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Abstract

The aim of this work is to study that the existence of solution of stochastic fractional di¤eren-

tial equations with Lévy noise is established by the Picard-Lindelöf successive approximation

scheme. The stability of nonlinear stochastic fractional dynamical system with Lévy noise is

obtained using Mittag Le­ er function. Examples are provided to illustrate the theory.
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Résumé

L�objectif de ce mémoire est d�étudier que l�existence de solution d�équations di¤érentielles

fractionnaires stochastiques avec le bruit de Lévy est établie par le schéma d�approximation

successive Picard-Lindelöf. La stabilité du système dynamique fractionnaire stochastique non

linéaire avec bruit Lévy est obtenue en utilisant la fonction Mittag Le­ er. Des exemples sont

fournis pour illustrer la théorie..
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CHAPTER 1

Introduction and describe problem

1.1 History of Fractional Calculus

Fractional Calculus (FC) is a generalization of classical analysis that deals with integral and

derivative operations of non-integer (fractional) orders. The concept of fractional operators

was introduced almost simultaneously with the development of classical operators.

In a letter dated 30th September 1695, L�Hopital wrote to Leibniz asking him particular

notation he has used in his publication for the n-th derivative of a function Dnf(x)
Dxn ,«what

would the result be if n = 1
2» . Leibniz�s response « an apparent paradox, from which one

day useful consequences will be drawn» .That date is regarded as the exact birthday of the

fractional calculus. . Following L�Hopital�s and Liebniz�s �rst inquisition, fractional calculus

was primarily a study reserved for the best mathematical minds in Europe. Euler [31],wrote

in 1730: �When n is a positive integer and p is a function of x, p = p (x), the ratio of dnp

to dxn can always be expressed algebraically. But what kind of ratio can then be made if n

be a fraction?�.

In 1730, Euler mentioned interpolating between integral orders of a derivative. In 1812
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Chapter 1 Introduction and describe problem

Laplace de�ned a fractional derivative by means of an integral, and in 1819 there appeared

the �rst discussion of a derivative of fractional order in a calculus text written by S. F. Lacroix

[31].

During the 19 th century, the theory of fractional calculus was developed primarily in this

way, trough insight and genius of great mathematicians. Namely, in 1819 Lacroix , gave the

correct answer to the problem raised by Leibnitz and L�Hospital for the �rst time, claiming

that d1=2x
dx1=2

= 2
p

x
� . In his 700 pages long book on Calculus published in 1819, Lacroix

developed the formula for n-th derivative of ,y = xm with m being a positive integer

Dnxy =
dn

dnx
(xm) =

m!

(m� n)!x
m�n; m � n: (1.1.1)

Replacing the factorial symbol by Gamma function (1.1.1), he developed the formula for

the fractional derivative of a power function

D�xx
� =

� (� + 1)

� (� � �+ 1)x
���; (1.1.2)

where � and � are fractional numbers and where the gamma function � (z)1 is de�ned

for z > 0 as:

� (z) =

Z +1

0
e�xxz�1dx; (1.1.3)

In particular, Lacroix calculated

D1=2x x =
� (2)

� (3=2)
x
1
2 = 2

r
x

�
: (1.1.4)

Surprisingly, the previous de�nition gives a nonzero value for the fractional derivative of

a constant function(� = 0), since

D�x1 = D
�
xx

0 =
1

� (1� �)x
�� 6= 0: (1.1.5)

Using linearity of fractional derivatives, the method of Lacroix is applicable to any analytic

function by term-vise di¤erentiation of its power series expansion. Unfortunately, this class

of functions is too narrow in order for the method to be considered general.

2



Chapter 1 Introduction and describe problem

It is interesting to note that simultaneously with these initial theoretical developments,

�rst practical applications of fractional calculus can also be found. In a sense, the �rst

of these was the discovery by Abel in 1823,[15]-[20]. Abel considered the solution of the

integral equation related to the tautochrone problem . He found that the solution could be

accomplished via an integral transform, which could be written as a semi-derivative.

More precisely, the integral transform considered by Abel was

K =

Z x

0
(x� t)�1=2 f (t) dt; K = const: (1.1.6)

Abel wrote the right hand side of (1.1.6) by means of a fractional derivative of order 12 ,

p
�

 
d�1=2

dx�1=2
(f (x))

!
: (1.1.7)

Abel�s solution had attracted the attention of Joseph Liouville, who made the �rst major

study of fractional calculus,[33]-[34]. The most critical advances in the subject came around

1832 when he began to study fractional calculus in earnest and then managed to apply his

results to problems in potential theory. Liouville began his theoretical development using the

well-known result for derivatives of integer order n

Dnxe
ax = aneax: (1.1.8)

Expression (1.1.8) can rather easily be formally generalized to the case of non-integer values

of n, thus obtaining

D�xe
ax = a�eax: (1.1.9)

By means of Fourier expansion, a wide family of functions can be composed as a superposition

of complex exponentials.

f (x) =
1X
n=0

cn exp (anx) ; Re an > 0: (1.1.10)

Again, by invoking linearity of the fractional derivative, Liouville proposed the following

expression for evaluating the derivative of order �

D�xf (x) =
1X
n=0

cna
�
ne
anx: (1.1.11)

3



Chapter 1 Introduction and describe problem

Formula (1.1.11) is known as the Liouville�s �rst formula for a fractional derivative,[33].

However, this formula cannot be seen as a general de�nition of fractional derivative for the

same reason Lacroix formula could not: because of its relatively narrow scope. In order to

overcome this, Liouville labored to produce a second de�nition. He started with a de�nite

integral (closely related to the gamma function):

I =

Z 1

0
u��1e�xudu; � > 0; x > 0; (1.1.12)

and derived what is now referred to as the second Liouville�s formula

D�xx
�� = (�1)� � (�+ �)

� (�)
x����; � > 0: (1.1.13)

None of previous de�nitions were found to be suitable for a general de�nition of a fractional

derivative. In the consequent years, a number of similar formulas emerged. Greer [15], for

example, derived formulas for the fractional derivatives of trigonometric functions using in

the form:

D�xe
iax = a�

�
cos

��

2
+ i sin

��

2

�
(cos ax+ i sin ax) : (1.1.14)

Joseph Fourier [14] obtained the following integral representations for f (x) and its deriv-

atives

Dnxf (x) =
1

2�

Z +1

�1
f(�)d�

Z +1

�1
tn cos

h
t (x� �) + n

2
�
i
dt; (1.1.5)

By formally replacing integer n by an arbitrary real quantity � he obtained

D�xf (x) =
1

2�

Z +1

�1
f(�)d�

Z +1

�1
t� cos

h
t (x� �) + �

2
�
i
dt: (1.1.16)

Probably the most useful advance in the development of fractional calculus was due to a

paper written by G. F.

Bernhard Riemann [11] during his student days. Unfortunately, the paper was published

only posthumously in 1892. Seeking to generalize a Taylor series in 1853, Riemann derived

di¤erent de�nition that involved a de�nite integral and was applicable to power series with

4



Chapter 1 Introduction and describe problem

non-integer exponents

D��c;x f (x) =
1

�(�)

Z x

c
(x� t)��1 f(t)dr +	(x): (1.1.17)

In fact, the obtained expression is the most-widely utilized modern de�nition of fractional

integral. Due to the ambiguity in the lower limit of integration c, Riemann added to his

de�nition a �complementary� function 	(x) where the present-day de�nition of fractional

integration is without the troublesome complementary function. Since neither Riemann nor

Liouville solved the problem of the complementary function, it is of historical interest how

today�s Riemann-Liouville de�nition was �nally deduced.

The earliest work that ultimately led to what is now called the Riemann-Liouville de�ni-

tion appears to be the paper by N. Ya. Sonin in 1869, [44] where he used Cauchy�s integral

formula as a starting point to reach di¤erentiation with arbitrary index. A. V. Letnikov [30]

extended the idea of Sonin a short time later in 1872, [29]. Both tried to de�ne fractional

derivatives by utilizing a closed contour. Starting with Cauchy�s integral formula for integer

order derivatives, given by

f (n)(z) =
n!

2�i

Z
C

f(t)

(t� z)n+1dt; (1.1.18)

the generalization to the fractional case can be obtained by replacing the factorial with

Euler�s Gamma function �! + �(1 + �) . However, the direct extension to non-integer values

� results in the problem that the integrand in (1.1.18) contains a branching point, where an

appropriate contour would then require a branch cut which was not included in the work of

Sonin and Letnikov. Finally, Laurent [28], used a contour given as an open circuit (known

as Laurent loop) instead of a closed circuit used by Sonin and Letnikov and thus produced

today�s de�nition of the Riemann-Liouville fractional integral

D��c;x f (x) =
1

�(�)

Z x

c
(x� t)��1 f(t)dt; Re(�) > 0: (1.1.19)

In expression (1.1.19) one immediately recognizes Riemann�s formula (1.1.17), but without

the problematic complementary function. In nowadays terminology, expression (1.1.19) with

5



Chapter 1 Introduction and describe problem

lower terminal c = �1 is referred as Liouville fractional integral; by taking c = 0 the

expression reduces to the so called Riemann fractional integral, where as the expression

(1.1.19) with arbitrary lower terminal c is called Riemann-Liouville fractional integral.

By choosing c = 0 in (1.1.19) one obtains the Riemann�s formula (1.1.17) without the

problematic complementary function 	(x) and by choosing c = �1 , formula (1.1.19) is

equivalent to Liouville�s �rst de�nition (1.1.10). These two facts explain why equation (1.1.19)

is called Riemann-Liouville fractional integral. While the notation of fractional integration

and di¤erentiation only di¤er in the sign of the parameter � in (1.1.19), the change from

fractional integration to di¤erentiation cannot be achieved directly by inserting negative �

at the right-hand side of (1.1.19).

The problem originates from the integral at the right side of(1.1.19) which is divergent

for negative integration orders. However, by analytic continuation it can be shown that

D�c;xf (x) = D
n��
c;x f (x) = D

n
c;xf (x)D

��
c;x f(x) =

dn

dxn

�
1

�(�)

Z x

c
(x� t)��1 f(t)dt

�
;

(1.1.20)

holds, which is known today as the de�nition of the Riemann-Liouville fractional deriv-

ative. In (1.1.20) n = [�] is the smallest integer greater than � with 0 < � = n�� < 1 . For

either c = 0 or c =1 the integral in (1.1.20) is the Beta-integral for a wide class of functions

and thus easily evaluated.

Nearly simultaneously, Grunwald and Letnikov provided the basis for another de�nition

of fractional derivative which is also frequently used today. Disturbed by the restrictions of

the Liouville�s approach Grunwald (1867) adopted the de�nition of a derivative as the limit

of a di¤erence quotient as its starting point.

He arrived at de�nite-integral formulas for ordinary derivatives, showed that Riemann�s

de�nite integral had to be interpreted as having a �nite lower limit, and also that the Li-

ouville�s de�nition, in which no distinguishable lower limit appeared, correspond to a lower

6



Chapter 1 Introduction and describe problem

limit �1. Formally,

GLD�xf(x) = lim
h!0

(��hf)

h�
= lim
h!0

P
k=0 (�1)

k

0B@ �

k

1CA f(x� kh)
h�

; � > 0; (1.1.21)

which is today called the Grunwald-Letnikov fractional derivative. In de�nition (1.1.21),

0B@ �

k

1CAis
the generalized binomial coe¢ cient, wherein the factorials are replaced by Euler�s Gamma

function. Letnikov [18] also showed that de�nition (1.1.21) coincides, under certain relatively

mild conditions, with the de�nitions given by Riemann and Liouville. Today, the Grunwald-

Letnikov de�nition is mainly used for derivation of various numerical methods, which use

formula (1.1.21)) with �nite sum to approximate fractional derivatives. Together with the

advances in fractional calculus at the end of the nineteenth century the work of O. Heaviside

[26] has to be mentioned. The operational calculus of Heaviside, developed to solve certain

problems of electromagnetic theory, was an important next step in the application of gener-

alized derivatives. The connection to fractional calculus has been established by the fact that

Heaviside used arbitrary powers of p, mostly
p
p , to obtain solutions of various engineering

problems.

Weyl and Hardy,[24]-[25n], also examined some rather special, but natural,properties of

di¤erintegrals of functions belonging to Lebesgue and Lipschitz classes in 1917. Moreover,

Weyl showed that the following fractional integrals could be written for 0 < � < 1, assuming

that the integrals in (1.1.21) are convergent over an in�nite interval

I�+' (x) =
1

�(�)

Z x

�1
(x� t)��1 '(t)dt; I��' (x) =

1

�(�)

Z 1

x
(t� x)��1 '(t)dt (1.1.22)

Specially, the Riemann-Liouville de�nition of a fractional integral given in (1.1.19) with

lower limit c = �1, the form equivalent to the de�nition of fractional integral proposed by

Liouville, is also often referred to as Weyl fractional integral. In the modern terminology

one recognizes two distinct variants of all fractional operators,left sided and right sided ones.

7



Chapter 1 Introduction and describe problem

Weyl operators de�ned in (1.1.21) are sometimes also referred to as the left and right Liouville

fractional integrals, respectively.

Later, in 1927 Marchaud developed an integral version of the Grunwald-Letnikov de�ni-

tion (1.1.21) of fractional derivatives, using

MD�xf (x) =
�

�(1� �)

Z 1

0

�
�ltf

�
(x)

t1+�
dt

=
�

�(1� �)

Z 1

0

f (x)� f(x� t)
t1+�

dt; � > 0 (1.1.23)

as fractional derivative of a given function f , today known as Marchaud fractional de-

rivative. The term
�
�ltf

�
(x) is a �nite di¤erence of order l > � and c is a normalizing

constant. Since this de�nition is related to the Grunwald-Letnikov de�nition,it also coincides

with the Riemann-Liouville de�nition under certain conditions. M. Riesz published a number

of papers starting from 1938 [40]-[41] which are centered around the integral

RI�+' =
1

2�(�) cos(��2 )

Z +1

�1

'(t)

jt� xj1��
dt; Re� > 0; � 6= 1; 3; 5::: (1.1.24)

today known as Riesz potential. This integral (and its generalization in the n�dimensional

Euclidean space) istightly connected to Weyl fractional integrals (1.1.22) and therefore to the

Riemann-Liouville fractional integrals by

RI� =
�
I�+ + I

�
�
� �
2 cos

���
2

���1
: (1.1.25)

In 1949 Riesz [40] also developed a theory of fractional integration for functions of more

than one variable.

A modi�cation of the Riemann-Liouville de�nition of fractional integrals, given by

2x�2(�+�)

� (�)

Z x

0

�
x2 � t2

���1
t2�+1'(t)dt;

2x2�

� (�)

Z x

0

�
x2 � t2

���1
t1�2��2�'(t)dt; (1.1.26)

were introduced by Erdelyi et al. in [13], which became useful in various applications.

While these ideas are tightly connected to fractional di¤erentiation of the functions x2 and
p
x,

already done by Liouville 1832, the fact that Erdelyi and Kober used the Mellin�s transform

for their results is noteworthy.

8



Chapter 1 Introduction and describe problem

Among the most signi�cant modern contributions to fractional calculus are those made by

the results of M.Caputo in 1967. One of the main drawbacks of Riemann-Liouville de�nition

of fractional derivative is thatfractional di¤erential equations with this kind of di¤erential

operator require a rather �strange�set of initial conditions. In particular, values of certain

fractional integrals and derivatives need to be speci�ed at the initial time instant in order

for the solution of the fractional di¤erential equation to be found. Caputo reformulated

the more �classic�de�nition of the Riemann-Liouville fractional derivative in order to use

classical initial conditions, the same one needed by integer order di¤erential equations . Given

a function f with an (n� 1) absolutely continuous integer order derivatives, Caputo de�ned

a fractional derivative by the following expression

D�nf(x) =
1

�(n� �)

Z t

0
(t� s)n���1

�
d

ds

�n
f(s)ds; (1.1.27)

Derivative (1.1.27) is strongly connected to the Riemann-Liouville fractional derivative

and is today frequently used in applications. It is interesting to note that Rabotnov in-

troduced the same di¤erential operator into the Russian viscoelastic literature a year before

Caputo�s paper was published. Regardless of this fact, the proposed operator is in the present-

day literature commonly named after Caputo.

1.2 History of Stochastic Calculus

Stochastic calculus is a branch of mathematics that deals with the study of processes that

involve randomness. It is widely used in various �elds, including physics, engineering, �nance,

and economics.

The foundations of stochastic calculus were laid in the early 20th century by the math-

ematicians Norbert Wiener and Andrey Kolmogorov. Wiener developed the theory of what

is now known as Brownian motion, which is a type of random motion that occurs in many

physical systems, such as the movement of particles in a �uid. Wiener also introduced the

concept of the stochastic integral, which is used to de�ne the integral of a function with

9



Chapter 1 Introduction and describe problem

respect to a stochastic process.

Kolmogorov, on the other hand, developed a rigorous mathematical framework for study-

ing stochastic processes. His work laid the foundations for modern probability theory, and he

introduced the concept of the stochastic di¤erential equation, which is a type of di¤erential

equation that describes the evolution of a stochastic process.

In the 1950s and 1960s, a number of mathematicians, including Paul Lévy, Itô Kiyoshi,

and William Feller, further developed the theory of stochastic calculus. Itô introduced the Itô

calculus, which is a type of stochastic calculus that is widely used in �nance and economics.

Today, stochastic calculus is an active area of research, and it has a wide range of applic-

ations in various �elds. It is used to model complex systems that involve randomness, and it

has led to many important insights in the �elds of �nance, economics, and physics.

1.3 Describe Problem

the aim of this section,we will study the existence and uniqueness,stability of solution of

nonlinear stochastic fractional delay di¤erential equations with Lévy Noise in the form:

CD�x(t) = b(t; x(t)) + �(t; x(t))
dW(t)

dt
+

Z
z
g(t; x(t); z)

d~N(t; z)

dt
; t 2 J = [0; T ]

x(0) = x0; (1.3.1)

Let W(t) be an m�dimensional motion and ~N(dt; dz) = N(dt; dz)� v(dz)dt which is the

l�dimensionall compensated jumb measure of �(:) an independent compensated Poisson ran-

dom measure on a complete probability space (
;F ;P). Here N(dt; dz) is the l�dimensional

jump measure (or Poisson measure) and v(dz) is the Lévy measure of l�dimensional Lévy

process �(:). For convenience x(t; !); t � 0 and can be written as x(t) throughout this section.

where � 2 (12 ; 1) and z 2 R
n
0 = Rn= f0g. Here b : J � Rn ! Rn; � : J � Rn ! Rnm;

g : J�Rn�Rn0 ! Rnl are given functions such that for all t; b (t; x (t)) ; � (t; x (t)) ; g (t; x (t) ; z)

are Ft measurable for all x 2 Rn and z 2 Rn0 :

10



CHAPTER 2

Preliminaries

In this chapter, we present a few well-known concepts and results in the �elds of fractional

and stochastic di¤erential equations.

2.1 Special functions

The Gamma Function

De�nition 2.1.1 Let z 2 C, then we de�ne the Gamma function as

� (z) =

Z 1

0
e�ttz�1dt:

This integral converges for Re(z) > 0 (the right half of the complex plane).

One of the basic properties of the Gamma function is

�(z + 1) = z�(z):

11



Chapter 2 Preliminaries

The Beta Function

De�nition 2.1.2 Let z; w 2 C, then we de�ne the Beta function as

B(z; w) =

Z 1

0
tz�1(1� t)w�1dt;

For Re(z) > 0 and Re(w) > 0. After we use the Laplace transform for convolutions the

Beta function can be expressed in terms of the Gamma function by

B(z; w) =
� (z) �(w)

� (z + w)
:

Mittag-Le­ er function

De�nition 2.1.3 The one parameter Mittag-Le­ er function is de�ned by

E�(z) =

1X
k=0

zk

�(�k + 1)
; (z 2 C; Re (�) > 0) : (2.1.1)

A two parameter Mittag-La­ er function is de�ned by

E�;�(z) =
1X
k=0

zk

�(�k + �)
; (z; � 2 C; Re (�) > 0) : (2.1.2)

In particular when � = 1 then E�;1(z) = E�(z): The Mittag Le­ er function of a matrix

A is de�ned by

E�;�(At) =
1X
k=0

(At)k

�(�k + �)
;
�
�; � > 0; A 2 Rn�n

�
:

2.2 Fractional derivatives and integrals

Riemann-Liouville fractional derivative

De�nition 2.2.1 The Riemann-Liouville fractional derivative of order � > 0 of function

f(t) is de�ned as

D�o+f(t) =

�
d

dt

�
In��
o+

f(t) =
1

�(n� �)

�
d

dt

�Z t

0
(t� s)n���1f(s)ds; (2.2.1)

where n � 1 < � < n; n 2 N;and where the function f(t) has absolutely continuous

derivatives upto order (n� 1) :

12



Chapter 2 Preliminaries

Caputo fractional derivative

De�nition 2.2.2 The Caputo fractional derivative of order � > 0 , n� 1 < � < n; n 2 N;

is de�ned as

CD�o+f(t) =
1

�(n� �)

Z t

0
(t� s)n���1f (n)(s)ds; 2.2.2

where the function f(t) has absolutely continuous derivatives upto order (n� 1) :

Riemann-Liouville Fractional integral

De�nition 2.2.3 The Riemann-Liouville fractional integral operator of order � > 0 of a

function f 2 L1 (R+) is de�ned as

I�o+f(t) =
1

�(�)

Z t

0
(t� s)��1f(s)ds; t > 0; (2.2.3)

where �(:) is the Euler gamma function.

2.3 Stochastic Calculus:

Theorem 2.3.1 (i) if fXng1n=1 is a submartingale, then

P
�
max
1�k�n

Xk � �
�
� E(X+

n ):

for all n = 1; 2; :::and � > 0:

(ii) if fXng1n=1 is a martingale and 1 < p <1, then

P
�
max
1�k�n

jXkjp
�
�
�

p

p� 1

�p
E(jXnjP ):

for all n = 1; 2; :::

Stochastic Process

De�nition 2.3.1 A collection fX (t) jt � 0g of random variables is called a stochastic pro-

cess.

13
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Lévy Process

De�nition 2.3.2 Let fX (t) jt � 0g be a stochasticprocess de�ned on a complete probability

space (
;F ;P) : Then X is a Lévy Process if

1. X(0) = 0(a:s):

2. X has an independent and stationary increments.

3. X is stochastically continuous. That is, for all a > 0 and for all s > 0

lim
t!s

P (jX(t)�X(s)j > �) = 0:

Poisson process

Itô process

De�nition 2.3.3 An Itô process or stochastic intregral is a stochastic on (
;F ;P) adopted

to Ft which can be written in the form

Xt = X0 +

Z t

0
Usds+

Z t

0
VsdBs; (2.3.1)

where U; V 2 L2: As a shorthand notation, we will write (2.3.1) as

dXt = Utdt+ VtdBt:

2.4 Some Useful Inequalities

Markov inequality

If U(X) � 0 for non-descreasing function U then for all r > 0,

P(X � r) � E(U(X))
U(r)

:

Cauchy-Schwarz inequality

In [0;+1], with equality if and only if X and are colinear,

E(XY ) � E(jXj2)
1
2E(jY j2)

1
2 :

14
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Hölder inequality

If p 2 [1;1] and q = 1
1� 1

p

= p
p�1 then, in [0;+1] ;

E(jXY j) � E(jXjp)
1
pE(jY jq)

1
q :

Chebyshev�s Inequality

If X is a random variable and 1 � p <1 ,then

P(jXj � �) � 1

�p
E(jXjP ) for all � > 0:

Borel Cantelli Lemma

Lemma 2.4.1 If fAkg � F and
P1
k=1 P(Ak) <1; then

P
�
lim
k!1

supAk

�
= 0:

2.5 Delay di¤erential equations

Suppose � � 0 is a given real number, R = (�1;1), Rn is an n-dimensional linear vector

space over the reals with norm j:j, C([a; b];Rn) is the Banach space of continuous functions

mapping the interval [a; b] into Rn with the topology of uniform convergence. If [a; b] =

[�� ; 0] we let C = C([�� ; 0];Rn) and designate the norm of an element � in C by j�j =

sup��<�<0 j�(�)j. Even though single bars are used for norms in di¤erent spaces, no confusion

should arise. If

t0 2 R; A � 0 and x 2 C ([t0 � � ; t0 +A] ;Rn) ;

then for any t 2 [t0; t0 +A], we let xt 2 C be de�ned by xt(�) = x(t+ �);�� � � � 0:

De�nition 2.5.1 If 
 is a subset of R � C; f : 
 ! Rn is a given function and represents

the right-hand derivative, we say that the relation

x0(t) = f(t; xt); (2.5.1)

15
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is a retarded functional di¤erential equation on 
 and will denote this equation by RFDE.[48]

If we wish to emphasize that the equation is de�ned by f;we write the RFDE (f). A function

x is said to be a solution of Equation (2.5.1) on [t0 � � ; t0 +A) if there are t0 2 R and

A > 0 such that x 2 C ([t0 � � ; t0 +A] ;Rn) ; (t; xt) 2 
 and x(t) satis�es Equation (2.5.1)

for t 2 [t0; t0 + A). For given t0 2 R; � 2 C; we say x(t0; �; f) is a solution of Equation

(2.5.1) with initial value � at t0 or simply a solution through (t0; �) if there is an A > 0 such

that x(t0; �; f) is a solution of Equation (2.5.1) on [t0 � � ; t0 +A) and xt0(t0; �; f) = �.

Equation (2.5.1) is a very general type of equation and includes ordinary di¤erential

equations (� = 0):

We say Equation (2.5.1) is linear if f(t; �) = L(t; �)+h(t) where L(t; �) is linear in �; is

homogeneous if h � 0 and nonhomogeneous h 6= 0: We claim Equation (2.5.1) is autonomous

if f(t; �) = g(�) where g does not depend on t.

For example, the following equations are delay di¤erential equations

x0(t) = 2x(t) + 5x(t� 1); (2.5.2)

x0(t) = a(t)x(t) + b(t)x0(t� �(t)) + h(t); (2.5.3)

x0(t) =

Z 0

��
x(t+ s)ds: (2.5.4)

a; b; � are continuous functions. Equation (2.5.2) is an linear autonomous delay di¤erential

equation with constant � = 1; Equation (2.5.3) is nonhomogeneous, linear nonautonomous

delay functional di¤erential equations and Equation (2.5.4) is a delay linear integro-di¤erential

equation.

If t0 2 R; � 2 C are given and f(t; �) is continuous, then �nding a solution of Equation

(2.5.1) through (t0; �) is equivalent to solving the integral equation

xt0 = �;

x(t) = �(0) +

Z t

t0

f(s; xs)ds; t � t0: (2.5.5)

16
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we de�ne Tx by

Tx(t) = �(0) +

Z t

t0

f(s; xs)ds; t � t0;

xt0 = �:

To prove the existence of the solution through a point (t0; �) 2 R� C, we consider an � > 0

and all functions x on [t0 � � ; t0 +A] which are continuous and coincide with � on [t0�� ; t0];

that is, xt0 = �. The values of these functions on [t0; t0 + �] are restricted to the class of

x such that jx(t) � �(0)j < � for t 2 [t0; t0 + �]. The usual mapping T obtained from the

corresponding integral equation is de�ned and it is then shown that � and � can be so chosen

that T maps this class into itself and is completely continuous. Thus, Schauder�s �xed-point

theorem implies existence .

Theorem 2.5.1 (Existence) In (2.5.1), suppose 
 is an open subset in R � C and f is

continuos on 
. If (t0; �) 2 
, then there is a solution of (2.5.1) passing through (t0; �).

De�nition 2.5.2 We say f(t; �) is Lipschitz in � in a compact set K of R�C if there is a

constant k > 0 such that, for any (t; �i) 2 K, i = 1; 2;

jf(t; �1)� f(t; �2)j � k j�1 � �2j : (2.5.6)

Theorem 2.5.2 (Uniqueness) Suppose 
 is an open set in R�C; f : 
! Rn is continuous,

and f(t; �) is Lipschitz in � in each compact set in 
. If (t0; �) 2 
, then there is a unique

solution of Eq. (2.5.1) through (t0; �).

Neutral delay di¤erential equations

In order to de�ne a general class of neutral delay di¤erential equations (NDDEs) (or neutral

functional di¤erential equations (NFDEs)), we need the de�nition of atomic.

De�nition 2.5.3 Suppose 
 � R� C is open with elements (t; �). A function 	 : 
! Rn

is said to be atomic at � on 
 if 	 is continuous together with its �rst and second Fréchet

derivatives with respect to �: and 	�; the derivative with respect to �, is atomic at � on 
.

17
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De�nition 2.5.4 Suppose 
 � R�C is open, f : 
! Rn; 	 : 
! Rn are given continuous

functions with 	 atomic at zero. The equation

d

dt
	(t; xt) = f(t; xt); (2.5.7)

is called the neutral delay di¤erential equation NDDE(	; f):

De�nition 2.5.5 A function x is said to be a solution of the NDDE(	; f) or Equation

(2.5.7), if there are t0 2 R; A > 0; such that x 2 C([t0 � � ; t0 + A);Rn); (t; xt) 2 
; t 2

[t0; t0+A);	(t; xt) is continuously di¤erentiable and satis�es Eq. (2.5.7) on [t0; t0+A). For

a given t0 2 R, � 2 C, and (t0; �) 2 
; we say x(t0; �) is a solution of Eq. (2.5.7) with initial

value � at t0, or simply a solution through (t0; �) ,if there is an A > 0 such that x(t0; �), is

a solution of (2.5.7) on [t0 � � ; t0 +A) and xt0(t0; �) = �:

Theorem 2.5.3 (Existence) if 
 is an open set in R�C and (t0; �) 2 
, t hen there exists

a solution of the NDDE(	; f) through (t0; �).

Theorem 2.5.4 (Uniqueness). If 
 � R � C is open and f : 
 ! Rn as Lipschitz in � on

compact sets of 
, then, for any (t0; �) 2 
, there exists a unique solution of the NDDE(	; f)

through (t0; �).

For example

x0(t) = �x0(t� 1);

x0(t) = x(t� 1) +
�
x0(t� 3) + 1

�3
;

x00(t) = x(
t

2
) + x0(t� 1)� x0(t� 3);

are neutral delay di¤erential equations.

18



CHAPTER 3

New Results of Existence and Stability for

stochastic fractional time using Lévy noise

3.1 Introduction

The problem of existence and uniqueness of solutions to di¤erential equations forms the

basis for this validation of the model and further investigation of the corresponding dynamic

processes. many authors [7]-[23]-[32]-[38] discussed the existence and uniqueness of solving

stochastic di¤erential equations. This problem was studied by Pedjeu and Ladde [27] using

independent timescales.

The concept of stability is very important because almost all functioning control systems

are designed with stability in mind, this means that the system remains in a constant state

and returns to its original state unless it is a¤ected by an external force, steady state when

19
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the external action is removed. Luo [46], Khasminskii [12], Balachandran et al [25n]-[26]

discussed the stability of stochastic di¤erential equations. Exponential stability for stochastic

neutrality partial function equations were obtained by Govindan using semigroup theory [46]-

[47]. Zhu et al [50] studied the stability of stochastic systems with Poisson jumps. Then

fractional stabilityof dynamical systems have been studied by many authors [12]-[27]-[43].

Abouagwa and Li [35]-[36] discussed probability theoryof fractional system with Levy noise

under Caratheodory conditions.

The fractional Brownian motion introduced by Mandelbrot and Van Ness [6], considering

memory with randomness. These fractional Brownian motions are the fractional integrals

or fractional derivatives of Brownian motion. However, these models only consider sound

memory e¤ects, It�s in the system, not in memory relative to system state dynamics. Lee

et al [39] is a comparative Study of the Classical Stochastic Model of European Option

Prices, Black-Scholes models using stochastic equations with fractional Brownian motion

and stochastic equations with fractional motion time derivative. It is shown that the time

derivative stochastic model is replaced by the fractional model.

This derivative performs better than the fractional brown noise model. In this work we

prove that Existence and Stability of Solutions of Stochastic Fractional Di¤erential Equations

with Lévy Noise equation [10].

3.2 Existence and Uniqueness

In this chapter, we will use the classical Picard-Lindelöf method of successive approximation

scheme to prove the existence and uniqueness of solution of nonlinear stochastic fractional

di¤erential equations [16] and stochastic fractional delay di¤erntial equations with Lévy noise

[17]-[4].

We de�ne t; b (t; x (t)) ; � (t; x (t)) ; g (t; x (t) ; z) are Ft measurable for all x 2 Rn and
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z 2 Rn0 : We can rewrite the equation (1.3.1) in its equivalent integral form as

x (t) = x0 +
1

� (�)

Z t

0
(t� s)��1 b (s; x (s)) ds+ 1

� (�)

Z t

0
(t� s)��1 � (s; x (s)) dW(s)

+
1

� (�)

Z t

0
(t� s)��1 g (s; x (s) ; z) d~N (ds; dz) : (3.2.1)

Here the results are obtained by using [42]-[43]:

Theorem 3.2.1 Assume that (t; x) 2 J � Rn; � 2
�
1
2 ; 1
�
; z 2 Rn0 ; b 2 C (J � Rn;Rn) ; � 2

C (J � Rn;Rnm) ; g 2 C
�
J � Rn � Rn0 ;Rnl

�
and W = fW(t); t � 0g is an m�dimensional

Brownian motion on a complete probability space (
;F ;P) : Suppose the following inequalities

hold[48]:

(i) Linear growth condition:

jb(t; x)j2 + j�(t; x)j2 +
Z
z
jg(t; x; z)j2 v(dz) � K2(1 + jxj2) (3.2.2)

for some constant K > 0.

(ii) The Lipschitz condition:

jb(t; x)� b(t; y)j2 + j�(t; x)� �(t; y)j2 +
Z
z
jg(t; x; z)� g(t; y; z)j2 v(dz)

� L2(jx� yj2) (3.2.3)

for some constant L > 0.

Let x0 be a random variable de�ned on (
;F ;P) and independent of the ��algebra F ts � F

generated by W = fW(t); t � 0g and such that E
���x20��� < 1: Then the initial value problem

(1.3.1) has a unique solution[18]-[37] which is t�continuous with the property that x(t; !) is

adapted to the �ltration Fx0t generated by x0 and fW(s) (:) ; s � tg and

sup
0�t�T

E
h���x (t)2���i <1 (3.2.4)
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Proof 3.2.1 (i) First we establish the existence of solution of the initial value problem [8]-[9].

Let us de�ne x(0) (t) = x0 and x(k) (t) = x(k) (t; !) inductively as follows:

x(k+1) (t) = x0 +
1

� (�)

Z t

0
(t� s)��1 b

�
s; x(k) (s)

�
ds

+
1

� (�)

Z t

0
(t� s)��1 �

�
s; x(k) (s)

�
dW(s)

+
1

� (�)

Z t

0
(t� s)��1 g

�
s; x(k) (s) ; z

�
d~N (ds; dz) ; (3.2.5)

for k = 0; 1; 2; :::If,for �xed k � 0; the approximation x(k)(t) is Ft�measurable and continuous

on J , then it follows from (3.2.2)-(3.2.3), that the integrals in (3.2.5) are meaningful and

the resulting process x(k+1)(t) is Ft�measurable and continuous on J: As x(0)(t) is obviously

Ft�measurable and continuous on J; it follows by induction that so too is each x(k)(t) for

k = 1; 2; :::

Since x0 is Ft�measurable with E
���x20��� <1; it is clear that

sup
0�t�T

E
h���x (t)2���i <1

Applying the algebraic inequality (a+ b+ c+ d)2 � 4(a2+ b2+ c2+ d2); the Cauchy-Schwartz

inequality, the Itô isometry and the linear growth condition (3.2.2) we obtain from (3.2.5)

that

E
����x(k+1) (t)���2� � 4E

h
jx0j2

i
+

4

(� (�))2
T 2��1

2�� 1E
�Z t

0

���b�s; x(k) (s)����2 ds�
+

4

(� (�))2
T 2��1

2�� 1E
�Z t

0

���� �s; x(k) (s)����2 ds�
+

4

(� (�))2
T 2��1

2�� 1E
�Z t

0

���g �s; x(k) (s) ; z����2 ds�

Therefore

E
����x(k+1) (t)���2� � 4E hjx0j2i+ 3K2 4

(� (�))2
T 2��1

2�� 1E
�Z t

0

�
1 +

���x(k) (s)���2� ds� ;
for k = 0; 1; 2; ::: and m > 0. By induction,we have

sup
0�t�T

E
����x(k) (t)���2� � C0 <1;
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for k = 0; 1; 2; ::: Let

d(k) (t) = E
����x(k+1) (t)� x(k) (t)���� :

We claim that

d(k) (t) � (Mt)

(k + 1)!
; for all k = 0; 1; 2; :::::; (3.2.6)

for some constants M, depending in K;L and x0:

From equation (3.2.5) by applying the Schwarz inequality and Itô isometry and the Lipchitz

condition (3.2.3) we obtain

d(k) (t) = E
����x(k+1) (t)� x(k) (t)���2�

� 4

(� (�))2
T 2��1

2�� 1

Z t

0
E
����b�s; x(k) (s)� b(s; x(k�1) (s)����2� ds

+
4

(� (�))2
T 2��1

2�� 1

Z t

0
E
����� �s; x(k) (s)� �(s; x(k�1) (s)����2� ds

+
4

(� (�))2
T 2��1

2�� 1

Z t

0
E
Z
z

���g �s; x(k) (s) ; z)� g(s; x(k�1) (s) ; z����2 v(dz)ds
� 4

L2

(� (�))2
T 2��1

2�� 1

Z t

0
E
����x(k) (s)� x(k�1) (s)���2 ds�

+4
L2

(� (�))2
T 2��1

2�� 1

Z t

0
E
����x(k) (s)� x(k�1) (s)���2 ds�

+4
L2

(� (�))2
T 2��1

2�� 1

Z t

0
E
����x(k) (s)� x(k�1) (s)���2 ds� : (3.2.7)

By applying again the Schwarz inequality, the Itô isometry together with the growth conditions
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(3.2.2) for k = 0,

d(0)(t) = E
����x(1) (t)� x(0) (t)���2�

� 4

(� (�))2
E

 ����Z t

0
(t� s)��1 b

�
s; x(0)(s)

�
ds

����2
!

+
4

(� (�))2
E

 ����Z t

0
(t� s)��1 �

�
s; x(0)(s)

�
dW (s)

����2
!

+
4

(� (�))2
E

 ����Z t

0
(t� s)��1

Z
z
g
�
s; x(0)(s); z

�
d~N (ds; dz)

����2
!

� 4

(� (�))2
T 2��1

2�� 1

Z t

0
E
����b�s; x(0) (s)����2 ds�

+
4

(� (�))2
T 2��1

2�� 1

Z t

0
E
����� �s; x(0) (s)����2 ds�

+
4

(� (�))2
T 2��1

2�� 1

Z t

0
E

"����Z
z
g
�
s; x(0)(s); z

�
v (dz)

����2 ds
#

� K2 42

(� (�))2
T 2��1

2�� 1

Z t

0
E
�Z t

0

�
1 + jx0j2

�
ds

�
� K2 42

(� (�))2
T 2��1

2�� 1

�
1 + E

�
jx0j2

��
: (3.2.8)

Now, for k = 1, replacing E
h��x(1) (t)� x(0) (t)��2i in the inequality (3.2.7) with the value on

the right hand side of inequality(3.2.8) and integrating, we obtain

E
����x(2) (t)� x(1) (t)���2� � L2

4

(� (�))2
T 2��1

2�� 1

Z t

0
E
����x(1) (s)� x(0) (s)���2 ds�

� K2
�
1 + E

�
jx0j2

���
L2

42

(� (�))2
T 2��1

2�� 1

�2 Z t

0
sds

� K2
�
1 + E

�
jx0j2

���
L2

42

(� (�))2
T 2��1

2�� 1

�2
� t

2

2!
:

(3.2.9)

For k = 2, proceeding as before, we have

E
����x(3) (t)� x(2) (t)���2� � K2

�
1 + E

�
jx0j2

���
L2

42

(� (�))2
T 2��1

2�� 1

�2
� t

3

3!
: (3.2.10)

Thus, by the principle of mathematical induction, we have

d(k) (t) = E
����x(k+1) (t)� x(k) (t)���2� � BMk+1t(k+1)

(k + 1)!
; k = 0; 1; 2; :::::::; 0 � t � T; (3.2.11)
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where B = K2
�
1 + E

�
jx0j2

��
and M =

�
L2 42

(�(�))2
T 2��1

2��1

�
is a constant depending only on

�; T; L2 and E jx0j2 :

Note that

max
0�t�T

���x(k+1) (t)� x(k) (t)���2 � 4 max
0�t�T

Z t

0
(t� s)��1

���b�s; x(k) (s)� b(s; x(k�1) (s)����2 ds
+4 max

0�t�T

Z t

0
(t� s)��1

���� �s; x(k) (s)� �(s; x(k�1) (s)����2 dW (s)
+4 max

0�t�T

Z t

0
(t� s)��1

Z
z

���g �s; x(k) (s) ; z)� g(s; x(k�1) (s) ; z����2 d ~N (ds; dz) :
Taking expectation on both sides we have

E
�
max
0�t�T

���x(k+1) (t)� x(k) (t)���2� � 4L2
T 2��1

2�� 1E
�
max
0�t�T

Z t

0

���x(k) (s)� x(k�1) (s)���2 ds�
+4E

�
max
0�t�T

Z t

0
(t� s)��1

���� �s; x(k) (s)� �(s; x(k�1) (s)����2 dW (s)�
+4L2

T 2��1

2�� 1E
�
max
0�t�T

Z t

0

���x(k) (s)� x(k�1)���2 ds� :
Using second part of the Theorem 2.3.1 gives

E
�
max
0�t�T

���x(k+1) (t)� x(k) (t)���2� � 3L2
T 2��1

2�� 1E
�
max
0�t�T

Z T

0

���x(k) (s)� x(k�1) (s)���2 ds�
+12L2

T 2��1

2�� 1E
�Z T

0

���x(k) (s)� x(k�1) (s)���2 ds�
� B

Mk+1

(k + 1)!
T (k+1); (3.2.12)

where B is a constant depending on L and T . By using Chebyshev�s inequality gives

P
�
max
0�t�T

���x(k+1) (t)� x(k) (t)���2 > 1

k2

�
�

1X
k=0

BMk+1k4T (k+1)

(k + 1)!
;

using the equation (3.2.12) and summing up the resultant inqualities gives

1X
k=0

P
�
max
0�t�T

���x(k+1) (t)� x(k) (t)���2 > 1

k2

�
� 1

(1=k2)2
E
�
max
0�t�T

���x(k+1) (t)� x(k) (t)���2� ;
where the series on the right side converges by ration test. Hence the series on the left side

also converges, so by the Borel-Cantelli lemma, we conclude that
�
max
0�t�T

��x(k+1) (t)� x(k) (t)��2�
converges to 0, almost surely,that is, the successive approximations x(k)(t) converge, almost
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surely, uniformly on J to a limit x(t) de�ned by

lim
n!!1

 
x(0) (t) +

nX
k=1

�
x(k) (t)� x(k�1) (t)

�!
= lim
n!!1

x(n) (t) = x(t): (3.2.13)

From (3.2.5), we have

x(t) = x0 +
1

�(�)

Z t

0
(t� s)��1 bs; x (s)) + 1

�(�)

Z t

0
(t� s)��1 �(s; x (s))dW (s)

+
1

�(�)

Z t

0
(t� s)��1 g(s; x (s) ; z)d~N (ds; dz) : (3.2.14)

for all t2 J: This completes the proof of the existence of solution of (1.3.1)

Proof 3.2.2 (ii) The uniqueness follows from Itô isometry[2]-[3], the Lipschitz conditions

(3.2.3).

Let x(t; !) and y(t; !) be solution processes through[5] the initial data (0; x0) and (0; y0)

respectively, that is x(0; !) = x0(!) and y(0; !) = y(!); ! 2 
: Let


1 (s; !) = b (s; x (s))� b (s; y (s)) ;


2 (s; !) = � (s; x (s))� � (s; y (s)) ;


3 (s; !) =

Z
z
g (s; x (s) ; z) v (dz)�

Z
z
g (s; y (s) ; z) v (dz)

Then by virtue of the Schwarz inequality and Itô isometry, we have

E
h
jx(t)� y(t)j2

i
� 4

(�(�))2
E
h
jx0 � y0j2

i
+

4

(�(�))2
T 2��1

2�� 1E
�Z t

0
j
1 (s; !)j2 ds

�
+

4

(�(�))2
T 2��1

2�� 1E
�Z t

0
j
2 (s; !)j2 ds

�
+

4

(�(�))2
T 2��1

2�� 1E
�Z t

0
j
3 (s; !)j2 ds

�
� 4

(�(�))2
E
h
jx0 � y0j2

i
+ 22L2

4

(�(�))2
T 2��1

2�� 1

Z t

0
E
h
jx(s)� y(s)j2

i
ds:

we de�ne v(t) = E
h
jx(s)� y(s)j2

i
: Then the function v satis�es v(t) � F +A

R t
0 v(s)ds;

where F = 4
(�(�))2

E
h
jx0 � y0j2

i
and A = 22L2 4

(�(�))2
T 2��1

2��1 : By the application of the Gronwall

inequality, we conclude that

v(t) � F exp (At) :
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Now assume that x0 = y0: Then F = 0 and so v(t) = 0 for all t � 0: That is,

E
h
jx(s)� y(s)j2

i
= 0:

which gives Z t

0
jx (t)� y (t)j2 dP = 0:

This implies that x(t) = y(t) a.s for all t 2 J . That is

P fjx(t; !)� y(t; !)j = 0 for all t 2 Jg = 1;

that is, the solution is unique. This completes the proof of existence and uniqueness of solution

of the given stochastic fractional di¤erential equation (3.2.1).

3.3 Delay Di¤erential Equations

Delay and Poisson jumps always coexict in real dynamic systems. Thus is reasonable to con-

sider them together leading us to investigate the existence of solution of stochastic fractional

delay di¤erntial equations with Lévy noise [50]. Let � (:) 22 C [��; 0] be the initial path of x,

where � > 0 is a given processes time delay. Moreover, denote by LpF0 ([��; 0] ;R
n) the family

of Rn valued adapted stochastic processes such that is F�measurable and E
�
sup���t�0 j� (t)j2

�
<

1:[24]

Consider the nonlinear stochastic fractional delay di¤erential equations of the form

CD�x(t) = b(t; x(t); x(t� �)) + � (t; x (t) ; x (t� �)) dW(t)dt

+
R
z g(t; x(t); x(t� �); z)

d~N(t;z)
dt ; t 2 J = [0; T ]

x(t) = �(t); t 2 [��; 0] ;

(3.3.1)

where � 2 (12 ; 1) and z 2 R
n
0 = Rn= f0g. Here b : J �Rn�Rn ! Rn; � : J �Rn�Rn ! Rnm;

g : J � Rn � Rn � Rn0 ! Rnl are given functions such that for all t; b(t; x(t); x(t � �)),

�(t; x(t); x(t � �)) and g(t; x(t); x(t � �); z) are Ft measurable for all x 2 Rn; y 2 Rn and
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z 2 Rn0 : we can rewrite the equation (1.3.1) in its equivalent integral form as:

x(t) = � (0) +
1

� (�)

Z t

0
(t� s)��1 b (s; x (s) ; x(s� �))ds

+
1

� (�)

Z t

0
(t� s)��1 � (s; x (s) ; x(s� �)) dW(s)

+
1

� (�)

Z t

0
(t� s)��1

Z
z
g (s; x (s) ; x(s� �); z) ~N (ds; dz) : (3.3.2)

Assume the following conditions

(H1) There exists a constant Ki > 0; i = 1; 2 such that

jb (t; x; y)j2 � j� (t; x; y)j2 � K1

�
1 + jxj2 + jyj2

�
;Z

z
jg (t; x; y)j2 v(dz) � K2

�
1 + jxj2 + jyj2

�
:

(H2) There exists a constant Li > 0; i = 1; 2; 3 such that

jb (t; x1; y1)� b (t; x2; y2)j2 � L21

�
jx1 � x2j2 + jy1 � y2j2

�
;

j� (t; x1; y1)� � (t; x2; y2)j2 � L22

�
jx1 � x2j2 + jy1 � y2j2

�
;Z

z
jg (t; x1; y1)� g (t; x2; y2)j2 v(dz) � L23

�
jx1 � x2j2 + jy1 � y2j2

�
:

Theorem 3.3.1 Assume that (H1) and (H2) holds. Let � (t) 2 LpF0 ([��; 0] ;R
n)be a ran-

dom variable de�ned on (
;F ;P) and independent of the ��algebra F ts � F generated by

fW(s); t � s � 0g and such that E(sup���t�0 j� (t)j2) < 1 . Then the initial value problem

(3.3.1) has a unique solution which is t�continuous with the property that x(t; !) is adapted

to the �ltration Fx0t generated by x0 and fW (s) (:); s � tg and sup0�t�T E
h
jx (t)j2

i
<1 .

By using successive approximation technique one can prove the existence and uniqueness

of solutions.

3.4 Stability Analysis

In this section we study the exponentially asymptotic stability in the quadratic mean of a

trivial solution [1]-[43].
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Consider the following stochastic fractional nonlinear system with Lévy noise of the form

CD�x(t) = Ax(t) + f(t; x(t)) + � (t; x(t)) dW(t)dt +
R
z g (t; x(t); z)

d ~N(t;z)
dt ; t 2 J

x(0) = x0;

9>=>; (3.4.1)

where � 2 (12 ; 1) and z 2 R
n
0 = Rn= f0g, and f 2 C (J � Rn;Rn),� 2 C (J � Rn;Rnm) ;

g 2 C
�
J � Rn � Rn0 ;Rnl

�
; ~N (dt; dz) = N (dt; dz)� v(dz)dt which is the l�dimensional com-

pensated jumb measure of � (:) an independent compensated Poisson random measure and

W = fW(t); t � 0g is an m�dimensional Brownian motion on a complete probability space


 = (
;F ;P) ; A 2 Rn�n is a diagonal stability matrix. Assume from now on that f(t; 0) =

�(t; 0) a.e t so that the equation (3.4.1)admits a trivial solution.

De�nition 3.4.1 The trivial solution of equation (3.4.1) is said to be exponentially stable in

the quadratic mean if there exist positive constants C; v such that

E
�
jx(t)j2

�
� CE

�
jx0j2

�
exp (�vt) ; t � 0:

The following lemmas are necessary to obtain the main results. For that we assume the

following hypothesis [45]:

(H3) There exists a constant M > 0 such that for t � 0;

jE�;� (At�)j � Me��t;

where 0 < � < 1 and � = 1; 2; and �:

Lemma 3.4.1 Assume that the hypothesis (H3) holds. Then for any stochastic process

F : [0;1) ! Rn which is stongly measurable with
R t
0 E jF (t)j

2 ds < 1; t � 0; the following

inequality holds for 0 < t � T;

E
����Z t

0
E�;� (A (t� s)�)F (s) d (s)

����2 � �M2

a

�Z t

0
exp (�a (t� s))E jF (s)j2 ds;

where � 2
�
1
2 ; 1
�
and � = 1; 2 and �:
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Lemma 3.4.2 Assume that the hypothesis (H3) holds. Then for any Bt�adapted predictable

process � : [0;1) ! Rn with
R t
0 E j�(s)j

2 ds < 1; t � 0; the following inequality holds for

0 < t � T;

E
����Z t

0
E�;� (A (t� s)�) � (s) dW (s)

����2 � M2

Z t

0
exp (�a (t� s))E j� (s)j2 ds;

where � 2
�
1
2 ; 1
�
and � = 1; 2 and �:

Theorem 3.4.1 Let the assumptions of Theorem 3.3.1 holds. Then the solution of equation

(3.4.1) is exponentially stable in the quadratic mean provided

a > � = � (a;K;M) =
4M2

�
2K2=a+K2

�
T 2��1

2�� 1 :

Proof 3.4.1 The integral form of the equation (3.4.1) can be given by [24]-[26]

x(t) = E� (At
�)x0 +

Z t

0
(t� s)��1 E�;� (A (t� s)�) b (s; x(s)) ds

+

Z t

0
(t� s)��1 E�;� (A (t� s)�)� (s; x(s)) dW (s)

+

Z t

0
(t� s)��1 E�;� (A (t� s)�)

Z
z
g (s; x(s); z) ~N (ds; dz) : (3.4.2)

Applying the algebraic inequality (a+ b+ c+ d)2 � 4
�
a2 + b2 + c2 + d2

�
we have

jx(t)j2 � 4 (jE� (At�)x0j)2 + 4
�����Z t

0
(t� s)��1 E�;� (A (t� s)�) b (s; x(s)) ds

�����2
+4

�����Z t

0
(t� s)��1 E�;� (A (t� s)�)� (s; x(s)) dW (s)

�����2
+4

�����Z t

0
(t� s)��1 E�;� (A (t� s)�)

Z
z
g (s; x(s); z) ~N (ds; dz)

�����2 :
By using Hölder inequality and Lemmas (3.4.1) and (3.4.2) we get

E jx (t)j2 � 4M2 exp (�at)E jx0j2 + 4
�
M2=a

� T 2��1
2�� 1

Z t

0
exp(�a(t� s))E jb (s; x(s))j2 ds

+4M2 T
2��1

2�� 1

Z t

0
exp(�a(t� s))E j� (s; x(s))j2 ds

+4
�
M2=a

� T 2��1
2�� 1

Z t

0
exp(�a(t� s))E

����Z
z
g (s; x(s); z) v (dz)

����2 ds:
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Linear growth assumtion (3.2.2) when b (t; 0) = � (t; 0) � 0 a.e t yields

exp(at)E jx(t)j2 � 4M2E jx0j2 + 4
�
M2=a

�
K2 T

2��1

2�� 1

Z t

0
exp(as)E jx(s)j2 ds

+4M2K2 T
2��1

2�� 1

Z t

0
exp(as)E jx(s)j2 ds

+4
�
M2=a

�
K2 T

2��1

2�� 1

Z t

0
exp(as)E jx(s)j2 ds

� 4M2E jx0j2 + 4M2

�
2K2

a+K2

�
T 2��1

2�� 1

Z t

0
exp(as)E jx(s)j2 ds:

Applying Gronwall�s inequality, we obtain

exp(at)E jx(t)j2 � 4M2E jx0j2 exp
�
4M2

�
2K2

a+K2

�
T 2��1

2�� 1 t
�
:

Consequently,

E jx(t)j2 � CE jx0j2 exp (�vt) ; t � 0; (3.4.3)

where v = a� � and C = 4M2:

Next consider the nonlinear stochastic fractional delay di¤erential equation of the form

CD�x (t) = Ax (t) + f (t; x (t) ; x (t� �)) + � (t; x (t) ; x (t� �)) dW(t)dt

+
R
z g (t; x (t) ; x (t� �) ; z)

d~N(t;z)
dt ; t 2 J = [0; T ]

x (t) = � (t) ; t 2 [��; 0]

(3.4.4)

where � 2
�
1
2 ; 1
�
and z 2 Rn0 = Rn= f0g : Here f 2 C (J � Rn � Rn;Rn) ; � 2 C (J � Rn � Rn;Rnm) ; g 2

C
�
J � Rn � Rn � Rn0 ;Rnl

�
; ~N (dt; dz) = N (dt; dz) � v (dz) dt which is the l�dimensional

compensated jump measure of � (:) an independent compensated Poisson random measure

and W = fW (t) ; t � 0g is an m�dimensional Brownian motion on a complete probability

space 
 � (
;F ;P) ; A 2 Rn�n is a diagonal stability matrix. Assume from now on that

f (t; 0) = � (t; 0) � 0 a.e t so that equation (3.4.1) admits a trivial solution. The integral

from of the equation (3.4.4) in terms of the Mittag Le¤er function is given by

x (t) = E� (At
�) � (0) +

Z t

0
(t� s)��1 E�;� (A (t� s)�) b (s; x (s) ; x (s� �)) ds

+

Z t

0
(t� s)��1 E�;� (A (t� s)�)� (s; x (s) ; x (s� �)) dW (s)

+

Z t

0
(t� s)��1 E�;� (A (t� s)�)

Z
z
g (s; x (s) ; x (s� �)) ~N (ds; dz) : (3.4.5)
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Theorem 3.4.2 Let assumptions of the Theorem 3.3.1 holds. Then the solution of the delay

di¤erntial equation (3.4.4) is exponentially stable in the quadratic mean provided

� > � = � (a;K1;K2;M) =
4M2

�
K2
1

�
1
a+1

�
+K2

2

�
T 2��1

2�� 1

Proof 3.4.2 Using the hypothesis (H3), Lemma [3.4.1] and [3.4.1] one can prove the the-

orem. The proof is similar to the previous theorem and hence omitted.

3.5 Examples

Example 1 Consider the followings stochastic fractional di¤erntial equation with Lévy noise

of the form

CD�x (t) + 0:6x (t) = t2��

�(1��) +
1
1+t

dW(t)
dt +

R
R=f0g tz

d~N(t;z)
dt ; t 2 J

x (0) = 1:

9>=>; (3.5.1)

Here b (t; x (t)) = �0:6x (t) + t2��

�(1��) ; � (t; x (t)) =
1
1+t and g (t; x (t) ; z) = tz: It can be

easily seen that b (t; x (t)) ; � (t; x (t)) and g (t; x (t) ; z) satis�es the condition of (3.2.2) and

(3.2.3) of Theorem (3.2.1). Hence by the Theorem (3.2.1) the stochastic fractional di¤erential

equation (3.5.1) has a unique solution. Also the equation (3.5.1) satisfy the condition of

Theorem (3.4.1) So from Theorem (3.4.1) the stochastic fractional di¤erntial equation with

A = 0:6 is exponentially stable.

Example 2 Consider the following stochastic fractional di¤erntial equation with Lévy

noise of the form

CD�x (t) + 0:4x (t) = t3y
�(2��) + t

2 dW(t)
dt +

R
R=f0g zy

d~N(t;z)
dt ; t 2 J

x (t) = 0: t 2 [�t; 0]

9>=>; (3.5.2)

Here b (t; x (t) ; y (t)) = �0:4x (t)� t3y
�(22��) ; � (t; x (t) ; y (t)) = t

2 and g (t; x (t) ; y (t) ; z) =

zy: It can be easily seen that b (t; x (t) ; y (t)) ; � (t; x (t) ; y (t)) and g (t; x (t) ; y (t) ; z) satis�es

the assumptions (H1) and (H2) of Theorem []. Hence by the Theorem3.2 the stochastic

32
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fractional di¤erential equation (3.5.2)has a unique solution. Also the equation (3.5.2) satisfy

the condition of Theorem (3.4.2). So from Theorem (3.4.2) the stochastic fractional di¤erntial

equation with A = 0:4 is exponentially stable.
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Conclusion

In our study, we invertiged Existence and Uniquness solutions of fractional stochastic equa-

tions using caputo hadamard derivatives utilize Levy noise de�nitions, and we �nished our

results by an example to solve our problem.
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