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Résumé

Dans ce travail, nous énoncons les fonctions arithmétiques de base, ainsi
que les fonctions de Chebyshev. Ensuite, nous présentons les formules de
sommation célébres avec preuves. Par exemple : La formule de sommation
d’Euler et la formule de sommation partielle. A la fin, nous appliquons ces
formules pour trouver les valeurs moyennes de certaines fonctions multiplica-
tives et additives. Les valeurs moyennes de certaines fonctions arithmétiques
arbitraires sont également discutées.

Mots clés. Fonctions arithmétiques, La valeur moyenne des fonctions

arithmétiques, Moyenne ordres des fonctions arithmétiques.
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Abstract

In this work, we understand the basic arithmetic functions, as well as
chebyshev’s functions. Next, we present famous summation formulas with
proofs. For example: The Euler summation formula and partial summation
formula. At the end, we apply these formulas to find mean values of some
multiplicative and additive functions. The mean values of some arbitrary
arithmetic functions are also discussed.

Keywords and phrases Arithmetic functions, Averages order of arith-

metic functions, The mean values of arithmetic functions.
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Table of notations

We list below page numbers where various notations in the body of the text

are introduced.
Notation

Explanation
7(n), d(n) the number of divisors of n
os(n) The sum of s-th power of all divisors of n
v (n) Euler phi function
w(n) the number of distinct prime divisors of n
Q(n) the total number of prime divisors of n
d|n,dtn divides (does not divide)
p(n) Mébius function
¢ () Riemann zeta function
[x The integer part of x

The fractional part of x
The smallest positive integer > x
The greatest common divisor of two integers a and b

—a
8 8
S ———

—~
8
SN~—

s (n) The generalized Euler’s function
o(n) the sum of the divisors of n
f~g asymptotic equality

A (n) Von Mangoldt function

Y (x) Chebyshev ¢-function

6(x) Chebyshev #-function

¥ (n) The sum of A(k) over integers k < n
A(n) The Liouville function
=g f(z)/g(z) is bounded above and below

S

Big (little) oh notation
number of primes < n (or x)
The logarithm-function

3
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Introduction

An arithmetic function is defined to be a function f(n), defined for n €
N, which maps to a complex number such that f : N — C. Examples of
arithmetic functions include: the number of divisors of n, the sum of divisors
of n, Euler’s function, the number of primes less than a given number n and
the number of ways n can be represented as a sum of two squares, ... etc.
For suitable references, see [2],[4],[6], [7]. While the behavior of values of such
arithmetic functions are hard to predict, it is easier to analyze the behavior

of the averages of arithmetic functions which is defined as:

lim fO+f@2)+...+ f(n)

n—00 n

= L.

Here L is called the average value of f (n) (see, eg [T, Section 6, page 201]). So
in this work we will understand how they examine averages of several different
arithmetic functions. More precisely, we focus of the following summation

formulas:
® ) ., :summation over all positive integers < x.
® > . summation over all primes < z.

° me : summation over all prime powers p™ with p prime and m a

positive integer.
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o > djn * Summation over all positive divisors of n (including the trivial

divisors d = 1 and d = n).
o > 42|, © Summation over all positive integers d for which d?* divides n.

® >, : summation over all (distinct) primes dividing n.

We need to the following definition (see [4],[7],[5]): Let f and ¢ be func-
tions of z. The notation f =< ¢ denotes that f(x)/g(x) is bounded above
and below by positive numbers for large values of x. The notation f = O(g)
denotes that there exists a constant ¢ such that |f(x)| < cg(z). The notation
f ~ g denotes that xh_)rgof(x)/g(x) =1

While the behavior of a number theoretic function f (n) for large n is often
difficult to determine because the function values can fluctuate considerably
as n increases, it is more fruitful to study partial sums and seek asymptotic
formulas of the form

Y fn)=F(@)+0(h(),

n<z
where F'(z) is a known function of x and O (h(z)) represents the error,
a function of smaller order than F (z) for all x in some prescribed range.
Some of these arithmetic functions are called multiplicative when they satisfy
f(nm) = f(n) f (m) whenever n and m are coprime. Here, we will focus on

the following arithmetic functions:

e d: The number of non-negative divisors function.

e 0, : The sum of the s -th powers of all the non-negative divisors func-

tion, for s € R. In particular, oy = d.
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e ¢ : The Euler’s function.

An average order of an arithmetic function is some simpler or better-
understood function which takes the same values "on average". So if f is an

arithmetic function. We say that an average order of f is g if

D)~ g(n)

n<x n<x
as x tends to infinity. It is conventional to choose an approximating function
g that is continuous and monotone. But even so an average order is of course

not unique. In cases where the limit

exists, it is said that f has a mean value (average value) A. Let us study

the following facts:

e An average order of d(n), the number of divisors of n, is logn.
e An average order of o(n), the sum of divisors of n, is n7?® /6.

e An average order of ¢ (n), Euler’s totient function of n, is 3n / 7.

The average order of representations of a natural number as a sum of

three squares is 47n / 3.

e An average order of w(n), the number of distinct prime factors of n, is

log log n.

e An average order of Q(n), the number of prime factors of n, is loglogn.
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e The prime number theorem is equivalent to the statement that the von

Mangoldt function A(n) has average order 1.

e An average value of p(n), the Mébius function, is zero; this is again

equivalent to the prime number theorem.

Workplan:

In Chapter [, we introduce some basic facts and notations that will ap-
pear in the rest of this work. That is, the basic arithmetic functions and we
illustrate an example for each function. In Chapter 2], we present properties of
big-O notations and the famous summation formulas and results with proofs.
For example: The Euler summation formula, Abel summation formula and
the Maclaurin summation formula. In Chapter [3| we calculate mean values
in the case when f is a multiplicative or additive arithmetic function with

f(n) =3 f(d). Finally, in Chapter ?? we state some open problems.
dn



Chapter 1

Basic arithmetic functions

In this chapter, we state some basic arithmetic functions (see [2],[7]). First,
we state the Fundamental Theorem of Arithmetic and then recall definitions
of basic arithmetic functions and we illustrate an example for each func-

tion.

Theorem 1.1 (Fundamental Theorem of Arithmetic, see [7, p. 25] )
Every positive integer n greater than 1 can be written uniquely as the product

of primes:
n=qiq? g =] (1.1)
i=1

where q1,qo, ..., q. are distinct primes and aq, as, ..., a, are natural numbers.
The equation (1.1)) is often called the prime power decomposition of n, or the

standard prime factorization of n.

1.1 Definitions and examples

Definition 1.1 A real or complex valued function defined in the positive in-

tegers (or all integers) is called an arithmetic functions or a number-theoretic
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function.

Remark 1.1 An arithmetic function is a function whose domain is the set

of natural numbers.

We give some examples of arithmetic functions as follows and we will
discuss their properties in the following section.

1) The divisor function d.

Definition 1.2 The divisors function d(n) is defined as the number of positif

divisors of n, i.e .,

d(n) = Z 1.

dln

It is well-known that for the natural number n > 2 with canonical

ay a2 ag

representation n = ¢i¢5*...q.* (where k,ay, ..., a, are positive integers and

¢1, G2, ---q are different primes), we have
dn)=(a1+1)(az+1)...(ax +1). (1.2)

Let n = 2023 = 7-17% we have by (1.2), d(n) = (14+1)(2+1) =6.Ifnis
square-free having k distinct primes, that is, n = ¢1¢o...qx then d (n) = 2.

2) The divisor sum function o.

Definition 1.3 The divisor sum function o(n) is defined as the sum of all

positif divisors of n, i.e .,

o(n) = Z d.

dln

10
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By a well-known result, note that if n = ¢{*¢5*...q;*, where k,ay, ..., ay

are positive integers and ¢, go, ...q; are different primes, then

a(n)=]] p o1 (1.3)

i=1

Let n = 2023 = 7 - 172, clearly by (1.3))
2 ai+1 1+1 241
e B N AT |
1T _ . — 2456.
o(n) 11 pi—1 (7—1) ( 17— 1

More generally, the divisor sum function power o4(n) with (s € C and o1(n) =

o(n)) is defined as the sum of s power of all positif divisors of n, i.e .,
os(n) = Z .
dln

3) The Euler totient function ¢.

Definition 1.4 The Euler totient function ¢ (n) is defined as

p(n)= Y L

1<k<n
(kn)=1
a1 as

By a well-known result, note that if n = ¢{*¢3*...q;*, where k,ay, ..., ay

are positive integers and ¢, ¢o, ...q; are different primes, then

pn)=n]] (1 - ]19) . (1.4)

Let us take n = 2023 = 7-17%. Then by (1.4), we have ¢(n) = (7 —1) - 17 -
(17 — 1) = 1632. Note that ¢(p) = p — 1 if and only if p is prime. Here is a

short table of values of ¢:

n 112131456 [7[8]9]10
en) | 11]212(4]2]|6|4]6|4
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Note if n is a prime number, then ¢ (p) = p — 1 and if n is a prime power,

say n = p® then ¢ (n) =p**(p—1).
4) Mobuis function p(n).

Definition 1.5 The Mdébuis function p(n) is defined as follows :

1, if n=1,
pn) =< (=17, if n = pips...p, with distinct primes p;, (1.5)
0, otherwise.
Let n = 2023 = 7 - 172, then by (1.5) u(n) = 0. If n = 2027 - 2029, then
p(n) = 1. Note that u(n) = 0 if and only if n has a square factor > 1. Here

is a short table of values of p:

n |1]2 [3 [4]5 [6]7 [8]9]10
pfn) [1] =1 =1]0|-1]1|-1]0]0]1

5) Von Mangoldt function A(n).

Definition 1.6 The von Mangoldt function A (n) is defined as follows:

[ logp, if n=p*, k> land p prime,
An) = { 0, otherwise. (1.6)

Let n = 2023 = 7-17% By (1.6), we see that A(n) = log(7 - 17%) =
log7 + log (17%) = log7 + 2log17 = 7.6123. We also have the following

lemma:

Lemma 1.1 (see [2]) For everyn > 1, one has

Z A (d) = logn.

d|n

12
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ai a2

Proof. Let n = ¢ ¢52...q;*, where 2 < ¢; < g2 < ... < ¢ are distinct primes

and aq, as, ..., a; are positive integers. We write

k
Z A(d) = Z a; (log ¢;) = logn.
dln i=1

The proof is finished. m

6) Number of prime factors w(n).

Definition 1.7 The omega function w(n) is defined as the number of distinct
prime factors of n, i.e.,

w(n) =r, (1.7)

where n = pi*ps?...p% is the prime-power decomposition.

Let n = 2023 =7-17* , we have w(n) = 2.

7) Total number of prime factors (n).

Definition 1.8 The omega function Q(n) is defined as the total number of

prime factors of n, i.e.,
Qn) =a +as + ... + a,, (1.8)
where n = pi*ps*...p% is the prime-power decomposition.

Let n = 2023 = 7- 172, we have Q(n) = 3.
8) Liouville function A (n).

Definition 1.9 The Liouville function X\ is defined as follows :

An) = (—1)%0, (1.9)
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Let n = 2023 = 7- 172, we have \(n) = —1.

9) Riemann zeta function ((s).

Definition 1.10 Let s = o + it € C. For 0 > 1, the Riemann zeta function
((s) is defined by the series

C(s) = k= (1.10)

ns’
n=1

10) Prime-counting function 7 (z).

Definition 1.11 The prime-counting function is the function counting the
number of prime numbers less than or equal to some real number x. It is

denoted by w(x) (unrelated to the number 7).

As an example, for 7 (10) = 4. Of great interest in number theory is the
growth rate of the prime-counting function. It was conjectured in the end of

the 18th century by Gauss and by Legendre to be approximately z/logx,

m(x)

logz = 1 as x tends

where log is the natural logarithm, in the sense that lim

to infinity.

1.2 Multiplicative functions

An important class of arithmetic functions are multiplicative functions de-

fined as follows.

Definition 1.12 An arithmetic function f which is not identically zero is

said to be multiplicative if

f(mn) = f(m) - f(n) (1.11)

14
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whenever (m,n) = 1. Moreover, if (L.11)) holds for all m,n, then f is called

completely multiplicative.
We have the following property of all multiplicative functions.
Proposition 1.1 If f is multiplicative, then f(1) = 1.

Proof. Since f is not identically zero, there exists n € N such that f(n) #
0.We have f(n) = f(n)f(1) as f is multiplicative. Hence, f(1) =1. =

Proposition 1.2 (see [2]) The function ¢ is multiplicative.

Proof. For any m,n € N such that (m,n) = 1, we need to prove p(m-n) =
©(m)p(n). Assume m = pPps>..p% and n = ¢'¢%...¢% with p;, ¢; are
distinct primes and a;,b; € N. By (1.4), we have

S

plm-m) =mn [T 1= 2 =m J[1=—)-n (1= =) = (m)(n).

plmn

This completes the proof. m
Proposition 1.3 The functions d,o, os and p are multiplicative.

The Mobius function arises in many different places in number theory.
One of its fundamental properties is a remarkably simple formula for the

divisor sum }_ ., fi(d).
Theorem 1.2 (see |2]) Ifn > 1, then we have

Sty =1 ={ ¢

otherwise.
dn

15
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Proof. If n = 1, then both sides are equal to 1. If n > 1, then we can write

n = pi'p5*...p¢. By definition and Proposition [1.3] we have

dowd) = D> Y p )

d‘n 0<c1<a; 0<ca<asg 0<cr<ar

= > > D> oot (pS7)

O<cl<1 0<c2<1 0<cer<1

:HZ ﬁ1—1) 0.

i=10<¢; <1

This proves the theorem. m
Theorem 1.3 (see [2]) Ifn > 1, then we have
n
= d)—.
> nld)~
din
Proof. By Theorem [1.2] we have

=2 1=2 1) ud

1<k<n 1<k<n d|(n,k)
(k,n)=

Exchanging the order of the sums above, we get

as claimed. m

Theorem 1.4 (see [2]) Ifn > 1, then we have

n=">od)

din

16
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Proof. By Theorem [I.3] we have

SEUED SHIITUEED W IED D ACP

dln dn ld din ld lln ldn

Making a change of variable k = | d, we get

Yoed)y= 1> ulk)

din lin  kn/l
By Theorem [I.2] we also have

> e(d)=>"1-I(nfl) =n.

dn lln

This completes the proof. m

1.3 Additive functions

Definition 1.13 An arithmetic function f which is not identically zero is

sard to be additive if

f(m-n) = f(m) + £ (). (1.12)
whenever (m,n) = 1. Moreover, if holds for all m,n, then fis called
completely additive.

Proposition 1.4 The function w is additive and the function ) is completely

additive.
Proof. Write m = pi*...p% and n = qll’l...qgs with prime p; , ¢; and positive
integers a;, b;. Clearly, If (m,n) =1, then w(m -n) =r+s =w(m) +w(n).

Moreover, we have Q(m -n) =3 a; +3_;0; = Q(m) +Q(n). =

Remark 1.2 The function logn is completely additive, since log(m -n) =
logm + logn. In [3], Erdds proved that if a function f(n) is additive and

increasing then there is some o > 0 such that f (n) = alogn.

17
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1.4 Chebyshev’s Functions

The first, denoted 0(x) or ¥ (x), is defined for a real variable x by

0(x) = logp (1.13)

p<w

where log denotes the natural logarithm, with the sum extending over all
prime numbers p that are less than or equal to . As an example, 6 (10) =
log2 + log 3 + log 5 + log 7.

The second Chebyshev function v (z) is actually the summation function

of A(n). That is,
Y(z)=> A(n). (1.14)

n<x
As an example, 1 (10) = 3log2 + 2log3 + log5 + log 7. This function is
defined similarly, with the sum extending over all prime powers not exceeding

x. Further for a given prime p < z the number of times logp is counted in

the sum for ¢ () is [igﬂ . Hence, ¥ (z) can also be expressed as

There are certain immediate relationships between these three functions. We

have the following corollary:
Corollary 1.1 For xz > 5, we have
0(x) < v (2) < 7 (2) log.

Proof. First, if p* < z then p < z so clearly 6 (z) < 1 (z). Further since

1 < logp for p > 3 we have 7 (x) < 0(z) for z > 5. Now if p¥ < z then

18
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k< [ng] It follows that

logp

Qp(x):Zlogp:Z Zl logpzz{Ing}logp:Zng:ﬂ(x)logx.

lo
k<a p<z |\ pk<zx p<z &P p<x
k>l k>1

Therefore, ¢ (z) < 7 (z)logxz. =

19



Chapter 2

Summation Formulas

The basic idea for handling the sums ) _ . f(n) is to approximate the sum
by a corresponding integral and investigate the error made in the process.
The following important result, known as Euler’s summation formula, gives
an exact formula for the difference between such a sum and the corresponding
integral. In fact, these notions are some tools from real analysis and are found

in [I], [7], [8] and [5].

Theorem 2.1 (Euler’s summation formula [1]) If f has a continuous

derivative ' on the interval [y, x], where 0 <y < x, then

> s = [ @des [ =05 0 e @) () -0 ) (6] - v).

(2.1)

where [t| denotes the integer part of t.

Proof. Let m = [y| and k = [z]. For integers n and n — 1 in [y, 2] we have

/[t]f’(t)dt - /<n—1>f'<t>dt=<n—1>{f<n>—f<n—1>}

= {nf(n)=(n=-1)f(n=-1}—f(n).

20
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Summing from n = m + 1 to n = k, we obtain :

[arwa = [wrwas [Wraas.+ [ro
= Y {afm)-m-Dfm-1}- Y fn)
= > f)-m-Dfn-D}- > f®n)

n=m+1 y<n<z
= kf(k)—mf(m)— > f(n).

Therefore,

X fm) = -

(1] f* (t) dt + kf (k) —mf (m) (2.2)

1] S (t) dt + kf (x) —mf (y).

S R

Integration by parts gives us
z k
[t =at@) =yt~ [ e @ar

and when this is combined with we obtain ([2.1)). The proof is finished.
|

In most applications, one needs to estimate a sum of the form ) _ f(n),
taken over all positive integers n < x. In this case, Euler’s summation formula

reduces to the following result:

Corollary 2.1 (Euler’s summation formula, special case) Let z > 1

and suppose that f(t) is defined on [1,x] and has a continuous derivative on

21
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this interval. Then we have

/f dt+/ (E—[0) F ()t + f (2) (2] — 2) + £ (1).

n<z

Theorem 2.2 (Euler-Maclaurin formula [1]) Let a < b and a, b € Z.
Let f : [a,b] — C. If f is of class C'on [a,b]. Then we have

S g0 = [ () + W@ @+ 350) - 1),
a<n<b
where Vq(z) = x — [x] — 1/2 is the saw function.
Proof. Let n € Z such that a < n < b. By integration by parts, we have
n+1 n+1
/ Uy (x)f' (x)dx = / (x —n—1/2)df ()
~ o= n- 2@ - / fla)ds

1
= 2(fn+1 + f(n / f(x

So we obtain

> 1= [ () + B @i + 500 - (@),

a<n<b

as claimed. m
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Theorem 2.3 (see [T, p. 206]) Let a and b be integers with a < b, and let
f(t) be a function that is monotonic on the interval [a,b]. Then

b

b
min (f (a), f (0)) < Y f (n) —/ f(#)dt <max(f(a), f(0)).  (2.3)

Let © and y be real numbers with y < [x], and let f(t) be a nonnegative

monotonic function on [y, x]. Then

/ F(t)dt| < max(f(y), f(x). (2.4)

y<n<$

If f(t) is a nonnegative unimodal (increasing or decreasing) function on

[1,00), then

Flz) = /f )dt + O(1 (2.5)

n<x

Proof. If f (¢) is increasing on [n,n + 1], then

<[ rwas ey 26)

Moreover, if f(t) is increasing on the interval [a, b], then

/ £t dt+. +b1f dt<2f )< F (b / () di+. +/blf(t)dt

and so
/f dt<2f )< f(b /f (2.7)

If f(t) is decreasing on [n,n + 1], then
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Moreover, if f(t) is increasing on the interval [a, b], then

b
/ f () dt+.. +b1f dt<Zf )< fla / f(t)dt+.. +/b1f(t)dt
and so

/f dt<2f )< fla /f (2.9)

Thus, . follows immediately from . and . [ ]

Summation by parts (also called partial summation or Abel summation)
is the analogue for sums of integration by parts. Given a sum of the form
> n<z @ (n) f(n), where a(n) is an arithmetic function with summatory func-
tion A(z) = >, ., a(n) and f(n) is a “smooth” weight, the summation by
parts formula allows one to “remove” the weight f(n) from the above sum
and reduce the evaluation or estimation of the sum to that of an integral over

A(t). The general formula is as follows:

Theorem 2.4 (Partial Summation, [1],[7]) Let f(n) and g(n)be arith-
metic functions. Consider the sum function
=> fn
n<x
Let a and b be nonnegative integers with a < b. Then
b b—1
Y f)g(n) = F(b)g(b) = Fla)gla+1) = Y F(n)(g(n+1) - g(n)).
n=a+1 n=a+1
(2.10)

Let x and y be nonnegative real numbers with [y] < [z], and let g(t) be a
function with a continuous derivative on the interval [y, z]. Then

S () = Flalg(o) - Fwtv) - | CFigdmd. (211)

y<n<z
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In particular, if x > 2 and g(t) is continuously differentiable on [1,x], then

> f ) glm) = Folgla) ~ [ Flt)g/@)ar (2.12)

n<z

Proof. Identity (2.10) is a straightforward calculation:

b

> fn)gn) = Z (F'(n) = F(n —1))g(n)

= Z ZF g(n+1)
= FO)gb) - Fl@gla+1)— 3 Fla)(gln+1) — g(n))

If the function g(t) is continuously differentiable on [y, z], then

g+ 1)~ glm) = [ " wat
Since F(t) = F(n) for n <t < n+ 1, it follows that
Fn){gln + 1)~ gfn)) = [ P (Wt

Let a= [yl and b= [z]. Sincea <y <a+1<b<xz<b+ 1, we have

Y fygn)= Y fln)g(n)

y<n<z n=a-+1

= F(b)g(b) — Fa)g(a+1) — Z_: F(n)(g(n+1) = g(n))

— Fla)g(t) - Z /

= F(x)g(r) — F(y)g(y) — F(z)(g(z) — g(b)) — F(y)(gla+1) — g(y))

_ / ; Ft)g ()t
~ Flalg(o) - Flo)aly) - [ "Fl)g (1)t
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This proves (2.11]).

Finally, if > 2 and ¢(t) is continuously differentiable on [1, z], then

Y f)gn) = fWg)+ Y fln)g(n)

n<zx 1<n<z

— WD)+ Fllg(e) - F1)g() - | " (g (1)t
= Fla)g(z) - / ") (1)

This proves (2.12)). m

2.1 Definitions and notations

First, we focus on some notations and their explanation (for details one can

see (11, [41, 161, [71):

Definition 2.1 Suppose that f (x) and g (x) are two real-valued functions.
Then

1. f(z) =0(g(x)) (read f (x) is big O of g (x)) or f(zx) < g(x) if there

exists a constant A independent of x and an xy such that
f(x) < A-g(x) for all z > x,

or

If (x)] < A-g(x) for all x > xy,

2. f(x)=o0(g(x)) or f(z)=<g(x) (read f () is little 0 of g(x)) if
f(x)

—= =0 asx — 0.
g(z)

In other words g () is of a higher order of magnitude than f(z).
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3. If f(x) =0(g(z)) and g (z) = O(f (x)), that is, there exist constants

Ay, Ay independent of x and an xy such that

Ap-g(x) < fx) < Ay-g(x) for all x > xo,

then we say that f (z) and g (z) are the same order of magnitude and

write
f(2)=Og(2) or f () = g(x).

In addition, we say that g is a normal order of f if for every e > 0, the
imequalities

(I1—-¢e)g(z) < f(r) < (1+e¢)g(x)

hold for almost all n. That s, if the proportion of n < x for which this

does not hold tends to 0 as x tends to infinity.

4. 1f
f(z)
g(x)
then we say that f(x) and g(z) are asymptotically equal and we

—1lasx — x©

write

flx) ~g(x).

Definition 2.2 f(n) = O (g (n)) if there exist positive constants ¢ and N
such that f(n) < cg(n) for alln > N.

Example 2.1 For x € R, we have [x] ~ x, sinx < z, sinz = O(1), 2 +
sinz =< 1, Vo = o(z), 2F = o(e®) for every constant k and log® x = o(z®) for

every pair of constants k and o > 0.
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2.2 Some properties of big-O notations

Properties of Big-O[| Notation (see [1],[4].[6],7].]2])

We can easily prove the following facts: z € O (x), 3z € O (z), x € O (z?),
10z +5 € O (2?) and O (z) C O (2?).

Transitivity. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
If f(n) =0O(h(n)) and g(n) = O(h(n)), then

f(n) +g(n) = O(h(n)).

e a-nfF =0 (nk).
e The function n* = O(n**7) for any positive j.
e 2n? + O(n) = O(n?).

e Every polynomial is big-O of n raised to the largest power: 2n3 + 7n? 4
1=0(n?).

o If f(n) = cg(n), then f(n) = O(g(n).

e log,n = O (log,n) for ever positive numbers a,b # 1.
e log,n = O (logyn) for any positive a # 1.

e 10is O (1) and 2023 is O (1), and so on.

e 5000000n € O (n) and 0.000005n € O (n) .

It fi(n) = O(g1(n)) and fo(n) = O(ga(n)), then fi(n) + fa(n) =
max (O (g1(n)), O (g2(n))) and fi(n)fa(n) = O(g1(n)) O(g2(n)).

'Big-O expresses an upper bound on the growth rate of a function, for sufficiently large
values of n.

28



UNIVERSITY 8 Ma1 1945-GueELMa, ZITOUNI. NAIMA DEPARTMENT OF MATHEMATICS

e f(n)=2"and g(n) =3" Then f(n) = 0(g(n)).
e f(n)=loglogn and g (n) =logn. Then f(n) = 0(g(n)).

o If fis O(g), the f+gis O(g). If fi, fa,..., fr are each O (g), then
fit fat 4 fiis O(g).

e 2n%+3n+1 = 2n?4+0(n) means that there exists a function f(n) € O(n)
such that 2n% + 3n + 1 = 2n® + f(n).

e If h € O(g) and g € O(n?), then h € O(n?).
o If fi € O(g1) and fa € O(g2), then fi + fo € O(max{gi, g2})-
o z]=2+0(1).

e f(xz) = O(1). This simply means that f(z) is bounded for sufficiently
large x (or for all x in a given range). Similarly f(x) = o(1) means that

f(z) tends to 0 as x — oo.
o If f(z) = g(x) + O(1), then ef® < €9 and vice versa.

o If f(x) = g(x) + o(1), then e/ ~ ¢9®) and vice versa.

1

n+
is a normal order of log (n + 1).

1
is a normal order of —, n is a normal order of n + 1 and log (n)
n

Definition 2.3 f(n) = Q(g(n)) if there exist positive constants ¢ and N
such that f(n) > cg(n) for alln > N.

e Note the equivalence f(n) = Q(g(n)) if and only if g (n) = O (f (n)).
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Definition 2.4 f(n) = ©(g(n)) if there exist positive constants c1,co and N
such that c1g (n) < f(n) < cag(n) for alln > N.

Note that f(n) = O(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Q(g(n)). In general, big-O includes the following terms:

O (1) constant
O (logn) logarithmic
O ((logn)) polylogarithmic
O (n) linear
O (n?) quadratic
O (n°) polynomial
O (c") exponential

We need to use the following lemma:
Lemma 2.1 We have

1. Y 1=z+0(1).

d<z

2. > 0(1) =0 (x). In particular, O (1) + ... + O (1)

p<z

=0 (n).

n-times

Proof. 1. By definition, we have = = [z] + {z}. It follows that
S 1=kl=r—{s} =z +0().
d: d<z

since 0 < {z} < 1.

2. Also if we put f = O (1) (this means that f is bounded), then

Yo =[z]f=0(@),

p<zx

30



UNIVERSITY 8 Ma1 1945-GueELMa, ZITOUNI. NAIMA DEPARTMENT OF MATHEMATICS

2.3 Applying Euler’s summation and Partial
summation formulas

Euler’s summation formula has numerous applicationg?in number theory and
analysis. We will give here three such applications; the first is to the partial

sums of the harmonic series. See the references [4], [7], [5].

Theorem 2.5 (Partial sums of the harmonic series, [1]) For everyxz >

1, we have

1 1
Z—:logx+fy+0 -1,
n x

where vy is the Euler’s constang)

2An important application of Euler’s summation formula is a proof of the socalled
Stirling formula, which gives an asymptotic estimate for n!. This formula will be an easy
consequence of the following estimate for the logarithm of n!, logn! = 3 logm, which is
m<n
a sum to which Euler’s summation formula can be applied.
3The number v = 0.577... is called Euler’s constant. A famous unsolved problem in

number theory is to determine whether « is rational or irrational.
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1
Proof. We take f (t) = n in Euler’s summation formula, which has a con-

tinuous derivative on the interval [y, z] with 0 < y < z, to get

Y f) = /xf(t)dtJr/m(t—[t])f'(t)dt+f(:v)([af]—x)—f(y)([y]—y)

o /””@_/xt—Jt]dH[x]—x_([y]y—y)
[ /”‘ e
_ / dt 1 t— iv—[]
e [ HdHHO(;)
e [ e [T o (1)

The improper integral [~ t;[t]

dt exists since it is dominated by [~ %dt. On

the other hand, we see that

og/ t_[t]dt</ @:1‘
. 12 s U x

1 1
Z—:loga:+7+0<—>,
n x

n<x

<[
=1- dt.
-

Setting x tends to infinity, we get

_ 1
v = Jim (Z;—W»

n<z

It follows that

where

so 7 is also equal to Euler’s constant. m
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In view of (1.10]), which gives the definition of Riemann zeta function.
As an application of Euler’s summation formula, we now derive an integral
representation for this function. This representation will be crucial in deriving

deeper analytic properties of the zeta function.

Theorem 2.6 ([1]) Ifz > 1, then

1

0) Yo s = 5= +C(s) +O(x*), for s >0 with s # 1, where

s

> #, if s> 1
(s) = { /

lim (Y, —35), if0<s<1

T—r0o0

b) Yow s =O0(x'79), for s > 1.

¢) Ypeun = L5 + O(@), for a > 0.

Proof. We prove this theorem as follows:

S.

a) We apply the Euler’s summation formula with f(z) =z~

1 1 Tt -1t x — [x]

— = [ —dt- dt+1—

ns [ s S[ ts—i—l + €xrs
xlfs

_ ! +1—s/mt_ﬁur+0@*)

n<x

1—s5s 1—3s s+l
Therefore,
L2 (9 40 (2.13)
=1 Y(s x %), .
n<x
where
1 <t — 1t
7(8):1—1—_5—8/1 t5+1 dt

Now we have to divide into two cases:
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If s > 1, _ L approaches ((s) as © — oo and the term x'~* and

n<zx ns
x~° both approach 0. From the definition of ((s) and the fact that ~y(s)
does not depend on z, by making z tend to infinity in (2.13]), we obtain
that y(s) = ((s) if s > 1.
If instead 0 < s < 1 and as above taking x tend to infinity in (2.13)),
we have that z7®° — 0. By the fact that v(s) doesn’t depend on = we

1 xl—s
li - _ — .
Jim <n 1_s> 7(s)

Therefore, by definition, y(s) is also equal to {(s) if 0 < s < 1.

can see that

b) To prove (b) with s > 1 we use (a). In fact, we see that
1 1 s

> == E = T 0 = 0

since 7% < gl°.

c) We use Euler’s summation formula once more with f(t) = ¢, we obtain

> ot = /mtadtJroz/xt“1(t—[t])dt+1—(m—[x]):c°‘

n<x
a+1 1 x
. +0 (a/ t“‘ldt> + 0 (z%)
1

a+1_a+1
.Z'OH_I

= O (x%).
arit (%)

This completes the proof. m
Next, we apply Theorem [2.3] In fact, we can prove that:

Proposition 2.1 ([7]) For x > 2, we have

Zlogn =zlogz —x + O(log ).

n<x
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Proof. The function f(t) = logt is increasing on [1,z]. By Theorem 2.3 we

get

/ log tdt < Zlogn §/ log tdt + log z,
1 1

n<x

and so

Zlogn =zlogx — x + O(log x).

n<x

This completes the proof. m

As an application of Abel’s summation formula, we have

Theorem 2.7 ([1]) We have

Z # =logz + O(1).

n<x

Proof. Apply Abel’s summation formula with a, = 1 and f(n) =

Then

Zlogn = Lleog:c—/le%Jdu
= (x—(x—txj))logx—/oowdu

fu—u

= xlogx—l—O(logx)—(:v—l)—l—/ "
1

= xlogzx —z+ O(logx).

35

du)

log n.
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Also we have

By (2.14),

hence

Thus,

> logn = 1og<LxJ!>=Z<°ol L%J)logp

n<z nlz p<z

> logn =12y A(n) = O().

n<x n<x

zlogz —z+ O(logz) =z Y _A(n) — O(),
n<zx

xZM = rlogz + O(x).

Z # =logx + O(1).
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Chapter 3

Average values of arithmetic
functions

In this chapter we focus on Mean values of Multiplicative and Additive Arith-

metic Functions. Let us start with the following definition:

Definition 3.1 ([I]) Let f be an arithmetic function. Then the mean value
(or the average value) of f over the interval [1,x] is defined to be
o(r) = ).
n<a
If lim, o g(x) exists, then the limit is called the asymptotic mean of f. In
addition, if g is a monotone function such that

o) ~ - 37 1)

Here, we say that g(n) is an average order of f(n).

In other words, let f be an arithmetic function and let g(z) be a monotonic

increasing function of x. We say that g(n) is the average order of f(n) if

Y () =zg(2) +o(xg ().

n<x
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Note that in Chapter [2| (see Theorem [2.5)) we showed, by application of

1. logn
partial summation that the average order of — is 5% 1 this section we

n n
will give the true order of magnitude of 7, ¢ and . We need to present the

following lemma:

Lemma 3.1 (see [6]) Let f(n) be an arithmetic function and

F(a)=Yf(n).

n<x

Then

S F()=Xr@[g] =3 @,

m<z d<z n<z dn

Proof. We see that

ZF(%) = > > f =) f@

m<zx m<z dg% dm<zx
= Y@ 1= @[3
d<z mgg d<z
= 2.2 /@
n<z dn

Thus, we have

S E(S) = f@D=3 (.

m<x dm<z n<z dn

3.1 Average order of d(n)
Theorem 3.1 ([7]) Let d(n) be the divisor function. We have:

(a) The relation d(n) < log®n is false for every constant c.
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(b) The relation d(n) < n® is true for every fived § > 0.

Proof. We prove (a) Let n be any of the numbers (2-3...p,)™, m = 1,2, ...;
here r is arbitrary but fixed. Then
dn) =J(m+1)=(m+1)">m"
pln
But m = logn/log(2 - 3...p,), so that
log" n
(082 3..0))

where the implied constant depends only on r, and not on n.

d(n) >

,
- > log" n,

For the proof of (b), let

iy = 1.

We see that f is multiplicative. But f(p™) = (m+1)/p™, so that f(p™) — 0
as p™ — oo, that is, as either p or m, or both, increases. This clearly implies

that f(n) — 0 as n — oo, which proves the assertion. m

Theorem 3.2 ([7]) We have

Zd(n) =zlogz + O (x).

n<lz

Proof. By definition, we get

Y = XX 1= Y 1=-Y ¥ 1= [4]

n<z n<z d|n d<z e: de<zx d<z e: egg d<z
x 1
> (3+0(1)) =) - +0()
d<z d<z

= z(logz+0 (1)) + 0 (x)

= zlogx+ O (x).
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This means that
1
— 5 d(n) =logzx + O (1) ~logx,
T
n<x

as  tends to infinity. Thus, the average order of d (n) is logn. =

Remark 3.1 The average order of the number of divisors of natural numbers
grows like logn. That 1s,

d(1) +d(2) + .. + d(n)

~ logn.

In fact, let k be a fized integer. If we list the multiples of k less than or equal
to n:

we find that there are [%} multiples, where [t] denotes the floor function.

Each of those multiples contributes 1 to the sum d(1) + ... + d(n). If we

examine multiples of all integers k < n, it follows that summing over k gives

zn: [%} = d(1) + ... + d(n)

k=1

Now, we want to prove that

n—oo nlogn

First, we establish the relationship:

n n n
——1 - < -
k [k] ~ k
Summing over k gives:
k k1~ k
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We then factor out n to get:

n

23 (a) <2 [ =y

k=1

The first and the last term in the above inequality can be rewritten as the
11 "1
n/ (— — —> dt and n/ —dt.
1 t n 1t

nlogn —n+1< Z [%] < nlogn.

integrals

Integrating gives

So taking n — oo, we have

> [7]

lim =1.
n—oo  nlogmn
and so,
1 2)+ ...
d(1)+d(2) + ... +d(n) ~ logn.

n

3.2 Average order of o (n)
We have:

Theorem 3.3 ([1]) For every x > 1, we have

Zal(n) = %C(Q)ﬁ—l—O(a;log(x))

n<x
2

= 224 0(xlog(z))

12
Proof.
2 =22 a=2 a=2. 20
n<zx n<z g|n qd<x d<z ¢<%
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By (c) of Theorem we have

S - DG +0(6)

nlx d<z

By Theorem [2.5{and (a) of Theorem we get

_ %2 (—é 1@+ 0 (%)) +0 (xlog ()
_ %{(2)x2 +0 (xlog (x)),

Note that Y, & = ((2) = %2. This completes the proof. =

3.3 Average order of ¢ (n)

Applying Theorems [1.3] and [2.6| we calculate the average order of ¢ (n) .

Theorem 3.4 ([1],[7]) For x > 1 we have

3

_ 2
ng(n) =5 + O (zlogz).
n<x
. . 3n
That is, the average order of ¢ (n) is -
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Proof. The method is similar to that used for the divisor function. At first,

we have

S = ¥ a@s =Y ude=3 Y pde=Y pud Y e

n<z n<z dn e,d d<z e: ed<z d<z ere<y

d<x

- %2{%+O<é)}—l—0(xlogx)

3
= pr + O (xzlogz).

The proof is finished. m

3.4 Average orders of w(n)

Based on the following theorem, we present the average order of w (n). We

will use the result:

Theorem 3.5 ([1]) We have

Z%} =log (logz) + O (1).

p<z

In addition, by Theorem [2.2] we have

Z logn = / (logu + \Dl(u)%)du + O(log z).
1

n<x
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Since |W;(u)| < 1, we have
v 1 1
Uy (u)—du < —du = O(log x).

1 u 1 u

Note that
/ logu du = [(ulogu — u)]] = zlogz — z + 1.
1

Now, we have:

Theorem 3.6 ([7]) We have

Zw(n) = xlog (logz) + O (z) .

n<z

Proof. We can write

dwl) = 3 Y 1=3 > 1=> > 1=> > 1

n<x n<z p: p|n p<x nlgx p<z e: pelx p<z e: e§%
pin
x 1
S (—+0(1)) =Y o,
p<w p p<z p
since Y~ O (1) = O (z). By Theorem , we obtain
p<w

T
Zw(n) = zlog (logz) + vz + O <logx) ,

n<x
where -y is the euler’s constant. Thus, the average order of w (n) is log (logn).
u
In view of 7, p. 283], applying Chebyshev’s theorem and Mertens’s the-

orem, we state the following two results:
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Theorem 3.7 ([7]) For every x > 2,

Zw ) =xzlog logx)+C'x+O( * ),

log

n<x

where C' s a positive real number.
Similarly, we have

Theorem 3.8 ([7]) For every xz > 2,

Z w z (log (log 7))* + O (xlog (log z)) .

n<x

3.5 Average orders of some other arithmetic
functions

By some summation techniques we can verify the following results (see [I],[4],[6],[7]):

Note that by Proposition we have:

Zlogn:xlogx—x—i—O(l). (3.1)

n<x

Theorem 3.9 (see [7]) We have
Zlogp [ 1 =zlogz + O (x).
Proof. As before, by Lemma [I.1] we see that

Ylogn=Y"YA@) =A@ Y 1= A [ﬂ
n<x n<z d|n d<z e: pe<z d<z

Thus,
S A E} = zlogz —x+0(1),

d<z
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where

> Ad) [3} = > logp

d<zx p<lz

> logp

p<z

> logp

p<w

= Zlogp

p<z -

> logp

p<z

< Zlogp

p<w

< Zlogp

p<z

+Z Z logp{ ]

+Z Z ;Elogp

k>2 p: ph<z
—l—leogp(iik)
p k
—i—xz Ing
- 1
e

=R

L

IN

=R

IN
S

SR

IA
SILy
3
’B
IN
8
3
L

8
—_

L
3
|

I

YRS

Thus,

rlogz — x4 O (1 Zlogp{ ] O (x)

p<lz

and hence

Zlogp[ } = zlogz + O (z).

p<zx

As an application of Lemma [3.1] we have

Theorem 3.10 ([7]) For x > 2, we have

Z@D (%) = ZA(CZ) [3} =zlogz —x + O(log z).

m<z d<zx
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Proof. Let f(n) = A(n) in Lemma [3.1, we have

F(z) =Y Aln) = ¢(),

n<x

and so

= xlogz —z+ O(log ).
The last identity comes from (3.1). m

3.6 Series of reciprocals of the primes

Let us use the following lemma [4].

c1x

Lemma 3.2 (Chebyshev’s estimate) <m(x) < ICQ—x, forallz > 2
0gx

log
(c1,co are constants).

Theorem 3.11 (see [4]) There exists positive constants By By such that
Binlogn < p, < Bynlogn.
Equivalently, p, < nlogn.

Proof. Let p, be the n-th prime. Then clearly m(p,,) = n. From Chebyshev’s

estimate

Pn

= <A

, for all n > 2.

n
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This implies

1
—nlogp, < pn, for all n > 2.
A

However, p, > n and so

1 1
A—inogn < A—2nlogpn < pn, for all n > 2.

Therefore, in general we write
Binlogpn < pn

for all n > 2 with By = 1/A,. In the other direction, we have

Pn

= n) > A )
n = 7(pn) 1logpn

Since p, > n it follows that logﬁ — 0 as n — oo. Therefore, there exists a

constant £ such that
log p,

V/Pn

< Ay ifn>k.

Hence
log pn S A > log pn
Pn \VPn
It follows that n > |/p, and so logp, < 2logn if n > k. Let

ifn > k.

n

B :max{i P2 P3 Pr—1 )
? Ay’ 2log?2 3log3’ " (k—1)log(k — 1)

Then

pn < Banlogn for all n > 2.

The proof of Theorem is finished. m
The above result also provides a very simple proof of Euler’s Theorem

which state that the series Zp% diverges.
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Corollary 3.1 (J2]) The sum
Z 1
» p
diverges.

from the last theorem. However the

Proof. For n > 2 we have — < B 1
Pn nlogn

series » >~ #gndiverges by the integral test. m
Althought there are infinitely many primes and Z diverges it still
diverges very slowly. Using the methods applied in the proof of Chebychev’s

estimate we can actually bound the growth of the series of reciprocals of the

primes.

Theorem 3.12 (see [4]) There exists a constant k such that

1
Z — < kloglogx if = > 3.

2<p<lz
Proof. From Theorem we have p, > Binlogn. Therefore,

7(x) [z]

1 1
Z Z ZBlnlogn ERZinOgn.

2<p<x n=2 P

1 _/” dt </” dt
nlogn J, ;nlogn = J, | tlogt

since —— < = on [n — 1,n] if n > 3. Then
nlogn tlnt

However,

[] [z]
1 1 1 "oodt
g - < = E < + 5 g /
—~ nlogn = 2Bylog2 B —~ tlogt

2<p<x

and so

L1 1 / @t L glogs + — L loglog 2
- _— + — — = —loglogx + ———— oglo
p = 2Bjlog2 By Jy, tlogt DB 608 2B, log2 31 8108

2<p<lz

1
= 5 loglogx + C' < kloglogx.
1

49



UNIVERSITY 8 Ma1 1945-GueELMa, ZITOUNI. NAIMA DEPARTMENT OF MATHEMATICS

1
2B log?2

We finish this work by the following important Mertens Theorems [4],[6],[7]:

taking k large enough, where C' = B% loglog2. m

e For z > 1, we have

Z logp _ logz + O (1).

p<z

e There exists a constant C' such that

1 1
Z—zloglogaf—i-C’—i-O( ),
D log x

p<z

for x > 2.

e Mertens’s formula. There exists a constant ¢ such that for x > 2,

1T (1—1)1 = ¢“logz + O (1).

p<z p
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Conclusion and Open Problems

We state three famous open questions on the subject. One can see the refer-

ence [6].

e Are there infinitely many prime pairs? Find an asymptotic formula
for the number of prime pairs < z. That is, we ask if there exists an

increasing function g such that

Y 1~g(a)
lp—q|=2
P,q<z

for all sufficiently large =, where p, ¢ are prime numbers.

e We ask if the number of perfect numbers| < n is < clogn.

N%.Tha’c is, 243 -5+7—11+

'We say n € N is a perfect number if o(n) = 2n, which means the number is equal
to the sum of its proper divisors. For examples, 6 and 28. It was of great interest of the
Greeks to determine all the perfect numbers. It was known as early as Euclid’s time that
every number of the form n = 2P~1(2P — 1), in which both p and 2p — 1 are prime, is
perfect.

o1
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