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0.1 Introduction

Sobolev spaces are function spaces that incorporate both differentiability and integrability con-

ditions. They are widely used in partial differential equations, functional analysis, and mathe-

matical physics to study weak solutions of differential equations. The key idea is to control the

regularity of a function not only locally (as in traditional differentiability) but also globally in

terms of its distributional derivatives.

The concept of Sobolev spaces was introduced by Sergei Sobolev in the 1930s. Sobolev was

a Soviet mathematician who worked in the field of partial differential equations. He was the

first to systematically study weakly differentiable functions and develop a theory of these spaces

based on their integrability and differentiability properties. Sobolev spaces have since become a

central tool in the study of partial differential equations and have applications in various areas of

mathematics and physics.

Laurent Schwartz is known for his work in the field of mathematics. He developed a theory

of generalized functions, now known as distributions, which extends the notion of functions to

include objects that are not necessarily continuous but still have a well-defined behavior. He

applied his theory of distributions to the study of partial differential equations, leading to the

development of new methods for solving these equations. He made contributions to the fields of

real analysis and complex analysis, including the study of Fourier series, he used his mathematical

skills to study a wide range of problems in mathematical physics, including the study of wave

propagation and electromagnetic fields. Overall, Laurent Schwartz made significant contributions

to the fields of mathematics and mathematical physics, and his work has had a lasting impact on

these areas of study.

Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-

norms of the function together with its derivatives up to a given order. The derivatives are under-

stood in a suitable weak sense to make the space complete, i.e. a Banach space. Their importance

comes from the fact that weak solutions of some important partial differential equations exist

in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous

functions with the derivatives understood in the classical sense.

This course is intended for first-year master’s students and aims to provide definitions and fun-

damental properties of Sobolev space and variational method, as well as their applications to

the solution of differentiel partial equations. However, this course may also interest students

from other mathematical disciplines, as there are several applications of this theory not only in

the theory of PDEs or stochastic processes, but also in the study of existence and uniqueness of

differential equations and functional differential equations arising from quantum mechanics and
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control theory. The methods using sobolev space and variational methods are also applied today

in solving concrete equations that arise in population dynamics or transport theory.

During the preparation of this manuscript, I mainly relied on references [1, 2, 3, 4, 6, 8, 9, 18].

Students can also consult reference [5, 7, 12, 14].

This lecture notes is divided into four parts.

In the first part, classification of seconde ordre linear PDE are presented. After that, we describes

some tools for studying partial differential equations (PDEs): measure theory and distributions.

The second part is dedicated to the theoretical study of Sobolev space (definitions and proper-

ties). It is first introduced the space H1(Ω), then Hm(Ω), with m ≥ 1, and then we generalized

the study in the space Wm,p(Ω), where m ≥ 1, p ∈ [0,+∞[. They are widely used in partial

differential equations, functional analysis, and mathematical physics to study weak solutions of

differential equations.

In the third part, we study the existence and uniqueness of elliptic boundary value problems, by

using a variational formulation and the Lax-Milgram theorem. Here we replace the equation by

an equivalent variational formulation, obtained by integrating the equation multiplied by a test

function.

Finally, Application of Variational Formulation and Lax Milgram Theorem is presented for differ-

ent various examples with different boundary conditions or very general elliptic operators, not

necessarily symmetric.

Each part concludes with a chapter of exercises, with detailed solutions (or hints for solutions,

depending on the difficulty) provided for most of them.

0.1. Introduction 4



0.2 Notations and abbreviations

a.e Almost everywhere

R Real field.

C Complex field.

‖.‖H Norm of the linear space X.

(., .)X Scalar product in X.

1K The indicator function of K.

Ω Open set of Rn.
M The laplacian.

O The gradient.

div The divergence.

dΓ Lebesgue measure on boundary.

PDE Partial differential equations.

L(E,F ) The space of linear bounded operators from E to F.

Φ Empty set.

X Closure.

B.C Boundary Conditions.

[f ] The equivalence classes of f.

C(Ω) Space of continuous functions.

D(Ω) The space of functions in C∞ with a compact support in Ω.

D′(Ω) The space of all distributions on Ω.

Hm(Ω) Sobolev space of order m greater than 1.

H−m(Ω) The dual of the sobolev space Hm
0 (Ω).

Wm,p(Ω) The Sobolev space with p ∈ [1,+∞] and m is a nonnegative integer.

0.2. Notations and abbreviations 5



Chapter 1

Distributions

This chapter describes some tools for studying partial differential equations (PDEs): classification

of 2nd-order linear PDEs, measure theory and distributions. They are used to obtain existence

(and often uniqueness) results for a few examples of PDE problems of various natures (elliptic,

parabolic or hyperbolic).

1.1 Classification of second-order linear PDEs

Partial differential equations (PDEs) play a key role in many fields of science and engineering,

such as fluid mechanics, thermodynamics, electromagnetism, finance and biology... In particu-

lar, second-order PDEs can be used to describe a number of basic physical phenomena, such as

diffusion and propagation.

1.1.1 Definitions and properties

Definition 1.1 : A partial differential equation (PDE ) is an equation containing an unknown func-

tion of several variables and some of its partial derivatives with respect to these variables. The order

of the largest derivative in the equation is called the order of a PDE.

Definition 1.2 :

1- A linear partial differential equation (PDE) is a type of PDE where the unknown function and its

derivatives appear linearly.

2- There are three primary categories of nonlinear partial differential equations (PDEs):

• Semi-linear PDEs are the closest to linear PDEs, as they only involve linear terms in the highest

order derivatives. The coefficients of these linear terms depend on the independent variables.

• In a quasilinear PDE the highest order derivatives likewise appear only as linear terms, but with
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Chapter 1. Distributions

coefficients possibly functions of the unknown and lower-order derivatives.

• A PDE without any linearity properties is called fully nonlinear, and possesses nonlinearities on one

or more of the highest-order derivatives.

Example 1.1 :

1) The heat equation is a 2nd order linear PDE.

2) Navier-Stokes equations is a quasilinear PDE.

The majority of differential equations that appear in physics involve partial derivatives with re-

spect to spatial and temporal variables, and are therefore partial differential equations. Here,

we’ll focus to second-order partial differential equations it means equations of the form
n∑

i,j=1

αij
∂2

∂xi∂xj
ϕ(x) +

n∑
i=1

βi
∂

∂xi
ϕ(x) + γϕ(x) = g(x), (1.1)

where αij, βi and γ are fixed functions and g is a given function, often called the source term of the

equation. If g(x) is zero, the equation is said to be homogeneous, otherwise it is inhomogeneous.

1.1.2 PDE classification

Second-order PDEs can be classified into three main families: elliptic, hyperbolic and parabolic.

Consider a 2nd-order partial differential equation involving two variables (x, t) :

A
∂2

∂t2
ϕ(x, t) +B

∂2

∂x∂t
ϕ(x, t) + C

∂2

∂x2
ϕ(x, t) +D

∂

∂t
ϕ(x, t)

+ E
∂

∂x
ϕ(x, t) + γϕ(x, t) = g(x, t). (1.2)

The solutions of these different partial differential equations behave in different ways, corre-

sponding to very different physical situations. Classification is based on the following considera-

tions:

1- If B2 − 4AC > 0 : the PDE is said to be hyperbolic, the classic example is the wave equation

∂2

∂x2
ϕ(x, t)− 1

c2

∂2

∂t2
ϕ(x, t) = g(x, t), (1.3)

2- If B2 − 4AC < 0 : the PDE is said to be elliptic, the classic example is the Laplace equation

∂2

∂x2
ϕ(x, y) +

∂2

∂y2
ϕ(x, y) = g(x, y), (1.4)

3- If B2 − 4AC = 0 : the PDE is parabolic, the classic example is the heat equation

∂2

∂x2
ϕ(x, t)− α ∂

∂t
ϕ(x, t) = g(x, t). (1.5)

1.1. Classification of second-order linear PDEs 7



Chapter 1. Distributions

Remark 1.1 : In general, the parameters A,B,C,D and E can be functions of x and t, so the sign of

the discriminant (B2 − 4AC) can vary from one point to another and the equation changes regime.

If there are n independent variables x1, x2, ..., xn, a general linear partial differential equation of

second order has the form

Lu =
n∑
i=1

n∑
j=1

αij
∂2u

∂xi∂xj
+ lower-order terms = 0.

The classification depends upon the signature of the eigenvalues of the coefficient matrix

M(x) = (αij)1≤i,j≤n.

The terminology elliptic, hyperbolic and parabolic comes from the fact that when the matrix M(x)

is constant, the curves

xTMx = cte,

are respectively ellipsoids, hyperboloids and paraboloids respectively, then we have:

Definition 1.3 :

• A second-order linear PDE is said to be elliptic if the matrix M(x) has only non-zero eigenvalues,

all of which have the same sign ( all positive or all negative).

• A PDE is said to be hyperbolic if M(x) has only non-zero eigenvalues, all of which have the same

sign except for one with the opposite sign.

• A P.D.E. is said to be parabolic if M(x) has (N − 1) non-zero eigenvalues of the same sign and one

zero eigenvalue (all positive or all negative, except one that is zero).

1.1.3 Boundary conditions

In addition to initial conditions (which define the value of the solution at a given initial time),

PDEs problem can have also boundary conditions (B.C.) which are imposed on a partial differen-

tial equation to determine a unique solution. These conditions are specified at the boundaries of

the domain on which the PDE is defined.

Boundary conditions can be classified into different types, depending on the nature of the prob-

lem and the physical or mathematical requirements. Here are some commonly encountered types

of boundary conditions:

1.1. Classification of second-order linear PDEs 8



Chapter 1. Distributions

- Dirichlet boundary condition : These specify the values of the unknown function at the bound-

aries.

- Neumann boundary condition, which can be defined as the derivative of the solution with

respect to the normal on a part of the boundary.

- Mixed condition: There are several ways of obtaining mixed conditions:

The first is to impose Dirichlet conditions in some directions and Neumann conditions in others

at the same point on the boundary.

The second way is a linear combination of a Dirichlet condition and a Neumann condition which

called Robin conditions.

The third way is to impose a weighted average of both conditions on part of the boundary.

Example

The temperature of a rod of length L is a function u(x, t) of position x and time t. It is assumed

that the ends are maintained at zero temperature

u(0, t) = 0, u(L, t) = 0.

These boundary conditions are said to be homogeneous (equal to zero).

Well-posed boundary problems

Definition 1.4 : A boundary problem is a partial differential equation with boundary conditions on

the all boundary of the domain on which it is posed.

This problem is well-posed in the Hadamard sense if it has a unique solution that depends contin-

uously on the data (second member, domain, boundary data, etc.). If one of these criteria is not

satisfied, the problem is said to be ill-posed (the problem may not have a unique solution, or the

solution may not be stable, making it more difficult to solve).

Remark 1.2 :

• The classification of second-order linear PDEs in R2 is interesting because it reflects a set of com-

mon characteristics both qualitatively through the physical phenomena represented and in terms of

mathematical (Boundary condition, well-posed problem, ....).

• The choice and formulation of appropriate boundary conditions depend on the specific problem be-

ing studied and the physical or mathematical requirements. By combining the PDE with the specified

boundary conditions, a well-posed problem can be formulated, allowing for the determination of a

unique solution.

1.1. Classification of second-order linear PDEs 9



Chapter 1. Distributions

1.2 Lebesgue Integral

The Lebesgue integral is a more general extension of the Riemann integral, and is often used to

study functions that are not continuous, but can be measured rigorously. Lebesgue spaces play an

important role in functional analysis, partial differential equation theory and probability.

Definition 1.5 : Let (X,Σ, µ) be a measured space. The function f : X → R is said to be integrable

or summable over X if ∫
X

|f | dµ <∞.

The vector space of all integrable functions on X is denoted by L1 (X,Σ, µ) (or simply L1(X)).

Definition 1.6 : If Ω is an open set of Rn and f : Ω → R, then f is said to be locally integrable on

Ω if it is measurable and ∫
K

|f | dµ <∞ for any compact K ⊂ Ω.

The space of all locally integrable functions on Ω is denoted by L1
loc (Ω) .

Definition 1.7 : The vector space of numerical power functions p (1 ≤ p < +∞) integrable on X is

the space:

LP (X,Σ, µ) =

{
f : X −→ R mesurable :

∫
X

|f |p dµ <∞
}
.

It will be equipped with the semi-norm

‖f‖LP =

(∫
X

|f |p dµ
) 1

p

.

If p = +∞, we introduce the space of functions essentially bounded on the space X

L∞ (X,Σ, µ) =
{
f : X −→ R mesurable, ∃C > 0 such as |f (x)| ≤ C a.e

}
=

{
f : X −→ R mesurable, f bounded a.e

}
.

It will be equipped with the semi-norm

‖f‖L∞ = inf {C > 0; |f (x)| ≤ C a.e}

= inf

{
sup
x/∈A
|f (x)| , A ∈ Σ and µ (A) = 0

}
.

1.2. Lebesgue Integral 10



Chapter 1. Distributions

Definition 1.8 : We define the space Lp (X,Σ, µ) (1 ≤ p < +∞) by:

Lp (X,Σ, µ) = LP (X,Σ, µ)�R,

where R is the equivalence relation defined by:

∀f, g ∈ LP (X,Σ, µ) , fRg ⇔ f = g a.e.

Lp (X,Σ, µ) is the space of equivalence classes of Lp (X,Σ, µ) by the equivalence relation R.

Remark 1.3 :

1- Using the equivalence relation R we have

h ∈ [f ] ∈ Lp(X,Σ, µ)→ h = f a.e,

with [f ] is the equivalence classes of f.

Note that despite the fact that it is technically incorrect to say Lp is the space of Lebesgue integrable

functions even though it is really the space of equivalence classes of these functions modulo equality

almost everywhere.

2- That is, we ’identify’ two elements of Lp if and only if their difference is null, which is to say they

are equal off a set of measure zero. Note that the set which is ignored here is not fixed, but can depend

on the functions.

3- The triangle inequality makes the space Lp, 1 ≤ p ≤ ∞ into a metric space with distance

d(f, g) = ‖f − g‖Lp .

Theorem 1.1 The space Lp(X,Σ, µ) for 1 ≤ p ≤ ∞ is a Banach space.

Proof. The proof of this theorem typically involves showing that the space Lp(X,Σ, µ) is a normed

vector space and then demonstrating that it is complete, which means that Cauchy sequences in

this space converge to a limit within the space.

Lebegue space

Definition 1.9 : Let p be an element of [1,+∞] and Ω be an open of Rn, we call Lebesgue space1, and

we denote Lp(Ω), the vector space of f functions (classes of functions) of Ω in C, Lebesgue functions

that are measurable, verify

•
∫

Ω

|f(x)|p dx <∞, if 1 ≤ p < +∞,

• supess
x∈Ω

|f(x)| = inf {C > 0; |f (x)| ≤ C a.e} <∞, if p = +∞.

1Lebesgue spaces are named after the French mathematician Henri Lebesgue (1875-1941).

1.2. Lebesgue Integral 11



Chapter 1. Distributions

We provide Lp (Ω) of the norm

f →

 ‖f‖p =
(∫

Ω
|f(x)|p dx

) 1
p , 1 ≤ p < +∞,

‖f‖∞ = supess
x∈Ω

|f(x)| , p = +∞.

Theorem 1.2 (Riesz-Fisher Theorem)

(i) For 1 ≤ p ≤ +∞, the space (Lp, ‖.‖p) is complete, so it’s a Banach space.

(ii) For p = 2 : the space L2(Ω) is a Hilbert space for the inner product

(f, g)L2(Ω) =

∫
Ω

f(x).g(x)dx.

(iii) For 1 ≤ p < +∞, the space (Lp, ‖.‖p) is separable.

Minkowski’s inequality: Let 1 ≤ p ≤ +∞, f, g ∈ Lp(Ω), then (f + g) ∈ Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p . (1.6)

Holder inequality:

Let 1 ≤ p, q ≤ +∞, with p, q conjuguate ( 1
p

+ 1
q

= 1). If f ∈ Lp(Ω) and g ∈ Lq(Ω), then the

application

Lp(Ω)× Lq(Ω) → R, (1.7)

(f, g) →
∫

Ω

f(x).g(x)dx

is continuous bilinear with values in L1(Ω) and

‖fg‖1 ≤ ‖f‖p ‖g‖q ⇒
∫

Ω

|f.g|dx ≤
(∫

Ω

|f |pdx
)1/p(∫

Ω

|g|qdx
)1/q

.

The case p = q = 2 gives the Cauchy-Schwartz inequality∫
Ω

|f.g| dx 6

(∫
Ω

|f |2dx
)1/2(∫

Ω

|g|2dx
)1/2

. (1.8)

Remark 1.4 : For 1 ≤ p ≤ +∞, with p, q conjugate then the dual of Lp(Ω) is Lq(Ω).

The Lebesgue integral is linear, additive, monotone, and satisfies the triangle inequality.

1.2. Lebesgue Integral 12



Chapter 1. Distributions

Fatou’s lemma:

This lemma is used to study the properties of integrals of non-negative measurable functions,

and deals with the limits of sequences of measurable functions. It’s named after the French-

Senegalese mathematician Fatou. In simpler terms, it tells us that when we have a sequence of

functions that are increasing pointwise, the integral of the limit of the sequence is bounded below

by the limit of the integrals of the individual functions. This result has applications in various

areas of mathematics, including probability theory and analysis.

Fatou’s lemma is formulated as follows:

Lemma 1.1 [11] Let (fn)n∈N a sequence of integrable functions from Ω into R+, verify |fn| ≤ g

where g is a positive integrable function. Then,∫
Ω

( lim
n→+∞

fn)dx = lim
n→+∞

∫
Ω

fn dx.

The same result requires, for the Riemann integral, uniform convergence. An almost immediate

consequence of Fatou’s lemma is the dominated convergence theorem of Lebesgue, which is by

far the most commonly used in practice.

Dominated convergence theorem "DCT "

Theorem 1.3 [11] Let (X,Σ, µ) be a measured space and 1 ≤ p ≤ +∞. Let (fn)n∈N be a sequence

of functions of Lp such that:

1- fn(x)→ f(x) as n→ +∞ a.e in X.

2- There exists a function g in X integrable with values in R+, such that

|fn(x)| ≤ g(x) a.e in X.

Then f is integrable and we have.

fn → f in Lp(X) =⇒
∫
X

|fn − f |pdµ→ 0 as n→ +∞ .

Remark 1.5 :

The dominated convergence theorem is an important tool for studying the convergence of function

sequences. It can be used to prove convergence properties for integrals of functions, and is used

in many applications in mathematical analysis, such as functional analysis, measure theory and

integration theory.

1.2. Lebesgue Integral 13
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1.3 Distributions

In mathematics, a distribution is an extension of the concept of a function, allow us to repre-

sent quantities such as probability densities, electric potentials, force fields, etc., that cannot be

described by classical functions. Here, we provide only a few elements of this theory.

1.3.1 The Space Ck(Ω)

Definition 1.10 : Let Ω be a non-empty open set in Rn. The support of a function f : Ω −→ R,

denoted as supp(f), is the closed subset defined by:

supp(f) = {x ∈ Ω : f(x) 6= 0},

which means that

x0 /∈ supp(f)⇔ ∃V ∈ V (x0) : f (x) = 0, ∀x ∈ V.

Definition 1.11 : Let Ω be a non-empty open set in Rn. For any k ∈ N = N ∪ {+∞}, we define the

space Ck(Ω) as follows:

Ck(Ω) = {f : Ω −→ R or C : Dαf ∈ C(Ω),∀α ∈ Nn; |α| ≤ k},

In other words, a function f : Ω −→ R is said to be of class Ck on Ω if all its partial derivatives up to

order k exist and are continuous, with

Dα =
∂α1

∂xα1
1

.
∂α2

∂xα2
2

....
∂αn

∂xαnn
=

∂|α|

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

, |α| =
n∑
i=1

αi.

Remark 1.6 : For any k ∈ N = N ∪ {+∞} , the space Ck(Ω) will be the function space f ∈ Ck(Ω)

such that all partial derivatives Dαf extend continuously to Ω for |α| ≤ k.

In other words, Ck(Ω) is the set of restrictions of functions f from Ck(Rn) to Ω that satisfy

lim
x∈Ω, |x|−→+∞

|Dαf (x)| = 0, ∀α ∈ Nn; |α| ≤ k. (1.9)

We put

C∞(Ω) = ∩
k≥0

Ck(Ω), (1.10)

and

C∞(Ω) = ∩
k≥0

Ck(Ω).

1.3. Distributions 14
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1.3.2 Space of test function D(Ω)

Test functions are an important tool in mathematical analysis for defining distributions. They

allow us to test the value of a distribution for simple functions and are used to better understand

the properties of the distribution.

Definition 1.12 : Let Ω a non-empty open set of Rn, we denote by

D(Ω) = ∪
K compact, K⊂Ω

DK(Ω),

the space of indefinitely differentiable functions on Ω (C∞(Ω)) test function with

DK(Ω) = {u ∈ C∞(Ω), supp(u) ⊂ K}.

Example 1.2 : Let the function ϕ given by

ϕ : Rn −→ R

x 7−→ ϕ(x) =

{
e
− 1

1−|x|2 if |x| < 1

0 if |x| ≥ 1
.

Then ϕ ∈ D(Rn) and its support is exactly the closed unit ball

B(0, 1) = {x ∈ Rn : |x| ≤ 1} .

Remark 1.7 :

1- Let Ω be a non-empty open set in Rn. D(Rn) is a vector space over C, not reduced to zero, and an

algebra for the multiplication of functions.

2- For all p ∈ [1,∞), the space D(Ω) is dense in Lp(Ω).

1.3.3 Convergence in D(Ω)

The topology that can be defined on the space D (Ω) is not simple. It cannot be defined by a

metric (distance) or a norm.

We equip D (Ω) with a pseudo-topology, meaning that we define convergent sequences in D (Ω).

In other words, we can equip D (Ω) with a topology, called the inductive limit of the topologies

of DK(Ω), where K ranges over the compact subsets of Ω, in the following way if A ⊂ D (Ω) is

convex, it is said to be a neighborhood of 0 in D (Ω) . It can be shown that this forms (basis of

0-neighborhoods for a topology on D(Ω)) making it a locally convex topological vector space (but

not metrizable).

1.3. Distributions 15
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Definition 1.13 : We say that a sequence of functions (ϕk)k≥0 ∈ D (Ω) converges to a test function

ϕ ∈ D (Ω) for the topology of D (Ω) if and only if there exists a fixed compact K ⊂ Ω such that:

1) suppϕk ⊂ K, and suppϕ ⊂ K, ∀k ≥ 0.

2) ∀α ∈ Nn, on a Dαϕk → Dαϕ uniformelly in K as k →∞, then

∀α ∈ Nn : sup
x∈K
|Dα(ϕk − ϕ)(x)| → 0

k→+∞
.

Remark 1.8 :

1- Condition (1) is important because if the (ϕk)k≥0 supports are compact, their number is infinite

and their union isn’t necessary compact.

2- Condition (2) shows how demanding this notion of convergence (it’s the price to pay for D(Ω) to

be closed).

3- D(Ω) is a dense subspace of L2(Ω).

1.3.4 Distributions Space

The space D(Ω) will allow us to define, through "duality," the concept of distribution.

Definition 1.14 : A distribution or generalized function on Ω of Rn is any linear and continuous

map with respect to the topology of D (Ω). In other words, a distribution on Ω is a mapping

T : D(Ω)→ K (R or C)

satisfies the following:

1) T is a linear map.

2) T is continuous, i.e. if ϕk → 0 in D(Ω), then (T , ϕk)→ 0 in K, when k → +∞.
The space of all distributions on Ω is denoted D′ (Ω) (it is the topological dual of D (Ω)).

Proposition 1.1 : Let Ω be an open set in Rn. Then T ∈ D′(Ω) if and only if for every compact K

in Ω,

∃c > 0, ∃m ∈ N,∀ϕ ∈ DK(Ω), | 〈T, ϕ〉 | ≤ c
∑
α∈Nn
|α|≤m

sup
x∈K
|Dαϕ(x)| , (1.11)

The distribution is said to be of order m if the preceding inequality is verified with a number m

independent of the compact K.

1.3. Distributions 16
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Remark 1.9 :

1) The integer m involved in (1.11) may depend on the compact K. However, if the same m holds

for all compacts, we say that T is of order m.

2) Let T be in D′(Ω). We say that T is positive if, for any ϕ ∈ D(Ω) such that ϕ ≥ 0, we have

(T, ϕ) ≥ 0. Then every positive distribution is of order zero.

3) For T ∈ D′(Ω), the support of T, which we denote suppT, is the complementary of the largest open

where T is zero.

Locally integrable functions : L1
loc(Ω)

Let L1
loc(Ω) be the space of (classes of) functions f : Ω → C which are locally integrable on Ω of

Rn(for the Lebesgue measure) is given by:

L1
loc(Ω) =

f : Ω→ R, ∀K compact ⊂ Ω,

∫
K

|f | dx <∞

 ,

can be identified as a subspace of D′ (Ω) , en effet ∀ f ∈ L1
loc(Ω), we have

Tf : D (Ω)→ R
ϕ 7−→ 〈Tf , ϕ〉 =

∫
Ω

f(x)ϕ(x)dx.

If ϕ ∈ D (Ω) and K its support ( compact), we get

|〈Tf , ϕ〉| ≤
∫
Ω

|f(x)| . |ϕ(x)| dx ≤ ‖f‖L1(K) . ‖ϕ‖L∞(K) .

Example 1.3 : The Dirac mass

In the resolution of certain problems in physics, it is sometimes useful to consider objects, called

"functions" in an abusive language, but are not well-defined as pointwise representations. The most

famous example of this is the Dirac measure, which, if considered as a function, is "zero outside of 0

and infinite at 0". If a ∈ Ω ⊂ Rn is a fixed point in Ω, then we call the Dirac delta in a ( or Dirac

mass) the distribution
δa : D (Ω)→ R

ϕ 7−→ δa(ϕ) = 〈δa, ϕ〉 = ϕ(a).

The Dirac distribution at the point a is not a function (since a function that is zero everywhere except

at one point has an integral of zero, not equal to 1. It can be interpreted, in the context of electricity,

as a point charge.

1.3. Distributions 17
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Example 1.4 : Principale value

Given the function x → 1
x
, which does not belong to the space L1

loc(R), we can define a distribution

called the Cauchy principal value denoted vp 1
x

as follows:

〈vp1

x
, ϕ〉 = lim

ε→0

∫
|x|≥ε

ϕ(x)

x
dx

= lim
ε→0

[∫ ε

−∞

ϕ(x)

x
dx+

∫ +∞

ε

ϕ(x)

x
dx

]
, ∀x ∈ D (R) .

We note that the existence of the limit is due to the compensation of the two divergent integrals.

Remark 1.10 :

1) All functions f ∈ L1
loc(Ω) define a distribution Tf on Ω, which is of order 0.

2) We have Tf = Tg for g ∈ L1
loc(Ω) if and only if f = g almost everywhere.

3) A distribution associated with a function f ∈ L1
loc(Ω) can be interpreted, in the context of electricity,

as a distributed charge with density f .

Definition 1.15 All distribution that can be identified with a locally integrable function is called a

regular distribution, and any other distribution is referred to as a singular distribution (the Dirac

distribution δ0 is not a regular distribution).

Remark 1.11 :

1) For Ω a open set of Rn, we get Lp(Ω) ⊂ Lploc(Ω), ∀p ∈ [1,+∞[.

2) Distribution support T (denoted suppT ) is the set of x in Ω such that: For any neighborhood V of

x, there exists ϕ ∈ D (V ) such that 〈T, ϕ〉 6= 0.

Derivation in the sense of distributions

A fundamental property of distributions is that it is possible to derive them, but in a (weak) sense

that we will now define.

Let Ω be an open set of Rn and f ∈ Cm(Ω) then Dαf ∈ L1
loc(Ω), ∀ |α| ≤ m and

∀ϕ ∈ D (Ω) , 〈TDαf , ϕ〉 =

∫
Ω

(Dαf)ϕdx

par parties
= (−1)|α|

∫
Ω

f (Dαϕ) dx = (−1)|α| 〈Tf , Dαϕ〉.

1.3. Distributions 18
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Definition 1.16 : Let T ∈ D′ (Ω) and α ∈ Nn, we define the derivative of index α, denoted DαT by

〈DαT, ϕ〉 = (−1)|α| 〈T,Dαϕ〉, ∀ϕ ∈ D (Ω) ,

with

supp(DαT ) ⊂ supp(T ).

Therefore, we define DT = ∂T
∂xi
, ∀ i = 1, ...n by

∀ϕ ∈ D (Ω) ,

〈
∂T

∂xi
, ϕ

〉
= −

〈
T,

∂ϕ

∂xi

〉
.

Remark 1.12

1) Since ϕ→
〈
T, ∂ϕ

∂xi

〉
is a linear continuous form in D (Ω) because

ϕn → ϕ⇒ ϕ′n
D→ ϕ′,

this defines
(
∂T
∂xi

)
as a distribution.

2) Dα : D′ (Ω)→ D′ (Ω) is continuous operator.

3) We have an equality between Dαf( in the classical sense) and Dαf in the distribution sense if

f ∈ Cm(Ω).

4) Any distribution is infinitely differentiable and its derivatives are distributions.

5) ∀f ∈ C∞ (Ω) , ∀T ∈ D′(Ω),

∂

∂xi
(fT ) =

∂f

∂xi
T + f.

∂T

∂xi
,∀i = 1, ..., n.

6) For all distribution T ∈ D′(Ω), and ∀α, β ∈ Nn, we have

DαDβT = DβDαT = Dα+βT.

Example 1.5 : The Heaviside function H is defined on R by:

H : R→ R

x 7−→ H(x) =

{
1 if x ≥ 0

0 if x < 0

.

The function H ∈ L1
loc(R), so we can define the distribution:

TH : D (R)→ R
〈TH , ϕ〉 =

∫
R
H(x)ϕ(x)dx

.
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If ϕ ∈ D (Ω) , then

〈DTH , ϕ〉 = −〈TH , ϕ′〉 =

∫
R

H(x)ϕ′(x)dx = −
∫ +∞

0

ϕ′(x)dx = ϕ(0),

Therefore DTH = δ0 is the Dirac mass at the origin. Deriving again H ′ we have:

〈D2TH , ϕ〉 = 〈δ′, ϕ〉 = −〈δ, ϕ′〉 = −ϕ′(0), ∀ϕ ∈ D (Ω) .

More generally,

〈δm0 , ϕ〉 = (−1)m 〈δ0, ϕ
(m)〉 = (−1)mϕm(0),∀m ≥ 1, ∀ϕ ∈ D(R).

Convergence in the space D′(Ω)

Definition 1.17 : Let (Tn)n∈N ⊂ D′ (Ω) .

1) We say that Tn converges to 0 in D′ (Ω) denoted Tn → 0 in D′ (Ω) if and only if

〈Tn, ϕ〉 −→ 0,∀ϕ ∈ D (Ω) .

2) We say that (Tn)n∈N converges to T ⊂ D′ (Ω) if and only if

(Tn − T )→ 0 in D′ (Ω) .

3) Let T ∈ D′(Ω), we have

Tn → 0 in D′ (Ω)⇒ DαTn → 0 in D′ (Ω) ,∀α ∈ Nn.

4) Let (Tn)n∈N ⊂ D′ (Ω) , such that

Tn → T in D′ (Ω)⇒ DαTn → DαT in D′ (Ω) ,

this expresses the continuity of the derivation operator in D′ (Ω).

Example 1.6 Let (fn)n∈N be a sequence of L2(Ω) such that fn → f in L2(Ω), we have:

‖fn − f‖L2 → 0⇒ Tfn → Tf in D′ (Ω) .

In fact, for ϕ ∈ D (Ω) ,

|〈Tfn−f , ϕ〉| =

∣∣∣∣∣∣
∫

(

Ω

fn − f)(x)ϕ(x)dx

∣∣∣∣∣∣ =
∣∣〈fn − f, ϕ〉L2(Ω)

∣∣ .
According to Cauchy-Schwartz, we obtain

|〈Tfn−f , ϕ〉| ≤ ‖fn − f‖L2 . ‖ϕ‖L2 → 0.
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Remark 1.13 : Based on the example above, we can deduce the following result :

L2(Ω) ↪→ D′ (Ω) continuous imbbeding.

Regularizing sequences

Definition 1.18 : A regularizing sequence is any sequence (ϕk)k∈N∗ of function such that

1) ϕk ∈ D (Rn) and suppϕk ⊂ B
(
0, 1

k

)
, ∀k ∈ N∗.

2)
∫
Rn ϕk(x)dx = 1, ∀k ∈ N∗ and ϕk ≥ 0 on Rn.

Remark 1.14 :

1- Regularizing sequences are mainly used in distribution theory, in order to move from a problem

involving generalized functions to a restriction to regular functions, which are simpler to study.

2- The convolution of a distribution T by a test function ϕ is a function of class C∞, whose support

is included in the Minkowski sum of the support of ϕ and the support of the distribution T .

3- Let T be a distribution and (ϕk)k∈N∗ a regularizing sequence. Then the sequence of regular distri-

butions associated with the functions

(T ∗ ϕk) converges to T in D′.

Green’s Formula

Definition 1.19 : Let η(x) be the outgoing normal unit vector (i.e. directed away from Ω) at the

point x ∈ Γ = ∂Ω. If u is a fairly regular function defined on Ω, we note

∂u

∂η
(x) = ∇u (x) .η (x) , x ∈ Γ.

the normal derivative of u on Γ.

Theorem 1.4 : (Ostrogradsky Formula): Let Ω be an open set of Rn of class C1 with the boundary

∂Ω = Γ and let F a function in C1
(
Ω
)

with values in Rn (a vector field). Then∫
Ω

div (F (x)) dx =

∫
Γ

F (x).η(x)dΓ.

Corollary 1.1 : (Green’s Formula)

Let Ω a bounded open of Rn of class C1. So for all functions u ∈ C2
(
Ω
)

and v ∈ C1
(
Ω
)

we have∫
Ω

4u (x) v (x) dx =

∫
Γ

∂u

∂η
(x) .v (x) dΓ−

∫
Ω

∇u (x) .∇v (x) dx.
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Remark 1.15 :

To say that a regular function u has bounded support in the closed Ω means that it vanishes at infinity

if the closure is unbounded.

We also say that the function u has compact support in Ω this does not imply that u vanishes on

the boundary. In particular, this assumption about the bounded support of the function u in Ω is

unnecessary if the open set Ω is bounded. However, if it is unbounded, this assumption guarantees

that the integrals involving u are finite.
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1.4 Exercises

Exercise 1.1: Prove that the application T definite by:——————————————————

T : D (Rn)→ C

u → 〈T, u〉 =

∫
Rn

∂u

∂x1

(t)dt

is a distribution. Prove that it is of finite order, and specify the order.

Exercise 1.2:—————————————————————————————————————

Prove that

1- Any regulier distribution is of order zero.

2- The Dirac distribution is of order zero.

3- The V p( 1
x
) distribution is of order 1 and d

dt
sign x = 2δ.

Exercise 1.3:———————————————————————————————————

Let p a reel such that 1 < p ≤ +∞, (fk) a sequence of functions of Lp(Ω) verify:

1- ∃C > 0, ∀k ∈ N, ‖fk‖p ≤ C.

2- ∃T ∈ D′(Ω), T = lim
k→+∞

[fk] .

Show that T is the regular distribution associated with a element of Lp(Ω).

Exercise 1.4:———————————————————————————————————

A-

Let f ∈ L1(R) and let T be the linear form defined by

< T, ϕ >=

∫
R
f(x)ϕ′(x)dx+ ϕ′(0), ∀ ϕ ∈ D.

1. Write T in reduced form and deduce that it is a distribution on R. What is its order?

2. Assume that f is derivable in R∗ and that f(0+) and f(0−) exist. Write T in terms of T ′f , δ0 and

its derivatives.

B-

1- Let ϕ ∈ D(R) such that:

suppϕ ⊂]1, 2[, 0 ≤ ϕ(x) ≤ 1 and ϕ(x) = 1 for a ≤ x ≤ b, 1 < a < b < 2.

For n ∈ N∗ let’s set: ϕn(x) = e−nϕ(nx). Show that (ϕn)n∈N∗ converges to zero in D(R).

2- Prove that there is no distribution T ∈ D′(Ω) such that

〈T, ϕ〉 =

∫
R

exp

(
1

x2

)
ϕ(x)dx.
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Exercise 1.5:————————————————————————————————————–

For x ∈ R and ε > 0, let’s set that

fε(x) = ln(x+ iε) = ln |x+ iε|+ i arg(x+ iε).

a) Prove that if ε→ 0, fε converge in D′(Ω) to the distribution f0 given by:

f0 =

{
ln(x), x > 0

ln |x| , x < 0

b) Calculate
df0

dx
in the sense of distributions

c) Deduce that in D′(Ω), we have
1

x+ i 0
= lim

ε→0

1

x+ i ε
= V P

(
1

x

)
− iπx.

d) Prove that
1

x− i 0
= lim

ε→0

1

x+ i ε
= V P

(
1

x

)
+ iπx.

e) Deduce that

lim
ε→0

ε

π (x2 + ε2)
= δ.

Exercise 1.6:————————————————————————————————————–

Let f ∈ L1
loc(R). Prove that the function

u(x, t) = f(t− x), (t, x) ∈ R× R

in the space L1
loc(R× R). Verify in the distribution sens:

du

dt
+
du

dx
= 0.

Exercise 1.7:———————————————————————————————————

Consider the sequence of functions (fn)n≥1 defined on R by:

fn(x) =


0, x ≤ − 1

n

n2
(

1
n

+ x
)
, − 1

n
≤ x ≤ 0

n2
(

1
n

+ x
)
, 0 ≤ x ≤ 1

n

0, x ≥ 1
n

1) Study the convergence of the sequence (fn)n≥1 in L2(R), L1(R) and D′(R).

Let us consider the Dirac distribution δ defined by:

〈δ, ϕ〉 = ϕ(0), ∀ϕ ∈ D(R).

2) Prove that the sequence (fn)n≥1 converges in D′(R).

3) Prove that there is no function fδ ∈ L1
loc(R) such that

〈δ, ϕ〉 =

∫
Rn
fδϕ(x)dx.
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Exercise 1.8:————————————————————————————————————–

Consider the function f defined for all x ∈ R∗ by: f(x) = H(x)xeλx where H(x) is the Heaviside

function defined on R by

H(x) =

{
0, x < 0

1, x > 0

i) Justify why f defines a distribution.

ii) Calculate in the sense of distributions
d2

dx2

(
df

dx
− λf

)
.

Exercise 1.9:————————————————————————————————————-

Let be the function of two real variables

u(t, x) =
H(x)

2
√
πt
e−

x2

4t , with u(0, x) = 0;

1) Check that u is of class C1 on R2 .

2) Calculate in the sense of the distributions Du where D is the differential operator

D =
∂

∂t
− ∂2

∂x2
.

Exercise 1.10:————————————————————————————————————

Let Ω =]a, b[ where (a < b). We want to show that if a distribution u ∈ D′(]a, b[) has a zero

derivative (in the sense of distributions), then u is a constant function.

Exercice 1.11————————————————————————————————————

We consider the function k defined on R2 as follows:

k(x, t) = 0, if t < 0, k(x, t) =
1√
4πt

exp(− 1

4t
), if t > 0.

1) Prove that

lim
t→0+

k(x, t) = 0, x 6= 0, lim
t→0+

k(0, t) = +∞,∫ +∞

−∞
k(x, t)dx = 1,∀t > 0.

2) Calculate in the sense of distributions

∂2k

∂t∂x
,

(
∂

∂t
− ∂2

∂x2

)
k.
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Sobolev Space

Introduction

Sobolev spaces are spaces of functions that combine both differentiability and integrability condi-

tions. They are widely used in partial differential equations, functional analysis, and mathemati-

cal physics to study weak solutions of differential equations.

Let’s consider the following partial differential equation defined on an open set Ω ∈ Rn :{
−4u(x) + c(x)u(x) = f(x) in Ω

u(x) = 0 on ∂Ω
, (2.1)

with c ∈ L∞(Ω) and f ∈ L2(Ω) being two given functions, and u is an unknown function. Solving

the partial differential equation (2.1) means finding a function u ∈ C2(Ω) that satisfies (2.1).

In the theory of partial differential equations, it is often challenging to prove the existence of a

solution.

However, if it has been established that a solution u exists, assuming the open set Ω is sufficiently

regular, it can be shown that u satisfies, for any function ϕ ∈ D(Ω):∫
Ω

∇u(x)∇ϕ(x)dx+

∫
Ω

c(x)u(x)ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx. (2.2)

The idea behind Sobolev spaces is to introduce function spaces u such that u ∈ L2(Ω) and ∇u ∈
(L2(Ω))n, which is a Hilbert space, and to seek not the solutions to the initial problem, but the

functions u from this space that satisfy (2.2).

Such functions are called weak solutions of the partial differential equation. The benefit of this

approach lies in the ability to utilize the complete machinery of Hilbert spaces, including pro-

jection theorems and the Lax-Milgram theorem, to demonstrate the existence of weak solutions.

Consequently, we are not directly solving the original problem but instead tackling a variation of

it using these powerful mathematical tools.
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2.1 Sobolev Space H1(Ω)

2.1.1 Definitions and Basic properties

Definition 2.1 : Let Ω be a non-empty open set in Rn. We define the Sobolev space of order 1 on Ω

as:

H1(Ω) =

u ∈ L2(Ω) :
∂u

∂xi
∈ L2(Ω)︸ ︷︷ ︸

calculated in the sense of distributions

, 1 ≤ i ≤ n

 , (2.3)

equipped with the inner product

(u, v)H1(Ω) = (u, v)1,Ω = (u, v)L2(Ω) + (∇u,∇v)(L2(Ω))n

=

∫
Ω

u.v dx+

∫
Ω

∇u.∇v dx

=

∫
Ω

(
uv +

n∑
i=1

∂u

∂xi

∂v

∂xi

)
dx,

and of the norm

‖u‖1,Ω = (u, u)
1/2
1,Ω .

Therefore,

‖u‖
1,Ω

=
(
〈u, u〉

H1(Ω)

) 1
2

=
(
〈u, u〉

L2(Ω)
+ 〈∇u,∇u〉

(L2(Ω))n

) 1
2

=

(∫
Ω

|u(x)|2 dx+

∫
Ω

|∇u(x)|2 dx
) 1

2

=

(∫
Ω

|u(x)|2 dx+
n∑
i=1

∫
Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣2 dx
) 1

2

.

Remark 2.1 : According to the definition of the space H1 (Ω) , we conclude that

H1 (Ω) ⊂ L2(Ω).

Example 2.1 :

1) Let the function
H : ]−1, 1[→ R

x 7−→ H(x) =

{
1 if x ≥ 0

0 if x < 0
.

We have ∫ 1

−1

|H(x)|2 dx = 1 <∞ =⇒ H ∈ L2(]−1, 1[).
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So it defines a distribution TH on ]− 1, 1[ and for all ϕ ∈ D(]−1, 1[) we have

〈(TH)
′
, ϕ〉 = −〈TH , ϕ′〉 = ϕ′(0) = 〈δ0, ϕ

′〉 =⇒ H ′ = δ0.

As δ0 /∈ L2(]−1, 1[), then H /∈ H1(]− 1, 1[).

2) Let f be a function defined by
f : ]− 1, 1[→ R

x 7−→ f(x) = |x|
.

It is clear that f ∈ L2(]−1, 1[), it remains to verify that f ′ ∈ L2(]− 1, 1[).

We have f ∈ L2(]−1, 1[), so it defines a distribution Tf on ]−1, 1[ and for all ϕ ∈ D(]−1, 1[) we have

〈(Tf )′ , ϕ〉 = −〈Tf , ϕ′〉 = −
∫ 1

−1

f(x)ϕ′(x)dx

=

∫ 0

−1

xϕ′(x)dx−
∫ 1

0

xϕ′(x)dx.

We integrate by parts, we get

〈(Tf )′ , ϕ〉 = −
∫ 0

−1

ϕ(x)dx+

∫ 1

0

ϕ(x)dx.

Let the function
H : ]−1, 1[→ R

x 7−→ H(x) =

{
1 if x ≥ 0

0 if x < 0
,

Then

(2H − 1) (x) =

{
1 if x ≥ 0

−1 if x < 0
,

and ∫ 1

−1

|(2H − 1) (x)|2 dx = 2 <∞,

Therefore

(2H − 1) ∈ L2(]− 1, 1[).

So it defines a distribution on ]−1, 1[ noted T2H−1, it means

〈T2H−1, ϕ〉 =

∫ 1

−1

(2H − 1) (x)ϕ(x)dx

= −
∫ 0

−1

ϕ(x)dx+

∫ 1

0

ϕ(x)dx

= 〈Tf ′ , ϕ〉, ∀ϕ ∈ D (]−1, 1[) .
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Then

(Tf )
′ = T2H−1 ⇒ f ′ ∈ L2(]− 1, 1[).

As a result,

f ∈ H1(]−1, 1[).

Theorem 2.1 : The space H1(Ω) is a Hilbert space with respect to the norm ‖.‖H1(Ω) associated with

the inner product 〈·, ·〉H1(Ω).

Proof. H1(Ω) is a pre-Hilbert space with respect to the inner product 〈·, ·〉H1(Ω). To show that

H1(Ω) is complete with respect to the norm ‖.‖H1(Ω), we need to verify that it is a Banach space.

Let (un)n∈N be a Cauchy sequence in H1(Ω). Then,

∀ε > 0,∃n0 ∈ N,∀p, q ∈ N, p ≥ q ≥ n0 ⇒ ‖up − uq‖H1(Ω) < ε,

where

‖up − uq‖2
H1(Ω) = ‖up − uq‖2

L2(Ω) +
n∑
i=1

∥∥∥∥∂up∂xi
− ∂uq
∂xi

∥∥∥∥2

L2(Ω)

< ε.

So (un)n∈N and (∂un
∂xi

)n∈N are Cauchy sequences in L2(Ω) for every i = 1, . . . , n. By the completeness

of L2(Ω), we have

∃u ∈ L2 (Ω) such that un →
n→+∞

u in L2 (Ω) .

∃ui ∈ L2(Ω), such that
∂un
∂xi

→
n→+∞

ui in L2 (Ω) , ∀i = 1, ..., n, ,

We still need to verify that

ui =
∂u

∂xi
for every i = 1, . . . , n.

Since the canonical injection of L2(Ω) into D′(Ω) is continuous (L2(Ω) ↪→ D′(Ω)), we have the

following:

un →
n→+∞

u, in D′ (Ω) and
∂un
∂xi

→
n→+∞

ui, in D′ (Ω) .

Using the continuity of the derivative operator in D′(Ω) (i.e., in the sense of distributions), we

obtain
∂un
∂xi

→
n→+∞

∂u

∂xi
in D′ (Ω) ,∀i = 1, ..., n.

By the uniqueness of the limit in D′(Ω), we conclude that

ui =
∂u

∂xi
,∀i = 1, . . . , n.

We can conclude that
∂u

∂xi
∈ L2(Ω) for every i = 1, . . . , n.

therefore u ∈ H1(Ω). This shows that H1(Ω) is a complete space.
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Remark 2.2 :

If Ω is bounded, then C1(Ω) ⊂ H1(Ω). The space D(Ω) is a subspace of H1(Ω), but it is not generally

dense in H1(Ω).

Theorem 2.2 : The space H1(Ω) is a separable space.

Proof. H1 (Ω) is a separable space if it contains a countable dense subset in H1 (Ω). We have the

space L2 (Ω) is separable, and the space (L2 (Ω))
n+1 is also separable due to the property that the

Cartesian product of a finite number of separable spaces remains separable. Now, let’s consider

the application

f : H1 (Ω)→
(
L2 (Ω)

)n+1

u → f(u) =

(
u,

∂u

∂x1

, ...,
∂u

∂xn

)
with

‖f(u)‖(L2(Ω))n+1 =

(
‖u‖2

L2(Ω) +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2

L2(Ω)

)1/2

= ‖u‖H1(Ω) ,

so f is an isometry. From the given expression:

f : H1 (Ω)→ f
(
H1 (Ω)

)
,

we observe that f is bijective, implying that H1 (Ω) and f (H1 (Ω)) are identifiable.

By using the property that every complete space is closed then

f
(
H1 (Ω)

)
is a closed subspace of (L2 (Ω))n+1.

Applying the property that a closed subspace of a separable Hilbert space is separable, we can

deduce that f(H1(Ω)) is also separable. Therefore, we conclude that

H1 (Ω) is a separable space.

2.1.2 Space H1
0(Ω)

Definition 2.2 : We call the space H1
0 (Ω) the closure of D (Ω) in H1 (Ω) and we write

H1
0 (Ω) = D(Ω)

H1(Ω)
.

H1
0 (Ω) = {u ∈ H1(Ω), ∃(ϕn)n ∈ N ∈ D(Ω), such that lim

n→+∞
‖ϕn − v‖H1(Ω) = 0}. (2.4)
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Remark 2.3 :

1- The Sobolev space H1
0 (Ω) is a closed subspace of H1(Ω) where the functions and their first deriva-

tives vanish on the boundary of the domain Ω.

2- If Ω = Rn, the space D (Rn) is dense in H1 (Rn) i.e.

H1
0 (Rn) = H1 (Rn) with continuous and dense injection.

3- H1
0 (Ω) is a Hilbert space with respect to the inner product (., .)H1(Ω).

Proposition 2.1 : Let Ω be a bounded open subset of Rn, then the space D (Ω) is not dense in H1 (Ω)

i.e. H1
0 (Ω) ( H1 (Ω) .

Proof. Exercise.

Proposition 2.2 : Let Ω be a bounded open of Rn. If u in the space H1
0 (Ω) then the extension of u

by 0 outside Ω is an element of H1 (Rn) i.e.

ũ =

{
u on Ω

0 otherwise
∈ H1 (Rn) .

Proof. Let u ∈ H1
0 (Ω), we have H1

0 (Ω) = D (Ω)
H1(Ω)

then

∃ϕk ∈ D (Ω) such that ϕk→ u in H1(Ω) as k → +∞.

Then

∀ |q| ≤ 1, Dq (ϕk − u)→ 0 in L2(Ω), as k → +∞.

We have ϕk ∈ D(Ω), so it extends by 0 into (Rn\Ω), then

ϕk ∈ D (Rn) and ‖ϕk‖H1(Rn) = ‖ϕk‖H1(Ω) ,

since (ϕk) is a convergent sequence in H1 (Ω) , then (ϕk) is convergent in H1 (Rn) . This implies

that (ϕk) is a Cauchy sequence in H1 (Rn) ,

∃v ∈ H1 (Rn) such that ϕk → v in H1 (Rn) as k → +∞.

We still have to show that

ũ = v =

{
u on Ω

0 on Rn\Ω
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∀ |q| ≤ 1,

∫
Rn
|Dq (ϕk − v)|2 dx =

∫
Ω

|Dq (ϕk − v)|2 dx+

∫
Rn\Ω
|Dq (ϕk − v)|2 dx

=

∫
Ω

|Dq (ϕk − v)|2 dx+

∫
Rn\Ω
|Dqv|2 dx→ 0 as k → +∞

⇒
∫

Ω

|Dq (ϕk − v)|2 dx→ 0, and
∫
Rn\Ω
|Dqv|2 dx→ 0

⇒
∫
Rn\Ω
|∇v|2 dx+

∫
Rn\Ω
|v|2 dx = ‖v‖2

H1(Rn\Ω) = 0

⇒ v = 0 a.e on Rn\Ω.

On the one hand,∫
Ω

|Dq (ϕk − v)|2 dx →
k→+∞

0⇒ |Dq (ϕk − v)|2 →
k→+∞

0 in L2(Ω).

On the other hand, we have∫
Ω

|Dq (ϕk − u)|2 dx →
k→+∞

0⇒ Dq (ϕk − u) →
k→+∞

0 in L2(Ω),

and the uniqueness of the limit implies that v = u a.e on Ω.

2.1.3 Poincare’s Inequality

Poincare’s inequality (named with the French mathematician Henri Poincary) allows bounding a

function based on estimates of its derivatives and the geometry of its domain of definition. These

estimates are of great importance in the calculus of variations.

Definition 2.3 Let Ω be an open set in Rn. We say that Ω is bounded in a direction if there exists a

unit vector η ∈ Rn (i.e., |η| = 1) such that:

Ω ⊂ Ω̃ = {x ∈ Rn : a < x.η < b},

with

x.η = x1η1 + ...+ xnηn.

We also say that Ω̃ is a strip in Rn with thickness d = b− a in the direction η.

Theorem 2.3 Let Ω be an open set in Rn, bounded in a direction. Then, for all v ∈ H1
0 (Ω), we have

‖v‖L2(Ω) ≤ C(Ω) ‖∇v‖L2(Ω) = C(Ω)

(
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

L2(Ω)

) 1
2

,

where C(Ω) > 0 is a universal constant depending on Ω.
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Proof. :

Without loss of generality, we can assume that Ω is bounded in the xn direction. Let Ω ⊂ Ω′×]a, b[,

where Ω′ is an open set in Rn−1 and we denote

x = (x′, xn) ∈ Rn−1 × R.

Since D(Ω) is dense in H1
0 (Ω), it is sufficient to prove the inequality in D(Ω).

Let v ∈ D (Ω) , there exist ṽ ∈ D (Rn) , such that

ṽ(x) =

{
v(x) in Ω

0 in Rn\Ω
,

Let x = (x′, xn) ∈ Rn, we can write

ṽ(x) =

∫ xn

a

∂ṽ

∂xn
(x′, t) dt = −

∫ b

xn

∂ṽ

∂xn
(x′, t) dt,

then

2ṽ(x) =

∫ xn

a

∂ṽ

∂xn
(x′, t) dt−

∫ b

xn

∂ṽ

∂xn
(x′, t) dt.

We find that

2 |ṽ(x)| =

∣∣∣∣∫ xn

a

∂ṽ

∂xn
(x′, t) dt−

∫ b

xn

∂ṽ

∂xn
(x′, t) dt

∣∣∣∣
≤

∣∣∣∣∫ xn

a

∂ṽ

∂xn
(x′, t) dt

∣∣∣∣+

∣∣∣∣∫ b

xn

∂ṽ

∂xn
(x′, t) dt

∣∣∣∣
≤

∫ xn

a

∣∣∣∣ ∂ṽ∂xn (x′, t)

∣∣∣∣ dt+

∫ b

xn

∣∣∣∣ ∂ṽ∂xn (x′, t)

∣∣∣∣ dt
=

∫ b

a

∣∣∣∣ ∂ṽ∂xn (x′, t)

∣∣∣∣ dt.
Then

|ṽ(x)|2 ≤ 1

22

(∫ b

a

∣∣∣∣ ∂ṽ∂xn (x′, t)

∣∣∣∣ dt)2

Cauchy−Schwarz
≤ 1

22

(∫ b

a

12dt

)(∫ b

a

∣∣∣∣ ∂ṽ∂xn (x′, t)

∣∣∣∣2 dt
)

=
b− a

22

∫ b

a

∣∣∣∣∂ṽ (x′, t)

∂xn

∣∣∣∣2 dt.
Integrating with respect to the variable xn from a to b, we arrive at∫ b

a

|ṽ(x)|2 dxn ≤
b− a

22

∫ b

a

(∫ b

a

∣∣∣∣ ∂ṽ∂xn (x′, t)

∣∣∣∣2 dt
)
dxn

≤
(
b− a

2

)2 ∫ b

a

∣∣∣∣ ∂ṽ∂xn (x′, t)

∣∣∣∣2 dt.
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As a result, ∫
Ω̃

|ṽ(x)|2 dx ≤
(
b− a

2

)2 ∫
Ω̃

∣∣∣∣ ∂ṽ∂xn (x)

∣∣∣∣2 dx,
where ∫

Ω

|v(x)|2 dx ≤
(
b− a

2

)2 ∫
Ω

∣∣∣∣ ∂v∂xn (x)

∣∣∣∣2 dx
≤

(
b− a

2

)2 ∫
Ω

n∑
i=1

∣∣∣∣ ∂v∂xi (x)

∣∣∣∣2 dx,
then

‖v‖L2(Ω) ≤
b− a

2

(∫
Ω

n∑
i=1

∣∣∣∣ ∂v∂xi (x)

∣∣∣∣2 dx
) 1

2

=
1

2
d ‖∇v‖L2(Ω) .

Using the density of D (Ω) in H1
0 (Ω), we obtain

∃C(Ω) =
d

2
, ‖v‖L2(Ω) ≤ C(Ω) ‖∇v‖L2(Ω) , ∀v ∈ H

1
0 (Ω) .

This finishes the proof.

Remark 2.4 :

1- The optimal constant C in Poincare’s inequality is sometimes called the Poincare constant of the Ω

domain.

In general, determining the Poincare constant is a very difficult task that depends on the geometry of

the domain Ω. In some cases, bounds can be given.

2- In general, Poincare’s inequality is not true in H1 (Ω), for example, let the function

v(x) = 1, with x ∈ Ω = ]−1, 1[ .

We have v ∈ H1 (]−1, 1[) with

‖v‖L2(]−1,1[) =
√

2,

and ∥∥∥∥∂v∂x
∥∥∥∥
L2(]−1,1[)

= 0,

then @c > 0, such that

‖v‖L2(]−1,1[) ≤ c

∥∥∥∥∂v∂x
∥∥∥∥
L2(]−1,1[)

.

Corollary 2.1 If Ω is bounded set of Rn, the semi-norm

|v|1,Ω = ‖∇v‖L2(Ω) =

(
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

L2(Ω)

) 1
2

,
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is a norm on H1
0 (Ω) that is equivalent to the norm induced by H1 (Ω). We denote this norm as

‖v‖H1
0 (Ω) = |v|1,Ω = ‖∇v‖L2(Ω) =

(
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

L2(Ω)

) 1
2

, ∀v ∈ H1
0 (Ω) .

Proof. We need to prove that for any v ∈ H1
0 (Ω), if ‖v‖H1

0 (Ω) = 0, then v = 0. We have

‖∇v‖L2(Ω) =

(
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

L2(Ω)

) 1
2

= 0.

Using the Poincare inequality,

‖v‖L2(Ω) ≤ C (Ω) ‖∇v‖L2(Ω) = C d

(
n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

L2(Ω)

) 1
2

,

we conclude that

‖v‖L2(Ω) = 0⇒ v = 0.

2) Let’s show that ‖.‖H1
0 (Ω) is equivalent to ‖.‖H1(Ω).

i) We have

‖v‖2
H1(Ω) = ‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω) ≥ ‖∇v‖

2
L2(Ω) .

Then

‖v‖H1(Ω) ≥ ‖∇v‖L2(Ω) = ‖v‖H1
0 (Ω) .

ii) On the other hand, we have

‖v‖H1(Ω) =
(
‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω)

) 1
2

Ineg.Poincaré

≤
(

(C(Ω))2 ‖∇v‖2
L2(Ω) + ‖∇v‖2

L2(Ω)

) 1
2

=
(
1 + (C(Ω))2) 1

2 ‖∇v‖L2(Ω)

= K(Ω) ‖v‖H1
0 (Ω) .

From these two inequalities, we get

|v|1,Ω ≤ ‖v‖H1(Ω) ≤ K(Ω) |v|1,Ω , (2.5)

we can conclude that the norms |.|1,Ω and ‖.‖H1(Ω) are equivalent.
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2.1.4 Trace Theorem

The functions of H1(Ω) ( have derivatives in the space L2(Ω) in the sense of distributions) are in

general not continuous. However, they do not have too severe discontinuities, and admit "traces"

on sub-varieties of dimension (n− 1).

Let Ω be an open set of Rn with boundary Γ = ∂Ω. If v ∈ H1 (Ω) , how can we define the value of

v at the boundary of Ω, i.e. v\Γ =?

1 • If Ω is an open set of R, we have

Theorem 2.4 [10] If v ∈ H1 (]a, b[) , then v ∈ C([a, b]), thus there exists a positive constant c such

that

sup
x∈[a,b]

|v (x)| ≤ c ‖v‖H1(]a,b[) . (2.6)

Remark 2.5 :

1- As sup
x∈[a,b]

|v(x)| is the norm of uniform convergence of the space C ([a, b]) , the theorem (2.4) means

that H1(]a, b[) is contained with continuous injection in C ([a, b]) ,

H1 (]a, b[) ↪→ C ([a, b]) .

So there’s no difficulty in defining v(a) and v(b) for all v ∈ H1 (]a, b[) . ( In general, we say that

the normed vector space E is continuously injected into the normed vector space F, and we’ll write

E ↪→ F, if E is a vector subspace of F and if the canonical injection

j : E −→ F

x 7−→ j (x) = x,

is continuous, that is

∃c > 0 : ‖x‖F ≤ c ‖x‖E , ∀x ∈ E).

2- This result (2.6) is false in higher dimensions.

• In the case where Ω is an open set in Rn, n ≥ 2

Functions inH1(Ω) are not generally continuous. We begin with the case of the half-spaceH1(Rn+)

and then the general case.

First Case: Let Ω = Rn+.

For x = (x′, xn), where x′ ∈ Rn−1 and xn ∈ R, we can fix the coordinate xn = x0
n and obtain a

function
v : Rn−1 −→ R
x′ = (x1, ..., xn−1) −→ v(x′) = u(x′, x0

n)
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which is continuous on Rn−1. We then say that the function v is the trace of u on the hyperplane

xn = x0
n.

We will show that we can define, for a function in H1(Rn), an extension of the trace concept to

hyperplanes xn = x0
n. We can assume x0

n = 0, and we will demonstrate that we can define a

notion of trace for functions in H1(Rn+) on the boundary Γ, where

Rn+ = {x = (x′, xn) ∈ Rn : xn > 0}.

In this case, we have

∂Rn+ = Γ = {x = (x′, 0) ∈ Rn : x′ ∈ Rn−1} ' Rn−1.

Proposition 2.3 : The space of smooth, compactly supported functions defined on the closure of the

positive orthant is dense in the Sobolev space H1(Rn+):

D
(
Rn+
)

is dense in H1
(
Rn+
)
.

Proof.

Step 1: Approximation by functions in D(Rn+).

Since D(Rn+) consists of smooth, compactly supported functions, it is dense in L2(Rn+). In other

words, for any f ∈ L2(Rn+), there exists a sequence fk in D(Rn+) such that

fk → f ∈ L2(Rn+) as k →∞.

Step 2: Approximation of weak Derivatives

Now, for any function f ∈ H1(Rn+), its weak derivatives up to order 1 are well-defined in the

distributional sense. By Step 1, we can find a sequence fk in D(Rn+) such that fk → f
k→+∞

in L2(Rn+).

Step 3: Approximation in H1(Rn+)

We need to show that the weak derivatives of fk also converge to the weak derivatives of f in

L2(Rn+). This follows from the fact that D(Rn+) is dense in L2(Rn+) and the weak derivatives are

linear operators, which means that

fk → f
k→+∞

in L2(Rn+),

implies the convergence of their weak derivatives in L2(Rn+). Hence, we can conclude that D(Rn+)

is dense in H1(Rn+).
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Remark 2.6 : If v ∈ D
(
Rn+
)
, we can define the restriction v|Γ (by the definition of D

(
Rn+
)
).

We will show that v|Γ ∈ L2(Γ) and that it depends continuously on the norm of v in H1(Rn+).

Thus, we can define a trace for any function in H1(Rn+) by density.

Proposition 2.4 : For any function v ∈ D(Rn+), we have v(x′, 0) ∈ L2(Rn−1) and

‖v(., 0)‖2
L2(Rn−1) ≤ ‖v‖

2
H1(Rn+) .

Proof. Let v ∈ D
(
Rn+
)

be a function that is very smooth and has a limit of zero at infinity. We

have

v2(x′, 0) = −
∫ +∞

0

∂

∂xn

(
v2(x′, xn)

)
dxn

= −2

∫ +∞

0

v(x′, xn).
∂

∂xn
v(x′, xn)dxn

≤
∫ +∞

0

v2(x′, xn)dxn +

∫ +∞

0

∂v2

∂xn
(x′, xn)dxn.

then ∫
Rn−1

v2(x′, 0)dx′ ≤
∫
Rn−1

∫ +∞

0

v2(x′, xn)dxndx
′ +

∫
Rn−1

∫ +∞

0

∂v2

∂xn
(x′, xn)dxndx

′,

therefore

‖v‖2
L2(Rn−1) ≤ ‖v‖

2
H1(Rn+) , ∀v ∈ D

(
Rn+
)
.

The proof is complete.

Remarks: Consider the application:

γ0 : D
(
Rn+
)
→ L2

(
Rn−1

)
(2.7)

v → γ0(v) = v (x′, 0)

which is a continuous linear application ( according to the previous proposition). As D
(
Rn+
)

is

dense in H1
(
Rn+
)
, the application γ0 extends into a continuous linear application, again denoted

by γ0 de H1
(
Rn+
)

in L2 (Rn−1) . Then,

Lemma 2.1 There is an application

γ0 : H1
(
Rn+
)
→ L2 (Rn−1)

v → γ0(v)

where

γ0(v) = v (x′, 0) = v\Γ ,∀v ∈ D
(
Rn+
)
.
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In other words, if Ω = Rn+, we can define the boundary value v\Γ of an function v ∈ H1
(
Rn+
)

as a

function of L2 (Γ) .

Theorem 2.5 : Let Ω be a regular open set, there exists an operator P ∈ L(H1(Ω), H1(Rn)) called

P -prolongation such that

∀v ∈ H1 (Ω) , Pv = v a.e Ω.

Definition 2.4 An open set Ω of Rn is called 1-regular if Ω is bounded and if its boundary Γ is a

variety of class C1 of dimension (n− 1), Ω being locally on one side of Γ.

Second Case: In the general case, we will assume that the result is still true for sufficiently

regular open sets.

Let Ω be an open subset of Rn. D(Ω) denotes the space of restrictions to Ω of functions in D(Rn).

Proposition 2.5 If Ω is sufficiently regular, the space of test functions D(Ω) is dense in H1(Ω).

Theorem 2.6 Let Ω be an open set in Rn with a smooth boundary Γ = ∂Ω. The application

γ0 : D
(
Ω
)
→ L2 (Γ)

v → γ0(v) = v\Γ

extends continuously to a linear and continuous application γ0, called the trace map, defined by

γ0 : H1 (Ω) → L2 (Γ)

v → γ0(v) = v\Γ

Remark 2.7 :

1) ker γ0 = H1
0 (Ω) =

{
v ∈ H1 (Ω) : v\Γ = 0

}
.

2) The application γ0 is not surjective in general, but its image is a dense subspace in L2(Γ).

Trace theorem application: Green’s formula

Theorem 2.7 Assume that Ω is a bounded open boundary C1 by pieces, then, if u and v are functions

of H1(Ω), we have ∫
Ω

∂u

∂xi
vdx = −

∫
Ω

u
∂v

∂xi
dx+

∫
Γ

uvηidΓ, 1 ≤ i ≤ n.

where η = (η1, ..., ηn) designates the vector normal to Γ oriented outwards from Γ.
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2.1.5 Compactness theorem

Definition 2.5 : Let E, F be two normed vector spaces. We say that E is injected into F with

compact imbbeding and we write E ↪→ F , if E is a vector subspace of F and if the canonical injection

j : E −→ F

x 7−→ j (x) = x,

is compact, i.e. all bounded in E is relatively compact in F.

Theorem 2.8 (Rellich Kondrachov):

Let Ω be a bounded and regular open set in Rn. The canonical injection from H1(Ω) to L2(Ω) is

compact, which means that every bounded set in H1(Ω) is relatively compact in L2(Ω). In other

words, from any bounded sequence in H1(Ω), we can extract a convergent subsequence in L2(Ω).

To prove that the canonical injection is compact, we use the following lemma:

Lemma 2.2 For a Banach space E to be reflexive it is necessary and sufficient that its unit ball be

weakly compact, i.e. that from any bounded sequence (vn)n∈N one can extract a weakly convergent

sub-sequence (vµ). i.e. for v ∈ E

〈τ, vµ〉⇀ 〈τ, v〉 ∀τ ∈ E ′.

Proof. ( Rellich Kondrachov Theorem)

To show that the canonical injection is compact, it is necessary and sufficient to show that the

unit ball of H1(Ω) is compact in the sense of L2(Ω), i.e. show that from any bounded sequence

in H1 (Ω) we can extract a convergent sub-sequence in L2(Ω). We will show the elements of the

demonstration for Ω = Rn.
Let (vn)n∈N be a bounded sequence of H1 (Rn) and therefore bounded in L2 (Rn) . Now L2 (Rn)

being a reflexive Hilbert. We’ll use the previous lemma to characterize reflexive spaces. We can

then extract a sub-sequence (vµ) such that

vµ ⇀ v
µ→+∞

in L2 (Rn) (weak convergence,)

modulo a translation, we can assume v = 0 (without restricting generality). It then remains to

show that (vµ) converges strongly to 0 in L2 (Rn) , i.e. that∫
Rn
|vµ|2 dx −→ 0.
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Let v̂µ be the Fourier transform of vµ. According to Plancherel’s theorem, the application

L2 (Rn) → L2 (Rn)

vµ → v̂µ

is an isometry, we get.

‖v̂µ‖L2(Rn) = ‖vµ‖L2(Rn) ⇒
∫
Rn
|v̂µ(x)|2 dx =

∫
Rn
|vµ(x)|2 dx,

Let M > 0, we have∫
Rn
|v̂µ(ξ)|2 dx =

∫
|ξ|<M

|v̂µ(ξ)|2 dξ +

∫
|ξ|>M

1 + |ξ|2

1 + |ξ|2
|v̂µ(ξ)|2 dξ

≤
∫
|ξ|<M

|v̂µ(ξ)|2 dξ +
1

1 +M2

∫
|ξ|≥M

(
1 + |ξ|2

)
|v̂µ(ξ)|2 dξ.

However, it is easy to see that

‖v‖H1(Rn) =

∫
Rn

(
1 + |ξ|2

)1/2 |v̂(ξ)|2 dξ,

because

H1 (Rn) =
{
v ∈ L2 (Rn) ,

(
1 + |ξ|2

)
v̂ ∈ L2 (Rn)

}
,

and therefore ∫
Rn
|v̂µ|2 dξ ≤

∫
|ξ|<M

|v̂µ(ξ)|2 dξ +
1

1 +M2
‖vµ‖1,Rn .

Or,

v̂µ(ξ) =

∫
Rn
e−2iπxξvµ(x)dx,

because Ω is bounded, Ω ⊂ K (K compact)

v̂µ(ξ) =

∫
Rn

1K(x).e−2iπxξvµ(x)dx

=

∫
K

e−2iπxξvµ(x)dx,

where the 1K is the indicator function of K i.e

1K(x) =

{
1 if x ∈ K
0 if not

but the application

x→ 1Ke
−2iπxξ ∈ L2 (Rn) and vµ −→ 0 in L2 (Rn) ,
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where

lim
µ→+∞

v̂µ(ξ) = 0.

Furthermore

|v̂µ(ξ)| ≤
(∫ ∣∣1K e−2iπxξ

∣∣2 dx)1/2

‖vµ‖0,Rn

≤ c ‖vµ‖0,Rn ≤ c ‖vµ‖1,Rn

≤ C.

We can apply the "DCT Theorem" to show that∫
|ξ|<M

|v̂µ(ξ)|2 dξ −→ 0 when µ→ +∞.

For all M, we show that: lim
µ→+∞

‖v̂µ‖2
0,Rn ≤

1
1+M2 .c, therefore

lim
µ→+∞

‖v̂µ‖2
0,Rn = 0 and vµ −→ 0 in L2 strongly

which completes the demonstration of Rellich’s Theorem.

2.1.6 The space H−1(Ω)

Definition 2.6 The space H−1 (Ω) is the dual space of H1
0 (Ω) and we write(

H1
0 (Ω)

)′
= H−1 (Ω) .

Corollary 2.2 Let L a continuous linear form on H1
0 (Ω) , then L can be identified with a distribution

in space H−1(Ω).

Proof. From Riez’s representation theorem, we have

∃h ∈ H1
0 (Ω) such that L(v) = 〈h, v〉H1(Ω) , ∀v ∈ H

1
0 (Ω) ,

〈h, v〉H1(Ω) = 〈h, v〉L2(Ω) +
n∑
i=1

〈
∂h

∂xi
,
∂v

∂xi

〉
L2(Ω)

.

If v ∈ D(Ω), we’ll have

L(v) =

〈
h−

n∑
i=1

∂2h

∂x2
i

, v

〉
,

if we set gi = − ∂h
∂xi
, we’ll get

L(v) =

〈
h+

n∑
i=1

∂gi
∂xi

, v

〉
.
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Hence L can be identified as a distribution

T = h+
n∑
i=1

∂gi
∂xi

, h, gi ∈ L2(Ω), T ∈ D′(Ω).

Then T ∈ H−1(Ω) because

〈T, ϕ〉 =

〈
h+

n∑
i=1

∂gi
∂xi

, ϕ

〉
= 〈h, ϕ〉 −

n∑
i=1

〈
gi,

∂ϕ

∂xi

〉
, ∀ϕ ∈ D(Ω).

Then

|〈T, ϕ〉| ≤ ‖h‖ . ‖ϕ‖+
n∑
i=1

‖gi‖ .
∥∥∥∥ ∂ϕ∂xi

∥∥∥∥
≤

(
c ‖h‖L2(Ω) +

n∑
i=1

‖gi‖L2(Ω)

)
‖ϕ‖H1

0 (Ω) .

The proof is complete.

Theorem 2.9 Let Ω be a non-empty open of Rn, the map

H1(Ω) → H−1(Ω)

u →
n∑
i=1

∂2u

∂x2
i

+ u,

define an isometry from H1
0 (Ω) on H−1(Ω).

Proof. To show that the map is an isometry from H1
0 (Ω) to H−1(Ω), we need to demonstrate that

it preserves the norm of functions in H1
0 (Ω).

Let u ∈ H1
0 (Ω), then

∂u

∂xi
∈ L2(Ω), for all 1 ≤ i ≤ n,

since u ∈ H1(Ω). Also, since u has compact support in Ω, its second partial derivatives (∂
2u
∂x2
i
) are

also in L2(Ω) for all 1 ≤ i ≤ n.

Now, consider the map

T : H1
0 (Ω) → H−1(Ω)

u →
n∑
i=1

∂2u

∂x2
i

+ u.

We need to show that ‖Tu‖H−1(Ω) = ‖u‖H1(Ω).

First, let’s show that ‖Tu‖H−1(Ω) is bounded by ‖u‖H1(Ω). Using the Cauchy-Schwarz inequality,
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we have

|〈Tu, v〉| =

∣∣∣∣∣
n∑
i=1

∫
Ω

∂2u

∂x2
i

vdx+

∫
Ω

uv, dx

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∫
Ω

∂2u

∂x2
i

vdx

∣∣∣∣+

∣∣∣∣∫
Ω

uvdx

∣∣∣∣
≤

n∑
i=1

∥∥∥∥∂2u

∂x2
i

∥∥∥∥
L2(Ω)

‖v‖L2(Ω) + ‖u‖L2(Ω)‖v‖L2(Ω)

=

(
n∑
i=1

∥∥∥∥∂2u

∂x2
i

∥∥∥∥
L2(Ω)

+ ‖u‖L2(Ω)

)
‖v‖L2(Ω)

≤ (1 + ‖u‖H1(Ω))‖v‖H1(Ω).

Thus,

‖Tu‖H−1(Ω) ≤ (1 + ‖u‖H1(Ω))‖u‖H1(Ω).

Now, let’s show that ‖Tu‖H−1(Ω) is at least ‖u‖H1(Ω).

Let v = u in the above inequality, then we have

|〈Tu, u〉| ≤ (1 + ‖u‖H1(Ω))‖u‖H1(Ω)‖u‖H1(Ω)

≤ (1 + ‖u‖H1(Ω))‖u‖2
H1(Ω).

Since u ∈ H1
0 (Ω), we know that ‖u‖H1(Ω) < ∞. Therefore, dividing both sides by (‖u‖H1(Ω) + 1),

we get:

|〈Tu, u〉|
‖u‖H1(Ω) + 1

≤ ‖u‖2
H1(Ω). (2.8)

Thus,

‖Tu‖H−1(Ω) ≥ ‖u‖H1(Ω). (2.9)

By using (2.8) and (2.9), we obtain that

‖Tu‖H−1(Ω) = ‖u‖H1(Ω),

and thus the map T is an isometry from H1
0 (Ω) to H−1(Ω).

Corollary 2.3 The space D(Ω) is dense in H−1(Ω).

Proof. The space D(Ω) is dense in H1
0 (Ω). Then, the image of D(Ω) under the map

H1(Ω) → H−1(Ω)

u →
n∑
i=1

∂2u

∂x2
i

+ u,

is valued in the space D(Ω), hence the density of D(Ω) in H−1(Ω).
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2.2 Sobolev Space Hm(Ω)

The study of certain partial differential equations, in particular for the bi-Laplacian, may require

the use of Sobolev spaces of order m greater than 1, so we generalize the definition of the Sobolev

space H1 (Ω) .

2.2.1 Definitions and properties

Let Ω be a non-empty open of Rn and m ≥ 1 be an integer. Let call a Sobolev space of order m on

Ω the space

Hm (Ω) =

u ∈ L2(Ω) : Dαu ∈ L2(Ω)︸ ︷︷ ︸
in the sense of distributions

, ∀α ∈ Nn; |α| ≤ m

 ,

equipped with the inner product

〈u, v〉
Hm(Ω)

=
∑
|α|≤m

〈Dαu,Dαv〉L2(Ω) =
∑
|α|≤m

∫
Ω

Dαu(x)Dαv(x)dx,

where 〈., .〉L2(Ω) is the scalar product of L2(Ω), and

‖u‖
Hm(Ω)

=
(
〈u, u〉

Hm(Ω)

) 1
2

=

∑
|α|≤m

〈Dαu,Dαu〉L2(Ω)

 1
2

=

∑
|α|≤m

∫
Ω

Dαu(x).Dαu(x)dx

 1
2

=

∑
|α|≤m

∫
Ω

|Dαu(x)|2 dx

 1
2

=

∑
|α|≤m

‖Dαu(x)‖2
L2(Ω)

 1
2

.

Theorem 2.10 : Hm(Ω) is a Hilbert space for the norm ‖.‖Hm(Ω) associated with the scalar product

〈., .〉
Hm(Ω)

.

Proof. The space Hm (Ω) provided with the scalar product 〈., .〉
Hm(Ω)

is a pre-Hilbertian space, it

remains to show that it is complete for the norm ‖.‖Hm(Ω) . Let (un)n∈N be a Cauchy sequence in

Hm(Ω), then
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∀ε > 0,∃n0 ∈ N,∀p, q ∈ N, (p ≥ n0 and q ≥ n0)⇒
(
‖up − uq‖Hm(Ω) < ε

)
.

or

∀ε > 0,∃n0 ∈ N,∀p, q ∈ N, (p ≥ n0 and q ≥ n0)⇒

∑
|α|≤m

‖Dα (up − uq)‖2
L2(Ω)

 1
2

< ε.

Then

(p ≥ n0 and q ≥ n0)⇒
(
‖Dα (up − uq)‖L2(Ω) < ε

)
, ∀α ∈ Nn, |α| ≤ m.

From this we deduce that (Dαun)n∈N is a Cauchy sequence in L2(Ω), for all α ∈ Nn, |α| ≤ m. Since

L2(Ω) is complete, we have

∃vα ∈ L2 (Ω) such that Dαun → vα,∀α ∈ Nn, |α| ≤ m.

More specifically,

un → v0 in L2 (Ω) .

It remains to show that vα = Dαv0,∀α ∈ Nn, |α| ≤ m.

The canonical injection of L2 (Ω) in D′ (Ω) is continuous (L2(Ω) ↪→ D′(Ω),) then

(Dαun → vα in L
2(Ω))⇒ (TDαun → Tvα in D′(Ω)), ∀α ∈ Nn, |α| ≤ m. (2.10)

In particular,

Tun → Tv0 in D′ (Ω) .

From the continuity of the derivation operator in D′(Ω), we obtain

DαTun → DαTv0in D′ (Ω) , ∀α ∈ Nn; |α| ≤ m. (2.11)

Since DαTun = T
Dαun

, by virtue of the uniqueness of the limit in D′(Ω), we conclude from (2.10)

and (2.11) that

Tvα = DαTv0 = T
Dαv0

.

This shows that

Dαv0 ∈ L2 (Ω) , ∀α ∈ Nn, |α| ≤ m,

then vα ∈ Hm(Ω), where Hm(Ω) is a complete space.
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Remark 2.8 :

In the case of Sobolev spaces, a function’s smoothness is quantified in relation to its derivatives.

Functions within this space are distinguished by the number of derivatives of order m, where m is a

positive integer. The higher this number, the greater the regularity of the function, signifying that it

is "smoother".

Functions that have an infinite number of derivatives of order m for all m are considered "infinitely

smooth" or "analytic" because they are regular to all orders of differentiation.

Lemma 2.3 : Let Ω be a non-empty open set in Rn. If `,m ∈ N with ` ≥ m. Then

H` (Ω) ⊂ Hm (Ω) with continuous imbedding .

Proof. Let u ∈ H` (Ω) , we have

Dαu ∈ L2 (Ω) , ∀α ∈ Nn, |α| ≤ `.

As ` ≥ m, therefore

Dαu ∈ L2 (Ω) , ∀α ∈ Nn, |α| ≤ m.

The result is H` (Ω) ⊂ Hm (Ω) . Moreover, we have

‖u‖Hm =

∑
|α|≤m

∫
Ω

|Dαu(x)|2 dx

 1
2

≤ ‖u‖H` =

∑
|α|≤`

∫
Ω

|Dαu(x)|2 dx

 1
2

.

Then H` (Ω) ↪→ Hm (Ω) .

Theorem 2.11 : Hm (Ω) is a separable space.

Proof.

Let L2
N(Ω) be the product space (L2(Ω)× L2(Ω)× ...× L2(Ω)) N times, then the application

‖.‖L2
N

: L2
N (Ω)→ R

u = (u1, ..., uN) 7−→ ‖u‖L2
N

=

(
N∑
i=1

‖ui‖2
L2(Ω)

) 1
2

.

is a norm on L2
N (Ω) . Let u ∈ Hm(Ω), then

Dαu ∈ L2 (Ω) ,∀α ∈ Nn, |α| ≤ m⇒ Dα(i)

u ∈ L2 (Ω) , ∀i = 1, N.

For u ∈ Hm(Ω), we get

∥∥∥(Dα(1)

u,Dα(2)

u, ..., Dα(N)

u
)∥∥∥

L2
N

=

(
N∑
i=1

∥∥∥Dα(i)

u
∥∥∥2

L2(Ω)

) 1
2

= ‖u‖Hm(Ω) .
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We define the application J by

J : Hm (Ω)→ L2
N (Ω)

u 7−→ J(u) =
(
Dα(1)

u,Dα(2)
u, ..., Dα(N)

u
)
,

then J is linear and

‖J(u)‖L2
N (Ω) = ‖u‖Hm(Ω) ,

therefore J is an isometry of Hm (Ω) ( which is complete) in L2
N (Ω) , hence the subspace

W = J(Hm(Ω)) is closed in L2
N(Ω).

In addition, L2(Ω) is separable, then L2
N (Ω) is separable too. Then, J(Hm(Ω)) is separable.

Therefore,

Hm(Ω) ∼= J (Hm (Ω)) ,

we deduce that Hm(Ω) is separable.

2.2.2 Space Hm
0 (Ω)

We note that Hm
0 (Ω) the closure of D (Ω) for the norm of Hm (Ω) i.e,

Hm
0 (Ω) = D(Ω)

Hm(Ω)
.

In other words,

Hm
0 (Ω) =

{
u ∈ Hm (Ω) , ∃ (un)n∈N ⊂ D (Ω) : ‖un − u‖Hm −→ 0 as n→ +∞

}
.

Proposition 2.6 Let u ∈ Hm
0 (Ω) and let ũ the extension of u by zero on Rn\Ω, i.e

ũ(x) =

{
u(x) x ∈ Ω

0 x ∈ Rn\Ω
.

If α ∈ Nn, |α| ≤ m, then Dαũ = D̃αu in the sense of distributions. In other words ũ ∈ Hm (Rn) and

‖u‖Hm(Ω) = ‖ũ‖Hm(Rn) .
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Proof. Let (ϕk)k≥1 a sequence of D (Ω) which converges to u and α ∈ Nn, |α| ≤ m. If ψ ∈ D (Ω),

then

(−1)|α|
∫
Rn
ũ (x)Dαψ (x) dx = (−1)|α|

∫
Ω

u (x)Dαψ (x) dx

= lim
k−→∞

(−1)|α|
∫

Ω

ϕk (x)Dαψ (x) dx

= lim
k−→∞

∫
Ω

(Dαϕk (x))ψ (x) dx

TCD
=

∫
Ω

(Dαϕk (x))ψ (x) dx

=

∫
Rn

˜(Dαϕk (x))ψ (x) dx.

Where Dαũ = D̃αu in the sense of distributions. As Dαu ∈ L2(Ω), then

D̃αu ∈ L2 (Rn)⇒ Dαũ ∈ L2 (Rn) .

So ũ ∈ Hm (Rn) and ‖u‖Hm(Ω) = ‖ũ‖Hm(Rn) .

Remark 2.9 :

1- As the operator ∼ is evidently linear, it is continuous from Hm
0 (Ω) to Hm (Rn) . More precisely, it

is an isometry.

2- The space D(Rn) is dense in Hm(Rn); i.e.

Hm
0 (Rn) = Hm (Rn) .

2.2.3 Poincare’s inequality

It is sometimes necessary to show that a semi-norm on a closed subspace of Hm(Ω) is, in fact,

equivalent to the usual norm. To establish this equivalence, we will use the following general

result.

Theorem 2.12 [19] Let Ω be a bounded open set in Rn (or bounded in one direction,) then

∀v ∈ Hm
0 (Ω) : ‖v‖L2(Ω) ≤ Cm(Ω)

∑
|α|=m

‖Dαu‖L2(Ω) ,

where Cm(Ω) is a constant depending on Ω.
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Proposition 2.7 : Let Ω be a bounded open set inRn ( or is bounded in one direction), the semi-norm

|v|m,Ω =

∑
|α|≤m

‖Dαu‖
2

L2(Ω)

 1
2

,

is a norm on Hm
0 (Ω) is equivalent to the norm induced by ‖v‖Hm(Ω) , and we denote

‖v‖Hm
0 (Ω) = |v|m,Ω .

2.2.4 The trace theorem for Hm(Ω)

If v ∈ H2(Ω), we can define its trace γ0v ∈ L2 (Γ) , but we can also do the same for each of the

first derivatives
∂v

∂xi
for i = 1, n. We can also define

γ1(v) =
n∑
i=1

ηi.γ0

(
∂v

∂xi

)
,

where η = (η1, ..., ηn) designates the vector normal to Γ oriented outwards from Γ. It can be

shown that the application

(γ0, γ1) : H2 (Ω) −→ L2 (Γ)× L2 (Γ)

v 7−→ (γ0v, γ1v)
,

is continuous linear and its kernel is H2
0 (Ω).

Theorem 2.13 Let Ω be a bounded open with a lipschitzian boundary, then

H2
0 (Ω) = {u ∈ H2(Ω), γ0u = γ0

∂u

∂η
= 0 on Γ}.

More generally, we have the following theorem.

Theorem 2.14 Let Ω be an open set in Rn with a sufficiently regular boundary, and let m be an

integer greater than or equal to 1. For each multi-index α ∈ Nn with |α| ≤ m − 1, there exists

a linear and continuous mapping from the space Hm(Ω) to the space (L2(Γ))
m, and we have the

following

Hm (Ω) →
(
L2 (Γ)

)m
v → γ0(Dαv)

Hm
0 (Ω) = {v ∈ Hm (Ω) : ∀α ∈ Nn, |α| ≤ m− 1, γ0(Dαv) = 0} .
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2.2.5 Imbedding Theorems

Extension operators

Is there an extension operator P of Hm (Ω) in Hm(Rn) such that (Pu)\Ω = u?

The answer is negative if the domain Ω is not regular, but if Ω is convex or has a lipschitzian

boundary, such an operator exists for all m ∈ N.

Theorem 2.15 : Let Ω be a bounded open set in Rn with a Lipschitz boundary. Then there exists a

continuous extension operator P : Hm (Ω) −→ Hm (Rn) such that (Pu)\Ω = u (a.e).

Remark 2.10 : For (0 ≤ m′ ≤ m), we have(
Hm (Ω) ↪→ Hm

′

(Ω)
)
⇔
(
Hm (Ω) ⊂ Hm

′

(Ω)
)
.

Corollary 2.4 : If Ω is a open set of class C` (` ∈ N, ` ≥ 1) with Γ bounded, then

1) If m > n
2

+ k, k ∈ N, ` ≥ k, so Hm (Ω) ↪→ Ck
(
Ω
)
.

2) If m = n
2
, then Hm (Ω) ↪→ Lp (Ω) , for all p ∈ [2,∞[ .

3) If 0 ≤ m < n
2
, then Hm (Ω) ↪→ Lp (Ω) , for all p ∈

[
2,

2n

n− 2m

[
.

2.2.6 Compact Embeddings of Rellich

The Rellich-Kondrachov theorem deals with the compact Embeddings of Sobolev spaces.

Theorem 2.16 : (Rellich-Kondrachov Theorem)

Suppose Ω is a bounded domain with a sufficiently smooth boundary in Rn. The Rellich-Kondrachov

theorem states that the imbedding

Hm (Ω) ↪→ Lp (Ω) , ∀m ∈ N,

is compact for 1 ≤ p < n
n−m .

And for Ω be a bounded domain of class C1, then

Hm+1
0 (Ω) ↪→ Hm

0 (Ω) , ∀m ∈ N.

Remark 2.11 This theorem is an important result in functional analysis and plays a significant role

in the study of partial differential equations (PDEs).
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2.2.7 The space H−m(Ω)

As D (Ω) ↪→ Hm
0 (Ω) (continuous injection) and

D (Ω) = Hm
0 (Ω) ,

then the space (Hm
0 (Ω))

′
(the dual of Hm

0 (Ω) ) can be identified with a subspace of D′ (Ω) that

we’ll note H−m (Ω) .

Definition 2.7 For m ∈ N, we denote H−m(Ω) as the dual space of Hm
0 (Ω). Let T be an element of

Hm(Ω).

H−m(Ω) = {T ∈ D′(Ω), T =
∑
|α|≤m

Dαvα, vα ∈ L2(Ω)}, (2.12)

Then, T defines a continuous linear functional on D(Ω) equipped with the norm Hm.

Lemma 2.4 Let L ∈ H−m (Ω), there is u = (uα)|α|≤m ∈ (L2 (Ω))N such that

〈L, v〉 =
∑
|α|≤m

〈Dαv, uα〉 , ∀v ∈ Hm
0 (Ω) ,

furthermore, ‖.‖H−m(Ω) is given by

‖L‖H−m(Ω) = inf

‖w‖L2
N (Ω) , w ∈ L

2
N (Ω) : L (w) =

∑
|α|≤m

〈Dαw, uα〉 ,∀w ∈ Hm
0 (Ω)

 .

Remark 2.12

1) H−m (Ω) is a separable, reflexive, and complete space.

2) If m > m′, H−m
′
(Ω) ⊂ H−m (Ω) with continuous injection

H−m
′
(Ω) ↪→ H−m (Ω) .

3) We have ‖u‖H−m(Ω) ≤ ‖u‖L2(Ω), ∀u ∈ L2 (Ω) . In fact, for any u ∈ L2 (Ω) et v ∈ Hm
0 (Ω) we get

|〈u, v〉| ≤ ‖u‖L2(Ω) ‖v‖L2(Ω)

≤ ‖u‖L2(Ω) ‖v‖Hm(Ω) .

Therefore
|〈u, v〉|
‖v‖Hm(Ω)

≤ ‖u‖L2(Ω) , ∀v ∈ Hm
0 (Ω) , v 6= 0.

Hence

‖u‖H−m(Ω) ≤ ‖u‖L2(Ω) .
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4) We have

|〈u, v〉| ≤ ‖u‖Hm(Ω) ‖v‖H−m(Ω) , ∀u ∈ H
m
0 (Ω) , ∀v ∈ L2 (Ω) .

In fact, we get

|〈u, v〉| = ‖u‖Hm(Ω)

∣∣∣∣∣
〈

u

‖u‖Hm(Ω)

, v

〉∣∣∣∣∣
≤ ‖u‖Hm(Ω) ‖v‖H−m(Ω) , ∀u ∈ H

m
0 (Ω),∀v ∈ L2(Ω).

2.3 The spaces Wm,p(Ω)

In this section, we introduce the definition of the Sobolev space Wm,p(Ω) and establish some of

their basic properties.

2.3.1 Definitions and properties

Let Ω be a non-empty open set in Rn, p ∈ [1,+∞] and m is a nonnegative integer. The Sobolev

space Wm,p(Ω) is defined by

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) , ∀α ∈ Nn; |α| ≤ m} , (2.13)

where Dαu represents a weak partial derivative of u (in the sense of distributions). The space

Wm,p(Ω) is equipped with the following norm

‖u‖Wm,p(Ω) =


( ∑
|α|≤m

‖Dαu‖pLp(Ω)

) 1
p

if 1 ≤ p < +∞,

max
|α|≤m

‖Dαu‖L∞(Ω) if p = +∞.
(2.14)

Theorem 2.17 : Wm,p(Ω) is a Banach space.

Proof. To show that the space Wm,p(Ω) is complete with respect to the norm ‖.‖Wm,p(Ω), we need

to prove that every Cauchy sequence in Wm,p(Ω) converges to a limit in Wm,p(Ω). Let (un)n∈N be

a Cauchy sequence in Wm,p(Ω), this means that

∀ε > 0,∃n0 ∈ N,∀s, q ∈ N, (s ≥ n0 and q ≥ n0)⇒ ‖us − uq‖Wm,p(Ω) < ε.

Therefore
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∀ε > 0,∃n0 ∈ N,∀s, q ∈ N, (s ≥ n0 and q ≥ n0)⇒

∑
|α|≤m

‖Dα (us − uq)‖pLp(Ω)

 1
p

< ε.

Then

(s ≥ n0 et q ≥ n0)⇒
(
‖Dα (us − uq)‖Lp(Ω) < ε

)
, ∀α ∈ Nn, |α| ≤ m.

From this we deduce that (Dαun)n∈N is a Cauchy sequence in Lp (Ω) , for any α ∈ Nn, |α| ≤ m.

Since Lp(Ω) is complete, we get

∃vα ∈ Lp (Ω) such that Dαun → vα,∀α ∈ Nn, |α| ≤ m.

In particular,

un → v0 in Lp(Ω) as n→ +∞.

To show that

vα = Dαv0, ∀ α ∈ Nn, |α| ≤ m,

we can use the fact that the injection of Lp(Ω) into L1
loc(Ω) implies that the sequence (un)n∈N

determines a distribution Tun ∈ D′(Ω).

Using the Holder inequality, we obtain the following:

|Tun(ϕ)− Tu(ϕ)| ≤
∫

Ω

| un(x)− u(x) || ϕ(x) | dx (2.15)

≤ ‖ϕ‖q‖un − u‖p, ∀ϕ ∈ D(Ω),

where q = p
p−1

. Hence ∀α ∈ Nn, |α| ≤ m,

Tun(ϕ)→ Tuα(ϕ), ∀ϕ ∈ D(Ω), as n→ +∞. (2.16)

and

TDαun(ϕ)→ Tuα(ϕ), ∀ϕ ∈ D(Ω), as n→ +∞. (2.17)

Since

DαTun = TDαun ,

by the uniqueness of the limit in D′(Ω), we can conclude that

Tvα(ϕ) = DαTu = (−1)|α|Tu(D
αϕ).

This proves that

Dαu ∈ Lp (Ω) , ∀α ∈ Nn, |α| ≤ m⇒ vα ∈ Wm,p(Ω).

Hence Wm,p(Ω) is a complete space.
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Remark 2.13 :

1) In the case p = 2, Sobolev spaces become particularly due to their property of being Hilbert spaces,

denoted as Hm(Ω).

Wm,2(Ω) = Hm(Ω).

2) Note that for m = 0, the space Wm,p(Ω) is the Lebesgue space Lp(Ω).

3) In the one-dimensional space (n = 1), where a and b belong to the set of real numbers R, each

element of W 1,p(]a, b[) can be associated with a continuous function. This means that there exists a

representative function within the class that is continuous.

This can be attributed to the fact that in one dimension, every function in W 1,p(]a, b[) can be expressed

as the integral of its derivative.

∃û ∈ C(]a, b[) and v ∈ Lp(]a, b[); u = û a.e. and (2.18)

û(x) = û(a) +

∫ x

a

v(s)ds.

In dimensions higher than 1, this is not true.

4) The space W 1,∞(Ω) is the space of Lipschitz functions.

Theorem 2.18 : Given a non-empty open set Ω in Rn, p ∈ [1,+∞], and m ∈ N∗, equipped with the

previous norm, we have the following:{
∀1 < p < +∞, Wm,p(Ω) is a reflexive space,

∀1 ≤ p < +∞, Wm,p(Ω) is a separable space,

Extension Theorems

Definition 2.8 Let Ω be a domain in Rn. We say that Ω verifies the m-extension property if there

exists a continuous linear operator:

P : Wm,p(Ω)→ Wm,p(Rn),

verifying:

1- P (u)χΩ = u,∀u ∈ Wm,p(Ω),

2- For any 0 ≤ k ≤ m, ∃Ck > 0, ‖Pu‖Wk,p(Rn) ≤ Ck ‖u‖Wk,p(Ω) .

Theorem 2.19 : Let Ω be a non-empty open of Rn possessing the m-extension property, p ∈ [1,+∞]

and m ∈ N. Then the space D(Rn) is dense in Wm,p(Ω) i.e.

∀u ∈ Wm,p(Ω), ∃ (uk)k∈N ∈ D(Rn), u = lim
k→+∞

(ukχΩ) .
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Remark 2.14 The existence of even m-extension operator for a domain Ω guarantees that Wm,p(Ω)

inherits many properties possessed by Wm,p(Rn). For instance, if the embedding

Wm,p(Rn)→ Lq(Rn),

in known to hold, then the embedding

Wm,p(Ω)→ Lq(Ω),

follows via the chain of inequalities: For any 0 ≤ k ≤ m, ∃Nk, Ck > 0,

‖u‖W 0,q(Ω) ≤ ‖Pu‖W 0,q(Rn) (2.19)

≤ Nk ‖Pu‖Wm,p(Rn) ≤ NkCk ‖u‖Wm,p(Ω) .

2.3.2 The Space Wm,p
0 (Ω)

Definition 2.9 : Let p be a real number, 1 ≤ p < +∞, and an integer m ≥ 2, we call the Sobolev

space Wm,p
0 (Ω) the adherence of D(Ω) in Wm,p(Ω), i.e.

Wm,p
0 (Ω) = D (Ω)

Wm,p(Ω)
.

Remark 2.15 For any m, we have

Wm,p
0 (Ω) ⊂ Wm,p(Ω) ⊂ Lp(Ω).

Corollary 2.5 : Let p be a real number, 1 ≤ p < +∞, and an integer m ≥ 2, we obtain

1- For Ω = Rn,Wm,p
0 (Rn) = Wm,p(Rn).

2- For Ω a ball or a bounded block of Rn,Wm,p
0 (Ω) 6= Wm,p(Ω).

3- For an open set Ω in Rn that is contained in a strip or a band, we have the following result:

∀m ∈ N∗, ∃C > 0, ∀u ∈ Wm,p
0 (Ω), ‖u‖Lp(Ω) ≤ C

∑
|α|=m

‖Dαu‖pLp(Ω) ,

and

|‖u‖| =

∑
|α|=m

‖Dαu‖pLp(Ω)

 1
p

,

is a norm on Wm,p
0 (Ω)equivalent to the norm of Wm,p(Ω).

4- Note that

H1
0 (Ω) = W 1,2

0 (Ω).
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Lemma 2.5 (Friedrichs)

For m ∈ N and p < ∞, for any element f ∈ Wm,p(Ω) and θ ∈ D(Ω), there exists a sequence

(ϕn)n ∈ D(Ω) that approximates (fθ) in Wm,p(Ω).

Proof. To show this, we can construct the sequence (ϕn)n as follows

ϕn → θ in D(Ω) as n→ +∞.

This means that for any compact set K ⊂ Ω,

∃N ∈ N such that ∀n ≥ N,ϕn and θ coincide onK.

Define

ψn = fϕn, ∀n ∈ N.

We can show that (ψn)n is a sequence in Wm,p(Ω) by using the properties of the Sobolev space

Wm,p(Ω).

Since f ∈ Wm,p(Ω) and ϕn ∈ D(Ω), which is a space of smooth functions with compact support,

their product (fϕn) is a smooth function with compact support in Ω, satisfying the required

regularity conditions for elements in Wm,p(Ω). By using suitable approximation arguments, we

can show that

ψn → fθ in Wm,p(Ω) as n→ +∞.

This involves showing convergence of the derivatives of ψn and using properties of the Sobolev

space norm. Therefore, we have established that for any

f ∈ Wm,p(Ω) and θ ∈ D(Ω),

there exists a sequence (ϕn)n ∈ D(Ω) that approximates

(fθ) ∈ Wm,p(Ω).

The proof is completed.

Remark 2.16 :

Similary, this means that we can approximate f in Wm,p
loc (Ω) by elements from D(Ω). In other words,

functions from D(Ω) are dense in Wm,p
loc (Ω), allowing us to make approximations and apply operators

defined on regular functions in the more general context of locally integrable functions.
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2.3.3 Compact Embeddings of Wm,p(Ω)

The Rellich Kandrachov Theorem

Theorem 2.20 [1] Let Ω be a domain in Rn, Ω0 a bounded subdomain of Ω and Ωk
0 the intersection

of Ω0 with a k-dimensional plane in Rn. Let j,m be integers, m ≥ 1, and let 1 ≤ p < +∞. Then the

following Embeddings are compact:

W j+m,p
0 (Ω) → W j,q(Ω0) if 0 < n−mp < k ≤ n, 1 ≤ q < kp/(n−mp),

W j+m,p
0 (Ω) → W j,q(Ω0) if n = mp, 1 ≤ k ≤ n, 1 ≤ q <∞,

W j+m,p
0 (Ω) → Cj

B(Ω0),

W j+m,p
0 (Ω) → W j,q(Ωk

0) if 1 ≤ q ≤ ∞,

W j+m,p
0 (Ω) → Cj(Ω0) if mp > n,

W j+m,p
0 (Ω) → Cj,λ(Ω0) if mp > n ≤ (m− 1)p, 0 < λ < m− (n/p).

2.3.4 The space W−m,q(Ω)

Definition 2.10 : Let p and q be real numbers satisfying 1 ≤ q ≤ ∞, 1
p

+ 1
q

= 1, and let m be a

positive integer. We define the Sobolev space and denote it as W−m,q(Ω), which is the dual space of

Wm,p
0 (Ω). In other words, we have

(Wm,p
0 (Ω))′ = W−m,q(Ω).

Theorem 2.21 : [1] Let 1 ≤ p < +∞, for any L ∈ (Wm,p(Ω))′ there exists an element

v = (vα)0≤|α|≤m in the space LqN = (Lq(Ω)× Lq(Ω)....× Lq(Ω)) N times, such that

∀u ∈ Wm,p(Ω), L(u) =
∑

0≤|α|≤m

< Dαu, vα > . (2.20)

furthermore,

‖L‖(Wm,p(Ω))′ = inf‖v‖LqN . (2.21)

The infimum is obtained by considering all v ∈ LqN that satisfy equation (2.20) for every u ∈
Wm,p(Ω). Moreover, this infimum is attainable under these conditions.

Remark 2.17 :

1) For 1 ≤ p < +∞, every element L of the space W−m,q(Ω) is an extension to Wm,p(Ω) of a

distribution T ∈ D′. To see this suppose L is given by (2.20) for some v ∈ LqN and define Tvn , T ∈ D′,
by

Tvn(ϕ) =< ϕ, vn >,ϕ ∈ D(Ω), |α| ≤ m.
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T =
∑
|α|≤m

(−1)|α|DαTvn . (2.22)

2) For 1 ≤ p < +∞, the dual space (Wm,p
0 (Ω))′ is isometrically isomorphic to a Banach space that

comprises distributions T ∈ D′ satisfying (2.22) for a certain v ∈ LqN .

3) If 1 ≤ p < +∞, m ≤ 1, then the dual space (W−m,q(Ω)) is a Banach space and evidently it is

separable and reflexive if 1 < p < +∞.
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2.4 Exercises

Exercise 2.1:————————————————————————————————————–

Let u be an application from R to R defined by

x→ u(x) =


x x ∈ [0, 1] ,

−x+ 2 x ∈ [1, 4] ,

0 elsewhere

1- Does the application u belong to H1(R)?

2- Are there any open intervals I of R for which the restriction of u to I ∈ H1(I).

Exercise 2.2:————————————————————————————————————–

I- Let uα be the application of R in R defined by: uα(x) = xα, α ∈ R. For what values of α, uα does

it belong to H1(]0, 2[) ?

II- The function u :→ R defined by

x→ u(x) =

{
a x ∈ [0, 2] ,

b x ∈ [2, 5] ,

belong to H1(]0, 5[) ?

Exercise 2.3:————————————————————————————————————–

Let (r, θ) be the polar coordinates of R2 and

Ω =
{

(r, θ), 0 < r < 1, 0 < θ <
π

4

}
.

Let α be a real number in R. We denote by fα the mapping from Ω to R, defined as fα(r, θ) = rα.

1- For which values of α does fα belong to L2(Ω)?

2- For which values of α does fα belong to H1(Ω)?

Exercise 2.4:————————————————————————————————————–

Let u ∈ L1
loc (]0, 1[) such that Du = 0. Show that

∃a ∈ R, u = a a.e.,

which means a function in L1
loc (]0, 1[) with a derivative equal to zero is constant.

Exercise 2.5:————————————————————————————————————–

Let B be the open unit ball in R2. Show that the function

u(x) = |log (|x/2|)|α ,
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belongs to H1(B) for 0 < α < 1/2, but is not bounded in the neighborhood of the origin.

Exercise 2.6:————————————————————————————————————–

Show that there cannot be a notion of trace for functions in L2(Ω), meaning that there does not

exist a constant C > 0 such that

∀v ∈ L2(Ω), ‖v|∂Ω‖L2(∂Ω) ≤ C ‖v‖L2(Ω) .

Exercise 2.7:————————————————————————————————————–

Consider the trace mapping

γ0 : D(R+) → R

u → γ0u

1- By considering the sequence of functions vn = e−nx for x ≥ 0, and n ≥ 0, show that γ0 cannot

be extended to a continuous linear mapping from L2(]−∞, 0[) into R.

2- Using the density of D(R+) in H1(]−∞, 0[), show that γ0 can be extended to a continuous linear

mapping from H1(]−∞, 0[) into R, i.e.,

v(0) ≤ ‖v‖H1(R∗+) for v ∈ D(R+).

Exercise 2.8:————————————————————————————————————–

Let v ∈ L2 (Rn), and its Fourier transformation v̂ is defined by:

v̂(ζ) =
1

(2π)n/2

∫
Rn
e−ixζv(x)dx, x, ζ ∈ Rn.

Show that

H1 (Rn) =
{
v ∈ L2 (Rn) ,

(
1 + |ξ|2

)
v̂ ∈ L2 (Rn)

}
,

with the norm defined as

‖v‖H1(Rn) =

∫
Rn
(
1 + |ξ|2

)1/2 |v̂(ξ)|2 dξ.

Exercise 2.9:————————————————————————————————————–

Let 1 ≤ p ≤ ∞ and u ∈ W 1,p(]0; 1[).

1. Prove that there exists C ∈ R such that

u(x) = C +

∫ x

0

Du(t)dt, a.e. x ∈]0, 1[.

As a consequence, deduce that u ∈ C([0; 1],R) in the sense that there exists v ∈ C([0, 1],R) such

that u = v a.e. on ]0, 1[.
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By identifying u and v, we can say that W 1,p(]0, 1[) ⊂ C([0, 1],R).

2. Prove that

‖u‖∞ ≤ ‖u‖W 1,p(]0,1[) .

3. Let u ∈ C([0, 1],R). Suppose that there exists w ∈ Lp(]0, 1[) such that

u(x) = u(0) +

∫ x

0

w(t)dt, a.e. x ∈]0, 1[.

Prove that

u ∈ W 1,p(]0, 1[) et Du = w.

Exercise 2.10:————————————————————————————————————

Let 1 ≤ p ≤ ∞ and u ∈ W 1,p(]0; 1[).

1- For all u in D(R), show the inequality∫
I×I
|u(x)− u(y)|2 dxdy ≤ mes(I)3

∫
I

|u′(t)| dt. (1)

Deduce ∫
I

|u(x)|2 dx ≤ mes(I)2

2

∫
I

|u′(x)|2 dx+
1

mes(I)

∣∣∣∣∫
I

u(x)dx

∣∣∣∣2 . (2)

2- The inequality (2) is true for any element of H1(I).

Exercise 2.11:————————————————————————————————————

Let I be an interval in R, and let p ∈]1,+∞[. Prove that the norms ‖.‖W 1,p(I) , |‖.‖|W 1,p(I) , define

by:

‖u‖W 1,p(I) = ‖u‖Lp(I) + ‖u′‖Lp(I) ,

and

|‖u‖|W 1,p(I) =
(
‖u‖pLp(I) + ‖u′‖pLp(I)

)1/p

.

are equivalent.

Exercise 2.12:————————————————————————————————————

Let n = 2, 1
2
< α < 1. Let

Ω = {(r, θ), 0 < r < 1, 0 < θ <
π

α
}.

and

u(r, θ) = (rα − r)−αsin(αθ).

1) Prove that ∃q∗ > 1 such that ∀q ∈ [1, q∗[, u ∈ W 1,q(Ω).

2) Calculate −∆u.

3) What’s up.
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Exercise 2.13:————————————————————————————————————

Let Ω = (a, b), where a < b. Using the Ascoli’s theorem, we will show that the canonical injection

from H1(Ω) to C0(Ω) is compact.

Consequently, we can deduce that the canonical injection from H1(Ω) to L2(Ω) is also compact.

Exercise 2.14:————————————————————————————————————

Let Rn ⊃ Ω = Ω1 ∪ Ω2 be a domain and take E = H1
0 (Ω). Define

E1 = {u ∈ Ω1, u = 0 in Ω/Ω1}, E2 = {u ∈ Ω2, u = 0 in Ω/Ω2}.

Prove that E1 and E2 are closed subspaces in E, and

E⊥1 ∩ E⊥2 = {0}.
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Variational Formulation of Boundary

Problems

A classical solution (also known as a strong solution) of a PDE is a solution belongs the space

Cn(n = 1, 2, ...). Unfortunately, this classical formulation poses a number of problems for proving

the existence of a solution. For this reason, we will replace the classical formulation with a

variational one.

3.1 Variational Formulation

The principle of the variational approach to solving partial differential equations is to replace the

equation by an equivalent variational formulation, obtained by integrating the equation multi-

plied by a test function.

3.1.1 Dirichlet Problem

Let Ω be a bounded open set in Rn with boundary Γ = ∂Ω of piecewise C1 class. We consider the

following homogeneous Dirichlet problem: Find a function u : Ω −→ R such tha

(Pc)

{
−∆u = f in Ω

u = 0 on Γ
, (3.1)

with

∆u =
n∑
i=1

∂2u

∂x2
i

being the Laplacian of u and f is a given function in L2(Ω). The boundary condition u = 0 on Γ

is the homogeneous Dirichlet condition. The classical solution here is a function in C2(Ω).
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Definition 3.1 A classical solution of (Pc) is a function u ∈ C2(Ω) that satisfies (Pc) in the usual

sense.

Variational formulation of the problem (Pc):

Let v be a test function. Multiplying both sides of the first equation of problem (Pc) by a test

function v ∈ H1
0 (Ω) and then integrating the result over Ω (we verify that this integration is

possible), we obtain ∫
Ω

−4u.vdx =

∫
Ω

fvdx, for any v ∈ H1
0 (Ω). (3.2)

We now use Green’s formula, we obtain∫
Ω

∇u ∇v dx−
∫

Γ

∂u

∂η
vdΓ =

∫
Ω

fvdx.

Then

(PV) ∀v ∈ H1
0 (Ω).

∫
Ω

∇u ∇v dx =

∫
Ω

fvdx (3.3)

We say that (PV) is the variational formulation of the problem (Pc) i.e. we replace the problem

(3.1) by the following one: Given a function f ∈ L2(Ω), find a function u ∈ H1
0 (Ω) satisfying

(3.3).

Reciprocally (Back to a classic solution):

Definition 3.2 A weak solution of (Pv) is a function u ∈ H1
0 (Ω) verifying (Pv).

Let u ∈ H1
0 (Ω), we get

∀v ∈ H1
0 (Ω),

∫
Ω

∇u∇vdx =

∫
Ω

fvdx,

since D(Ω) is dense in H1
0 (Ω), we can write

∀v ∈ D(Ω),

∫
Ω

∇u ∇v dx =

∫
Ω

fvdx.

Therefore, this equation is verified in the sense of distributions on Ω

(∇u, ∇v )D′×D = (f, v)D′×D .

Then using the definition of the derivative in the sense of distributions, this equality becomes

(−4u, v)D′×D = (f, v)D′×D .
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As a result,

(−4u− f, v)D′×D = 0, ∀v ∈ D(Ω),

from which we deduce the following equality, in the sense of distributions

−4u = f in D′(Ω).

Therefore, equation (3.1) is satisfied in the sense of distributions over Ω (i.e., weakly) and since

f ∈ L2(Ω), we have

−∆u = f almost everywhere in L2(Ω).

Moreover, since u ∈ H1
0 (Ω), we obtain u|Γ = 0. Thus, the problem (3.3) becomes: find a function

u such that {
−4u = f in Ω

u�Γ = 0 Γ = ∂Ω
,

hence, Variationnel Problem⇐⇒ Direct problem.

Remark 3.1 :

1) Any sufficiently regular solution of the classical problem (Pc) is a solution of the variational

problem (PV ).

2) The advantage of the variational formulation (3.3) is that it makes sense even if the solution u is

only a function in C1(Ω), unlike the classical formulation (3.1) which requires u to belong to C2(Ω).

Therefore, it is simpler to solve (3.3) than (3.1) because we are less demanding in terms of solution

regularity.

3) The variational method has transformed a second-order problem into a first-order problem, but it

has also transformed a linear problem into a quadratic problem.

3.1.2 Neumman’s Problem

Let Ω be a bounded open Rn with regular Γ = ∂Ω boundary and consider the following homoge-

neous Neumman problem: Find u : Ω −→ R solution of the problem

(Pc)

{
−4u+ u = f in Ω
∂u
∂η

= 0 on Γ
. (3.4)

Given f as a function in L2(Ω), and
∂u

∂η
= ∇u.−→η ,

where −→η represents the unit normal vector to the boundary Γ and pointing outward from Ω.
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Remark 3.2 :

In terms of modeling, the Neumann condition ∂u
∂η

represents a flux condition. For example, in the

interpretation of thermal equilibrium, this condition corresponds to a prescribed heat flux across the

boundary, as opposed to the Dirichlet condition that imposes a specified temperature on the boundary.

The case ∂u
∂η

= 0 corresponds to perfect thermal insulation: no heat can enter or leave Ω.

Variational formulation of the problem (Pc):

By multiplying both sides of the first equation in the problem (Pc) by a test function v ∈ H1(Ω)

and integrating over Ω, we obtain∫
Ω

−4u.vdx+

∫
Ω

u.vdx =

∫
Ω

fvdx, ∀v ∈ H1(Ω). (3.5)

Applying Green’s formula, we deduce∫
Ω

∇u ∇v dx+

∫
Ω

u.vdx−
∫

Γ

∂u

∂η
vdΓ =

∫
Ω

fvdx.

Using the boundary condition, we find

(PV)

∫
Ω

∇u ∇v dx+

∫
Ω

u.vdx =

∫
Ω

fvdx ∀v ∈ H1(Ω). (3.6)

This gives us the following result:

Let u be a solution of (Pc), then u is a solution of the problem (PV ).

We say that (PV ) is the variational formulation of problem (Pc) i.e. we replace problem (3.4) by

the following one: Given a function f ∈ L2(Ω), find a function u ∈ H1(Ω) satisfying∫
Ω

∇u ∇v dx+

∫
Ω

u.vdx =

∫
Ω

fvdx ∀v ∈ H1(Ω).

Reciprocally: (Back to the classic solution):

Let u ∈ H1(Ω) such that∫
Ω

∇u∇vdx+

∫
Ω

u.vdx =

∫
Ω

fvdx, ∀v ∈ H1(Ω).

Therefore ∫
Ω

∇u ∇v dx+

∫
Ω

u.vdx =

∫
Ω

fvdx , ∀v ∈ D(Ω).

This equation is verified in the sense of distributions on Ω, we can write

(∇u, ∇v )D′×D + (u, v )D′×D = (f, v)D′×D .
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Using the definition of the derivative in the sense of distributions, this equality becomes

(−4u+ u, v)D′×D = (f, v)D′×D .

Therefore

(−4u+ u− f, v)D′×D = 0, ∀v ∈ D(Ω). (3.8)

We conclude that

−4u+ u = f in D′(Ω).

As f ∈ L2(Ω), we have the equation

−4u+ u = f a.e in L2(Ω).

Multiplying this equation by v and integrating over Ω and then applying the Green’s formula, we

obtain
∂u

∂η
= 0 on Γ = ∂Ω.

Thus, the problem (3.6) becomes: to find u that satisfies{
−4u+ u = f in Ω
∂u
∂η

= 0 on Γ
.

Hence, there is an equivalence between the variational problem and the direct problem.

3.2 Variationnel Problem

To formulate a variational problem for a boundary value problem, we need:

1) A Hilbert space V with a norm ‖.‖V .

2) A continuous bilinear form a(·, ·) on V × V .

3) A continuous linear form l(·) on V .

We consider a variational formulation of the following type: Find u in V such that it satisfies

∀u ∈ V, a(u, v) = l(v). (3.7)
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3.3 Lax-Milgram’s Theorem

The Lax-Milgram theorem ( Peter Lax and Arthur Milgram 1) is used to establish the existence and

uniqueness of solutions to partial differential equations formulated in variational form in a real

Hilbert space.

Definition 3.3 Let V be a Hilbert space. A bilinear form a(·, ·) defined on V × V is continuous if

∃c > 0 : |a (u, v)| ≤ c ‖u‖V ‖v‖V , ∀u, v ∈ V. (3.9)

Definition 3.4 For a Hilbert space V , a bilinear form a(·, ·) defined on V × V is said to be coercive

(or V -elliptic) if there exists α > 0 such that:

∀v ∈ V : a (v, v) ≥ α ‖v‖2
V . (3.10)

Remark 3.3 :

1- The simplest example is when a(·, ·) is the inner product on V . In this case, we indeed have all the

previous properties with c = α = 1.

2- If for all v ∈ V , a(v, v) < 0, we need to show coercivity with respect to −a(·, ·).
3- The assumption "a(.,.) is coercive" cannot be replaced by "a(.,.) is positive definite".

4- If there exists v 6= 0 in V such that a(v, v) = 0, then a(·, ·) is not coercive.

Theorem 3.1 (Lax-Milgram)

Let a(·, ·) be a continuous and coercive bilinear form on a Hilbert space V × V , and let `(·) be a

continuous linear form on V . Then, the variational problem can be formulated as follows

(PV )

{
Find u ∈ V such that:

a (u, v) = ` (v) , ∀v ∈ V
, (3.11)

has a unique solution in V .

Proof.

1) Uniqueness: Let u1 and u2 be two solutions of the problem (PV ) then{
a (u1, v) = ` (v)

a (u2, v) = ` (v)
⇒ a (u1 − u2, v) = 0, ∀v ∈ V.

1Peter Lax: (born in 1926 in Budapest) is a Hungarian-American mathematician who was awarded the Abel Prize

in 2005.

Arthur Milgram (born on June 3, 1912, in Philadelphia and died on January 30, 1961, at the age of 48) was an

American mathematician.
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For v = u1 − u2, we obtain

a (u1 − u2, u1 − u2) = 0.

The coercivity of a implies the existence of α > 0 such that

0 = a (u1 − u2, u1 − u2) ≥ α ‖u1 − u2‖2 ,

Hence

‖u1 − u2‖ = 0⇒ u1 = u2.

2) Existence: For a fixed v, the application

w → a(v, w),

is a continuous linear form of V in R. The Riesz representation implies that there exists a unique

element Au of V such that

a (u,w) = (Au,w) = `(w),∀u,w ∈ V.

This defines a linear and continuous operator because

|(Au,w)| = | a (u,w)| ≤M ‖u‖ . ‖w‖ .

This implies that

‖Au‖ = sup
‖w‖=1

| a (u,w)| ≤M ‖u‖ .

Similarly, the linear form l is continuous on V, and according to the Riesz representation theorem

there exists a unique element f ∈ V such that

∀v ∈ V, l(v) = (f, v).

In conclusion, the variational problem (PV ) is equivalent to find u ∈ V as a solution to the

equation:

Au = f.

To solve this problem,

• We need to show that the operator A is a bijection from V to V , which implies the existence

and uniqueness of u, and that its inverse is continuous, which proves the continuous dependence

of u on l. or
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•We can use the Banach fixed-point theorem, which involves showing that the equation Au = f ,

which is equivalent to

u = u− ρ(Au− f), ρ > 0,

has a fixed point. Let’s consider the function T : V → V defined as

T (v) = v − ρ(Av − f).

Then, ,∀v1, v2 ∈ V, we have

‖T (v1)− T (v2)‖2 = ‖v1 − ρ(Av1 − f)− v2 + ρ(Av2 − f)‖2

= ‖v1 − v2‖2 − 2ρa (v2 − v1, v2 − v1) + ρ2 ‖A(v2 − v1)‖2

≤
(
1− 2αρ+ ρ2 ‖A‖2) ‖v2 − v1‖2 .

If (
1− 2αρ+ ρ2 ‖A‖2) < 1,

this implises that

0 < ρ <
2α

‖A‖2 .

The operator T is contractive, and therefore, it has a fixed point. We can conclude that the

problem (PV ) has a solution in V .

Remark 3.4 :

1) In the case of complex Hilbert spaces and complex-valued variational problems, the Lax-Milgram

theorem still holds for a bilinear or sesquilinear form.

2)This theorem forms the basis of finite element methods. In fact, it can be shown that if instead of

find u in H, we seek (un)n in Hn, a finite-dimensional subspace of H with dimension n, then in the

case where a is symmetric, un is the projection of u with respect to the inner product defined by a(·, ·)

Minimization result

Let a(., .) be a symmetrical bilinear form, i.e.

∀u, v ∈ V, a (u, v) = a (v, u) .

We introduce the quadratic functional defined for all v ∈ V by

J(v) =
1

2
a(v, v)− `(v), (3.12)

and consider the minimization problem: find u ∈ V such that

J(u) = min
v∈V

J(v). (3.13)

Then we have the following theorem
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Theorem 3.2 :

Assuming that the bilinear form a(·, ·) is symmetric and coercive. Then, the problem (3.13) admits a

unique solution u ∈ V , which is none other than the solution of the problem (PV ).

This theorem states that under the assumptions of symmetry and coercivity, the variational prob-

lem (3.13) has a unique solution in V and this solution coincides with the solution of the original

problem (PV ).

Proof. If the bilinear form a(., .) is symmetrical, then for any w in V we have

J(u+ w) =
1

2

[
a(u, u) + 2a(u,w) + a(w,w)

]
− [L(u) + l(w)].

J(u+ w) = J(u) +
(
a(u,w)− L(w)

)
+

1

2
a(w,w).

Since u is the only solution to the problem (PV ), this gives

J(u+ w) = J(u) +
1

2
a(w,w).

And as a(., .) is coercive, we have :

J(u+ w) ≥ J(u) +
α

2
‖w‖2.

The conclusion is

J(u) ≤ J(v),∀v ∈ V,

hence the result.

Remark 3.5 :

1) When the bilinear form a(., .) is symmetric, the problem (PV ) corresponds to the minimization

problem of a quadratic functional over a Hilbert space V . This is, in fact, the abstract formulation of

several problems in the calculus of variations. This explains why the problem (PV ) is referred to as a

variational problem.

2) The variational problem (PV ) corresponds to the Euler equation (J ′(u) = 0) associated with the

minimization problem.

3) This equivalence can be exploited from a numerical perspective: to compute an approximation

of the solution u to the variational problem, one can employ classical algorithms for minimizing

quadratic functionals, such as the conjugate gradient method, for example.
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3.4 Problem of regularity

There are essentially two types of regularity results

(1) A "local" regularity result, which depends only on the regularity of the coefficients of the

elliptic operator considered and of f . For example, for the Dirichlet problem written in variational

form which we know that it has a unique solution u ∈ H1
0 (Ω), we have the following regularity

result for any integer m ≥ 0 :

if f ∈ Hm
loc(Ω)⇒ u ∈ Hm+2

loc (Ω).

(2) A "global" regularity result, i.e., up to the boundary Γ of Ω. For this type of result, the regularity

of the boundary Γ of the domain is essential, as well as the type of boundary condition. Regarding

the Dirichlet problem, we have the following result:

Proposition 3.1 Let u be the solution of the variational problem (PV ) with f ∈ L2(Ω). If the bound-

ary Γ of class C1 then u ∈ H2(Ω).

Remark 3.6 This result is also true for the Neumann problem with g ∈ H 1
2 (Ω).
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Applications in some problems

In this chapter, our aim is to apply the Lax-Milgram theorem to ensure the existence of solutions to

various boundary value problems (different operators and boundary conditions are considered).

These problems are first formulated in variational form.

4.1 Laplace equation with Dirichlet conditions

Beyond the physical problems governed by this equation (such as the steady-state heat equation,

elastic membrane problem, electrostatic equilibrium, etc.), we choose this equation as a model

problem due to its simplicity.

Let Ω be a bounded open set in Rn with a boundary Γ = ∂Ω that is piecewise C1. We consider the

following homogeneous Dirichlet problem:

(Pc)


Find u ∈ H1

0 (Ω) such that

−∆u = f f ∈ L2(Ω)

u|Γ = 0

Prove that the problem (Pc) has a unique solution.

I) Equivalence between the problem (Pc) and the problem (PV ).

We’ve already shown ( in chapter 3) that the (Pc) problem is equivalent to the following varia-

tional problem:

(PV )

{
Find u ∈ H1

0 (Ω) such that:

a(u, v) = l(v)
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with

a(u, v) =

∫
Ω

∇u∇vdx =
n∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dx,

l(v) =

∫
Ω

fvdx.

II) Prove that the problem (PV ) has a unique solution

By verifying the conditions of Lax Milgram’s theorem

1) The bilinear form a(., .) is continuous on H1
0 (Ω) × H1

0 (Ω), in fact using the Cauchy-Schwartz

inequality, we obtain

|a(u, v)| ≤
∣∣∣∣∫

Ω

∇u.∇vdx
∣∣∣∣

≤
(∫

Ω

|∇u|2 dx
)1/2(∫

Ω

|∇v|2 dx
)1/2

≤ ‖u‖H1
0 (Ω) × ‖v‖H1

0 (Ω) .

On the other hand, since Ω is a bounded open of Rn, the bilinear form a(., .) is coersive. In fact

a(u, u) =

∫
Ω

|∇u|2 dx = ‖u‖2
H1

0 (Ω) ,

it means that

a(u, u) ≥ α ‖u‖2
H1

0 (Ω) , with α = 1.

2) The linear form l is continuous on H1
0 (Ω), in fact according to the Cauchy-Schwarz inequality,

we have

|l(v)| =

∣∣∣∣∫
Ω

f.v dx

∣∣∣∣ ≤ (∫
Ω

|f |2 dx
)1/2(∫

Ω

|v|2 dx
)1/2

≤ ‖f‖L2(Ω)‖v‖L2(Ω)

≤ cΩ‖f‖L2(Ω)‖v‖H1
0 (Ω),

≤ C‖v‖H1
0 (Ω).

where

C = cΩ × ‖f‖L2(Ω) ≤ +∞ because f ∈ L2(Ω),

et cΩ is the constant of the Poincare inequality.

According to Lax Milgram’s theorem, the problem (Pc) has a unique solution in H1
0 (Ω).
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4.2 Laplace equation with Neumann conditions

Let Ω be a bounded open Rn of boundary Γ = ∂Ω of class C1. Let’s show that the problem (Pc)

has a unique solution

(Pc)


Find u ∈ H1(Ω) such that

−∆u+ u = f f ∈ L2(Ω)
∂u
∂η

= 0 on Γ

I) Equivalence between the (Pc) problem and the (PV ) problem

The variational formulation of this problem is of the following form

(PV )

{
Find u ∈ H1(Ω) such that

a(u, v) = l(v)

with

a(u, v) =

∫
Ω

∇u∇vdx+

∫
Ω

uvdx =
n∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dx+

∫
Ω

uvdx,

l(v) =

∫
Ω

fvdx.

We have shown ( in section 3.1.2) that (Pc)⇔ (PV ).

II) Prove that the problem (PV ) has a unique solution

Verify that the conditions of Lax Milgram’s theorem.

1) First of all, the space V = H1(Ω) is a Hilbert space for the usual norm ‖.‖H1(Ω).

2) Since the bilinear form a is continuous on H1(Ω) × H1(Ω), we have, thanks to the Cauchy-

Schwartz inequality :

|a(u, v)| ≤
∣∣∣∣∫

Ω

∇u.∇vdx +

∫
Ω

u v dx

∣∣∣∣
≤

∣∣∣∣∫
Ω

∇u.∇vdx
∣∣∣∣+

∣∣∣∣∫
Ω

u v dx

∣∣∣∣
≤

(∫
Ω

|∇u|2 dx
)1/2(∫

Ω

|∇v|2 dx
)1/2

+

(∫
Ω

|u|2 dx
)1/2(∫

Ω

|v|2 dx
)1/2

≤ ‖∇u‖L2(Ω) × ‖∇v‖L2(Ω) + ‖u‖L2(Ω) × ‖v‖L2(Ω) .
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We have

‖u‖2
H1(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) ,

then

‖∇u‖2
L2(Ω) ≤ ‖u‖

2
H1(Ω) and ‖u‖

2
L2(Ω) ≤ ‖u‖

2
H1(Ω) .

This shows that

|a(u, v)| ≤ 2 ‖u‖H1(Ω) × ‖v‖H1(Ω) .

Moreover, the bilinear form a(., .) is coersive. This is because

a(u, u) =

∫
Ω

|∇u|2 dx+

∫
Ω

|u|2 dx = ‖u‖2
H1(Ω) .

Therefore

a(u, u) ≥ α‖u‖2
H1(Ω), (α = 1).

3) Moreover, the bilinear form a(., .) is coersive. This is because

|l(v)| =

∣∣∣∣∫
Ω

f.v dx

∣∣∣∣ ≤ (∫
Ω

|f |2 dx
)1/2(∫

Ω

|v|2 dx
)1/2

≤ ‖f‖L2(Ω)‖v‖L2(Ω)

≤ c ‖v‖L2(Ω)

≤ c ‖v‖H1(Ω) .

with

c = ‖f‖L2(Ω) < +∞ because f ∈ L2(Ω).

With all the assumptions of the Lax-Milgram theorem satisfied, we deduce that the variational

problem (Pc) has a unique solution u in H1(Ω).

Remark 4.1 :

According to Theorem (3.2) this solution is the unique element of H1(Ω) which minimizes the func-

tional

J(v) =
1

2

∫
Ω

( n∑
i=1

| ∂v
∂xi
|2 + |v|2dx

)
−
∫

Ω

fvdx. (4.1)

in the space H1(Ω).
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4.3 Second-order elliptic equation in R

Problem 01: Let I = ]0, 1[ . Find u : I −→ R verifying

(Pc)

 −
d2u

dx2
+ u = f on I

u (0) = u (1) = 0
,

where f is a given function in L2 (I) .

Variational formulation of (Pc):

Let u be a regular element (u ∈ C2
(
I
)
) solution of (Pc) and let v ∈ H1

0 (I) be a test function.

Multiplying by v in (Pc) and integrating from 0 to 1, we get∫ 1

0

(
−d

2u

dx2
v + uv

)
dx =

∫ 1

0

fvdx.

Integrating by parts, we obtain

−
∫ 1

0

d2u

dx2
vdx = −

[
u
′
v
]1

0
+

∫ 1

0

u
′
v
′
dx.

We have v ∈ H1
0 (I) , then

v (0) = v (1) = 0,

(note that this property is satisfied by the u solution), it remains∫ 1

0

(
u
′
v
′
+ uv

)
dx =

∫ 1

0

fvdx.

we get u ∈ V = H1
0 (I) and

(PDV) a (u, v) = ` (v) , ∀v ∈ V,

with

a (u, v) =

∫ 1

0

(
u
′
v
′
+ uv

)
dx,

and

` (v) =

∫ 1

0

fvdx.

The problem of finding u ∈ H1
0 (I) satisfying (PV ) is called the variational formulation of the

boundary value problem (Pc).

4.3. Second-order elliptic equation in R 78



Chapter 4. Applications in some problems

Existence and uniqueness of the solution of (PV)

1) The bilinear form a(., .) is continuous, in fact, for v ∈ H1
0 (I), we obtain

|a (u, v)| =

∣∣∣∣∫ 1

0

(
u
′
v
′
+ uv

)
dx

∣∣∣∣
≤

∫ 1

0

∣∣∣u′v′∣∣∣ dx+

∫ 1

0

|uv| dx

Ch-Sc
≤

(∫ 1

0

∣∣∣u′∣∣∣2 dx) 1
2
(∫ 1

0

∣∣∣v′∣∣∣2 dx) 1
2

+

(∫ 1

0

|u|2 dx
) 1

2
(∫ 1

0

|v|2 dx
) 1

2

≤
∥∥∥u′∥∥∥

L2(I)

∥∥∥v′∥∥∥
L2(I)

+ ‖u‖L2(I) ‖v‖L2(I) .

then

|a (u, v)| ≤ ‖u‖H1
0 (I) ‖v‖H1

0 (I) .

Therefore a (., .) is continuous on H1
0 (I)×H1

0 (I) .

2) The coercivity of a (., .) : For v ∈ H1
0 (I), we have

a (v, v) =

∫ 1

0

(
v
′
)2

dx+

∫ 1

0

v2dx

=
∥∥∥v′∥∥∥2

L2(I)
+ ‖v‖2

L2(I) = ‖v‖2
H1(I) .

Therefore a (., .) is coersive (α = 1).

3) Continuity of ` (.) : For v ∈ H1
0 (I) , we have

|` (v)| =

∣∣∣∣∫ 1

0

fvdx

∣∣∣∣ ≤ ∫ 1

0

|f | |v| dx

Ch-Sc
≤
(∫ 1

0

|f |2 dx
) 1

2
(∫ 1

0

|v|2 dx
) 1

2

= ‖f‖L2(I) . ‖v‖L2(I)

≤ c ‖v‖H1
0 (I) .

Then ` (.) is continous in H1
0 (I) .

Using the Lax-Milgram theorem, we obtain the existence of a unique u ∈ H1
0 (I) solution of (PV).

Then, the weak solution of (PV ) is the classical solution u ∈ C2
(
I
)

of (Pc) .
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Regularity and return to the classic solution

Let u ∈ H1
0 (I) be a solution of (PV) .

We have u ∈ H1
0 (I) , so

u (0) = u (1) = 0,

the boundary conditions of (Pc) are verified.

As D (I) = H1
0 (I) , then ∫ 1

0

(
u
′
ϕ
′
+ uϕ

)
dx =

∫ 1

0

fϕdx, ∀ϕ ∈ D (I) ,

therefore ∫ 1

0

u
′
ϕ
′
dx =

∫ 1

0

(f − u)ϕdx, ∀ϕ ∈ D (I) .

as a result 〈
Tu′ , ϕ

′
〉
D′×D

=
〈
− (Tu′ )

′
, ϕ
〉
D′×D

= 〈−Tu′′ , ϕ〉D′×D =
〈
Tf−u, ϕ

′
〉
D′×D

.

Hence: −Tu′′ = Tf−u, which shows that u′′ = u− f ∈ L2 (I) because

f ∈ L2 (I) and u ∈ H1
0 (I) =⇒ u ∈ L2 (I) .

Since

u ∈ H1
0 (I) =⇒ u

′ ∈ L2 (I) ,

it comes u ∈ H2 (I) and

u
′′

= u− f in the sense of distributions.

We have u ∈ H1
0 (I) ⊂ H1 (I) ↪→ C

(
I
)
, according to the trace theorem, then u− f ∈ C

(
I
)

hence

u ∈ C2
(
I
)

and that

−d
2u

dx2
+ u = f on I.

Finally, the solution u ∈ H1
0 (I) of (PV) is therefore a classical solution of (Pc).

Remark 4.2 If we only assume f ∈ C(I), the variational problem defined in (PV ) also has a unique

solution u ∈ H1
0 (I), which can be easily characterized as u ∈ H2(I) and{

u
′′

= u− f a.e on I

u (0) = u (1) = 0
.
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Problem 02: Let I = ]0, 1[ . Find u : I −→ R such that

(Pc)

 −
d2u

dx2
+ u = f on I

u (0) = α, u (1) = β
,

where f is a given function (in C(I) or in L2(I)) and the boundary conditions

u(0) = α and u(1) = β,

are called non-homogeneous Dirichlet conditions.

Let u0 be a regular function such that u0(0) = α and u0(1) = β, and let û = u− u0, then −
d2û

dx2
+ ũ = f +

d2u0

dx2
− u0 on I

û (0) = û (1) = 0.

This brings us back to the homogeneous problem for û (Problem 01).

Problem 03:

Let I =]0, 1[. Find u : I −→ R verifying

(Pc)

 −
d2u

dx2
+ u = f on I

u′(0) = u′(1) = 0
,

where f is a given function (for example in C
(
I
)
, or in L2(I)).

Variationnel Formulation of (Pv)

Let u solution of (Pc) and let v ∈ H1(I) test function. Multiplying by v in (Pc) and integrating

from 0 to 1, we get ∫ 1

0

(
u
′
v
′
+ uv

)
dx =

∫ 1

0

fvdx.

We put

a (u, v) = 〈u, v〉H1(I) =

∫ 1

0

(
u
′
v
′
+ uv

)
dx,

and

` (v) =

∫ 1

0

fvdx,

with f ∈ C
(
I
)
.

As in problem 1, we can apply the Lax-Milgram theorem, which gives the existence of a unique

u ∈ H1 (I) verifying

(PV) a (v, v) = ` (v) , ∀v ∈ H1 (I)
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Regularity: Let u ∈ H1 (I) solution of (PV) .

As D (I) ⊂ H1 (I) , then ∫ 1

0

(
u
′
ϕ
′
+ uϕ

)
dx =

∫ 1

0

fϕdx, ∀ϕ ∈ D (I) ,

therfore ∫ 1

0

u
′
ϕ
′
dx =

∫ 1

0

(f − u)ϕdx, ∀ϕ ∈ D (I) .

as a result 〈
Tu′ , ϕ

′
〉
D′×D

=
〈
− (Tu′ )

′
, ϕ
〉
D′×D

= 〈−Tu′′ , ϕ〉D′×D =
〈
Tf−u, ϕ

′
〉
D′×D

.

Hence −Tu′′ = Tf−u, which shows that

u
′′

= u− f ∈ L2(I),

because

f ∈ C
(
I
)

=⇒ f ∈ L2 (I) and u ∈ H1 (I) =⇒ u ∈ L2 (I)).

As we also have u′ ∈ L2 (I) , it comes u ∈ H2 (I) and u′′ = u− f in the sense of distributions. As

u− f ∈ C
(
I
)
, by using the trace theorem, we obtain

f ∈ C
(
I
)

and u ∈ H1 (I) ↪→ C
(
I
)
,

and

u
′′

= u− f ∈ C
(
I
)
, u
′′

= u− f ∈ L2 (I) ⊂ L1 (I)⇒ u ∈ C2
(
I
)
,

then

−d
2u

dx2
+ u = f, on I.

Let’s find the boundary conditions verified by u. Integrating by parts parts, we obtain

−
∫ 1

0

d2u

dx2
vdx = −

[
u
′
v
]1

0
+

∫ 1

0

u
′
v
′
dx,

therefore ∫ 1

0

u
′
v
′
dx =

[
u
′
v
]1

0
−
∫ 1

0

d2u

dx2
vdx,

but

a (v, v) = ` (v)⇔
∫ 1

0

u
′
v
′
dx+

∫ 1

0

uvdx =

∫ 1

0

fvdx

⇔
∫ 1

0

u
′
v
′
dx =

∫ 1

0

(f − u) vdx.
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Hence [
u
′
v
]1

0
−
∫ 1

0

d2u

dx2
vdx =

∫ 1

0

(f − u) vdx

=⇒
[
u
′
v
]1

0
+

∫ 1

0

(
−d

2u

dx2
+ u− f

)
vdx = 0.

−d
2u

dx2
+ u = f ⇒

∫ 1

0

(
−d

2u

dx2
+ u− f

)
vdx = 0,

then [
u
′
v
]1

0
= 0, ∀v ∈ H1 (I) .

Let’s choose v (t) = t, we have v ∈ H1 (I) which gives

u
′
(1) = 0,

and for v (t) = 1− t, we get v ∈ H1 (I) which implies

u
′
(0) = 0.

The solution u ∈ H1 (I) of (PV) is therefore the solution to the boundary problem

(Pc)

 −
d2u

dx2
+ u = f on I

u
′
(0) = u

′
(1) = 0

.

Remark 4.3 : Assuming only f ∈ L2 (I), the variational problem defined in (PV) also has a unique

solution u ∈ H1 (I) which we characterize by u ∈ H2 (I) and

(Pc)

 −
d2u

dx2
+ u = f a.e on I

u
′
(0) = u

′
(1) = 0
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4.4 Exercises

Exercise 4.1:—————————————————————————————————————

Let I = ]0, 1[ and u : I −→ R such that

(Pc)

 −
d2u

dx2
+ u = f on I

u (0) = u (1) = 0
,

where f ∈ L2 (I).

1- Show that any solution of (Pc) is a solution of a problem (PV ) of the form

(PV )

{
Found u ∈ H1

0 (I) such that

a (u, v) = ` (v) , ∀v ∈ H1
0 (I)

,

2- Prove that the problem (PV ) has a unique solution.

Exercise 4.2:—————————————————————————————————————

Let I = ]0, 1[ , and a map u : I −→ R verify

(Pc)

 −
d2u

dx2
+ u = f on I

u (0) = a, u (1) = b
,

whre f is a given function in L2 (I) and a, b ∈ R∗ .

1- Prove that the problem (Pc) has a unique solution

2- Same question, using the following Neumann conditions

u′ (0) = α, u′ (1) = β, ∀(α, β) 6= (0, 0).

Exercise 4.3:————————————————————————————————————-

Let f ∈ L2(Ω). Consider the problem

(1)

{
−4u = f in Ω
∂u
∂η

= g on ∂Ω
,

The solution of this problem is defined up to a constant. To remove this indeterminacy, we will

search for u in the quotient space

V = {v ∈ H1(Ω),

∫
Ω

v(x)dx = 0},

if u ∈ H2(Ω) is the solution of (1), then we necessarily have the following condition :∫
Ω

fdx = 0.
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1- Prove that V is a Hilbert space equipped with the norm of H1(Ω).

2- One can show (by a proof by contradiction and using the fact that H1(Ω) is compactly embed-

ded into L2(Ω)) that there exists a strictly positive constant C such that:∫
Ω

v2dx ≤ C

∫
Ω

|∇v|2dx,∀v ∈ V. (2)

From this, deduce that V is a Hilbert space for the norm :

‖v‖V = (

∫
Ω

|∇v|2dx)1/2.

3- Write the variational formulation PV associated with the problem

{Find u ∈ V solution of (1)}.

Show that it has a unique solution.

4- Deduce the existence and uniqueness of a solution for the problem PV .

Exercise 4.4:—————————————————————————————————————

Let Ω be a bounded, regular open set of class C1, f ∈ C(Ω) and g ∈ C(Ω) be two given functions,

and β a positive real number. We consider the problem: Find u ∈ C2(Ω) such that

(1)

{
−4u = f in Ω

βu+ ∂u
∂ν

= g on ∂Ω
,

When β > 0, we say that the boundary condition βu+ ∂u
∂ν

= g is of Robin type (or Fourier).

1- Prove that any solution of (1) is a solution of problem

(2)

{
find u ∈ V such that

a (u, v) = ` (v) , ∀v ∈ V
,

where V = C1(Ω) and a(., .), L(.) are bilinear and linear forms that will be specified.

2- Show that if β > 0, problem (2) has at most one solution, and the same holds for problem (1).

Exercise 4.5:—————————————————————————————————————

Let Ω be a bounded, regular open set in Rn. We consider the plate equation

(1)


4 (4u) = f in Ω

u = 0
∂u
∂η

= 0
on ∂Ω

Let X be the space of functions v in C2(Ω) such that v and ∂v
∂η

vanish on ∂Ω. Suppose u is a

function in C4(Ω).
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Show that u is a solution of the boundary value problem (1) if and only if u belongs to X and

satisfies the equality∫
Ω

(4u(x)) (4v(x)) dx =

∫
Ω

f(x)v(x)dx, for any fonction v ∈ X.

Exercise 4.6:—————————————————————————————————————

Using the variational approach, demonstrate the existence and uniqueness of the solution of

(1)

{
−4u+ u = f in Ω

u = 0 on ∂Ω
,

Where Ω is an arbitrary open set in the space Rn and f ∈ L2(Ω).

In particular, show that adding a zero-order term to the Laplacian allows us not to require the

assumption that Ω is bounded.

Exercise 4.7:—————————————————————————————————————

Demonstrate that the unique solution u ∈ H1(Ω) of the variational formulation∫
Ω

(∇u.∇v + uv)dx =

∫
∂Ω

gvds+

∫
Ω

fvdx, ∀v ∈ H1(Ω)

satisfies the following energy estimate

‖u‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

Where C > 0 is a constant that does not depend on u, f and g.

Exercise 4.8:—————————————————————————————————————

Assuming that Ω is a bounded open set in Rn and f ∈ (L2(Ω))
n, show the existence and unique-

ness of a weak solution in (H1
0 (Ω))

n to the Lamé system

−µ4u− (µ+ λ)∇(divu) = f in Ω.

Verify that we can weaken the assumptions of positivity on the Lamé coefficients by assuming

only that

µ > 0, and 2µ+ λ > 0.

Exercise 4.9:—————————————————————————————————————

Let V be the space of velocity fields with zero divergence defined by

V =

v ∈ H1
0 (Ω)n : divv =

N∑∂vi
∂xi

i=1

= 0 a.e. in Ω.


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Let J(v) the energy defined for v ∈ V by

J(v) =
1

2

∫
Ω

µ |∇v|2 dx−
∫

Ω

f.vdx

Let u ∈ V the unique solution of the variational formulation∫
Ω

µ∇u.∇vdx =

∫
Ω

f.vdx, ∀v ∈ V.

Prove that u is also the unique minimum point of the energy, that is

J(u) = min
v∈V

J(v).

Conversely, demonstrate that if u ∈ V is a minimum point of the energy J(v), then u is the unique

solution of the variational formulation.

Exercise 4.10:———————————————————————————————————–

Let V be a Hilbert space. According to the conditions of the Lax-Milgram theorem, the varia-

tional problem

(PV )

{
Find u ∈ V such that

a (u, v) = ` (v) , ∀v ∈ V
,

is equivalent to problem :

{Find u ∈ V such that : Au = F}.

Prove that the operator A is a bijection from V to V.

Exercise 4.11:———————————————————————————————————–

For a Lipschitz domain Ω ∈ Rn and a function A ∈ C1(Ω,Rn×n), find the weak formulation

for the problem

(1)

{
−div(AOu) = f in Ω

u = 0 on ∂Ω
,
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Correction of exercises

5.1 First chapter exercises

Exercice 1.2—————————————————————————————————————

Let Ω be an open set in Rn. Then T ∈ D′(Ω) if and only if for every compact K ⊂ Ω,

∃c > 0, ∃m ∈ N,∀ϕ ∈ DK(Ω), | 〈T, ϕ〉 | ≤ c
∑
α∈Nn
|α|≤m

sup
x∈K
|Dαϕ(x)| , (5.1)

1- Let K be a compact of Ω. If ϕ ∈ D (Ω), we get

|〈Tf , ϕ〉| ≤
∫
Ω

|f(x)| . |ϕ(x)| dx ≤ ‖f‖L1(K) . ‖ϕ‖L∞(K) .

This implies that the continuity criterion (5.1) is verified with

C = ‖f‖L1(K) and m = 0.

Then, all functions f ∈ L1
loc(Ω) define a distribution Tf on Ω, which is of order 0.

2- Similarly, we have

|〈δx0 , ϕ〉| = |ϕ(x0)| ≤ ‖ϕ‖L∞(K) , ϕ ∈ D (Ω) ,

which implies that the condition (5.1) is verified with

C = 1 and m = 0.

The distribution δx0 is therefore of order 0.
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3- Prove that the vp( 1
x
) distribution is of order 1. Let K be a compact of R, there exists a > 0 such

that

〈vp1

x
, ϕ〉 = lim

ε→0

∫
|x|≥ε

ϕ(x)

x
dx = lim

ε→0

[∫ ε

−∞

ϕ(x)

x
dx+

∫ +∞

ε

ϕ(x)

x
dx

]
, ∀x ∈ D (R) .

we can write

〈vp1

x
, ϕ〉 = |

∫ a

0

ϕ(x)− ϕ(−x)

x
dx|

= |
∫ a

0

∫ 1

−1

ϕ′(ux)dudx| ≤ 2a‖ϕ′‖C(K).

which implies that the condition (5.1) is verified with

C = 2a and m = 1.

The distribution vp( 1
x
) is therefore of order 1.

Exercice 1.3————————————————————————————————————–

Let p a reel such that 1 < p ≤ +∞, (fk) a sequence of functions of Lp(Ω) verify:

∃C > 0, ∀k ∈ N, ‖fk‖p ≤ C.

∃T ∈ D′(Ω), T = lim
k→+∞

[fk] .

Show that T is the regular distribution associated with a element of Lp(Ω). Let q such that 1
p

+ 1
q

=

1, we have

∀u ∈ D(Ω), | < T, u >= lim
k→+∞

| < [fk], u > | ≤ C‖u‖Lq(Ω).

Let ϕ be the mapping:

D(Ω) → C

u → ϕ(u) = (T, u),

ϕ is linear and continuous on D(Ω) equipped with the topology of Lq(Ω), where q satisfies

1 ≤ q < +∞, D(Ω) is dense in Lq(Ω), ϕ admits a unique linear and continuous extension from

Lq(Ω) to C. In other words, there exists:

f ∈ Lp(Ω), ϕ(u) = (T, u) =

∫
Ω

f(x)u(x)dx.
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Exercice 1.4:————————————————————————————————————–

A- We have

< T, ϕ > = < Tf , ϕ
′ > + < δ0, ϕ

′ >= − < (Tf )
′, ϕ > −′ < δ′0, ϕ >

= < −(Tf )
′ − δ′0, ϕ >, ∀ϕ ∈ D(R).

In other words,

T = −(Tf )
′ − δ′0 in D′(R).

Which implies that T is of order 1.

2. If f is derivable in R∗ and f(0+) and f(0−) exist, then using the jump formula, we obtain

(Tf )
′ = Tf ′ + (f(0+)− f(0−))δ0.

Taking into account the result of the first question, it follows that

T = Tf ′ + (f(0+)− f(0−))δ0 − δ′0 in D′(R).

Exercise 1.6:————————————————————————————————————–

To prove that the function

u(x, t) = f(t− x), (t, x) ∈ R× R,

in the space L1
loc(R×R), we need to show that it is locally integrable, which means that its integral

over any compact K subset of R× R is finite.

Then, for any ε > 0, we can find a compact subset K1 ⊂ R such that K ⊂ K1 × R . Since f is

locally integrable, we have:

∃M1 > 0,

∫
K1

|f(x)|dx < M1.

Then ∫
K

|u(x, t)|dxdt =

∫
K1

∫
R
|f(y)|dydx, y = t− x.

Therefore, ∫
K

|u(x, t)|dxdt = M1Mes(K1) < +∞.

Since the integral of |u(x, t)| over any compact subset K of R × R is finite, u(x, t) = f(t − x) is

locally integrable on R× R, then

u(x, t) ∈ L1
loc(R× R).
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Exercice 1.7—————————————————————————————————————

Consider the sequence of functions (fn)n≥1 defined on R by:

fn(x) =


0, x ≤ − 1

n

n2
(

1
n

+ x
)
, − 1

n
≤ x ≤ 0

n2
(

1
n
− x
)
, 0 ≤ x ≤ 1

n

0, x ≥ 1
n

1) Study the convergence of the sequence (fn)n≥1 in L2(R), L1(R) and D′(R).

(a) Convergence in L2(R):

For any n ≥ 1, the function fn(x) is zero almost everywhere except in the interval − 1
n
≤ x ≤ 1

n
.

In this interval, fn(x) is bounded by n2, and its integral over the entire real line is finite∫ +∞

−∞
|fn(x)|2dx =

∫ 0

− 1
n

n4(
1

n
+ x)2dx+

∫ + 1
n

0

n4(
1

n
− x)2dx =

2n

3
.

So

lim
n→∞

∫ ∞
−∞
|fn(x)|2dx = +∞.

Therefore, the sequence (fn)n≥1 isn’t converges in L2(R).

(c) Convergence in D′(R):

We need to show that the sequence (fn)n≥1 converges in the space of distributions D′(R). Let’s

consider a test function ϕ ∈ D(R). We have fn ∈ L1
loc(R), so it defines a regular distribution The

distributional limit of fn is given by

lim
n→∞

(fn, ϕ) = lim
n→∞

∫ +∞

−∞
fn(x)ϕ(x)dx.

According to the mean value theorem, we have

∀x ∈ R,∃θ(x) such that : ϕ(x) = ϕ(0) + xϕ′(θ(x)).

Now, we can calculate the integral∫ +∞

−∞
fn(x)ϕ(x)dx =

∫ + 1
n

− 1
n

fn(x)(ϕ(0) + xϕ′(θ(x)))dx

= ϕ(0)

∫ +1/n

−1/n

fn(x)dx+

∫ +1/n

−1/n

xfn(x)ϕ′(θ(x))dx

= ϕ(0) +

∫ +1/n

−1/n

xfn(x)ϕ′(θ(x))dx

≤ ϕ(0) +max
t∈R
|ϕ′(t)|

∫ +1/n

−1/n

xfn(x)dx

≤ ϕ(0) +
2

n
max
t∈R
|ϕ′(t)
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Thus, we have:

lim
n→∞

(fn, ϕ) = lim
n→∞

∫ +∞

−∞
fn(x)ϕ(x)dx = ϕ(0).

This means that the distributional limit of fn is the Dirac distribution δ at x = 0. Hence, the

sequence (fn)n≥1 converges in D′(R) to the Dirac distribution δ.

3- Suppose there exists a function fδ ∈ L1
loc(R) such that

〈δ, ϕ〉 =

∫
Rn
fδϕ(x)dx,

for all test functions ϕ ∈ D(R). Then, by the definition of the Dirac distribution, we have

ϕ(0) =

∫
R
fδ(x)ϕ(x)dx,∀ϕ ∈ D(R).

However, there is no locally integrable function fδ that satisfies this condition, as the integral on

the right-hand side will always be 0 for any test function ϕ whose support does not include the

origin. But on the left-hand side, ϕ(0) can take non-zero values. This contradiction shows that

such a function fδ cannot exist in L1
loc(R).

Therefore, there is no function fδ ∈ L1
loc(R) that satisfies

〈δ, ϕ〉 =

∫
Rn
fδϕ(x)dx.

Exercice 1.10:———————————————————————————————————–

Let Ω =]a, b[ where (a < b). We want to show that if a distribution u ∈ D′(]a, b[) has a zero

derivative (in the sense of distributions), then u is a constant function.

To prove this, let’s assume that u has a zero derivative, i.e., u′ = 0 as a distribution. We want to

show that this implies u is constant.

Suppose u is not constant; that means

∃x1, x2 ∈]a, b[, x1 6= x2, u(x1) 6= u(x2).

Without loss of generality, assume u(x1) < u(x2). Since u is a distribution, we can find two test

functions

ϕ1, ϕ2 ∈ D(]a, b[) such that ϕ1(x1) 6= ϕ2(x2).

Now consider the test function ϕ = ϕ2 − ϕ1. We get

ϕ ∈ D(]a, b[), and ϕ 6= 0.

However, we have: (u′, ϕ) = 0( since u = 0 as a distribution). By integration by parts, we get:

(u, ϕ′) = 0,∀ ϕ′ ∈ D(]a, b[)⇒ u = 0,
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which contradicts our assumption that u(x1) 6= u(x2). Therefore, our initial assumption that u is

not constant must be false. Thus, if u has a zero derivative (in the sense of distributions) on ]a, b[,

then u must be a constant function.

Exercice 1.11:———————————————————————————————————–

We consider the function k defined on R2 as follows:

k(x, t) = 0, if t < 0,

k(x, t) =
1√
4πt

exp(− 1

4t
), if t > 0.

1) To show the properties of k:

a) As t approaches 0, the term 1√
4πt

exp(− 1
4t

) in the expression for k becomes infinitely large, thus,

lim
t→0+

k(0, t) = +∞.

When x tends to 0, both cases of the definition of k yield 0, hence

lim
x→0

k(x, t) = 0.

b) Prove that
∫ +∞
−∞ k(x, t)dx = 1 for all t > 0.

We can calculate the integral for t > 0 as follows:∫ +∞

−∞
k(x, t)dx =

∫ +∞

0

1√
4πt

exp

(
− 1

4t

)
dx = 1.

c) Prove that
∫ +∞
−∞ k(x, t)dx = 1 for all t < 0.

Since t < 0, the integral over the whole real line is equal to 0 because k(x, t) = 0 for t < 0. Hence,∫ +∞

−∞
k(x, t)dx = 0, ∀t < 0.

2) To compute ∂2k
∂t∂x

and
(
∂
∂t
− ∂2

∂x2

)
k in the sense of distributions.

a) Calculate ∂2k
∂t∂x

:

We differentiate k(x, t) with respect to t and then with respect to x, we get

∂k

∂t
=

0, if t < 0,

− 1
8
√
π

1
t3/2

exp
(
− 1

4t

)
, if t > 0,

∂2k

∂t∂x
=

0, if t < 0,

1
32
√
π

1
t5/2

exp
(
− 1

4t

)
, if t > 0.
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b) Compute
(
∂
∂t
− ∂2

∂x2

)
k, we obtain

(
∂

∂t
− ∂2

∂x2

)
k =

0, if t < 0,(
− 1

8
√
π

1
t3/2
− 1

32
√
π

1
t5/2

)
exp

(
− 1

4t

)
, if t > 0.

Again, it is important to note that these derivatives are calculated in the sense of distributions, as

the function has some singularities at t = 0.

5.2 Seconde chapter exercises

Exercise 2.1:————————————————————————————————————-

Let u be an application from R to R defined by

x→ u(x) =


x x ∈ [0, 1] ,

−x+ 2 x ∈ [1, 4] ,

0 elsewhere

1- Does the application u belong to H1(R)?

To determine whether the function u belongs to the Sobolev space H1(R), we need to check if it

is locally integrable on R and if its weak derivative is square-integrable on R.

a- Let’s check if u is locally integrable: Since u is piecewise defined, it is locally integrable on each

subinterval.

On [0, 1], u(x) = x is continuous, and thus locally integrable.

On [1, 4], u(x) = −x+ 2 is also continuous and thus locally integrable.

On the intervals outside [0, 4], u(x) = 0, and it is trivially locally integrable.

Since u is locally integrable on each interval, it is locally integrable on R, it means u ∈ L2(R). En

effet, ∫
R
|u(x)|2dx =

8

3
.

b- Next, let’s find if the weak derivative ∂xu ∈ L2(R) On a

x→ u′(x) =


1 x ∈ [0, 1] ,

−1 x ∈ [1, 4] ,

0 elsewhere

Since the function u belongs to L2(Ω), thus it defines a distribution Tu sur R, et pour ϕ ∈ D(R, on

a

< T ′u, ϕ >= − < Tu, ϕ
′ >= −

∫ 1

0

xϕ′(x)dx−
∫ 4

1

(−x+ 2)ϕ′(x)dx.
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On intègre par parties, on obtient

< T ′u, ϕ > = −(xϕ(x)|10 −
∫ 1

0

ϕ(x)dx)− ((−x+ 2)ϕ(x)|41 −
∫ 4

1

ϕ(x)dx)

=

∫ 1

0

ϕ(x)dx+

∫ 4

1

ϕ(x)dx+ 2ϕ(4)

=

∫ 1

0

ϕ(x)dx+

∫ 4

1

ϕ(x)dx+ 2(δ4, ϕ).

Therefore, u is not belongs to H1(R) because δ4 /∈ L2(R).

2- Now, let’s find the open intervals I of R for which the restriction of u to I is in H1(I).

Any open interval I of R not containing 4 will satisfy u ∈ H1(I).

Exercice 2.3:————————————————————————————————————-

Let (r, θ) be the polar coordinates of R2 and

Ω =
{

(r, θ), 0 < r < 1, 0 < θ <
π

4

}
.

Let α be a real number in R. We denote by fα the mapping from Ω to R, defined as

fα(r, θ) = rα.

1- For which values of α does fα belong to L2(Ω)?

The function fα(r, θ) belongs to L2(Ω) if the integral of its square over the domain Ω is finite. In

other words, we need to check if the following integral is finite∫
Ω

|fα(r, θ)|2rdrdθ =

∫ 1

0

∫ π
4

0

|rα|2rdθdr

Let’s compute this integral ∫ 1

0

∫ π
4

0

|rα|2rdrdθ =
π

4

∫ 1

0

r2α+1dr.

So, the function fα(r, θ) = rα belongs to L2(Ω) for 2α + 1 > 0 i.e. α > −1/2.

2- For which values of α, does fα belong to H1(Ω)?

The function fα(r, θ) belongs to H1(Ω) if it is in L2(Ω) and its first-order partial derivatives with

respect to r and θ are also in L2(Ω). The partial derivatives of fα are given by:

∂fα
∂r

= αrα−1,
∂fα
∂θ

= 0.

Now, let’s check the square integrability of these derivatives:∫
Ω

∣∣∣∣∂fα∂r
∣∣∣∣2 rdrdθ =

∫ 1

0

∫ π
4

0

∣∣αrα−1
∣∣2 dθrdr

=

∫ 1

0

∫ π
4

0

α2r2α−1drdθ
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This integral is finite if and only if 2α− 1 ≥ 0.

Therefore, the function fα(r, θ) = rα belongs to H1(Ω) for α ≥ 1
2
.

Exercise 2.6:————————————————————————————————————-

To show that there cannot be a notion of trace for functions in L2(Ω), we’ll assume the contrary,

i.e., there exists a constant C > 0 such that for all v ∈ L2(Ω), the following inequality holds:

‖v|∂Ω‖L2(∂Ω) ≤ C ‖v‖L2(Ω)

where v|∂Ω represents the restriction of v to the boundary ∂Ω.

Method 1:

Let’s construct a counterexample to disprove this assumption. Consider the following function

vn ∈ L2(Ω) defined as follows:

vn(r, θ) = {nr−
1
2 for r ∈ (0, 1/n) and 0 otherwise}.

where n is a positive integer. The domain Ω is given as:

Ω =
{

(r, θ) | 0 < r < 1, 0 < θ <
π

4

}
.

Now, let’s calculate the L2 norms of vn and its trace on ∂Ω.

‖vn‖2
L2(Ω) =

∫ 1

0

∫ π
4

0

|vn(r, θ)|2dθdr =

∫ 1

0

∫ π
4

0

∣∣∣nr−1
2

∣∣∣2 dθdr
= n2

∫ 1

0

∫ π
4

0

1

r
dθdr = 0,

and

‖vn|∂Ω‖
2
L2(∂Ω) =

∫
∂Ω

|vn(r, θ)|2dθ =

∫ π
4

0

|vn|2dθ = n2 · π
4
. (5.2)

Now, let’s look at the assumed inequality:

n2 · π
4

= ‖vn|∂Ω‖L2(∂Ω) ≤ C ‖vn‖L2(Ω) = 0.

Therefore, there is no constant C that can satisfy the inequality for all vn. Hence, we have a

contradiction, and our initial assumption was false. Therefore, there cannot be a notion of trace

for functions in L2(Ω).

Method 2:

To simplify matters, let’s choose the open set Ω to be the unit ball. Construct a sequence of smooth

functions in Ω equal to 1 on ∂Ω, and in the norm L2(Ω), it tends towards zero.
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Let T be a reguler function of [0,+∞[ in R+ such that T (0) = 1, T (s) = 0 for s > 1 and

0 ≤ T (s) ≤ 1 for all s. The sequence un of functions from the ball Ω to R is defined as

un(x) = T (n(1− |x|)). (5.3)

For every n and for every x ∈ ∂Ω, |un(x)| = 1. Furthermore, the sequence un(x) is bounded by 1

for every x ∈ Ω. Moreover, un(x) = 0for every x belonging to the ball of radius 1 − 1/n and for

any C for n large enough

‖un‖L2(∂Ω) = ‖u0‖L2(∂Ω) > C‖un‖L2(Ω).

The trace operator defined from C(Ω) ∩ L2(Ω) to L2(∂Ω) is not continuous. Consequently, it can-

not be extended to a continuous mapping from L2(Ω) in L2(∂Ω).

Exercise 2.11:————————————————————————————————————

To show that the norms ‖.‖W 1,p(I) and |‖.‖|W 1,p(I) are equivalent, we need to show that there exist

positive constants C1 and C2 such that for any function u in the Sobolev space W 1,p(I), the fol-

lowing inequalities hold:

C1 ‖u‖W 1,p(I) ≤ |‖u‖|W 1,p(I) ≤ C2 ‖u‖W 1,p(I) ,

where ‖u‖W 1,p(I) and |‖u‖|W 1,p(I) are the norms defined in the question.

Let’s start by proving the first inequality:

C1 ‖u‖Lp(I) + C1 ‖u′‖Lp(I) ≤ ‖u‖W 1,p(I) ,

where C1 = 1. Using the Minkowski inequality for Lp norms, we have:

‖u‖Lp(I) + ‖u′‖Lp(I) = ‖u‖Lp(I) + ‖u′‖Lp(I) · 1

≤ ‖u‖Lp(I) + ‖u′‖Lp(I) · ‖1‖Lp(I)

≤ ‖u‖Lp(I) + ‖u′‖Lp(I) · ‖u‖Lp(I)

=
(

1 + ‖u′‖Lp(I)

)
‖u‖Lp(I)

Since 1 + ‖u′‖Lp(I) > 1 (as p > 1), we can take

C1 = 1 + ‖u′‖Lp(I)

to get the desired inequality:

‖u‖Lp(I) + ‖u′‖Lp(I) ≤
(

1 + ‖u′‖Lp(I)

)
‖u‖Lp(I) = C1 ‖u‖Lp(I)
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Now, let’s prove the second inequality

‖u‖W 1,p(I) ≤ C2 ‖u‖Lp(I) + C2 ‖u′‖Lp(I)

where

C2 = 21/p + 1.

We start by applying the Minkowski inequality for Lp norms to the definition of the norm |‖u‖|W 1,p(I):

|‖u‖|W 1,p(I) =
(
‖u‖pLp(I) + ‖u′‖pLp(I)

)1/p

=
(
‖u‖pLp(I) + ‖u′‖pLp(I) · 1

)1/p

≤
(
‖u‖pLp(I) + ‖u′‖pLp(I) · ‖1‖Lp(I)

)1/p

=
(
‖u‖pLp(I) + ‖u′‖pLp(I)

)1/p

= ‖u‖W 1,p(I)

Now, since p > 1, we can apply Young’s inequality to the sum inside the norm:

‖u‖W 1,p(I) =
(
‖u‖pLp(I) + ‖u′‖pLp(I)

)1/p

≤
(
‖u‖pLp(I) +

(
‖u′‖pLp(I)

)1/(p−1)
)1/p

=
(
‖u‖pLp(I) + ‖u′‖Lp(I)

)1/p

=
(
‖u‖pLp(I) + ‖u′‖Lp(I) · 1

)1/p

≤
(
‖u‖pLp(I) + ‖u′‖pLp(I)

)1/p

= |‖u‖|W 1,p(I)

Therefore, we have shown that the norms ‖.‖W 1,p(I) and |‖.‖|W 1,p(I) are equivalent with

C1 = 1 + ‖u′‖Lp(I) , C2 = 21/p + 1.

Exercise 2.12:————————————————————————————————————

To prove that

∃q∗ > 1 such that ∀q ∈ [1, q∗[, u ∈ W 1,q(Ω),

we need to show that the partial derivatives of u are in Lq(Ω) for q values within the given range.

1) Step 1 : We want to show that u ∈ Lq(Ωα), for q < 2α.∫
Ωα

|u|qdx =

∫
Ωα

|(rα − r)−αsin(αθ)|qdx =

∫ π/α

0

|sin(αθ)|qdx
∫ 1

0

(
1

rα
− rα

)r
rdr.
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On a (
1

rα
− rα

)r
∼ 1

rαq−1
,

which is integrable on ]0, 1[ if and only if αq − 1 < 1, i.e q < 2α.

Hence u ∈ Lq(Ωα), if q < 2α.

2) Step 2 : We want to show that ∂u
∂x
, ∂u
∂y
∈ Lq(Ωα) for q < 2α + 1.

let’s calculate the partial derivatives of u:

∂u

∂r
= −α(rα − r)−α−1(rα−1 − 1) sin(αθ).

∂u

∂θ
= α(rα − r)−α cos(αθ).

But
∂u

∂r
= cos(θ)

∂u

∂x
+ sin(θ)

∂u

∂y
.

1

r

∂u

∂θ
= −sin(θ)

∂u

∂x
+ cos(θ)

∂u

∂y
.

Hence, if ∂u
∂r

and 1
r
∂u
∂θ

are in Lq(Ω) then ∂u
∂x
, ∂u
∂y

will be in Lq(Ω).∫
Ωα

∣∣∣∣∂u∂r
∣∣∣∣q dx =

∫ π/α

0

|αsin(αθ)|qd(θ)

∫ 1

0

∣∣∣∣ 1

rα + 1
− rα−1

∣∣∣∣q rdr.
On a ∣∣∣∣ 1

rα + 1
− rα−1

∣∣∣∣q r ∼ 1

r(α+1)q−1
,

which is integrable on ]0, 1[ if and only if (α + 1)q − 1 < 1, i.e q < 2α + 1, and∫
Ωα

∣∣∣∣1r ∂u∂θ
∣∣∣∣q =

∫ π/α

0

|αcos(αθ)|qd(θ)

∫ 1

0

1

rq

∣∣∣∣ 1

rα
− rα

∣∣∣∣q rdr.
On a ∣∣∣∣ 1

rα + 1
− rα−1

∣∣∣∣q r ∼ 1

r(α+1)q−1
,

which is integrable on ]0, 1[ if and only if (α + 1)q − 1 < 1, i.e q < 2α + 1.

It follows that
∂u

∂x
,
∂u

∂y
∈ Lq(Ωα) for q <

2

α + 1
.

2) We take q∗ = 2
α+1

. Since both partial derivatives are in Lq(Ω) for q < q∗, we can conclude that

u ∈ W 1,q(Ω) for q ∈ [1, q∗[.

2) To calculate −∆u, we need to find the Laplacian of u, which is given by:

∆ =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂u

∂r
+

1

r2

∂2u

∂θ2
.
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Let’s calculate the second derivatives:

∂2u

∂r2
= sin(αθ)(α(α + 1)r−α−2 − α(α− 1)r−α−2).

1

r

∂u

∂r
= sin(αθ)(−αr−α−2 − α(α− 1)r−α−2).

1

r2

∂2u

∂θ2
= −α2sin(αθ)(r−α−2 − rα−2).

While computing the laplacian, we obtains the following results: −∆u = 0.

3) It follows that the PDE {
−∆v = 0 in Ω

v = 0 on ∂Ω
,

has two solutions in W 1,q(Ωα) and the zero function. The problem is that Ωα is not of class C1.

Then we lose the uniqueness of the solution.

Exercise 2.13:———————————————————————————————————–

To show that the canonical injection maps u ∈ H1(Ω) in C0(Ω) is compact, we need to demon-

strate that it maps bounded sets in H1(Ω) to relatively compact sets in C0(Ω).

First, let’s consider a bounded set B in H1(Ω). By definition of H1(Ω), we know that for any

u ∈ B, both u and its derivative u′ are in L2(Ω).

Now, let’s show that the set {u(x) : u ∈ B} is equicontinuous, i.e.,

∀ε > 0,∃δ > 0 such that ∀x, y ∈ Ω, |x− y| < δ ⇒ |u(x)− u(y)| < ε, ∀u ∈ B.

Since B is bounded in H1(Ω), it means that

∃M > 0, ‖u‖H1(Ω) ≤M,∀u ∈ B ⇒ ‖u‖L2(Ω) ≤M1 and ‖u′‖L2(Ω) ≤M2,

for some constants M1 and M2. This implies that |u(x)| ≤ M1 and |u′(x)| ≤ M2 for almost every

x ∈ Ω.

Now, for any x, y ∈ Ω with |x − y| < δ, we can apply the mean value theorem to get: where c is

some point between x and y. So, we can take

δ = ε/M2,

and the set {u(x) : u ∈ B} is equicontinuous.

Since {u(x) : u ∈ B} is bounded and equicontinuous, the Ascoli’s theorem guarantees that it is

relatively compact in C0(Ω). Therefore, the canonical injection from H1(Ω) to C0(Ω) is compact.

Since the injection from H1(Ω) to L2(Ω) is the same as the injection from H1(Ω) to C0(Ω) (as

L2(Ω) is a subspace of C0(Ω)), we can conclude that the canonical injection from H1(Ω) to L2(Ω)

is also compact.
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5.3 Third chapter exercises

Exercise 3.2:————————————————————————————————————-

Let I =]0, 1[ and let a map u : I −→ R which verify

(Pc)

 −
d2u

dx2
+ u = f on I

u′ (0) = α, u′ (1) = β
,

where f is a given function in C (I) and ∀(α, β) 6= (0, 0) .

Show that the problem (Pc) has a unique solution.

Variationnal Formulation (Pc ):

Let u be a regular element (u ∈ C2
(
I
)
) that is a solution of problem (Pc). Let v ∈ H1 (I) be a

test function. By multiplying both sides of (Pc) by v and integrating from 0 to 1, we obtain the

following expression ∫ 1

0

(
−d

2u

dx2
v + uv

)
dx =

∫ 1

0

fvdx.

By performing integration by parts, we obtain

−
∫ 1

0

d2u

dx2
vdx = −

[
u
′
v
]1

0
+

∫ 1

0

u
′
v
′
dx.

Therefore

−
[
u
′
v
]1

0
+

∫ 1

0

u
′
v
′
dx+

∫ 1

0

uvdx =

∫ 1

0

fvdx,

and ∫ 1

0

u
′
v
′
dx+

∫ 1

0

uvdx = βv (1)− αv (0) +

∫ 1

0

fvdx.

for u, v ∈ V = H1 (I)

(PV) a (u, v) = ` (v) , ∀v ∈ V,

with

a (u, v) =

∫ 1

0

(
u
′
v
′
+ uv

)
dx,

and

` (v) = `1 (v) + `2 (v)

with

`1 (v) =

∫ 1

0

fvdx, `2 (v) = βv (1)− αv (0) .

Existence and uniqueness of the solution of (PV):

It is clear that a (., .) is continuous on H1 (I)×H1 (I). Moreover, since

a(v, v) = ‖v‖2
H1(I),
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and a (., .) is coercive on H1(I), it is evident that `1 (.) is continuous on H1 (I). The remaining

part is to show that `2 (.) is continuous on H1 (I).

For every v ∈ V = H1 (I), we have

|`2 (v)| = |βv (1)− αv (0)| ≤ |β| |v (1)|+ |α| |v (0)|

≤ |β| supess
x∈Ω

|v(x)|+ |α| supess
x∈Ω

|v(x)|

≤ |β| ‖v‖L∞ + |α| ‖v‖L∞ .

Since H1 (I) ↪→ L∞ (I) it means that

∃C > 0, ‖v‖L∞(I) ≤ C ‖v‖H1(I) ,

then

|`2 (v)| ≤ C (|β|+ |α|) ‖v‖H1(I) ,

so `1 (.) is continuous in H1 (I) .

Using the Lax-Milgram theorem, we obtain the existence of a unique u ∈ H1 (I) solution of

(PDnV) . Then the solution u ∈ C2
(
I
)

of (Pc) is therefore a solution of (PV).

Regularity and Return to the Classical Solution:

Let u ∈ H1 (I) solution of (PV) .

Since D (I) ⊂ H1 (I) , then βϕ (1)− αϕ (0) = 0 and∫ 1

0

u
′
ϕ
′
dx+

∫ 1

0

uϕdx =

∫ 1

0

fϕdx, ∀ϕ ∈ D (I) ,

therefore ∫ 1

0

u
′
ϕ
′
dx =

∫ 1

0

(f − u)ϕdx, ∀ϕ ∈ D (I) .

hence 〈
Tu′ , ϕ

′
〉
D′×D

=
〈
− (Tu′ )

′
, ϕ
〉
D′×D

= 〈−Tu′′ , ϕ〉D′×D =
〈
Tf−u, ϕ

′
〉
D′×D

.

then −Tu′′ = Tf−u, this show that u′′ = u− f ∈ L2 (I) , because

f ∈ C
(
I
)

=⇒ f ∈ L2 (I) ,

and

u ∈ H1 (I) =⇒ u ∈ L2 (I) .

Indeed, since u ∈ H1 (I), we have u′ ∈ L2 (I), which implies that u has a weak second derivative.

Since u− f ∈ C
(
I
)

because f ∈ C
(
I
)

and

u ∈ H2 (I) ⊂ H1 (I) ↪→ C
(
I
)
,
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therefore u ∈ C2
(
I
)
, in fact

u
′′

= u− f ∈ C
(
I
)
et u

′′
= u− f ∈ L2 (I) ⊂ L1 (I) ,

then

−d
2u

dx2
+ u = f, on I.

For any v ∈ H1 (I) , we have

−
∫ 1

0

d2u

dx2
vdx = −

[
u
′
v
]1

0
+

∫ 1

0

u
′
v
′
dx

= −u′ (1) v (1) + u
′
(0) v (0) +

∫ 1

0

u
′
v
′
dx.

Then ∫ 1

0

u
′
v
′
dx = u

′
(1) v (1)− u′ (0) v (0)−

∫ 1

0

d2u

dx2
vdx

Since a (u, v) = ` (v), then∫ 1

0

u
′
v
′
dx+

∫ 1

0

uvdx = βv (1)− αv (0) +

∫ 1

0

fvdx,

therefore ∫ 1

0

u
′
v
′
dx = −

∫ 1

0

uvdx+ βv (1)− αv (0) +

∫ 1

0

fvdx.

Consequently

u
′
(1) v (1)− u′ (0) v (0)−

∫ 1

0

d2u

dx2
vdx+

∫ 1

0

uvdx− βv (1) + αv (0)−
∫ 1

0

fvdx = 0,

then

v (1)
(
u
′
(1)− β

)
+ v (0)

(
α− u′ (0)

)
+

∫ 1

0

(
−d

2u

dx2
+ u− f

)
vdx = 0.

where

v (1)
(
u
′
(1)− β

)
+ v (0)

(
α− u′ (0)

)
= 0,

because −d
2u

dx2
+ u = f . By simple choices of v, we obtain

u
′
(0) = α and u

′
(1) = β.

Exercise 3.3:————————————————————————————————————-

Let f ∈ L2(Ω), we consider the problem

(1)

{
−4u = f in Ω
∂u
∂η

= 0 on ∂Ω
,
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By integrating equation (1) over Ω, using the Green’s formula, and considering that ∂u
∂ν

= 0 on Γ,

we obtain the compatibility condition ∫
Ω

fdx = 0.

2- We have

V = {v ∈ H1(Ω),

∫
Ω

v(x)dx = 0}.

Therefore,

V = Ker L with L : v ∈ H1(Ω)→
∫

Ω

v(x)dx ∈ R.

Since L is continuous, V is a closed vector subspace of the Hilbert space (H1(Ω), ‖.‖H1(Ω)), making

it a Hilbert space itself with the norm ‖.‖H1(Ω).

3- With inequality ∫
Ω

v2dx ≤ C

∫
Ω

|∇v|2dx,∀v ∈ V. (2)

we get that ‖∇v‖L2(Ω) is a norm in V that is equivalent to the norm ‖.‖H1(Ω). Thus, V is a Hilbert

space with the norm:

‖v‖V = ‖∇v‖L2(Ω) .

4- The variational formulation reads as follows: Find u ∈ V such that∫
Ω

∇u · ∇v, dx =

∫
Ω

fv, dx ∀v ∈ V. (3)

According to the Lax-Milgram theorem, this problem has a unique solution. Indeed, (V, ‖‖V ) is a

Hilbert space. The bilinear form

a(u, v) =

∫
Ω

∇u · ∇vdx,

is continuous and coercive on V ×V , and the linear form L(v) =
∫

Ω
fvdx, is continuous (According

to inequality (2) ).

5- Let’s show that the unique solution to problem (3) is also a solution to equation (1). We

proceed as follows: Let v ∈ H1(Ω). Then we define

v = v −
∫

Ω

v, dx ∈ V.

According to the variational formulation (3), we have:∫
Ω

∇u.∇vdx =

∫
Ω

f.vdx,

which can be rewritten as:∫
Ω

∇u.∇vdx =

∫
Ω

fvdx−
(∫

Ω

fdx

)
−
(∫

Ω

vdx

)
.
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Now, using the compatibility condition, we obtain:∫
Ω

∇u.∇vdx =

∫
Ω

fvdx, ∀v ∈ H1(Ω).

Assuming u ∈ H2(Ω) and using the Green’s formula, we deduce that:∫
Ω

(−4u− f)vdx =

∫
∂Ω

∂u

∂ν
vdx, ∀v ∈ H1(Ω).

Now, we proceed with the classical argument.

Take v ∈ D(Ω) ⊂ H1(Ω). Since D(Ω) is a dense subset of L2(Ω), the boundary term disappears,

and we deduce that

−4u = f in L2(Ω),

meaning it holds almost everywhere in Ω. Then, we have:∫
∂Ω

∂u

∂ν
vdx = 0 ∀v ∈ H1(Ω).

As the image of H1(Ω) under the trace operator is dense in L2(∂Ω), we conclude that:

∂u

∂ν
= 0 in L2(∂Ω),

which implies that
∂u

∂ν
= 0 almost everywhere on ∂Ω.

Exercise 3.5:————————————————————————————————————-

Let u be a regular solution of the plate equation (1), for any v ∈ X,∫
Ω

4 (4u) v dx =

∫
Ω

fv dx.

By integrating equation, we obtain

−
∫

Ω

∇ (4u) .∇v dx+

∫
∂Ω

∂ (4u)

∂ν
vdx =

∫
Ω

fv dx.

we have v = 0 on ∂Ω, we deduce that

−
∫

Ω

∇ (4u) .∇v dx =

∫
Ω

fv dx,

Then, by a new integration by parts and using the fact that ∂v
∂ν

= 0 on ∂Ω, we obtain∫
Ω

(4u) . (4v) dx =

∫
Ω

fv dx.
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Reciprocal. Suppose that u is a solution of the variational problem. By performing two successive

integrations by parts, we obtain, ∫
Ω

(4 (4u)− f).v dx = 0,

for any v ∈ X. We deduce that

4 (4u)− f = 0.

Exercise 3.6:————————————————————————————————————-

Using the variational approach, we demonstrate the existence and uniqueness of the solution for

the problem:

(1)

{
−4u+ u = f in Ω

u = 0 on ∂Ω
,

where Ω is any open set in the space Rn, and f ∈ L2(Ω).

In particular, shown that adding a zeroth-order term to the Laplacian allows us to avoid the

assumption that Ω is bounded.

Step 1. The variational formulation:

We multiply the verified equation by a test function v that is zero on ∂Ω. By performing integration

by parts, we obtain that ∫
Ω

(∇u.∇v + uv) dx =

∫
Ω

fv dx.

In order for this expression to make sense, we need to choose u and v in H1
0 (Ω). Thus, the

variational problem associated with equation (1) consists of determining u ∈ H1
0 (Ω) such that:

a(u; v) = L(v) for any v ∈ H1
0 (Ω),

where

a(u, v) =

∫
Ω

(∇u.∇v + uv) dx,

L(v) =

∫
Ω

fv dx.

Step 2. Solving of the variational problem

The continuity of a(., .) and L(.) is evident, as well as the coercivity of the bilinear form a(., .).

Indeed,

a(u, u) = ‖u‖H1(Ω) .

The assumptions of the Lax-Milgram theorem are satisfied. Therefore, there exists a unique

solution to the variational problem.

Finally, by performing the same integrations by parts as in the first step, we verify that

−4u+ u = f,
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as elements of L2(Ω) and thus almost everywhere in Ω. Finally, since u ∈ H1
0 (Ω) and Ω is a regular

open set, the trace of u is well-defined, and

u = 0 almost everywhere on ∂Ω.

Exercise 3.7:————————————————————————————————————-

Show that the unique solution u ∈ H1(Ω) of the variational formulation∫
Ω

(∇u.∇v + uv)dx =

∫
∂Ω

gvds+

∫
Ω

fvdx, ∀v ∈ H1(Ω),

Verifies the following energy estimate

‖u‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
,

Where C > 0 is a constant that does not depend on u, f , and g. It suffices to apply the variational

formulation to the test function v = u. This leads to the conclusion that:

‖u‖2
H1(Ω) =

∫
Ω

(|∇u|2 + |u|2)dx =

∫
∂Ω

gu+

∫
Ω

fudx.

By applying the Cauchy-Schwarz inequality to the second term

‖u‖2
H1(Ω) ≤ ‖f‖L2(Ω) ‖u‖L2(Ω) + ‖g‖L2(∂Ω) ‖u‖L2(∂Ω) .

By the Trace Theorem (where the application γ0 is a linear and continuous mapping from H1(Ω)

to L2(∂Ω)), there exists a positive constant C (which depends only on Ω) such that

‖u‖L2(∂Ω) ≤ C ‖u‖H1(Ω) ,

then

‖u‖2
H1(Ω) ≤ C

(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
‖u‖H1(Ω) .

From this, we deduce the desired inequality.

Exercise 3.10:———————————————————————————————————–

Let V be a Hilbert space. According to the conditions of the Lax-Milgram theorem, the variational

problem

(PV )

{
Find u ∈ V such that

a (u, v) = ` (v) , ∀v ∈ V
,

is equivalent to problem:

{Find u ∈ V such that Au = F} .
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Show that the operator A is a bijection from V to V.

For v fixed, the application w → a(v, w) is continuous linear from V toR. The Riesz representation

theorem implies that there exists an element Av in V such that

a (u,w) = (Au,w) = `(v),∀u,w ∈ V.

This defines a linear and continuous operator because

|(Au,w)| = | a (u,w)| ≤M ‖u‖ . ‖w‖

Then

‖Au‖ = sup
‖w‖=1

| a(u,w)| ≤M ‖u‖ .

Similary, the linear form l is contiuous from V, the Riesz representation theorem implies that

there exists an unique element f ∈ V such that

∀v ∈ V, l(v) = (f, v).

Thus, the problem (Pv) is equivalent to seeking u ∈ V as a solution of

Au = f.

Then, the operator A is bijective.

The operator A is linear and continuous; as a result, A−1 is also continuous from V to V . In fact,

we can show that A−1 is a bounded operator (and hence continuous) from V to V .

First, we deduce from the coercivity that:

∀v ∈ V, α ‖v‖2 ≤ a(v, v) = (Av, v) ≤ ‖Av‖ ‖v‖ ,

it means

∀v ∈ V, ‖Av‖ ≥ α ‖v‖ . (1)

This proves that A is injective (Av = 0⇒ v = 0).

To show that A is surjective, meaning AV = V , we can use the inequality (1) to demonstrate that

the image AV ⊂ V is a closed subspace. Indeed, if (un)n∈N is a sequence in V such that (Aun)n∈N

is a convergent sequence, then the bound holds for all n,m ∈ N.

‖Avm − Avn‖ ≥ α ‖vm − vn‖ ,

To show that the sequence (un)n∈N is Cauchy, it converges to u ∈ V , and the sequence (Aun)n∈N

converges to Au.
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Finally, we demonstrate that the image A(V )⊥ is dense. Suppose v ∈ A(V )⊥. For any u ∈ V , we

have

a(u, v) = (Au, v) = 0,

in particular,

a(v; v) = 0.

We deduce that v = 0, and thus A(V )⊥ = 0. This is one of the characterizations of the density of

a subspace.

SinceAV is both closed and dense, it follows thatAV = V , meaningA is surjective. Consequently,

we have demonstrated that A : V → V is a linear, bijective, and continuous mapping. The

inequality

‖v‖ ≤ 1

α
‖Av‖ .

allow us to show that A−1 is continuous with a norm bounded by 1
α
.
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