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Abstract

We are interested in this memorry in nonlinear differential equations,this type of equa-
tions describes many phenomena.The objective of this memory is to study the approx-
imate solution for solving a class of nonlinear differential equation Caputo-Hadamard
fractional derivative of variable order using upper and lower method it is also discused
the upper and lower methode for their solution ,that are applied to FDE and systems of
FDE.Upper and lower technique is suggested and studied in detail.However,the propri-
ties of Caputo and Hadamard derivatives are also given with complecte details to approx-
imate the solution finite or infinite functions (trigonometric,exponential,logarithmic,and
others) are called infinite.The relation between Caputo and Hadamard of fractional deriva-
tive took a big role for simplifying that represents the containts of Integrable varriable
problems.The approximate solution are defined on interval and are compared wich the ex-
act solution of order one wich is an important condition to support the working method.Finally
,illutrative examples are included to confirm the eficiency and accuracy of the proposeed
method

Key Words:Caputo-Hadamard fractional integrals and derivatives , upper and lower so-
lution
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Introduction

Upper and lower solutions techniques it is important to note that in some of the revi-
ous results some kind of the discontinuities on the spatial variable are assumed in this
case some thechniques developed are used there is large bibliograhy on papers related
with upper lower solutions with nonlinear boundary value conditions for first and higher
order equations,problemes withe impules difference equations have been studied under
this point of view for an important number of researchers as Thomson’s or Frigon’s give
some generalizations of the concept of lower and upper solutions that ensure the exis-
tense of solutions of nonlinear boundry problemes under weaker assumptions,a methode
for demonstrating the existence of solutions of boundary value problemes for differential
equations,the idea of this method aplied to ordenary differential equations was discussed
in the work of G Peano(1880),for the case of the Direchlet Problem and for the case of
Laplace equation the idea occurs in H Poincare’s balayage methode O,Perron was the first
to give a full exposition of the methode of upper and lower functions for this last case
let the problem be posed in a region G{

CDw
p+ϕ(t) = ψ(t, ϕ(t), Iw

p+ϕ(t)), t ∈ Λ := [p, T],
ϕ(p) = ϕp,

(0.0.1)

The classes Φ (G, f ) and Ψ (G, f ) of all upper and lower functions respectively are non
empty,and

i f v ∈ Φ (G, f ) and w ∈ Ψ (G, f ) thenv ≥ w

Ageneralized solution of the Dirichlet problem is defined as the smallest enevlope of the
classe Φ (G, f ) or as the largest enevlope of the classe Ψ (G, f ) :

u (x) = inf {v (x) : v ∈ Φ (G, f )} , for x ∈ G
= sup {w (x) : w ∈ Ψ (G, f )} , for x ∈ G

There is a solution u betwen an upper solution w and a lower solution v to study the
existense and approximation of solution for the problem(0.0.1)

Remark 0.0.1. if there existe w > v upper and lower solution, then there existe u a solution
of the problem(0.0.1)



Introduction 2

This method is somme what similar to the intermediate value theorem states that if f
is a countinous[a b] and f (a) < c < f (b) ,then there is an x ∈ [a, b] such that f (x) =
c.The upper and lower solution method states that if we can find the a certaine couple
of function ,then we can fined a solution betwene them.if w and v are upper and lower
solution respectivly ,then we can fined a solution u such that w(t) < u(t) < v(t) for all
t ∈ [a b] on nonlinear equation such as CAPUTO -HADAMARD fractional IVP we can not
fined an analytical solution because if the equation is solvable we can pick out the upper
and lower solution itself .



Chapter 1

The Uniquence And The Stability In
Sens Of Ulam Of The Solution Of Our
Problem With Fractional IVP:

presenting two types of fixed point theorem: the first is of BANACH to demonstrate the
existence and the uniquence,the second is of SCHAUDER to demonstrate the existence .

1.1 The Existence Of Solution:

The existence given by the methode of upper and lower soution ,by numerics we mighte
suppose there are multiple solutions bounded by w(t) and v(t).The existense of solution :

Definition 1.1.1. A mesurable function U ∈ Cγ,ln that satisfies the conditionϕ(p) = ϕp,and
the equationCDw

p+ϕ(t) = ψ(t, ϕ(t), Iw
p+ϕ(t)), t ∈ Λ = [p, T]... [11] ,C Dw

p+Caput FD for w
orderϕ : [0, 1]× [0, ∞) → [0, ∞) is a countinous function is kown.

we transforme to integral equation and by the methode upper and lower solution and
using the Schauder and Banach fixed point theorem.
For transforming equation[11]using the SCHAUDER fixed point,ϕ : A → A is defined by
ϕX = X.
Hypothese:(H1) let X∗, X∗ ⊂ A,such that 0 ≤ a ≤ X∗ (t) ≤ X∗ (t) ≤ b..... (H1) and A
a set
Suppose that (H1)satisfies then [11]has one solution X ∈ X such that :X∗ (t) ≤ X (t) ≤
X∗ (t) ,for t ∈ J.

Proof. Let C = {X ∈ A : X∗ (t) ≤ X (t) ≤ X∗ (t) , for t ∈ J}the norm defined as ∥X∥ =
max

t∈J
|X (t)| ,then we have∥X∥ < b.and if X ∈ C

Banach spaces ,there existe c > 0



Chapter 1. The Uniquence And The Stability In Sens Of Ulam Of The Solution Of
Our Problem With Fractional IVP: 4

such that :Φ (c)is equicontinueΦ (c) ⊆ C
Let X ∈ C then X∗ (t) ≤ X (t) ≤ X∗ (t) , f or t ∈ J it mense Φ (c) ⊆ C,and X ∈ C the
problem has one positive solotion x ∈ X ,such
that :X∗ (t) ≤ (ΦX) (t) ≤ X∗ (t) ,for t ∈ J.
As consequens, withe the AZELA ASCOLI theorem, we conclud that Φ is countinous and
compact ,from application of
Schauders theorem, we deduce that Φ has at least a fixed point U wich is a solution of
problem ??

1.2 Ulma -Hyers Rassias Stability:

Now we conserned with the generalized Ulma Hyers Rassias Stability of our problem[11] .

Asume that the folowing hypotheses hold ,then problem[11] generalized Ulma Hyers
Rassias Stability

(H2) The function t → F (t, u) is mesurable on I for each u ∈ Cγ,ln and the function
u −→ F (t, u) is countinous on Cγ,ln for t ∈ J .
(H3)There existe φ ∈ C (J, [0, ∞]) such that for each t ∈ J and all U, V ∈ R we have:

|F (t, u)− F (t, u)| ≤ L |u − v|

If L : (ln T)1−δ Φ∗λΦ < 1 where :φ∗ = sup Φ (t)t∈C f ,then there existe a unique solution u0

of problem?? and the problem?? generalized Ulma Hyers Rassias Stability.Furthermore,we
have :

|U (t)− u0 (t)| ≤
Φ (t)
1 − L

1.3 The uniquenesse of solution:

Definition 1.3.1. the uniquenesse along with the maximal interval means if Ψis any solu-
tion defined on interval I = [a, b] ⊂ J then Ψ (t) = Φ (t) ,for all t ∈ I.

The folowing solution establishes the exsistence and uniquness of solution to CAPUTO-
HADAMARD fractional IVP.

Definition 1.3.2. let (X, ∥∥)be a Banach space and Φ : X → X.Φ is contruction operator if
∃ λ ∈ (0, 1) such that x, y ∈ X imply: ∥Φ (x)− Φ (y)∥ ≤ λ ∥x − y∥ .

Theorem 1.3.1. (BANACH ) let C a nonempty closed convex subset of Banach space X and Φ :
C → C,be a contraction operator,then there is a unique x ∈ C with Φx = x.

Theorem 1.3.2. (SCHAUDER) let C a nonempty closed convex subset of Banach space X and
Φ : C → C,be a countinous compact application ,then Φ have a fixed point in C.
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Definition 1.3.3. By a solution of problem ?? we mean a mesurable function U ∈ Cγ,ln

that satisfies the condition and the equation.

Proof. 1the uniquences ,if x, y are two fixed point then Φ (x) = x, Φ (y) = y such that

d (x, y) ≤ αnd (x, y) for n ∈ N

where ∑
n≥1

αn is convergent then αnconverges to 0 ,so there is n0 with αn0 < 1,then we have

:
d (x, y) ≤ αn0d (x, y) < d (x, y)

That is contraduction
2 For n ∈ N, p ≥ 0 we have :

d
(
xn+p, yn

)
≤

n+p−1

∑
k=n

d (xk+1, yk)

≤
n+p−1

∑
k=n

αkd (x1, y0)

= d (x1, y0)
n+p−1

∑
k=n

αk

n+p−1

∑
k=n

αkis convergent →
n+p−1

∑
k=n

αk ≤ ε thus,we have d
(
xn+p, yn

)
≤ d (x1, y0) ε,suposed (x1, y0) ε =

ε′.That proves
xnconverges and lim

n→∞
xn = x0, f or n ∈ N,we have :xn+1 = Φ (xn) the sequense(xn+1)

tends to x0,and Φ is countinous it is α1−lipschitizien,

d (Φ (xn) , Φ (y)) ≤ α1d (x, y) then:Φ (xn) cv−→ Φ (x0)

By uniquences of the limite we have :

Φ (x0) = x0

So,Φ has a fixed point that is unique and we have x0 ∈ X as limite to (Φn (x0))n in this

inequality d
(
xn+p, yn

)
≤ d (x1, y0)

n+p−1

∑
k=n

αk if p → +∞ then d (x0, yn) ≤ d (x1, y0)
n+p−1

∑
k=n

αk

it result: d (x0, yn) ≤ ε′.x0is a unique fixed point of a function Φ.
The existence and the uniquence of a fixed point x0 ∈ X ,Φ (x0) = x0implies the existence
and the uniquence for solution u of problem ??.



Chapter 2

Mathematical preliminaries

In this section,i review some spaces definition wich i will need later in the analyses it
containes resultes from various researchers.

2.1 Notation and definitions

Sets of natural,integer, real and complex numbers are denoted by: N, Z, R, C, R+ =
[0, ∞] .
let Ω be a subset of R, Cb (Ω):the set of continuous function of Ω such that :

∥ f ∥Cb(Ω) = sup | f (x)| < ∞ ,for x ∈ Ω.

Cb (Ω) is a Banach space,if Ω is open, then:k compact subsets of Ω (k ⊂ Ω) ,we denoted
the semi norm of continuous functions f :

∥ f ∥k = sup | f (x)| , for x ∈ k.

For [a, b] (−∞ < a < b < +∞) an interval of R

Definition 2.1.1. The space of absolutly continuous functions is denoted by: AC ([a, b]) =
AC1 ([a, b]) , there
C ([a, b]) ⊂ AC ([a, b]) ,moreover :

for f ∈ AC ([a, b]) ⇐⇒ f (x) = c+x
a g(t)dt, g = f ′ ∈ [a, b] ∈ R+such that:

(
g ∈ L1([a, b])

)
Definition 2.1.2. The space of function f wiche have continuous derivatives up to the
order (n − 1) ∈ [a, b] ∈ R+ is denoted by:

ACn ([a, b]) =

{
f : [a, b] −→ C and D(n−1) f (x) ∈ ACn ([a, b]) for every b > 0, n ∈ N, n ≥ 2,

(
D =

∂

∂x

)}
.

AC1 ([a, b]) =

{
f : [a, b] −→ R,

d
dt

f ∈ AC ([a, b])
}

.
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Definition 2.1.3. let δ = t
d
dt

, q > 0, n = [q] + 1where [q]is the integer part of q define the
space:

ACn
δ ([a, b]) =

{
f : [1, T] −→ E, δn−1 [ f (t)] ∈ AC ([a, b])

}
.

Definition 2.1.4. let γ ∈ [0, 1] define the space:

Cγ ln =
{

f : (ln (t))1−γ f (t) ∈ C
}

.

with the norm
∥ f ∥Cγ ln

= sup
∣∣∣(ln (t))1−γ f (t)

∣∣∣ ,for t ∈ [a, b] .

and
Cγ =

{
f : [0, T] −→ E, (t)1−γ f (t) ∈ C

}
.

with the norm
∥ f ∥Cγ

= sup
∣∣∣(t)1−γ f (t)

∣∣∣ , f or t ∈ [a, b] .

and

C1
γ ( f ) =

{
f ∈ C :

d f
dt

∈ Cγ

}
.

with the norm
∥ f ∥C1

γ
= ∥ f ∥∞ +

∥∥ f ′
∥∥

Cγ

Definition 2.1.5. The space of mesurable functions is denoted by:

Lp ((a, b)) = Lp ([a, b]) =
{

f mesurable ⇐⇒
(

b
a | f (x)|p dx

) 1
P
< ∞, for P ≥ 1.

}
In Lp ([a, b]) ,for P ≥ 1the norm is defined by:

∥ f ∥p =
(

b
a | f (x)|p dx

) 1
P

In L∞ ([a, b]) ,we have:∥ f ∥∞ = sup | f (x)| ,for x ∈ [a, b] .

Theorem 2.1.1. If p and q are real numbers such that p, q ≥ 1 and
1
p
+

1
q
= 1 for p = 1,and

q = ∞

i f
{

1. f ∈ Lp ([a, b])
2.g ∈ Lq ([a, b])

}
then :

{
1. f g ∈ L1 ([a, b]) and

2.ba | f (x)g (x)| dx ≤ ∥ f ∥p ∥g∥p [Holder inequality]

}
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Definition 2.1.6. A real value function f defined of [a, b] ⊂ Ris said absolutly continuous
of [a, b] :

If for ε > 0 ,ther is δ > 0 ,such that :
n

∑
k=1

(
x′k − xk

)
< δ =⇒

n

∑
k=1

∣∣ f
(
x′k
)
− f (xk)

∣∣ < ε

Definition 2.1.7. A function f of [a, b] is holder continuous at x0 ∈ [a, b] :

If there existe A > 0, λ > 0 such that : | f (x)− f (x0)| ≤ A |x − x0|λ

Definition 2.1.8. Holder type spaces of an interval [a, b] are defined as subspaces of inte-
grable functions of this interval is denoted by:

Hλ ≡ Hλ ([a, b]) =
{

f / | f (x1)− f (x2)| ≤ A |x1 − x2|λ , (x1,x2) ∈ [a, b] , λ ∈ [0, 1]
}

H ≡ H ([a, b]) = ∪0<λ≤1Hλ ([a, b])



Chapter 3

Basic definition and propreties of
fructional derivatives and integral

The content of this chapiter is addressed to FD and FI for the case :Riemann liouville,Riemann
liouville fractional integrals and derivatives on the real half axis,Caputo in the origine,Caputo
fractional integrals and derivatives,Risez potentials and Risez derivatives ,other types of
fructional derivatives, Canavati fructional derivatives,Marchaud fructional derivatives,Grunwald-
Letnikove fructional derivatives,somme additional properties of the FD,Fermat theorem
for FD,Taylor theorem for FD, Variational problems with fractional derivatives and Euler
Lagrange equation.
In the folowinng, I will enumerate the basic definition and properties of the FD and FI in
the case of VO, it presentes the most important special functions , a special attantion is
Gama functions other special function such as Beta functions.

3.1 Introduction:

3.1.1 History of fractional calculus:

A relevant part of the history of fractional calculus began with the papers of Abel and
Liouvile.

Leibniz first introduced the idea of a symbolic method and used the symbol
d
′
y

dx′ = D
′
y

for the nth derivative ,Where n is a non negative integer .
In a letter to L’Hopital in 1695 Leibniz raisaid the following question ”can the meaning of
derivatives with integer order be generalized to derivatives with non integer orders ? ”
L’Hopital was somezhat curious about that question and replied by another question to

Leibniz:”what if the order will be
1
2

?”
Leibniz in a letter dated September 30.1695 the exact birthday of the fractional calculus!
replied:”i will lead to a paradox.from which one day useful consequences with be drawn”
.
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Euler observed that the result of evaluation of
d
′
y

dx′ the power function xp has meaning for
non integerρ .
Laplace proposed the idea of differentation of non integer order for functions representable
by an integral Γ (t) t−xdt.
Fourier suggested the idea of using his integral representation of f (x) to define the deriva-
tive for non integer order.
Grunzald and Letnikov developed an appoach to fractional defferentiation based on the
limit of a sum.
Liouville formaly extended the formula for the derivative of arbitrary order D′exy = ∂

′
exy.

In a paper written when just a student Riemann,that was published only ten years after
is death ,he arrived to an expression for fractional integration that becam one of the main
formulate together with Liouville construction .

Definition 3.1.1. (Euleur’s Gama function) denoted Γ(, ) is defined as:

Γ(p) =∞
0 e−xxp−1dx

represented in fig 111
the plot of y=Γ(p) function,

Theorem 3.1.1. function Γ(p) is convergent for p > 0.

Proof. the integrale can be written as:Γ(p) =
∫ 1

0
e−xxp−1dx +

∫ ∞

1
e−xxp−1dx = I1 + I2

where I1 =
∫ 1

0
e−xxp−1dx is convergent from the interval [0, 1] , e−x is decreasing from

x = 0,we have :
∫ 1

0
e−xxp−1dx <

∫ 1

0
xp−1dx =

1
p

Moreover,I2 =
∫ ∞

1
e−xxp−1dx is also convergent,we obtain:1 ≤ x =⇒ e−xxp−1 ≤

e−x\2 ⇐⇒ xp−1 ≤ ex\2 ⇐⇒ xp−1

ex\2
≤ 1

because lim
xp−1

ex\2
= 0,we have :

∫ ∞

1
e−xxp−1dx ≤

∫ ∞

1
e−x\2dx = 2e−1\2

the integral
∫ ∞

0
e−xxp−1dx is convergent for p > 0 and devergent for p ≤ 1 ,the function

Γ(p) is continuous for p > 0

The folowing relation are valid:

Γ(p + 1) =
∫ ∞

0
e−xxpdx = −

[
e−xxp]∞

0 + P
∫ ∞

0
e−xxp−1dx = PΓ(p)
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Γ(p + n) = (p + n − 1) ......... (p + 1) PΓ(p),
Γ(1) = 1

Γ(n + 1) = n!
Γ(0) = +∞

Γ(−n) =
Γ(−n + 1)

−n

=
Γ(−n + 2)
n (n − 1)

=
Γ(−n + 3)

n (n − 1) (n − 2)
= .......................

= (−1)n Γ(0)
n!

= (−1)n ∞

Γ(
1
2
) = 2

√
π

Γ(−1
2
) = −2 2

√
π

Γ(
1
3
) =

1
2

2
√

π

Γ(
3
2
) = Γ(1 +

1
2
) =

1
2

Γ
(

1
2

)
=

1
2

2
√

π

Γ(
4
3
) = Γ(1 +

1
3
) =

1
3

Γ(
1
3
) =

1
6

2
√

π

Γ(
5
2
) = Γ(2 +

1
2
) =

4!Γ(1
2)

2!24 =
3
4

2
√

π

Γ(m +
1
2
) =

(2m − 1)!
2m Γ(

1
2
)

Γ(m +
1
3
) =

14........ (3m − 2)
3m Γ(

1
3
)

Γ(m +
2
3
) =

15...... (3m − 1)
3m Γ(

2
3
)

Γ(m +
1
4
) =

25...... (4m − 3)
4m Γ(

1
4
)

Γ(m +
2
4
) =

37..... (4m − 1)
4m Γ(

2
4
)

Γ (p + 1)
Γ (q + 1) Γ (p − q + 1)

=

(
p
q

)
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We exppres exp(−x) as:

e−x = lim
x 7→∞

(
1 − x

k

)k

,then we obtaine:

Γ (p) =
∫ ∞

0
e−xxp−1dx = lim

x 7→∞

∫ k

0

(
1 − x

k

)k
xp−1dx

For x = tk =⇒ dx = kdt resulting:

Γ (p) = lim
k−→∞

kp
∫ 1

0
(1 − t)k tp−1dt

Integrating by partes we obtaine:

1
p

∫ 1

0
(1 − t)K dtp =

1
p

[
(1 − t)K tp

]1

0
− 1

p

∫ 1

0
tpd (1 − t)K =

K
p

∫ 1

0
(1 − t)K−1 tpdt

Repeting this operation it follows:

Γ (p) = lim
k−→∞

kpk!
p (p + 1) .... (p + k)

but:

lim
k−→∞

(k + 1)p

kp = 1

from:

Γ (p) =
1
p

lim
k−→∞

1
(1 + p)

(
1 + p

2

)
....

(
1 + p

K
) 2p3p.... (k + 1)p

1p2p....kp (3.1.1)

It follows:

Γ (p) =
1
p

∞

k=1

1(
1 + p

K
) (k + 1)p

kp

=
1
p

∞

K=1

(
1 +

1
k

)p (
1 +

p
k

)−1

Definition 3.1.2. (Euleur’s Beta function) can be defined as:

B(p, q) =1
0 xp−1(x − 1)q−1dx wher Re(p) > 0 and Re(q) > 0

fig112
the plot of y=B(p, q)

Proprieties 3.1.1. In the folowing we will enumerate the basic properities of Beta function:
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1. For every p > 0 and for the natural number n ∈ N

B(p, n) = B(n, p) =
1.2.3....... (n − 1)

p (p + 1) ........ (p + n)

And also:
B(p, 1) =

1
p

2. For every natural numbers m, n we obtaine :

B(m, n) =
(n − 1)! (m − 1)!
(m + n − 1)!

3. For every p > 0 and q > 0 it is the identity:

B(p, q) =
Γ (p) Γ (q)
Γ (p + q)

4. For every p > 0 and q > 0 we have B(p, q) = B(q, p)

5. For every p > 0 and q > 0 we have B(p, q) =
q − 1

p + q − 1
B(p, q − 1)

Definition 3.1.3. (Fractional integral of order α) for every α > 0 and a local integrabl
function f (t) .
The right FI of order α is defined :

a Iα
t f (t) =

1
Γ (α)

t

a
(t − u)α−1 f (u) du for − ∞ ≤ a < t < +∞

It can be defined also the left FI as:

b Iα
t f (t) =

1
Γ (α)

b

t
(t − u)α−1 f (u) du f or − ∞ < t < b ≤ +∞

Definition 3.1.4. (Riemann liouville fractional derivative of order α)
For every α and n = [α] the riemann liouville derivative of order α can be defined as:

aDα
t =

1
Γ(n − α)

(
d

dx

)n

a

t (t − u)n−α−1 f (u) du

Corollaire 3.1.1. If C is a constant,then the Riemann liouville FD of C is:

0Dα
t C =

Cx−α

Γ (1 − α)
for α = 1, 2, 3.....
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3.2 Riemann Liouville fractional integrales and derivative
on the real half axis R+

Corollaire 3.2.1. Iα
+ f :The Right Riemann liouville fractional integrals

Iα
− f :The left Riemann liouville fractional integrals

Dα
− f :The left Riemann liouville fractional derivative

Dα
+ f :The Right Riemann liouville fractional derivative

Iα
+ f (t) =

1
Γ (α)

∫ t

0
(t − τ)α−1 f (τ) dτ, t > 0, (Reα > 0) .

Iα
− f (t) =

1
Γ (α)

∫ ∞

t
(τ − t)α−1 f (τ) dτ, t > 0, (Reα > 0) .

Dα
− f = (−1)n 1

Γ (n − α)

dn

dtn

∫ ∞

t

f (τ)

(t − τ)α−n+1 dτ, t > 0, (n − 1 ≤ Reα < n) .

Dα
+ f =

1
Γ (n − α)

dn

dtn

∫ t

0

f (τ)

(t − τ)α−n+1 dτ, t > 0, (n − 1 ≤ Reα < n) .

Corollaire 3.2.2.

t Iα
b f :The Right Riemann liouville fractional integrals.

a Iα
t f :The left Riemann liouville fractional integrals.

aDα
t f :The left Riemann liouville fractional derivative.

tDα
b f :The Right Riemann liouville fractional derivative.

In the case of α is purely imaginaryα = iθ :

a Iiθ
t f (t) =

d
dt

(
a I1+iθ

t f (t)
)
=

1
Γ (1 + iθ)

d
dt

∫ t

a
(t − τ)iθ f (τ) dτ, with θ ̸= 0.

In the case of variable α for 0 ≤ α (t) ≤ 1 :

0Dα(t)
t f (t) =

1
Γ (n − α (t))

d
dt

∫ t

0

f (τ)

(τ − t)α(t)
dτ, for [0T] .

In the case α ∈ Cof the order Re (α) > 0, n − 1 ≤ Re (α) < n :
If α = 0 =⇒

0D0
t f (t) =

1
Γ (1)

d
dt

∫ t

0
f (τ) dτ = f (t) .

if α = n ∈ N =⇒

Dn f (t) =
1

Γ (1)
dn+1

dtn+1

(∫ t

0
f (τ) dτ

)
=

dn

dtn f (t) = f (n) (t) .
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Proposition 3.2.1. If 0 < α < 1 and n = 1 =⇒

0Dα
t f (t) =

1
Γ (1 − α)

d
dt

∫ t

0
(t − τ)−α f (τ) dτ, for t > 0.

Proposition 3.2.2. The composition of fructional derivatives and fructional integrals:

for all Reα > 0, if f ∈ Lp ([a, b]) , 1 ≤ p ≤ ∞ then :
(aDα

t a Iα
t ) f (t) = f (t) and (tDα

b t Iα
b ) f (t) = f (t)

t Iα
b f :the Right Riemann liouville fractional integrals

a Iα
t f :the left Riemann liouville fractional integrals

C
a Dα

t f :the left caputo fractional derivative
C
t Dα

b f :the Right caputo fractional derivative

Definition 3.2.1. ( The Caputo fractional derivative):
let α > 0.n = [α] ,the caputo derivative operator of order α is defined as:

C
a Dα

t f (t) =
1

Γ(n − α)

t

a
(t − u)n−α−1

(
d

du

)n
f (u) du

Definition 3.2.2. (The Caputo fructional derivative in the origin):
for a function f (t) = 0, i f t < 0,it can be defined:

Definition 3.2.3.

C
0 Dα

t f (t) =
1

Γ(n − α)

t

0
(t − u)n−α−1 f (n)du, where n = [α]

if C is a constant,then:
C
0 Dα

t C = 0

we present the definition fructional derivative from caputo.

Definition 3.2.4. (The left caputo fractional derivative )of a function of order α denoted
by C

a Dα
t f is:

C
a Dα

t f =


1

Γ(n − α)

t

a

f (n) (τ)

(t − τ)α−n+1 dτ,for n − 1 < α < n

dn

dtn f (t) for α = n

 for (t ∈ [a, b])

Definition 3.2.5. (The Right caputo fractional derivative) of a function of order α denoted
by C

t Dα
b f is:

C
t Dα

b f =


(−1)n 1

Γ(n − α)

b

t

f (n) (τ)

(t − τ)α−n+1 dτ,for n − 1 < α < n

(−1)n dn

dtn f (t) for α = n

 for (t ∈ [a, b])
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Corollaire 3.2.3. it is easy to see that:

C
a Dα

t f = a In−α
t

(
dn

dtn f (t)
)

and

C
t Dα

b f = (−1)n
t In−α

b

(
dn

dtn f (t)
)

where a In−α
t andt In−α

b are the Riemann liouville fractional integrals

3.3 theHadamard fractional derivative is defined in termes
hadamard fractional integral in folowing way:

Definition 3.3.1. (the hadamard fructional derivative) in order q > 0 alpplied to the func-
tion f ∈ ACn

δ ([a, b]) is defined as:

HDq
1 f (x) = δn

(
H In−q

1 f
)
(x)

if q ∈ (0, 1] then
HDq

1 f (x) = δ
(

H In−q
1 f

)
(x)

let 0 ≤ q ≤ 1then:
HDq

1 ln t =
1

Γ (2 − q)
(ln t)n−q for ∈ [0, e]

in the space of L1the hadamard fructional derivative is the left inverse operator to the
hadamard fructional integral (

HDq
1

) (
H Iq

1 f
)
(x) = f (x)

(
H Iq

1

) (
HDq

1 f
)
(x) = f (x)−

H I1−q
1 f (1)
Γ (q)

(ln x)q−1

The Caputo Hadamard fructional derivative is defined in the folowing way:

Definition 3.3.2. (the Caputo Hadamard fructional derivative) of order q > 0 applied to
the function f ∈ ACn

δ ([a, b]) is defined as(
HcDq

1 f
)
(x) =H In−q

1 δn f (x)

if (0, 1] then (
HcDq

1 f
)
(x) =H I1−q

1 δ f (x)
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3.3.1 Hilfer fractional derivative:

Hilfer studies applications of a generalised fractional operator having the Rimman liou-
ville and the caputo derivatives as specific cases:

Definition 3.3.3. (The Hilfer fructional derivative )let α ∈ (0, 1] , β ∈ [0, 1] , f ∈ L1 ([a, b]) , I(1−α)(1−β)
1 f ∈

AC1 ([a, b]), the Hilfer fructional derivative of order α and type βof f is defined as(
Dα,β

1 f
)
(t) =

(
Iβ,(1−α)
1

d
dt

I(1−α)(1−β)
1 f

)
(t) , f or t ∈ [a, b]

Proposition 3.3.1. Let α ∈ (0, 1] , β ∈ [0, 1] , γ = α + β − αβ, f ∈ L1 ([a, b])

for β = 0,
Dα,0

1 = Dα
1

and β = 1,
Dα,1

1 =C Dα
1

From the HADAMARD fructional integral the and HILFER-HADAMARD fructional deriva-
tive is defined in the folowing way:

Definition 3.3.4. (HILFER HADAMARD fructional derivative)let α ∈ (0, 1] , β ∈ [0, 1] , γ =

α + β − αβ, f ∈ L1 ([a, b]) ,H I(1−α)(1−β)
1 f ∈ AC1 ([a, b]) the HILFER HADAMARD fructional

derivative of order α and type β of f is defined as

H
(

Dα,β
1 f

)
(t) =

(
H Iβ(1−α)

1

(
HDγ

1 f
))

(t)

=
(

H Iβ(1−α)
1 δ

(
H I(1−γ)

1 f
))

(t) , for t ∈ [a, b]

Remark 3.3.1.
HDα,0

1 = HDα
1

HDα,1
1 = HCDα

1

Definition 3.3.5. GRUNWALD-LETNIKOV FRACTIONAL DERIVATIVE OF THE ORDER α is
defined as:

G−L
a Dα

t f (t) = lim
h 7−→0

1
hα

[ t−1
h ]

∑
j=0

(−1)j
(

α

j

)
f (t − jh) , t > a, α > 0

similarly ,the right grunwald-letnikov FD of the order αis defined as:

G−L
t Dα

b f (t) = lim
h 7−→0

1
hα

[ t−1
h ]

∑
j=0

(−1)j
(

α

j

)
f (t − jh) , t > b, α > 0

There is a connection between the MARCHAUD AND THE GRUNWALD-LETNIKOV.
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3.4 theHadamard fractional derivative is defined in termes
hadamard fractional integral in folowing way:

Definition 3.4.1. (the hadamard fructional derivative) in order q > 0 alpplied to the func-
tion f ∈ ACn

δ ([a, b]) is defined as:

HDq
1 f (x) = δn

(
H In−q

1 f
)
(x)

if q ∈ (0, 1] then
HDq

1 f (x) = δ
(

H In−q
1 f

)
(x)

let 0 ≤ q ≤ 1then:
HDq

1 ln t =
1

Γ (2 − q)
(ln t)n−q for ∈ [0, e]

in the space of L1the hadamard fructional derivative is the left inverse operator to the
hadamard fructional integral (

HDq
1

) (
H Iq

1 f
)
(x) = f (x)

(
H Iq

1

) (
HDq

1 f
)
(x) = f (x)−

H I1−q
1 f (1)
Γ (q)

(ln x)q−1

The Caputo Hadamard fructional derivative is defined in the folowing way:

Definition 3.4.2. (the Caputo Hadamard fructional derivative) of order q > 0 applied to
the function f ∈ ACn

δ ([a, b]) is defined as(
HcDq

1 f
)
(x) =H In−q

1 δn f (x)

if (0, 1] then (
HcDq

1 f
)
(x) =H I1−q

1 δ f (x)

3.4.1 Hilfer fractional derivative:

Hilfer studies applications of a generalised fractional operator having the Rimman liou-
ville and the caputo derivatives as specific cases:

Definition 3.4.3. (The Hilfer fructional derivative )let α ∈ (0, 1] , β ∈ [0, 1] , f ∈ L1 ([a, b]) , I(1−α)(1−β)
1 f ∈

AC1 ([a, b]), the Hilfer fructional derivative of order α and type βof f is defined as(
Dα,β

1 f
)
(t) =

(
Iβ,(1−α)
1

d
dt

I(1−α)(1−β)
1 f

)
(t) , f or t ∈ [a, b]
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Proposition 3.4.1. Let α ∈ (0, 1] , β ∈ [0, 1] , γ = α + β − αβ, f ∈ L1 ([a, b])

for β = 0,
Dα,0

1 = Dα
1

and β = 1,
Dα,1

1 =C Dα
1

From the HADAMARD fructional integral the and HILFER-HADAMARD fructional deriva-
tive is defined in the folowing way:

Definition 3.4.4. (HILFER HADAMARD fructional derivative)let α ∈ (0, 1] , β ∈ [0, 1] , γ =

α + β − αβ, f ∈ L1 ([a, b]) ,H I(1−α)(1−β)
1 f ∈ AC1 ([a, b]) the HILFER HADAMARD fructional

derivative of order α and type β of f is defined as

H
(

Dα,β
1 f

)
(t) =

(
H Iβ(1−α)

1

(
HDγ

1 f
))

(t)

=
(

H Iβ(1−α)
1 δ

(
H I(1−γ)

1 f
))

(t) , for t ∈ [a, b]

Remark 3.4.1.
HDα,0

1 = HDα
1

HDα,1
1 = HCDα

1

Definition 3.4.5. GRUNWALD-LETNIKOV FRACTIONAL DERIVATIVE OF THE ORDER α is
defined as:

G−L
a Dα

t f (t) = lim
h 7−→0

1
hα

[ t−1
h ]

∑
j=0

(−1)j
(

α

j

)
f (t − jh) , t > a, α > 0

similarly ,the right grunwald-letnikov FD of the order αis defined as:

G−L
t Dα

b f (t) = lim
h 7−→0

1
hα

[ t−1
h ]

∑
j=0

(−1)j
(

α

j

)
f (t − jh) , t > b, α > 0

There is a connection between the MARCHAUD AND THE GRUNWALD-LETNIKOV.

3.5 Somme additional propertives of F.D:

3.5.1 FERMAT THEOREM FOR FD:

let 0 < α < 1 :0 Dα
t y (t) =

1
Γ (1 − α)

d
dt

∫ t

0

y (t − τ)

τα
dτ

=
1

Γ (1 − α)

y (0)
tα

+
1

Γ (1 − α)

∫ t

0
y(1) (t − τ)

(
α
∫ t

Γ
ξ(−1−α)dξ +

1
tα

)
dτ

=
y (t)

Γ (1 − α) tα
+

α

Γ (1 − α)

∫ t

0

y (t)− y (t − τ)

τ1+α
dτ, t > 0
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1. similarly for the caputo derivative of an integrable function ,we have :

C
0 Dα

t y (t) = 0Dα
t y (t)− y (0)

Γ (1 − α) tα

=
y (t)− y (0)
Γ (1 − α) tα

+
α

Γ (1 − α)
+

α

Γ (1 − α)

∫ t

0

y (t)− y (t − τ)

τ(1+α)
dτ, t > 0.

3.5.2 TAYLOR THEOREM FOR FD:

1. the TAYLOR farmula for CAPUTO derivative is given in the folowing proposition:

Proposition 3.5.1. let α ∈ [0, 1] and suppose that f ∈ C [a, b] ,such thataDα
t f ∈ ([a, b]) then :

f (t) = (t − a)α−1
[
(t − a)1−α f (t)

]
t=a

+
(t − a)α

Γ (1 + α)
[aDα

t f (t)]t=ξ , t ∈ (a, b] with a ≤ ξ ≤ b

The geniralization of taylor formular for RIEMANN LIOUVILLE derivative has several def-
ferent forms.To state formula we need the folowing deffinition .

Definition 3.5.1. A function f :[a, b] → slRis said to be α-countinous for every 0 ≤ α ≤ 1,at
t0 if there existe λ ∈ [0, 1 − α] such that g (t) = |t − t0|λ f (t)is countinous at t0.

• 1. Function f is α-countinous in [a, b] if it is α-countinous for every t ∈ [a, b] .

2. Let Cα = { f / [a, b] → slR f α-countinous}note that C1 ([a, b]) = C ([a, b]) .

3. Leta Iα
b (a, b) = { f / [a, b] → slR,a Iα

b f existe and it is finite for allt ∈ [a, b]}

4. A function f is singular of order α at t = t∗ if lim
t−→t∗

f (t)

(t − t∗)α−1 = k < ∞ and

k ̸= 0

5. Finally,we use aDjα
t to denote the application of aDα

t j times aDjα
t = aDα

t ....aDα
t︸ ︷︷ ︸

j times.

Proposition 3.5.2. Let 0 ≤ α ≤ 1, n ∈ N,let f be a countinous function in (a, b] satisfying the
folowing conditions:

• 1. aDjα
t f ∈ C ([a, b]) and aDjα

t f ∈a Iα
b (a, b) for all j=0,1,...,n.

2. aD(n+1)α f is countinous in [a, b] .

3. If α <
1
2

,then for each j ∈ N, 1 ≤ j ≤ n,such that (j + 1) α < 1,a D(j+1)α
t f is γ-

countinous at t = a for somme γ, 1 − (j + 1) α ≤ γ ≤ 1or it is singular of order α at
t = a.Then ,for t ∈ (a, b]
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f (t) =n
j=0

Cj

Γ ((j + 1) α)
(t − a)(j+1)α−1 +

[
aD(n+1)α

t f (t)
]

t=ξ

Γ ((n + 1) α + 1)
(t − a)(n+1)α , a ≤ ξ ≤ b

Where
Cj = Γ (α)

[
(t − a)1−α

a Djα
t f (t)

]
t=a+

, j = 0, 1, ..., n

The taylor formular for the caputo derivative is given in the folowing proposition.

Proposition 3.5.3. Suppose that C
a Djα

t f ∈ C ([a, b]) for j = 0, 1, .., n + 1

f (t) =n
j=0

(t − a)jα

Γ (αj + 1)

[
C
a Djα

t f (t)
]

t=a
+

[
C
a D(n+1)α

t f (t)
]

t=ξ

Γ ((n + 1) α + 1)
(t − a)(n+1)α, t ∈ (a, b] , a ≤ ξ ≤ b

Remark 3.5.1. In the special case for the caputo derivative ,the coresponding result is state
as follows.Suppose that f ∈ C ([a, b]) and C

a D∈α
t f ∈ C ([a, b]) ,for 0 ≤ α ≤ 1.Then

f (t) = f (a) +

[
C
a D(n+1)α

t f (t)
]

t=ξ

Γ (α + 1)
(t − 1)α , t ∈ (a, b] , where a ≤ ξ ≤ b

3.6 Laplace tronsform of Rieman Liouville Fractional inte-
grables and derivatives:

that is f ∈ L1(0,∞), | f (t)| ≤ A exp (s0t) , t > 0 wher A < 0, s0 > 0 then :

L [0 Iα
t f (t)] (s) =

1
sα

f (̂s), Re (s) ≥ s0

L [0Dα
t f (t)] (s) =

1
sα

f (̂s)−
n−1

∑
k=0

sn−k−1
[

DK
0 Iα

t f (t)
]

t=0

L [0Dα
t f (t)] (s) =

1
sα

f (̂s)− [ 0 Iα
t f (t)]t=0 f or 0 ≤ α ≤ 1

= sα f (̂s), Res ≥ s0

3.7 The laplace transform of the caputo derivatives is given
as folows :

suppose that n− 1 ≤ α ≤ n and let f be such that : f ∈ Cn (R) , | f (t)| ,
∣∣∣ f (1) (t)

∣∣∣ , ...,
∣∣∣ f (n) (t)

∣∣∣ ≤
B exp (s0t) , B, s0 > 0, t > 0
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suppose that tlim−→∞ f (k) (t) = 0,for k = 0, ..., m − 1 then :

L
[

C
0 Dα

t

]
(s) = sα f̂ (s)−

n−1

∑
k=0

sn−k−1 f (k) (0)

L
[

C
0 Dα

t

]
(s) = sα f̂ (s)− sα−1 f (0) , Re (s) ≥ s0

The laplace transforme of fructional integrals and derivatives:

if α > 0,the Riemann and Caputo FI are the same for both cases :

I = Iα f (t) =
1

Γ (α)

∫ t

0
(t − y)α−1 f (y) dy

using the laplace transform of the convolution product formula we have :

L [I] =
1

Γ (α)
L
[
tα−1

]
L [ f (t)] =

f̂ (s)
sα

Finally, we give an exemple to illustrate our results:

3.8 Variational problmes with fractional derivatives

3.8.1 Euler -Lagrange equations:

Equation is Euer lagrange for:

−∞Dα
t y (t) +t Dα

∞y (t) = 0, t ∈ R

3.8.2 The generalisation Legendre equation:

The generalisation Legendre equation can be defined as:(
1 − t2α

)
D(2α)y (t)− 2tαD(α)y (t) + λy (t) = 0

3.8.3 Lane -Emden equation:

D(α)y (t) +
a1

tα−β1
Dβ1y (t) +

a2

tα−β2
Dβ2y (t) + ..... +

an

tα−βn
Dβn y (t) + ym (t) = 0,

and the initial conditions are :
y (0) = 1, y′ (0) = 0
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3.8.4 The Gene Alized Bessel equation :

the Bessel FDE can be introduced as:

t2αD(2α)y (t) + tαD(α)y (t) +
(

t2α − p2
)

y (t) = 0, p ∈ R

3.8.5 the Van Der pol FE:

the Van Der pol FE {
Dαx1 (t) = x2, x1 (0) = 0

Dαx2 (t) = −x2 + 2
(

1 − x2
1

)
x2, x2 (0) = 1

For α = 0, 998 {
D0,998x1 (t) = x2, x1 (0) = 0

D0,998x2 (t) = −x2 + 2
(

1 − x2
1

)
x2, x2 (0) = 1

3.8.6 The Van Der pol F SYSTEM:

the Van Der pol FE

{
D

1
2 x (t) = y, x (0) = 1

D
1
2 x2 (t) = −x + 0, 25

(
1 − x2

)
y, y (0) = 0

3.8.7 The fractional Duffing system:

showsThe fractional Duffing system

{
D0,998X (t) = Y

D0,998Y (t) = −X − X3

with {
X (0) = 1
Y (0) = 0

3.8.8 Lotka system:

Lotka system with initial conditions:{
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3.8.9 The F Rossler attractor system :
D0,98X (t) = −Y − Z

D0,98Y (t) = X + 0, 2Y
D0,98Z (t) = 0, 2 + Z (X − 8)

with IC 
X (0) = 1
Y (0) = 1
Z (0) = 1

3.8.10 the Lorenz fractional attractor system:

the Lorenz fractional attractor is defined by the systeme of FDE:
DαX (t) = 10 (Y (t)− X (t))

DαY (t) = X (t) (28 − Z (t))− Y (t)

DαZ (t) = X (t)Y (t)− 8
3

Z (t)

we use the initial conditions:X (t) = Y (t) = Z (t) = 0, 1

Exemple 3.8.1. For α = 0, 95 we have:
D0,95X (t) = 10 (Y (t)− X (t))

D0,95Y (t) = X (t) (28 − Z (t))− Y (t)

D0,95Z (t) = X (t)Y (t)− 8
3

Z (t)
X (t) = Y (t) = Z (t) = 0, 1, IC

Exemple 3.8.2.
DαY (t) + 1 − (1 + α) = 0

whith I C:
Y (0) = Y (1) = 0

Y (t) = − tα

Γ (α + 1)
+

tα+1

Γ (α + 1)

Exemple 3.8.3.
DαY (t)− Y (t) =

t
exp (t)− 1

, 0 ≤ t ≤ 1

Y (0) = 1
Y′ (0) = 0,

where 0 ≤ α ≤ 1
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Yapp (t) = 1 − 1
2

Γ (α + 2) Γ (α + 1) Γ (3α + 1)
Γ (2α + 2) Γ2 (2α + 1)

t2α + .....

For α = 1 we have :

Yapp (t) = 1 − 1
4

t2

Exemple 3.8.4. Rimann-Liouville derivative for tβ :

D f =0 Dα
t tβ =

1
Γ (n − α)

dn

dtn

∫ t

0
uβ (t − u)n−α−1 du

we take u = vt ,du = tdv we have:

D f = 0Dα
t tβ =

1
Γ (n − α)

dn

dtn

∫ t

0

[
(vt)β (1 − v)

]n−α−1
tdv

=
1

Γ (n − α)

dn

dtn

∫ t

0
vβ [(1 − v)]n−α−1 tn−α+βdv

=
1

Γ (n − α)

∫ t

0
vβ [(1 − v)]n−α−1 dn

dtn tn−α+βdv, Resulting :
dn

dtn tn−α+β =
Γ (λ + 1)

Γ (λ − n + 1)
tλ−n

=
1

Γ (n − α)

Γ (n − α + β + 1)
Γ (−α + β + 1)

tβ−α
∫ 1

0
[(1 − v)]n−α−1 vβdv,∫ 1

0
[(1 − v)]n−α−1 vβdv = B (n − α, β + 1) =

Γ (n − α) Γ (β + 1)
Γ (n − α + β + 1)

D f = 0Dα
t tβ =

Γ (β + 1)
Γ (−α + β + 1)

tβ−α

Find the Rimann-Liouville FD and FI for function (t − a)β

For FI we apply the Rimann-Liouville definition:

I = a Iα
t

︷ ︸︸ ︷
(t − a)β =

1
Γ (α)

t

a
(t − u)α−1

︷ ︸︸ ︷
(u − a)β du, the change o f variable : v =

u − a
t − a

, du = (t − a) dv

=
(t − a)β+α

Γ (α)

t

0
(1 − v)α−1 vβdv

=
(t − a)β+α

Γ (α)
B (α, β + 1)

=
Γ (β + 1)

Γ (α + β + 1)
(t − a)β+α

For FD we apply the Rimann-Liouville definition:
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D f = aDα
t (t − a)β =

dn

dtn a
In−α (t − a)β

=
Γ (β + 1)

Γ (n + β − α + 1)
dn

dtn (t − a)β+n−α

=
Γ (β + 1)

Γ (β − α + 1)
(t − a)β−α

Exemple 3.8.5.

F (t) =∞
k=0

f (k) (0)
k!

tk =∞
k=0

f (k) (0)
Γ (k + 1)

tk

the FD will be

D(α) f (t) = ∞
k=0

f (k) (0)
Γ (k + 1)

D(α)tk

= ∞
k=0

f (k) (0)
Γ (k + 1)

Γ (k + 1)
Γ (k − α + 1)

tk−α

= ∞
k=0

f (k) (0)
Γ (k − α + 1)

tk−α



Name : Forme: Remarks Observations:

Minus order derivative
As we known

d−1

dx−1 sin (x) =
∫

sin (x) dx
Inverse to fractional integral.

Semi derivative
d0,5

dx0,5
d0,5

dx0,5 sin (x) =
d0,5+0,5

dx0,5+0,5 sin (x) =
d

dx
sin (x) = cos (x) T he semiderivative and the semiderivative equal to first ordr derivative.

Thepi-order derivative
dπ

dxπ
− y − 2 exp (x) = 0 /

Complex order derivative

da+ib

dxa+ib sin (x) =
dib

dxib
da

dxa sin (x)

d1+i

dx1+i

d1−i

dx1−i sin (x) =
d1+i+1−i

dx1+i+1−i sin (x) =
d2

dx2 sin (x) = − sin (x)

T he order can be extented to complex number (a + bi) .
We differentae by by the real order first ,then by image order.

T he (1 + i) order derivative and the (1 − i) order derivative equal to scond derivative.

Variable order derivtive
dcos(x)

dxcos(x)
sin (x) = d (sin (x) , x, cos (x)) T he order can be changed as a function .

T he cos (x) order changes between -1 and 1.





Chapter 4

On the Caputo-Hadamard fractional IVP
with variable order using the
upper-lower solutions technique

4.1 Introduction

By comparing integer differential equations to fractional differential equations of a con-
stant order , fractional calculus has been the subject of extensive studies for more than
three centuries. The main and initial difference of fractional calculus is to replace the nat-
ural numbers in the order of derivative by arbitrary real ones. Although such a description
of this widely used theory seems very superIicia l, it has a high power in describing phys-
ical phenomena. While numerous number of studies have been implemented for analyz-
ing the existence theory in relation to fractional constant-order boundary value problems
(BVPs) [?],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15], this theory is rarely inves-
tigated for variable-order BVPs in other research studies [16],[17],[18],[19],[20]. HENCE,
at the same time, the technique we propose in this paper is new and valuable for such
variable order structures. About the investigation of the existence theory for variable or-
der BVPs, we mention some of them. JIAHUI et al. [21] addressed unique solutions in
relation to an IVP of RIEMANN-LIOUVILLE fractional differential equations in the case
of variable order. In [22], BOUAZZA et al. discussed a new stmcture of variable-order
RIEMANN-LIOUVILLE BVPs, and after that in [23], BENKERROUCHE et al. performed an
analysis about ULAM-HYERS stable solutions for a CAPUTO nonlinear implicit fractional
boundary value problem (FBVPs) of variable order. Simultaneously in 2021, REIICE et
al. [24] and HRISTOVA et al. [25] focused on some research studies in relation to ex-
istence theory for BVPs of HADAMARD FDEs with the help of complicated method of
the KURATOWSKI measure of noncompactness in the case of variable order. For more
information, we mention [26],[?],[27],[28] Of course, the stability analysis is one of the
important aspects of fractional calculus, and some researchers have extended this area
for constant-order systems [29],[30],[31],[32], and it can be a motivational factor for other
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studies in variable-order systems. Many real phenomena exist that expect the concept of
HADAMARD fractional derivative permitting the useful of physically initial conditions,
which contain ϕ(p), ϕ′(p), etc. The CAPUTO-HADAMARD fractional derivative provides
these conditions. Under this property, the basic notions of the CAPUTO-HADAMARD frac-
tional derivative are studided by ALMEIDA [33]. After that, some researchers such as BEN
MAKHLOUF and MCHIRI [34]discussed some other properties of these operators. More-
over, ABUASBEH et al. [35],[36], KHAN et al. [37], NIAZI et al. [?] and SHAFQAT et al.
[38], [39] similarly investigated the existence and uniqueness of solution for the FUZZY
fractional evolution equations. For other applications, see [?],[41]. In particulx, BAI et al.
[42] studied the existence of solution for the following initial value problem

{
CDw

p+ϕ(t) = ψ(t, ϕ(t), Iw
p+ϕ(t)), t ∈ Λ := [p, T],

ϕ(p) = ϕp,
(4.1.1)

where CDw
p+ and Iw

p+ denote the CAPUTO derivative and HADAMARD integral, respec-
tively, ψ; Λ × R × R → R is a continuous function, ϕp ∈ R, and 0 < p < T < ∞. In this
paper, we study the existence of solutions for the following fractional nonlinear differen-
tial equation involving the CAPUTO-HADAMARD fractional derivative of variable order

{
CDw(t)

p+ ϕ(t) = ψ(t, ϕ(t)), t ∈ Λ := [p, T],
ϕ(p) = ϕp,

(4.1.2)

where 0 < p < T < ∞, ϕp ∈ R and 0 < w(t) ≤ 1 is a variable order, ψ; Λ × R → R

is a given function and CDw(t)
p+ denotes the CAPUTO-HADAMARD fractional derivative of

order w(t). The organization of the rest of this paper is as follows. Some definitions and
auxiliary results are given in Section 2. In Section 3, we try to obtain an equivalent system
of constant order IVP by deriving HADAMARD integral equations on some continuous
subintervals and partitions. With the help of piecewise constant functions, we implement
the technique of upper-lower solutions for such an equivalent system and generalize our
results to the given CAPUTO-HADAMARD variable order problem. One example is pre-
sented in Section 4, to show the efficiency and validity of the proposed results. Finally,
some conclusion notes are given in Section 5. Note that there is no published work in
which the technique of upper-lower solutions is used on a variable order system. This
shows the originality of our research.

4.2 Auxiliary notions

In this section, we list some of definitions and propositions that are used in the following
sections. The space E := slC(Λ := [p, T], R) denotes the BANACH space of continuous
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functions ϕ : Λ → R, and by the function space slAC(p, q; R), we determines absolutely
continuous R-valued functions on [p, q].

Definition 4.2.1. [43], Let 0 < p < q < ∞ and ϕ : [p, q] → R. The HADAMARD FRAC-
TIONAL integral of order w > 0 of the function ϕ is deffined by

Iw
p+ϕ(t) =

1
Γ(w)

∫ t

p
(ln

t
s
)w−1 ϕ(s)

s
ds for t ∈ [p, q],

where the well-known GAMMA function is denoted by

Γ(w) =
∫ ∞

0
tw−1e−tdt.

Definition 4.2.2. [43], Let 0 < p < q < ∞ and ϕ : [p, q] → R. The HADAMARD FRAC-
TIONAL derivative of the order w ∈ (0, 1] of the function ϕ is deffined by

Dw
p+ϕ(t) =

1
Γ(1 − w)

t
d
dt

∫ t

p
(ln

t
s
)−w ϕ(s)

s
ds for t ∈ [p, q].

Clearly, we have

lw
p+(ln

t
p
)v−1 =

Γ(v)
Γ(v + w)

(ln
t
p
)v+w−1, Dw

p+(ln
t
p
)v−1 =

Γ(v)
Γ(v − w)

(ln
t
p
)v−w−1, for each t ∈ [p, q].

We now state some important characteristics for HADAMARD fractional integral and deriva-
tive operators. The proofs of them can be found in.

Lemma 4.2.1. . Let w > 0 and v > 0.

(i) For ϕ ∈ Lr(p, q; R), if 1 ≤ r < ∞, then we have
(ii) For ϕ ∈ Lr(p, q; R), if 1 ≤ r < ∞ and w > v, then we have

Dv
p+ Iw

p+ϕ(t) = Iw−v
p+ ϕ(t) for t ∈ [p, q].

[43],
Let 0 < p < q < ∞ and ϕ : [p, q] → R. The CAPUTO-HADAMARD fractional derivative of
order w ∈ (0, 1] of the function ϕ is deffined by

CDw
p+ϕ(t) = Dw

p+ [ϕ(t)− ϕ(p)] for t ∈ [p, q].

Remark 4.2.1. It should be obvious that the CAPUTO-HADAMARD fractional derivative, i. e.,
4.2.3, is equivalent to the following expression that if ϕ ∈ AC(p, q; R), then

cDW
p+

ϕ(t) =
1

Γ(1 − w)

∫ t

p
(ln

t
s
)−wϕ′(s)ds, fort ∈ [p, q].
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Definition 4.2.3. [48] The left variable-order CAPUTO-HADAMARD fractional derivative of the
functional order w(t) is deffined by

c
Dw(t)

p+
ϕ(t)

=
twr(t)

Γ(2 − w(t))

∫ t

p
(ln

t
s
)1−w(t)ϕ′(s)[

1
1 − w(t)

− ln(ln
t
s
)]ds+

1
Γ(1 − w(t))

∫ t

p
(ln

t
s
)−w(t)ϕ′(s)ds.

4.2.1. l f w(t) ≡ w, (w is constant), then Deffinition 4.2.3 is transformed into the CAPUTO-
HADAMARD derivative given in [43] as

cDw
p+

ϕ(t) =
1

Γ(1 − w)

∫ t

p
(ln

t
s
)−wϕ′(s)ds.

The component characteristics for the CAPUTO-HADAMARD fractional operators are listed
below, and this section is concluded by mentioning them.

Lemma 4.2.2. Let n = [w] + 1 be the case for w > 0.

(i) If ϕ ∈ slC(p, q; R), then

CDw
p+(Iw

p+ϕ(t)) = ϕ(t) for t ∈ [p, q].

(ii) If ϕ ∈ slAC(p, q; R), then

Iw
p+(

CDw
p+ϕ(t)) = ϕ(t)− ϕ(p) for t ∈ [p, q]

4.3 Main results

Let’s state the underlying assumptions. It will be the basic step in proving the results of
this section. (Hl) For n ∈ N, the finite sequence of points {Tk}n

k=0 such that p = T0 <
Tk < Tn = T, k = 1, . . . , n − 1 is given. Denot Λk := (Tk−1, Tk], k = 1, 2, . . . , n. Conse-

quently, P =
n⋃

k=1

Λk is a partition of Λ. The symbol Eslm = slC(Λslm, R), m = 1, 2, . . . , n

denotes the Banach space of continuous functions ϕ : Λslm → R endowed with ∥ϕ||Eslm =

sup
t∈Λslm

|ϕ(t)|. Suppose that w(t) : Λ → (0, 1] is defined by w(t) =
sln

∑
slm=1

wslm Islm(t), where

0 < wslm ≤ 1 are constants and Islm is the indicator of Λslm be a piecewise constant func-
tion with respect to P , where

Islm(t) =
{

1, f or t ∈ Λslm,
0, else where.
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The left CAPUTO-HADAMARD derivative for the function ϕ ∈ slC(Λ, R) with variable
order w(t), given by Definition 4.2.3, might then be stated as the sum of the left CAPUTO-
HADAMARD derivatives of the constant orders wk, k = 1, 2, . . . , n, i.e.,

Dw(t)
p+ ϕ(t) =

tw′(t)
Γ(2 − w(t))

∫ t

p

t
s
(ln

t
s
)]ds +

1
Γ(1 − w(t))

∫ t

p
(ln

t
s
)−w(t)ϕ′(s)ds

For each t ∈ Λslm, where m = 1, 2, . . . , n, the CAPUTO-HADAMARD derivative for the
system of CHFDEVO (4.1.2) can be stated in the following form (??) To solve the integral
equation (??), let the function ϕ̃ ∈ C(Λslm, R) be such that ϕ̃(t) ≡ 0 on t ∈ [p, Tslm−1].
Then (3.1) is transformed into

Dwslm
T+

slm−1
ϕ̃(t) = ψ(t, ϕ̃(t)), t ∈ Λm .

For obtained CAPUTO-HADAMARD constant order fractional differential equations, we
consider the following auxiliary CAPUTO-HADAMARD fractional differential equations
(CHFDE) of constant order{

CDwslm
T+

slm−1
ϕslm(t) = ψ(t, ϕslm(t)), t ∈ Λslm,

ϕslm(Tslm−1) = ϕTslm−1 ,

for each m = 1, 2, . . . , n. The main basic theorem can be stated now.

Theorem 4.3.1. Assume that ψ : Λslm × R → R is a continuous function. The solution to the
integral equation (i.e., ϕslm ∈ slC(Tslm−1, Tslm; R)) given by

ϕslm(t) = ϕτslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wslm−1 ψ(s, ϕslm(s))

s
dsfort ∈ Λslm (4.3.1)

solves the auxiliary CHFDE of constant order (??).

Proof. Assume that ϕslm ∈ slC(Tslm−1, Tslm; R) is a solution of (4.3.1). Naturally, we take
ϕ(Tslm−1) = ϕTslm−1 and t → Iwslm

T+
slm−1

ϕslm(t) ∈ slC(Tslm−1, Tslm; R). The definition of the

HADAMARD integral Iwslm
T+

slm−1
and the continuity of ψguarantee that t → ψ(t, ϕslm(t)) is

continuous as well and

Iwslm
T+

slm−1
ψ(t, ϕslm(t))|t=Tslm−1 = 0.

Since t → Iwslm
T+

slm−1
ψ(t, ϕslm(t)) is continuous, we can conclude that ϕslm is differentiable for

a.e. t ∈ (Tslm−1, Tslm), (see (4.3.1)), i.e., ϕslm ∈ slAC(Tslm−1, Tslm; R). From Lemma 4.2.2,
we have
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cDwm
T+slm−1

I
wslm
T+slm−1

ψ(t,ϕslm(t))
= ψ(t, ϕslm(t)) for t ∈ Λslm.

On the other hand, Remark 2.5 gives

CDwslm
T+

slm−1
[ϕslm(t)− ϕTslm−1 ] =

1
Γ(1 − wslm)

∫ t

Tslm−1

(ln
t
s
)−wslm [ϕslm(s)− ϕTslm−1 ]

′ds

=
1

Γ(1 − wslm)

∫ t

Tslm−1

(ln
t
s
)−wslm ϕ′

slm(s)ds

= CDwslm
T+

slm−1
ϕslm(t),

for each t ∈ Λslm. By all above, we conclude that ϕslm ∈ C(Tslm−1, Tslm; R) is a solution of
the auxiliary CHFDE of constant order (??).

Definition 4.3.1. Let (ϕslm, ϕslm) ∈ slC(Tslm−1, Tm; R) × slC(Tslm−1, Tslm; R). A pair of-
functions (ϕslm, ϕslm) is called an upper-lower solutions of the auxiliary CHFDE of constant
order (??),respectively,if

ϕslm(t) ≤ ϕTslm−1 +
1

Γ(wslm)

∫ ψ(s,ϕslm(s))

Tslm−1

t(ln
t
s
)

w
slm−1

S ds for all t ∈ Λslm

and

ϕslm(t) ≥ ϕTslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wslm−1 ψ(s, ϕm(s))

s
ds for all t ∈ Λslm.

Assume that the upper-lower solution to the the auxiliary CHFDE of constant order ??
is (ϕm, ϕm). In the following, we define an acceptable set of solutions for the auxiliary
CHFDE of constant order ?? which is controlled by two upper-lower solutions (ϕslm, ϕslm)
as follows

s(ϕslm,ϕslm)
:= {ϕslm ∈ C(Tslm−1, Tslm; R) : ϕslm(t) ≤ ϕslm(t) ≤ ϕslm(t), t ∈ Λslm and ϕslmis asolution of??}

.

Theorem 4.3.2. Let ψ ∈ slC(Λslm ×R; R) and (ϕslm, ϕslm) ∈ slC(Tslm−1, Tslm; R)×C(Tslm−1, Tslm; R).
The auxiliary CHFDE of constant order ?? has the pair of upper-lower solutions with ϕm(t) ≤
ϕslm(t) and t ∈ Λslm. If ϕm → ψ(t, ϕslm) is nondecreasing, that is ψ(t, ϕ1) ≤ ψ(t, ϕ2) for
ϕ1 ≤ ϕ2, then, there are minimum and maximum solutions

ϕslM,slm, ϕslL,slm ∈ s(ϕslm,ϕslm)
in s(ϕslm,ϕslm)

; i. e.,for each ϕslm ∈ S(ϕslm,ϕslm)
, ϕslL,slm(t) ≤ ϕslm(t) ≤ ϕslM,slm(t) for t ∈ Λslm.
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Proof. We provide two sequences {θsln,slm} and {βsln,slm} as


θ0,slm = ϕslm,

θsln+1,slm(t) = ϕTslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wslm−1 ψ(s, θsln,slm(s))

s
ds, t ∈ Λslm and n = 0, 1, . . . ,

(4.3.2)
and

1β0,slm=ϕslm ′

βsln+1,slm(t) = ϕTslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wslm−1 ψ(s, βsln,slm(s))

s
ds, t ∈ Λslm and n = 0, 1, . . . .

(4.3.3)
The proof is now divided into three steps.
Stepl. Sequences {θsln,slm} and {βsln,slm} satisfy the following relation:

ϕslm(t) = θ0,slm(t) ≤ θ1,slm(t) ≤ θ2,slm(t) ≤ . . . ≤ θsln,slm(t) ≤ . . . ≤ βsln,slm(t) ≤ . . . ≤ β1,slm(t) ≤ β0,slm(t) = ϕslm(t)
(4.3.4)

for each t ∈ Λslm.We will first demonstrate that the sequence {θsln,slm} is nondecreasing
and θsln,slm(t) ≤ β0,slm(t), t ∈ Λm for all n ∈ slN.Therefore, by a recurrence relation, we
prove

θsln−1,slm(t) ≤ θsln,slm(t), ∀t ∈ Λslm (4.3.5)

By the definition of θ0,slm(t), we have θ0,slm(t) ≤ θ1,slm(t) for each t ∈ Λslm. We suppose
that (4.3.5) is tme for n and we prove for n + 1 : θsln,slm(t) ≤ θsln+1,slm(t), ∀t ∈ Λslm.
We have

θsln,slm(t) = ϕTslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wslm−1

ψ(s, θsln−1,slm(s))
s

ds.

θsln+1,slm(t) = ϕTslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wm−1 ψ(s, θsln,slm(s))

s
ds.

Using the monotonicity of ψ, we obtain

θsln,slm(t) ≤ θsln+1,slm(t).

As θsln,slm(t) is noncreasing, by the definition of β0,slm(t), we have

θsln,slm(t) ≤ θsln+1,slm(t) ≤ β0,slm(t).

Further, we will show that
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θsln,slm(t) ≤ βsln,slm(t) for t ∈ Λslm and n ∈ slN.
Since n = 0, it is evident that

ϕslm(t) = θ0,slm(t) ≤ β0,slm(t) = ϕslm(t)for each t ∈ Λslm

. Now, we make an inductive assumption

θsln,slm(t) ≤ βsln,slm(t), t ∈ Λslm.

Accordingly, given that ψ is monotonic with respect to the second variable, it is simple to
conclude that

θsln+1,slm(t) ≤ βsln+1,slm(t), t ∈ Λslm.

Also, we have that the sequence {βsln,slm} is nonincreasing.
Step2. Both sequences {θN,m} and wN,m} are relatively compact in C(Tm−1, Tm; R). Be-
cause ψ is continuous and (ϕslm, ϕslm) ∈ slC(Tslm−1, Tslm; R), from Step 1, we find out that
{θsln,slm} and {βsln,slm} belong to C(Tslm−1, Tslm; R) as well. It follows from (4.3.4) that
{θsln,slm} and {βsln,slm} are uniformlly bounded. On the other hand, for any t1, t2 ∈ Λslm,
without loss of generality, let t1 ≤ t2. We have

|θsln+1,slm(t1)− θsln+1,slm(t2)| =
1

Γ(wslm)
|
∫ t2

Tslm−1

(ln
t2

s
)wslm−1 ψ(s, θsln,slm(s))

s
ds

−
∫ t1

Tslm−1

(ln
t1

s
)wslm−1 ψ(s, θsln,slm(s))

s
ds|

=
1

Γ(wslm)
|
∫ t1

Tslm−1

[(ln
t2

s
)wslm−1 − (ln

t1

s
)wslm−1]

ψ(s, θsln,slm(s))
s

ds

+
∫ t2

t1

(ln
t2

s
)wslm−1 ψ(s, θsln,slm(s))

s
ds|

≤ M
Γ(wslm)

|
∫ t1

Tslm−1

1
s
[(ln

t2

s
)wslm−1 − (ln

t1

s
)wslm−1]ds +

∫ t2

t1

1
s
(ln

t2

s
)wslm−1ds|

=
M

Γ(wslm)
| 1
wslm

((ln
t2

Tslm−1
)wslm − (ln

t2

t1
)wslm)) + (

1
wslm

(−(ln
t1

Tslm−1
)wslm + (ln

t1

t1
)wm ))

+(
1

wslm
((ln

t2

t1
)wslm − (ln

t2

t2
)wslm)|

=
M

Γ(wslm)
| 1
wslm

((ln
t2

Tslm−1
)wslm − (ln

t1

Tslm−1
)wslm)|

=
M

Γ(wslm)
| 1
wslm

((ln
t2

Tslm−1
)wslm − (ln

t1

Tslm−1
)wslm)|

=
M

Γ(wslm + 1)
|(ln t2

Tslm−1
)wslm − (ln

t1

Tslm−1
)wslm |as t1 → t2

where M > 0 is a constant independent of n, t1, and t2. It gives this fact that {θsln,slm} is
equicontinuous in C(Tslm−1, Tslm; R).
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We conclude that {θsln,slm} is relatively compact in C(Tslm−1, Tslm; R) based on the ARZELA-
ASCOLI Theorem. Similar to this, we find that {βsln,slm} is also relatively compact in
C(Λm; R).
Step3. In S(ϕm,ϕm), there are minimum and maximum solutions.
The sequences {θsln,slm} and {βsln,slm} are monotone and relatively compact in C(Tslm−1, Tslm; R),
as shown in Steps 1 and 2. Evidently, continuous functions θslm and βslm exist with
θsln,slm(t) ≤ θslm(t) ≤ βslm(t) ≤ βsln,slm(t) for all t ∈ Λm and n ∈ N, such that {θsln,slm}
and {βsln,slm} converge uniformly to θslm and βslm, respectively, in C(Tslm−1, Tslm; R).
Therefore, the solutions to the auxiliary CHFDE of constant order (??) are θslm and βslm;
i.e.,

θslm(t) = ϕTslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wslm−1 ψ(s, θslm(s))

s
ds,

βslm(t) = ϕTslm−1 +
1

Γ(wslm)

∫ t

Tslm−1

(ln
t
s
)wslm−1 ψ(s, βslm(s))

s
ds,

for each t ∈ Λslm. Therefore,

ϕslm(t) ≤ θslm(t) ≤ βslm(t) ≤ ϕslm(t) for t ∈ Λslm.

Finally, we will prove that θslm and βslm are the minimum and maximum solutions in
s(ϕslm,ϕslm)

. If ϕslm ∈ s(ϕslm,ϕslm)
, then

ϕslm(t) ≤ ϕslm(t) ≤ ϕslm(t), t ∈ Λslm.

Remembering that the second and third arguments do not cause ψ to decrease, we intro-
duce

ϕslm(t) ≤ θsln,slm(t) ≤ ϕslm(t) ≤ βsln,slm(t) ≤ ϕslm(t) f or t ∈ Λslm and n ∈ slN.

As n → ∞ in the above inequality, it implies that

ϕslm(t) ≤ θslm(t) ≤ ϕslm(t) ≤ βslm(t) ≤ ϕslm(t) for t ∈ Λslm.

This concludes the proof of theorem by considering ϕL,slm = θslm and ϕslM,slm = βslm,
respectively, which are the minimum and maximum solutions in s(ϕslm,ϕslm)

.

Theorem 4.3.3. Assume that the hypotheses of (4.3.3) to be satisffied. The auxiliary CHFDE of
constant order (??) has at least one solution in C(Λslm; R).

Proof. According to4.3.3, we get s(ϕslm,ϕslm)
̸= ∅, implying that the solution set associ-

ated with the auxiliary CHFDE of constant order (3.2) is not empty in C(Tslm−1, Tslm; R).
By proving that the auxiliary CHFDE of constant order (??) has at least one solution in
C(Tslm−1, Tslm; R), this completes the proof of theorem. We shall now investigate the
existence result for the CAPUTO-HADAMARD fractional nonlinear differential equation of
variable order (CHFDEVO) ((??).
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Theorem 4.3.4. . Let all m ∈ {1, 2, . . . , n} satisfy the condition (Hl). Then, there is at least one
solution for the given nonlinear IVP of CHFDEVO (4.1.2) in E.

Proof. Based on the above proofs, we know that the nonlinear IVP of constant order
CAPUTO-HADAMARD

fractional differential equation (??) has at least one solution ϕslm ∈ Eslm, m ∈ {1, 2, . . . , n}.
This is in accordance with (4.3.3) and (4.3.4). We define the solution function for each
m ∈ {1, 2, . . . , n} as

ϕslm =

{
0, t ∈ [p, Tslm−1],
ϕm , t ∈ Λslm. (4.3.6)

Thus, ϕslm ∈ C(Tslm−1, Tslm; R) solves the HADAMARD integral equation (??) for each
t ∈ Λslm, which means that

ϕslm(p) = 0, ϕslm(Tslm) = ϕslm(Tslm) = 0.

Then, the function

ϕ(t) =


ϕ1(t), t ∈ Λ1,
ϕ2(t) = [Case]
ϕn(t) = [Case]

is a solution of the given nonlinear IVP of CHFDEVO (4.1.2) in E.

4.4 Numerical example

Let Λ := [1, e2], T0 = 1, T1 = e, T2 = e2. Consider the following nonlinear variable order
IVP of CHFDE

{
CDw(t)

1+ ϕ(t) =
1
π
(
√

ln t + (ln t)4) + ϕ(t), t ∈ Λ,

ϕ(1) = 0,
(4.4.1)

where

w(t) =


1
2

, t ∈ Λ1 := [1, e],
2
3

, t ∈ Λ2;=]e, e2].
(4.4.2)
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Denote
ψ(t, ϕ) =

1
π
(
√

ln t + (ln t)4) + ϕ(t), (t, ϕ) ∈ [1, e2]× R.

Using (4.4.2) and (??), we consider two auxiliary constant order IVPs of CHFDEs as

{
CD

1
12
+ ϕ(t) =

1
π
(
√

ln t + (ln t)4) + ϕ(t), t ∈ Λ1,

ϕ(1) = 0,
(4.4.3)

and

{
CD

2
e3
+ ϕ(t) =

1
π
(
√

ln t + (ln t)4) + ϕ(t), t ∈ Λ2,

ϕ(e) = 1.
(4.4.4)

For m = 1: By 4.3.1, the auxiliary IVP of constant order CHFDE (4.4.3) has at least one
solution ϕ1 ∈ E1 as

ϕ1(t) = I
1
12
+ (

1
π
(
√

ln t + (ln t)4) + ϕ1(t)) for t ∈ Λ1. (4.4.5)

In fact, as one can see, (ϕ1(t), ϕ1(t)) = (O, ln t + (ln t)5) denotes the upper-lower bounds
of the solution to (4.4.5). We can calculate the sequences {θsln,1} and {βsln,1} by{

θ0,1 = ϕ1

θsln+1,1(t) = I
1
12
+ ψ(t, θsln,1(t)), n = 0, 1, . . . ,

and {
β0,1 = ϕ1

βsln+1,1(t) = I
1
12
+ ψ(t, βsln,1(t)), n = 0, 1, . . . ,

for each t ∈ Λ1. We can now use 4.3.3 to determine that θsln,1 → θ1 ∈ E1 and βsln,1 → β1 ∈
E1 as π(ln t)2, n → ∞. In the meanwhile, we may obtain t ∈ Λ1 for β1(t) = θ1(t) = 3 .
We use Maple to calculate the sequences {θsln,2} and {βsln,2} for each n which are defined
as integrals with different initial values. Then, we take the values of these sequences at
each instant t and plot them with Matlab. In Table 1, we present the error (which is the
sup of the absolute value of the defference) between the sequences {θsln,1}, {βsln,1} and
the exact solution for n = 5, 10, 15, 20. In Figure 1, we plot the sequences {θsln,1}, {βsln,1}
and the exact solution for n = 0, 1, 2, 10, 30.
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4.5 code matlab

function r=leftFcaputo(x,alpha,a,n)
Dx=diff(x,n);
G=@(t,tau)dx(tau)./(gamma(n-alpha(t,tau)).*(t-tau).ˆ(1+alpha(t,tau)-n));
r=@(t)sum(chebfun(@(tau)g(t,tau),[a,t],’splitting’,’on’,[a t];
end

.function r=rightFcaputo(x,alpha ,a,n)

G=@(t,tau)dx(tau).\(gama(alpha(tau, t)).ˆ(1 − alpha(tau, t)));
R= r =@(t)sum(chebfun(@(tau)g(t,tau),[t b] ,’splitting’,’on’,[t b]) ;
endl
Format long
a=0 ;b=1 ;n=1 ;
Alpha =@(t,tau)t.ˆ2\2;
X=chebfun(@(t)t.ˆ4,[a,b])
Exact =@(t)00000
Approximation =leftFcaputo(x,alpha,a,n) ;
For i=1:9
T=0.1*i;
E=exact (t);
A=approximation (t);
Error=E-A.;
[t E A Error]

Table 1.Error analysis for m = 1.

n = 5 n = 10 n = 15 n = 20
sup

{t∈[1,e]}
|θ{n,1}(t)− θ1(t)| 4.7692 × 10−2 6.3900 × 10−4 4 × 10−6 10−15

sup
{t∈je,e2 j}

|θ{n,2}(t)− θ2(t)| 4.6818 × 10−2 7.8299 × 10{e−4} 5 × 10−6 9 × 10−8

itbpF4.8317in3.6841in0inFigure

itbpF5.3817in3.6832in0inFigure

itbpF5.0643in3.6841in0inFigure

itbpF4.9753in3.6832in0inFigure
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Figure 1. A plot of θsln,1, βsln,1 and exact solution for n = 0, 1, 2, 10, 20, 30.
In Figure 1, We notice that when n is larger, the sequences {θsln,1} and {βsln,1} are approx-
imated to

π(ln t)2

the exact solution 3 . Moreover, in Table 1, we confirm our previous remark, because the
error approaches to 0 when n converges to +∞.For m = 2: By Theorem 3.1, the auxiliary
IVP of constant order CHFDE (4.4.4) has at least one solution ϕ2 ∈ E2 as

ϕ2(t) = I1
e+(

1
π
(
√

ln t + (ln t)4) + ϕ2(t)) f ort ∈ Λ2. (4.5.1)

In fact, we are able to observe that (ϕ2(t), ϕ2(t)) = (1, ln t + (ln t)5) is upper-lower solu-
tion to (4.6). We can calculate the sequences {θsln,2} and {βsln,2} by{

θ0,2 = ϕ2
θsln+1,2(t) = I1

e+ f (t, θsln,2(t)), n = 0, 1, . . . ,

and {
β0,2 = ϕ2

βsln+1,2(t) = I
2
3
e+ f (t, βsln,2(t)), n = 0, 1, . . . ,

for each t ∈ Λ2. We can now use Theorem 3.3 to prove θsln,2 → θ2 ∈ E2 and βsln,2 → β2 ∈
E2 as n → ∞. In the meanwhile, we may obtain t ∈ Λ2 for

β2(t) = θ2(t) = π
(ln t)5

30
.

In Table 2, we present the error (which is the sup of the absolute value of the defference)
between the sequences {θsln,2}, {βsln,2} and the exact solution for n = 5, 10, 15, 20. In Fig-
ure 2, we plot the sequences {θsln,2}, {βsln,2} and the exact solution for n = 0, 1, 2, 10, 30.
In this figure, we notice that when n is larger,

π(ln t)5

the sequences {θsln,2} and {βsln,2} are approximated to the exact solution –. In Table
2, we confirm 30 our previous remark, because the error approaches to 0 when n con-
verges to +∞. Consequently, in accordance with Theorem 4.3.4, the given nonlinear IVP
of CHFDEVO (4.4.1) has a solution

ϕ(t) =
{

ϕ1(t), t ∈ Λ1,
ϕ2(t), t ∈ Λ2,
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where

ϕ2(t) =
{

0, t ∈ Λ1,
ϕ2(t), t ∈ Λ2.

Table 2. Error analysis for m = 2.

In Figure 1, We notice that when n is larger, the sequences {θsln,1} and {βsln,1} are approx-
imated to

π(ln t)2

the exact solution 3 . Moreover, in Table 1, we confirm our previous remark, because the
error approaches to 0 when n converges to +∞.For m = 2: By Theorem 3.1, the auxiliary
IVP of constant order CHFDE (4.4.4) has at least one solution ϕ2 ∈ E2 as

ϕ2(t) = I1
e+(

1
π
(
√

ln t + (ln t)4) + ϕ2(t)) f ort ∈ Λ2. (4.5.2)

In fact, we are able to observe that (ϕ2(t), ϕ2(t)) = (1, ln t + (ln t)5) is upper-lower solu-
tion to (4.6). We can calculate the sequences {θsln,2} and {βsln,2} by{

θ0,2 = ϕ2
θsln+1,2(t) = I1

e+ f (t, θsln,2(t)), n = 0, 1, . . . ,

and {
β0,2 = ϕ2

βsln+1,2(t) = I
2
3
e+ f (t, βsln,2(t)), n = 0, 1, . . . ,

for each t ∈ Λ2. We can now use Theorem 3.3 to prove θsln,2 → θ2 ∈ E2 and βsln,2 → β2 ∈
E2 as n → ∞. In the meanwhile, we may obtain t ∈ Λ2 for

β2(t) = θ2(t) = π
(ln t)5

30
.

In Table 2, we present the error (which is the sup of the absolute value of the defference)
between the sequences {θsln,2}, {βsln,2} and the exact solution for n = 5, 10, 15, 20. In Fig-
ure 2, we plot the sequences {θsln,2}, {βsln,2} and the exact solution for n = 0, 1, 2, 10, 30.
In this figure, we notice that when n is larger,

π(ln t)5

the sequences {θsln,2} and {βsln,2} are approximated to the exact solution –. In Table
2, we confirm 30 our previous remark, because the error approaches to 0 when n con-
verges to +∞. Consequently, in accordance with Theorem 4.3.4, the given nonlinear IVP
of CHFDEVO (4.4.1) has a solution

ϕ(t) =
{

ϕ1(t), t ∈ Λ1,
ϕ2(t), t ∈ Λ2,
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where

ϕ2(t) =
{

0, t ∈ Λ1,
ϕ2(t), t ∈ Λ2.

Table 2. Error analysis for m = 2.

In Figure 1, We notice that when n is larger, the sequences {θsln,1} and {βsln,1} are approx-
imated to

π(ln t)2

the exact solution 3 . Moreover, in Table 1, we confirm our previous remark, because the
error approaches to 0 when n converges to +∞.For m = 2: By Theorem 3.1, the auxiliary
IVP of constant order CHFDE (4.4.4) has at least one solution ϕ2 ∈ E2 as

ϕ2(t) = I1
e+(

1
π
(
√

ln t + (ln t)4) + ϕ2(t)) f ort ∈ Λ2. (4.5.3)

In fact, we are able to observe that (ϕ2(t), ϕ2(t)) = (1, ln t + (ln t)5) is upper-lower solu-
tion to (4.6). We can calculate the sequences {θsln,2} and {βsln,2} by{

θ0,2 = ϕ2
θsln+1,2(t) = I1

e+ f (t, θsln,2(t)), n = 0, 1, . . . ,

and {
β0,2 = ϕ2

βsln+1,2(t) = I
2
3
e+ f (t, βsln,2(t)), n = 0, 1, . . . ,

for each t ∈ Λ2. We can now use Theorem 3.3 to prove θsln,2 → θ2 ∈ E2 and βsln,2 → β2 ∈
E2 as n → ∞. In the meanwhile, we may obtain t ∈ Λ2 for

β2(t) = θ2(t) = π
(ln t)5

30
.

In Table 2, we present the error (which is the sup of the absolute value of the defference)
between the sequences {θsln,2}, {βsln,2} and the exact solution for n = 5, 10, 15, 20. In Fig-
ure 2, we plot the sequences {θsln,2}, {βsln,2} and the exact solution for n = 0, 1, 2, 10, 30.
In this figure, we notice that when n is larger,

π(ln t)5

the sequences {θsln,2} and {βsln,2} are approximated to the exact solution –. In Table
2, we confirm 30 our previous remark, because the error approaches to 0 when n con-
verges to +∞. Consequently, in accordance with Theorem 4.3.4, the given nonlinear IVP
of CHFDEVO (4.4.1) has a solution

ϕ(t) =
{

ϕ1(t), t ∈ Λ1,
ϕ2(t), t ∈ Λ2,
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where

ϕ2(t) =
{

0, t ∈ Λ1,
ϕ2(t), t ∈ Λ2.

Table 2. Error analysis for m = 2.

n = 5 n = 10 n = 15 n = 20
sup

t∈je,e2j
|θn,2(t)− θ2(t)| 6.8509 × 10−3 10−6 6 × 10−10 10−10

sup
t∈Je,e2j

|βn,2(t)− β2(t)| 3.1123 × 10−2 10−6 10−7 10−12
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Figure 2. A plot of θsln,2, βsln,2 and exact solution, for n = 0, 1, 2, 10, 20, 30.



Conclusion

In this paper, a CAPUTO-HADAMARD fractional nonlinear differential equation of variable
order was considered and discussed. With the help of piece-wise constant order functions
on some continuous subintervals of a partition, we converted the main variable order IVP
to a constant order IVP of the CAPUTO-HADAMARD differential equation. By calculating
and obtaining equivalent solutions in the form of a HADAMARD integral equation, we
used the upper-lower solution technique to prove the relevant existence theorems. By
plotting some graphs and providing some numerical tables, we presented an example of
the variable order IVP to apply and demonstrate the results of our method. In the future,
we will extend our studies on different IVPs and BVPs (implicit, resonance, thermostat
model, etc.) with changing conditions (terminal, integral conditions, etc.) in the future.
Also, if we can define variable order tempered fractional derivative, then it will be a new
idea for this purpose .
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