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Mathematics

Mathematics rightly viewed possesses not only truth but supreme beauty.

[Bertrand Russell]

Mathematics is as much an aspect of culture as it is a collection of
algorithms.

[Carl Benjamin Boyer]

Mathematics is the art of giving the same name to different things.

[Henri Poincare]

If I feel unhappy, I do mathematics to become happy. If I am happy, I do
mathematics to keep happy."

[Alfred Renyi]

Mathematics is the queen of the sciences.

[Carl Friedrich Gauss]

If people do not believe that mathematics is simple, it is only because they do
not realize how complicated life is.

[John von Neumann]
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Abstract

T he aim of this work is to develop recent methods for the solvability of some classes of
initial values problems involving fractional operators and optimal controls. In particular,

during the project of this doctorate thesis we present the theory of fractional calculus and
control theory to prove the questions of existence results, controllability, stability and others
properties for new kinds of problems which can be applicable with more accurate and better
useful

k eywords: Fractional integrals and derivatives; Optimal control; semi groupe theory; fixed
point techniques; controllability.
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Résumé

L ’objectif de ce travail est de développer des méthodes récentes de résolution de certaines
classes de problèmes aux valeurs initiales impliquant des opérateurs fractionnaires et des con-
trôles optimaux.
En particulier, au cours du projet de cette thèse de doctorat, nous présentons la théorie du
calcul fractionnaire et la théorie du contrôle pour prouver les questions de résultats d’existence,
de contrôlabilité, de stabilité et d’autres propriétés pour de nouveaux types de problèmes qui
peuvent être appliqués avec plus de précision et de meilleure utilité.

M ots clés: Intégrales et dérivées fractionnaires; Contrôle optimal; théorie des semi-groupes;
techniques du point fixe; contrôlabilité.
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عوامل ٺتضمن التي الاولية القيم مشاكل فئات بعض حل لامكانية مطورة حديثة طرق استخدام هو العمل هذا من الهدف
التفاضل حساب ية نظر نقدم هذه, الدكتوراه اطروحة مشروع خلال الخصوص وجه على المثلى. الضوابط و الـكسري التشغيل
من حديدة لانواع اخرى خصائص و الاستقرار و التحكم قابلية و الوجود نتائح اسئلة لاثبات التحكم ية نظر و الجزئي التكامل و

افضل. بشكل والافادة الدقة من بمزيذ تطبيقها يمكن التي المشكلات
الثابتة. النقطة تقنيات المحموعة, شبه ية نظر الامثل, التحكم المشتقات, و الـكسرية التكاملات المفتاحية: الكلمات

10
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Notations

1. For abbreviations and expressions

The abbreviation The meaning
s.t. such that
iff if and only if
RHS right hand side
LHS left hand side
ONB orthogonormal basis
”i.i.d” independent identically distributed
U M D unconditional for martingale difference
PDEs partial differential equations
SDEs stochastic differential equations
SPDEs stochastic partial differential equations
FSPDEs fractional stochastic partial differential equations
The expression The meaning
x := y or y := x x is equal to y by definition
a ∧ b min(a, b)
a ∨ b max(a, b)
arg z argument of the complex number z
Eq.(n.m) an equation of number m exists in chapter n
Prb.(n.m) a problem of number m exists in chapter n
IV P.(n.m) an initial value problem of number m exists in chapter n
Est.(n.m) an estimate of number m exists in chapter n
Cond.(n.m) a condition of number m exists in chapter n

2. For sets and functions

The symbol The meaning
R+ the interval [0,+∞)
R∗

+ the interval (0,+∞)
Rd

+ {t = (t1, · · · , td ∈ R, s.t., ti ≥ 0, ∀i}
N0 N - {0}
A∗ the adjoint of the operator A
1E the identity operator defined on some space E
D(A) domain of definition of the operator A
Γ gamma function
1B the indecator function of the set B
supp(f) support of the function f
(a, b),For a < b an open interval
Domain D a non empty open set
∂D the boundary of the domain D

12
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3. For Stochastic analysis

The symbol The meaning
(Ω,F ,P) Probability space
N The normal law
F := (Ft)t∈[0,T ] Normal filtration
(Ω,F ,F,P) Filtered probability space
(βt)t∈[0,T ] Brownian motion
W := (Wt)t∈[0,T ] Wiener process
(Ω,F ,F,P,W ) Stochastic basis
E(X) :=

∫
Ω
X(ω)dP(ω) Expectation of the random variable X

Lp(Ω, E),for a Banach space E Space of all p- th integrable E-valued random variables on Ω
M2

T Space of all continuous square integrable E-valued martingales

4. For functional spaces

The symbol The meaning
B(E) Borel σ- algebra generated by all open sets of the topological space

E
(E, | · |E) Banach space with its norm | · |E
E ′ The dual space of E
(·, ·)E′×E the pairing of E and E ′

(H, ⟨·, ·⟩H) Hilbert space with its inner product ⟨·, ·⟩H
Lp Lebesgue space, for the special case p = 2
C and Cm, for m ∈ N0 space of continuous functions and space of all functions of class m

respectively
Cm

0 , for m ∈ N0 space of functions of class m with compact support
Wm
p , m ∈ N, 1 ≤ p ≤ ∞ Sobolev space

W s
p , s ∈ R∗

+ - N0, 1 ≤ p < ∞ fractional Sobolev space
Hα

2 and Hα
0 , for α > 0 fractional Sobolev space for p = 2 and the closure of C∞

0 in Hα
2

respectively
Bpq
s Besov space

Cδ, for δ ∈ (0, 1) Holder space
L(E1, E2) Banach space of linear bounded operators from E1 to E2 with its

norm ∥ · ∥L(E1,E2). For E1 = E2 we simply write L(E1)
(HS(H1, H2), ∥ · ∥HS(H1,H2)) space of Hilbert-Schmidt operators from H1 to H2
HS space of Hilbert-Schmidt operators from L2(0, 1)
LN (H1, H2) space of nuclear operators from H1 to H2
S Schwartz space
Dα
RL Riemann-Liouville fractional derivative of order α.

n! Factorial function.
β(z, w) Beta function.
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Introduction
Early in 1695, Leibniz and L’Hôpital exchanged letters in which they discussed the rele-

vance of the derivative of order 1. Since numerous eminent mathematicians worked on this and
similar issues in the years that followed, including Euler (1738), Laplace (1820), Fourier (1822),
and Lagrange (1849), establishing the subject that is now known as fractional calculus.
The theory of derivatives and integrals of any order is known as such calculus (fractions, rational,
irrational, complex, etc.). Since L’Hôpital specifically requested the order n = 1

2
, it generalizes

the ideas of integer-order differentiation and n-fold integration, where the term "fractional"
can be deceptive (i.e., a fraction), actually gave rise to the name of this field of mathematics.
Classical analysis is well-known for its use of the integral and integer-order derivative. The
fractional derivative and fractional integral are not similarly determined, however. There are
numerous definitions that, in general, do not agree with one another. This is because various
writers have tried to preserve certain characteristics of the conventional integer-order derivative
and integral. One difficulty in this area of mathematics is that there are plainly multiple ways
to define such concepts in the fractional calculus.
Fractional Brownian motion (fBm for short) is a family of Gaussian random processes that
are indexed by the Hurst parameter Ĥ ∈ (0, 1). It is a self-similar stochastic process with
long-range dependence ans stationary increment properties when Ĥ > 1/2. For more recent
works on fractional Brownian motion, see [20, 37, 5, 146, 67, 42] and the references therein.

One of the most significant ideas in mathematical control theory is controllability. In both
deterministic and stochastic control systems, controllability is critical. Control theory is an
area of mathematics that studies how far the state of a system can be changed based on the
systemes fundamental qualities and how we can act on it. For example, one might question if
a solides temperature can be brought to a constant in a finite amount of time by heating and
cooling only a portion of the solid. Since 1995, this problem, known as the null-controllability
of the heat equation, has been solved. Controllability roughly translates to the ability to direct
a dynamical control system from an arbitrary initial state to an arbitrary final state using
the admissible controls. Many mathematical concepts and methods from differential geometry,
functional analysis, topology, matrix analysis, theory of ordinary and partial differential equa-
tions, and theory of difference equations are used to solve controllability problems for various
types of dynamical systems. The controllability of diverse classes of systems can be studied
using state-space models of dynamical systems, which give a reliable and general method. On
the other hand, optimal control is concerned with the problem of determining a control law for
a given system that meets a predetermined optimality condition.
The optimal control theory’s goals are as follows: Obtaining necessary (or possibly necessary
and sufficient) conditions for the control to be an extreme (or minimum), studying the struc-
ture and properties of the equations expressing these conditions, and obtaining constructive
algorithms amenable to numerical computations of the admissible controls that determine the
inf (such a control is referred to as an "optimal control").Optimal control can be used to a va-
riety of sectors, including biology, economics, ecology, engineering, finance, management, and
medicine. See also [86]-[87] and the references therein.
Controllability theory for various systems with fractional derivatives and fractional has ad-
vanced significantly since the publication of research publications such as [68]-[77] and mono-
graph [87]. This theory has formed the basis of a very active research topic since it provides
a natural framework for mathematical modelling of many physical phenomena and validation
of existing ones. Fractional differential equations have recently proved to be strong tools in



CONTENTS 15

the modelling of many phenomena in various fields of engineering, physics, and economics.
As a con-sequence, there was an intensive development of the theory of fractional differential
equations. Due to this fact, the fractional order models are capable of describing more realistic
situations than the integer order models. Many articles have been devoted to the existence of
solutions for fractional differential equations. Existence, uniqueness, stability, controllabil-ity,
and other quantitative and qualitative features of evolutionary equation solutions have re-cently
gotten a lot of attention. For more information see [102, 10, 68, 100, 123, 96, 75]. Fractional
differential equations are applied in a variety of fields, including fractals, chaos, electrical engi-
neering, and medicine. In recent years, there has been a lot of progress in the field of fractional
differential equations. For instance, we refer to the monographs of Abbas et al. [1], Kilbas et
al. [75], Miller and Ross [99], Podlubny [123], and other documents.

This thesis is divided into four chapters.

In the first one, we collect some concepts and results for linear distances that are frequently
used in this thesis, which are Sobolev fractional distances and Holder distances, and we intro-
duce some of them. Definitions and basic results of linear factors such as the Hilbert-Schmidt
factor are discussed, as is a short review of the partial half-group theory. Calculus and frac-
tional integration and must contain some results in a classical case in a certain way and some
definitions and known results about random operations. The random integrals are summed in
Hilbert spaces, that is, the Wiener processes and random integrals. Mentioned here for com-
pleteness. Approximate controllability and optimal control.

In the second one, we will present Fractional Brownian motion (fBm for short) is a family
of Gaussian random processes that are indexed by the Hurst parameter. It is a self-similar
stochastic process with long-range dependence and stationary increment properties. For more
recent works on fractional Brownian motion, see [20, 42] and the references therein. In order
to describe various real-world problems in physical and engineering sciences subject to abrupt
changes at certain instants during the evolution process, impulsive frac-tional differential equa-
tions have become important in recent years as mathematical models of many phenomena in
both physical and social sciences. Impulsive effects begin at any arbitrary fixed point and
continue with a finite time interval. The concept of controllability plays a major role in finite
dimensional control theory. However, its generalization to infinite dimensions is too strong
and has lim-ited applicability, while approximate controllability is a weaker concept completely
adequate in applications [155].
The results of this chapter are represented in part by Manuscript entitled:

⋆ Hakkar N. Dhayal, R. Debbouche, A. Torres, D.F.M., Approximate Controllability of De-
layed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects.
Fractal Fract. 2023, 7, 104. https://doi.org/10.3390/fractalfract7020104

The third chapter, this work demonstrates nonlinear randomness of neutral order Differential
system integrated with Rosenblatt process, controllability is dead The most accessible resource
for studies. Our major contributions are highlighted as follows: We have developed a solution
for the controllability problem of non-linear fractional order neutral type stochastic integro-
differential system with Rosenblatt process.

• We take the terms in the system as a bounded linear operators instead of a matrix, which
produces the same results as a matrix.

https://doi.org/ 10.3390/fractalfract7020104


• The illustration the results on stochastic systems bounded linear opera-tors are more
competent.

• We take the stochastic term as driven by the Rosenblatt process which is non-Gaussian
and has the properties like self-similarity, stationarity of the increments and has long
range dependence.

• We intend to bring new lights to the Rosenblatt process, since many real-life phenomena
are modeled by fractional Brownian motion a only Gaussian Hermite process, when the
property of Gaussianity is failed one can use Rosenblatt process.

• We define the controllability Grammian operator, which is defined by the Mittag-Leffler
function to prove the controllability results.

• By employing Banach contraction principle to prove the controllability criteria instead of
semigroup theory which does not applicable to obtain the results on controllability.

• We have provided a numerical example to illustrate the theory.

• Generally speaking, both the Riemann-Liouville and the Caputo frac-tional operators do
not possess neither semigroup nor commutative prop-erties, which are inherent to the
derivatives on integer order.

The results of this chapter are represented in part by Manuscript entitled:

⋆ N. HAKKAR, M. LAVANYA, A. DEBBOUCHE, AND B.S. VADIVOO., Nonlinear Frac-
tional Order Neutral-type Stochastic Integro-Differential System with Rosenblatt Process-
A Controllability Exploration.
Volume48,SpecialIssue,2022,Pages68-83.10.30546/2409-4994.48.2022.6883

The fourth chapter, in this work, we want to prove the existence of the theory of exis-
tence for light solutions using semi-operated set theory and fixed-point theories for multivalued
mapping. Then, by constructing the sequence of minimizations twice, the theory of existence
is in the optimal position. Also, pairs are obtained from the state control. It is worth empha-
sizing that we omit the unique feature of light solutions, which is a basic assumption for this.
Our work improves some of the existing literature. If the Riemann-Leuvel fractions Evolution
contents involve time delays, it is difficult to prove mild solutions as well as optimal control
because the partial Riemann-Liouville derivative The singular is at t = 0. It is a valuable topic
that we will study in the future.

Finally, we conclude the thesis with a conclusion and views section that summarizes the
main findings and offers suggestions for future research studies on the subject.

16
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Chapter 1
Preliminary Background

T his chapter’s goal is to compile ideas and findings related to many facets of functional
analysis. We gather some ideas and findings on linear spaces in Section 1.1, focusing on

some of the more significant ones, like Banach spaces, Hilbert spaces, and some functional
spaces that are frequently utilized in this thesis. Specifically, Hölder spaces and fractional
Sobolev spaces. Definitions and the fundamental findings of linear operators like the Hilbert-
Schmidt operator are introduced. The generalizations of the semigroup theory are the topic of
Section 1.3. We specify this in the references: [121, 132, 154, 152, 153].

1.1 On some functional aspects
The mathematician’s concept of a Hilbert space generalizes the concept of Euclidean space.

It is a standard space on which the internal product function is defined, in addition to that
it must be a complete standard space or what is called a Banach space. This means that any
Hilbert-Space ist a Banach-Space, but the reverse is not true. For example, the Q space is a
regular subnormal space but not a Banach space.

Hilbert spaces enable us to generalize the methods of linear algebra and calculus used in two-
dimensional and three-dimensional Euclidean spaces to spaces that may be infinite in dimension.
A Hilbert space is a vector space with an inner product, and thus allows the definition of a
distance and orthogonality function. In addition, the Hilbert space is a complete metric space
with the distance function defined in it (in this case, the standard function), which means the
availability of limits that allow the use of calculus.

Hilbert spaces appear naturally a lot in mathematics and physics, usually as an infinite-
dimensional functional space. The oldest Hilbert spaces were studied by David Hilbert,
Erhard Schmidt and Frigyes Riesz in the first decade of the twentieth century. It is an
important tool in partial differential equations, quantum mechanics, Fourier analysis (which
includes applications to signal processing and heat transfer) and ergodic theory (which forms
the mathematical basis of thermodynamics).
John von Neumann coined the term Hilbert space for the abstract concept used in many
of these diverse applications. The success of Hilbert’s space methods led to the flourishing of
functional analysis. Apart from classical Euclidean spaces, examples of Hilbert spaces are Lp
space, sequence space, Sobolev space of generalized functions, and Hardy space of fully formed
functions.

17
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Definition 1.1.1
For a metric space is an ordered pair (E, d) where E is a set and d is a function of distance,
i.e. it is a function

d : E × E → R+

where the following properties are combined for any three elements x, y, and z of E

1. d(x, y) ≥ 0 (The distance function is a non-negative function).

2. d(x, y) = 0 If and only if x = y.

3. d(x, y) = d(y, x).

4. d(x, z) ≤ d(x, y) + d(y, z). (trigonometric inequality)

The set E is provided with a space called a space Metric and denoted by binary (E, d).

Definition 1.1.2 (series by Cauchy.)
A sequence x1, x2, x3, · in a metric space (X , d) is said to be Cauchy if the following is

present in it: Whatever r is a definitively positive real number (that is, r > 0), there is
a natural number N where whenever two natural numbers are greater than this number
m,n > N it provides the following

d(xm, xn) < r

Definition 1.1.3 (full space.)
A metric space (X , d) is said to be complete if one of these equivalent conditions is met

with the others:

1. For every Cauchy sequence made up of points belonging to set X , there is a limit
which also belongs to the same set X .

2. Every Cauchy sequence defined by X is a set that converges to X (that is, it converges
to some point in X ).

Definition 1.1.4 (Lebesgue space.)
Let Ω ⊂ Rn be a bounded domain and f : Ω → Rn.

A measurable function f is called a p-integrable function if |f |p is integrable.
These factors specify the Lp-Lebesgue space:

Lp :=
{
f measurable s.t. |f |pLp :=

∫
R

|f(x)|pdx < ∞
}
,

for 0 < p < ∞ and by

L∞ :=
{
f measurable s.t. |f |L∞ := ess sup

R
|f(x)| < ∞

}
,

where ′′ess
′′sup means the essential supremum, i.e.

ess sup f := inf
c∈R

{c, µ(f−1(c,+∞)) = 0},

with µ the Lebesgue measure.
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Definition 1.1.5 (Sobolev space.)
We define the Sobolev space for 1 ≤ p ≤ ∞ and m ∈ N,:

Wm
p (Ω) :=

{
f ∈ Lp, s.t. |f |pWm

p
:=

m∑
k=0

|Dkf |pLp < ∞
}
,

where Dkf is the derivative of f of order k in the distributional sense, that is, for all φ ∈ Ck
0 ,

⟨Dkf · φ⟩ = (−1)k⟨f, dkφ⟩,

with dkφ means the classical derivative of order k of φ.

Definition 1.1.6 (Spaces of continuous functions.)
The space of continuous function is defined by:

C := {f bounded and continuous, s.t. |f |C := sup
R

|f(x)| < ∞}.

Definition 1.1.7 (spaces for differentiable functions of order m.)
Let m ∈ N. The definition of the order m spaces of differentiable functions is:

Cm := {f ∈ C s.t. dαf ∈ C, for all α ≤ m},

endowed with the norm
|f |Cm :=

∑
α≤m

|dαf |C,

where dα means the classical derivative of order α, with the convention C0 = C. The notation
Cm0 is reserved for the space of all functions in Cm with compact support.

Definition 1.1.8 (Hölder spaces.)
For δ ∈ (0, 1), we define the Hölder space by

Cδ :=
{
f ∈ C s.t. |f |Cδ = |f |C + sup

x,y∈R,x ̸=y

|f(x) − f(y)|
|x− y|δ

< ∞
}
.

Definition 1.1.9 (fixed point theory.)
If (X , d) is complete metric space, T : X → X with d(f(x), f(y)) ≤ kd(x, y) and k < 1

then ∃!x ∈ X such that T (x) = x.
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1.1.1 Basic notions and some useful results

Definition 1.1.10 (Bounded operator.)
Let A : D(A) ⊆ X → Y be a linear operator.

Then, we say that A is bounded if there exists C > 0 s.t.

|A(x)|Y ≤ C|x|X , ∀x ∈ D(A).

Definition 1.1.11
We denote by L(X ,Y) for the Banach space of all linear bounded operators defined from

X to Y endowed by the norm

∥ A ∥L(X ,Y):= sup{|x|−1
X |A(x)|Y , x ∈ X , x ̸= 0}.

If X = Y , we write L(X ,Y) = L(X ). Moreover, if Y = R we call A a linear bounded
functional on X . We denote the collection of all such functionals by X ′, which is the
dual space of X . The symbols ∥ · ∥X ′ and (·, ·)X ′,X denote the norm in X ′ and the duality
(pairing) of X ′ and X respectively.

Definition 1.1.12 (Compact operatorr.)
An operator A ∈ L(X ,Y) is said to be compact if for all bounded subset B ⊂ X , the

closure of A(B) is compact.

Definition 1.1.13 (Closed operator.)
We say that, a linear operator A: D(A) ⊆ X → Y is closed if its graph is a closed subspace

of X × Y .

Theorem 1.1.1
Every linear bounded operator A on X satisfies D(A) = X . Moreover, A is closed.

Definition 1.1.14 (Symmetric operator.)
A densely defined linear operator A : D(A) ⊆ U → U is said to be symmetric if

⟨Au, v⟩U = ⟨u,Av⟩U , ∀u, v ∈ D(A).

where ⟨·, ·⟩U denotes the inner product in U .

Lemma 1.1.1 ([44])
Let A : D(A) ⊆ U → H s.t. D(A) is dense in U . Then, A admits a closed operator A∗

called the adjoint, which is defined on D(A∗) into U where

D(A∗) := {v ∈ H, s.t. u ∈ D(A), u → ⟨Au, v⟩His continuous}

such that for all u ∈ D(A) and all v ∈ D(A∗) it holds

⟨u,A∗v⟩U = ⟨Au, v⟩H.
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Definition 1.1.15 (Self-adjoint operator.)
Let A : D(A) ⊆ U → U be a densely defined linear operator. Then, we say that A is

self-adjoint if D(A) = D(A∗) and A = A∗.

Corollaire 1.1 ([169])
Let (A,D(A)) be a symmetric operator on the Hilbert space U . If D(A) = U , then A is

self-adjoint.

Next, we present a valuable finding pertaining to the spectrum of a linear, self-adjoint, non-
negative operator. The explanation is that defining such a spectrum first is necessary.
Definition 1.1.16 (Resolvent set of an operator.)

Let the operator A ∈ L(U). The resolvent set of A denoted by ρ(A) is defined by

ρ(A) := {λ ∈ C s.t.(A− λIU) is inversible}

Definition 1.1.17 (Spectrum of an operator.)
Let the operator A ∈ L(U). The spectrum of A, denoted by ρ(A) is the complement of the

resolvent set in C. The spectrum of A is subdivided as follows

Definition 1.1.18
Let the operator A ∈ L(U).

1. The discrete spectrum of A consists of all λ ∈ ρ(A) s.t. (A−λIU) is not one-to-one.
In this case λ is called an eigenvalue of A.

2. The continuous spectrum of A consists of all λ ∈ ρ(A) s.t. (A−λIU) is one-to-one
but not onto and range (A− λIU) is dense in U .

3. The residual spectrum of A consists of all λ ∈ ρ(A) s.t. (A − λIU) is one-to-one
but not onto and range (A− λIU) is not dense in U .

Lemma 1.1.2 ([150])
Let A be a linear (not necessarily bounded), self-adjoint and nonnegative operator defined

on D(U) ⊆ U , which has eigenvalues {µj}Nj=1, for 1 < N ≤ ∞ corresponding to a basis
of orthogonormal eigenfunctions {φj}Nj=1 . Then, for an arbitrary function G defined on the
spectrum σ(A) = {µj}Nj=1 of A, it holds

G(A)v =
N∑
j=1

G(µj)⟨v, φj⟩Uφj
, ∀v ∈ U .

and
∥ G(A) ∥L(U)= sup

1≤j≤N
|G(µj)|.
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Definition 1.1.19 (Hilbert-Schmidt operator.)
Let (ϵn)n∈N0 , be an ONB of U . An operator A ∈ L(U ,H) is said to be Hilbert-Schmidt

if ∑
n∈N0

|Aϵn|2H < +∞.

We denote by HS(U ,H) the set of all Hilbert-Schmidt operators from U to H. In the special
case U = H we shortly write HS(U ,H) = HS(U). The definition of a Hilbert-Schmidt
operator and the induced Hilbert-Schmidt norm in HS(U ,H)

∥ A ∥HS(U,H):=

∑
n∈N0

|Aϵn|2H

 1
2

,

are independent of the choice of the basis (ϵn)n∈N0 .

Proposition 1.1.1 ([127])
Let Q ∈ L(U) be a symmetric and nonnegative operator. Then, there exists a unique
symmetric and nonnegative operator Q

1
2 ∈ L(U) satisfies Q

1
2 ◦ Q

1
2 = Q. Moreover, if Q

with finite trace, then Q
1
2 ∈ HS(U), s.t. ∥ Q

1
2 ∥2

HS= trQ and for all ψ ∈ L(U ,H) it holds
ψ ◦ Q

1
2 ∈ HS(U ,H).

Corollaire 1.2
Let Q ∈ L(U) be a symmetric and nonnegative operator and {ϵn, n ∈ N} be an ONB of

U , consisting of eigenvectors of Q with corresponding eigenvalues {λn, n ∈ N}. Then, the
operator Q

1
2 admits the family {(ϵn, λ

1
2
n ), n ∈ N} as an eigenpairs.

Proof : Let {ϵn, n ∈ N} be an ONB of U , consisting of eigenvectors of Q with corresponding eigenval-
ues {λn, n ∈ N}. Let A ∈ L(U) defined by Aϵn := λ

1
2
n ϵn, for any n ∈ N. The operator A is symmetric.

Indeed, for all u, v ∈ U we have

⟨Au, v⟩U = ⟨A
∑
n∈N

⟨u, ϵn⟩Uϵn,
∑
m∈N

⟨v, ϵm⟩Uϵm⟩U

=
∑

n,m∈N
⟨u, ϵn⟩U ⟨v, ϵm⟩U ⟨Aϵn, ϵm⟩U .

=
∑

n,m∈N
⟨u, ϵn⟩U ⟨v, ϵm⟩U ⟨λ

1
2
n ϵn, ϵm⟩U

=
∑
n∈N

λ
1
2
n ⟨u, ϵn⟩U ⟨v, ϵm⟩U .

By the same manner it holds that

⟨u,Av⟩U =
∑
n∈N

λ
1
2
n ⟨u, ϵn⟩U ⟨v, ϵn⟩U .

In Addition, A is nonnegative since we can get easily for all u ∈ U ,

⟨Au, u⟩U =
∑
n∈N

λ
1
2
n ⟨u, ϵn⟩2

U ≥ 0.
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Moreover, for any n ∈ N we have

(A ◦A)ϵn = A(λ
1
2
n ϵn) = λ

1
2
nA(ϵn) = λnϵn = Qϵn.

Consequently, for all u ∈ U it holds (A ◦ A)u = Qu. Thus, by virtue of Proposition 1.44 we obtian
that A = Q

1
2 .

The following proposition introduces a significant linear subspace of U , namely the image of
Q

1
2 , which, when fitted with a properly selected inneres Produkt, is also a separable Hilbert

space.
Proposition 1.1.2 ([126] and [127])

Let Q ∈ L(U) be a symmetric, nonnegative and finite trace operator and let {ϵn, n ∈ N} be
an ONB of U , consisting of eigenvectors of Q with corresponding eigenvalues {λn, n ∈ N}.
We define S := {n ∈ N, λn > 0} the index set of non-zero eigenvalues. Then, the space
U0 := Q

1
2 (U) defined by

U0 =
{
u ∈ ker(Q

1
2 )⊥,

∑
n∈S

λ−1
n ⟨u, ϵn⟩2

U < +∞
}
,

is a Hilbert space endowed with the following inner product

⟨u, v⟩U0 := ⟨Q− 1
2u,Q− 1

2v⟩U

=
∑
n∈S

λ−1
n ⟨u, ϵn⟩U⟨v, ϵn⟩U , ∀u, v ∈ U0,

where Q− 1
2 is the pseudo-inverse of Q

1
2 . In addition, the space U0 admits the family

{λ
1
2
nϵn, n ∈ S} as an ONB.

Corollaire 1.3
For any A ∈ HS(U0,H), it holds

∥ A ∥HS(U0,H)=∥ A ◦ Q
1
2 ∥HS(U0,H) .

Moreover, let the space L0(U ,H) := {A|U0 , A ∈ L(U ,H)}. Then, we have L0(U ,H) ⊂
HS(U0,H).

Proof : Let A ∈ HS(U0,H). Then,

∥ A ∥HS(U0,H)=
∑
n∈S

∣∣∣∣A(λ
1
2
n ϵn)

∣∣∣∣2
H
.

as {Q
1
2 ϵn, n ∈ S} is on ONB of U0 and Q

1
2 ϵn = 0U for all n not in S yields,

∥ A ∥HS(U0,H)=
∑
n∈S

∣∣∣A ◦ Q
1
2 (ϵn)

∣∣∣2
H

+
∑

nnotinS

∣∣∣A ◦ Q
1
2 (ϵn)

∣∣∣2
H

=
∥∥∥A ◦ Q

1
2

∥∥∥HS(U0,H).

Moreover, it holds
∥ A ∥HS(U0,H)≤∥ A ∥L(U ,H)∥ Q

1
2 ∥HS(U) .

The fact that ∥ Q
1
2 ∥2

HS(U):=
∑
n∈S

∥ Q
1
2 ϵn ∥2

U= trQ < ∞ leads to A ∈ HS(U0,H).
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1.1.2 Laplace operator
This part, we deal with the Laplace operator (or Laplacian). The Laplacian is a differential
operator represents the simplest elliptic operators occur in differential equations that describe
many physical phenomena, such as the diffusion equation for heat and fluid flow. It is denoted
by ∆ and is given in the d-dimensional case by

∆u(x) :=
d∑
i=1

∂2u(x)
∂x2

i

, x ∈ D ⊆ Rd,

Proposition 1.1.3 ([21])
The Laplacian A : D(A) → L2(D), is unbounded, nonnegative and self adjoint operator.

Proposition 1.1.4 ([149])
The Laplacian A : D(A) → L2(D), is an isomorphism, its inverse A−1 is self-adjoint and

compact on L2(D).

1.1.3 Fractional Laplacian
The presence of the long range interactions appear in various applications like nonlocal heat

conduction allows the nonlocal diffusion operators to arise to replace the standard Laplace
operator. The new operators act by a global integration with respect to a singular kernel
instead of acting by pointwise differentiation, in that way the nonlocal character of the process
is preserved. The fractional Laplacian denoted here by Aα := (−∆)

α
2 , for α > 0 is one of

the famous nonlocal diffusion operators. We can find in the literature many definitions of Aα
which reflects its extensive use in applications. Throughout this section we let α ∈ (0, 2].

Fractional Laplacian on R

The fractional Laplacian can be defined in several equivalent ways in the whole space R, see for
example [?]. However, when these definitions are restricted to bounded domains, the associated
boundary conditions lead to different operators. Here, we introduce two equivalent definitions of
the fractional Laplacian, the first is represented via Fourier trans-form and its inverse, whereas
the second is based on the singular integral representation.
Definition 1.1.20 (Pseudo-differential representation.)

The fractional Laplacian Aα is defined as a pseudo-differential operator,

Aαu(x) := F−1(|ξ|αF(u(x), ξ), x), (1.1)

where u ∈ Lp(R), for p > 1.

Definition 1.1.21 (Singular integral representation.)
We define the fractional Laplacian Aα as a singular integral operator

Aαu(x) := Cα lim
r→0+

∫
R B(x,r)

kα(x, y)(u(x) − u(y))dy. (1.2)

for any u ∈ S, where Kα(x, y) := |x − y|−(α+1) for any x ∈ R and any y ∈ R\B(x, r) with
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B(x, r) is the open ball of center x and radius r, and Cα :=
α2α−1Γ(α+1

2 )
π

1
2 Γ(1 − α

2 )
is a constant whith

Γ is the gamma function.

Theorem 1.1
The two defintions Identity. 1.1 and Identity. 1.2 of the fractional Laplacian Aα are

equivalent.

1.2 Fractional calculus
Fractional calculus is a theory of integrals and derivatives of arbitrary real or even complex

orders. It is a generalization of the classical calculus and therefore preserves many of its basic
properties. Fractional calculus was first mentioned in a letter from L’Hospital to Leibniz in
1695. In this letter, L’Hospital inquires about Leibniz’s essay from 1646, in which he defines
the derivative of order n of a function f with n ∈ N. When L’Hospital asks what happens if
n = 1

2
, Leibniz says, ”This leads to a conundrum from which we shall one day extract valuable

conclusions ”. Many mathematicians have studied the issue since its discovery, with the goal of
generalizing the findings established for integer-order derivatives to the case of arbitrary-order
derivatives. Fractional calculus is the name given to the theory of arbitrary order integrals and
deriva-tives, which unifies and generalizes integer-order differentiation and n-fond integration.
In other words, fractional derivatives and integrals can be considered as an interpolation of the
infinite sequence,[123]

· · · ,
∫ t

a

∫ τ1

a
f(τ2)dτ2dτ1,

∫ t

a
f(τ1)dτ1, f(t), df(t)

dt
,

d2f(t)
dt2

, · · ·

of the classical n fold integrals and n fold derivatives. Let’s review some fundamental fractional
calculus definitions and results. We’ll go through the definitions and desired outcomes that will
help us introduce integral and fractional derivatives, as well as solve our diffusion and fractional
wave equations. For more information, look up the references [75, 99, 123].

1.2.1 Special functions
This section is about the collection of functions we’ll use in fractional theory. To begin, the
Gamma function will be defined as follows:

Gamma function

Definition 1.2.1
The Gamma function, denoted by Γ(z) is a generalization of the factorial function n!, i.e.,

Γ(n) = (n− 1)! ∀n ∈ N.

For complex arguments with positive real part it is defined as

Γ(z) =
∫ ∞

0
tz−1e−tdt, Re(z) > 0.

This function has the following essential results:
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Proposition 1.2.1
For a complex argument z with positive real part Re(z) > 0. So we have the following

result:
Γ(z + 1) = zΓ(z).

Some of the most important values are

Γ(1) = Γ(2) = 1,

Γ
(1

2

)
=

√
π,

Γ
(
n+ 1

2

)
=

√
π(2n− 1)!

2n
, ∀n ∈ N.

Beta function

Definition 1.2.2
The Beta function is defined by the integral

B(z, w) =
∫ 1

0
tz−1(1 − t)w−1dt, Re(z) > 0, Re(w) > 0.

The Beta function is used sometimes for convenience to replace a combination of Gamma
function. This relation between the Gamma function and Beta function is given by (see [52])

B(z, w) = Γ(z)Γ(w)
Γ(z + w)

.

It should also be mentioned that the Beta function is symmetric, i.e.

B(z, w) = B(w, z).

The complementary error function (erfc)

Definition 1.2.3
The complementary error function is an entire function, defined as [123]

erfc(z) = 2√
π

∫ ∞

z
e−t2dt.

Special values of the complementary error function are

erfc(−∞) = 2,
erfc(0) = 1,

erfc(+∞) = 0.
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The following relations are interesting to be mentioned

erfc(−x) = 2 − erfc(x),∫ ∞

0
erfc(x)dx = 1√

π
,

∫ ∞

0
erfc2(x)dx = 2 −

√
2√

π
.

The Mittag-Leffler function

While the Gamma function is a generalization of the factorial function, the Mittag-Leffler
function is a generalization of the exponential function

exp(x) =
∞∑
k=0

xk

k!
=

∞∑
k=0

xk

Γ(k + 1)
.

First introduced as a one parameter function by the series [123]

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z, α ∈ C, Re(α) > 0.

Later, the two parameter generalization is introduced by Agarwal

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z, α, β ∈ C, Re(α) > 0, Re(β) > 0,

which is of great importance for the fractional calculus. It is called two parameter function of
Mittag-Leffler type. Some of its interesting values are [123]

E1,1(z) = ez,

E2,1(z2) = cosh(z),

E2,2(z2) = sinh(z)
z

,

Eα,2(z) = Eα(z),
E 1

2 ,1
(z) = ez

2erfc(−z).

This function has the following essential results:
Proposition 1.2.2

For a complex argument z with Re(z) > 0 ,we have the following result:

Eα,β(z) = zEα,α+β(z) + 1
Γ(β)

,

d
dz
Eα,β(z) = 1

αz

[
Eα,β−1(z) + (β − 1)Eα,β(z)

]
.

We’ll need to build estimates in order to illustrate the uniqueness of each solution in the
subsequent sections. We’ll use the following two outcomes to do so:
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Lemma 1.2.1
For positive integers m,λ and α, we have

dn

dzn
Eα,1(−λzα) = −λzα−nEα,α−n+1(−λzα), z > 0,

d
dz

(zEα,2(−λzα)) = Eα,1(−λzα), z > 0.

As well as
Theorem 1.2.1

Let 0 < α < 2, β is an arbitrary real , and we assume that µ is such that

πα

2
< µ < min{π, πα}.

Then there exists a constant C = C(α, β, µ) > 0 such that

|Eα,β(z)| ≤ C

1 + |z|
, µ ≤ | arg(z)| ≤ π.

The definition of the generalized Mittag-Leffler function is now given.
Definition 1.2.4

Let α, β, ρ ∈ C such as Re(α) > 0 and Re(β) > 0. The generalized Mittag-Leffler function
is thus defined as follows:

ςρα,β(z) =
∞∑
n=0

(ρ)nzn

Γ(αn+ β)n!
, ∀z ∈ C,

where
(ρ)n = ρ(ρ+ 1)...(ρ+ n− 1).

Remark 1.2.1
Note that when ρ = 1 we have

ςρα,β(z) = Eα,β(z).

We’ll need the following Lemma in the sequel:
Lemma 1.2.2

Let α, β, ρ ∈ C such as Re(α) > 0 and Re(β) > 0. Then, we have

dn

dzn
ςρα,β(z) = (ρ)nςρ+n

α,β+αn(z), z ∈ C, n ∈ N,

αρςρ+1
α,β (z) = (1 + αρ− β)ςρα,β(z) + ςρα,β−1(z), z ∈ C.

We utilize the Laplace transform to solve our fractional differential equations, just as we did
with integer differential equations. As a result, we provide the following definition:
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Definition 1.2.5
Let f : R+ → R. The Laplace transform of function is defined by:

(Lf)(s) = L[f(t)](s) = f̂(s) :=
∫ ∞

0
exp(−st)f(t)dt, s > 0.

On occasion, we will run across transforms of the form,

H(s) = F (s)G(s),

that can’t be dealt with easily using partial fractions. We would like a way to take the inverse
transform of such a transform. We can use a convolution integral to do this.
Definition 1.2.6

If f(t) and g(t) are piecewise continuous function on [0,+∞] then the convolution integral
of f(t) and g(t) is,

(f ⋆ g)(t) =
∫ t

0
f(t− s)g(s)ds.

A nice property of convolution integrals is

(f ⋆ g)(t) = (g ⋆ f)(t).

Or, ∫ t

0
f(t− s)g(s)ds =

∫ t

0
f(s)g(t− s)ds.

The following fact will allow us to take the inverse transforms of a product of transforms.

L{f ⋆ g}(t) = F (s)G(s), L−1F (s)G(s) = {f ⋆ g}(t).

Lemma 1.2.3
Let α, β, ρ ∈ C such as Re(α) > 0, Re(ρ) > 0 and Re(β) > 0. Then, we have

L−1
[

sρ−1

sα + asβ + b
; z
]

= tα−ρ
∞∑
k=0

(−a)kzk(α−β)ςk+1
α,α+(α−β)k−ρ+1(−bz

α),

where | asβ

sα + b
| < 1. We also assume that the preceding equality’s series is convergent.

1.2.2 Riemann-Liouville fractional integral
Calculations of integrals and derivatives of arbitrary real or complex order are referred to

as "fractional calculations." In this thesis, we are only concerned with Riemann-Liouville and
Caputo derivatives.ă
Definition 1.2.7 (See [96])

Cauchy’s formula for repeated integration is given by

Inf(t) :=
∫ t

a

∫ τ1

a
· · ·

∫ τn−1

a
f(τ)dτ · · · dτ2dτ1
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= 1
(n− 1)!

∫ t

a
f(τ)(t− τ)n−1dτ, ∀n ∈ N0, a, t ∈ R, t > 0.

If n is substituted by a positive real number α and (n − 1)! by its generalization Γ(α) a
formula for fractional integration is obtained.

Definition 1.2.8
The fractional operator

Iαf(t) := 1
Γ(α)

∫ t

a
(t− s)α−1f(s)ds, t > a, α > 0.

is referred to as Riemann-Liouville fractional integral of order α.

Proposition 1.2.3

• By convention

I0f(t) := f(t), i.e., I0 := I is the identity operator.

• The linearity

Iα(λf(t) + g(t)) = λIαf(t) + Iαg(t), α ∈ R+, λ ∈ C.

• If f(t) is continuous for t ≥ 0 the following equalities hold

limα→0I
αf(t) = f(t),

Iα(Iβf(t)) = Iβ(Iαf(t)) = Iα+βf(t) α, β ∈ R+, λ ∈ C.

Definition 1.2.9
The Laplace transform of Riemann-Liouville fractional integral is defined by:

L
[
Iαf(x)

]
= 1

Γ(α)
L(xα−1 ⋆ f(x))

= 1
sα

L
[
f(x)

]
.
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1.2.3 Riemann-Liouville fractional derivative operator

Definition 1.2.10
Let f be a real function, the Riemann-Liouville fractional derivative or the Riemann-

Liouville fractional differential operator of order α is defined by

Dα
RLf(t) = dn

dtn
(In−αf(t))

= 1
Γ(n− α)

dn

dtn
∫ t

0
(t− s)n−α−1f(s) ds, t > 0, α ∈ (n− 1, n), n ∈ N.

In the following lemma, we give some relations between the Riemann-Liouville fractional deriva-
tive and the Riemann-Liouville fractional integral.
Lemma 1.2.4

Let u ∈ Cn([0, T ]), α ∈ (n− 1, n), n ∈ N and v ∈ C1([0, T ]).

• The Riemann-Liouville fractional differential operator Dα
RL is the left inverse operator

of the fractional integral Iα, i.e.,

Dα
RLI

α = I,

By convention it is defined

D0
RLv(t) := v(t), i.e., D0

RL := I is the identity operator.

•

Dα
RLv(t) = d

dt
I1−αv(t), n = 1,

Dα
RLv(t) = d2

dt2
I2−αv(t), n = 2,

IαDα
RLu(t) = u(t) − tα−1

Γ(α)
(Iα−1u)(0).

Remark 1.2.2
As we can see from the previous definition, the Riemann-Liouville fractional derivative of
a constant is non-zero, unlike the integer order derivative of a constant C. To be more
specific, the Riemann-Liouville fractional derivative of order 0 < α < 1 of a constant C is
given by

Dα
RLI

αC = Ct−α

Γ(1 − α)
.
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Definition 1.2.11
The Laplace transform of the Riemann-Liouville fractional derivative is defined by:

L
[
Dα
RLf(t)

]
= L

[
dn

dtn
(In−αf(t))

]

= sαL(f(t)) −
n−1∑
k=0

skDα−k−1f(0)

= sαF (s) −
n−1∑
k=0

skDα−k−1f(0).Remark 1.2.3

• The Laplace transform of f (n) is defined as follows:

L
[
f (n)(t)

]
= snL

[
f(t)

]
−

n−1∑
k=0

skfn−k−1(0).

•
Dα
RLf(t) = dn

dtn
(In−αf(t)) = dn

dtn
(D(α−n)f(t)).

As a result, we’ve arrived at the following two theorems:
Theorem 1.2.2 (See [104, 65])

Let 0 < α < 1. The derivative Riemann-Liouville fractional equation of order α is then
transformed by the Laplace transform:

L
[
Dα
RLf(t)

]
= sαF (s) − lim

t→0
I1−αf(t).

Theorem 1.2.3 (See [104, 65])
Assume that 1 < α < 2. The derivative Riemann-Liouville fractional equation of order α

is then transformed by the Laplace transform:

L
[
Dα
RLf(t)

]
= sαF (s) − s lim

t→0
I2−αf(t) − lim

t→0

d
dt
I2−αf(t).

In the formulation of the Laplace transforms, we can see the terms lim
t→0

I1−αf(t), lim
t→0

I2−αf(t)

and lim
t→0

d
dt
I2−αf(t). Contrary, in integer order derivatives, where we can see the initial values

of the functions f and f ′.

1.2.4 Fractional Green’s formula
Let Ω be a bounded open subset of Rn, with a smooth boundary Γ of class C2. For all T > 0,
we denote by Q = Ω × (0, T ),Σ = ∂Ω × (0, T ). Let y, ϕ ∈ C∞([0, T ] × Ω̄), T > 0. We have the
two following results:
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Lemma 1.2.5

We set n = 1. Then, for all 0 < α < 1, and, for any y, ϕ ∈ C∞([0, T ] × Ω̄), we have

∫ T

0

∫
Ω

[
Dα
RLy(x, t) − ∆y(x, t)

]
ϕ(x, t)dxdt

=
∫

Ω
ϕ(x, T )I1−αy(x, T )dx−

∫
Ω
ϕ(x, 0)I1−αy(x, 0)dx+

∫ T

0

∫
∂Ω
y(σ, t)∂ϕ

∂ν
(σ, t)dσdt

−
∫ T

0

∫
∂Ω
ϕ(σ, t)∂y

∂ν
(σ, t)dσdt+

∫ T

0

∫
Ω

[
− Dα

Cϕ(x, t) − ∆ϕ(x, t)
]
y(x, t)dxdt,

where Dα
C is the right fractional Caputo derivative of order 0 < α < 1.

Lemma 1.2.6

We set n = 2. Then, for all 1 < α < 2, and, for any y, ϕ ∈ C∞([0, T ] × Ω̄), we have∫ T

0

∫
Ω

[
Dα
RLy(x, t) − ∆y(x, t)

]
ϕ(x, t)dxdt

=
∫

Ω
ϕ(x, T ) ∂

∂t
I2−αy(x, T )dx−

∫
Ω
ϕ(x, 0) ∂

∂t
I2−αy(x, 0+)dx−

∫
Ω
I2−αy(x, T )∂ϕ

∂t
(x, T )dx

+
∫

Ω
I2−αy(x, 0)∂ϕ

∂t
(x, 0)dx+

∫ T

0

∫
∂Ω
y(σ, t)∂ϕ

∂ν
(σ, t)dσdt−

∫ T

0

∫
∂Ω
ϕ(σ, t)∂y

∂ν
(σ, t)dσdt

+
∫ T

0

∫
Ω

[
Dα
Cϕ(x, t) − ∆ϕ(x, t)

]
y(x, t)dxdt,

where Dα
C is the right fractional Caputo derivative of order 1 < α < 2.

1.2.5 The left and right Caputo fractional derivatives
The concepts of left and right Caputo fractional derivatives will be discussed here.

Definition 1.2.12
If f(t) is defined in Cn[a,∞), then the left Caputo fractional derivative or left Caputo

fractional differential operator of order α is defined as

Dα
Cf(t) = In−α

(
dn

dtn
f(t)

)

= 1
Γ(n− α)

∫ t

0
f (n)(s)(t− s)n−α−1ds, t > 0, α ∈ (n− 1, n), n ∈ N.

A constant’s Caputo derivative is equal to zero.
Definition 1.2.13

The right Caputo fractional derivative or the right Caputo fractional differential operator
of order α is defined by

Dα
Cf(t) = (−1)n

Γ(n− α)

∫ T

t
f (n)(s)(s− t)n−α−1ds, 0 < t < T, α ∈ (n− 1, n), n ∈ N.
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The adjoint operator of the right fractional derivative is represented by the left fractional
derivative. In the following lemma, we give some relations between the Riemann-Liouville
fractional derivative and the Caputo fractional integral:
Lemma 1.2.7

Let u ∈ Cn([0, T ]), α ∈ (n− 1, n), n ∈ N and v ∈ C1([0, T ]).

Dα
CI

αv(t) = v(t);

IαDα
Cu(t) = u(t) −

n−1∑
k=0

tk

k!
u(k)(0);

IαDα
Cu(t) = u(t) − tα−1

Γ(α)
(I1−α−u)(0), n = 1;

IαDα
Cu(t) = u(t) − u(0), n = 1.

Lemma 1.2.8
Let (n− 1) < α < n, n ∈ N, α ∈ R and f(t) be such that Dα

Cf(t) exists. Then

Dα
Cf(t) = In−αDnf(t) = In−α dn

dtn
f(t).

This implies that the Caputo fractional differential operator is equivalent to an (n−α)-fold
integration following an n-th order differentiation.

Proposition 1.2.4
In general, the two operators, Riemann-Liouville and Caputo, do not coincide, i.e.,ă

Dα
RLf(t) ̸= Dα

Cf(t).

Lemma 1.2.9
Let (n − 1) < α < n, n ∈ N, α ∈ R and f(t) be such that Dαf(t) exists. Then the

following properties for the Caputo operator hold:

lim
α→n

Dα
Cf(t) = f (n)(t),

lim
α→n−1

Dα
Cf(t) = f (n−1)(t) − f (n−1)(0).

Proof : We refer the reader to[123].

For the Riemann-Liouville fractional differential operator, the corresponding interpolation prop-
erty readsă

lim
α→n

Dα
RLf(t) = f (n)(t),

lim
α→n−1

Dα
RLf(t) = f (n−1)(t).
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Lemma 1.2.10

• Let (n − 1) < α < n, n,m ∈ N, α ∈ R and the functions f(t) and g(t) be such
that both Dα

Cf(t) and Dα
Cg(t) exist. Then the Caputo fractional derivative is a linear

operator, i.e.,

Dα
C((λf(t) + g(t)) = λDα

Cf(t) + Dα
Cg(t), α ∈ R+, λ ∈ C.

• The Riemann-Liouville fractional differential operator satisfies

Dα
RL(λf(t) + g(t)) = λDα

RLf(t) +Dα
RLg(t), α ∈ R+, λ ∈ C.

• Let (n − 1) < α < n, n,m ∈ N, α ∈ R and the functions f(t) is such that Dα
Cf(t)

exists. Then in general

Dα
CD

mf(t) = Dα+m
C f(t) ̸= DmDα

Cf(t).

• Suppose that (n − 1) < α < n, 0 < β = α − (n − 1) < 1, n ∈ N, α, β ∈ R and the
functionf(t) is such that both Dα

Cf(t) exists. Then

Dα
Cf(t) = Dβ

CD
n−1f(t).

Proof : We refer the reader to[96].

Definition 1.2.14
The Laplace transform of Caputo’s fractional derivative is defined by:

L [Dα
Cf(t)] = L

[
In−α( dn

dtn
f(t))

]
= sα−nL

[
dn

dtn
f(t)

]

= sαL(f(t)) −
n−1∑
k=0

sα−k−1f (k)(0)

= sαF (s) −
n−1∑
k=0

sα−k−1f (k)(0).

1.3 Generalities on the semigroup theory

1.3.1 Semigroups of linear operators
In this section we present the basic notions of the theory of semi-groups which will be used
throughout this work. Let H be a real or complex Hilbert space endowed with a norm denoted
∥ · ∥ and the dot product ⟨·, ·⟩. L(H) is the space of bounded linear operators of H in it even
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whose standard is
∥ U ∥L(U)= sup

x ̸=0

∥ Ux ∥
∥ x ∥

for all U ∈ L(H), L(H) is a Banach space.
Definition 1.3.1 (Semigroup.)

A collection (S(t))t∈R+ in L(X ) is called a semigroup if

1. S(0) = IX , where IX is the identity operator on x.

2. S(t+ s) = S(t)S(s), for all t, s ∈ R+.

3. lim
t→0

∥ S(t)x− x ∥= 0 , for all x in H

If in replaces (3) by
lim
t→0

∥ S(t) − I ∥= 0, t ≥ 0

it is a uniformly continuous semigroup.

Theorem 1.3.1
For (S(t))t≥0 a C0-semigroup on H , then we have the properties following:

(i) t → |S(t)|L(H) is bounded on any compact interval [0; t1]

(ii) For all x in H, the function t → S(t)x is continuous on R+

(iii) There are constants ω ∈ R and M ≥ 1 such that

|S(t)|L(H) ≤ Meωt, ∀t ∈ R+.

Definition 1.3.2

The operator A defined by D(A) = {x ∈ H : lim
t→0

S(t)x− x

t
exists for everything t > 0}

and
Ax = lim

t→0

S(t)x− x

t
= d

dt
S(t)x|t=0, Forx ∈ D(A).

is said to be the infinitesimal generator of the C0-semigroup

The space D(A) is endowed with the norm of the graph ∥ x ∥D(A)=∥ x ∥ + ∥ Ax ∥, x ∈ D(A).
Remark 1.3.1

(S(t))t≥0 is a C0-semigroup of bounded linear operators of infinitesimal generator A, then it
is unique..

Example 1.3.1 (Example of a C0-semigroup.)
In Lp(R)(1 ≤ p ≤ +∞), the family (S(t))t≥0 is defined by:

[S(t)x](s) = x(t+ s), ∀t ≥ 0, s ∈ R andx ∈ Lp(R).
We then define the operator A on Lp(R) by

D(A) = {x ∈ Lp(R) : x is locally absolutely continuous, andx′ ∈ Lp(R}
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Ax = x′ for everything x ∈ D.

Proposition 1.3.1
Properties of a C0-semigroup

(i) If x ∈ D(A), S(t)x ∈ D(A), 0 ≤ t < ∞.

(ii) A is a dense domain closed linear operator in H
( ¯D(A) = H

)
.

(iii) For all x ∈ H : t > 0 we have∫ t

0
S(s)xds ∈ D(A) andA

( ∫ t

0
S(s)xds

)
= S(t)x− x.

(iv) If x ∈ D(A), then the function t → S(t)x is continuously differentiable from R+ → H,
and we have

d

dt
S(t)x = AS(t)x = S(t)Ax.

(v) For λ ∈ C with Re(λ) > ω and x ∈ H, the resolver operator is defined by

R(λ,A)x =
∫ ∞

0
e−λtS(t)xdt

where R(λ,A) = (λI − A)−1(this is the transform of the place of the semi-group).

Theorem 1.3.2
Let A be a linear operator on X . Then, A is an infinitesimal generator of uniformly

continuous semigroup (S(t))t∈R+ iff A is bounded, (see [122]). Moreover, any A ∈ L(X ) is
a generator of unique uniformly continuous semigroup, (see [122]).

1.3.2 Hille-Yosida theorem
We present the Hille-Yosida theorem which constitutes a characterization of a generator of a
C0-semigroup.
Theorem 1.3.3 (Hille-Yosid.)

The necessary and sufficient condition for closed operator A dense domain in H
( ¯D(A) = H

)
be infinitesimal generator of a C0- semigroup {S(t)}t≥0 is that there constants ω ∈ R and
M ≥ 1 such that

(i) {λ : λ ∈ C, Re(λ) > ω} ⊂ ρ(A) (the solver set of A)

(ii) |R(λ,A)n|L(H) ≤ M

(Re(λ) − ω)n
, ∀Re(λ) > ω, n = 1, 2, · · · where ρ(A) is the resolvent

set defined by

ρ(A) = {λ ∈ C/ (λI − A)−1 exists and bounded in H}.
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Proof : See [122].

Given a linear operator A satisfying the conditions of Theorem (1.3.3), it is convenient to
introduce a sequence of linear operators (called the Yosida approximations of A). They are
defined by

An = nAR(n,A) = n2R(n,A) − n

Lemma 1.3.1

lim
n→∞

nR(n,A)x = x for everythingx ∈ H,

and
lim
n→∞

Anx = Ax for everythingx ∈ D(A),

Proposition 1.3.2 ([149])
Let (A,D(A)) be a nonnegative and self-adjoint operator. Then, (−A) is an infinitesimal

generator of semigroup of contraction (S(t) := e−tA)t∈R+ .

We mention some basics. Concepts and facts about stochastic processes in Hilbert-spaces. We
give Stochastic Itô definitions are included in the Hilbert spaces, which allow us to introduce
them The concept of random differential equations. Key references For the materials presented
here are [7].
Remark 1.3.2

Let (Ω,F ,P) be a probability space, (E, |.|E) be a separable Banach space and B(E) be the
σ-field of its Borel subsets. We fix T > 0.

Definition 1.3.3 (Normal filtration.)
Let F := (Ft)t∈[0,T ] be a filtration (i.e., an in-creasing family of σ-fields defined on(Ω,F ,P).

We say that (Ft)t∈[0,T ] is a normal filtration or say that, it satisfies the usual conditions
if

• for all B ∈ F s.t. P(B) = 0, then B ∈ F0.

• for all t ∈ [0, T ], Ft+ := Ft = ∩s>tFs.

The space (Ω,F ,F,P) is also known as a filtered probability space.
Definition 1.3.4 (E-valued random variable.)

Let the mapping X : (Ω,F) → (E,B(E)). We say that X is an E-valued random
variable if it is measurable, i.e. for any B ∈ B(E) it holds X −1(B) ∈ F .

1.3.3 A C0-semigroup’s dualities

Definition 1.3.5
The adjoint of A denoted A∗ generates the semigroup {S∗(t)}t≥0 ⊆ L(H), where, for

everything t ≥ 0, S∗(t) is the deputy of S(t) and which powerfully continues on H.
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Lemma 1.3.2
Let U ∈ L(H) so U∗ ∈ L(H) and we have

∥ U ∥L(U)=∥ U∗ ∥L(U) .

Lemma 1.3.3
Let A : D(A) ⊆ H → H a dense-domain closed linear operator in H. whether λ ∈ ρ(A), so
λ ∈ ρ(A∗), and we have

R(λ,A∗) = R(λ,A)∗.

1.3.4 Semi-compact operator group

Definition 1.3.6
In infinite dimension, a C0-semigroup, S(t) is said to be compact for t > t0 if for all t > t0,

S(t) is a compact operator. S(t) is said to be compact if it is compact for t > 0

Remark 1.3.3
If S(t) is compact for t ≥ 0, then the identity is compact and H is of finite dimension.
Moreover, if there exists t0 > 0 such that S(t0) is compact then S(t) is also for all t ≥ t0
because S(t) = S(t−t0) and S(t−t0) is bounded. We recall an interesting result concerning
compact semigroups.

Theorem 1.2
Let S(t) be a C0-semigroup. If S(t) is compact for t > t0, then S(t) is continuous by

relation to the uniform topology of operators for t > t0.

Corollaire 1.4
Let S(t) be a semigroup C0 and let A be its infinitesimal generator. If R(λ,A) is compact

for some λ ∈ ρ(A) and S(t) is continuous with respect to the uniform topology of operators
for t > t0, then S(t) is compact for t > t0. We conclude this section by introducing the
concept of a ”mild” solution.

1.3.5 Solution mild (Solution in the sense of semigroups)
Consider the following deterministic problem:

du(t)
dt

= Au(t), 0 < t < T,

u(0) = x, x ∈ H.
(1.3)

where H is a separable real Hilbert space and A is an unbounded operator which generates a
C0-semi-group S(t)
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Definition 1.3.7
The function u : [0, T ] → H is a (classical) solution of problem (1.3) on [0, T [ if u is

continuous on [0, T [, continuously differentiable on ]0, T [ and u(t) ∈ D(A) for t ∈]0, T [. If
A is an infinitesimal generator of a C0-semigroup {S(t)}t≥0, so for everything x ∈ D(A),
the function ux(t) = S(t)x, t ≥ 0 is a solution of (1.3). On the other hand, for x /∈ D(A),
is not a classic solution, but it can be considered as a ”generalized solution” which will be
called a ”mild solution”. In fact, the concept of mild solution can be introduced to study
the problem at an inhomogeneous initial value next

du(t)
dt

= Au(t) + f(t), 0 < t < T,

u(0) = x, x ∈ H.
(1.4)

Or f : [0, T [→ H

We now define the concept of a mild solution
Definition 1.3.8

Let A be an infinitesimal generator of a C0-semigroup {S(t)}t≥0, on H, x ∈ H, and f ∈
L1([0, T ],H) the space of Bochner functions-integrable on [0, T ] with values in H. The
function u ∈ C([0, T ],H) given by

u(t) = S(t)x+
∫ t

0
S(t− s)f(s)ds, 0 ≥ t ≥ T

is the mild solution of the initial-valued problem (1.4) on [0, T ].

1.4 Wiener processes and stochastic integrals in a Hilbert
space

In this section, we define the Wiener processes and develop the integral stochastic in a Hilbert
space.

1.4.1 Wiener processes on Hilbert spaces
There are many types of stochastic processes, among them; Wiener process, Markov process
and Poisson Process. However, Wiener process without any doubt is one of the most important
processes both in the theory and in the applications. Originally it was introduced by the
mathematician Norbert Wiener in 1920 as a mathematical model of the Brownian motion1

The current section gives a short review on such process which is a generalization of Brownian
motion taking values in a general functional space. To do so, we need first to fix some tools; let
T > 0, (U , ⟨·, ·⟩U , | · |U) be a separable real Hilbert space and (Ω,F ,P) be a complete probability
space. As a starting point of this section, let us introduce the notion of Wiener process in a
linear topological space (E,B(E)) by following [126]

1The Brownian motion is named after the biologist Robert Brown who observed in 1827 the irregular motion
of pollen particles floating in water.
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Definition 1.4.1 (E-valued Wiener process.)
Let W := (Wt)t∈[0,T ] be an E-valued stochastic process. We say that W is an E-valued

Wiener process if the following holds

1. P(W(0) = 0) = 1,

2. The trajectories of W are continuous,

3. For any finite increasing sequence (ti)ki=0 ⊂ [0, T ] the increments (Wti+1 − Wti)k−1
i=0 are

independent,

4. For any t ∈ [0, T ] and any h ∈ (0, T ], it holds PWt+h−Wt = PWh ,

5. For any t ∈ [0, T ] it is true that PWt = P−Wt .

1.4.2 Q-Wiener processes
Fix Q ∈ L(U) be a symmetric, nonnegative and finite trace operator.
Definition 1.4.2 (Standard Q-Wiener processes)

Let W := (Wt)t∈[0,T ] be an U-valued stochastic process on (Ω,F ,P). Then, W is said to be
a standard Q-Wiener process if the conditions of Definition 1.4.1 are true, such that
the law of the increments (Wt − Ws), for all 0 ≤ s < t ≤ T, is Gaussian with zero mean
and covariance operator (t− s)Q.

Proposition 1.4.1
An U -valued Q-Wiener process, W = (Wt)t∈[0,T ] is a Gaussian process with mean zero and

covariance operator tQ,∀t ≥ 0.

Proposition 1.4.2
For any symmetric, nonnegative and finite trace operator Q ∈ L(U), there exists a Q-

Wiener process on U .
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Theorem 1.4.1
Let (ϵn)n∈N be an ONB of U consisting of eigenvectors ofQ corresponding to the nonnegative
eigenvalues (λn)n∈N, and let S := {n ∈ N, λn > 0} be the index set of non-zero eigenvalues.
Then, an U -valued stochastic process W , is a Q-Wiener process iff it can be written for any
t ∈ [0, T ] as

W(t) =
∑
n∈S

√
λnβn(t)ϵn, (1.5)

where (βn)n∈S is a sequence of independent R-valued Brownian motions on (Ω,F ,P) s.t.

βn(t) = 1√
λn

⟨W(t), ϵn⟩U , for anyn ∈ S.

The series in (1.5) converges in L2(Ω, C([0, T ],U)), where C([0, T ],U) is equipped with the
supremum norm.

Proof : see [127]

In the case of filtered probability space (Ω,F ,F,P), we need to know how the Q-Wiener process
behaves in connection with the filtration F. This is leads to the next definition.
Definition 1.4.3 (Stochastic basis.)

Let (U , ⟨·, ·⟩U , | · |U) be a separable Hilbert space. We call (Ω,F ,F,P,W) a stochastic basis
if, (Ω,F ,F,P) be a filtered complete probability space with respect to the normal filtration
F := (Ft)t∈[0,T ] and (Wt)t∈[0,T ] be a U -valued Wiener process on it.

1.4.3 Cylindrical Wiener processes
Cylindrical Wiener process appears in many models in infinite dimensional spaces as a source
of random noise or random perturbation. In this subsection, we introduce by following [127]
a result which ensures the existence of such type of processes. To do so, let (U , ⟨·, ·⟩U) be a
separable Hilbert space, Q ∈ L(U) be a symmetric and non-negative operator, possibly with
trQ = +∞ and let (ϵn)n∈N be an ONB of U that consists of eigenvectors of Q with corresponding
eigenvalues (λn)n∈N. Additionally, let (U , ⟨·, ·⟩U1 , | · |U1) be an arbitrary separable Hilbert space
with U ⊂ U1 continuously and let J : (U0, ⟨·⟩U0) → (U0, ⟨·⟩U0) be a Hilbert-Schmidt embedding,
besides we define the operator Q1 := JJ∗ : U1 → U1.

Proposition 1.4.3 (See [127])
Let Q1 := JJ∗. Then, Q1 is a linear, bounded, nonnegative, symmetric and finite trace

operator on U1, and the operator J : U0 → Q
1
2
1 U1 is an isometry, i.e.

∥ u0 ∥U0= ∥Q− 1
2

1 J(u0)∥U1 =∥ J(u0) ∥
Q

1
2
1 (U1)

, for allu0 ∈ U0

Moreover, let ϵ̃n := Q
1
2 ϵn, where (ϵn)n∈N be an ONB of U and let (βn)n∈N be a sequence of

independent, real-valued Brownian motions. Then

W(t) :=
∞∑
n=1

Bn(t)J(ϵ̃n), ∀t ∈ [0, T ], (1.6)

is a Q1-Wiener process on U1 with trQ1 < +∞, where the series in (1.6) is convergent in
MT

2 (U1)
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1.4.4 Some notions in the one dimensional case
In this subsection we recall two usefull notions of real-valued processes.
Definition 1.4.4 (White noise.)

Let (ε, β(ε), µ) be a σ-finite measurable space and let the random set function W defined
on {B ∈ β(ε), s.t., µ(B) < ∞}. Then, we call W a white noise2 if it satisfies

1. for any B ∈ β(ε), W(B) is a Gaussian (or normal) random variable with mean 0 and
variance µ(B).

2. for any two disjoint sets B1, B2 ∈ β(ε), the random variables W(B1) and W(B2) are
independent and W(B1) ∩ W(B2) = W(B1) + W(B2)

Definition 1.4.5 (Brownian sheet.)
Let d ∈ N0, ε = Rd

+ := {t = (t1, · · · , td), s.t., ti ≥ 0, ∀i ∈ {1, · · · , d} and µ be a Lebesgue
measure on Rd. The process (βt)t∈Rd

+
is said to be Brownian sheet if it is defined by

βt = W(Πd
i=1]0, ti])

where W is a white noise. This means that, it is a zero-mean Gaussian process with
covariance function defined for t = (t1, · · · , td) and s = (s1, · · · , sd) by

E(βtβs) = Πd
i=1ti ∧ si.

Remark 1.4.1
There is another way to define white noise. In the special case; ε = R and µ is Lebesgue
measure, it is informally described as the weak derivative of Brownian motion, since such
motion is nowhere-differentiable in the classical sense. Such description is also possible in
higher dimensions, but it involves the Brownian sheet instead of Brownian motion.

Definition 1.4.6 (Stochastic process.)
A family X := (Xt)t∈[0,T ] of E-valued random variables Xt, t ∈ [0, T ] defined on Ω is called

a stochastic process.
The stochastic process X depends on two variables, the temporal variable t ∈ [0, T ] and the
probabilistic variable ω ∈ Ω.
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Definition 1.4.7 (Adaptation, continuity and measurability of stochastic process.)
Let F := (Ft)t∈[0,T ] be a normal filtration and X = (Xt)t∈[0,T ] be a stochastic process.

1. X is F-adapted (or simply adapted) if each Xt is measurable with respect to Ft for
every t ∈ [0, T ],

2. X is continuous with probability one if its trajectories are continuous almost surely,
i.e.

P{ω ∈ Ω, t ∈ Xt(ω) is continuous on [0, T ]} = 1,

3. X is measurable if the mapping X (·, ·) : ([0, T ] × Ω, β([0, T ]) ⊗ F) → (E, β(E))
is measurable with respect to β([0, T ]) ⊗ F (which is σ-algebra generated by the
product).

Definition 1.4.8 (Gaussian process.)
Let (U , ⟨·, ·⟩U) be a separable Hilbert space. An U -valued stochastic process X on Ω

is called Gaussian if for any k ∈ N0 and any t1, · · · , tk ∈ [0, T ] the Uk-valued random
variable (Xt1 , · · · ,Xtk) is Gaussian.

Definition 1.4.9 (Predictable σ-field.)
Let ΩT := [0, T ] × Ω endowed with the σ-field β([0, T ]) ⊗ F. The δ-field PT generated by

the sets of the form

((s, t] × Fs : 0 ≤ s < t ≤ T, Fs ∈ Fs) and ({0} × F0). F0 ∈ F0

is known as a predictable σ-field, and its constituent parts are referred to as predictable
sets.

Definition 1.4.10 (p-integrable process)
An E-valued stochastic process X = (Xt)t∈[0,T ] is called p-integrable, for p ≥ 1 if the random
variable X (t), for all t ∈ [0, T ] is p-thintegrable.

Proposition 1.4.4
The space of all continuous square integrable E-valued martingales denoted by M2

T (E) is
a Banach space endowed with the norm

∥ M ∥M2
T (E)= sup

t∈[0,T ]
∥ M(t) ∥L2(Ω,E) .

Definition 1.4.11 (Gaussian random variable)
Let (U , ⟨·, ·⟩U) be a separable Hilbert space. An U -valued random variable X on Ω is said to
be Gaussian if the R-valued random variable ⟨X , u⟩U), for any u ∈ U is Gaussian. Hence,
∃m ∈ U called the mean and a nonnegative and symmetric operator Q : U → U called the
covariance operator s.t. the law PX := P◦X −1 : B(U) → [0, 1] of X is denoted by N (m,Q).
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1.4.5 Stochastic integrals in Hilbert spaces
In this part, we discuss the Q-Wiener process with respect to stochastic integration in Hilbert
spaces. We study these ideas in detail by adopting this methodology

Stochastic integral with respect to Q-Wiener process

Throughout this subsection, we fix T > 0 and a filtered probability space (Ω,F ,F,P). Further,
we consider two separable Hilbert spaces (U , ⟨·, ·⟩U , | · |U) and (H, ⟨·, ·⟩H, | · |H). Let Q ∈ L(U)
be a symmetric, nonnegative and finite trace operator and let W = (W(t)t∈[0,T ]) be a U -valued
Q-Wiener process with respect to the normal filtration F. In order to shed a light on the notion
of stochastic integral with respect to W , we give first the meaning of an elementary process.
Definition 1.4.12 (Elementary process.)

Let φ = (φ(t))t∈[0,T ] be a L(U ,H)-valued process defined on (Ω,F ,F,P). We say that φ is
an elementary process if there exists a partition 0 = t0 < t1 < · · · < tm = T, m ∈ N
and a sequence (φk)m−1

k=0 of L(U ,H)-valued random variables that are taking only a finite
number of values in L(U ,H) s.t. φk is Ftk-measurable for any k ∈ {0, · · · ,m − 1} and
φ(t) = φk, for t ∈]tk, tk+1] with the convention φ(0) = 0. Mathematically, we write

φ(t) =
m−1∑
k=0

φkI]tk,tk+1](t), fort ∈ [0, T ]

We denote the class of such processes by E.

Now, we are ready to give the meaning of the stochastic integral on E.

Definition 1.4.13 (stochastic integral on E.)
Let φ ∈ E. Then, the stochastic integral I(φ) := ((I(φ)(t))t∈[0,T ] of φ with respect to W

is an H-valued stochastic process defined for all t ∈ [0, T ] by

(I(φ))(t) :=
∫ t

0
φ(s)dW(s) :=

m−1∑
k=0

φk(W(tk+1 ∧ t) − W(tk ∧ t))

such that φk is acting on (W(tk+1 ∧ t) − W(tk ∧ t)) as an operator in L(U ,H).

Definition 1.4.14 (stochastic integral on P2
W.)

Let φ ∈ P2
W . Then, the stochastic integral of φ with repect to W is defined for every

t ∈ [0, T ] by
(I(φ))(t) =

∫ t

0
φ(s)dW(s) := lim

n→∞

∫ t

0
φn(s)dW(s),

where the limit is taken with respect to the norm ∥ · ∥M2
T (H)

Theorem 1.4.2
Let φ ∈ P2

W . Then, I(φ) ∈ M2
T (H).

Definition 1.4.15 (Stochastically integrable process.)
Let φ ∈ PW . Then, the stochastic integral of φ with respect to W is defined for every



1.4.6 Stochastic differential equations in infinite dimension 46

t ∈ [0, T ] by ∫ t

0
φ(s)dW(s) :=

∫ t

0
(I[0,Θn]φ)(s)dW(s),

on the set {Θn ≥ t}, for every n ∈ N, and we say that φ is stochastically integrable.

The consistency of definition (1.4.8) is ensured. Indeed, let m ∈ N s.t. m > n. If Θm ≥ t, then∫ t

0
(I[0,Θn]φ)(s)dW(s), :=

∫ t

0
(I[0,Θn](1[0,Θm])(s)dW(s),

we have ∫ t

0
(I[0,Θn]φ)(s)dW(s), :=

∫ Θn∧t

0
(I[0,Θm]φ)(s)dW(s),

and since Θn ≥ t we get∫ t

0
(I[0,Θn]φ)(s)dW(s), :=

∫ t

0
(I[0,Θm]φ)(s)dW(s).

for every n,m ∈ N s.t. m > n.

1.4.6 Stochastic differential equations in infinite dimension
In this part, we deal with stochastic differential equations in the infinite dimension.

Abstract parabolic stochastic partial differential equations.

We give by following [130], a short review about the theory of solvability for a class of
SPDEs with globally Lipschitz nonlinearities. let (H, ⟨·, ·⟩H, |·|H) and (U , ⟨·, ·⟩U , |·|U) be two real
separable Hilbert spaces, and let (Ω,F ,F,P,W) be a stochastic basis, where W = (Wt)t∈[0,T ] be
a U -valued cylindrical Wiener process. We consider the following stochastic partial differential
equation, perturbed by a multiplicative noise,

du(t)
dt

= Au(t) + F (u(t)) +G(u(t))dW(t)
dt

, t ∈ (0, T ],
u(0) = u0,

(1.7)

where

• A : D(A) ⊂ H → H, is in general an unbounded Linear operator (not necessary the
Laplacian),

• F : H → H, is B(H)\B(H)-measurable operator,

• G : H → L(U ,H),be an operator,

• u0 be an H-valued, F0-measurable random variable.

There are different concepts of the solutions, namely strong, weak and mild.
Definition 1.4.16 (Strong solution.)

Let u := (u(t))t∈[0,T ] be an D(A)-valued predictable process. We say that u is a strong
solution of Prb. (1.7) if
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• for all t ∈ [0, T ], (0, t) ∋ s� (Au(s) + F (u(s))) ∈ H is P-a.s. Bochner integrable,

• G(u) : ΩT → HS(U ,H) is continuous predictable s.t.

P
{∫ T

0
∥ G(u(s)) ∥2

HS(U ,H) ds < ∞
}

= 1,

• the following equality holds P-a.s. in H

u(t) = u0 +
∫ t

0
(Au(s) + F (u(s)))ds+

∫ t

0
G(u(s))dW(s), for every , t ∈ [0, T ]

Definition 1.4.17 (Weak solution.)
Let u := (u(t))t∈[0,T ] be an H-valued predictable process. We say that u is a weak solution

of Prb.(1.7) if

• for all t ∈ [0, T ], and all ξ ∈ D(A∗), (0, t) ∋ s � (⟨u(s), A∗ξ⟩H + ⟨F (u(s)), ξ⟩H) ∈ R
is P-a.s. Lebesgue integrable,

• the following equality holds P-a.s.in R,

⟨u(t), ξ⟩H = ⟨u0, ξ⟩H +
∫ t

0
(⟨u(s), A∗ξ⟩H + ⟨F (u(s), ξ)⟩H)ds

+
∫ t

0
⟨G(u(s))dW(s), ξ⟩H

for every t ∈ [0, T ], and every ξ ∈ D(A∗)

Definition 1.4.18 (Mild solution.)
Let u := (u(t))t∈[0,T ] be an H-valued predictable process. We say that u is a mild solution

of Prb.(1.7) if

• for all t ∈ [0, T ], (0, t) ∋ s� S(t− s)F (u(s)) ∈ H is P-a.s. Böchner integrable,

• for all t ∈ [0, T ], I[0,t[(·)S(t − ·)G(u(·)) : ΩT → HS(U ,H) is continuous predictable
s.t.

P
{∫ T

0
∥ I[0,t[(s)S(t− s)G(u(s)) ∥2

HS(U ,H) ds < ∞
}

= 1

• the following equality holds in H, P-a.s.,

u(t) = S(t)u0 +
∫ t

0
S(t− s)F (u(s))ds+

∫ t

0
S(t− s)G(u(s))dW(s),

for every t ∈ [0, T ], where (S(t))t∈[0,T ] is the semigroup generated by the operator A.

It is worth noticing here to introduce the notion of the mild solution in a general sense framework
as .
Definition 1.4.19 (Stochastic convolution.)

Let φ := (φ(t))t∈[0,T ] be an L(U ,H)-valued predictable process and let (S(t))t∈[0,T ] be the
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strongly continuous semigroup generated by the operator A s.t. the following integral

Wφ
s (t) :=

∫ t

0
S(t− s)φ(s)dW(s), for every t ∈ [0, T ],

is well defined. Then, the process Wφ
s := (Wφ

s (t))t∈[0,T ] is called stochastic convolution.

1.5 Finite Dimensional Linear Control Dynamical Sys-
tems

This Part are mainly concerned with the quadratic cost optimal control problem for distributed
parameter systems and systems with time delay, both over a finite and an infinite time interval.
For problems over a finite time interval, the main tool used is Dynamic Programming, which
leads to a Hamilton-Jacobi-Problem equation for the value function.

1.5.1 Ordering system
The object of automatic control is the study of systems on which one can act by means of a
command. It results in an input-and-output relationship.

(1) Commandability: Is it possible to find a command u that brings the system initially
in state x0, in any state v at time t = τ

(2) Observability: Does knowing y(t) and u(t) for all t ∈ [0, τ ] allow us to determine the
state x(t) for all t ∈ [0, τ ] (or, equivalently, the initial state x(0)).

(3) Stabilization: Is it possible to construct a command u(·) that asymptotically stabilizes
e system around an equilibrium x0.

1.5.2 Linear systems
We study the following system

dx

dt
(t) = Ax(t) +Bu(t) t ∈ [0, T ],

y(t) = Cx(t) +Du(t)
(Σ)

We will limit ourselves to the case where the quantities are of finite dimensions: x ∈ Rn, u ∈ Rm,
y ∈ Rp. It follows than A ∈ Mn(R), B ∈ Mn,m(R), C ∈∈ Mp,n(R), et D ∈∈ Mp,m(R). The
command will be assumed to be continuous by parts.
Proposition 1.5.1 (Formula for the variation of the constant.)

Let u(·) be a command and x0 ∈ Rn. The unique solution of dx
dt

(t) = Ax(t)+Bu(t) equal
to x0 at t = 0

x(t) = etAx0 +
∫ t

0
e(t−s)ABu(s)ds
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Controllability

We consider the system (Σ). We are only interested here in the input state law, i.e.

dx

dt
(t) = Ax(t) +Bu(t). (1.8)

Definition 1.5.1
Given x0 ∈ Rn, we say that a state v ∈ Rn is reachable in time τ from x0 if it exists a

control law u : [0, τ ] → Rm such that x(τ) = v(x(·)) being the solution of (1.8) satisfying
x(0) = x0. We note A(τ, x0) the set of states reachable from x0 in time τ , that is to say :

A(τ, x0) =
{
x(τ)/ x(·)solution of (Σ),

x(0) = x0

}
.

From the formula of the variation of the constant, it follows that A(τ, 0) is a vector-space,
and that

A(τ, x0)is the affine space eτAx0 + A(τ, 0)

Definition 1.5.2
On dit que le système (Σ) est commandable en temps T si A(τ, 0) = Aτ = Rn

Theorem 1.5.1
Aτ space is equal to the image of the matrix (n× nm)

C = [BAB · · ·An−1B]

called the controllability matrix.

Proposition 1.5.2 (Kalman controllability criterion.)
The system (Σ) is controllable if and only if the controllability matrix has rank n

Observability

The problem: knowing y and u for all t ∈ [0, τ ], is it possible to determine the initial condition
x(0).
Remark 1.5.1

1. the knowledge of x0 is equivalent to that of x(t) for all t ∈ [0, τ ] by virtue of the
formulation variation of the constant.

2. since u(·) is known, we can restrict ourselves to studying :
dx

dt
(t) = Ax(t) t ∈ [0, T ],

y(t) = Cx(t).
(Σ0)

Definition 1.5.3
Let us call space of unobservability Pτ of the system (Σ0) the set of initial conditions
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x(0) ∈ Rn For which the solution y(·) is identically zero on [0, τ ] :

Pτ =
{
x0(τ)/ x(·)solution of (Σ0),

withx(0) = x0check there y(t) ≡ 0

}
.
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Definition 1.5.4
The system is said to be observable if the unobservability space of (Σ0) is reduced to {0}

Proposition 1.5.3
If the system (Σ) is observable, the knowledge of y(·) on [0, τ ] unequivocally determines
x(0)

Proposition 1.5.4 (Kalman observability criterion.)
The space of unobservability of the system (Σ0) is the kernel of the matrix (np× n).

σ =


C
CA

...
CAn−1



1.5.3 Optimal control
Consider thelinear control system

dx

dt
(t) = Ax(t) +Bu(t), x(s) = x0,

y(t) = Cx(t)
(1.9)

on the time interval [s, T ], 0 ≤ s < T, where x is an arbitrary initial state in Rn. The
notation and terminology are the same as the ones defined in the section on controllability and
observability. We shall be primarily concerned with the following optimal control problem:to
choxse a control (·) ∈ L2(s, T,Rm) that minimizes the cost functional

J (u, s;x) = 1
2

∫ T

s
[(u(t), Ru(t)) + (x(t), Qx(t))]dt+ 1

2
(x(T ), Sx(T )),

where R = R∗ > 0, Q = Q∗ = C∗C ≥ 0, and S = S∗ ≥ 0. A control ˆu(·) minimizing J (u, x)
will be called an optimal control. We shall not be concerned with the question of existence
and uniqueness of solutions but with the characterization of the optimal control (·) and the
corresponding optimal trajectory x̂(·).

Even though we are interested in solving the optimal control problem over afixed interval [0, T ]
and for the fixed initial condition x0, it will turn out to be conceptually important to solve the
problem for all initial points (s, x), 0 ≤ s < T.
We shall also be interested in the infinite time problem: Find a control (·) ∈ L2(s,∞,Rm) that
minimizes :

J (u, s;x) = 1
2

∫ ∞

s
[(u(t), Ru(t)) + (x(t), Qx(t))]dt. (1.10)

1.6 Infinite dimension controllability
Controllability is one of the most important qualitative aspects of a system dynamic. The

problem of controllability is to prove the existence of a function control, which drives the
solution of the system from its initial state to a state final, where the initial and final states
can vary throughout space.
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Definition 1.6.1
Let H and U be two Hilbert spaces and consider the following dynamical system:

dx(t)
dt

= Ax(t) +Bu(t), t ∈ (0, T ],
x(0) = x0, x0 ∈ H,

(1.11)

where T > 0 fixed, u ∈ L2(0, T,U), A is an infinitesimal generator of a C0-semigroup S(·)
in U and B is a bounded operator from U to H. Here H represents the state space and U
the control space of the system. We know that problem (1.11) has a unique mild solution
x = x(t, x0, u) ∈ C([0, T ], H) stated by

x(t, x0, u) = S(t)x0 +
∫ t

0
S(t− s)Bu(s)ds, t ∈ [0, T ].

Definition 1.6.2
We will say that the control u transfers a state a to a state b at time T > 0 if

x(T, a, u) = b.

We also say that state b is reachable from a at time T .

Definition 1.6.3
We will say that the system (1.11) is controllable at time T > 0, if for all a ∈ H and all
b ∈ H, there is a control function u ∈ L2(0, T, U) such that:

x(T, a, u) = b.

We also say that the pair (A,B) is controllable at time T > 0.
Consider on (0, T ) the following dynamical system

dx(t)
dt

= Ax(t) +Bu(t),
x(0) = 0.

For all t ∈ [0, T ] the solution can be written.

x(t, u) = Ltu,

where Lt is the bounded linear operator defined by: L2(0, t, U) → H,
u →

∫ t

0
S(t− s)Bu(s)ds .

Proposition 1.6.1
The system (1.11) is controllable at time T > 0 if and only if the LT operator is surjective.

Proof : Let a, b ∈ H any two states. The equation in u:

x(T, a, u) = b. (1.12)
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has a solution in L2(0, T,U) if and only if the equation

LTu = b− S(T )a, (1.13)

has a solution in L2(0, T,U). The equivalence of equations (1.12) and (1.13) leads to the proposition.

1.6.1 The Controllability Gramian
The assistant operator of LT
The LT operator is defined from the Hilbert space L2([0, T ],U) in Hilbert space H. It is a
bounded operator. We have

L∗
T :

{
H → L2(0, T,U),
x → L∗

Tx = ϑ,

where ϑ is defined by:

⟨L∗
Tx, u⟩ = (x, LT ), ∀u ∈ L2(0, T,U), ∀x ∈ H.

where ⟨·, ·⟩ denotes the scalar product in L2(0, T,U) and (·, ·) denotes the scalar product in H.

(x, LTu) =
(
x,
∫ T

0
S(t− s)Bu(s)ds

)

=
∫ T

0
(x,S(t− s)Bu(s))ds

=
∫ T

0
(B∗S∗(T − s), u(s))ds

= ⟨B∗S∗(T − ·)x, u⟩.

where B∗ (resp. S∗(t− s)) is the adjoint operator of B (resp. S(t− s)). So

L∗
T = B∗S∗(T − ·).

Definition 1.6.4
We define, RT (a), the set of states reachable at time T from To. We have :

RT (a) = S(T )a+R(LT ).
The study of controllability at time T comes down to the study of ∪a∈HRT (a) = RH(a).
From fact of infinite dimension, we can have

RT (H) ̸= ¯RT (H) et S(T )H ̸= H.
We now introduce the controllability operator called ”Gramian of controllability”.Controllability
Gramian Let’s pose

QT := LTL
∗
T =

∫ T

0
S(T − s)BB∗S∗(T − s)ds, T > 0.

The QT operator is in L(H) and

⟨QTx, x⟩ =
∫ T

0
|B∗S∗(T − s)x|2ds =∥ L∗

Tx ∥2≥ 0, ∀x ∈ H.
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Definition 1.6.5
QT := LTL

∗
T is called Controllability Gramian.

Proposition 1.6.2

R(LT ) = R
(
Q

1
2
T

)
.

1.6.2 Approximate controllability

Definition 1.6.6
The pair (A;B) is approximately controllable at time T > 0 if

¯R(LT ) = H.



Chapter 2
Approximate Controllability of
Delayed Fractional Stochastic
Differential Systems with Mixed Noise
and Impulsive Effects

The work presented in this Chapter (2) is report a new class of impulsive fractional stochas-
tic differential systems driven by mixed fractional Brownian motions with infinite delay and
Hurst parameter Ĥ ∈ (1

2
, 1) Using fixed point techniques, a q-resolvent family, and fractional

calculus, we discuss the existence of a piecewise continuous mild solution for the proposed sys-
tem. Moreover, under appropriate conditions, we investigate the approximate controllability of
the considered system, This work is attributed to the [53]

2.1 Introduction
For a long time, the subject of fractional calculus and its applications has gained a lot of im-
portance,mainly because fractional calculus has become a powerful tool with more accurate
and successful results in modeling several complex phenomena in numerous, seemingly diverse
and widespread fields of science and engineering. It was found that various, especially in-
terdisciplinary, applications can be elegantly modeled with the help of fractional derivatives
[59, 75, 123, 178].See also the recent works of [85, 37, 161, 71].
Fractional Brownian motion (fBm for short) is a family of Gaussian random processes that
are indexed by the Hurst parameter Ĥ ∈ (0, 1). It is a self-similar stochastic process with
long-range dependence ans stationary increment properties when Ĥ > 1/2. For more recent
works on fractional Brownian motion, see [20, 37, 5, 146, 67, 42] and the references therein.
In order to describe various real-world problems in physical and engineering sciences subject to
abrupt changes at certain instants during the evolution process, impulsive fractional differential
equations have become important in recent years as mathematical models of many phenomena
in both physical and social sciences. Impulsive effects begin at any arbitrary fixed point and
continue with a finite time interval, known as non-instantaneous impulses. for more details, we
refer the reader to [58, 159, 166, 167, 91, 10, 38, 19, 160].
The concept of controllability plays a major role in finite dimensional control theory. How-

55
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ever, its generalization to infinite dimensions is too strong and has limited applicability, while
approximate controllability is a weaker concept completely adequate in applications[155].
Recently, many authors have established approximate controllability results of (fractional) im-
pulsive systems[143, 11]. For example, Kumar [81] investigated the approximate controllabil-
ity for impulsive semilinear control systems with delay; Anukiruthika et al.[81] analyzed the
approximate controllability of semilinear stochastic systems with impulses. Elthough several
works exist in this area, the study of the approximate controllability of impulsive fractional
stochastic differential suystems driven by mixed noise with infinite delay and Hurst parameter
Ĥ ∈ (1/2, 1) is still an understudied topic in the literature, This fact provides the motivation
of our current work.
we consider an impulsive fractional stochastic delay differential equation with mixed fractiona
Brownian motion defined by



cDq
t z(t) = Pz(t) + F(t, zt) + G(t, zt)

dŴ(t)
dt

+ σ(t)dB
Ĥ(t)
dt

, t ∈
m∪
i=0

(si, ti+1],

z(t) = Ki(t, zt), t ∈
m∪
i=1

(ti, si],

z(t) = ϕ(t), ϕ(t) ∈ Dh,

(2.1)

where P : D(P) ⊂ Z → Z is the generator of an q-resolvent family {Sq(t) : t ≥ 0} on the
separable Hilbert space
Z, cDq

t is the Caputo fractional derivative of order 1/2 < q < 1, and state z(·) takes values
in the space Z, and 0 = t0 = s0 < t1 < s1 < t2 < · · · < tm < sm < tm+1 = T < ∞. The
functions Ki(t, zt) represent the non-instantaneous impulses during the intervals (ti, si], i =
1, 2, · · · ,m, Ŵ = {Ŵ(t) : t ≥ 0} is a Q-Wiener process defined on a separable Hilbert space
Y1, and BĤ = {BĤ(t) : t ≥ 0} is a Q-fBm with the Hurst parameter Ĥ ∈ (1/2, 1), defined
on a separable Hilbert space Y2. The history-valued function zt : (−∞, 0] → Z is defined
as zt(θ) = z(t + θ),∀θ ≤ 0, and belongs to an abstract phase space Dh. The initial data
ϕ = {ϕ(t), t ∈ (∞, 0]} are F0-measurable, Dh-valued random variable independent of Ŵ and
BĤ. The functions F ,G, σ, and Ki satisfy several suitable hypotheses, which will be specified
later
The work is arranged as follows. In Section 2.2, relevant preliminaries are given that will be
used later. we prove the existence os a piecewise continuous mild solution for the proposed
system (2.1). Then, we study the approximate controllability for problem (2.1). an example is
given to show the application of the obtained results. We end with Section, in which we present
the conclusion of our results and also suggest directions of possible future research.

2.2 Preliminaries
Let L(Yi,Z) denote the space of all linear and bounded operators from Yi to Z, j = 1, 2.
The notation ∥ · ∥ represents the norms of Z,Yi, L(Yi,Z). Let (Ω,F , {Ft}t≥0,P) be a filtered
complete probability space, where Ft is the σ-algebra generated by
{BĤ(e), Ŵ(e) : e ∈ [0, t]} and P-null sets. Let Qj ∈ L(Yj,Yj) be the operators defined by

Qje
j
i = λjie

j
i with finite trace Tr(Qj) =

∞∑
i=1

λji < ∞, where {λji}i≥1 are non-negative real num-

bers and {eji}i≥1 is a complete orthonormal basis in Yj. Then, there exists a real independent
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sequence Bi(t) of the standard Wiener process such that

Ŵ =
∞∑
i=1

√
λ1
iB(t)e1

i .

The infinite dimensional Y2-valued fBm BĤ(t) is defined as

BĤ(t) =
∞∑
i=1

√
λ2
iB

Ĥ
i (t)e2

i ,

where BĤ(t) are real, independent fBms. Let β = {β(t), t ∈ J },J = [0, T ] be a Wiener process
and BĤ = {BĤ(t), t ∈ J } be the one-dimensional fBm with Hurst index Ĥ ∈ (1/2, 1). The
fBm BĤ(t) has the following integral representation:

BĤ(t) =
∫ t

0
KĤ(t, e)dβ(e),

where the kernel KĤ(t, e) is defined as

KĤ(t, e) = XĤe
1/2−Ĥ

∫ t

e
(T − e)Ĥ−3/2T Ĥ−1/2dT for t > e.

We apply KĤ(t, e) = 0 if t ≤ e, Note that ∂KĤ
∂t

(t, e) = XĤ(t/e)Ĥ−1/2(t − e)Ĥ−3/2. Here,

XĤ = [Ĥ(2Ĥ − 1)/ξ(2 − 2Ĥ, Ĥ − 1/2)]1/2 and ξ(., .) is the Beta function. for Λ ∈ L2([0, T ]), is
follows from [108] that the Wiener-type integral of the function Λ w.r.t. fBm BHis defined by∫ T

0
Λ(e)dBH(e) =

∫ T

0
K ∗

HΛ(e)dB(e),

where K ∗
ĤΛ(e) =

∫ T

e
Λ(t)∂KĤ

∂t
(t, e)dt.

Let φj ∈ L(Yj,Z) and define

∥ φj ∥L21 =
[ ∞∑
i=1

∥
√
λjiφje

j
i ∥2

]1/2

if ∥ φjLj
2
< ∞, then φj are called Qj-Hilbert-Schmidt operators, and the spaces Lj

2(Yj,Z) are
real ansd separable Hilbert spaces with inner product ⟨φ1, φ2⟩Lj

2
= ⟨φ1eji , φ

2eji ⟩. The stochastic
integral of function Ψ : J → L2

2(Y2,Z) w.r.t fBm BĤ is defined by∫ t

0
Ψ(e)dBĤ(e) =

∞∑
i=1

∫ t

0

√
λ2
iΨ(e)e2

i dBĤ
i (e) =

∞∑
i=1

∫ t

0

√
λ2
iK

∗
H(Ψe2

i )dBi(e). (2.2)

Lemma 2.2.1

if Ψ : J → L2
2(Y2,Z) satisfies

∫ T

0
∥ Ψ(e)L2

2
∥2 de < ∞, then Equation (2.2) is a well-defined

Z-valued random variable such that

E
∥∥∥∥∥
∫ T

0
Ψ(e)dBĤ(e)

∥∥∥∥∥
2

≤ 2Ĥt2Ĥ−1
∫ T

0
∥ Ψ(e) ∥2

L2
2
de.
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Lemma 2.2.2 (See[42])
For any α ≥ 1 and for an arbitrary L1

2-valued predictable process Y (.),

sup
e∈[0,t]

E
∥∥∥∥∫ e

0
Y (T )dW(T )

∥∥∥∥2α
≤ (α(2α− 1))α

(∫ t

0

(
E ∥ Y (e) ∥2α

L1
2

)1/α
de
)α

, t ∈ [0, T ].

For α = 1 we obtain

sup
e∈[0,t]

E
∥∥∥∥∫ e

0
Y (T )dŴ(T )

∥∥∥∥2
≤
∫ t

0
E ∥ Y (e) ∥2

L1
2
de.

Assume that h : (−∞, 0] → (0,∞) with ω =
∫ 0

−∞
h(t)dt < ∞ is a continuous function.

We define Dh by

Dh =
{
ϕ : (−∞, 0) → Z, for any a > 0, (E |ϕ(θ)|2)1/2 is a measurable and bounded function on

[−a, 0] with ϕ(0) = 0, and
∫ 0

−∞
h(e) sup

e≤θ≤0
(E |ϕ(θ)|2)1/2de < ∞

}
.

if Dh is endowed with the norm

∥ ϕ ∥Dh
=
∫ 0

−∞
h(e) sup

e≤θ≤0
(E ∥ ϕ(θ) ∥2)1/2de, ϕ ∈ Dh,

then
(
Dh, ∥.∥Dh

)
is a Banach space [143].

Define the space DT = {z : (−∞, T ] → Z, z|Ji
∈ C(Ji,Z), i = 0, 1, · · · ,m , and there exist

z(t−i ) and z(t+i ) with a(t−i ) = z(ti), and z0 = ϕ ∈ Dh}, with the norm

∥ z ∥DT =∥ ϕ ∥Dh
+ sup

t∈[0,T ]
(E ∥ z(t) ∥2)1/2,

where Ji = (ti, ti+1], i = 0, 1, · · · ,m.
Lemma 2.2.3

if for all t ∈ [0, T ], zt ∈ Dh, z0 ∈ Dh. then

∥ zt ∥Dh
≤ ω sup

t∈[0,T ]
(E ∥ z(t) ∥2)1/2+ ∥ z0 ∥Dh

.

Definition 2.2.1 (see [56])
Let M > 0, θ ∈ [π/2, π], and ω ∈ R. A closed and linear operator P is called a sectorial
operator if

1. ϱ(P) ⊂
∑
(θ,ω)

= {λ ∈ C : λ ̸= ω, |arg(λ− ω)| < θ},

2. ∥ R(λ,P) ∥≤ M/|λ− ω|, λ ∈
∑
(θ,ω)
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Lemma 2.2.4 (see [27])
Let P be a sectorial operator. Then, the unique solution of the linear fractional system

cDq
t z(t) = Pz(t) + F(t), t > t0 ≥ 0, 0 < q < 1

z(t) = ϕ(t), t ≤ t0.

is given by
z(t) = Tq(t− t0)z(t0) +

∫ t

t0
Sq(t− e)F(e)de,

where
Tq(t) = 1

2πi

∫
Br

eλt
λq−1

λq − P
dλ,

Sq(t) = 1
2πi

∫
Br

eλt

λq − P
dλ,

Here, Br denotes the Bromwich path.

2.3 Solvability Results
We assume the following hypotheses.
Hypothesis 1 (H1 )

if q ∈ (0, 1) and P ∈ Pq(θ0, ω0), then , for any z ∈ Z and t > 0, we have ∥ Tq(t) ∥≤ C1e
ωt

and ∥ Sq(t) ∥≤ C2e
ωt(1 + tq−1), ω > ω0. Thus, we have

∥ Tq(t) ∥≤ M1 and ∥ S(t) ∥≤ M2t
q−1,

where M1 = sup
0≤t≤T

C1e
ωt and M2 = sup

0≤t≤T
C2e

ωt(1 + tq−1).

Hypothesis 2 (H2 )
There exists a constant NF > 0 such that

E ∥ F(t, ψ1) − F(t, ψ2) ∥2≤ NF ∥ ψ1 − ψ2 ∥2
Dh
, ∀t ∈ J , ψ1, ψ2 ∈ Dh

Hypothesis 3 (H3 )

function σ : J → L2
2(Y2,Z) satisfies

∫ t

0
∥ σ(e) ∥2

L2
2
de < ∞, for every t ∈ J , and there

exists a constant Λσ > 0 such that ∥ σ(e) ∥2
L2

2
≤ Λσ, uniformly in J .

Hypothesis 4 (H4 )
There exists a constant NG > 0 such that

E ∥ G(t, ψ1) − G(t− ψ2) ∥2
Dh

≤ NGi
∥ ψ1 − ψ2 ∥2

Dh
, ∀t ∈ J , ψ1, ψ2 ∈ Dh

Hypothesis 5 (H5 )
There are constants LKi

> 0, i = 1, 2, · · · ,m, such that
E ∥ Ki(t, ψ1) − Ki(t, ψ2) ∥2≤ LKi

∥ ψ1 − ψ2 ∥2
Dh
, ∀t ∈ J , ψ1, ψ2 ∈ Dh.
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Definition 2.3.1
An Ft-adapted random process z : (−∞, T ] → Z is called the mild solution of (2.1) if, for
every t ∈ J , z(t) satisfies z0 = ϕ ∈ Dh, z(t) = Ki(t, zt) for all t ∈ (ti, si], i = 1, 2, · · · ,m, and

z(t) =
∫ t

0
Sq(t− e)F(e, ze)de

+
∫ t

0
Sq(t− e)G(e, ze)dŴ(e) +

∫ t

0
Sq(t− e)σ(e)dBĤ(e), .

for all t ∈ [0, t1], and

z(t) = Tq(t− si)Ki(si, zsi
) +

∫ t

si

Sq(t− e)F(e, ze)de

+
∫ t

si

Sq(t− e)G(e, ze)dŴ(e) +
∫ t

si

Sq(t− e)σ(e)dBĤ(e),
(2.3)

for all t ∈ (si, ti+1], i = 1, 2, · · · ,m.

Theorem 2.3.1
Assume that conditions (H1)-(H5) are satisfies. then, problem (2.1) has a unique mild

solution on (−∞, T ], provid that

LR = max
1≤i≤m

{
η0, ω

2LKi
, ηi
}
< 1,

where
η0 = 2M2

2ω
2
(
NF t

2q
1

q2 + NGt
2q−1
1

2q − 1

)
,

ηi =
(

3M2
1LKi

ω2 + 3M2
2ω

2
{
NF t

2q
i+1

q2 + NGt
2q−1
i+1

2q − 1

})
.

Proof : We definde the operator Ξ from DT to DT as follows:

(Ξz)(t) =



ϕ(t), t ∈ (−∞, 0]∫ t

0
Sq(t− e)F(e, ze)de

+
∫ t

0
Sq(t− e)G(e, ze)dŴ(e) +

∫ t

0
Sq(t− e)σ(e)dBĤ(e), t ∈ [0, t1]

Ki(t, zt), t ∈ (ti, si]

Tq(t− si)Ki(si, zsi) +
∫ t

si

Sq(t− e)F(e, ze)de

+
∫ t

si

Sq(t− e)G − e, ze)dŴ(e) +
∫ t

si

Sq(t− e)σ(e)dBĤ(e), t ∈ (si, ti+1].

For ϕ ∈ Dh, define

g(t) =
{
ϕ(t) t ∈ (−∞, 0]
0, t ∈ J

.

Then, g0 = ϕ. Next we define

y(t) =
{

0, t ∈ (−∞, 0]
y(t), t ∈ J
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for each y ∈ C(J , R) with z(0) = 0. if z(·) satisfies (2.3), then z(t) = g(t) + y(t) for t ∈ J , which
implies that zt = gt + yt for t ∈ J , and the unction y(·) satisfies

y(t) =



∫ t

0
Sq(t− e)F(e, ge + ye)de+

∫ t

0
Sq(1 − e)G(e, ge + ye)dŴ(e)

+
∫ t

0
Sq(t− e)σ(e)dBĤ(e), t ∈ [0, t1]

Ki(t, gt + yt), tt ∈ (si, ti+1]

Tq(t− si)Ki(si, gsi + ye)dŴ(e) +
∫ t

si

Sq(t− e)σ(e)dBĤ(e) tt ∈ (si, ti+1].

Set D0
T = {y ∈ DT such that y0 = 0}. For any y ∈ D0

T , we obtain

∥y∥D0
T

= ∥y0∥Dh
+ sup

t∈J

(
E ∥y(t)∥2

)1/2
.

Thus,
(
D0
T , ∥·∥D0

T

)
is a Banach space. define the operator ψ from D0

T to D0
T as follows:

(ψy)(t) =



∫ t

0
Sq(t− e)F(e, ge + ye)de+

∫ t

0
Sq(t− e)G(e, ge + ye)dŴ(e)

+
∫ t

0
Sq(t− e)σ(e)dBĤ(e), t ∈ [0, t1]

Ki(t, gt + yt), t ∈ (ti, si]

Tq(t− si)Ki(si, gsi + ysi
) +

∫ t

si

Sq(t− e)F(e, ge + ye)de

+
∫ t

si

Sq(t− e)G(e, ge + ye)dŴ(e) +
∫ t

si

Sq(t− e)σ(e)dBĤ(e) t ∈ (si, ti+1]

Set D0
T = {y ∈ DT such that y0 = 0}. For any y ∈ D0

T , we obtain

∥y∥D0
T

= ∥y0∥Dh
+ sup
t∈[0,T ]

(
E ∥y(t)∥2

)1/2
= sup

t∈[0,T ]

(
E ∥y(t)∥2

)1/2
.

Thus,
(
D0
T , ∥·∥

)
is a Banach space.

Define the operator ψ from D0
T to D0

T as followsM

(ψy)(t) =



∫ t

0
Sq(t− e)F(e, ge + ye)de+

∫ t

0
Sq(t− e)G(e, ge + ye)dŴ(e)

+
∫ t

0
Sq(t− e)σ(e)dBĤ(e) t ∈ [0, t1]

Ki(t, gt + yt), t ∈ (ti, si]

Tq(t− si)Ki(si, gsi + ysi
) +

∫ t

si

Sq(t− e)F(e, ge + ye)de

+
∫ t

si

Sq(t− e)G(e, ge + ye)dŴ(e) +
∫ t

si

Sq(t− e)σ(e)dBĤ(e) t ∈ (si, ti+1].

in order to prove the existence result, we need to show that ψ has a unique fixed point. Let y, y∗ ∈ D0
T .

then, for all t ∈ [0, t1], we have

E ∥ψy)(t) − (ψ1y
∗)(t)∥2 ≤ 2E

∥∥∥∥∫ t

0
Sq(t− e)(F(e, ge + ye) − F(e, ge + y∗

e))de
∥∥∥∥2

+ 2E
∥∥∥∥∫ t

0
Sq(t− e)(G(e, ge + ye) − G(e, ge + y∗

e))dŴ(e)
∥∥∥∥2
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≤ 2M2
2t
q
1

q

∫ t

0
(t− e)q−1NF ∥ye − y∗

e∥
2
Dh
de

+ 2M2
2

∫ t

0
(t− e)2q−2NG ∥ye − y∗

e∥
2
Dh
de

≤ 2M2
2t
q
1

q

∫ t

0
(t− e)q−1NFω

2 sup
e∈J

E ∥y(e) − y∗(e)∥2 de

+ 2M2
2

∫ t

0
(t− e)2q−2NGω

2 sup
e∈J

E ∥y(e) − y∗(e)∥2 de

≤ 2M2
2ω

2
(
NF t

2q
1

q2 + NGt
2q−1
1

2q − 1

)
∥y − y∗∥2

D0
T

Hence,

E ∥(Ψy)(t) − (ψy∗)(t)∥2 ≤ 2M2
2ω

2
(
NF t

2q
1

q2 + NGt
2q−1
1

2q − 1

)
∥y − y∗∥2

D0
T

(2.4)

For t ∈ (si, ti+1],i = 1, 2, · · · ,m, we have

E ∥(ψy)(t) − (ψy∗)(t)∥2 ≤ E ∥Ki(t, gt + yt) − Ki(e, ge + y∗
e)∥

2

≤ LKi ∥yt − y∗
t ∥

2
Dh

≤ LKiω
2 sup
t∈J

E ∥y(t) − y∗(t)∥2

≤ LKiω
2 ∥y − y∗∥2

D0
T
.

Hence,

E ∥(ψy)(t) − (ψy∗)(t)∥2 ≤ LKiω
2 ∥y − y∗∥2

D0
T
. (2.5)

Similarly, for t ∈ (si, ti+1],i = 1, 2, · · · ,m, we have

E ∥(ψy)(t) − (ψy∗)(t)∥2 ≤ 3E
∥∥∥Tq(t− si)(Ki(si, gsi + ysi

) − Ki(si, gsi + y∗
si

))
∥∥∥2

+ 3E
∥∥∥∥∫ t

si

Sq(t− e)(F(e, ge + ye) − F(e, ge + y∗
e))de

∥∥∥∥2

+ 3E
∥∥∥∥∫ t

si

Sq(t− e)(G(e, ge + ye) − G(e, ge + y∗
e))dŴ(e)

∥∥∥∥2

≤ 3M2
1LKiω

2 ∥y − y∗∥2
D0

T

+
3M2

2t
q
i+1

q

∫ t

si

(t− e)q−1NF ∥ye − y∗
e∥

2
Dh
de

+ 3M2
2

∫ t

si

(t− e)2q−2NF ∥ye − y∗
e∥

2
Dh
de

≤ 3M2
1LKiω

2 ∥y − y∗∥2
D0

T

+
3M2

2t
q
i+1

q

∫ t

si

(t− e)q−1NFω
2 sup
e∈J

E ∥y(e) − y∗(e)∥2 de

+ 3M2
2

∫ t

si

(t− e)2(q−1)NGω
2 sup
e∈J

E ∥y(e) − y∗(e)∥2 de

≤
(

3M2
1LKiω

2 + 3M2
2ω

2
{
NF t

2q
i+1

q2 +
NGt

2q−1
i+1

2q − 1

})
∥y − y∗∥2

Dh
.
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Hence

E ∥(Ψy)(t) − (Ψy∗)(t)∥2 ≤
(

3M2
1LKiω

2
{
NF t

2q
i+1

q2 +
NGt

2q−1
i+1

2q − 1

})
∥y − y∗∥2

Dh
. (2.6)

From Equation (2.4)-(2.6), we obtain that

E ∥Ψy − Ψy∗∥2
D0

T
≤ LR ∥y − y∗∥2

D0
T
,

which implies that Ψ is a contraction. Hence, Ψ has a unique fixed point y ∈ D0
T , which is a mild

solution of problem (2.1) on (−∞, T ].

Next, using krasnoselskii’s fixed point theorem, we establish the second existence result. At
this stage we make the folloing assumptions.
Hypothesis 6 (H6 )

The map F : J × Dh → Z is a continuous function, and there exists a continuous function
ξ1 : J → (0,∞) such that

E ∥F(t, ψ)∥2 ≤ ξ1(t) ∥ψ∥2
Dh
,

for all t ∈ J , and ξ∗
1 = sup

t∈J
ξ1(t).

Hypothesis 7 (H7 )
The map G : J × Dh → L1

2(Y1,Z) is a continuous function, and there exists a continuous
function ξ2 : J → (0,∞) such that

E ∥G(t, ψ)∥2
L1

2
≤ ξ2(t) ∥ψ∥2

Dh
,

for all t ∈ J and ξ∗
2 = sup

t∈J
ξ2(t).

Hypothesis 8 (H8 )
The inequality

LHR = 2M2
2ω

2
(
NFT 2q

q2 + NGT 2q−1

2q − 1

)
< 1

holds and
max

1≤i≤m
{κ0, υiλ3, κi} < π,

where

κ0 = 3M2
2t

2q
1

λ1

q2 + λ2

t1(2q − 1)
+ 2Ĥλσt2Ĥ−2

1

2q − 1

 ,
κi = 4M2

1υiλ3 + 4M2
2t

2q
i+1

λ1

q2 + λ2

ti+1(2q − 1)
+ 2ĤΛσt

2Ĥ−2
i+1

2q − 1

 .
Hypothesis 9 (H9 )

The maps Ki : (ti, si] × Dh → Z, i = 1, 2, · · · ,m , are continuous functions and

i. there exist costants υ > 0, i = 1, 2, · · · ,m, such that E ∥Ki(t, ψ)∥2 ≤ υi ∥ψ∥2
Dh

for all
t ∈ J ;
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ii. the set {bi : bi ∈ V (π,Ki)} is an equicontinuous subset of C⟨(ti, si],Z⟩, i = 1, 2, · · · ,m.
where V (π,Ki) = {t → Ki(t, yt) : y ∈ Dπ}.

The set Dr =
{
y ∈ D0

T : ∥y∥2
D0

T
≤ r, r > 0

}
is clearly a convex closed bounded set in D0

T for
each uy ∈ Dr. by lemma (2.2.3), we obtain

∥xt + yt∥
2
Dh

≤ 2
(
∥xt∥2

Dh
+ ∥yt∥

2
Dh

)
≤ 4

(
ω2 sup

υ∈[0,t]
E ∥x(υ)∥2 + ∥x0∥2

Dh

)
+ 4

(
ω2 sup

υ∈[0,t]
E ∥y(υ)∥2 + ∥y0∥

2
Dh

)
≤ 8

(
∥ϕ∥2

Dh
+ ω2r

)
.

Let
λ1 = 8ξ∗

1

(
∥ϕ∥2

Dh
+ ω2r

)
, λ2 = 8ξ∗

2

(
∥ϕ∥2

Dh
+ ω2r), λ3 = 8

(
∥ϕ∥2

Dh
+ ω2r

)
.
)

Theorem 2.3.2
Assume conditions (H1)-(H9) are satisfied. Then, problem (2.1) has at least one mild

solution on (−∞, T ].

Proof : Let E1 : Dr → Dr and E2 : Dr → Dr be defined as

E1(y)(t) =


0 t ∈ [0, t1]
Ki(t, gt + yt), t ∈ (ti, si]
Tq(t− si)Ki(si, gsi + ysi

) t ∈ (si, ti+1]

and

E2(y)(t) =



∫ t

0
Sq(t− e)F(e, ge + ye)de

+
∫ t

0
Sq(t− e)G(e, ge + ye)dŴ(e) +

∫ t

0
Sq(t− e)σ(e)dBĤ(e), t ∈ [0, t1]

0, t ∈ (ti, si]∫ t

si

Sq(t− e)F(e, ge + ye)de

+
∫ t

si

Sq(t− e)G(e, ge + ye)dŴ(e) +
∫ t

si

Sq(t− e)σ(e)dBĤ(e) t ∈ (si, ti+1]

For convenience, we divide the proof into various steps.

Step 1. We show that E1y + E2y
∗ ∈ Dr. For y, y∗ ∈ Dr and for t ∈ [0, t1], we obtain

E ∥(E1y)(t) + E2y
∗)(t)∥2 ≤ 3E

∥∥∥∥∫ t

0
Sq(t− e)F(e, ge + y∗

e)de
∥∥∥∥2

+ 3E
∥∥∥∥∫ t

0
Sq(t− e)G(e, ge + y∗

e)dŴ(e)
∥∥∥∥2

+ 3E
∥∥∥∥∫ t

0
Sq(t− e)σ(e)dBĤ(e)

∥∥∥∥2

≤ 3M2
2

(∫ t

0
(t− e)q−1de

)(∫ t

0
(t− e)q−1ξ1(e) ∥ge + y∗

e∥
2
Dh
de

)
+ 3M2

2

∫ t

0
(t− e)2q−2ξ2(e) ∥ge + y∗

e∥
2
Dh
de
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+ 6ĤΛσM2
2t

2Ĥ−1
1

∫ t

0
(t− e)2q−2de

≤ 3M2
2t

2q
1

λ1
q2 + λ2

t1(2q − 1)
+ 2ĤΛσt2Ĥ−2

1
2q − 1

 .
Hence,

E ∥(E1y)(t) + (E2y
∗)(t)∥2 ≤ 3M2

2t
2q
1

λ1
q2 + λ2

t1(2q − 1)
+ 2ĤΛσt2Ĥ−2

1
2q − 1

 . (2.7)

For t ∈ (si, ti+1], i = 1, 2, · · · ,m, we have

E ∥(E1y) (t) + (E2y
∗)(t)∥2 ≤ E ∥Ki(t, gt + yt)∥

2

≤ υi ∥gt + yt∥
2
Dh

≤ υiλ3.

Hence,
E ∥(E1y)(t) + (E2y

∗)(t)∥2
≤ υiλ3. (2.8)

Similarly, for t ∈ (si, ti+1], i = 1, 2, · · · ,m, we have

E ∥(E1y)(t) + (E2y
∗)(t)∥2 ≤ 4E

∥∥∥Tq(t− si)Ki(si, gsi + ysi
)
∥∥∥2

+ 4E
∥∥∥∥∫ t

si

Sq(t− e)F(e, ge + y∗
e)de

∥∥∥∥2

+ 4E
∥∥∥∥∫ t

si

Sq(t− e)G(e, ge + ye)dŴ(e)
∥∥∥∥2

+ 4E
∥∥∥∥∫ t

si

Sq(t− e)σ(e)dBĤ(e)
∥∥∥∥2

≤ 4M2
2

(∫ t

si

(t− e)q−1de

)(∫ t

si

(t− e)q−1ξ1(e) ∥ge + y∗
e∥

2
Dh
de

)
+ 4M2

2

∫ t

si

(t− e)2q−2ξ2(e) ∥ge + y∗
e∥

2
Dh
de

+ 8ĤΛσM2
2t

2Ĥ−1
i+1

∫ t

si

(t− e)2q−2de

≤ 4M2
1υiλ3 + 4M2

2t
2a
i+1

λ1
q2 + λ2

ti+1(2q − 1)
+

2ĤΛσt2Ĥ−2
i+1

2q − 1

 .
Therefore,

E ∥(E1y)(t) + (E2y
∗)(t)∥2 ≤ 4M2

1υiλ3 + 4M2
2t

2q
i+1

 λ1
ti+1(2q − 1)

+
2ĤΛσt2Ĥ−2

i+1
2q − 1

 . (2.9)

Equations (2.7)-(2.9) imply that
∥E1y + E2y

∗∥2
D0

T
≤ r.

Thus, E1y + E2y
∗ ∈ Dr

Step 2. We show that the operator E1 is continuous on Dr. Let {yn}∞
n=1 be a sequence such that

yn → y in Dr. For all t ∈ (si, ti+1], i = 1, 2, · · · ,m, we have

E ∥(E1y
n)(t) − (E1y)(t)∥2 ≤ E ∥Ki(t, gt + ynt ) − Ki(t, gt + yt)∥

2 .
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since the maps Ki, i = 1, 2, · · · ,m, are continuous functions, one has

lim
n→∞

∥E1y
n − E1y∥2

D0
T

= 0 (2.10)

For all t ∈ (si, ti+1],i = 1, 2, · · · ,m, we have

E ∥(E1y
n)(t) − (E1yu)(t)∥2 ≤ E

∥∥∥Tq(t− si)(Ki(si, gsi + ynsi
) − Ki(si, gsi + ysi

))
∥∥∥2
.

Therefore,
lim
n→∞

∥E1y
n − E1y∥2

D0
T

= 0. (2.11)

Equations (2.10) and (2.11) imply that the operator E1 is continuous on Dr.
Step 3. The operator E1 maps bounded sets into bounded sets in Dr. Let us show that for r > 0

there exists a r > 0 such that, for each y ∈ Dr, we obtain E ∥E1(y)(t)∥2 ≤ r. for all t ∈ (si, ti+1],
i = 1, 2, · · · ,m. we have

E ∥(E1y)(t)∥2 ≤ E
∥∥∥Tq(t− si)Ki(si, gsi + ysi

)
∥∥∥2

≤ M2
1υiλ3.

For all t ∈ (si, ti+1], i = 1, 2, · · · ,m, we have

E ∥(E1)(t)∥2 ≤ E ∥Ki(t, gt + yt)∥
2 ≤ υiλ3.

From the above equations, we obtain

∥E1y∥2
D0

T
≤ r,

where r = max
{

M2
1υiλ3, υiλ3

}
. Hence, the operator E1 maps bounded sets into bounded sets

in Dr..
Step 4. The operator E1 is equicontinuous. For all ∆1,∆2 ∈ (ti, si],∆1 < ∆2, and y ∈ Dr, we obtain

E ∥(E1y)(∆1) − (E1y)(∆1)∥2 ≤ E
∥∥Ki(∆2, g∆2 + y∆2) − Ki(∆1, g∆1 + y∆1)

∥∥2
. (2.12)

For all ∆1,∆2 ∈ (si, ti+1],∆1 < ∆2. and y ∈ Dr, we obtain

E ∥(E1y)(∆2) − (E1y)(∆1)∥2 ≤ E
∥∥∥(Tq(∆2 − si) − Tq(∆1 − si))Ki(si, gsi + ysi

)
∥∥∥2

Since Tq is strongly continuous, it allows us to conclude that

lim
n→∞

∥Tq(∆2 − si) − Tq(∆1 − si)∥2 = 0 (2.13)

Equations (2.12) and (2.13) with (9) (ii) imply that the operator E1 is equicontinuous on Dr.
Finally, combining steps 1-4 together with Ascoli’s theorem, we coclude that the operator E1 is
completely continuous.

step 5. The operator E2 is a contraction map. For y, y∗ ∈ Dr and for t ∈ (si, ti+1], i = 1, 2, · · · ,m,
we have

E ∥(E2y)(t) − (E2y
∗)(t)∥2 = 0. (2.14)

Similarly, for y, y∗ ∈ Dr and for t ∈ (si, ti+1], i = 1, 2, · · · ,m, we have

E ∥(E2y)(t) − (E2y
∗)(t)∥2 ≤ 2E

∥∥∥∥∫ t

si

Sq(t− e)(F(e, ge + ye) − F(e, ge + y∗
e))de

∥∥∥∥2

+ 2E
∥∥∥∥∫ t

si

Sq(t− e)(G(e, ge + ye) − G(e, ge + y∗
e))dŴ(e)

∥∥∥∥2
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≤ 2M2
2ω

2
(
NFT

2q

q2 + NGT
2q−1

2q − 1

)
∥y − y∗∥2

D0
T
.

Hence,

E ∥(E2y)(t) − (E2y
∗)(t)∥2 ≤ 2M2

2ω
2
(
NFT

2q

q2 + NGT
2q−1

2q − 1

)
∥y − y∗∥2

D0
T
. (2.15)

From above, we obtain
∥E2y − E2y

∗∥2
D0

T
.

Thus, E2 is a contraction map. By Krasnoselskii’s fixed point theorem, we obtain that problem
(2.1) has at least one solution on (−∞, T ].

2.4 Approximate Controllability
We consider the folloing control system:

c
D
q
t z(t) = Pz(t) + Aû(t) + F(t, zt) + G(t, zt)

dŴ(t)
dt

+ σ(t)dB
Ĥ(t)
dt

, t ∈
m∪
i=0

(si, ti+1],

z(t) = Ki(t, zt), t ∈
m∪
i=1

(ti, si],

z(t) = ϕ(t), ϕ(t) ∈ Dh.

(2.16)
The control û(·) ∈ L2(J ,U), where L2(J ,U) is the Hilbert space of all admissible control
functions. The operator A is linear and bounded from the separable Hilbert space U into Z.
We consider the linear system

c
D
q
t z(t) = Pz(t) + Aû(t), t ∈ [0, T ],

z(t) = ϕ(t), ϕ(t) ∈ Dh.
(2.17)

Define the operator tti+1
si

associated with system of (2.17) as

tti+1
si

=
∫ t

si

Sq(ti+1 − e)AA∗S∗
q (ti+1 − e)de.

here, A∗ and S∗
q (t) are the adjoint of Aand Sq(t), respectively. The operator tti+1

si
is a bounded

and linear operator.
Definition 2.4.1

System (2.16) is approximately controllable on [0, T ] if R(t, ϕ, û) = L2(FT ,Z), where
R(T, ϕ, û) =

{
z(ϕ, û)(T ) : z is the solution of problem (2.16) and û ∈ L2(J ,U)

}
.

The following assumption is needed.

AC : System (2.17) is approximate controllability on J .
Note that system (2.17) is approximately controllable on J only if

∆(Λ, tti+1
si

) = (ΛI + tti+1
si

)−1 → 0 as Λ → 0. (2.18)
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Definition 2.4.2
An Ft-adapted random process z : (−∞, T ] → Z is called the mild solution of (2.16) if for
every t ∈ J , z(t) satisfies z0 = ϕ ∈ Dh, z(t) = Ki(t, zt) for all t ∈ (si, ti+1], i = 1, 2, · · · ,m,
and

z(t) =
∫ t

0
Sq(t− e)[F(e, ze) + Aû(e)]de

+
∫ t

0
Sq(t− e)G(e, ze)dŴ(e) +

∫ t

0
Sq(t− e)σ(e)dBĤ(e),

for all t ∈ [0, t1], and

z(t) =
∫ t

0
Sq(t− e)Ki(si, zsi

) +
∫ t

si

Sq(t− e)[F(e, ze) + Aû(e)]de

+
∫ t

si

Sq(t− e)G(e, ze)dŴ(e) +
∫ t

si

Sq(t− e)σ(e)dBĤ(e), , (2.19)

for all t ∈ (si, ti+1], i = 1, 2, · · · ,m.

Lemma 2.4.1
For any zti+1 ∈ L2(FT ,Z), there exist ϕ1 ∈ L2([si, ti+1],L1

2(Y1,Z)) and ϕ2 ∈ L2([si, ti+1],L2
2(Y2,Z))

such that
zti+1 = Ezti+1 +

∫ ti+1

si

ϕ1(e)dŴ(e) +
∫ ti+1

si

ϕ2(e)dBĤ(e).

Next, we choose the control ûΛ(t) as follows:

ûΛ(t) = A∗S∗
q (ti+1 − t)∆(Λ, tti+1

si
)p(z(.)), (2.20)

where

p(z(.)) = zti+1 − Tq(ti+1 − si) −
∫ ti+1

si

Sq(ti+1 − e)F(e, ze)de

−
∫ ti+1

si

Sq(ti+1 − e)G(e, ze)dŴ(e) −
∫ ti+1

si

Sq(ti+1 − e)σ(e)dBĤ(e),

∀t ∈ (si, ti+1], i = 1, 2, · · · ,m,

and K0(0, .) = 0, z(tm+1) = zym+1 = zT .
Theorem 2.1

Assume the hypotheses (H1)-(H9) are satisfied. Then, the problem (2.16) has at least one
solution on (−∞, T ].

Proof : The proof is a consequence of Theorem 2.3.2

Theorem 2.2
Assume the hypotheses (H1)-(H9) and [AC] are satisfied. Then functions F and Gare uni-

formly bounded on their respective domains. Moreover, the system (2.16) is approximately
controllable on [0, T ].
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Proof : Let zΛ be a fixed point of E1 + E2. Using Fubini’s theorem, we get

zΛ(ti+1) = zti+1 − Λ∆(Λ, tti+1
si

)p(zΛ(.)), (2.21)

where

p(zΛ(.)) = zti+1 − Tq(ti+1 − si)Ki(si, zΛ
si

) −
∫ ti+1

si

Sq(ti+1 − e)F(e, zΛ
e )de

−
∫ ti+1

si

Sq(ti+1 − e)G(e, zΛ
e )dŴ(e) −

∫ ti+1

si

Sq(ti+1 − e)σ(e)dBĤ(e),

∀t ∈ (si, ti+1], i = 1, 2, · · · ,m.

The functions Fand Gare uniformly bounded. Hence, there exists a subsequence, still represented by
F(e, zΛ

e ) and G(e, zΛ
e ), that weakly converge to, say, F(e) and G(e) in Zand L1

2(Y1,Z), respectively.
Let us define

η = zti+1 − Tq(ti+1 − si)Ki(si, zsi) −
∫ ti+1

si

Sq(ti+1 − e)F(e)de

−
∫ ti+1

si

Sq(ti+1 − e)G(e)dŴ(e) −
∫ ti+1

si

Sq(ti+1 − e)σ(e)dBĤ(e),

∀t ∈ (si, ti+1], i = 1, 2, · · · ,m.

For t ∈ (si, ti+1], i = 1, 2, · · · ,m, we have

E
∥∥∥p(zΛ) − η

∥∥∥2
≤3E

∥∥∥Tq(ti+1 − si)(Ki(si, zΛ
si

) − Ki(si, zsi))
∥∥∥2

+ 3E
∥∥∥∥∫ ti+1

si

Sq(ti+1 − e)(F(e, zΛ
e ) − F(e))de

∥∥∥∥2

+ 3E
∥∥∥∥∫ ti+1

si

Sq(ti+1 − e)(G(e, zΛ
e ) − G(e))dŴ(e)

∥∥∥∥2

By the infinite dimensional version of the Arzela-Ascoli theorem, we obtain that

k(.) →
∫

Sq(.− e)k(e)de

is a compact operator. For all t ∈ [0, T ],

E
∥∥∥p(zΛ) − η

∥∥∥2
→ 0 as Λ → 0+ (2.22)

By Equation (2.21), we get

E
∥∥∥zΛ(ti+1) − zti+1

∥∥∥2
≤ E

∥∥∥Λ∆(Λ, tti+1
si

)(η)
∥∥∥2

+ E
∥∥∥Λ∆(Λ, tti+1

si
)
∥∥∥2

E
∥∥∥p(zΛ) − η

∥∥∥2
.

By (2.18) and (2.22), we get

E
∥∥∥zΛ(ti+1) − zti+1

∥∥∥2
→ 0 as Λ → 0+.

Thus, the system (2.16) is approximate controllable on the interval [0, T ].
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Example 2.4.1
The functions F , G and Ki are continuous functions.

We consider the following fractional stochastic control system:

c
D
q
t y(t, z) = ∂2

∂z2y(t, z) + Θ(t, z) +
∫ t

−∞
e4(r−t)y(r, z)dr

+
∫ t

−∞
e6(r−t)y(r, z)drdŴ(t)

dt
+ P (t)dB

Ĥ(t)
dt

,

y ∈ (0, π), t ∈ [2i, 2i+ 1], i = 1, 2, · · · ,m,

y(t, z) =
∫ t

−∞
Gi(r − t)y(r, z)dr, t ∈ [2i− 1, 2i], i = 1, 2, · · · ,m,

y(t, 0) = 0 = y(t, π),
y(t, z) = ϕ(t, z), t ∈ (−∞, 0],

(2.23)

where c
D
q
t is the Caputo derivative of order 1/2 < q < 1, 0 = s0 = t0 < t1 < s1 < t2 <

· · · < tm < sm < tm+1 = T < ∞ with si = 2i, ti = 2i− 1.
Let Z = L2([0, π]) and the operator P be defined by

Pw = w′′,D(P) = H2(0, π) ∩H1
0 (0, π).

Clearly, P is the generator of an analytic semigroup {S(t) : t > 0}. The soectral represen-
tation of S(t) is given by

S(t)w =
∑
n∈N

e−2t⟨w,wn⟩wn,

where
wn(y) =

√
2/π sin(ny), n ∈ N,

is the prthogonal set of eigenvectors corresponding to the eigenvalue λn = −n2 of P . The
semigroup {S(t) : t ≥ 0} is compact and uniformly bounded, so that R(λ,P) = (λI − P)−1

is a compact operator for all λ ∈ ρ(P), i.e., P ∈ Pq(θ0, ω0). Let h(e) = e2e, e < 0. Then
ω =

∫ 0

−∞
h(e)de = 1/2 and we define

∥ϕ∥Dh
=
∫ 0

−∞
h(e) sup

e≤θ≤0
(E|ϕ(θ)|2)1/2de, ϕ ∈ Dh.

Hence, (t, ϕ) ∈ [0, T ]×Dh. The bounded linear operator A is defined by Aû(t)(z) = Θ(t, z).
Define the functions F : J × Dh → Z,G : J × Dh → L2(Y1,Z), and Ki : (ti, si] × Dh → Z
as

F(t, ϕ)(z) =
∫ 0

−∞
e4θ(ϕ(θ)(z))dθ,

G(t, ϕ)(z) =
∫ 0

−∞
e6θ(ϕ(θ)(z))dθ,

Ki(t, ϕ)(z) =
∫ 0

−∞
G(θ)(ϕ(θ)(z))dθ.

Assume that ∫ T

0
∥σ(e)∥2

L2
2
de < ∞.

The system (2.23) can be written as an abstract formulation of (2.1), and thus previous
theorems can be applied to guarantee both existence and approximate controllability results.
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2.5 Conclusions
This Chapter (2) We have investigated impulsive fractional stochastic control systems defined
on separable Hilbert spaces. The proposed problem is driven by mixed noise, i.e., it involves
both a Q-Wiener process and a Q-fractional Brownian motion with the Hurst parameter Ĥ ∈
(1/2, 1). For our results, we have mainly applied fixed point techniques, a q-resolvent family,
and fractional calculus. The obtained results are supported by an illustrative example. As
further directions of investigation and continuation to this work, it would be interesting to
investigate the sensitivity on the noise range and develop numerical and computational methods
to approximate the solution. We also intend to extend our results via discrete fractional calculus.



Chapter 3
Nonlinear fractional order neutral-type
stochastic integro-differential system
with rosenblatt process a controllability
exploration

The work presented in this Chapter (3) is controllability analysis of nonlinear fractional
order neutral-type stochastic integro-differential system with non-Gaussian process. We stress
out the stochastic term of our system driven by the uncomplicated non-Gaussian Hermite
process known as the Rosenblatt process, which is named after by Murray Rosenblatt who
first devised this introduced concept. This process is self-similar with consistent accretion and
beside emerged as restriction in the non-central limit theorem, and it exists in the second wiener
chaos. The necessary and sufficient conditions for the controllability are verified by employ-ing
fixed point techniques. This work is attributed to the [54].

3.1 Introduction
We investigate the controllability analysis of nonlinear fractional Order neutral-type stochas-

tic integro-differential system with non-Gaussian process. We investigate the controllability
analysis of nonlinear fractional order neutral-type stochastic integro-differential system with
non-Gaussian process. We stress out the stochastic term of our system driven by the uncompli-
cated non-Gaussian Hermite process known as the Rosenblatt process, which is named after by
Murray Rosenblatt who first devised this introduced concept. This process is self-similar with
consistent accretion and beside emerged as restriction in the non-central limit theorem, and it
exists in the second wiener chaos. The necessary and sufficient conditions for the controllability
are verified by employing fixed point techniques. At end, we present illustrative examples to
clarify the abstract results.
For several centuries ago, the investigators and technologists are always enthusiastic to work on
a real-world problem to understand natural phenomenon. Many works are derived by modelling
real life problems and try to get solutions for them and then apply the obtained results to real-
life that used to live in a better way. Mathematical modelling is one of the best tools to solve
this type of situations to investigate the solutions with some accuracies; it is used in different
branches of sciences and engineering.
To model a more complex natural phenomenon with more accurate solutions, it is needed to

72
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employ modified approaches like a complex system instead of using integer-order derivative,
we can replace it by non-integer one. By using a fractional order derivative, we can study
the queries of any complex natural phenomenon, fractional differential equations far-reaching
applications towards physical phenomena such as fluid dynamics, etc. Recently, the subject
of fractional calculus theory and its applications have been arising a considerable interest due
to its ability to model many practical systems [49], [50], [74], [75], [151].By using fractional
derivatives, we can reveal the modifications in an interval. The fractional by-product is in non-
indigenous nature, it makes fractional derivatives appropriate to mimic extra bodily phenomena
along with earthquake vibrations, polymers, ˙...., etc., see [123], [175]. The applied science has
showed that many phenomena have been modelled with the aid of using fractional differential
equations coincide with a few uncertainties. There are many fluctuations in the environments
and also there are intrinsic and extrinsic noises available in the field. The necessity to clear up
veritable issues for greater unique answers, it is recommended the view of stochastic fractional
differential equations [45], [78].
Stochastic differential equations of fractional order play an emerging role rather than the
integer-order systems and subsequently. The stochastic process is a probability distribution
over a space of paths, the theory of stochastic processes was reconciled decades ago. Applica-
tions of stochastic processes as virtual identity can be found in numerous disciplines such as
control theory, traffic engineering and renewal theory. The mathematical theory of stochastic
analysis was developed by Ito. It is regulated via sense of means of boundary and preliminary
conditions, however, currently, no longer foreordained via way of means of them. Each time
the equation is solved beneath equal preliminary and boundary conditions, the answer takes
exclusive numerical values although a particular sample emerges as the answer technique is re-
peated many times. It has huge applications in various research areas, including environment,
finance, and medicine, etc. For important works of fractional stochastic systems and their ap-
plications, we may refer to [92], [143], [148], [166],[161]. Here the stochastic process is taken as
the uncomplicated non-Gaussian Hermite process known as the Rosenblatt process. The most
popular self-similar process is the fractional Brownian motion, which is also the only Hermite
Gaussian process. Rosenblatt’s process was introduced in 1961 by M. Rosenblatt in the work
Independence and dependence [28]. Although outlined throughout the past 60s associated with
the later 70s because of their look within the non-central limit theorem, the systematic anal-
ysis of Rosenblatt processes has solely been developed during the last 10 years, intended by
their specific properties (self-similarity, stationarity of the increments, long-range dependence)
since they are non-Gaussian and self-similar with stationary increments. A self-similar object
is strictly or about such a region of itself. Self-similar processes are invariant in distribution
beneath appropriate scaling. Among the applications of the Rosenblatt processes in statistics
or economics, corresponding to the Rosenblatt distribution conjointly seems to be the straight
line distribution of an estimation of the long range dependence parameter. More details about
this process can be found in [28, 156].
The Hermite process (ZK

H (t)) is in a multiple Wiener-Ito stochastic integral with respect to
Brownian motion B(y)y∈R is given as

(ZK
H (t)) = C(H, k)

∫
RK

∫ t

0

 K∏
j=1

(s− yi

−( 1
2 + 1−H

K
)

+

) dx dB(y1) · ... dB(yK),

where x+ = max(H, 0), the constant C(H, k) is positive, it is H-self similar for any C > 0, and
it has stationary increments. In the above integral, when K = 1 the process is the fractional
Brownian motion with Hurst parameter H ∈

(1
2
, 1
)

. For K ≥ 2 the process is not Gaussian.
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In particulaire, when K = 2 the process is known as the Rosenblatt process. Because of
Gaussianity, numerous practical applications of fractional brownian motion process have been
widely studied. But in concrete situations when the Gaussianity is not plausible, one can
use a Hermite process living in a higher chaos. More precisely, the Rosenblatt process is not
Gaussian, but it has self-similar, stationary of increments and large range dependence property
like fractional Brownian motion.
Controllability is an important aspect of mathematical control theory which was introduced
by Kalman [69]. The concept of controllability denotes the ability to move the state of the
dynamical control system from an initial state to the desired final state by using a suitable
control function. In the last years, different aspects of controllability for ordinary as well as
fractional dynamic systems, for both deterministic and stochastic structures, have been studied
by many researchers [6, 13, 35, 51, 66, 81, 97, 157, 166].
This work is involved with nonlinear fractional-order neutral-type stochastic Integro-differential
system with Rosenblatt process, the controllability is deceased in the accessible source of studies.
Our main contributions are highlighted as follows:

• We have developed a solution for the controllability problem of non-linear fractional order
neutral type stochastic integro-differential system with Rosenblatt process.

• We take the terms in the system as a bounded linear operators instead of a matrix, which
produces the same results as a matrix.

• The illustration the results on stochastic systems bounded linear operators are more
competent.

• We take the stochastic term as driven by the Rosenblatt process which is non-Gaussian
and has the properties like self-similarity, stationarity of the increments and has long
range dependence.

• We intend to bring new lights to the Rosenblatt process, since many real-life phenomena
are modelled by fractional Brownian motion a only Gaussian Hermite process, when the
property of Gaussianity is failed one can use Rosenblatt process.

• We define the controllability Grammian operator, which is defined by the Mittag-Leffler
function to prove the controllability results.

• By employing Banach contraction principle to prove the controllability criteria instead of
semigroup theory which does not applicable to obtain the results on controllability.

• We have provided a numerical example to illustrate the theory.

• Generally speaking, both the Riemann-Liouville and the Caputo fractional operators do
not possess neither semigroup nor commutative properties, which are inherent to the
derivatives on integer order.

The paper is organized as follows. In Section 3.2, we review some essential facts from stochastic
analysis and fractional calculus that are used to obtain our main results. In Section 3.3, we
formulate a suitable solution representation and controllability criteria of Linear system. Then,
we will extend the investigation to nonlinear system to be controllable in Section 3.4. Finally,
in Section 3.5, we give appropriate examples to illustrate the given theory. We end with Section
3.6 of conclusions to our results of this research.
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3.2 Preface
In this section we give some basic definitions and properties which are useful to establish

our theoretical results.

Rosenblatt process.

Let (Ω,F ,
{
Ft

}
t≥0
,P) be a filtered probability space consists of a probability space (Ω,F ,P)

and a filtration
{
Ft

}
t≥0

contained in F the filtered probability space is said to satisfy the usual
conditions namely

• The probability space (Ω,F ,P) is complete.

• F0 contains all A ∈ F such that P(A) = 0.

• Ft = Ft+ , ∀t ∈ J , where Ft+ is the intersection of all Fs where s > t, i.e. the filtration is
right continuous.

Suppose that
{
ZH(t), t ∈ [0, b]

}
is the one-dimensional Rosenblatt process with Hurst parameter

H ∈
(1

2
, 1
)
. That is ZH(t) is a Non-Gaussian process with covariance function

E(ZH(t), ZH(s)) = 1
2
(
|s|2H + |t|2H − |s− t|2H

)
.

Moreover, the Rosenblatt process with Hurst parameter H >
1
2

has the representation as (see
[156]):

ZH(t) = d(H)
∫ t

0

∫ t

0

{∫ t

Y1∨Y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2) du

}
dB(Y1) dB(Y2).

Where t ≤ s,
{
B(t), t ∈ [0, b]

}
is a Brownian motion, and KH(t, s) is the kernel given by

KH(t, s) = cHs
1
2 −H

∫ t

s
(u− s)H− 3

2uH− 1
2 du.

for t > s, where

cH =

√√√√ H(2H − 1)
Γ(2 − 2H,H − 1

2)
,

and Γ(., .) denotes the Gamma function. We put KH(t, s) = 0 if t ≤ s. Let
{
Zn(t)

}
n∈N

denote a
sequence of two-sided one dimensional Rosenblatt process mutually independent on (Ω,F ,P).

Consider a K-valued stochastic process ZQ(t) given by the series ZQ(t) =
∞∑
n=1

Zn(t)Q
1
2 en, t ≥ 0

Moreover, if Q is a non-negative self-adjoint trace class operator, then, this series converges
in the space K, that is, it holds that ZQ(t) ∈ L2(Ω, K) Then, the above ZQ(t) is a K-valued
Q-Rosenblatt process with covariance operator Q.
Definition 3.2.1 (See [148])

Let L(K,Y ) represents the space of all bounded linear operators from K to Y, and Q ∈



3.2 Preface 76

L(K,Y ) represents a non-negative self-adjoint operator in separable Hilbert spacesK and Y .
Let L0

2 = L2(Q
1
2K,Y ) be the space of all Hilbert-Schmidt operators from Q

1
2K into Y , where

L0
2 is a separable Hilbert space, equipped with the norm ∥ω∥2

L0
2

= ∥ωQ
1
2 ∥2 = Tr(ωQω∗).

Definition 3.2.2 (See [148])

Let ω : [σ, b] → L2(Q
1
2K,V ) such that

∞∑
n=1

∥∥∥K∗
H(ϕQ

1
2 en)

∥∥∥L2([0, b], H) < ∞.

Then, for t ≥ 1, its stochastic integral with respect to the Rosenblatt process ZQ(t) is
defined as ∫ t

0
ω(s) dZQ(s) =

∞∑
n=1

∫ t

0
ω(s)Q

1
2 en dZn(s)

=
∞∑
n=1

∫ t

0

∫ t

0
(K∗

H(ϕQ
1
2 en))(y1, y2) dB(y)1 dB(y)2.

Let Y and U2 be Separable Hilbert Spaces. We define,

• X := L2(γ, Fb, Y ), Which is the Hilbert space of all Lb− measurable square integrable
random variables with values in Y .

• H is a closed subspace of H : J → L2(F, Y ) consisting of all Ft− measurable processes
with values in Y and endowed with the norm

∥ϕ∥2
H = supE∥ϕ∥2,

where E denotes expectation with respect to P .

• H := L2(J, U2), which is a Hilbert space of all square integrable and Ft− measurable
processes with values in U2.

Fractional calculus.

Definition 3.2.3 (See [123])

For n ∈ N, the Euler gamma function Γ : C−
{
0,−1,−2, ˙....

}
→ C, for complex arguments

with positive real part it is defined as

Γ(z) =
∫ ∞

0
e−ttz−1 dt, Rez > 0.

Definition 3.2.4 (See [123])
Let [a, b], be a finite interval on the real axis R. The Riemann - Liouville fractional

integral of order α > 0, n− 1 < α ≤ n and n ∈ N is defined as

Iα0+g(t) = 1
Γ(α)

∫ t

0
(t− s)α−1g(s) ds,
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where Γ(.) is the Euler gamma function and g(t) a suitable function.

Definition 3.2.5 (See [123])
The Caputo fractional derivative of order α > 0, n− 1 < α < n is defined as

(CDα
0+g)(t) = 1

Γ(n− α)

∫ t

0
(t− s)n−α−1g(n)(s) ds,

where the function g(t) has absolutely continuous derivatives up to order (n− 1).
If 0 < α < 1, then

(CDα
0+g)(t) = 1

Γ(1 − α)

∫ t

0

g′(s)
(t− s)α

ds.

Note: The Caputo fractional derivative is equivalent to the composition of the same oper-
ators ((n− α)-fold integration and nth orfer differentiation) CDαg = In−αDng.
In particular, for 0 < α < 1, (Iα0+

CDα
0+)g(t) = g(t) − g(0).

Definition 3.2.6 (See [75])
Let A be a bounded linear operator, the Mittag-Leffler function is given by,

Eα,β(A) =
∞∑
k=0

Ak

Γ(kα + β)
.

In particular, for β = 1,

Eα,1(A) = Eα(A) =
∞∑
k=0

Ak

Γ(kα + 1)
.

Lemma 3.2.1 (See [92])
Suppose that A is a bounded linear operator defined on a Banach space, and assume

that ∥A∥ < 1. Then (I − A)−1 is linear and bounded.
Also

(I − A)−1 =
∞∑
k=0

Ak.

Definition 3.2.7 (See [13])
If X is a Banach space and T : X → X is a contraction mapping then T has a unique

fixed point.

3.3 Main results
Consider the neutral linear stochastic fractional integro-differential equation as

CDα[y(t) − g(t, y(t))] = Ay(t) + h(t, y(t)),
∫ t

0
l(t, s, y(s)) ds+Bu(t)

+ f(t) dZH(t), t ∈ J := [0, b],
y(0) = ψ0,

(3.1)
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• Where, CDα represents the caputo derivatives of order 0 < α < 1,

• y(.) takes the value in a real separable Hilbert space Y with inner product < ., . > and
norm |.|Y ,

• A : Y → Y is a bounded linear operator,

• u(.) the control function belongs to the space L2(J, U),

• B : U → H is a linear bounded operator,

• g : J × Y → Y is continuous,

• h : J × Y × Y → Y and l : J × Y × Y → Y arethe continuous functions,

• zH(t) is a Rosenblatt process with Hurst parameter H ∈
(1

2
, 1
)

and t ∈ J = [0, b] on a
real separable space (K, ∥.∥K , < ., . >K),

• f(t) is a Hilbert-Schmidt operator for all t ∈ J, and ψ0 is the initial function.

Assumption A1 : [92]: For solution representation of the system 3.1, we consider this as-
sumption. The operator A ∈ L(Y ) commutes with the fractional integral operator Iα on Y
and

∥A∥2 ≤ (2α− 1)(Γ(α))2

T 2α .

Lemma 3.3.1
For 0 < α < 1, and f : J → L0

2 is continuous and bounded, then prove that the solution
of the system (3.1) can be represented as

y(t) = Eα(Atα)[ϕ0 + g(0, ϕ0)] − g(t, y(t)) +
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)

×
[
Ag(s, y(s)) + h(s, y(s)),

∫ s

0
l(s, τ, y(τ) dτ) +Bu(s)

]
ds

+
∫ t

0
(t− s)α−1Eα,α(A(t− s)α) × f(s) dZH(s).

Proof : Taking Iα on both sides of (3.1) using assumption A1 and lemma (3.3.1), we can get the
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solution of (3.1) as,

y(t) = (ψ0 + g(0, ψ0)) − g(t, y(t)) + IαAy(t) + IαBu(t)

+ Iαh(t, y(t)),
∫ t

0
l(t, s, y(s) ds) + Iαf(t) dZH(t).

y(t)[I − IαA] = (ψ0 + g(0, ψ0)) − g(t, y(t)) + IαBu(t)

+ Iαh(t, y(t)),
∫ t

0
l(t, s, y(s) ds) + Iαf(t) dZH(t).

y(t) = [I − IαA]
{
(ψ0 + g(0, ψ0)) − g(t, y(t)) + IαBu(t)

+ Iαh(t, y(t)),
∫ t

0
l(t, s, y(s) ds) + Iαf(t) dZH(t)

}
.

y(t) =
∞∑
k=0

[(IαAk)]
{
(ψ0 + g(0, ψ0) − g(t, y(t)) + IαBu(t))

+ Iαh(t, y(t)),
∫ t

0
l(t, s, y(s) ds) + Iαf(t) dZH(t)

}
y(t) =

∞∑
k=0

[(IαAk)]
{
(ψ0 + g(0, ψ0)

}
− g(t, y(t))

∞∑
k=0

[(IαAk)]g(t, y(t))

+
∞∑
k=0

[(IαAk)]IαBu(t)) +
∞∑
k=0

[(IαAk)]Iαh(t, y(t)),
∫ t

0
l(t, s, y(s) ds

+
∞∑
k=0

[(IαAk)]Iαf(t) dZH(t).

y(t) = Eα(Atα)[ϕ0 + g(0, ϕ0)] − g(t, y(t))] +
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)[

Ag(s, y(s)) + h(s, y(s)),
∫ s

s
l(s, τ, y(τ) dτ) +Bu(s)

]
ds

+
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)f(s) dZH(s).

(3.2)

.

Definition 3.3.1
Define the operator Kb : U → Y as

kbu =
∫ b

0
(b− s)α−1Eα,α(A(b− s)α)Bu(s) ds

Clearly, the adjoint operator kb∗ of kb, kb∗ : Y → U as

(kb∗y)(t) = (b− t)α−1B∗Eα,α(A∗(b− t)α)E
{
x/Ft

}
.

Definition 3.3.2
The controllability grammian operator Mb : Y → Y

Mb(y) =
∫ b

0
(b− s)2α−2Eα,α(A(b− s)α)BB∗Eα,α(A∗(b− s)α)E

{
x/Fs

}
.

Here ∗ represents adjoint operator.
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Lemma 3.3.2

The operator Mb = KbK
∗
b is well defined and bounded for any α ∈

( 1
2
, 1
]
,

Proof : The proof of this Lemma is obvious, It is clear that the grammian operator Mb is linear and
bounded for all α ∈ (1

2
, 1],.

Definition 3.3.3 (See [97])
The stochastic fractional system (3.1) is said to be completely controllable on the interval
J if for every y1 ∈ Y, there exists a control u ∈ U such that the solution y(t) given in (3.2)
satisfies y(b) = y1.

Theorem 3.3.1
Let us assume that A1 is satisfied, then the linear system (3.1) is completely controllable.

Proof : Using assumption A1 we obtain the solution of (??) as in (??). Let y1 be an arbitrary point
in Y . Since the linear operator Mb is invertible, we define the control as.

u(t) = (b− t)(α−1)B∗Eα,α(A∗(b− t)α)E
{
M−1
b (y1 − Eα(Atα)[ψ0 + g(0, ψ0)] + g(t, y(t))

−
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)

[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ)

]
ds

−
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)f(s) dZH(s)/Fs

} (3.3)

Substituting (3.3) in (3.2) we get

y(t) = Eα(Atα)[ψ0 + g(0, ψ0)] − g(t, y(t)) +
∫ t

0
(t− s)2α−2Eα,α(A(t− s)α)]BB∗

× Eα,α(A∗(t− s)α)E
{
M−1
b (y1 − Eα(Atα)[ψ0 + g(0, ψ0)] + g(t, y(t))

−
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)

[
Ag(s, y(s)) + h(s, y(s)),

∫ s

0
l(s, τ, y(τ) dτ)

]
ds

−
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)f(s) dZH(s)/Fs

}
+
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)

[
Ag(s, y(s)) + h(s, y(s)),

∫ s

0
l(s, τ, y(τ) dτ)

]
ds

+
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)f(s) dZH(s)

Evaluating y(t) given in the above equation at t = b we obtain
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y(b) = Eα(Abα)[ψ0 + g(0, ψ0)] − g(b, y(b))
+MbM

−1
b E

{
(y1 − Eα(Abα)[ψ0 + g(0, ψ0)]

+ g(b, y(b)) −
∫ b

0
(b− s)α−1Eα,α(A(b− s)α)

×
[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ)

]
ds

−
∫ b

0
(b− s)α−1Eα,α(A(b− s)α)f(s) dZH(s)/Fs

}
+
∫ b

0
(b− s)α−1Eα,α(A(b− s)α)

×
[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ)

]
ds

−
∫ b

0
(b− s)α−1Eα,α(A(b− s)α)f(s) dZH(s)

= y1

Since y1 is an arbitrary point in Y, we infer from the above that u(t) defined in (3.3) steers the system
to all points in Y. Thus the proof is completed.

3.4 Controllability Criteria of Nonlinear System
Consider the corresponding non-linear system for (3.1), as

CDα[y(t) + g(t, y(t))] = Ay(t) + h(t, x(t),
∫ t

0
l(t, s, x(s)) ds) +Bu(t)

+ f(t, yt) dZH(t)), t ∈ J := [a, b],
y(0) = ϕ0,

(3.4)

• Where, CDα represents the caputo derivatives of order 0 < α < 1,

• y(.) takes the value in a real separable Hilbert space Y with inner product < ., . > and
norm |.|Y ,

• A : Y → Y is a bounded linear operator,

• u(.) the control function belongs to the space L2(J, U),

• B : U → H is a linear bounded operator,

• g : J × Y → Y is continuous,

• h : J × Y × Y → Y and l : J × Y × Y → Y are the continuous functions,

• zH(t) is a Rosenblatt process with Hurst parameter H ∈
(1

2
, 1
)

and t ∈ J = [0, b] on a
real separable space (K, ∥.∥K , < ., . >K),

• yt ∈ β (where β is the abstract phase space, for details see [148]),
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• f : J×β → L2
0, where L2

0 = L2(Q
1
2K,Y Q) be the space of all Hilbert-Schmidt operators

from Q
1
2K, into Y

• ψ0 is the initial function.

The solution of (3.4) is given by,

y(t) = Eα(Atα)[ϕ0 + g(t, ϕ0)] − g(t, y(t)) +
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)

×
[
Ag(s, y(s)) + h(s, y(s)),

∫ s

0
l(s, τ, y(τ) dτ) +Bu(s)

]
ds

+
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)f(s, ys) dZH(s)

To prove the controllability results for the nonlinear system (3.4), we consider the following
assumptions.
Assumption A2 : Assume that there exists constants Vi > 0 for i = 1, 2, ˙..., 8 and W1,W2
suche that

∥h(t, y1, x1) − h(t, y2, x2)∥2 ≤ V1(∥y1 − y2∥2 + ∥x1 − x2∥2)
∥f(t, yt1) − f(t, yt2)∥2 ≤ V2(∥yt1 − yt2∥2)

∥l(t, s, y1) − l(t, s, y2)∥2 ≤ V3∥y1 − y2∥2

∥g(t, y1) − g(t, y2)∥2 ≤ V4∥y1 − y2∥2

V5 = sup
t∈J

∥f(t, 0)∥

V6 = sup
t∈J

∥h(t, 0, 0)∥,

V7 = sup
t∈J

∥
∫ t

0
l(t, s, 0) ds∥

V8 = sup
t∈J

∥g(t, 0)∥

W1 = sup
0≤t≤b

∥Eα(Atα)∥2

W2 = sup
0≤t≤b

∥Eα,α(Atα)∥2

Assumption A3 : Let δ = 8b2αW2

(2α− 1)
(V2b

−1 + V2 + V1 + V1V3b) be such that 0 ≤ δ < 1.

Theorem 3.4.1
If the assumption A1 - A3 are satisfied and if the linear fractional dynamical system (3.3)

is controllable, then the non-linear fractional dynamical system (3.4) is controllable.

Proof : Let y1 be an arbitrary point in Y . Define the operator ϕ on Y by

ϕy(t) = Eα(Atα)[ϕ0 + g(0, ϕ0)] − g(t, y(t)) +
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)

× [Ag(s, y(s)) + h(s, y(s)),
∫ s

0
l(s, τ, y(τ)) dτ) +Bu(s)] ds

+
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)f(s, ys) dZH(s).
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Since the linear system (3.3) corresponding to the nonlinear system (3.4) is controllable. We
have, Mb is invertible and so we can define the control variable u as

u(t) = (b− t)α−1B∗Eα,α(A∗(b− t)α)E
{
M−1

b (y1 − Eα(Abα)[ψ0 + g(0, ψ0)]

+ g(t, y(t)) −
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)

×
[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ)

]
ds

−
∫ t

0
(t− s)α−1Eα,α(A(t− s)α)f(s, ys)) dZH(s)/Fs.}

Clearly, ϕ(y(b)) = y1 To show ϕ has a fixed point, our claim is ϕ maps Y into itself. Provided
we can obtain a fixed point of the nonlinear operator ϕ.

sup
t∈J

E∥u(t)∥2 ≤ 4∥K∗
b ∥2∥M−1

b ∥2
[
E∥Y1∥2 +W1E∥ψ0 + g(0, ψ0)∥2

+V7 +W2
Zb2(α− 1)

2α− 1
+W2

Z1b2(α− 1)
2(α− 1) − 1

]
= T1 < ∞

Where
Z = (V1V3 + V1/ sup

t∈J
E∥y(t)∥2 + V5 + V1V6) < ∞

Z1 = (V2 + V7/ sup
t∈J

E∥y(t)∥2 + V4 + V8) < ∞.

Further from the assumptions, we have

sup
t∈J

∥ϕy(t)∥2 ≤ 4W1E∥ϕ0 + g(0, ϕ0)∥2 + V7 + 4W2T1∥B∥2 b2α

2α− 1

+ 4W2Z
b2α

2α− 1
+ 4W2Z

1 b
2α−1

2α− 1
< ∞.
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Now, for y1, y2 ∈ Y, we have

sup
t∈J

E∥ϕy1(t) − ϕy2(t)∥2 = sup
t∈J

E∥
∫ t

0
(t− s)α−1Eα,α(A(b− θ)α)BK∗

bM
−1
b{ ∫ b

0
(b− θ)α−1Eα,α(A(b− θ)α)[h(θ, y1(θ),

∫ θ

0
l(θ, τ, y1(τ)) dτ)

− h(θ, y2(θ),
∫ θ

0
l(θ, τ, y2(τ)) dθ) +

∫ b

0
(b− θ)α−1Eα,α(A(b− θ)α)

× [Ag(θ, y1(θ)) − Ag(θ, y2(θ))] dθ] +
∫ b

0
(b− θ)α−1Eα,α(A(b− θ)α)

[f(θ, yt1(θ)) − f(θ, yt2(θ) dzH(θ))
}

ds+
∫ t

0
(t− s)α−1Eα,α(A(b− s)α)[

h(s, y1(s),
∫ s

0
l(s, τ, y1(τ)) dτ) − h(s, y2(s),

∫ s

0
l(s, τ, y2(τ)) dτ)

]
ds

+
∫ t

0
(t− s)α−1Eα,α(A(b− s)α)[Ag(s, y1(s)) − A(g(s, y2(s)))] ds

+
∫ t

0
(t− s)α−1Eα,α(A(b− s)α)[f(s, yt1(s)) − f(s, yt2(s))]∥2 ds

≤ 8b2(α)W2

2α− 1
(V2b

−1 + V2 + V1 + V1V3b) sup
t∈J

E∥y1(t) − y2(t)∥2

≤ δ∥y1 − y2∥2.

3.5 Examples
Next, we provide an illustration to the above theoretical results.

Example

Consider the fractional order linear stochastic system with Rosenblatt Process,

CD
2
3

(
y(t) +

(
e−tsinty1(t)

(et + 1)sinty2(t)

))
= Ay(t) +Bu(t) +

(
1 +

∫ 1

0
2y(s) ds+ f(t, yt) dZH(t)

)
,

ψ0 = 0,
(3.5)

where α = 2
3
, y(t) =

(
y1(t)
y2(t)

)
, for t ∈ [0, 1],

A =
(

−2 1
1 1

)
; B =

(
1
1

)
; f(t) =

(
1
1

)
and g(t, y(t)) =

(
e−tsinty1(t)

(et + 1)sinty2(t)

)
.

Here y(t) is the state variable, and u(t) is the control variable. We apply Theorem 3.3.1 to
prove that the system 3.5 is controllable on [0, 1]. In this example, the solution is given by

y(t) = E 2
3

(
At

2
3
)

[ψ0 + g(0, ψ0)] − g(t, y(t))

+
∫ t

0
(t− s)

2
3 −1 E 2

3 ,
2
3

(
A (t− s)

2
3
)

×
[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ) +Bu(s)

]
ds

+
∫ t

0
(t− s)

2
3 −1 E 2

3 ,
2
3

(
A (t− s)

2
3
)
f(s) dZH(s).
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We have the control of the system 3.5 as

u(t) = (1 − t)
2
3 −1B∗E 2

3 ,
2
3
(A∗(1 − t)

2
3 )E

{
M−1

b (y1 − E 2
3
(Ab

2
3 )[ψ0 + g(0, ψ0)]

+ g(t, y(t)) −
∫ t

0
(t− s)

2
3 −1E 2

3 ,
2
3
(A(t− s)

2
3 )

×
[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ)

]
ds

−
∫ t

0
(t− s)

2
3 −1E 2

3 ,
2
3
(A(t− s)

2
3f(s) dZH(s)/Fs

}
.

By computation, we have the controllability grammian operator as

M1(y) =
∫ 1

0
(1 − s)2( 2

3 )−2E 2
3 ,

2
3
(A(1 − s)

2
3BB∗E 2

3 ,
2
3
(A∗(1 − s)

2
3E
{
x/Fs

}
ds.

M1(y) =
(

349.4871 −99.9949
−99.9949 29.8226

)
|M1(y)| = 10422.6139 − 9998.9800
|M1(y)| = 423.6339 > 0.

which is positive definite. Hence by Theorem (3.3.1), the system (3.5) given in this example is
completely controllable on [0, 1].

Example

Consider the fractional order non-linear stochastic system with Rosenblatt Process,

CD
2
3

(
y(t) +

(
e−tsinty1(t)

(et + 1)sinty2(t)

))
= Ay(t) +Bu(t) + (1 +

∫ 1

0
2y(s) ds+ f(t, yt) dZH(t)),

ψ0 = 0,
(3.6)

where α = 4
5
, y(t) =

(
y1(t)
y2(t)

)
, for t ∈ [0, 1],

A =

 0 −1
21

2
0

; B =
(

0
1

)
; f(t, yt) =


1

1 + t
e−siny2

1 + t

 and g(t, y(t)) =
(

e−tsinty1(t)
(et + 1)sinty2(t)

)
.

Here y(t) is the state variable, and u(t) is the control variable. We apply Theorem (3.4.1) to
prove that the system (3.6) is controllable on [0, 1]. In this example, the solution is given by

y(t) = E 4
5
(At

4
5 )[ψ0 + g(0, ψ0)] − g(t, y(t))

+
∫ t

0
(t− s)

4
5 −1E 4

5 ,
4
5
(A(t− s)

4
5 )

×
[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ

]
ds

+
∫ t

0
(t− s)

4
5 −1E 4

5 ,
4
5
(A(t− s)

4
5 )f(s, ys) dZH(s).

We have the control of the system (3.6) as
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u(t) = (1 − t)
4
5 −1B∗E 4

5 ,
4
5
(A∗(1 − t)

4
5 )E

{
M−1

b (y1 − E 4
5
(Ab

4
5 )[ψ0 + g(0, ψ0)]

+ g(t, y(t)) −
∫ t

0
(t− s)

4
5 −1E 4

5 ,
4
5
(A(t− s)

4
5 )

×
[
Ag(s, y(s)) + h(s, y(s),

∫ s

0
l(s, τ, y(τ)) dτ)

]
ds

−
∫ t

0
(t− s)

4
5 −1E 4

5 ,
4
5
(A(t− s)

4
5f(s, ys) dZH(s)/Fs

}
.

By computation, we have the controllability grammian operator as

M1(y) =
∫ 1

0
(1 − s)2( 4

5 )−1E 4
5 ,

4
5
(A(1 − s)

4
5BB∗E 4

5 ,
4
5
(A∗(1 − s)

4
5E
{
x/Fs

}
ds.

M1(y) =
(

0.4754 −0.5709
−0.5709 1.3249

)
= 0.62985 − 0.32592
= 0.30393 > 0.

which is positive definite. We also obtain the value of σ in Assumption A3 to be σ = 0.6295 < 1.
All the assumption of Theorem (3.4.1) are verified and hence the system (3.6) is completely
controllable on [0, 1].

3.6 Conclusions
This Chapter 3 We examined the controllability analysis for both linear and nonlinear frac-tional
order neutral-type stochastic integro-differential system with non-Gaussian process, named as
Rosenblatt process. We formulate a set of necessary and sufficient conditions for our introduced
systems to be controllable by employing standard techniques. The fractional Brownian motion
is the foremost studied method within the class of Hermite processes due to its vital importance
in mod-eling. Our main interest during this work, from the stochastic calculus purpose of
view, was to consider the non-Gaussian Rosenblatt process. Although it received a smaller
attention than the half Brownian motion, however this method remains of much interests in
sensible applications as results of its self-similarity, stationar-ity of increments and long vary
dependence. Truly the terribly giant utilization of the fractional Brownian motion in application
(hydrology, telecommunications)



Chapter 4
Optimal control for a class of
Sobolev-type fractional nonlocal
evolution system

In this Chapter, we show existence and uniqueness of mild solutions to Sobolev type fractional
nonlocal evolution equations in Banach spaces. For the main results, we use standard tools
such fractional calculus, semigroup theory, fractional power of operators, a singular version of
Gronwalls inequality and Leray-Schauder fixed point theorem. We also establish a Lagrange
optimal control problem for the considered system by using optimality properties.

4.1 Introduction
Fractional calculus is a very import subject and has confirmed its successful applicability in
many fields. More details about theory, methods, and applications can be found in the books
[15, 60, 76, 117, 84, 98, 101, 135, 133] and the papers [4, 139, 73, 113, 94, 103, 140, 173]. Nonlocal
fractional differential equations and inclusions have considered in [17, 30, 31, 34, 109, 164].
Fractional control systems and fractional optimal control problems were considered in several
different works, see for instance [32, 33, 106, 107, 174]. Those control systems are most often
based on the principle of feedback, whereby the signal to be controlled is compared to a desired
reference signal and the discrepancy used to compute corrective control actions [47]. The
fractional optimal control of a distributed system is an optimal control problem for which the
system dynamics is defined by means of fractional differential equations [110]. In [34], the
authors introduced multi-delay controls and we investigated a nonlocal condition for fractional
semilinear control systems, see also[164, 179]. Here we are concerned with the study of fractional
evolution equations of Sobolev type with nonlocal conditions. Sobolev type fractional order
differential equations have been studied by many researchers, e.g., by Fec̆kan et al. [48] and Li
et al. [90]. Based on above statements, we study here a class of semilinear fractional evolution
equations of Sobolev type with nonlocal conditions.

CDα
t [Lu(t)] = Mu(t) + ψ(t, u(t)) (4.1)

subject to nonlocal conditions
u(0) = u0 + φ(u(t)), (4.2)

87
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where CDα
t is the Caputo fractional derivative with 0 < α ≤ 1 and t ∈ J = [0, a]. Let X and Y

be two Banach spaces such that Y is densely and continuously embedded in X, the unknown
function u(·) takes its values in X and u0 ∈ X. We consider the operators L : D(L) ⊂ X → Y
and M : D(M) ⊂ X → Y . It is also assumed that ψ : J × X → Y and φ : C(J : X) → X
are given abstract functions satisfying some conditions to be specified later. In Section 4.2 we
present some essential notions and facts that will be used in the proof of our results, such as,
fractional operators, fractional powers of the generator of an analytic compact semigroup, and
the form of mild solutions of (4.1)–(4.2). In Section 4.3, we prove existence (Theorem 4.1) and
uniqueness (Theorem 4.2) of mild solutions to system (4.1)–(4.2). Then, in Section 4.4, we
prove existence of optimal pairs for the (LP ) Lagrange optimal control problem (Theorem 4.3).
We end with Section ??, where an example illustrating the application of the abstract results
(Theorems 4.1, 4.2 and 4.3) is given.

4.2 Preliminaries
In this section we introduce some basic definitions, notations and lemmas, which will be used
throughout the work. In particular, we give main properties of fractional calculus [76, 117] and
well known facts in semigroup theory [63, 116, 170].
Definition 4.2.1

The fractional integral of order α > 0 of a function f ∈ L1([a, b],R+) is given by

Iαa f(t) = 1
Γ(α)

∫ t

a
(t− s)α−1f(s)ds,

where Γ is the classical gamma function. If a = 0, we can write Iαf(t) = (gα ∗ f)(t), where

gα(t) :=


1

Γ(α)
tα−1, t > 0,

0, t ≤ 0,

and, as usual, ∗ denotes convolution of functions. Moreover, lim
α→0

gα(t) = δ(t), with δ the
delta Dirac function.

Definition 4.2.2
The Riemann–Liouville fractional derivative of order α > 0, n− 1 < α < n, n ∈ N, is given

by
LDαf(t) = 1

Γ(n− α)
dn

dtn

∫ t

0

f(s)
(t− s)α+1−nds, t > 0,

where function f has absolutely continuous derivatives up to order n− 1.

Definition 4.2.3
The Caputo fractional derivative of order α > 0, n− 1 < α < n, n ∈ N, is given by

CDαf(t) = LD
α

(
f(t) −

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0,

where function f has absolutely continuous derivatives up to order n− 1.
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Remark 4.2.1
Let n− 1 < α < n, n ∈ N. The following properties hold:

(i) If f ∈ Cn([0,∞)), then

CDαf(t) = 1
Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−nds = In−αf (n)(t), t > 0.

(ii) The Caputo derivative of a constant function is equal to zero.

(iii) The Riemann–Liouville derivative of a constant function C is given by

LDα
a+C = C

Γ(1 − α)
(x− a)−α.

If f is an abstract function with values in X, then the integrals which appear in Defini-
tions 4.2.1–4.2.3 are taken in Bochner’s sense.

Let (X, ∥ · ∥) be a Banach space, C(J,X) denotes the Banach space of continuous functions
from J into X with the norm ∥u∥J = sup{∥u(t)∥ : t ∈ J}, and let L(X) be the Banach space
of bounded linear operators from X to X with the norm ∥G∥L(X) = sup{∥G(u)∥ : ∥u∥ = 1}.
We make the following assumptions:

(H1) M : D(M) ⊂ X → Y is a linear closed operator and L : D(L) ⊂ X → Y is a linear
operator.

(H2) L is bijective.

(H3) L−1 : Y → D(L) ⊂ X is linear, bounded, and compact operator.

Note that (H3) implies L to be closed. Indeed, if L−1 is closed and injective, then its inverse
is also closed. From (H1)–(H3) and the closed graph theorem, we obtain the boundedness of
the linear operator ML−1 : Y → Y . Consequently, ML−1 generates a semigroup {Q(t), t ≥
0}, Q(t) := eML−1t. We suppose that M0 := sup

t≥0
∥Q(t)∥ < ∞ and, for short, we denote

C = ∥L−1∥.
According to previous definitions, it is suitable to rewrite problem (4.1)–(4.2) as the equivalent
integral equation

Lu(t) = Lu(0) + 1
Γ(α)

∫ t

0
(t− s)α−1[Mu(s) + ψ(s, u(s))]ds, (4.3)

provided the integral in (4.3) exists for a.e. t ∈ J .
Remark 4.2.2

Note that:

(i) For the nonlocal condition, the function u(0) is dependent on t.

(ii) The explicit and implicit integrals given in (4.3) exist (taken in Bochner’s sense).

Throughout the paper, A = ML−1 : D(A) ⊂ Y → Y will be the infinitesimal generator of
a compact analytic semigroup of uniformly bounded linear operators Q(·). Then, there exists



4.2 Preliminaries 90

a constant M0 ≥ 1 such that ∥Q(t)∥ ≤ M0 for t ≥ 0. Without loss of generality, we assume
that 0 ∈ ρ(A), the resolvent set of A. Then it is possible to define the fractional power Aq,
0 < q ≤ 1, as a closed linear operator on its domain D(Aq) with inverse A−q. Furthermore, the
subspace D(Aq) is dense in X and the expression ∥u∥q = ∥Aqu∥, u ∈ D(Aq) defines a norm on
D(Aq). Hereafter, we denote by Xq the Banach space D(Aq) normed with ∥u∥q.
Lemma 4.2.1 (See [116])

Let A be the infinitesimal generator of an analytic semigroup Q(t). If 0 ∈ ρ(A), then

(a) Q(t) : X → D(Aq) for every t > 0 and q ≥ 0.

(b) For every u ∈ D(Aq), we have Q(t)Aqu = AqQ(t)u.

(c) For every t > 0, the operator AqQ(t) is bounded and ∥AqQ(t)∥ ≤ Mqt
−qe−ωt.

(d) If 0 < q ≤ 1 and u ∈ D(Aq), then ∥Q(t)u− u∥ ≤ Cqt
q∥Aqu∥.

Remark 4.2.3
Note that:

(i) D(Aq) is a Banach space with the norm ∥u∥q = ∥Aqu∥ for u ∈ D(Aq).

(ii) If 0 < p ≤ q ≤ 1, then D(Aq) ↪→ D(Ap).

(iii) A−q is a bounded linear operator in X with D(Aq) = Im(A−q).

Remark 4.2.4
Observe, as in [88], that by Lemma 4.2.1 (a) and (b), the restriction Qq(t) of Q(t) to Xq is

exactly the part of Q(t) in Xq. Let u ∈ Xq. Since ∥Q(t)u∥q ≤ ∥AqQ(t)u∥ = ∥Q(t)Aqu∥ ≤
∥Q(t)∥∥Aqu∥ = ∥Q(t)∥∥u∥q, and as t decreases to 0+, ∥Q(t)u− u∥q = ∥AqQ(t)u− Aqu∥ =
∥Q(t)Aqu − Aqu∥ → 0 for all u ∈ Xq, it follows that {Q(t), t ≥ 0} is a family of strongly
continuous semigroups on Xq and ∥Qq(t)∥ ≤ ∥Q(t)∥ ≤ M0 for all t ≥ 0.

In the sequel, we will also use ∥ϕ∥Lp(J,R+) to denote the Lp(J,R+) norm of ϕ whenever ϕ ∈
Lp(J,R+) for some p with 1 < p < ∞. We will set q ∈ (0, 1) and denote by Ωq the Banach
space C(J,Xq) endowed with supnorm given by ∥u∥∞ = sup

t∈J
∥u∥q for u ∈ Ωq.

Motivated by [34, 48, 176], we give the definition of mild solution to (4.1)–(4.2).
Definition 4.2.4

A function u ∈ Ωq is called a mild solution of system (4.1)–(4.2) if it satisfies the following
integral equation:

u(t) = Sα(t)L[u0 + φ(u(t))] +
∫ t

0
(t− s)α−1Tα(t− s)ψ(s, u(s))ds,

where
Sα(t) =

∫ ∞

0
L−1ζα(θ)Q(tαθ)dθ, Tα(t) = α

∫ ∞

0
L−1θζα(θ)Q(tαθ)dθ,

ζα(θ) = 1
α
θ−1− 1

αϖα(θ− 1
α ) ≥ 0, ϖα(θ) = 1

π

∞∑
n=1

(−1)n−1θ−αn−1 Γ(nα + 1)
n!

sin(nπα), θ ∈ (0,∞),
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with ζα the probability density function defined on (0,∞), that is, ζα(θ) ≥ 0, θ ∈ (0,∞)
and

∫ ∞

0
ζα(θ)dθ = 1.

Remark 4.2.5
For v ∈ [0, 1], ones has

∫ ∞

0
θvζα(θ)dθ =

∫ ∞

0
θ−αvϖα(θ)dθ = Γ(1 + v)

Γ(1 + αv)

(see [177]).

Lemma 4.2.2 (See [48, 176, 177])
The operators Sα(t) and Tα(t) have the following properties:

(a) For any fixed t ≥ 0, the operators Sα(t) and Tα(t) are linear and bounded, i.e., for
any u ∈ X, ∥Sα(t)u∥ ≤ CM0∥u∥ and ∥Tα(t)u∥ ≤ CM0

Γ(α)
∥u∥.

(b) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous, i.e., for u ∈ X and 0 ≤ t1 <
t2 ≤ a, we have ∥Sα(t2)u− Sα(t1)u∥ → 0 and ∥Tα(t2)u− Tα(t1)u∥ → 0 as t1 → t2.

(c) For every t > 0, Sα(t) and Tα(t) are compact operators.

(d) For any u ∈ X, p ∈ (0, 1) and q ∈ (0, 1), we have ATα(t)u = A1−pTα(t)Apu, t ∈ J ,

and ∥AqTα(t)∥ ≤ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

t−qα, 0 < t ≤ a.

(e) For fixed t ≥ 0 and any u ∈ Xq, we have ∥Sα(t)u∥q ≤ CM0∥u∥q and ∥Tα(t)u∥q ≤
CM0

Γ(α)
∥u∥q.

(f) Sα(t) and Tα(t), t > 0, are uniformly continuous, that is, for each fixed t > 0 and
ϵ > 0 there exists g > 0 such that ∥Sα(t + ϵ) − Sα(t)∥q < ϵ for t + ϵ ≥ 0 and |ϵ| < g,
∥Tα(t+ ϵ) − Tα(t)∥q < ϵ for t+ ϵ ≥ 0 and |ϵ| < g.

Lemma 4.2.3 (See [172])
For each ϕ ∈ Lp(J,X) with 1 ≤ p < ∞,

lim
g→0

∫ a

0
∥ϕ(t+ g) − ϕ(t)∥pdt = 0,

where ϕ(s) = 0 for s /∈ J .

Lemma 4.2.4 (See [177])
A measurable function G : J → X is a Bochner integral if ∥G∥ is Lebesgue integrable.
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4.3 Main results
Our first result provides existence of mild solutions to system (4.1)–(4.2). To prove that, we
make use of the following assumptions:

(F1) The linear closed operator A is defined on dense set from Xq into Y .

(F2) The function ψ : J × Xq → Y satisfies: for each u ∈ Xq, the function t → ψ(t, u(t)) is
measurable.

(F3) For arbitrary u, u∗ ∈ Xq satisfying ∥u∥q, ∥u∗∥q ≤ ρ, there exists a constant Lψ(ρ) > 0 and
a function m ∈ L1(J,R+) such that

∥ψ(t, u) − ψ(t, u∗)∥ ≤ Lψ(ρ)m(t)∥u− u∗∥q

for almost all t ∈ J .

(F4) There exists a constant aψ > 0 such that

∥ψ(t, u)∥ ≤ aψ(1 + r∥u∥q) for all u ∈ Xq and t ∈ J.

(F5) The function φ : C(J : Xq) → Xq is Lipschitz continuous and bounded in Xq, i.e., for all
u, v ∈ C(J,Xq) there exist constants k1, k2 > 0 such that

∥φ(u) − φ(v)∥q ≤ k1∥u− v∥q and ∥φ(u)∥q ≤ k2.

Theorem 4.1

Assume hypotheses (F1)–(F5) are satisfied. If u0 ∈ Xq and αq < 1 for some 1
2
< α < 1,

then system (4.1)–(4.2) has a mild solution on J .

The following lemmas are used in the proof of Theorem 4.1.
Lemma 4.3.1

Let operator P : Ωq → Ωq be given by

(Pu)(t) = Sα(t)L[u0 + φ(u(t))] +
∫ t

0
(t− s)α−1Tα(t− s)ψ(s, u(s))ds. (4.4)

Then, the operator P satisfies Pu ∈ Ωq.

Proof : Let 0 ≤ t1 < t2 ≤ a and αq <
1
2

. We have

∥(Pu)(t1) − (Pu)(t2)∥q
= ∥[Sα(t1) − Sα(t2)]L [u0 + φ(u)]∥q

+
∫ t1

0
(t1 − s)α−1∥Tα(t1 − s)ψ(s, u(s)) − Tα(t2 − s)ψ(s, u(s))∥qds

+
∫ t1

0
|(t1 − s)α−1 − (t2 − s)α−1|∥Tα(t2 − s)ψ(s, u(s))∥qds

+
∫ t2

t1
(t2 − s)α−1∥Tα(t2 − s)ψ(s, u(s))∥qds.
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We use Lemma 4.2.2, and fractional power of operators, to get

∥(Pu)(t1) − (Pu)(t2)∥q ≤∥L∥ [k2 + ∥u0∥q] ∥Sα(t1) − Sα(t2)∥q

+
∫ t1

0
(t1 − s)α−1∥Aq[Tα(t1 − s) − Tα(t2 − s)]∥∥ψ(s, u(s))∥ds

+
∫ t1

0
|(t1 − s)α−1 − (t2 − s)α−1|∥AqTα(t2 − s)∥∥ψ(s, u(s))∥ds

+
∫ t2

t1
(t2 − s)α−1∥AqTα(t2 − s)∥∥ψ(s, u(s))∥ds

≤∥L∥ [k2 + ∥u0∥q] ∥Sα(t1) − Sα(t2)∥q

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∥ψ∥C(J,X)

∫ t1

0
(t1 − s)α−1|(t1 − s)−qα − (t2 − s)−qα|ds

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∫ t1

0
|(t1 − s)α−1 − (t2 − s)α−1|(t2 − s)−qα∥ψ(s, u(s))∥ds

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∫ t2

t1
(t2 − s)−qα+α−1∥ψ(s, u(s))∥ds.

From Lemma 4.2.2 and Hölder’s inequality, one can deduce the following inequality:

∥(Pu)(t1) − (Pu)(t2)∥q
≤∥L∥ [k2 + ∥u0∥q] ∥Sα(t1) − Sα(t2)∥q

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∥ψ∥C(J,X)

[(∫ t1

0
|(t1 − s)−qα − (t2 − s)−qα|2ds

) 1
2

×
(∫ t1

0
(t1 − s)2(α−1)ds

) 1
2

+
(∫ t1

0
|(t1 − s)α−1 − (t2 − s)α−1|2ds

) 1
2

×
(∫ t1

0
(t2 − s)−2qαds

) 1
2

+ 1
α(1 − q)

(t2 − t1)α(1−q)
]

≤∥L∥ [k2 + ∥u0∥q] ∥Sα(t1) − Sα(t2)∥q

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∥ψ∥C(J,X)

[√
1

2α− 1
t
α− 1

2
1

(∫ a

0
|(t1 − s)−qα − (t2 − s)−qα|2ds

) 1
2

+
(∫ a

0
|(t1 − s)α−1 − (t2 − s)α−1|2ds

) 1
2
√

1
1 − 2qα

(
t1−2qα
2 − (t2 − t1)1−2qα

) 1
2

+ 1
α(1 − q)

(t2 − t1)α(1−q)
]
,

which means that Pu ∈ Ωq.

Lemma 4.3.2
The operator P given by (4.4) is continuous on Ωq.
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Proof : Let u, u∗ ∈ Ωq and ∥u− u∗∥∞ ≤ 1. Then, ∥u∥∞ ≤ 1 + ∥u∗∥∞ = ρ and

∥(Pu)(t) − (Pu∗)(t)∥q = ∥Sα(t)L [φ(u) − φ(u∗)]∥q

+
∫ t

0
(t− s)α−1∥Tα(t− s)[ψ(s, u(s)) − ψ(s, u∗(s))]∥qds

≤ ∥Sα(t)L∥ ∥Aq[φ(u) − φ(u∗)]∥

+
∫ t

0
(t− s)α−1∥AqTα(t− s)∥∥ψ(s, u(s)) − ψ(s, u∗(s))∥ds

≤ Ck1M0∥L∥∥u− u∗∥q

+ Lψ(ρ)m(t) αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∫ t

0
(t− s)−qα+α−1∥u− u∗∥qds

≤ Ck1M0∥L∥∥u− u∗∥∞

+ Lψ(ρ)m(t) αCMqΓ(2 − q)
Γ(1 + α(1 − q))

1
α(1 − q)

tα(1−q)∥u− u∗∥∞.

Therefore,

∥(Pu)(t) − (Pu∗)(t)∥∞ ≤ Ck1M0∥L∥∥u− u∗∥∞

+ Lψ(ρ)m(t) αCMqΓ(2 − q)
Γ(1 + α(1 − q))

1
α(1 − q)

tα(1−q)∥u− u∗∥∞

and we conclude that P is continuous.

Lemma 4.3.3
The operator P given by (4.4) is compact.

Proof : Let Σ be a bounded subset of Ωq. Then there exists a constant η such that ∥u∥∞ ≤ η for
all u ∈ Σ. By (F4), there exists a constant τ such that ∥ψ(t, u(t))∥ ≤ aψ(1 + rη) = τ . Then PΣ is a
bounded subset of Ωq. In fact, let u ∈ Σ. Using Lemma 4.2.2 (a) and (d), we get

∥(Pu)(t)∥q ≤ ∥Sα(t)L [u0 + φ(u)]∥q

+
∫ t

0
(t− s)α−1∥Tα(t− s)ψ(s, u(s))∥qds

≤ CM0∥L∥ [k2 + ∥u0∥q]

+
∫ t

0
(t− s)α−1∥AqTα(t− s)∥∥ψ(s, u(s))∥ds

≤ CM0∥L∥ [k2 + ∥u0∥q]

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

τ

∫ t

0
(t− s)−qα+α−1ds

≤ CM0∥L∥ [k2 + ∥u0∥q]

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

τ
1

α(1 − q)
tα(1−q).

Then, we obtain

∥(Pu)(t)∥∞ ≤ CM0∥L∥ [k2 + η] + αCMqΓ(2 − q)
Γ(1 + α(1 − q))

τaα(1−q)

α(1 − q)
.

We conclude that PΣ is bounded. Define Π = PΣ and Π(t) = {(Pu)(t)|u ∈ Σ} for t ∈ J . Obviously,
Π(0) = {(Pu)(0)|u ∈ Σ} is compact. For each g ∈ (0, t), t ∈ (0, a], and arbitrary δ > 0, let us define
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Πg,δ(t) = {(Pg,δu)(t)|u ∈ Σ}, where

(Pg,δu)(t) = Q(gαδ)
∫ ∞

δ
L−1ζα(θ)Q(tαθ − gαδ)L [u0 + φ(u)] dθ

+Q(gαδ)
∫ t−g

0
(t− s)α−1

(
α

∫ ∞

δ
L−1θζα(θ)Q((t− s)αθ − gαδ)dθ

)
ψ(s, u(s))ds

=
∫ ∞

δ
L−1ζα(θ)Q(tαθ)L [u0 + φ(u)] dθ

+ α

∫ t−g

0

∫ ∞

δ
θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)ψ(s, u(s))dθds.

Then, since the operator Q(gαδ), gαδ > 0, is compact in Xq, the sets {(Pg,δu)(t)|u ∈ Σ} are relatively
compact in Xq. This comes from the following inequalities:

∥(Pu)(t) − (Pg,δu)(t)∥q

≤
∥∥∥∥∫ δ

0
L−1ζα(θ)Q(tαθ)L [u0 + φ(u)] dθ

∥∥∥∥
q

+
∥∥∥∥∫ ∞

δ
L−1ζα(θ)Q(tαθ)L [u0 + φ(u)] dθ

∥∥∥∥
q

+
∥∥∥∥∫ ∞

δ
L−1ζα(θ)Q(tαθ)L [u0 + φ(u)] dθ

−
∫ ∞

δ
L−1ζα(θ)Q(tαθ)L [u0 + φ(u)] dθ

∥∥∥∥
q

+ α

∥∥∥∥∥
∫ t

0

∫ δ

0
θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)ψ(s, u(s))dθds

∥∥∥∥∥
q

+ α

∥∥∥∥∫ t

0

∫ ∞

δ
θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)ψ(s, u(s))dθds

−
∫ t−g

0

∫ ∞

δ
θ(t− s)α−1L−1ζα(θ)Q((t− s)αθ)ψ(s, u(s))dθds

∥∥∥∥
q

≤
∫ δ

0
∥L−1ζα(θ)Q(tαθ)L∥

∥∥∥∥Aq [u0 + φ(u)]
∥∥∥∥dθ

+
∫ ∞

δ
∥L−1ζα(θ)Q(tαθ)L∥

∥∥∥∥Aq [u0 + φ(u)]
∥∥∥∥dθ

+ α

∫ t

0

∫ δ

0
θ(t− s)α−1∥L−1∥ζα(θ)∥AqQ((t− s)αθ)∥∥ψ(s, u(s))∥dθds

+ α

∫ t

t−g

∫ ∞

δ
θ(t− s)α−1∥L−1∥ζα(θ)∥AqQ((t− s)αθ)∥∥ψ(s, u(s))∥dθds
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≤ CM0∥L∥ [k2 + ∥u0∥q]
∫ δ

0
ζα(θ)dθ

+ CM0∥L∥ [k2 + ∥u0∥q]
∫ ∞

δ
ζα(θ)dθ

+ CMqατ

∫ t

0

∫ δ

0
θ(t− s)α−1ζα(θ)(t− s)−αqθ−qdθds

+ CMqατ

∫ t

t−g

∫ ∞

δ
θ(t− s)α−1ζα(θ)(t− s)−αqθ−qdθds

≤ CM0∥L∥ [k2 + ∥u0∥q]
∫ δ

0
ζα(θ)dθ

+ CM0∥L∥ [k2 + ∥u0∥q]

+ CMqατ

∫ t

0

∫ δ

0
θ1−q(t− s)−αq+α−1ζα(θ)dθds

+ CMqατ

∫ t

t−g

∫ ∞

δ
θ1−q(t− s)−αq+α−1ζα(θ)dθds

≤ CM0∥L∥ [k2 + ∥u0∥q]
∫ δ

0
ζα(θ)dθ

+ CM0∥L∥ [k2 + ∥u0∥q]

+ CMqατ

(∫ t

0
(t− s)−αq+α−1ds

)∫ δ

0
θ1−qζα(θ)dθ

+ CMqατ
Γ(2 − q)

Γ(1 + α(1 − q))

(∫ t

t−g
(t− s)−αq+α−1ds

)
and ∫ t

0
(t− s)−αq+α−1ds ≤ 1

α(1 − q)
tα(1−q),

∫ t

t−g
(t− s)−αq+α−1ds ≤ 1

α(1 − q)
gα(1−q),

so that

∥(Pu)(t) − (Pg,δu)(t)∥q ≤CM0∥L∥ [k2 + ∥u0∥q]
∫ δ

0
ζα(θ)dθ

+ CM0∥L∥ [k2 + ∥u0∥q]

+ CMqατ

α(1 − q)
aα(1−q)

∫ δ

0
θ1−qζα(θ)dθ

+ CMqατΓ(2 − q)
Γ(1 + α(1 − q))

1
α(1 − q)

gα(1−q).

Therefore, Π(t) = {(Pu)(t)|u ∈ Σ} is relatively compact in Xq for all t ∈ (0, a] and, since it is compact
at t = 0, we have relatively compactness in Xq for all t ∈ J .
Next, let us prove that Π = PΣ is equicontinuous. For g ∈ [0, a),

∥(Pu)(g) − (Pu)(0)∥q ≤∥Sα(g)L− I∥q
+ CM0∥L∥ [k2 + ∥u0∥q]

+ αCMqΓ(2 − q)
Γ(1 + α(1 − q))

τ

α(1 − q)
gα(1−q),

and for 0 < s < t1 < t2 ≤ a, ∥(Pu)(t1) − (Pu)(t2)∥q ≤ I1 + I2 + I3 + I4, where

I1 = ∥L∥ [k2 + ∥u0∥q] ∥Sα(t1) − Sα(t2)∥q,

I2 = αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∥ψ∥C(J,X)

√
1

2α− 1
t
α− 1

2
1

(∫ a

0
|(t1 − s)−qα − (t2 − s)−qα|2ds

) 1
2
,
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I3 = αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∥ψ∥C(J,X)

(∫ a

0
|(t1 − s)α−1 − (t2 − s)α−1|2ds

) 1
2

×
√

1
1 − 2qα

(
t1−2qα
2 − (t2 − t1)1−2qα

) 1
2
,

I4 = αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∥ψ∥C(J,X)
1

α(1 − q)
(t2 − t1)α(1−q).

Now, we have to verify that Ij , j = 1, . . . , 4, tend to 0 independently of u ∈ Σ when t2 → t1. Let
u ∈ Σ. By Lemma 4.2.2 (c) and (f), we deduce that lim

t2→t1
I1 = 0 and lim

t2→t1
I2 = 0. Moreover, using the

fact that |(t1 − s)α−1 − (t2 − s)α−1| → 0 as t2 → t1, we obtain from Lemma 4.2.3 that∫ a

0
|(t1 − s)α−1 − (t2 − s)α−1|2ds → 0 as t2 → t1.

Thus, lim
t2→t1

I3 = 0 since qα < 1
2

. Also, it is clear that lim
t2→t1

I4 = 0. In summary, we have proven that
PΣ is relatively compact for t ∈ J and Π(t) = {Pu|u ∈ Σ} is a family of equicontinuous functions.
Hence, by the Arzela–Ascoli theorem, P is compact.

Proof of Theorem 4.1 : We shall prove that the operator P has a fixed point in Ωq. According
to Leray–Schauder fixed point theory (and from Lemmas 4.3.1–4.3.3), it suffices to show that the set
∆ = {u ∈ Ωq|u = βPu, β ∈ [0, 1]} is a bounded subset of Ωq. Let u ∈ ∆. Then,

∥u(t)∥q = ∥β(Pu)(t)∥q
≤ ∥Sα(t)L [u0 + h(u)]∥q

+
∫ t

0
(t− s)α−1∥Tα(t− s)ψ(s, u(s))∥qds

≤ CM0∥L∥ [k2 + ∥u0∥q]

+
∫ t

0
(t− s)α−1∥AqTα(t− s)∥∥ψ(s, u(s))∥ds

≤ CM0∥L∥ [k2 + ∥u0∥q]

+ afαCMqΓ(2 − q)
Γ(1 + α(1 − q))

∫ t

0
(t− s)−qα+α−1(1 + r∥u∥q)ds

≤ CM0∥L∥ [k2 + ∥u0∥q]

+ afαCMqΓ(2 − q)
Γ(1 + α(1 − q))

aα(1−q)

α(1 − q)
+ afαrCMqΓ(2 − q)

Γ(1 + α(1 − q))

∫ t

0
(t− s)−qα+α−1∥u∥qds.

Based on the well known singular version of Gronwall inequality, we can deduce that there exists a
constant R > 0 such that ∥u∥∞ ≤ R. Thus, ∆ is a bounded subset of Ωq. By Leray–Schauder fixed
point theory, P has a fixed point in Ωq. Consequently, system (4.1)–(4.2) has at least one mild solution
u on J .

Theorem 4.2
Mild solution u(·) of system (4.1)–(4.2) is unique.

Proof : Let u∗(·) be another mild solution of system (4.1)–(4.2) with nonlocal initial condition [u0 +
φ(u∗)]. It is not difficult to verify that there exists a constant ρ > 0 such that ∥u∥q, ∥u∗∥q ≤ ρ. From

∥u(t) − u∗(t)∥q ≤ ∥Sα(t)L[φ(u) − φ(u∗)]∥q
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+
∫ t

0
(t− s)α−1∥Tα(t− s)[ψ(s, u(s)) − ψ(s, u∗(s))]∥qds,

we get

∥u(t) − u∗∥q ≤ Ck1M0∥L∥∥u(s) − u∗(s)∥q

+ Lψ(ρ)m(t) αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∫ t

0
(t− s)−qα+α−1∥u(s) − u∗(s)∥qds.

Again, by the singular version of Gronwall’s inequality, we arrive at the uniqueness of u. Thus, system
(4.1)–(4.2) has a unique mild solution on J .

4.4 Optimal controls
Let Z be another separable reflexive Banach space from which the control u take its values.
We denote by Vf (Z) a class of nonempty closed and convex subsets of Z. The multifunction
ω : J → Vf (Z) is measurable, ω(·) ⊂ Λ, where Λ is a bounded set of Z. The admissible control
set is Uad = Spω = {u ∈ Lp(Λ)|u(t) ∈ ω(t) a.e.}, j = 1, k, 1 < p < ∞. Then, Uad ̸= ∅ [61].
Consider the following Sobolev type fractional nonlocal multi-integral-controlled system:

CDα
t [Lu(t)] = Mu(t) + ψ(t, u(t)) +

∫ t

0
Bu(s)ds, (4.5)

u(0) = u0 + φ(u(t)). (4.6)
Besides the sufficient conditions (F1)–(F5) of the last section, we assume:

(F6) B ∈ L∞(J, L(Z,Xq)), which implies that Bu ∈ Lp(J,Xq) for all u ∈ Uad.

Corollaire 4.4.1
In addition to assumptions of Theorem 4.1, suppose (F6) holds. For every u ∈ Uad and
pα(1 − q) > 1, system (4.5)–(4.6) has a mild solution corresponding to u given by

uu(t) = Sα(t)L [u0 + φ(u(t))] +
∫ t

0
(t− s)α−1Tα(t− s)

[
ψ(s, u(s)) +

∫ s

0
Bu(η)dη

]
ds.

Proof : Based on our existence result (Theorem 4.1), it is required to check the term containing
multi-integral controls. Let us consider

φ(t) =
∫ t

0
(t− s)α−1Tα(t− s)

[∫ s

0
Bu(η)dη

]
ds.

Using Lemma 4.2.2 (d) and Hölder inequality, we have

∥φ(t)∥q ≤
∥∥∥∥∫ t

0
(t− s)α−1Tα(t− s)

∫ s

0
Bu(η)dηds

∥∥∥∥
q

≤
∫ t

0
(t− s)α−1∥AqTα(t− s)∥∥Bu(s)∥ads

≤ αaCMqΓ(2 − q)
Γ(1 + α(1 − q))

[
∥B∥∞

∫ t

0
(t− s)−qα+α−1∥u(s)∥Zds

]

≤ αaCMqΓ(2 − q)
Γ(1 + α(1 − q))

[
∥B∥∞

(∫ t

0
(t− s)

p
p−1 (−qα+α−1)

ds

) p−1
p
(∫ t

0
∥u(s)∥pZds

) 1
p
]
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≤ αaCMqΓ(2 − q)
Γ(1 + α(1 − q))

[
∥B∥∞

(
p− 1

pα(1 − q) − 1

) p−1
p

a
pα(1−q)−1

p−1 ∥u∥Lp(J,Z)

]
,

where ∥B∥∞ is the norm of operators B in the Banach space L∞(J, L(Z,Xq)). Thus,∥∥∥∥(t− s)α−1Tα(t− s)
∫ s

0
Bu(η)dη

∥∥∥∥
q

is Lebesgue integrable with respect to s ∈ [0, t] for all t ∈ J . It follows from Lemma 4.2.4 that

(t− s)α−1Tα(t− s)
∫ s

0
Bu(η)dη

is a Bochner integral with respect to s ∈ [0, t] for all t ∈ J . Hence, φ(·) ∈ Ωq. The required result
follows from Theorem 4.1.

Furthermore, let us now assume

(F7) The functional L : J ×Xq × Z → R ∪ {∞} is Borel measurable.

(F8) L(t, ·, ·) is sequentially lower semicontinuous on Xq × Z for almost all t ∈ J .

(F9) L(t, u, ·) is convex on Z for each u ∈ Xq and almost all t ∈ J .

(F10) There exist constants d ≥ 0, C > 0, such that ψ is nonnegative and ψ ∈ L1(J,R) satisfies

L(t, u, u) ≥ ψ(t) + d∥u∥q + C∥u∥pZ .

We consider the following Lagrange optimal control problem:{
Find (u0, u0) ∈ C(J,Xq) × Uk

ad

such that J (u0, u0) ≤ J (uu, u) for all u ∈ Uad,
(LP )

where
J (uu, u) =

∫ a

0
L(t, uu, u)dt

with uu denoting the mild solution of system (4.5)–(4.6) corresponding to the multi-integral
controls u ∈ Uad. The following lemma is used to obtain existence of a fractional optimal
multi-integral control (Theorem 4.3).
Lemma 4.4.1

Operator Υ : Lp(J, Z) → Ωq given by

(Υu)(·) =
∫ ·

0

∫ s

0
Tα(· − s)Bu(η)dηds,

where pα(1 − q) > 1 and j = 1, k, are strongly continuous.

Proof : Suppose that {un} ⊆ Lp(J, Z) are bounded. Define Θn(t) = (Υun)(t), t ∈ J . Similarly to
the proof of Corollary 4.4.1, we can conclude that for any fixed t ∈ J and pα(1 − q) > 1, ∥Θn(t)∥q is
bounded. By Lemma 4.2.2, it is easy to verify that Θn(t), is compact in Xq and are also equicontinuous.
According to the Ascoli–Arzela theorem, {Θn(t)} are relatively compact in Ωq. Clearly, Υ, is linear
and continuous. Hence, Υ is strongly continuous operators (see [61, p. 597]).

Now we are in position to give the following result on existence of optimal multi-integral controls
for the Lagrange problem (LP ).
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Theorem 4.3
If the assumptions (F1)–(F10) hold, then the Lagrange problem (LP ) admits at least one

optimal integral pair.

Proof : Assume that inf{J (uu, u)|uu ∈ Uad} = ϵ < +∞. Using assumptions (F7)–(F10), we have
ϵ > −∞. By definition of infimum, there exists a minimizing feasible pair {(um, um)} ⊂ Uad sequence,
where Uad = {(u, u)|u is a mild solution of system (4.5)–(4.6) corresponding to u ∈ Uad}, such that
J (um, um) → ϵ as m → +∞. Since {(um)} ⊆ Uad, m = 1, 2, . . . , {(um)} is bounded in Lp(J, Z) and
there exists a subsequence, still denoted by {(um)}, u0 ∈ Lp(J, Z), such that

(um) weakly−→
(
u0
)

in Lp(J, Z). Since Uad is closed and convex, by Marzur lemma u0 ∈ Uad. Suppose um(u0) is the mild
solution of system (4.5)–(4.6) corresponding to um(u0). Functions um and u0 satisfy, respectively, the
following integral equations:

um(t) = Sα(t)L [u0 + φ(um(s))]

+
∫ t

0
(t− s)α−1Tα(t− s)

[
ψ(s, um(s)) +

∫ s

0
[Bum(η)]dη

]
ds,

u0(t) = Sα(t)L
[
u0 + φ(u0(s))

]
+
∫ t

0
(t− s)α−1Tα(t− s)

[
ψ(s, u0(s)) +

∫ s

0
[Bu0(η)]dη

]
ds.

It follows from the boundedness of {um}, {u0} and Theorem 4.1 that there exists a positive number ρ
such that ∥um∥∞, ∥u0∥∞ ≤ ρ. For t ∈ J , we have

∥um(t) − u0(t)∥q ≤ ∥ξ(1)
m (t)∥q + ∥ξ(2)

m (t)∥q + ∥ξ(3)
m (t)∥q,

where

ξ(1)
m (t) = Sα(t)L[φ(um(s)) − φ(u0(s))],

ξ(2)
m (t) =

∫ t

0
(t− s)α−1Tα(t− s)[ψ(s, um(s)) − ψ(s, u0(s))]ds,

ξ(3)
m (t) =

∫ t

0
(t− s)α−1Tα(t− s)

∫ s

0
B[um(η) − u0(η)]dηds.

The assumption (F5) gives
∥ξ(1)
m (t)∥q ≤ CM0k1∥L∥∥um − u0∥q.

Using Lemma 4.2.2 (d) and (F3),

∥ξ(2)
m (t)∥q ≤ Lψ(ρ)m(t) αCMqΓ(2 − q)

Γ(1 + α(1 − q))

∫ t

0
(t− s)−qα+α−1∥um(s) − u0(s)∥qds.

From Lemma 4.4.1, we get
ξ(3)
m (t) strongly−→ 0.

Thus,

∥um(t) − u0(t)∥q ≤ ∥ξ(3)
m (t)∥q + CM0k1∥L∥∥um − u0∥q

+ Lψ(ρ)m(t) αCMqΓ(2 − q)
Γ(1 + α(1 − q))

∫ t

0
(t− s)−qα+α−1∥um(s) − u0(s)∥qds.
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By virtue of the singular version of Gronwall’s inequality, there exists M∗ > 0 such that

∥um(t) − u0(t)∥q ≤ M∗∥ξ(3)
m (t)∥q,

which yields that
um → u0 in C(J,Xq) as m → ∞.

Because C(J,Xq) ↪→ L1(J,Xq), using the assumptions (F7)–(F10) and Balder’s theorem, we obtain
that

ϵ = lim
m→∞

∫ a

0
L(t, um(t), um(t))dt

≥
∫ a

0
L(t, u0(t), u0(t))dt

= J (u0, u0)
≥ ϵ.

This shows that J attains its minimum at u0 ∈ Uad.



Conclusion

The main purpose of this thesis was to Control is an important aspect of mathematical
control theory. It was introduced by [69]. The concept of controllability denotes the ability to
transfer the state of the dynamic control system from its initial state to the desired final state
using an appropriate control function. In recent years, various aspects of the controllability
of ordinary dynamic systems as well as partial dynamic systems, for both deterministic and
stochastic structures, have been studied by many researchers. We have developed a solution
for the controllability problem of a non-linear fractional order neutral type stochastic integro-
differential system with the Rosenblatt process. We take the terms in the system as bounded
linear operators instead of a matrix, which produces the same results as a matrix, and the
results on stochastic systems using bounded linear operators are more competent. We first
proved that the development of modern methods has been used to explore the possibility
of solving some classes of initial value problems involving fractional operators and optimal
controls. In particular, during this PhD thesis project, we introduced partial calculus theory
and control theory to substantiate questions of existence outcomes, controllability, stability,
and other properties of new types of problems that can be applied with more precision and
better usefulness.
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