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Abstract

The main focus of this thesis is to present a numerical study of Fredholm integral equations
of the nonlinear integro-differential type. This includes examining both the regular and
weakly singular cases, as well as the fractional case. To obtain numerical solutions for these
equations, we use popular projection methods like the Galerkin method and the collocation
method, along with classical orthogonal polynomials. The primary benefit of this approach
is that it allows us to transform the main equations for each case into a nonlinear algebraic
system. We can then use iterative methods to solve these systems efficiently. To show the
accuracy and effectiveness of our approach, we present several numerical examples throughout
the thesis. These examples demonstrate how our numerical process accurately solve the given
equations, which further confirms the effectiveness of our proposed method.

Keywords: Orthogonal polynomials. Fredholm integro-differential equations. Galerkim

method. Collocation technique. Nonlinear equation



Resumé

L’objectif principal de cette thése est de présenter une étude numérique des équations in-
tégrales de Fredholm de type intégro-différentiel non linéaire. Cela comprend I’examen
a la fois des cas réguliers et faiblement singuliers, ainsi que du cas fractionné. Pour
obtenir des solutions numériques pour ces équations, nous utilisons des méthodes de
projection populaires comme la méthode de Galerkin et la méthode de collocation, ainsi
que des polynoémes orthogonaux classiques. Le principal avantage de cette approche est
qu’elle nous permet de transformer les équations principales de chaque cas en un sys-
téme algébrique non linéaire. Nous pouvons ensuite utiliser des méthodes itératives
pour résoudre efficacement ces systémes. Pour démontrer la justesse et 'efficacité de
notre approche, nous présentons plusieurs exemples numériques tout au long de la thése.
Ces exemples démontrent comment nos solutions numériques résolvent avec précision
les équations données, ce qui confirme davantage lefficacité de la méthode que nous

proposons.

Mots-clés: Polynomes orthogonaux. Equations intégro-différentielles de Fredholm.

Méthode de Galerkin. Technique de colocation. Equation non linéaire.
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Notations

Vector space.
Banach space.
Scalar product.
Hilbert space.
Scalar product.

Norm of z.

Polynomials of degree less than or equal n.

Partial differential.

Lebesgue space.

Sobolev space.

Set of complex numbers.

Set of real numbers.

Set of integer numbers.

Set of positive integer numbers.

Set of strict positive integer numbers.
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Introduction

An integro-differential equation is a type of differential equation that involves both derivatives
and integrals of the unknown function. Such equations are often used in physics, engineering,
and applied mathematics to model a wide range of phenomena, including heat transfer, fluid

mechanics, and signal processing, ... (see [6, 9l 23], 36]).

Solving integro-differential equations can be challenging, as they often do not have ex-
plicit solutions. Instead, numerical methods are used to approximate the solutions. Among
these, we can enumerate finite difference methods or spectral methods: Laplace decomposi-
tion method [5], Legendre-Galerkin method [I§], Bernoulli polynomials [§] , Pseudospectral
methods, Piecewise linear approximation, Polynomial approximation, Rational approxima-
tion |21], B-spline method [16) 28|, Euler matrix method [25], Exponential spline method
[22], CAS wavelet [35], Differential transformation [I3], Schauder bases [7], Homotopy per-
turbation method [39], collocation method [31], Haar wavelet bases [17].

On the other hand, there are many publications that give the numerical solution by using
orthogonal polynomials; we find for instance: Chebyshev polynomials [I4], 27, 33|, Legender
polynomials [37, B8], Hermite polynomials [24], Laguerre polynomials [30, 32], Jacobi polyno-
mials [29], new class of orthogonal polynomials [3], Comparison of the orthogonals polynomial
[12] . However, applying orthogonal polynomials to solve nonlinear integro-differential equa-
tions can be more complex than solving linear equations. In fact, there are still techniques
that can be used to approximate the solution using orthogonal polynomials. One approach
is to use a Galerkin method, which involves approximating the solution as a linear combina-
tion of a finite number of orthogonal polynomials, and then projecting the original nonlinear
integro-differential equation onto the space of these polynomials. This yields a system of
nonlinear algebraic equations for the coefficients of the polynomial expansion, which can

then be solved using numerical techniques such as Newton’s method or fixed-point iteration.
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Another approach is to use a collocation method, which involves evaluating the integro-
differential equation at a set of collocation points, and approximating the solution as a linear
combination of orthogonal polynomials that satisfy the equation at these points. This yields

a system of nonlinear algebraic equations that can also be solved numerically.

In this thesis, we undertake a numerical research for several forms of nonlinear integro-
differential equations in which the unknown function and its derivatives are in the nonlinear
kernel. The current study relies on the use of several kinds of orthogonal polynomials to get

the required numerical solution.

The outline of the thesis is as follows: The first chapter aims to introduce some funda-
mental definitions and theorems in functional analysis, as well as the orthogonal polynomials,
including their properties that are necessary for the subsequent chapters.

In the second chapter, we examine regular integro-differential equations with nonlinear
kernels. In the first section, using Legender polynomials, we give the numerical solution for

the following equation

M@—ﬂ@fAK@wm@w@Wm Ve (0,1
u(0) = p.

In the second section, we develop the previous method presented in the first section by

utilizing Chebyshev polynomials to solve the following equation [19]

w@zﬂ@+AK@%MWW@wmm@,w6mm
H0) =a, ¥(0)=B.

Through the third chapter, we investigate nonlinear integro-differentials equations with

weakly singular kernels which takes the following form

b
v(z) = f(2) +/ p(lz —t))F (2, t,0(t),v'(t)) dt, z € [a, ],
v(a) = vy,

where

lim p(z) = +o0.

z—0

10
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In the first section, we apply the Galerkin method along with Chebyshev polynomials of
the second kind to approximate the solution of the nonlinear integro-differential equation. In
the second section, we use the collocation approach based on Laguerre polynomials to solve

the equation.
Finally, in the fourth chapter, we utilize Hermite polynomials to obtain an approximation

for the solution of the fractional integro-differential equation of the form

z €10,1],u(z) = g(2) +/0 K (z,t,u(t),D%u(t))dt, wu(0)=0,

where D denotes the Caputo- Fabrizio derivative of order o [20].

During the period of the thesis study, we were able to publish the following articles:

1. Henka, Y., Lemita, S., Aissaoui, M. Z. (2023). Hermite wavelets collocation method
for solving a Fredholm integro-differential equation with fractional Caputo-Fabrizio

derivative. Proyecciones (Antofagasta), 42(4), 917-930.

2. Henka, Y., Lemita, S., Aissaoui, M. Z. (2022). Numerical study for a second order Fred-
holm integro-differential equation by applying Galerkin-Chebyshev-wavelets method.
Journal of Applied Mathematics and Computational Mechanics, 21(4), 28-39.

11



Chapter 1

Preliminaries
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1.1 General notions

1.1 General notions

In order to provide a comprehensive understanding of the material presented in this thesis,
it is important to establish a solid background in the relevant mathematical concepts. This
section introduces the reader to some fundamental definitions and theorems that will be used

throughout the rest of the work.

Definition 1.1. A norm on a vector space V is a mapping || - || : V — [0, 00) such that for

all u,v € V and for all o € C:
(i) ||u+ | <||ul| + ||v]| (Triangle Inequality),
(i1) ||lou|| = |a|||ul| (Scalar Property),

(ii1) ||ul| = 0 if and only if u = 0.

The pair (V, || - ||) is then called a normed space.

Definition 1.2. A space B is said to be a Banach space if (B, | - ||) is a complete normed

space.

Definition 1.3. Let V be a vector space over C. A scalar (or inner) product is a mapping

(.,.)fromV xV into C such that

(i) (u,v) = (v,u) Yu,v eV,

(i) (u+ w,v) = (u,v) + (w,v) and (Au,v) = Mu,v) Yu,v € V,\ € C,

(1)) Yu €V (u,u) >0 and (u,u) =0 if and only if u = 0.
We call a linear space with an inner product an inner product space or pre-Hilbert space.
Proposition 1.1. Any inner product (.,.) defines a norm on 'V by setting:

lull = V/{uu) Vu e V.

Exemple 1.1. A Hilbert space is a complete inner product space.

Exemple 1.2. The space H = C" is a Hilbert space with the inner product:
(v,u) = Zviu_i Yo, u € C",
i=1

where v = (v, Vg, ..., 0,) and u = (U, U, ..., Uy).

13



1.1 General notions

Exemple 1.3. Let H = L*([a,b]). Then H is a Hilbert space equipped with the inner product:

b —_
Uy>=/°ﬂ@mmM:VﬁgeL%mm>

Exemple 1.4. Let

H=1= {u = (Un)pen+ C C, Z | * < oo} :

i=1
and the scalar product

o0
(u,v) = Zulv_l Yu,v € (2.
i=1

Then H is a Hilbert space.

Theorem 1.1. (Cauchy-Schwarz inequality) Let H be a Hilbert space. Then
[, u)| < lullllvll for allv,u €.

Definition 1.4. Let M = {u; € H;i € I C N} and (u;,u;) = 0 for all i,j € I with i # j.
Then, M is said to be an orthogonal system. Additionally, if M is orthogonal and ||u;|| = 1

for alli € I, then M is called an orthonormal system.

Lemma 1.1. (Bessel’s inequality ) Let H be a Hilbert space. If {e; € H,i € I C N} is an

orthonormal basis, then for all u € 'H

> Hewu)l < Jull®.

k>0

Definition 1.5. A set C' is convex if and only if
Vu,v e C, VO €[0,1] Ou+(1—-0)weC.
Exemple 1.5. In a normed space E, any subspace is a convex set.

Theorem 1.2. Let K be a non-empty closed convex subset of a Hilbert space H. For any

element u € H, there exists a unique point v € K such that
lu =l = inf [ju—wl.
Theorem 1.3. Let (E, ||-||) be a normed space. A mappingT : E — E is called a contraction
on E if there exists a positive constant p < 1 such that
IT(w) = T()|| < plju— o]l for all u,v € E.

14



1.2 Orthogonal polynomials

Theorem 1.4. [}/ (Banach’s Fixzed Point Theorem). Let (E,| -||) be a Banach space
and let T : E — E be a contraction on E. Then T has a unique fixed point x € E, i.e.
T(x) = x.

Definition 1.6. [10}/ (Caputo-Fabrizio derivative) Let o be a real number from the open
interval (0,1). The fractional Caputo-Fabrizio derivative of order « for a function u belonging
to the space H'[0,1] is as follows:

Dou(z) = — /Ozexp [—10‘ (z—s)] W' (s)ds.

Cl-a —«

Definition 1.7. [20] (Caputo-Fabrizio integral) Let « be a real number from the open
interval (0,1). We define the fractional integral of order o using the Caputo-Fabrizio operator

for a function u belonging to the Sobolev space H'[0,1] as follows:

T%(z) = (1 — a)u(z) + a/ozu(s)ds. (1.1)

Lemma 1.2. Given a real number o such that 0 < o < 1 and a function u in the Sobolev

space H'([a,b]), the following identities hold:

% (Du(2)) = u(z) — u(a),

D (T%u(2)) = u(z) — exp {— 3 = (2 - a)] ~u(a).

Proof. See [26] O

1.2 Orthogonal polynomials

In this section, we address the topic of orthogonal polynomials, which are a special type of
polynomials with the property that they are orthogonal with respect to a particular inner
product. We explore some of the basic properties of orthogonal polynomials, including their

recurrence relations and differential equations.

Definition 1.8. The two functions uw and v are said to be orthogonal with respect to the

weight function w(z) on [a,b]

(u,v) = / w(z)u(z)v(z)dz = 0.

Proposition 1.2. Let (Pl-)i20 be a family of orthogonal polynomials. Then, there is a recur-

rence relation between Py, P, and P, 1
Yn € N* Ja,,b,,c, €R, Py = (a, X +b,) P+ cnPos. (1.2)

15



1.2 Orthogonal polynomials

Proof. The family (XP,, P, P,_1, ..., Py) is a family of polynomials having different degrees
and so, it is a free family of R, ;[X] with n 4+ 2 vectors. We deduce that this family is a

basis of R, 1[X] and there exist reals a,, b,, ¢, and «; for 0 < i < n — 2, such that

n—2
Pn+1 :anXPn+ann+CnPn—l+Zai]Di'

=1

We use the orthogonality of (F;),.
VO0<i<n-—2 <P, P >=a,<XP, P>+ ||P|*=0.

According to the expression of the scalar product < XP,, P;) = (P,, XP;), since XP; €
R,,—1[X] we have (X P,, P;) = 0, then

VO<i1<n—2, a;=0.

O
1.2.1 Legendre polynomials
The Legendre polynomials take the following form by the Rodrigués formula:
1 d n
Lo(2) = — [(z*-1)"]. 1.

Theorem 1.5. The Legendre polynomials L, (z) are given by the following recurrence formula
(n+1)Lp1(2) = 2n+ 1)zL,(2) —nl,—1(2) Li(2) =z, Lo(z)=1.

Exemple 1.6. With n = 4 we get the following siz polynomials:

Lo(2) =1,

Li(2) = =,

Ly(2) = % (32— 1),

Ls(z) = % (52 —3z),

Ly(2) = é (352" — 302>+ 3) ,
Ls(2) = % (632° — 702" + 15z) .

16
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.2 Orthogonal polynomials

Legendre Polynomials
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Figure 1.1: Legendre polynomials for 1 <n < 4.

Proposition 1.3. Legendre polynomials are orthogonal on [—1,1] and

1 2
/ Li:)Ly(z)dz = 2i+1" 7
-1 0, i]j.
Proof. For v < j
Lasle-nlgle-vle-—[ gmle-vlg= (-
| . . 1.4
" [;y’ (=] ddzj—l (- 1)JH -

|

Since
LR

then the relation(1.4)) becomes

[
-1 dZZ

d7
dzi

o)

1

[(ZQ — 1)3} dz

= 0 because Vk € (0,1, ...

1 d
- _, dzit!

17
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1.2 Orthogonal polynomials

By integrating in the right-hand member j times, we get
1 i ; L i .
d 2 i’ 9 j VY dit , il d 2
[l G e -vTe=cy [ e -] mle-v]e
dz‘-i—j—l ; do Tl
+ |:di+j1 [(22 —1) } 420 [(22 - l)ju »

1y /_11 A=) (2= 1) e

Since »
d’ i e
T [(22—1)] =0if i < j,
then,
L A ;
/_1 T [(22 — 1) ] o [(22 - 1)]] dz = 0.
Ifi=jy,

1

(n+1) /_ Lpi1(2)Lp-1(2)dz — (2n + 1) / 2Ly (2) L1 (2)dz + n/_l L? (2)dz =0. (1.6)

1 -1

1

(n+1) /_ Lpi1(2) Ly (2)dz — (2n+ 1) / 2L2(2)dz + n/_ L, 1(z)L,(z)dz = 0.

1 -1 1

1 1

Ln(2) L1 (2)d2 + 1 / L 1(2) L (2)dz = 0. (1.7)

-1

(n+1)/_11 L§H<z)dz—<2n+1)/

1
Since

/_ 1 Lyps1(2)Ly-1(2)dz = 0, / 1 L1 (2) Ly (2)dz = 0,

1 -1

1 1
/ L, 1(z)L,(2)dz =0 and / L, 1(2)Lpy1(2)dz = 0,
-1 -1

then from (|1.6) we deduce

1

—(2n+1) /1 2L, (2)Ly1(2)dz + n/ L2 (2)dz = 0.

1

Therefore,

/_1 2L, (2)Lp_1(2)dz = n /_l L2 (2)dz =0,

1 2n+1) ),
and from ([1.7)), we deduce
1 1
n/ L2(2)dz — (2n — 1)/ 2L, 1(2)Ly(2)dz = 0.
1 _1

Hence,

/_l 2L, 1(2)Ly(2)dz = ﬁ /_1 L2(2)dz.

1 1

18



1.2 Orthogonal polynomials

Thus

By recurrence, it comes

Lo ! Lo 2
/_1 L:(z)dz = Gn i) /_lLo(z)dz @1

]

Corollary 1.1. The Legendre polynomaials can be defined by a differential equation for any

integer n, such that L, (2) is a solution for the differential equation:
(1—2*)P"—2zP' +n(n+1)P=0.

Proof. We have
Ll (z) = 2nz (2% — 1)n_1 :
after multiplication by (22 — 1), we obtain

(22 = 1) Li,(2) = 2nzL,(2). (1.8)

By differentiating the equality (|1.8)) n + 1 times, with Leibniz’s formula, we find

) dnt? dntl nn+1),  d
(2 =) o) + Do )+ P D ) P (o

_om {Zﬁ:l L (2)] + (n + 1)% [Ln(z)]} ,
ie. o {% [Ln(Z)]y o {% [Ln@]}/ —n(n+ 1)d—; [L,(2)] =0,

1
that gives, after multiplication by o
nlan

Vn €N, (1—2%) Li(2) — 2zL},(2) + n(n+ 1)L, (2) = 0.

O
1.2.2 The first kind of Chebyshev polynomials
The Chebyshev polynomials of the first kind are given by the Rodrigués representation
_ (_1) ﬁ(l — Z2)1 d 2\n—1/2
Unlz) = 5 ORI [(1 2) ] . (1.9)

19



1.2 Orthogonal polynomials
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Figure 1.2: Chebyshev polynomials for 1 <n < 4.
Definition 1.9. The first kind of Chebyshev polynomials of order n is given by
Un(2) = cos (ncos ' (2)), Vze[-1,1].

Theorem 1.6. The Chebyshev polynomilas of first kind can be defined by the following re-

currence relation

Proposition 1.4. These polynomials are orthogonal with respect to the weight function

w(z) = 1/vV1 = 22 on the interval [—1,1], and

, n=m =0,
/_1 w(2)Up(2)Un(2)dz = § 1/2, n=m #0,
0, n # m.

Proof. We have
cos(nf + mé) + cos(nfd — mf) = 2 cos(nd) cos(mb).

20



1.2 Orthogonal polynomials

We put z = cosf. Then

dz = —sin 0df
—dz = sinfdf = /1 — (cos 0)?df = db = —\/%
/1 T, (2) T (2) / dz /7r cos(nd) cos(mb)dl
1 \/1 — 22 V1=22 0 '
Then if n #m
/ cos(nf) cos(mb)dh = 0,
0
ifn=m=#0

/ cos(nf)2do :/ L cos@nf) 4 _ T
; ; 2 >

/ cos(nf)?df :/ df = .
0 0

Corollary 1.2. The Chebyshev polynomial of degree n is a solution for the differential equa-

Un=m=20

]

tion:

(1—2%) P'(z) — 2P'(2) + n*P(2) =0, Vze€[-1,1].
Proof. Let n € N. By deriving the equality T,,(cosf) = cos(nf), we get
Vo e R, (—sind)T)(cosh) = —nsin(nd).

By deriving this equality a second time

V0 €R, (—cos®)T (cosf) + sin® 0T (cos ) = —n? cos(nf) = —nT,(cosf),
Vz e [-1,1], (=2)To(2)+ (1 —2°)T0(2) = —n’Tu(2).

Hence,

vneN, Vzel0,1], (1-2°)T(z)—2T,(z) +n’T.(z) = 0.

1.2.3 Chebyshev polynomials of the second kind

The Chebyshev polynomials of the second kind U, (z) are given by the following formula:

Un(2) = (=1)"(n+1)ym d" [(1 . Z2)ﬂ+1/2] '

ontl (p 4+ 1)1(1 — 22) /2 d2"
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1.2 Orthogonal polynomials

Theorem 1.7. The second kind of Chebyshev polynomials are defined by the following recur-

rence relation:

Uni1(2) = 22U,(2) — U,—1(2),

(1.10)
Up(z) =1, Ui(z)=2z,n>1.

Exemple 1.7. The first siz Chebyshev polynomials of the second kind are

Proposition 1.5. The present polynomials are orthogonal with respect to the weight function

w(z) = V1 — 22 on the interval [—1,1]. Moreover, we have

m . .

1 ) =17,
/ w(t)U;()U;(t)dt = { 2

-1 0, i]j.

Corollary 1.3. The Chebyshev polynomials of the second kind of the degree n is a solution

for the differential equation:
(1-2%)y" =32y +n(n+2)y=0. (1.11)
Proof. By setting z = cos(f), we have
Up(cos(8))sin(f) = sin((n + 1)6),
and by differentiating this equality twice, we get
— sin(0)U,(cos(6)) — 3 cos(6) sin(0)U'(cos(0)) + sin(0)*U}! (cos(0)) = —(n + 1)*sin((n + 1)0).
Thus,
—3cos(#) sin(0)U'(cos(0)) + sin(0)*U (cos(0)) = —n(n + 2)sin((n + 1)6),
and by dividing by sin(#), we find
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1.2 Orthogonal polynomials
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Figure 1.3: Chebyshev polynomials of the second kind for 1 < n < 4.

sin((n + 1)9)'

VO € R —3cos(0)U'(cos(6)) + sin(0)2U" (cos()) = —n(n + 2) S0 (0)

Then,

Vze[-1,1] (1=2°)Ul(z) — 32U,(2) + n(n + 2)U,(z) = 0.

O
1.2.4 Hermite polynomials
The Hermite polynomials can be defined by the Rodrigués formula
H,(z) = (—1)nez2£e—z2 (1.12)
me dzn" '
Theorem 1.8. The Hermite polynomials H,(z) satisfy the following relation:
22H,11(2) = Hpio(2) + 2(n + 1) H, (2). (1.13)
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Figure 1.4: Hermite polynomials for 1 < n < 4.

Exemple 1.8. The first siz Hermite polynomials H,(z) are

Proposition 1.6. These polynomials are orthogonal on the interval R with respect to the

z

weight function w(z) = e~ *. Moreover we have

/1 n2"\/m, n=m,
—1 0, n#m.

Lemma 1.3. We have

/ " exp (—u2) du = V.

(e 9]

Proof. The exponential generating function is given by
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1.2 Orthogonal polynomials

H,(z)w™
G(z,w) = exp (22w — w?) = Z %
n=0
We have
+oo
/ G(z,w)G(z,t) exp (—2°) dz = /7w exp(2uwt),
and then,
+o0 tm w" .
Z @Hm(z) Z HHn(z) exp (—27) dz = /7 exp(2wt).
%0 ;>0 n>0
Thus,

> <Z o /_;oo H,,(2)Hy(2) exp (—2%) dz) w" = /7 exp(2wt)dz
=Ty (%t”) w",

n>0

and therefore,

tm +0o0
Z — H,(2)H(2) exp (—2%) dz = /m2"".
m!
m>0 oo
Hence,
+0o0

H,(2)Hp(2) exp (—2%) dz = 0, if n # m.

—00

On the other hand, if n = m by multiplying the equality (1.13)) respectively by H,,(z) and
H,_1(z) we deduce

H?(2) — 2zH, 1(2)H,(2) +2(n — 1)H,_o(2)H,(2) = 0,n > 2,
and

Hy1(2)Hy 1(2) — 22H, (2)H,1(2) + 2nH?2_(2) = 0,n > 2.
Therefore,
H2(2) +2(n — 1) H, 9(2)Hy(2) = Hyy1(2)Hy1(2) + 2nHZ_((2). (1.14)
Multiplying by exp (—22), we find
H2(2)exp (—2%) +2(n — 1) exp (—2%) Hy_o(2)H,(2)
—exp (—2%) Hy1(2)Hyo1(2) — 2nexp (—2%) H}_|(z)

= 0.
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1.2 Orthogonal polynomials

The integration of the latter gives

—+00

/ h exp (—2%) Hy(2)dz 4+ 2(n — 1) / exp (—2°) Hp—2(2)Hn(2)dz

—00 —00

—+00

- /_ h exp (—2%) Hnp1(2)Hyo1(2)dz — Qn/ exp (—2°) Hy_,(2)dz

[e.9] —00

=0.

Due to orthogonality, we have

+o00

+oo
/ exp (—2%) Hp—2(2)Hy(2)dz = 0 et / exp (—2°) Hpt1(2)Hno1(2)dz = 0.

Therefore,
+oo +o0o
/ exp (—2°) H.(2)dz = Zn/ exp (—2°) H._,(2)d=.

o0 —00

By applying this formula n — 1 times, we get

+oo +oo +oo
H:(z)exp (—2%) = 2”_1n!/ exp (—2°) H (2)dz = 2”_1711/ exp (—2%) (22)%dz.
B . B (1.15)
But,
+o00 +o00 1 +o00 +o00
4/ exp (—2°) (2)%dz = 4/ zexp (—2°) adz = 4 [—52' exp (—22)} + 2/ exp (—2°) dz
= 2/T.
By substituting this result in ((1.15)) , we obtain
“+o0o
HZ(z)exp (—2%) dz = /72"nl.
0

Corollary 1.4. The Hermite polynomial of degree nH,(z) is a solution for the differential
equation:

y" — 22y + 2ny = 0.

Proof. We have

n_z2 dn —2z2
,(2) = (-1 e
and then,
2 d™ s o d™
H! (z) = (—1)"2z¢" @6_" + (—=1)"e* T e ”
Multiplying by e gives
H! (z)e ™ = (—1)”2z£6_22 + (- )”dn—ﬂe—* (1.16)
" dz" dznt1 ' '



1.2 Orthogonal polynomials

Differentiating (1.16]) leads to
" dntt
dz"

and using the Rodrigués formula (1.12)), we find

2

—2z2H] (z)e™* + H)(2)e™* = (—1)"2 Tt

—22H!(2)+ H(z) = 2H,(2) — 22H 41 + Hpyo.

Therefore, by the recurrence relation (1.13]),

H)(z) —2zH, (z) + 2nH,(z) = 0.

1.2.5 Laguerre polynomials

The Rodrigués representation for Laguerre polynomials is

e’ d" _,

e 4+ (=1)"2z e+

n—+2
d?

(-1) LI

Theorem 1.9. The Laguerre polynomials satisfy the recurrence relation:

(n+42)Lpi2(2) = 2n+3 — 2)Lys1(2) —n+ 1L,(2).

Exemple 1.9. The first siz Laguerre polynomials are

1
Ly(2) = ¢ (2" +92* =182+ 6) ,

1
La(2) = 5 (z* — 162" + 722> — 96z + 24) ,

—2° 4 252" — 2002% + 6002> — 600z + 120) .

Proposition 1.7. The Laguerre polynomaials are orthogonal with repect to the weight function

w(z) = exp(—=z) on the interval [0, +oo[. Moreover, we have
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Figure 1.5: Laguerre polynomials for 1 < n < 4.

Corollary 1.5. The Laguerre polynomial L,(z) satisfies the following differential equation:

2y + (1= 2)y +ny=0.

Ml

Proof. The generating function is

D Lu(z

g9(z,t) = exp [
n>0

and we have

g dg
— 2_ — J— — —_ —_ =
0= 1P 2t = (=2 = 0)g(=0), (= D)5 t) = ta(=,1),
0%g t Jdg
@(zaﬂ - + 1&(2775)
Then, ,
g dg dg B
z@(z,t) +(1 z)a(z,t) + ta(z,t) = 0.
Therefore,
Z(zL;;(z) (1—2)L (2 t"+thL 2)t" 1 = 0.
n>0 n>1
Hence,
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1.2 Orthogonal polynomials

2L (2)+ (1= 2)L),(2) + nL,(2) =0, forall n>0.
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Chapter 2

Regular Nonlinear Fredholm Integro

Differential Equations
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2.1 Fredholm integro-differential equations of the first order

2.1 Fredholm integro-differential equations of the first or-
der

In this section, we present both analytical and numerical investigations of Fredholm integro-

differential equations of this particular type:

(2.1)

u(z) = £(2) + / K (2,9, uly), o' (y)) dy.
(0) = p,

where K, %—[; € C([0,1]* x R?), f(2) € H'([0,1]) and u(z) € H'[0,1]. This section aims
to investigate the existence and uniqueness of the solution of problem and propose
a numerical process for its approximation. To achieve this goal, we analyze the necessary
conditions for the existence and uniqueness of the solution. Then, we apply our numerical

method that can approximate the solution with a high level of accuracy.
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2.1 Fredholm integro-differential equations of the first order

2.1.1 Existence and uniqueness

Consider the Sobolev space H = H'([a, b], R) equipped with the following norm
VueH ully = [lull2pp + 110]| L20 -

As a starting point, the following assumptions are made:

Ja,., B, > 0,such that r = 0, 1Vz,z € [0,1], for all u,v,u,v € R,
|K (2, z,u,v) — K(z,2,u,7)| < aglu — a| + Bolv — 7],

10.K(z,z,u,v) — 0,K(z,z,u,0)| < oq|u — u| + p1|v — 0],

0 <vy=max{ag+ ay, B+ 1} < 1.

Let f € H and define the operator:

Vze 0,1, L:H—H

uHMM@;WHAwa@MM%

mm@@ﬁ@:ﬂ@+A@K@&M%w@Mu

Theorem 2.1. The equation (2.1) admits a unique solution in H based on the assumption

S.

Proof. Let p,1 € H. Then, for all z,x € [0, 1]

1K (2,2, 0(x),¢ (7)) = K (2,2, ¢(2), ¢¥'(2))]| < aole(z) — d()] + Bo @' (2) — &' (2)].

It follows that for all z € [0, 1] and by Cauchy-Schwarz inequality

U[L(p)(2) — L(¥)(2)] < aolo(y) — »(y)] + Bo ¢ (y) — ' (y)]
< aolle = Yllze + Boll’ =¥l -
L(¢)(2) = L) () < aglle = ¢ll72 + B3 Il — &2z + 2000l — ¢l 10 — ¥/l 2
IL() = L) 172 < (aolle = ¥llr2 + Bo ¢ — &'l 2)"
Hence,
IL(¢) = L(¥) |2 < aolle = Pllzz + Bo lg" — 4|l 2 -

Similarly, we can find

IL(e)" = L) |l < enlle = ¥llez + Bulle" = 4l 2 -
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2.1 Fredholm integro-differential equations of the first order

and then,
IL(¢) — L)l < vllp = Yl
Since v < 1, the equation ([2.1]) has a unique solution. O

2.1.2 Numerical study

We obtain the numerical solution using Legendre wavelets and the operational matrix of
integration. The Galerkin method is applied to obtain a nonlinear algebraic system, which is
subsequently solved using the iterative method. Additionally, we provide several illustrative
examples.

The Legendre wavelets can be defined as:

- i—1 i
2" /2 + 1L, zkz—2¢+1), <2<
lij(2) = 2 ) = 261 (2.2)
7]
0, otherwise

where k € N*,j € N,0 < j < m —1,i = 1,2,...,2" ' and L;(2) is the Legendre
polynomial with degree j. Furthermore, this family of Legendre wavelets {/; ;} also defines

an orthonormal basis for L*([0, 1]).

Function approximation

Using the Legendre wavelets basis, each function u(z) in L*([0, 1]) can be expressed by the

following formula:

u(z) = Z Z cijli (%), (2.3)

i=1 j=0
where ¢; ; = (u,¢; ), and (.,.) denotes the inner product in L*([0, 1]).
By truncating the infinite series (2.3)), we can write:
2k=1m—1
um(2) & Y Y eijlij(2) = CTP(2), (2.4)

i=1 j=0

where CT and P,,(z) are 2°"'m x 1 matrices given by:

T
C == [01’0, C1,15--- 7017m_1, CLO? 6171, o Clm—1y - - ,Czk—l’o, Ce ,CQk—l,m_l] s

T
Pm(Z) = [61,07 61,17 s 7él,m717 61,07 61,17 LR ng,mflu v 7€2k*1707 €2k71v1 v 7£2k—1,m—1i| .
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2.1 Fredholm integro-differential equations of the first order
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Figure 2.1: Legendre wavelets for k=1 and 1 <n <4

Theorem 2.2. [/0] Let u € L*[0,1] be with a bounded second derivative, (e.g., u”(z) < M).
The truncated series u,,(z) given in (2.4) converges uniformly to the function u(z). Moreover,

243 M

lCigl € . — T
20041 (27 + 1)(2) — 1)(25 — 3)2

Operational matrix of integration

As a particular case, we take k = 1 in (2.4), to get:

CT = [C(),Cl, Ce ,Cm_l],

Po(z) = [lo(2),01(2), ..., bm-1(2)].

The matrix M,, is defined as a matrix consisting of the coefficients of Legendre wavelets.
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2.1 Fredholm integro-differential equations of the first order

1 —v3 V5 o (=D Wom—1

0 2v3 —6v5 :

0 0 6V5

M, =

0 0 0
2m — 2)!

0 0 0 u m — 1
(m —1)!)?

In the canonical polynomial basis X,,(z) = (1, 2,28 ..., zm_l), the vector P,,(z) of Leg-

endre wavelets can be rewritten as follows:

Consider the matrix N which contains the coefficients of the integral of canonical poly-

nomial basis:

010 0 - 0
1
00 - 0 - 0
2 1
N=|10020 - - 0
3
1
00 0 0 —
m
Then, we have the following integration matrix :
/ CTPo(s) = CTN Py (2) = CT O (2), (2.5)
0

where Q,,(2) = NPmH(z) and N is given by:

N=M;"NM,_.

Method description

Let be given the integro-differential equation:

u(z) = f(=) + / K (2,9, u(y) () dy,  u(0) = o

First, let us differentiate the above equation with respect to the variable z to get:

W(z) = f(2) + / 0. (2, . u(y). o () dy. (2.6)
3
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2.1 Fredholm integro-differential equations of the first order

Now, we approximate the unknown function «'(z) of equation (2.6) by using Legendre

wavelets :
ul (t) = CT P, (t). (2.7)

m

Next, we integrate the equation ([2.7]) with respect to the variable ¢ from 0 to z :
um(2) = 0+ CTQ(2), (2.8)

where @Q,,(z) is described in (2.5). By substituting relations (2.7) and (2.8) into the
equation ([2.6) we obtain the following non linear equation corresponding to the m unknown

coefficients (¢;,i =0,1,...,m—1):

CTP(z) = f'(2) +/0 0.K (2,y,0+ C"Qun(y), CT Pyu(y)) dy.

To obtain the coefficients C* = [c, ¢y, .. ., cm—1], Wwe apply the Galerkin projection method
corresponding to the Legendre’s wavelet basis, i.e. by multiplying the above equation by
li(2),7=0,1,...,m — 1 and integrating with respect to the variable z from 0 to 1 , we get

the following non linear algebraic system:

Co :/0 f/(Z)éo(Z)dZ‘*'/O /0 lo(2)0.K (z,y, 04 C"Qm(y), CT Pu(y)) dydz,

C1 = /0 f’(Z)gl(Z)dZ +/D /0 El(z)azK (z,y7 o+ OTQm(y),CTPm(y)) dydz, (2 9)

1 1 1
cm_lz/o f’(z)ém_l(z)dz+/0 /0 Un—1(2)0.K (2,9, 0+ CTQm(y), CT Pn(y)) dydz.

The exact solution CT can be difficult or even impossible to obtain in several cases.
Therefore, approximative methods are widely used, generally iterative methods. In our study,
we choose the Picard successive approximations method. We start with the initial vector C’OT

and consider the sequence of vectors (C’kT) We then consider the following system:

keN’

1 1 pl
' = / f'(2)lo(2)dz + / / lo(2)0.K (2,9, 0 + Cy Qu(y), Cf Pu(y)) dydz,
0 0 0

1 1 1
i = / F () (2)dz + / / 01(2)0.K (2,9, 0+ Ci Qu(y), Cff Pu(y)) dydz,
0 0 0

il / F Yo (2)dz + / / lnr (0K (2,9, 0+ CLQui(y), CF Po(y)) dyd.
0 o Jo (2.10)
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2.1 Fredholm integro-differential equations of the first order

One can solve the algebraic system ([2.10]) by using the Picard successive method to get the
coefficients (¢;, =0,1,...,m —1). Then we substitute them into the formula (2.8)), which

represents an approximate solution u* (2) to the main equation (2.3)).

Convergence analysis

Theorem 2.3. The numerical solution wu,, converges to the true solution u in the Sobolev

space H.

Proof. We will discuss the demonstration of this theorem in a similar way through the next
section.

In this section we only demonstrate the convergence of the system .

Consider the Banach space R™ equipped the norm

m—1
> lil”
=0

Ve e R™ |zl =

Let’s suppose that:

Vz,x €10,1], for all a,a,b,b € R,
0.K(2,2,a,b) — 0.K(z,7,a,b)| < ala—a| + Blb—b],
d=a+ <1
0

Theorem 2.4. Under the assumption (A), the nonlinear system (2.9) has a unique solution.

Proof. Let us define the following operator:
T: (T17T2,"' ,Tg) :R™ — R™

Cct— T, (CT) :/ dz—l—/ / 2)0,K (z,y, MC" P(y),C"P(y)) .

Let CT and GT be two vectors from R™. We have

|7 () =T ()], < |E(c"PW) - L(G"P®)

Bessel’s inequality
< a||MCTP(t) — MG"P(t)
< a|M|||CTP(t) - G"P(t)

+B||CTP@t) - GTP(t)| -
+ B3| CTP(t) - GTP(t)| .
<alM[|c" =&, +BC" =G,

<(a+p)||CT -G,

<sljet—e|,

O]l

Ol -
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2.1 Fredholm integro-differential equations of the first order

where the operator L is defined above. Since § < 1, by Banach’s theorem [I.4] the system
(2.9) has a unique solution. O

Theorem 2.5. Under the assumption A, for any initial vector CI, the sequence (O,f) JeN

converges to the vector ct.

Proof. We have
Icf,. - Tl <)t - 7.

Therefore, by recurrence on k, we get

|G = T < 8 |cg - C].

—C’TH — 0 when £ — +o0. O

Corollary 2.1. ||uy, — u||H < |ub, - um”H + ||t — ull;, = 0 when k,m — +o0.

2.1.3 Numerical examples

Here, several numerical examples are given to demonstrate the efficiency of our proposed
method. We mention that the numerical results are computed by using the following error

function:

By = ltm(2) = u(2) s oy = /Nt (2) = 0(2) 2oy + 1 2) = () agony-

where u(z) is the exact solution and w,,(z) the approximate solution given by our proposed
method. The results in the tables below are obtained when HC’k 41 CkTH < ¢, for different
values of €.

First example

Let us consider the Fredholm integro-differential equation:

Ve e 0.1 u(z) = )+ [ Ssinly+ = () + (1= 0)e! )]y,
u(0) =0,
where

1
f(z) = ze® — R [sin(1 + z) — sin®(2)] .
The exact solution is u(z) = ze”.
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2.1 Fredholm integro-differential equations of the first order

m Ene=10" E,e=10"" E,e=10" E,e=10"°
2 24042e — 02 2.4042e — 02  2.4042e — 02  2.4042e — 02
3 1.8363e —03 1.8363e —03 1.8363e — 03 1.8363e — 03
4 1.0855e —04 1.0855¢ — 04 1.0855e — 04 1.0855¢ — 04
5 5.2218 —06 5.2218¢ —06 5.2218¢ — 06 5.2457e — 06
6 2.1146e — 07  2.1146e — 07 2.1193¢ — 07  5.4274e — 07
7 7.389le—09  7.389le —09  1.5907e — 08 4.9991e — 07
8 23076e —10 2.3117e —10 1.4089¢ — 08  4.9985¢ — 07
9  4.4605¢ — 11  4.6703e — 11  1.4087¢ — 08  4.9985¢ — 07

Table 2.1: Numerical results for the first example .

Second example

Consider the following integro-differential equation:

1 ! sin(z +y)
= — 1)+ 3 d 0,1
u(z) 4[cos(z—|— )+ 3cos(2)] +/0 Y0+ uly) T @) y, z¢€][0,1],
u(0) = 0.
The exact solution is u(z) = sin(z).
Third example
Consider the following equation:
! sin(z) 2
u(z) = )~ [ T3t + 0255 (0(y) Py € [0.1),
0

where

1
f(z) = 5 sin(z) + |sin(2rz — 7)|,
and the exact solution is u(z) = |sin(27z—)|. In this example, to obtain an approximate
solution u,,(z), we must take k = 2 in the Legendre wavelets formula (2.2]), because u'(z)

has a discontinuous point at z = 0.5.
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2.1 Fredholm integro-differential equations of the first order

m E,e=10"" E,e=10"" E, e=10" E,,e=107°
2 1.5073e —03  1.5073e —03  1.5073e — 03 1.5073e — 03
3 1.7277e — 04  1.7277e —04 1.7277e —04 1.7277e — 04
4 4.7584e —06  4.7584e — 06  4.7584e — 06  4.7588e — 06
5 3.6343e — 07  3.6343e — 07  3.6344e — 07 3.6913e — 07
6 7.1237e —09  7.1237e¢ —09  7.3462e —09  6.4994e — 08
7 4.0789% — 10  4.0789e —10  1.8400e — 09  6.4604e — 08
8 84572 —12 8.5713e —12 1.7943e —09  6.4602e — 08
9 58232 —12 5.9877e—12 1.7943e —09 6.4602e — 08

Table 2.2: Numerical results for the second example .

m FEne=10" E,e=10" E, =107
3 1.7436e — 02  1.7436e — 02 1.7436e — 02
4 1.7436e — 02  1.7436e — 02  1.7436e — 02
5  2.6345e — 04  2.6345¢ — 04  2.6347e — 04
6  2.6345e — 04  2.6345e — 04  2.6347e — 04
7 22965e — 06 2.2973¢ — 06  3.9486e — 06
8 22965e — 06 2.2973¢ — 06  3.9486e — 06
9  2.8432e — 07 2.9053¢ — 07 3.2246e — 06

Table 2.3: Numerical results for the third example .
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2.1 Fredholm integro-differential equations of the first order

Exact solution
#  Numerical solution
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Numerical Solution
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Figure 2.2: u(y) vs u,(y) with m =9 for the first example .
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Figure 2.3:  4/(y) vs u,,,(y) with m = 9 for the first example.
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2.1 Fredholm integro-differential equations of the first order

0.9 T T T

Exact solution */*
08} #  Numerical solution S
0.7} ¥ 1

06 / ,

Numerical Solution

0 0.2 0.4 0.6 0.8 1

Figure 2.4:  u(y) vs u,(y) with m = 9 for the second example .
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Figure 2.5: u'(y) vs u),(y) with m = 9 for the second example .
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2.1 Fredholm integro-differential equations of the first order

Numerical Solution

Exact solution
*  Numerical solution
02 ) . L )
0 0.2 0.4 0.6 0.8 1

Figure 2.6: u(y) vs u,,(y) with m = 7 for the third example .

Exact solution
#*  Numerical solution

Numerical Solution

-8

Figure 2.7: u'(y) vs u),(y) with m = 7 for the third example .
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2.1 Fredholm integro-differential equations of the first order

Interpretation of results:

Tables 2.1], 2.2 and [2.3] show the error function E,, for different values of m for the previous
examples. In all cases, it seems that accuracy increases as m increased. On the other hand,
Figures[d.2]. - -, show the comparison between the exact solution u(s) (with its derivative
u/'(s) ) and the approximate solution wu,,(s) (with its derivative u,(s) ) for the three examples.
It also appears that the exact and approximate solutions are almost identical. So, we confirm

from these results the efficiency and validity of our proposed method.
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2.2 Second order Fredholm integro-differential equations

2.2 Second order Fredholm integro-differential equations

Our aim through this section is to introduce a numerical study for the following type of

integro-differential equation of a second order:

b(2) :f(z)+/0 K (z,y,4(y),¢' (), ¥"(y)) dy, (2.11)
Y'(0) = p

¥(0) = o,
where K,9.K,0°K € C° ([0,1]* x R?) .o, B € R, (2), f(2) € H*([0,1]).

We utilize Chebyshev wavelets to obtain an approximate solution, and to improve accu-

Y

racy, we extend our analysis to wavelets defined on subintervals. We also construct a double
operational matrix of integration over different subintervals. Finally, we provide several ex-

amples to demonstrate the efficiency of our approach.

2.2.1 Chebyshev wavelets

The Chebyshev wavelets are defined as follows:

k ~ 7 —1 7
220, (282 —2i+1 <z < :
927](2() _ J ( z t+ ) ) 2k—1 < 2k—1
0, otherwise
where
1 ‘
J=0,

6,(2) = \/EQ
2o, 0
\/; J(Z)J J # )
forke N, jeN0<j<n—-1,1=2"p=0,---,k—1. ©; is the Chebyshev polynomial
of degree j. The Chebyshev wavelets denoted by 6; ; form an orthonormal basis in the Hilbert
space L2, ([0,1]) with:

( 1
wy k(2), 0<z< T
(2) 1 - 2
Wa k\2), — Xz PYSRR
/LUk-<Z) — 2k 1 2]43 1
2k—1 -
Wor—1 1 (2), = <z<1,
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Figure 2.8: Chebyshev wavelets for k=1 and 1 < n < 4.

where w; x(2) = w (2"2 — 2i + 1). The graphical representations of the Chebyshev wavelet

charts are shown in Figure 2.8 for k=1 and 1 <n <4.
(2.12)

Any function ¢(z) in L}, ([0,1]) can be written as follows:

W(2) =D ciibis(2),

i>1 j>0

where ¢;; = (¢, 6;;), and (.,.) is the scalar product in L2, ([0,1]).
By truncating the infinite series (2.12)), we approximate the function ¢(z) as follows:
(2.13)

2k=1 1

Un(2) =D cijbiy(z) = CTP(2),

i=1 j=0

where P(z) and CT are 2""'n x 1 matrices:
" = [01,0, Ci,1y--+5Cn-1,€1,0,C215 -+, C2n—15+--,Cok=10, ... 7C2k*1,n—1} )

and
T
P(Z) = [0170, 0171, . ,le_l, 9270, 02717 PN ,02,71_17 . ,02k—170, 02k—171 e 702’“*1,71—1}
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2.2 Second order Fredholm integro-differential equations
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Figure 2.9: Chebyshev wavelets for k =2 and 1 <n < 4.
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2.2 Second order Fredholm integro-differential equations

2.2.2 Operational integration matrix

We take k = 2. Then, P(z) and C" are simplified as follows:
CT = [01,07 Cl,la s 7cl,n—17 62,07 62,17 o JCQ,TL—I] 9
P(Z) = [9170(2), 01’1 (Z), Ce ,Ql,n,l(z), 6230(2), 0271(2), Ce 792,n71(2)] .
Let W,, be a matrix of Chebyshev wavelet coefficients:
F, O,
On Fn

s_2 |0 4v/2
0 0 - 4"N2
and
Zn(z) = (1,2,22,...,z”fl,l,z,zQ,...,znfl) ,

Pn(Z) = [91,0(2), 91,1(2)7 s 791,n—1(2’), 92,0(2), 92,1(2)7 cee ,92,n—1(2’)] .
So, we can write:

Pou(2) = Zo(2)W,.

Consider the matrix N,, that represents the integral matrix in the canonical basis:

G, O,

Nn: -

0, G,

where 1

—%100. 0

1
) I T
G, = o 00 = --- 0 |-

3
1 1
—2—nooo- -



2.2 Second order Fredholm integro-differential equations

and

010 0 --- 0
0010-0

21
G,=1 000 = --- 0

3
0()()0...l
n

Consequently, we find the initial operational matrix of integration:

/ ) CTP,(&)d¢ = CTM, P, (2) = CTQ1(2).

0

By the same way we get the double operational matrix of integration:

/ Z / O P (€)dédr = CTM, Myir Pasol2) = CTQu(2),
0 0

where

M, =W, N, W,;.

2.2.3 Method description

Consider the following problem:

U(z) = f(2) +/01K(z,ﬁ,w(ﬁ),iﬁ’(i),?b”(ﬁ))df,
$(0) = a, ¥(0)=p.

First, we differentiate the equation in ([2.14)) twice to get the following equation:

$(2) = () + / G2 (=, €, 0(€), 4/ (€), 4" (€)) d.

Next, we approximate the unknown function 1" (z) using Chebyshev wavelets:
Yi(z) = CTP,(2).
By integrating the equation(2.16|) from 0 to z, we find:

Un(2) = B+ CTQu(2).
Integrating again (2.17)) from 0 to z produces

Un(2) = a+ Bz + CTQy(2).
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2.2 Second order Fredholm integro-differential equations

Then, by substituting (2.16)), (2.17) and (2.18) into (2.15]), we obtain:

CTPu(2) = f"(2) + /0 0K (2,€ a+ BE+CTQa(8), B+ CTQ1(E), CTPu(€)) dE. (2.19)

Let us now multiply the equation (2.19) by 6;;(2)w;2(z) for j = 0,1,--- ,n — 1 and
t = 1,2, and then we integrate with respect to the variable z from 0 to 1. This gives the

following nonlinear algebraic system:

1 1
Cio = io + /0 /0 0;0(2)wia(2)OPK (2,6, + BE + CTQ(€), B + CTQu(€), CT P, (€)) déd

1 1
S /0 /O 6,1 (2)wia(2)PK (2,6, 0+ BE + CTQ(E), B+ CTQu(€), CT P (€)) déd

o =+ [ [ B s s I (2 600+ 5+ 00, 8+ 0T Qu(0), O Bu(e) ded
v (2.20)
where y; ; = (f",6;;). By applying the Picard successive approximations method, we
obtain the vector solution C7 for the system outlined above. We can subsequently
substitute this solution into to get the numerical solution for the main equation .

2.2.4 Convergence analysis

In order to establish the convergence analysis for the numerical process outlined previously,

we begin by considering the Sobolev space H = H*([0, 1], R) equipped with the norm

v eH, ¥l = [[¥llz2p00) + Hw/HLQ[O,l] + ’W/IHL?[o,l] '

Furthermore, let us consider the following additional assumptions:

.

JA,, B,,C, > 0, where r =0,1,2.Vz,t € [0,1],Vz,Z,y,7,s,5 € R,

|K (2, t,2,y,8) — K(2,t,%,7,3)| < Ao|lz — Z| + Boly — §| + Co|s — 3,

(S) |0.K(z,t,2,y,8) — 0.K(2,t,%,7,5)| < Ai|lu —u| + Byly — y| + Ci|s — 5],
2K (21t 8) — 2K (20,1, §,5)| < Aglu — | + Baly — §] + Cols — 5],

2 2 2
O<7:max{ZAr,ZBT,ZCT} <1.
\ r=0 r=0 r=0

Theorem 2.6. Under assumptions (S), the numerical solution 1, converges to the exact

solution 1) in the Hilbert space H.
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2.2 Second order Fredholm integro-differential equations

Proof. Let T be an operator which is defined as a mapping from H to itself as follows:
T:H—H
1
P TE) = [ K (& 00610, 0"(€) de + £(2)
0

Consequently, we can express the exact solution ¢ to equation (2.11)), along with its first

and second derivatives 1" and 1", through the following system of equations:

(z) =T(P)(2),
U(z) =T'(¥)(2),
V(z) =T"(¥)(2)-
Applying the Galerkin projection method by using Chebyshev wavelets, defined in ,

we can approximate the preceding system as follows:

It is clear that
[n(2) = ¥(2)| = T (Yn) = T@)| = |Tn (¥n) = T (¢bn) + T (¢n) — T(¢)]
< T (W) = T ()| + 1T (n) = T ()] -

Based on the Cauchy-Schwarz inequality and hypotheses (S), we deduce:

1

T (¢n) = T()] = (K (2,6, (), 0 (), (€)= K (2,€,4(€), ¥'(€), ¥"(€))) df'

1
<Ay / (€)= (E)| dé + By / () — v (€)| d€ + Co /0 1 (E) — 0" (€)] de

< Ao ||¢n - @/)||L2[0,1] + Bo ||¢n - w ||L2[0,1] + Co ||¢Z - 7/’”||L2[0,1] :
(2.21)

Conversely, the research conducted in [2] assumes the convergence of the sequence S, =

T, (¢,,) and establishes the following error convergence rate:

To (¥n) =T (¢n)| < O (") = 0. (2.22)

So, from inequalities (2.21)) and ( - we obtain:

10 = Ul p2p0.0) < Ao [[¥n = Yl 20,0 + Bo ¥ = ¥'ll 20,0 + Co 1 — ¥l 20,0 + O ().
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2.2 Second order Fredholm integro-differential equations

Similarly, we find:

195 — ¥l 2, < Avllvn — Yl pepo + Bullvn = W'l pepoy + Cr llvn — ¥ [l 20 + O ()
195 = ¥ | 20,0 < A2 [0 = Yll oo + B ll¥h, = ¥l 200y + Co 1¥h — ¥ Ml 2.0y + O (02).
Therefore,
O (n*) =0 (n") + O (n"') + O (n"?) — 0.

Furthermore, when 0 < v < 1, we can deduce that:

O (n*)

— 0.
1_

[0 — ¥y <

This indeed confirms the convergence of the approximate solution 1, to v in the Hilbert

space H. n

2.2.5 Numerical examples

First example

Let be given the integro-differential problem:
6@ = 1)+ [ K vl (6.0 @) de,
P(0) =4'(0) =0

with  f(2) = zsin() + 7 sin()(2In(2) - 1), and

K(u,v,x,y,2) = —% sin(u) In [1 + cos(v)v + sin(v)z — % sin(v)(z — sin(v))

and the exact solution is ¢(z) = zsin(z).

Second example

Let be given the Fredholm integro-differential problem:

<
I\

~—
I

~

)= [ Foostorsin|Fex 207 - v/ - wio) | v, v € 0.1

1
o) =7 WO)=—
with
22 = 1)2 exp(z) + cos(2) [cos (1 — 2c08(2) + cos (Z , z€ {0, 1} :
&= g —(22 — 1)% exp(2) + cos(z) [cos 2 %) — 2c08(2) + cos ( 5 } » %€ [g’ 1} '
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2.2 Second order Fredholm integro-differential equations

09

Exact solution
08 #*  Numerical solution

0.7

06

05+ /
04 f :

0.3

02r /

0.1Ff ¥ |

-0.1

Numerical Solution

0 0.2 0.4 0.6 0.8 1

Figure 2.10: ¢ vs v, for the first example with n = 7.

n 3 4 5 6 7
E, 6.988E — 05 | 1.433E — 06 | 4.934E — 08 | 6.723E — 10 | 5.444FE — 10
CPU time 0.109 0.123 0.154 0.194 0.310

Table 2.4: Numerical results of the first example.

and the exact solution is:

1
—(22—1)2exp(z), 0<z< =,
Y(z) = 4 1 1 2
—~(2z—1)%exp(z), =<z<1L
4 T2 T
n 3 4 5 6 7
E, 7.949E — 04 | 2.759E — 05 | 7.617E — 07 | 1.741E — 08 | 8.503FE — 09
CPU time 0.081 0.108 0.129 0.169 0.372

Table 2.5: Numerical results of the second example.
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2.2 Second order Fredholm integro-differential equations

Numerical Solution

Numerical Solution

14

Exact solution

121 #*  Numerical solution

0 0.2 0.4 0.6 0.8 1

Figure 2.11: ¢’ vs 1), for the first example with n = 7.
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Figure 2.12: " vs 4] for the first example with n = 7.
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2.2 Second order Fredholm integro-differential equations

03r
7 Exact solution
02r *  Numerical solution
01}
0 L

Numerical Solution
S
N
T

Figure 2.13: % vs 9, for the second example, with n = 7.

Exact solution
0 *  Numerical solution

Numerical Solution

Figure 2.14: 9" vs 1], for the second example with n = 7.
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2.2 Second order Fredholm integro-differential equations

Exact solution

2r / #*  Numerical solution

Numerical Solution
1
F
T

-10 -

-12

Figure 2.15: ¢" vs ¢! for the second example with n = 7.

Discussion

Based on both the tables and figures, it is evident that the error function diminishes signifi-
cantly, particularly when the number 7 is large. This indicates that our suggested approach
exhibits greater efficacy when dealing with higher degrees of the polynomial (approximate

solution) n.
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Chapter 3

Weakly Singular Nonlinear Fredholm

Integro-Differential Equations

In this chapter, our primary objective is to delve into a numerical approximation method
tailored for solving a class of nonlinear Fredholm integro-differential equations characterized

by kernels that possess weak singularities:

b
{ v(2) = f(2) —I—/a p(lz —t))F (z,t,0(t),v'(t)) dt, z € [a,b], (3.1)
v(a) = vy,
where
feC'(a,b],R), F,0.F€C([a,b]>xR?),

plt) € W (0,b - a),
. / .
Ilfl_I)Iép (t) = +o0.
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3.1 Galerkin method

3.1 Galerkin method

The Galerkin method and the operational matrix of integration are used to compute the
approximate solution. Based on the features of the second kind of Chebyshev polynomials,
we present a technique for removing the kernel singularity during the computing process, and

then we find the desired numerical solution.

3.1.1 Function approximation

Consider the Hilbert space H = L2[—1,1] that is equipped with the inner product (u,v) =
1
/ w(&u(é)v(€)de with w(€) = /1 — &2, and the orthonormal basis

1
B:{gpn:\/ggbn’ n:0717”'}7
T

where ¢,, is the Chebyshev polynomial of the second kind of degree n described in the
first chapter. Define the following orthogonal projection:

véEe [-1,1, P,:H—P,

3

(3.2)
vi— Pp(v)(§) = (v, 0:) i(€) = CTPa(8),

i=0
where

CT:[007017"'acn]7 Ci:<v790i>ai: o, (33)

and

P, is the space of polynomials of degree less than or equals n. We approximate any function
v(&) of H as:
V() = (Pav) (€) = CTPu(€). (3.4)

Theorem 3.1. Let f(£) € L2[—1,1], satisfying | f"(€)| < L. Then, the series (3.2)) converges
uniformly to f(§). Furthermore, the coefficients in (3.3|) satisfy the following inequality:

4+/27 L

CFSIEA Vn > 2.

len| <

Proof. We have
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3.1 Galerkin method

If we set £ = cosf in . then we get

\/7/ f(cos(0)) sin(n + 1)0 sin 0d

= \/—2_7r/0 f(cos(8))[cosnd — cos(n + 2)6]d,

that, after integrating twice by parts, gives

Cn = \/LQ_’/T /07T 1" (cos6)S,,(0)db,

where
S,(0) = sin 0 (sin(n —1)0  sin(n + 1)0) _ sind (sin(n +1)0  sin(n + 3)9) .
noAon-ld n+1 nt2\ n+l n+3
Therefore,

|Cn| =

| [ rcostons,onan
- | [ rrcosons,oa
%/Oﬂsn(e)me

() )
Vorn\n—1 n+1 n+2\n+1 n+3
2v2rL
:(n2—|—2n—3)
427 L

(n+1)2

3.1.2 Operational integration matrix

The operatinal matrix of integration for n = 4 is obtained as follows:

: 1
[ tie= 15 00 0 0] e
—1 L
/Z wa—| =2 0 1o O}P(z)
_1@1 _- 4 4 )
z 1 1 —1

tHdt=| = = — P
[ o= 5 50 2o o] pe
z —1 —1 1

Ddt=| —= 0 == 0 = o |P
[eva=| Lo Zo Lo e
z 1 —1 1

tdt = | = — — | P
/_1@4<) 5 00 g ! 10} ()



3.1 Galerkin method

Therefore,
/ CTP<t)dt = CTM5><6Q(Z),
—1
where
Q(2) = [wo(2), p1(2), -+, Pny1(2)],
and .
1 = 0 0 0 O
2
3 0 L 0 0 O
4 4
1 1
M5><6— g 6 0 —6 0 0
L 0 1 0 1 0
8 8
1 00 1 0 1
5 10 10

Similarly, we can find the operational matrix of integration M for an arbitrary value n.

3.1.3 Method description

By taking the derivative of the equation ([3.1]), we get the following equation:

V'(2) = f(2) + / sign(z — 6)p'(|z — t|) F (2, t,v(t),v'(¢)) dt
! (3.6)

—i—/_ p(|z = t))0.F (z,t,v(t),v'(t)) dt,

1

where

sign(z —t) =40, z=t,

Now, we approximate the derivative of the unknown function v'(z) by using (3.4). Thus,

V'(2) = CTP(2). (3.7)

Integrating (3.7) with respect to z from 0 to z gives

v(z) = v + CTMQ(2). (3.8)
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3.1 Galerkin method

Now, by substituting (3.8]) and (3.7]) into ., we get the following equation for the unknown

vector CT:

CTP(z) = f(2) + / sign(z — Op/ (17 — I F (2,00 + CTMQ(t), CTP()) dt
" (3.9)
+ / p(|z = t)0.F (z,t,v9 + CTMQ(t),CTP(t)) dt

1
By multiplying the equation (3.9) by w(z)¢;(z) for i = 0,---  n, and then integrating with

respect to the variable z, we find
' o) / / z)sign(z — t)p' (|2 — t))F (2,t,v0 + CTMQ(t), CTP(t)) dt
—1J-1

+ /_ ) /_ 1w<2>soo(z)p(!z—s\)8zF (2,t,v0 + CTMQ(t), CT P(t)) dt,

' 1) / / z)sign(z — t)p' (|2 — t))F (2,t,v0 + CTMQ(t), CTP(t)) dt
/ / p(|z = s|)0.F (z,t,00 + CTMQ(t),CT P(t)) dt
' on) / / z)sign(z — t)p' (|2 — t|)F (2,t,v0 + CTMQ(t), CTP(t)) dt
/ / p(|z = s)0.F (z,t,v9 + CTMQ(t), C'TP(t)) dt
(3.10)

Analytically, the first integration for each equation in (3.10)) exists because p’ € L'([—1,1]).
However, the Matlab software cannot run. Hence, we use the integration by parts and the

following property for the weight function w(z):
w(—1) =w(l) = 0.

Then, the equations (3.10)) are simplified as follows:

-0l /1/1 Pl —thF (Z’t’UO+C MQ(1),C P(t)) dtdz
" o1) /1 /1 "p(|z = t])F (2, t,v0 + CTMQ(t), CTP(t)) dtdz -
%) /1/1 2)) p(jz — t|)F (2,t,00 + CTMQ(t),CT P(t)) dtdz.

61



3.1 Galerkin method

The solution of the nonlinear equations system ([3.11]) can be obtained by using Picard suc-

cessive approximations, which lead to the following system:

L o) /_ 1 /_ 1 "ol — )F (21,00 + CTMQ(t), CTP(1)) dt,
HH (o) + /_1/_1 (w(2)e1(2)) p(|z = t))F (2, t,00 + CLMQ(t), CLP(1)) dt, 5.12)
= (f on) / / "p(|lz —t|)F (2, t,v0 + CLMQ(1), CiL P(1)) dt,

where k € N,c(()i) = {(f,¢i), foralli=0,--- ,nand C] = [clg,clf,--- ck].

’ n

3.1.4 Convergence analysis

In this section, to examine the convergence analysis of our method, we need to recall the

following useful theorem.

Theorem 3.2. There exists a constant o > 0 such that, for any function v € H1(I), the

following estimate holds:
[Pru — ull popy < an” Yl gy
Proof. For details, see [34] . O
Suppose the following hypotheses:
JAA,B,B' e R, V¢, 7e€[-1,1],Vu,u',v,0 € R,
|F(<,7’,u,’0) - F(CaTuul7vl)’ < A’U - U’I’ +B‘U - UI'J

|0:F(C, Tyu,v) — O F (¢, mu',0")| < A'u — |+ B' o — '),
0 < V2(BIXlpq + Blplom) <1

Theorem 3.3. Under the assumptions (A), the numerical solution v,(§) converges to the

exact solution v(&). Furthermore,

[vn = ll iy < A Holla ),

where 3 is a constant.
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3.1 Galerkin method

Proof. Denote P,v = v,(§) and P,,_1v" = v/,(§). Then, from and (3.9)), we can write
oL(€) — v/(€) =

1 1
/ sign(€ — OP(I€ — CVF (6, va(0),(0)) dC + / € = CDBEF (€, nlC), () e

1

/ sign(€ — P (1€ — CNF (€,¢,0(0),/(0)) de — / € = CDOF (6.€.0(0). /() &¢
/ sign(€ — O (1€ — ) [F (€, Cunl(0),01(Q)) dC — F (£, 0(C), o/ (O))] de

/ € = G IO6F (6:6,0n(0). 640 46 = O6F (€6, 0(E). ()] 6.

Therefore, under the hypotheses (A), we get
1
|v7,(§) — V' (§)] < /1 P'(1€ = DI A on(C) — v(Q)] + B luy,(¢) — v'(Q)[] d¢

1
(1€ — CDIA [0a(C) = v(O)| + B |v,,(¢) — v (O] d¢
-1
< APl gy lon = 0ll ooy + Bl Ny lvn = 0l ey
+ Aplleray llon = vll ooy + Bllpller iy v = 'l ooy -

Since L™ is dense in L?, we achieve

vy, — U,HL?(I)

It = vllay < V2 (AN ) + APl ) low = oll ey
+ V2 (BIP ) + Bl )

Hence,
V2 (APl + APl

1= V2 (BIP ) = Blplo)

From the previous Theorem [3.2] , we conclude that

n UIHLQ(I) >

lv [on =l L2y -

lvn = vll () < Bl ),

where [ is a constant given by:

V3 (A1 sy + Al
b=a|l+ '
1—+2 <B 12/l Ly = B/“p“”(”)

63



3.1 Galerkin method

n E(n,2) E(n,3) E(n,4) E(n,5)

3 1.1723e —01 1.1723e — 01 1.1723e —01 1.1719e — 01
5 2.1376e — 03 2.0952e — 03 2.0917e — 03 2.0915e — 03
7 5.8607e — 04 5.0129¢ — 05 1.6428e — 05 1.6271e —05
9 5.8485e — 04 4.6525e — 05 3.2965e¢ — 06 8.5842¢ — 07

Table 3.1: Numerical results for Example 1.

3.1.5 Numerical examples

In order to illustrate the effectiveness of the proposed method, we consider two numerical
examples for the integro-differential equation (3.1)). Let us define the error function as follows:
E(n, k) = max{v (z) — v, (2)],

21
n+1

where v(2) is the exact solution, v, (z) the approximate solution of degree n, z; = —1+
for n =1---n, and k is the order of the approximation in the algebraic system (3.12]).
Example 1
Consider the following equation:
1
v(z) = f(2) + / V]z —t]cos [z +v(t) + € =o' (¢)] dt, Vze[-1,1],
—1
v(—1) = —e 1,

with

fe) = -

and the exact solution is v(z) = ze

<\/(1 — 23+ /(1 + z)3> cos(z),

vl

Example 2

Consider the following equation:

v(z) = sin(z) + g (42T +0-278)+ R RVERTOR ORI
v(=1) =sin(-1), Vze[-1,1].

such that the exact solution is v(z) = sin(z).
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3.1 Galerkin method

Exact solution
#  Numerical solution

25

-
(&3]

Numerical Solution
-—

o
3

-1 -05 0 0.5 1

Figure 3.1: Exact and numerical solutions (Example 1) with n =2 and k = 2.

Exact solution
#  Numerical solution

25

—_
3]

Numerical Solution

05

0 0.2 0.4 0.6 0.8 1

Figure 3.2: Exact and numerical solutions (Example 1) with n = 3 and k = 2.

65



3.1 Galerkin method

55

Exact solution

w
T

#  Numerical solution

i
&~

o
n

Numerical Solution
N
(4] w

N

0 0.2 0.4 0.6 0.8 1

Figure 3.3: The derivative of exact and numerical solutions (Example 1 ) with n = 4 and

k=1

Exact solution
#*  Numerical solution

Numerical Solution

-1 -05 0 0.5 1

Figure 3.4: The derivative of exact and numerical solutions (Example 1) with n = 4 and

k = 3.
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3.1 Galerkin method

09r

Exact solution
08 #  Numerical solution

0.7

06

051

04 r

Numerical Solution

03r

0127

01

Figure 3.5: Exact and numerical solutions (Example 2) with n = 3 and k£ = 1.

06

04

Numerical Solution
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02+
04
06
- Exact solution
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*  Numerical solution
-1 ! ; . )
-1 -05 0 0.5 1

S

Figure 3.6: Exact and numerical solutions (Example 2) with n =4 and k = 1.
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3.1 Galerkin method

1171

Exact solution
#  Numerical solution

Numerical Solution

Figure 3.7: The derivative of exact and numerical solutions (Example 2) with n = 4 and

k=1

0.95
0.9

0.85

o
o

0.75

Numerical Solution
©
5,

0.65

0.6

Exact solution
»* #  Numerical solution *

0.55

05 : . . .
-1 -0.5 0 0.5 1

S

Figure 3.8: The derivative of exact and numerical solutions (Example 2) with n = 4 and

k=2
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3.2 Collocation method

E(n,2)

E(n,3)

E(n,4)

E(n,5)

© N ot w3

3.3368e — 03
5.4483e — 04
5.4679¢ — 04
5.4680e — 04

3.2190e — 03
2.9483e — 05
1.1965e — 05
1.1966e — 05

3.2189% — 03
2.6844e — 05
8.6072e — 07
8.5800e — 07

3.2188e — 03
2.6746e — 05
1.3264e — 07
7.9817e — 08

Table 3.2: Numerical results for Example 2.
3.2 Collocation method

In this section, we present another method to solve the proposed equation, that is the col-

location method. In this method, we seek a numerical solution represented by Laguerre

polynomials.

3.2.1 Operational integration matrix

The operational matrix of integration for n = 3 is obtained as follows:

:2 -100 O}P(z),

? 3
/<p1(t)dt: 5 110 O]P(z),
—1 L
: (1
/@(t)dt: g?) 01 -1 o]P(z),
—1 L
/ p3(t)dt = Booa —1]P(z).
o 24
Therefore,
/ CTP(t)dt = CT M5 Q(2),
-1
where
% 11 0 0
S 11 0 0
M4><5— 123
? 0 1 -1 0
S0 0 1 -1

24
Similarly, we can find the operational matrix of integration M for an arbitrary value n.

69



3.2 Collocation method

Let N € N* and consider the following grid points in the interval [—1, 1]:

2
Ay =<2z =—-1+1ih h= ,i=0,1,...,N .
N {z +1 N1 1=0 }
Lemma 3.1. The matriz
wo(20) @1(20) -+ ©nl(20)
W, — ©o le) ©1 le) ©n le)
¥o (Zn) ¥1 (Zn) Tt Pn (Zn)

is invertible for any n.

Proof. Let C), be the matrix that contains the coefficients for the Laguerre polynomials of

degree less than or equals n. We have

1
1 1 —
n!
0 —1 :
Cn = . )
_1)
0 0 (1)
n!
and let V,, be the Vandermonde matrix
1 2 20 - 2
Vn _ 1 Z.l Z% oo Z{L
1z, 22 2y

It is well known that the matrices C,, and V,, are invertible. We have
Wn - VnCn)

Hence, the matrix W, is invertible as well.

Now, we approximate the function 5(z) as
B(z) = CTP(2), (3.13)

such that
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3.2 Collocation method

B(z)=CT"P(z), ¥V i=0,---n.

O
3.2.2 Method description
Consider the following integro-differential equation:
1
B:) = £) [ pllz = sD¥ (5, 8() 5(5)) ds. 2 € [1.1),
. (3.14)
B(=1) = Bo.
By taking the derivatives of (3.14)), we get
1
B = 1)+ [ signls = (= sV (205, 6(6). 5(5)) ds
-1
(3.15)
! oV .
[ bz = s (s B ) s
-1 z
where
+1, 2> s,
sign(z —s) =4 0, z=s,
-1, z<s.
Let us approximate the unknown function 8'(z) by using (3.13). Then,
B'(z) = CTP(z). (3.16)
By integrating (3.16|) with respect to z from 0 to z, we get
B(=) = o+ CTMQ() (3.17)
Now, substituting (3.17]) and (3.16)) into (3.15) yields the following equation:
1
CTP(z) = f'(2) + / sign(z — s)p'(|z — s|)¥ (z, s, By + CTMP(s), C’TP(S)) ds
o - (3.18)
+ / p(|z — s])% (z,5,080 + CTMP(s), CTP(S)) ds.
—1

Collocating the equation (3.18)) by the grids points Ay leads to the nonlinear algebraic

system:
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3.2 Collocation method

1

CTP(z) = f (%) +/ sign (z; — s)p' (zi — s |) ¥ (21, 8, Bo + CTMP(s), CT P(s)) ds

—1
: - (3.19)
+ /_lp (lzi — s|) 5 (zi, s, By + CTMP(s), CTP(S)) ds,

that can be written as

C™W, = D" = [dy (CT) ,dy (CT) -+ ,d, (CT)],

where W, is described in the lemma above and for i =1,...,n,

d; (CT) = f' (=) + / sign (2, — s)p/ (zi — s |) U (21, 8, Bo + CTMP(s), CTP(s)) ds

1

1

v

+ / p(|zi — s|) (?9_2 (2i, 5,80 + CTMP(s),CTP(s)) ds.
1

Therefore, by lemma |3.1
ct=D"w, .

The nonlinear algebraic system (3.19))is solved by an iterative process. Let us consider

the following system:

Ciir = [do (CF) da (CF) -+ 5 (CE))] W
Co = (f"(20), ' (z),---, ' (z)), keN,
By solving the system for a suitable value of k, we can obtain the coefficients C7.
Finally, the desired approximation for '(z2) is computed by .

(3.20)

3.2.3 Numerical examples

In order to demonstrate the effectiveness of the method proposed in this section, we provide
several numerical examples that highlight its accuracy. These examples serve as a way to
test and validate our method, and compare its results with other existing methods. Through
these examples, we aim to show that our method can accurately approximate solutions for

integro-differential equations with a weakly singular kernel.
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3.2 Collocation method

E(n,4)

CPUtime

1.1023e — 01
1.5531e — 02
3.3139% — 03
3.1440e — 04
4.6722e — 05

S O e W N3

0.045137
0.031160
0.035663
0.367585
0.045970

Table 3.3: Numerical results (Example 1)

n E(n,3) CPUtime
2 4.8956e — 03  0.0058
3 3.4910e — 03  0.1127
4 6.7750e — 05  0.1054
5 4.8455¢ —05  0.1216
6 5.4069¢ — 07  0.1506

Table 3.4: Numerical results (Example 2)

Example 1

Consider the following equation:

B(z) = f(2) +/_1 V]2 = s|cos[z+ B(s) + e* — f'(s)]ds Vz e [-1,1],

u(—=1) =—e"",

with f(z) =€ — ; <\/(1 — 23+ /(1 + z)3> cos(z) so that the exact solution is 8(z)

Example 2

Consider the following equation:

B

5(z) =sin(z) + = ((1+2)
u(—1) = —sin(—1), Vze[-1,1],

such that the exact solution is f(z) = sin(z).
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3.2 Collocation method

Exact solution

08 r #*  Numerical solution

Numerical Solution

-1 -0.5 0 0.5 1

Figure 3.9: Exact and numerical solutions (Example 1), with n = 2
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#*  Numerical solution
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-1 -0.5 0 0.5 1
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Figure 3.10: Exact and numerical solutions (Example 1), with n = 3
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3.2 Collocation method

Exact solution

#*  Numerical solution

Numerical Solution

Figure 3.11: Exact and numerical solutions (Example 2), with n = 2

Exact solution
#  Numerical solution

Numerical Solution

-1 -0.5 0 0.5 1

Figure 3.12: Exact and numerical solutions (Example 2), with n = 3
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3.2 Collocation method

Discussion

In this chapter, we have presented two different methods for solving integro-differential equa-
tions with weakly singular kernels. The efficiency of both methods is demonstrated through
several examples. Moreover, we can compare advantages and disadvantages of each method.
The Galerkin method is more accurate but it is quite complex and requires more computa-
tion. On the other hand, the collocation method is less accurate than the Galerkin method

but it is simpler and requires less computational complexity.
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Chapter 4

Fractional Integro-Differential Equation

with the Caputo-Fabrizio Sense

In this chapter, we demonstrate the applicability of our technique in solving fractional integro-
differential equations with the Caputo-Fabrizio derivative. Specifically, we concentrate on the

following equation:

u(z) = g(z2) +/O K (z,s,u(s), D(s)) ds,
u(0) =0,

(4.1)

where 9,K, K € C([0,1]> xR?), 0 < a < 1,u(z),9(z) € H'[0,1], and D* denotes the
Caputo-Fabrizio derivative of order «.

We explain the construction of the fractional operational matrix of integration utilizing
Hermite wavelets. We then apply the collocation technique followed by the iterative method
to approximate the numerical solution. To verify the accuracy of our process, we present

several computational examples.
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4.1 Hermite wavelets
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Figure 4.1: Hermite wavelets for n = 0,1, 2, 3.

4.1 Hermite wavelets

The Hermite wavelets are given as follows :

k41

22 1—1 1
= _H (22 -2i+1), <z< ,
0, otherwise ,

wherei =1,2,...,2" 1k > 0is an integer number, j =0,1,2,...,n—1, H; is the Hermite
polynomial of degree j.

Any function u(z) in L2 (R) can be written in the following form:

u(z) =Y ) eiti(2), (4.2)

i=1 j=0
where ¢; ; = (u,1; ;) with (.,.) being the scalar product in the Hilbert space L*(R). Then,
we get the approximate function for u(z) by truncating the series (4.2) as follows:

2k=1 1

un(2) = > cigii(z) = CTP(2), (4.3)

i=1 j=0

where P(z) and CT are 2""'n x 1 matrices:
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4.2 Fractional operational integration matrix

T
P(Z) = |:77D1707 77Z}1,17 cee awl,n—la Q»z}2,07 77Z)2,1a cee 7w2,n—1a cee 7w2k—1,07 ka—l,l cee 7w2k—1,n71:|

9

and

T
C == [0170, €11,---,Cn-1,€10,C21,---,Cn-1,--- ,CQk—le, e 702’9*1,77,—1} .

4.2 Fractional operational integration matrix

If k = 1, then both P(z) and C* would be:

CT = [Oéo,CYl, ce ,an_l] 5
P(z) = [¢o(2),¢1(2), .., ¥n-a(2)]

W,, denotes a matrix comprising the coefficients associated with the Hermite wavelets:

2 =4 4 -+ H,4(-1)
0 8 =32 :
1
W, = — : :
/T 0 0 32

o0 0 - 92n—1

and
Zn(z) = (1,2,2%,...,2"7Y) , Pu(2) = [Vo(2),¥1(2), ..., Yn_1(2)].

We have:

P.(z) = Z,(2)W,.

Consider an integral matrix denoted by N within the canonical polynomial basis:

01 0 0 - 0
001/2 0 - 0
L=|00 0 1/3 -~ 0
00 0 0 - 1/n

Subsequently, the operational integration matrix in the Hermite wavelets basis is given as

follows:

/ CTPn(y)dy = C’TMPnH(z),

0
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4.3 Method description

where

M =W, '"LW,.,.

Furthermore, employing the previously defined notation in ([l.1), we can express the

fractional operational integration matrix in the following manner:

I° (CTPu(2)) = CT[aM + (1 — a)F] Py (z) = CTQu(2), (4.4)
10 - 00
01 -+ 00

where Q,(2) = [(1 — @)F + aM]P,;1(2) and F =

4.3 Method description

Consider the following Fredholm integro-differential equation:

u(z) = f(z) +/0 K (z,s,u(s), D(s)) dy, u(0)=0. (4.5)

By taking the derivative of both sides of equation (4.5) and using the Caputo-Fabrizio

derivative of order «, we obtain
1
Du(z) = D(z) +/ DYK (z,s,u(s), D%(s)) ds. (4.6)
0
We approach the unknown function D*u(z) by using the formula (4.3)

Du(z) =~ CTP,(2). (4.7)

To approximate the unknown function u(z), we perform an integration of (4.7) with the
help of the operational matrix of fractional integration mentioned earlier (4.4]). This process

yields:
un(2) =I%(CTP, (=
(2) ( (2)) (48)
= 0TQu(2).
Now, substitute (@ and into to obtain:
1
CTP,(z) = DY(2) +/ DK (2,8, CTQu(s),CT Py(s)) ds. (4.9)
0

80



4.4 Numerical experiments

20+1
2(n+1)
equation (4.9). This results in the formation of the subsequent nonlinear algebraic system:

Using the grid points z; = , where © € N and ¢ < n — 1, we apply collocation to

CcTA= D", (4.10)
such that
DT = [dOadlv e 7dn—1] ;

where
1
d; =D% (z) + / DK (2,5,C"Qu(s),CTPy(s)) ds, fori=0,--- ,n—1,
0

and
Yo(20)  Yo(z1) - Yo(2n-1)
A V1(20)  i(z1) 0 U1 (201)

Un-1(20) Yn-1(21) -+ Pno1(2a-1)
We apply the iterative method to solve the system . To do this, we introduce the
following system:
C,?HA = DkTa
where
D} = [d§,d}--- ,d;],

and

1
d" =Dy (zz-)+/ DK (2,5, Cf Qu(s), Cy Pu(s)) ds.
0

For a suitable value of k, we find the vector C{, then substitute the coefficients of C}
into to compute the approximate solution to equation (4.5)).

4.4 Numerical experiments

Here, some illustrative experiments are included to demonstrate the efficiency of our method.

We introduce the error as follows:

E, = max |u,(z)—u(z)|,
i=0,n—1

where u(z) represents the true solution, u,(z) stands for the approximate solution, n signifies

the degree of Hermite wavelets.
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4.4 Numerical experiments

First experiment

Let be given the fractional Fredholm integro-differential equation:

Vz € [0,1],u(z) = g(2) +/0 In E (cos(s) — ze™) + %u(s) — D%u(s)| ds,

where

9(2) = cos(2) + In {2(1 + z)} -

3
5
The exact solution to this equation takes the form of u(z) = sin(z), when the fractional

order of differentiation is v = 0.5.

Second experiment

Consider the following equation:

- 1 sin(z + s)
u(z) = g(z) — /0 1+ Dou(s) + 2su(s)

ds, Vzel0,1],

In this context, we have g(z) = e * — 1 4 cos(1 + z) — cos(z), and the exact solution is

z

expressed as u(z) = e~ — 1 if the fractional order of differentiation is aw = 0.75.

Third experiment

We have the following equation:

5 1
Vz e [0,1],u(z) = —522 + / 22\/12 — 3e=5 4 2Du(s) + u(s)ds,
0

2
such that the order of derivation is a = 3 and the exact solution of the equation is u(z) = 2°.

Fourth experiment

Let the following equation:
z 1 2 4 S S
Vz € [0,1],u(z) = ze”3 — cos(z) + / sin (z — s+ 552 ~ 3% + esu(s) + eSDau(s)) ds,
0
u(0) = 0.
: : 1 L z
The order for this example is a = 7 and the exact solution is u(z) = ze™3 — cos(z).
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4.4 Numerical experiments

n 3 4 5 6 7
n | 6.988E — 05 | 1.433E — 06 | 4.934E — 08 | 6.723e — 10 | 5.444E — 10
Table 4.1: Numerical results (First experiment).
n 3 4 5 6 7
n | 7.949E — 04 | 2.759E — 05 | 7.617E — 07 | 1.741E — 08 | 8.503E — 09
Table 4.2: Numerical results (Second experiment)
n 3 4 ) 6 7
E, | 4.402E — 04 | 5.399E — 05 | 5.730E — 06 | 4.661E — 07 | 4.355E — 08
Table 4.3: Numerical results (Third experiment) .
n 3 4 5 6 7
E, | 1.301E — 05 | 1.762E — 07 | 1.065E — 08 | 7.066E — 11 | 4.737E — 11

Table 4.4: Numerical results (Fourth experiment).
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Numerical Solution

05

06

-0.7

Ov\
01

Exact solution

*  Numerical solution

™,
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0.4 0.6

0.8

Figure 4.2: Exact and approximate solutions (First experiment), n = 7.
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4.4 Numerical experiments

09

Exact solution
08r #*  Numerical solution

051

04r

Numerical Solution

03f

02r

Figure 4.3: Exact and approximate solutions (Second experiment), n = 7.

Exact solution

*  Numerical solution

Numerical Solution

Figure 4.4: Exact and approximate solutions (Third experiment) , n = 7.
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4.4 Numerical experiments

08

Exact solution
0.7 #  Numerical solution
06

Numerical Solution
o o
£ o
;

o
w
T

0 0.2 0.4 0.6 0.8 1

Figure 4.5: Exact and approximate solutions (Fourth experiment) n = 7.

Results interpretation

Tables [A.1], {2 .3 and [{.4] display the error E,, for various degrees n, illustrating that
the method’s performance improves as n increases. Additionally, Figures .4 and
present graphs depicting both the exact and approximate solutions, showcasing their
remarkable similarity. Thus, the aforementioned examples serve as compelling evidence of

the efficiency and validity of our numerical approach.
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Conclusion

This thesis has been focused on an in-depth investigation of various types of integrodifferen-
tial equations. Specifically, we have studied equations with regular kernels, weakly singular
kernels, and those in the fractional case. To solve these equations, we have employed the
popular projection method along with classical orthogonal polynomials. By applying this ap-
proach, we are able to transform in each case the main equations into a nonlinear algebraic
system, that can then be solved using the Picard successive approximations. To validate
the effectiveness and accuracy of our proposed methods, we have also developed algorithms
using the Matlab platform. This allowed us to implement our methods and present numerical
examples that demonstrate their applicability and performance. Through our comprehensive
analysis and numerical examples, we have shown that our proposed approach can accurately

and efficiently solve a wide range of integro-differential equations.
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