives

Xi+1 = Xi − [A]−1([A]Xi +B) (E1)

where Xi is the starting point for the i th iteration. Thus Eq. (E1) gives the exact solution

Xi+1 = X̂ =−[A]−1B

Figure 3.01 illustrates this process.

Example 3.3.2. Minimize f (x1, x2) = x1 − x2 +2x2
1 +2x1x2 + x2

2 by taking the starting point

as X1 = (0,0).

SOLUTION

To find X2 according to Eq. (3.18), we require [J1]−1, where

[J1] =


∂2 f

∂x2
1∂x1

∂2 f

∂x1∂x2

∂2 f

∂x2∂x1

∂2 f

∂x2∂x2


X1

=
(

4 2
2 2

)
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Therefore,

[J1]−1 = 1

4

( +2 −2
−2 4

)
=

 +1

2
− 1

2
−1

2
1


As

g1 =
(
∂ f /∂x1

∂ f /∂x2

)
X1

=
(

1+4x1 +2x2

−1+2x1 +2x2

)
(0,0)

=
( +1
−1

)
Equation (3.18) gives

X2 = X1 − [J1]−1g1 =
(

0
0

)
−

 +1

2
− 1

2
−1

2
1

(
1
−1

)
=

 −1
3

2


To see whether or not X2 is the optimum point, we evaluate

g2 =
(
∂ f /∂x1

∂ f /∂x2

)
X2

=
(

1+4x1 +2x2

−1+2x1 +2x2

)
(−1,3/2)

=
(

0
0

)
As g2 = 0, X2 is the optimum point. Thus the method has converged in one iteration for

this quadratic function.
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If f (X ) is a nonquadratic function, Newton’s method may sometimes diverge, and it may

converge to saddle points and relative maxima. This problem can be avoided by modifying

Eq. (3.18) as

Xi+1 = Xi + λ̂i Si = Xi − λ̂i [Ji ]−1∇ fi (3.19)

where λ̂i is the minimizing step length in the direction Si = −λ̂i [Ji ]−1∇ fi . The modifica-

tion indicated by Eq. (3.19) has a number of advantages. First, it will find the minimum in

lesser number of steps compared to the original method. Second, it finds the minimum

point in all cases, whereas the original method may not converge in some cases. Third, it

usually avoids convergence to a saddle point or a maximum. With all these advantages,

this method appears to be the most powerful minimization method. Despite these ad-

vantages, the method is not very useful in practice, due to the following features of the

method:

1. It requires the storing of the n ×n matrix [Ji ].

2. It becomes very difficult and sometimes impossible to compute the elements of the ma-

trix [Ji ].

3. It requires the inversion of the matrix [Ji ] at each step.

4. It requires the evaluation of the quantity [Ji ]−1∇ fi at each step.

These features make the method impractical for problems involving a complicated objec-

tive function with a large number of variables.
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4.4 TP No. 04

(see [7])
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4.5 TP No. 05

(see [7])
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Chapter 5

Tutorials

5.1 TD Series No. 01

Exercise 5.1.1. 1. Calculate the gradient of f (x, y, z) in the following cases.

a. f (x, y, z) = x2 + y3 + z4.

b. f (x, y, z) = x2 y3z4.

c. f (x, y, z) = ex sin y ln z.

2. Determine the stationary points of the function f of two variables defined by

f (x, y) = x(x +1)2 − y2.

3. Calculate the derivative or gradient of (g o f ) by two methods in the following cases

a. f (x, y) = exp(x)+cos(y), g (x) = 4x +1.

b. f (x) = (exp(x),cos(x)), g (x, y) = 4x +2y.
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Exercise 5.1.2. 1. Show that

a.

∇( f .g ) = g .∇ f + f .∇g

b.

∇
(

f

g

)
= g .∇ f − f .∇g

g 2

2. Show the following equality

∇2 f (x)h =∇〈∇ f (x),h〉; x ∈ D f ⊂Rn ∀h ∈Rn .

Exercise 5.1.3. 1. Calculate the directional derivative of f (x, y) := ex y2
at the point (1,2) in

the direction forming a angle of 30° with the positive x-axis.

2. Let T (x, y) = x3 + y2 −2x y +1 be the temperature at point (x,y). In which direction to the

point (1, 3), the temperature T

a. is it increasing the fastest and at what rate ?

b. is it decreasing the fastest and at what rate ?

Exercise 5.1.4. Determine the Taylor expansion of the following functions

a. f (x, y) =−cos x cos y in (0,0) and (
π

2
,
π

2
) to order "2"

b. f (x, y) = ex cos y in (0,0) to order "2"

Exercise 5.1.5. Calculate the directional derivative of the following functions at the points

indicated.

a. f (x, y) = x + y in (0,0) and d = (

p
2

2
,−

p
2

2
)T .
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b. f (x, y) = x + y2 +2 in(1,−2) and d = (3,−4)T .

c. f (x, y) = excos y in(0,0) and d = (−1,1)T .

Exercise 5.1.6. Calculate the gradient, the Hessian matrix and the Directional derivative

1. f1 :Rn −→R; x 7→ f1(x) = a.

2. f2 :Rn −→R; x 7→ f2(x) = 〈a, x〉+b a ∈Rn ,b ∈R.

3. f3 :Rn −→R; x 7→ f3(x) = a〈b, x〉+ c b ∈Rn ,a and c ∈R.

4. f4 :Rn −→R; x 7→ f4(x) = a〈x, x〉+b a and b ∈R.

5. f5 :Rn −→R; x 7→ f5(x) =
m∑

i=1
gi (x)such as

gi :Rn −→R is twice differentiable.

6. f6 :Rn −→R; x 7→ f6(x) =
m∑

i=1
(gi (x))2such as

gi :Rn −→R is twice differentiable.

Exercise 5.1.7. we assume that it exists L > 0 such that ∀x, y ∈Rn , we have

‖∇ f (x)−∇ f (y)‖ ≤ L‖x − y‖ i.e.∇ f is Lipschitzian or f is class C 1(Rn)

Then

| f (x +h)− f (x)−〈∇ f (x),h〉| ≤ L

2
‖h‖2 ∀x,h ∈Rn
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5.2 TD Series No. 02

Exercise 5.2.1. Show that a norm is convex.

Exercise 5.2.2. Show that the indicator function; of a setΩ defined by

1Ω =
{

0 i f x ∈Ω
+∞ i f x ∉Ω

is convex if and only ifΩ is convex.

Exercise 5.2.3. Let U be a convex part of a vector space V . Show that f : U ⊂ V −→ R is

convex if and only if the following set:

epi ( f ) = {(v,α) ⊂U ×R�α≥ f (v)}

is a convex part of U ×R.

Exercise 5.2.4. Let F be a function from Rn in R. we define the following function from R∗
+

to R:

∀α> 0, ∀(u, v) ∈Rn ×Rn Φ(α) = F (u +αv)−F (u)

α

Show that if F is convex thenΦ is increasing.

Exercise 5.2.5. Let ( fi )i∈I be any family of convex functions of U ⊂ V → R. Prove that the

function sup
x∈Rn

fi is convex.

Exercise 5.2.6. Show Young’s inequality ∀a,b > 0 ∀p, q ∈N such as
1

p
+ 1

q
= 1

ab ≤ 1

p
ap + 1

q
bq

Exercise 5.2.7. Let f be a convex function from Rn to R. To show that:

∀(λi )1≤i≤p ∈ (Rn)p such as
p∑

i=1
λi = 1, ∀(xi )1≤i≤p ∈ (Rn)p ; f

(
p∑

i=1
λi xi

)
≤

p∑
i=1

λi f (xi ).
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Exercise 5.2.8. (Characterization of convexity)

LetΩ ∈Rn be an open oneU ⊂Ωwith U convex and f :Ω→R R a function of class C 1. Then

the following 3 propositions are equivalent: 1. f is convex on U

2. f (y) ≥ f (x)+〈∇ f (x); y −x〉 ∀x, y ∈U

3. ∇ f is monotonous on U

Exercise 5.2.9. Let f is of class C 2 then f is convex on U (convex) if and only if

〈∇2 f (x)(y −x); y −x〉; ∀x, y ∈U
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5.3 TD Series No. 03

Exercise 5.3.1. Show that if x̂ is a max (local or global) of f , then x̂ is a min (local or global)

of − f

Exercise 5.3.2. Are the following functions coercive?

1. f1 :R−→R; x 7→ f1(x) = x3 −x2 +5.

2. f2 :Rn −→R; x 7→ f2(x) = 〈a, x〉+b a ∈Rn ,b ∈R.

3. f3 :Rn −→R; x 7→ f3(x) = a〈x, x〉+b a and b ∈R.

4. f4 :R2 −→R; x 7→ f4(x) = 2x2
1 +x2 −5

5. f5 :R2 −→R; x 7→ f5(x) = x2
1 +2x3

2 +x2
2 −x1

6. f6 :R2 −→R; x 7→ f6(x) = x2
1 +2x1 +x2

2

7. f7 :R2 −→R; x 7→ f7(x) = x2
1 +x2

2 −3x2 −5

8. f8 :Rn −→R; x 7→ f8(x) = 〈x, x〉+〈a, x〉+b a ∈Rn ,b ∈R

Exercise 5.3.3. We consider the function f defined on R2 by

f (x, y) = x4 + y4 −2(x − y)2

1. Show that there exists (α,β) ∈R2
+ such that

f (x, y) ≥α‖(x, y)‖2 +β (x, y) ∈R2

Deduce that the following problem has at least one solution,

(P1)mi n(x,y)∈R2 f (x, y)
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f is it convex onR2?

3. Solve the problem (P1).

Exercise 5.3.4. Letf :R2 −→R; x 7→ f (x, y) = x2 + y2 +ax +by + c

We consider the problem

(P2)mi n(x,y)∈R2 f (x, y)

1) Show that f is elliptical.

2) Solve the problem (P2).

Exercise 5.3.5. Consider a cloud of n points Mi (ti , xi ) ∈R2 i = 1,2, ...,10 given by the table

following

ti 1 2 3 4 5 6 7 8 9 10
10∑

i=1
ti =

xi 0 -3 6 -3 6 3.8 5 -2 1.4 8
10∑

i=1
xi =

t 2
i

10∑
i=1

t 2
i =

We are looking for the regression line of this cloud. For this we use the method of least

squares, as we do not have xi = ati +b for all i = 1,2, ...,10, we seek to minimize the square

of differences. We therefore want to find a pair of reals (a,b) solution of

(P3) =
{

mi nJ (a,b)

(a,b) ∈R2

Or J (a,b) =
10∑

i=1
(xi −ati −b)2.

1. Complete the table.

2. Calculate the gradient and the Hessian matrix of the functionJ .

3. Does the problem (P3) have a solution? Is it unique?

4. Solve the problem (P3) , deduce the equation of the regression line.

Lecture Notes
3rd Year Degree in Mathematics

62 Author : Dr. Rabah DEBBAR
Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

Exercise 5.3.6. We consider the following minimization problem

(P4) =
{

mi nJ (v)

v ∈Rn

Or J (v) = 1

2
〈Av, v〉− 〈b, v〉. and A is a positive definite symmetric matrix of Rn in Rn

and v ∈Rn .

1. Demonstrate that

a. The function J is strictly convex.

b. J is a coercive function.

2. Calculate the gradient and the Hessian matrix of the function J .

3. Show that the problem (P4)admits a single solution.

4. Solve the problem (P4), deduce the minimum value of J .
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Chapter 6

Corrected Tutorials

6.1 TD Series No. 01 Corrected

Answer 6.1.1. a. f (x, y, z) = x2 + y3 + z4.

∇ f (x, y, z) =


∂ f

∂x
(x, y, z)

∂ f

∂y
(x, y, z)

∂ f

∂z
(x, y, z)

=
 2x

3y
4z



b. f (x, y, z) = x2 y3z4.

∇ f (x, y, z) =


∂ f

∂x
(x, y, z)

∂ f

∂y
(x, y, z)

∂ f

∂z
(x, y, z)

=
 2x y3z4

3x2 y2z4

4x2 y3z3



c. f (x, y, z) = ex sin y ln z.
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∇ f (x, y, z) =


∂ f

∂x
(x, y, z)

∂ f

∂y
(x, y, z)

∂ f

∂z
(x, y, z)

=


ex sin y ln z
ex cos y ln z

ex sin y

z


2. f (x, y) = x(x +1)2 − y2

∇ f (x, y) =


∂ f

∂x
(x, y

∂ f

∂y
(x, y)

=
(

3x2 +4x +1
−2y

)

∇ f (x, y) = 0 =⇒
(

3x2 +4x +1
−2y

)
=

(
0
0

)

(x, y) = (−1,0)∨ (
−1

3
,0)

3. Calculate the derivative or gradient of (g o f ) by two methods in the following cases

a. f (x, y) = exp(x)+cos(y), g (x) = 4x +1.

(g o f )(x, y) = g ( f (x, y))

= g (exp(x)+cos(y))

= 4(exp(x)+cos(y))+1.
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∇(g o f )(x, y) = g ′( f (x, y))∇ f (x, y)

= g ′( f (x, y))


∂ f

∂x
(x, y)

∂ f

∂y
(x, y)


= g ′(exp(x)+cos(y))

(
exp(x)
−sin(y)

)
, (g ′(x) = 4)

= 4

(
exp(x)
−sin(y)

)
.

2nd method

∇(g o f )(x, y) =


∂g o f

∂x
(x, y)

∂g o f

∂y
(x, y)


=

(
4exp(x)
−4sin(y)

)
.

b. f (x) = (exp(x),cos(x)), g (x, y) = 4x +2y.

(g o f )(x) = g ( f (x))

= g ( f1(x), f2(x))

= g (exp(x),cos(x))

= 4exp(x)+2cos(x).

(g o f )′(x) = 4exp(x)−2sin(x)
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2nd method

(g o f )′(x) = f ′(x)∇g ( f (x))

= ( f ′
1(x), f ′

1(x))


∂g

∂x
( f (x))

∂g

∂y
( f (x))

 f ′(x)

= (exp(x),−sin(x))

(
4
2

)
= 4exp(x)−2sin(x).

Answer 6.1.2. 1.

a.

∇( f .g ) =



∂( f .g )

∂x1
(x)

∂( f .g )

∂x2
(x)

...
∂( f .g )

∂xn
(x)



= g



∂ f

∂x1
(x)

∂ f

∂x2
(x)

...
∂ f

∂xn
(x)


+ f



∂g

∂x1
(x)

∂g

∂x2
(x)

...
∂g

∂xn
(x)


= g .∇ f + f .∇g
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b.

∇
(

f

g

)
=



∂

(
f

g

)
∂x1

(x)

∂

(
f

g

)
∂x2

(x)

...

∂

(
f

g

)
∂xn

(x)


=



g
∂ f

∂x1
− f

∂g

∂x1

g 2
(x)

g
∂ f

∂x2
− f

∂g

∂x2

g 2
(x)

...

g
∂ f

∂xn
− f

∂g

∂xn

g 2
(x)


= 1

g 2



g
∂ f

∂x1
(x)− f

∂g

∂x1
(x)

g
∂ f

∂x2
(x)− f

∂g

∂x2
(x)

...

g
∂ f

∂xn
(x)− f

∂g

∂xn
(x)



...

= g .∇ f − f .∇g

g 2

2.

∇2 f (x)h =∇〈∇ f (x),h〉; x ∈ D f ⊂Rn ∀h ∈Rn .

∇2 f (x)h =∇∇T f (x)h

=∇〈∇ f (x),h〉

Answer 6.1.3. 1. f :R2 −→R, and let v ∈R2 be a unit vector.

v = r (cos30◦i + sin30◦ j ) = r (

p
3

2
i + 1

2
)

be a unit vector =⇒ r = 1

∇ f (x, y) =


∂ f

∂x
(x, y)

∂ f

∂y
(x, y)

=
(

y2ex y2

2yex y2

)

Dv f (x) =∇ f (x) · v

=
p

3

2

∂ f

∂x
(1.2)+

p
1

2

∂ f

∂y
(1.2)

= 2e4(
p

3+1).
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2.

∇T (x, y) =


∂T

∂x
(x, y)

∂T

∂y
(x, y)

=
 3x2 −2y

2y −2x


∇T (1,3) =

( −3
4

)
a. increasing the fastest

∇T (1,3)

‖∇T (1,3)‖ =

 −3

5
4

5

 and the rate ‖∇T (1,3)‖ = 5

b. decreasing the fastest

− ∇T (1,3)

‖∇T (1,3)‖ =

 3

5−4

5

 and the rate −‖∇T (1,3)‖ =−5

Answer 6.1.4. a. f (x, y) =−cos x cos y in (0,0) and (
π

2
,
π

2
) to order "2"

f (x, y) = f (0,0)+x
∂ f

∂x
(0,0)+y

∂ f

∂y
(0,0)+x2

2

∂2 f

∂2x
(0,0)+ y2

2

∂2 f

∂2 y
(0,0)+x y

2

∂2 f

∂x∂y
(0,0)+(x2+y2)ε(x, y)

f (x, y) =−1+ x2

2
+ y2

2
+ (x2 + y2)ε(x, y) such that ε(x, y) −→ 0

(x,y)−→(0,0)

f (x + π

2
, y + π

2
) =−x y + (x2 + y2)ε(x, y) such that ε(x, y) −→ 0

(x,y)−→(0,0)

b. f (x, y) = ex cos y in (0,0) to order "2"

f (x, y) = 1+x + x2

2
− y2

2
+ (x2 + y2)ε(x, y) such that ε(x, y) −→ 0

(x,y)−→(0,0)
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Answer 6.1.5. a. f (x, y) = x + y in (0,0) and d = (

p
2

2
,−

p
2

2
)T .

vi nR2 be a unit vector (‖‖ = 1)

Dv f (x) = d

d t
f (x + t v)

∣∣∣
t0

= lim
t→0

f (x + t v)− f (x)

t

= lim
t→0

f (
p

2
2 t ,−

p
2

2 t )− f (0,0)

t

= lim
t→0

p
2

2 t −
p

2
2 t −0

t

2nd method

Dv f (0,0) = 〈∇ f (0.0).v〉

= 1.

p
2

2
+1(−

p
2

2
)

= 0.

b. f (x, y) = x + y2 +2 in(1,−2) and d = (3,−4)T .

v = d

‖d‖ = (
3

5
,
−4

5
)T

Dv f (1,−2) = 〈∇ f (1,−2).v〉
= 3

5
.1+ −4

5
(−4)

= 19

5
.

c. f (x, y) = excos y in(0,0) and d = (−1,1)T .

v = d

‖d‖ = (
−1p

2
,

1p
2

)T
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Dv f (0,0) = 〈∇ f (0,0).v〉
= −1p

2
.

1p
2
+ −1p

2
.0

= −1

2
.

Answer 6.1.6. 1. f1 :Rn −→R; x 7→ f1(x) = a.

∇ f1(x) =



∂ f1

∂x1
(x)

∂ f1

∂x2
(x)

...
∂ f1

∂xn
(x)


=


0
0
...
0

= 0, 0 ∈Rn

H(x) =∇2 f1(x) =



∂2 f1

∂x1∂x1
(x)

∂2 f1

∂x1∂x2
(x) . . .

∂2 f1

∂x1∂xn
(x)

∂2 f1

∂x2∂x1
(x)

∂2 f1

∂x2∂x2
(x) . . .

∂2 f1

∂x2∂xn
(x)

...
∂2 f1

∂xn∂x1
(x)

∂2 f1

∂xn∂x2
(x) . . .

∂2 f1

∂xn∂xn
(x)


=


0 0 . . . 0
0 0 . . . 0

...
0 0 . . . 0

 .

2. f2 :Rn −→R; x 7→ f2(x) = 〈a, x〉+b a ∈Rn ,b ∈R.

f2(x) =
n∑

i=1
ai xi +b

∇ f2(x) =



∂ f2

∂x1
(x)

∂ f2

∂x2
(x)

...
∂ f2

∂xn
(x)


=


a1

a2
...

an

= a, a ∈Rn

Lecture Notes
3rd Year Degree in Mathematics

71 Author : Dr. Rabah DEBBAR
Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

H(x) =∇2 f2(x) =


0 0 . . . 0
0 0 . . . 0

...
0 0 . . . 0

 .

3. f3 :Rn −→R; x 7→ f3(x) = a〈b, x〉+ c b ∈Rn ,a and c ∈R.

f3(x) = a
n∑

i=1
bi xi + c

∇ f3(x) =



∂ f3

∂x1
(x)

∂ f3

∂x2
(x)

...
∂ f3

∂xn
(x)


=


ab1

ab2
...

abn

= ab a ∈R, b ∈Rn

H(x) =∇2 f3(x) =


0 0 . . . 0
0 0 . . . 0

...
0 0 . . . 0

 .

4. f4 :Rn −→R; x 7→ f4(x) = a〈x, x〉+b a and b ∈R.

f4(x) = a
n∑

i=1
x2

i +b

∇ f4(x) =



∂ f4

∂x1
(x)

∂ f4

∂x2
(x)

...
∂ f4

∂xn
(x)


=


2ax1

2ax2
...

2axn

= 2ax, a ∈R x ∈Rn .

H(x) =∇2 f4(x) =


2a 0 . . . 0
0 2a . . . 0

...
0 0 . . . 2a

 .
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5. f5 :Rn −→R; x 7→ f5(x) =
m∑

i=1
gi (x)such as

gi :Rn −→R is twice differentiable.

f5(x) =
m∑

i=1
gi (x)

∇ f5(x) =
m∑

i=1
∇gi (x)

H(x) =∇2 f5(x) =
m∑

i=1
∇2gi (x)

6. f6 :Rn −→R; x 7→ f6(x) =
m∑

i=1
(gi (x))2such as

gi :Rn −→R is twice differentiable.

∇ f6(x) = 2
m∑

i=1
gi (x)∇gi (x)

H(x) =∇2 f6(x) = 2
m∑

i=1
gi (x)∇gi (x)

Answer 6.1.7. f (x +h) = f (x)+
∫ 1

0
〈∇ f (x + th),h〉d t

f (x +h)− f (x)−〈∇ f (x),h
〉= ∫ 1

0

〈∇ f (x + th)−∇ f (x),h
〉

d t

∣∣ f (x +h)− f (x)−〈∇ f (x),h
〉∣∣= ∣∣∣∣∫ 1

0

〈∇ f (x + th)−∇ f (x),h
〉

d t

∣∣∣∣ .

≤
∫ 1

0

∣∣〈∇ f (x + th)−∇ f (x),h
〉

d t
∣∣ .

≤
∫ 1

0

∥∥∇ f (x + th)−∇ f (x)
∥∥‖h‖d t

≤
∫ 1

0
L ‖x + th −x‖‖h‖d t

=
∫ 1

0
Lt‖h‖2d t

= L‖h‖2
∫ 1

0
td t

= L

2
‖h‖2.

Lecture Notes
3rd Year Degree in Mathematics

73 Author : Dr. Rabah DEBBAR
Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

6.2 TD Series No. 02 Corrected

Answer 6.2.1. Let ‖.‖ :Rn →R be a norm, Then ‖.‖ is said to be a convex if

‖λX1 + (1−λ)X2‖ ≤λ‖X1‖+ (1−λ)‖X2‖

For all X1, X2 ∈ S and for each λ ∈ (0,1).

‖λX1 + (1−λ)X2‖ ≤ ‖λX1‖+‖(1−λ)X2‖ (triangle inequality)

≤ |λ|‖X1‖+|(1−λ)|‖X2‖ (positive homogeneity)

≤λ‖X1‖+ (1−λ)‖X2‖.

Answer 6.2.2. 1Ω is convex =⇒Ω is convex ?

1Ω is convex =⇒ 1Ω(λX1 + (1−λ)X2) ≤λ1Ω(X1)+ (1−λ)1Ω(X2)

=⇒ For all X1, X2 ∈Ω
(
1Ω(X1) = 1Ω(X2) = 0

)
and for each λ ∈ [0,1]

=⇒ 0 ≤ 1Ω(λX1 + (1−λ)X2) ≤ 0+0

=⇒ 1Ω(λX1 + (1−λ)X2) = 0

=⇒λX1 + (1−λ)X2 ∈Ω
=⇒Ω is convex.

Ω is convex =⇒ 1Ω is convex ?

Ω is convex =⇒ For all X1, X2 ∈Ω and for each λ ∈ [0,1] λX1 + (1−λ)X2 ∈Ω
=⇒ For all X1, X2 ∈Ω

(
1Ω(X1) = 1Ω(X2) = 0

)
,

(
1Ω(λX1 + (1−λ)X2) = 0

)
=⇒ 0 ≤ 0+0

=⇒ 1Ω(λX1 + (1−λ)X2) ≤λ1Ω(X1)+ (1−λ)1Ω(X2)

=⇒ 1Ω is convex
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Ω is convex =⇒ For all X1, X2 ∉Ω
(
1Ω(X1) = 1Ω(X2) =∞

)
,(

1Ω(λX1 + (1−λ)X2) = 0

)
or

(
1Ω(λX1 + (1−λ)X2) =∞

)
=⇒

(
0 ≤∞+∞

)
or

(
∞≤∞+∞

)
=⇒ 1Ω is convex

Ω is convex =⇒ For all X1 ∈Ω, X2 ∉Ω
(
1Ω(X1) = 0, 1Ω(X2) =∞

)
,(

1Ω(λX1 + (1−λ)X2) = 0

)
or

(
1Ω(λX1 + (1−λ)X2) =∞

)
=⇒

(
0 ≤ 0+∞

)
or

(
∞≤ 0+∞

)
=⇒ 1Ω is convex

Answer 6.2.3. f is convex =⇒ epi ( f ) is convex ?

f is convex =⇒ For all (u,α), (v,β) ∈ epi ( f ),

(
f (u) ≤α, f (v) ≤β

)
,

=⇒ f (tu + (1− t )v) ≤ t f (u)+ (1− t ) f (v)

=⇒ f (tu + (1− t )v) ≤ tα+ (1− t )β,

(
tu + (1− t )v ∈ U convex

)
=⇒

(
tu + (1− t )v, tα+ (1− t )β

)
∈ epi ( f )

=⇒ t (u,α)+ (1− t )(v,β) ∈ epi ( f )

=⇒ epi ( f ) is convex.

Lecture Notes
3rd Year Degree in Mathematics

75 Author : Dr. Rabah DEBBAR
Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics

epi ( f ) is convex =⇒ f is convex ?

epi ( f ) is convex =⇒ (u, f (u)), (v, f (v)) ∈ epi ( f )

t (u, f (u))+ (1− t )(v, f (v)) ∈ epi ( f )

=⇒
(

tu + (1− t )v, t f (u)+ (1− t ) f (v)

)
∈ epi ( f )

=⇒ f (tu + (1− t )v) ≤ t f (u)+ (1− t ) f (v)

=⇒ f is convex

Answer 6.2.4. F is convex =⇒Φ is increasing ?

F is convex =⇒ let t2 ≥ t1 > 0 on pose t = t1

t2
∈ (0,1]

F (u + t1v) = F (u + t t2v) = F (u + tu − tu + t t2v) = F ((1− t )u + t (u + t2v))

≤ (1− t )F (u)+ tF (u + t2v)

=⇒ f is convex

=⇒ F (u + t1v)−F (u) ≤ t

[
F (u + t2v)−F (u)

]
= t1

t2

[
F (u + t2v)−F (u)

]

=⇒

[
F (u + t1v)−F (u)

]
t1

≤

[
F (u + t2v)−F (u)

]
t2

=⇒Φ(t1) ≤Φ(t2)

=⇒Φ is increasing

Answer 6.2.5. ( fi )i∈I be any family of convex =⇒ sup
x∈Rn

fi is convex ?
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fi (x) ≤ sup
x∈Rn

fi (x) =⇒ t fi (x) ≤ t sup
x∈Rn

fi (x)

fi (y) ≤ sup
y∈Rn

fi (y) =⇒ (1− t ) fi (y) ≤ (1− t ) sup
y∈Rn

fi (y)

fi (t x + (1− t )y) ≤ t fi (x)+ (1− t ) fi (y) ≤ t sup
x∈Rn

fi (x)+ (1− t ) sup
y∈Rn

fi (y)

fi convex

sup
x,y∈Rn

fi (t x + (1− t )y) ≤ t sup
x∈Rn

fi (x)+ (1− t ) sup
y∈Rn

fi (y)

Answer 6.2.6. ab ≤ 1

p
ap + 1

q
bq ?

ab = expln ab = expln a+lnb = exp
1
p ln ap+ 1

q lnbq ≤ 1

p
expln ap + 1

q
explnbq = 1

p
ap + 1

q
bq

exp is convex.

Answer 6.2.7. Reasoning by recurrence

a. P (2) ( verifies the property): this is the initialization (or base) of the recurrence;

b. For any integer p, P (p) =⇒P (p +1)): this is heredity (we say that P is hereditary).

a) p = 2

∀(λi )1≤i≤2 ∈ (Rn)2 such as
2∑

i=1
λi = 1, ∀(xi )1≤i≤2 ∈ (Rn)2; f

(
2∑

i=1
λi xi

)
≤

2∑
i=1

λi f (xi )

( f be a convex function λ2 = 1−λ1 P (2), is true ).

b) P (p) =⇒P (p +1)) ?

∀(λi )1≤i≤p+1 ∈ (Rn)p+1 such as
p+1∑
i=1

λi = 1, and let i0 ∈ {1,2, ..., p +1} be such that

p+1∑
i=1,i 6=i0

λi 6= 0 laid
p+1∑

i=1,i 6=i0

λi =µ. So µ+λi0 = 1and µ> 0,λi0 ≥ 0

p+1∑
i=1,i 6=i0

λi 6= 0 then there exists x ∈Rn (Barycenter)
p+1∑

i=1,i 6=i0

λi xi =µx
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f convex =⇒ f (λi0 xi0 +µx) ≤λi0 f (xi0 )+µ f (x)

=⇒ f (
p+1∑
i=1

λi xi ) ≤λi0 f (xi0 )+µ f (x)

f (x) = f (
p+1∑

i=1,i 6=i0

λi

µ
xi ) ≤

p+1∑
i=1,i 6=i0

λi

µ
f (xi ) (P (p), is true )

=⇒ f (
p+1∑
i=1

λi xi ) ≤
p+1∑
i=1

λi f (xi )

=⇒ (P (p +1), is true )

Answer 6.2.8. (See theorem 1.8.1)

Answer 6.2.9. (See theorem 1.8.2)
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6.3 TD Series No. 03 Corrected

Answer 6.3.1. Let x̂ is a max (local or global) of f then

f (x̂) = max{ f (x), x ∈Rn(or x ∈ v)} v ∈V (x̂)

⇐⇒ f (x) ≤ f (x̂), ∀x ∈Rn (x ∈ v)

⇐⇒− f (x̂) ≤− f (x), ∀x ∈Rn (x ∈ v)

⇐⇒− f (x̂) = min{− f (x), ∀x ∈Rn (x ∈ v)}

⇐⇒ f (x̂) =−min{− f (x), ∀x ∈Rn (x ∈ v)}

Answer 6.3.2. 1. f1 :R−→R; x 7→ f1(x) = x3 −x2 +5.

lim
‖x‖→∞

f1(x) =
{

lim
x→+∞ f1(x)

lim
x→−∞ f1(x)

=
{

lim
x→+∞x3 =+∞

lim
x→−∞x3 =−∞ is not coercive

2. f2 :Rn −→R; x 7→ f2(x) = 〈a, x〉+b a ∈Rn ,b ∈R.

lim
‖x‖→∞

f2(x) =
{

b i f a = 0
−∞ i f a 6= 0

is not coercive

a 6= 0 =⇒∃i0 6= 0 such that a = (0 · · ·ai0 · · ·0) xk = (0 · · ·−kai0 · · ·0)

f2(xk ) =−ka2
i0
+b ‖xk‖→+∞ f2(xk ) →−∞

3. f3 :Rn −→R; x 7→ f3(x) = a〈x, x〉+b b ∈Rn ,a and b ∈R.

lim
‖x‖→∞

f3(x) = lim
‖x‖→∞

(a‖x‖2 +b) =


−∞ i f a < 0 is not coercive
b i f a = 0 is not coercive
+∞ i f a > 0 is coercive

4. f4 :R2 −→R; x 7→ f4(x) = 2x2
1 +x2 −5

we take the sequence xn = (0.−n), n ≥ 0

‖xn‖ = n →+∞ f (xn) =−n −5 →−∞ then f4is not coercive
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5. f5 :R2 −→R; x 7→ f5(x) = x2
1 +2x3

2 +x2
2 −x1

we take the sequence xn = (0.−n), n ≥ 0

‖xn‖ = n →+∞ f (xn) =−2n3 +n2 →−∞ then f5is not coercive

6. f6 :R2 −→R; x 7→ f6(x) = x2
1 +2x1 +x2

2

We have (x1 +2)2 ≥ 0 =⇒ 2x1 ≥−1

2
x2

1 −2

f6(x) ≥ 1

2
x2

1 +x2
2 −2 ≥ 1

2
(x2

1 +x2
2)−2, (x2

2 ≥
1

2
x2

2)

f6(x) ≥ 1

2
‖(x1, x2)‖2 −2, ‖(x1, x2)‖ −→+∞=⇒ f6(x) −→+∞, then f6is coercive

7. f7 :R2 −→R; x 7→ f7(x) = x2
1 +x2

2 −3x2 −5

We have (x2 −3)2 ≥ 0 =⇒−3x2 ≥−1

2
x2

2 −
9

2

f7(x) ≥ x2
1 +

1

2
x2

2 −
9

2
≥ 1

2
(x2

1 +x2
2)− 9

2
, (x2

1 ≥
1

2
x2

1)

f7(x) ≥ 1

2
‖(x1, x2)‖2 − 9

2
, ‖(x1, x2)‖ −→+∞=⇒ f7(x) −→+∞, then f7is coercive

8. f8 :Rn −→R; x 7→ f8(x) = 〈x, x〉+〈a, x〉+b a ∈Rn ,b ∈R
f8(x) = ‖x‖2 +

n∑
i=1

ai xi +b

We have (xi +ai )2 ≥ 0 =⇒ ai xi ≥−1

2
x2

i −
1

2
a2

i
n∑

i=1
ai xi ≥−1

2

n∑
i=1

x2
i −

1

2

n∑
i=1

a2
i =−1

2
‖x‖2 − 1

2
‖a‖2

f8(x) ≥ 1

2
‖x‖2 − 1

2
‖a‖2 +b, ‖x‖ −→+∞=⇒ f8(x) −→+∞, then f8is coercive

Answer 6.3.3. 1. We have ∀(x,ε) (x2 −ε)2 ≥ 0 =⇒ x4 ≥ 2εx2 −ε2 (1)

and ∀(y,ε) (y2 −ε)2 ≥ 0 =⇒ y4 ≥ 2εy2 −ε2 (2)

and (x + y)2 ≥ 0 =⇒ x y ≥−1

2
(x2 + y2) (3)

bay 1,2 and 3 We have f (x, y) ≥ (2ε−4)(x2 + y2)−2ε2

there exists (α,β) ∈R2
+ such that (α,β) = (2ε−4,−2ε2)

‖(x, y)‖ −→+∞=⇒ f (x, y) −→+∞, then f (x, y)is coercive
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f (x, y) be a continuous and coercive function defined on all R2 , Then f (x, y) has at least

one global minimizer.

2.

f is convex if and only if ∇2 f (x, y) is positive semidefinite for all (x, y) ∈R2

H(x) =∇2 f (x, y) = 4

(
3x2 −1 1
1 3y2 −1

)
,

∇2 f (0,0) = 4

( −1 1
1 −1

)
=⇒∇2 f (0,0)−λI =

( −4−λ 4
4 −4−λ

)

det (∇2 f (0,0)−λI ) =λ(λ+8) = 0 =⇒λ= 0 or λ=−8

λ=−8 < 0 =⇒∇2 f (0,0) is not positive semidefinite =⇒ f is not convex.

3. ∇ f = 0 =⇒
(

4x3 −4(x − y)
4y3 +4(x − y)

)
= 0 =⇒ (x, y) = (0,0)∨ (

p
2,−p2)∨ (−p2,

p
2)

a. (0,0), det∇2 f (0,0) = 0 saddel point.

b. (
p

2,−p2), det∇2 f (
p

2,−p2) = 384 > 0 and fxx = 20 > 0 mi n(x,y)∈R2 f (x, y) = f (
p

2,−p2) =
−8

c. (−p2,
p

2), det∇2 f (−p2,
p

2) = 384 > 0 and fxx = 20 > 0 mi n(x,y)∈R2 f (x, y) = f (−p2,
p

2) =
−8

Answer 6.3.4. ∇ f (x, y) =
(

2x +a
2y +b

)
=⇒∇2 f (x, y) =

(
2 0
2 0

)
〈
∇2 f (x, y)

(
u
v

)
,

(
u
v

)〉
=

〈(
2 0
2 0

)(
u
v

)
,

(
u
v

)〉
= 2(u2 + v2) = 2‖(u, v)‖2 ≥α‖(u, v)‖2

such that α ∈]0,2]. Then f is elliptical

2. f is elliptical =⇒ f is coercive and strictly convex

. =⇒ the problem (P2) have a solution unique.
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∇ f (x, y) = 0 =⇒
(

2x +a
2y +b

)
= 0 =⇒ (x, y) = (−a

2
,−b

2
).

Answer 6.3.5. 1.

ti 1 2 3 4 5 6 7 8 9 10
10∑

i=1
ti = 55

xi 0 -3 6 -3 6 3.8 5 -2 1.4 8
10∑

i=1
xi =22.2

t 2
i 1 4 9 16 25 36 49 64 81 100

10∑
i=1

t 2
i =385

J (a,b) =
10∑

i=1
(xi −ati −b)2.

J she is diff
∂J

∂a
(a,b) = 2

10∑
i=1

(−ti )((xi −ati −b) = 2a
10∑

i=1
t 2

i +2b
10∑

i=1
ti −2

10∑
i=1

ti xi

∂J

∂b
(a,b) = 2

10∑
i=1

(−1)((xi −ati −b) = 2a
10∑

i=1
ti +20b −2

10∑
i=1

xi

∇J (a,b) =

 ∂J

∂a
(a,b)

∂J

∂b
(a,b)

=


2a

10∑
i=1

t 2
i +2b

10∑
i=1

ti −2
10∑

i=1
ti xi

2a
10∑

i=1
ti +20b −2

10∑
i=1

xi

 .

∂2J

∂a2
(a,b) = 2

10∑
i=1

t 2
i

∂2J

∂a∂b
(a,b) = 2

10∑
i=1

ti

∂2J

∂b2
(a,b) = 20 It is clear that J is twice diff (polyane in a and b)

HJ (a,b) =


∂2J

∂a2
(a,b)

∂2J

∂a∂b
(a,b)

∂2J

∂a∂b
(a,b)

∂2J

∂b2
(a,b)

=


2

10∑
i=1

t 2
i 2

10∑
i=1

ti

2
10∑

i=1
ti 20

=
(

770 110
110 20

)
.
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The Hessian matrix is positive semi-definite because 2T 2 ≥ 0 .

(the positive eigenvalues)=⇒J is strictly convex (convex) then the solution is unique (global).

We have f is diff and convex then any stationary point is a global min =⇒ the pb admits a

single solution.

∇J (a,b) = 0 ⇔
{

2aT 2 +2bT −2T X = 0
2aT +20b −2X = 0

T 2 =
10∑

i=1
t 2

i T =
10∑

i=1
ti T X =

10∑
i=1

ti xi X =
10∑

i=1
xi

The system admits a unique solution if∣∣∣∣ T 2 T
T 10

∣∣∣∣= 10T 2 −T T 6= 0 (T T = (
10∑

i=1
ti )2)

a =

∣∣∣∣ T X T
10 X

∣∣∣∣
10T 2 −T T

b =

∣∣∣∣ T 2 X T
T X

∣∣∣∣
10T 2 −T T

So the general case if 10T 2 −T T 6= 0 =⇒ A−1 exists =⇒ the pb admits a solution.

Answer 6.3.6. Let x, y ∈Rn such that x 6= y and t ∈]0,1[

1.

a. J (tu+ (1− t )v)− tJ (u)− (1− t )J (v) = t (t −1)

2
〈A(u−v),u−v〉 > 0 (t (t −1) > 0 and A

is a positive definite) ⇒J is strictly convex.
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b. A is symmetric there exists an orthonormal base (ui )1≤i≤n and A positive definite there-

fore the associated eigenvalues are all strictly positive therefore

x =
n∑

i=1
xi ui , xi = 〈x,ui 〉

Ax =
n∑

i=1
xi Aui =

n∑
i=1

λi xi ui

〈Ax, x〉 =
n∑

i=1
λi xi x j 〈ui ,u j 〉 =

n∑
i=1

λi x2
i ≥ min{λi }

n∑
i=1

x2
i

1

2
〈Ax, x〉 ≥λ‖x‖2 (λ= min{λi }

2
> 0)

〈b, x〉 ≤ ‖b‖.‖x‖⇒−〈b, x〉 ≥−‖b‖.‖x‖

J (x) ≥λ‖x‖2 −‖b‖.‖x‖ = ‖x‖2(λ− b

‖x‖ ) →+∞ ‖x‖→+∞

J is a coercive function.

2. View the course

J is differentiable.

∇J (x) = Ax −b

HJ (x) = A

3. we have

J is strictly convex and coercive so (P4) admits only one solution.
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4.

∇J (x) = 0 =⇒ Ax −b = 0 =⇒ x = A−1b.

A−1 exists because A is positive definite and detA 6= 0 =⇒ A−1 exists

A−1 exists ⇔ We are not an eigenvalue of A and A defines positive ⇔ all non-zero

eigenvalues =⇒ 0 is not a vp

Even if A negative definite and detA 6= 0 =⇒ 0 We’re not vp =⇒ A−1 exists.
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7.1 Final Exam 2017-2018

Lecture Notes
3rd Year Degree in Mathematics

87 Author : Dr. Rabah DEBBAR
Academic year 2023/2024



University of 8 May 1945, Guelma Department of Mathematics
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