République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université 8 Mai 1945 Guelma

Faculté des mathématiques et de l'informatique et des Sciences de la matière Département des Sciences de la matière

Mémoire de fin d'étude Master

Spécialité : Physique de la Matière Condensée

Présenté par

OUGHIDNI Hicham

Étude des propriétés structurales, électroniques et optiques des composés

Ti _{1-x} A _x O ₂ (A= Co, Ce et x=0, 0.125), et du composé Ti _{1-2x} A _x B _x O ₂ (A= Co, B=Ce et x =0.125).

JUIN 2022

Sous la Direction de :

Dr. DOGHMANE Malika

Année Universitaire : 2021/2022

Remerciements

Ce travail a été effectué au sein du laboratoire de physique de matériaux (**L2PM**), à l'université 8 mai 1945 de Guelma, Faculté des Mathématique, informatique et science de la matière.

Avant tout je remercie **Dieu tout puissant** de m'avoir donné santé et sérénité afin de réaliser ce modeste travail.

Mes remerciements les plus chaleureux et les plus profonds s'adressent à ma directrice de mémoire : Madame **Dr. DOGHMANE Malika** qui m'a guidées par ses précieux conseils, ses encouragements et ses orientations, ainsi que pour l'intérêt scientifique qu'il a portés à ce travail, pour l'aide et le temps qu'il n'a jamais manqué de m'apporter tout au long de l'élaboration de ce travail.

J'exprime ma gratitude à madame **Pr. CHETTIBI Sabah** pour le soutien, l'aide et le temps qu'il n'a jamais manqué de m'apporter tout au long de l'élaboration de ce travail au labo **L2PM**.

Mes remerciements les plus vifs s'adressent également aux membres **de jury** pour l'intérêt qu'ils ont porté à notre travail en acceptant son évaluation.

En particulier, J'adresse mes remerciements au **Pr. MOUMENI Hayet** pour l'honneur qu'il m'a fait d'avoir accepté de présider le jury de cette soutenance. Je remercie également **Dr. MAIZI Rafik** d'avoir acceptée de juger et critiquer ce mémoire.

Je tiens à remercier ma petite famille, ma grande famille et mes amis qui ont toujours été à mes côtés, avec le soutien inconditionnel et les encouragements qui m'ont été d'une grande aide.

Enfin, je remercie tous ceux qui ont contribué de près ou de loin à la réalisation de ce mémoire...

Le dioxyde de titane (TiO₂) est un oxyde semi-conducteur. Il existe sous plusieurs formes dont trois principales sont le rutile, l'anatase et la brookite. Le dioxyde de titane possède de très bonnes propriétés semi-conductrices, ce qui a attiré l'attention de nombreux chercheurs pour étudier les diverses applications comme les dispositifs photovoltaïques, Les systèmes électrochromes, et la photocatalyse ...etc.

L'objectif de ce travail est d'étudier les propriétés structurales, électroniques et optiques du TiO₂ rutile pour évaluer l'effet de dopage au (Ce, Co) avec une concentration de 12.5%. Cette étude est basée sur la méthode FP-LAPW implémentée dans le code Wien2k et dans le cadre de la théorie de la fonctionnelle de la densité (DFT). L'approximation du gradient généralisé (GGA) et l'approche de Becke-Johnson modifié par Tran-Blaha (TB-mBJ) sont utilisées pour traiter le potentiel d'échange et de corrélation.

Les résultats obtenus à partir de l'étude des propriétés structurales des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125} Ce_{0.125}O₂ sont en bon accord avec les données disponibles. L'étude des propriétés électroniques et optiques a montré que le dopage et le co-dopage modifie la valeur du gap du TiO₂. Les spectres optiques du TiO₂ dopé avec le cobalt ont montré une photo-réponse dans l'infrarouge par contre le co-dopage (Co-Ce) du TiO₂ possède une plus grande photo-réponse pour la lumière visible que celle de TiO₂ dopé seulement au cobalt ou au cérium.

Mots clés : TiO₂ rutile, photocatalyse, dopage, co-dopage, DFT, TB-mBJ, FP-LAPW.

Titanium dioxide (TiO₂) is an oxide semiconductor. It exists in several forms of which three main ones are rutile, anatase and brookite. Titanium dioxide has very good semiconducting properties, which has attracted the attention of many researchers to study various applications such as photovoltaic devices, electrochromic systems, and photocatalysis ... etc.

The objective of this work was to study structural, electronic and optical properties of rutile TiO₂ to evaluate the effect of (Ce, Co) doping with a concentration of 12.5%. This study is based on the FP-LAPW method implemented in the Wien2k code and in the framework of the density functional theory (DFT). The generalized gradient approximation (GGA) and the Becke-Johnson approach modified by Tran-Blaha (TB-mBJ) were used to deal the exchange and correlation potential.

The results obtained from the study of the structural properties of pure TiO₂, $Ti_{0.875}Co_{0.125}O_2$, $Ti_{0.875}Ce_{0.125}O_2$ and $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$ compounds are in good agreement with the available data. The study of the electronic and optical properties showed that doping and co-doping modify the gap value of TiO₂. The optical spectra of TiO₂ doped with cobalt showed a photoresponse in the infrared but the (Co-Ce) co-doping of TiO₂ has a higher photoresponse for visible light than that of TiO₂ doped only with cobalt or cerium.

Keywords: rutile TiO₂, photocatalysis, doping, co-doping, DFT, TB-mBJ, FP-LAPW.

ثاني أكسيد التيتانيوم (TiO₂) هو أكسيد أنصاف النواقل. يوجد في عدة أشكال منها ثلاثة أشكال رئيسية هي الروتيل، والأنتاز والبروكيت. يحتوي ثاني أكسيد التيتانيوم على خصائص نصف ناقلة جيدة جدًا، مما جذب انتباه العديد من الباحثين لدر اسة التطبيقات المختلفة مثل الأجهزة الكهر وضوئية والأنظمة الكهر وضوئية والتحفيز الضوئي ... إلخ.

الهدف من هذا العمل هو دراسة الخواص التركيبية والالكترونية والبصرية لـTiO2 روتيل لتقييم تأثير المطعمات مع (Co ،Ce) بتركيز 12.5٪. تعتمد هذه الدراسة على طريقة FP-LAPW المطبقة في كود Wien2k وفي إطار نظرية الكثافة الوظيفية (DFT). استنادًا إلى تقريب التدرج المعمم (GGA) ونهج Becke-Johnson المعدل بواسطة -Blaha. Blaha.

Ti0.875C00.125O2, النتائج التي تم الحصول عليها من دراسة الخصائص الهيكلية لمركبات TiO₂ النقية، TiO₂ وليتي Ti0.875C00.125O2 وتية Ti0.875Ce0.125O2 وTi0.875Ce0.125O2 وتتوافق جيدًا مع البيانات المتاحة. أظهرت دراسة الخواص الإلكترونية والبصرية أن التطعيم والتطعيم المشترك يسبب تعديل في قيمة فجوة الـ TiO₂. أظهرت الأطياف الضوئية لـ TiO₂ المطعم والبصرية أن التطعيم والتطعيم المشترك يسبب تعديل في قيمة فجوة الـ TiO₂. أظهرت الأطياف الضوئية لـ TiO₂ المطعم والبصرية أن التطعيم والتطعيم المشترك يسبب تعديل في توامة في تنه فجوة الـ TiO₂. أظهرت الأطياف الضوئية المطعم بالكوبالت المتجابة ضوئية في الأشعة تحت الحمراء، لكن التطعيم المشترك لثاني أكسيد التيتانيوم (TiO₂) بو اسطة (Co) (Ce) لها استجابة ضوئية أعلى للضوء المرئي من تلك الخاصة بـ TiO

الكلمات المفتاحية: TiO₂ روتيل ، التحفيز الضوئي، التطعيم، المطعمات المشتركة، FP- LAPW ، TB-mBJ ، DFT.

LISTE DES FIGURES

Figure	Titre			
I.1	Structures cristallines de TiO_2 dans la phase : (1) rutile, (2) anatase, (3) brookite.	5		
12	Structuras de handas álastroniques : Putile (x) Anotase (x) Prophite (z) PEE	7		
1.2	L'absorption du TiO- dans la domaine de l'ultraviolat [18]	/		
1.3 I 4	L'absolption du 110 ₂ dans le domaine de l'utraviolet [18].	8		
1.4	Donage de type n.			
1.5	Dopage de type p.			
1.6	Mécanisme de dégradation photo-catalytique à la surface de $11O_2$.	14		
11-1	Diagramme de la résolution des équations de Kohn-sham.	21		
II-2	L'organigramme des programmes du code wien2k.	28		
III.1	Structure cristalline de l'oxyde de titane TiO ₂ rutile.	31		
III.2	Energies totales en fonction du volume pour TiO ₂ pur.	32		
III.3	Structure de bande de TiO ₂ pur en utilisant l'approximation a) GGA-PBE et b)	34		
	GGA-mBJ.			
III.4	Densités d'états totales et partielles de TiO ₂ pur.	34		
III.5	Structure cristalline de composé Ti _{0.875} Ce _{0.125} O ₂ .	35		
III.6	La variation de l'énergie totale en fonction du volume pour TiO ₂ dopé par le			
	cérium (Ce).			
111.7	La structure de bande de composé $Ti_{0.875}Ce_{0.125}O_2$ en utilisant l'approximation GGA-mBJ.			
III.8	Densités d'états totales et partielles de composé Ti _{0.875} Ce _{0.125} O _{2.}			
III.9	Structure cristalline de composé Ti _{0.875} Co _{0.125} O _{2.}	38		
III.10	La variation de l'énergie totale en fonction du volume pour TiO_2 dopé par le achett (Co)	38		
III.11	La structure de bande de composé Tio 875Coo 125O2 en utilisant l'approximation	40		
		40		
	GGA-mBJ.			
III.12	Densités d'états totales et partielles de composé Ti _{0.875} Co _{0.125} O ₂ .	41		
III.13	Structure cristalline de composé Ti _{0.75} Co _{0.125} Ce _{0.125} O _{2.}	41		
III.14	La variation de l'énergie totale en fonction du volume pour TiO ₂ co-dopé par le	42		
	cobalt (Co) et le cérium (Ce)			
III.15	La structure de bande de composé Ti _{0.75} Co _{0.125} Ce _{0.125} O ₂ en utilisant	43		
	l'approximation GGA-mBJ.			
III.16	Densités d'états totales et partielles de composé Ti _{0.75} Co _{0.125} Ce _{0.125} O ₂ .	44		
III.17	Les fonctions diélectriques (ϵ_{xx}) des composés TiO ₂ pur, Ti _{0.875} Co _{0.125} O ₂ ,	46		
	$Ti_{0.875}Ce_{0.125}O_2$ et $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$: (a) partie réelle et (b) partie imaginaire.			
111.18	Les fonctions diélectriques (ε_{zz}) des composés TiO ₂ pur, Ti _{0.875} Co _{0.125} O ₂ ,	47		
	$Ti_{0.875}Ce_{0.125}O_2$ et $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$: (a) partie réelle et (b) partie imaginaire.			

10
49
50
4

LISTE DES TABLEAUX

tableau	Titre	Page				
I.1	Paramètres des différentes structures de TiO ₂ [14].					
I.2	Quelques propriétés optiques du dioxyde de titane.					
III.1	Paramètres de réseau (a), (c) et module de compressibilité B de TiO_2 pur dans la phase rutile.	32				
III.2	Les valeurs des gaps Eg (eV) de TiO_2 pur par rapport aux autres calculs théoriques et expérimentaux.	33				
III.3	Paramètres de réseau (a et c) et module de compressibilité B des composés Ti _{0.875} Ce _{0.125} O ₂ .	36				
III.4	Paramètres de réseau (a et c) et modules de compressibilité B de composé $Ti_{0.875}Co_{0.125}O_2$	39				
III.5	Les valeurs des gaps directs Eg (eV) de composé Ti _{0.875} Co _{0.125} O ₂ par rapport aux autres calculs théoriques et expérimentaux.	39				
III.6	Paramètres de réseau (a et c) et modules de compressibilité B des composés Ti _{0.75} Co _{0.125} Ce _{0.125} O ₂ .	42				
III .7	Les valeurs statiques de ε_{1xx} (0) et ε_{1zz} (0) en comparaison aux autres calculs théoriques.	47				
III.8	Caractéristiques et domaines d'application des composes étudiés	51				

TABLE DES MATIÈRES

Introduction générale	1
Références bibliographiques	
Chapitre I : Dioxyde de titane dans la littérature	
I.1.Introduction	4
I.2.Propriétés de TiO ₂	4
I.2.1. Propriétés structurales	4
I.2.2. Propriétés électroniques	7
I.2.3. Propriétés Optiques	7
I.3. Les semi-conducteurs	9
I.3.1. Les différents types de semi-conducteurs	9
I.3.1.1. Semi-conducteur intrinsèque	9
I.3.1.2. Semi-conducteur extrinsèque	9
I.4. Dopage de Semi-conducteurs	9
I.4.1. Dopage de type n	9
I.4.2. Dopage de type p	
I.5. Dopage du dioxyde de titane	
I.5.1. Dopage cationique	
I.5.2. Dopage anionique	11
I.5.3. Co-dopage de TiO ₂	11
I.6. Photo-catalyse hétérogène	
I.6.1. Introduction	
I.6.2. Principe	
I.7. Les applications de TiO ₂	
I.7.1. Photo-catalyseurs au TiO ₂	
I.7.2. Pigment	14
I.7.3. Produits cosmétiques	14
I.7.4. Cellules solaires	
Références bibliographiques	15

Chapitre II : Théorie de la fonctionnelle de la densité et méthode de calcul FP-LAPW

Introduction	
II.1. Équation de Schrödinger	
II.2. Approximation de Born-Oppenheimer	
II.3. Approximation de Hartree-Fock	
II.4. Théorie de la fonctionnelle de la densité (DFT)	
II.4.1. Théorèmes de Hohenberg et Kohn	
II.4.2. L'approche de Kohn et Sham	
II.4.3. La fonctionnelle d'échange-corrélation	

21
22
23
23
23
25
25
26
26
27
29

Chapitre III : Résultats et Discussion

III.1 Introduction	30
III.2 Détails de calcul	
III.3 Étude de l'oxyde de titane TiO ₂ pur	
III.3.1 Propriétés structurales	
III.3.2 Propriétés électroniques	
III.3.2.1. Structure de bandes	
III.3.2.2. Densités d'états électroniques (DOS)	
III.4. Étude de composé Ti _{0.875} Ce _{0.125} O ₂	
III.4.1. Propriétés structurales	
III.4.2. Propriétés électroniques	
III.4.2.1. Structure de bandes	
III.4.2.2. Densités d'états électroniques (DOS)	
III.5. Étude de composé Ti _{0.875} Co _{0.125} O ₂	
III.5.1. Propriétés structurales	
III.5.2. Propriétés électroniques	
III.5.2.1 structure de bandes	
III.5.2.2. Densités d'états électroniques (DOS)	
III.6. Étude de composé Ti _{0.75} Co _{0.125} Ce _{0.125} O ₂	
III.6.1. Propriétés structurales	
III.6.2. Propriétés électroniques	
III.6.2.1. Structure de bandes	
III.6.2.2. Densités d'états électroniques (DOS)	43
III.7. Étude des propriétés optiques des composés TiO2 pur, Ti _{0.875} Co _{0.125} O ₂ , Ti _{0.875} C	e _{0.125} O ₂ et
Ti _{0.75} Co _{0.125} Ce _{0.125} O ₂	
III 7.1. La fonction diélectrique complexe $s(\omega)$	15
III 7.2 Le coefficient d'absorption $\alpha(\omega)$	
III.7.2. Le coerticient d'absorption $a(\omega)$	/ 4
$111.7.5.$ La conductivité optique $O(\omega)$	
III.o. La dissociation photocatalytique de l'eau	

Références bibliographiques	. 52
Conclusion générale	. 53

INTRODUCTION GÉNÉRALE

A

9

Le dioxyde de titane (TiO₂) compte parmi les matériaux semi-conducteurs les plus intéressants en raison de ses nombreuses applications, telles que les surfaces autonettoyantes, la fonction antibuée, la fonction antibactérienne et la photo-dégradation de plusieurs polluants dissous dans l'eau par l'absorption de la lumière UV. Les avantages du dioxyde de titane comprennent ses propriétés chimiques non toxiques, sa stabilité à température ambiante et son activité photo-catalytique élevée [1,2].

Pour améliorer et augmenter le nombre d'application de l'oxyde de titane, deux inconvénients majeurs doivent être pris en considération pour le perfectionnement du photocatalyseur. i) Son activité photo catalytique que sous irradiation de lumière UV car sa bande interdite est large (3 à 3,2 eV) et les UV forment moins de 5% du spectre solaire alors que la région spectrale dominante du spectre solaire est le visible. ii) la recombinaison rapide des paires électrons - trous.

Plusieurs efforts ont été déployés afin de surmonter ces limitations, en modifiant les propriétés de surface ou de volume de TiO_2 par dopage avec des métaux et des non-métaux afin de réduire la bande interdite et de retarder la recombinaison électron-trou **[3]**, et ainsi décaler le seuil d'absorption optique de ce matériau vers la région des longueurs d'onde du visible.

Des études récentes ont démontré que le dopage par des dopants appropriés peut améliorer la fonction photo-catalytique de TiO₂ rutile. Citons le dopage avec les non-métaux (N, C, B, S) [4-5], les métaux de transition [6,7], d'autres recherches ont prouvé que deux dopants ont un impact plus synergique mieux qu'un seul dopant [8,9].

Ce travail consiste à co-dopé TiO_2 par : un métal de transition le cobalt (Co) et un métal des terres rares le cérium (Ce) pour une concentration appropriée afin de mieux comprendre et prédire les différents phénomènes dus aux effets du codopage particulièrement sur les propriétés optiques.

Ce mémoire inclut une introduction générale, trois chapitres et une conclusion générale.

Le premier chapitre est consacré à un rappel des généralités sur les oxydes semi-conducteurs, notamment une étude détaillée sur le dioxyde de titane, ses propriétés physiques et les domaines d'application particulièrement la photo catalyse.

Le deuxième chapitre présente un rappel sur la théorie de la fonctionnelle de la densité (DFT), les approximations et la méthode FP-LAPW ainsi que le code WIEN2k.

 \blacktriangleright Le troisième chapitre présente les résultats de l'étude ab-initio des propriétés structurales, électroniques et optiques des composés TiO₂ pur et dopé Ti_{1-x}A_xO₂ (A= Co, Ce et x = 0,0.125), et le composé co-dopé Ti_{1-2x}A_xB_xO₂ (A= Co, B=Ce et x = 0.125).

Références bibliographiques

[1] Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO₂ photocatalysis: a historical overview and future prospects. *Japanese journal of applied physics*, *44*(12R), 8269.

[2] Azize, H. W. (2015). Antibacterial Activity of titanium dioxide (TiO₂) doped with H₂O₂ against staphylococcus aureus Human pathogen in aqueos solution. *J. Baby Univ./Pure Appl. Scie*, *23*(2), 617-625.

[3] Gupta, S. M., & Tripathi, M. (2011). A review of TiO_2 nanoparticles. *chinese science bulletin*, 56(16), 1639-1657.

[4] Piątkowska, A., Janus, M., Szymański, K., & Mozia, S. (2021). C-, N-and S-doped TiO₂ photocatalysts: a review. *Catalysts*, *11*(1), 144.

[**5**] Chen, X., & Burda, C. (2008). The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO₂ nanomaterials. *Journal of the American Chemical Society*, *130*(15), 5018-5019.

[6] Umebayashi, T., Yamaki, T., Itoh, H., & Asai, K. (2002). Analysis of electronic structures of 3d transition metal-doped TiO_2 based on band calculations. *Journal of Physics and Chemistry of Solids*, 63(10), 1909-1920.

[7] Inturi, S. N. R., Boningari, T., Suidan, M., & Smirniotis, P. G. (2014). Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO₂. *Applied Catalysis B: Environmental*, *144*, 333-342.

[8] Lin, Y., Jiang, Z., Zhu, C., Zhang, R., Hu, X., Zhang, X., ... & Lin, S. H. (2017). The electronic structure, optical absorption and photocatalytic water splitting of (Fe+ Ni)-codoped TiO₂: A DFT+ U study. *International Journal of Hydrogen Energy*, *42*(8), 4966-4976.

[9] Amraoui, R., Doghmane, M., Chettibi, S., & Laefer, D. F. (2017). The electronic structure and optical properties of rutile TiO_2 co-doped with nickel and cerium. *Chinese journal of physics*, 55(6), 2393-2399.

Chapitre I :

A

9

Dioxyde de titane dans la littérature

I.1.Introduction

Le dioxyde de titane est un oxyde semi-conducteur performant pour la photo-catalyse grâce à ses nombreux avantages. C'est aussi un matériau qui a de nombreuses applications dans différents domaines : il sert habituellement de substrat de support pour les particules métalliques en catalyse hétérogène ; sa stabilité en fait un matériau de revêtement anticorrosion parfait ; il est très important dans l'appareillage électronique grâce à ses propriétés diélectriques et c'est un bon pigment blanc dans la peinture et les cosmétiques pour son indice de réfraction élevé **[1]**.

Il existe plusieurs matériaux connus pour leur activité photo-catalytique dont la plupart sont des oxydes métalliques. Parmi ceux-ci l'oxyde de titane, qui depuis la découverte de son effet photo-catalytique, par Honda et Fujishima en 1972 [2], il est devenu un semiconducteur célèbre, de nombreux chercheurs l'ont étudié et utilisé. Il a été largement appliqué dans le traitement des eaux polluées et de la purification de l'air [3], dans l'auto-nettoyage [4] l'antibrouillard [5] où les processus photo-catalytiques jouent un rôle important.

Dans ce premier chapitre, les caractéristiques des oxydes semi-conducteurs, notamment le dioxyde de titane (TiO₂) ses propriétés structurales, électroniques et optiques, ainsi l'effet du dopage sont présentés. En fin le phénomène de la photo-catalyse, son principe et les différentes applications de TiO₂ sont traités.

I.2. Propriétés de TiO₂

Le dioxyde de titane possède plusieurs avantages : l'inertie chimique et biologique, la stabilité, le coût économique, le grand pouvoir oxydant sous la lumière ultraviolet et sa capacité de dégrader une large gamme de polluants **[6-7]**.

I.2.1. Propriétés structurales

La température d'élaboration influence l'existence de plusieurs formes cristallines de TiO_2 . Les plus fréquentes sont : l'anatase, le rutile et la brookite. La figure I.1 illustre les différentes structures du TiO_2 .

Figure I.1 : Structures cristallines de TiO₂ dans la phase : (1) rutile, (2) anatase, (3) brookite.

L'anatase et le rutile sont toutes les deux de structures tétragonales avec respectivement 12 et 6 atomes par maille unitaire. Dans chacune des structures, chaque atome de titane est lié à six atomes d'oxygène et chaque atome d'oxygène est lié à trois atomes de titane. Le rutile et l'anatase possèdent une énergie de gap égale à 3,02 eV et 3,23 eV respectivement. Une augmentation significative de la température provoque la transformation de l'anatase en rutile **[8]**.

L'anatase est une phase métastable, cette forme présente une mobilité électronique et une constante diélectrique importante qui répondent à son large domaine d'utilisation. Selon des études la surface de l'anatase a une hydroxylation élevée par rapport à celle du rutile. Ainsi le rutile a une mauvaise adsorption de l'oxygène, le piégeage des électrons est moins efficace et les recombinaisons trou/électron augmentent **[9]**. D'autres auteurs ont étudié le mélangé anatase et rutile dans l'activité photocatalytique **[10,11]**. Ils ont trouvé une amélioration due à la séparation de charge et la bonne photo-absorption de la phase rutile.

Le tableau I.1 présente les Caractéristiques des différentes structures du dioxyde de titane.

propriétés	Anatase	rutile	brookite
Couleur	Bleu	blanche	Brun foncé au noir
			verdâtre
masse volumique	3.84	4.26	4.17
(g.cm ⁻³)			
dureté (échelles de	5.5 à 6.0	5.5 à 6.5	5.5 à 6.0
mohs)			
La liaison Ti- O(Å)	1.917	1.959	1.9
La liaison Ti- Ti(Å)		2.96	
La structure	quadratique	quadratique	Orthorhombique
Les paramètres de	a=b=3.784	a = b = 4.549	a = 9.184
maille (Å)	c=9.514	c = 2.959	b = 5.447
			c= 5.145
Densité	3830	4240	4170
(Kg/m ³)			
Enchainement d'octaèdres			

Tableau I.1 : paramètres des différentes structures de TiO₂

I.2.2. Propriétés électroniques

La détermination de la structure des bandes électroniques, les densités d'états totales et partielles (TDOS, PDOS), le gap d'énergie ont une grande importance dans la connaissance des propriétés électroniques des matériaux.

Le dioxyde de titane est un semi-conducteur possédant une large bande interdite légèrement supérieure à 3 eV. À l'état stœchiométrique, les états occupés (bande de valence) dérivent principalement des atomes d'oxygène, les états libres (bande de conduction) dérivent des atomes de Ti. Des défauts tels que les lacunes d'oxygène sont apparues une fois, le matériau réduit.

Les valeurs 3 eV, 3,2 eV et 3,1 eV sont respectivement les énergies de gaps du rutile, d'anatase et brookite **[12]**. Ces valeurs de gap donnent lieu à des transitions correspondant à des photons se situant dans le domaine de l'ultraviolet. La figure I.2 donne les structures de bandes électroniques des trois phases de TiO₂.

Figure I.2 : Structures de bandes électroniques : Rutile (x), Anatase (y) Brookite (z) [12].

I.2.3. Propriétés Optiques

Il existe deux principaux types de transition de bande interdite dans les semiconducteurs. Pour les semi-conducteurs au gap direct, la transition électronique de la bande de valence à la bande de conduction est autorisée, l'absorption électronique et l'émission sont généralement fortes. Pour les semi-conducteurs au gap indirect, la transition électronique de la BV à la BC est interdite et la transition est assistée par phonon, ce qui implique que l'énergie et la quantité de mouvement de la paire électron-trou sont modifiées dans la transition.

L'excitation d'un électron de la bande de valence vers la bande de conduction se fait par le phénomène de l'absorption de la lumière. La figure 3 présente l'absorption du TiO_2 dans la lumière UV.

Figure I.3 : L'absorption du TiO₂ dans le domaine de l'ultraviolet [13].

Les propriétés optiques sont quantifiées et généralement décrites par la constante diélectrique ε (ω), par l'indice de réfraction n (ω), le coefficient d'extinction k (ω) et le coefficient d'absorption α (ω).

Le dioxyde de titane est caractérisé par un indice de réfraction élevé (**tableau I.2**). La phase rutile possède le plus grand indice. Ceci associé à un coefficient de diffusion de la lumière visible élevé, font de la phase rutile un pigment blanc. La non toxicité du TiO_2 lui permet d'être utilisé comme écran anti-irradiation ultraviolet du soleil pour les crèmes.

Tableau I.2 : quelques propriétés optiques du dioxyde de titane.

Phase	Rutile	Anatase	Brookite
Indice de Réfraction	2,605-2,903	2,561-2,488	2,583-2,700
Gap énergétique	3	3,20	3,14

I.3. Les semi-conducteurs

Un semi-conducteur est un solide cristallin dont les propriétés de conduction électrique sont déterminées par deux bandes d'énergie particulières : d'une part, la bande de valence, qui correspond aux électrons impliqués dans les liaisons covalentes ; d'autre part, la bande de conduction, comprenant les électrons dans un état excité, qui peuvent se déplacer dans le cristal. Ces deux bandes sont séparées par une bande interdite que les électrons ne peuvent franchir que grâce à une excitation extérieure (par exemple, l'absorption de la lumière).

I.3.1. Les différents types de semi-conducteurs

I.3.1.1 Semi-conducteur intrinsèque

C'est le cas où les électrons qui existent dans la bande de conduction proviennent de la bande de valence, on dit que c'est un semi-conducteur intrinsèque ou pur.

I.3.1.2 Semi-conducteur extrinsèque

C'est un semi-conducteur pur qui est dopé par des impuretés spécifiques lui conférant des propriétés électriques adaptées aux applications électroniques (diodes, transistors, ...etc.) et optoélectroniques (émetteurs et récepteurs de lumière, LED, ...etc.).

I.4. Dopage de Semi-conducteurs

I.4.1. Dopage de type n

Un semi-conducteur de type n est un semi-conducteur intrinsèque dans lequel on introduit des impuretés de type donneurs. Les semi-conducteurs de type n contiennent un excès d'électrons. Le dopage par des atomes donneurs d'électrons entraîne l'apparition d'un niveau d'énergie, sa position juste sous la bande de conduction. Qui rend le passage des électrons dans la bande de conduction plus facile que dans un semi-conducteur intrinsèque (Figure I.4).

Figure I.4 : Dopage de type n.

I.4.2. Dopage de type p

Le dopage de type p est l'introduction des impuretés accepteurs. Ces impuretés peuvent facilement capter un électron pour saturer sa couche externe. L'introduction d'atomes accepteurs d'électrons entraîne, une apparition d'un niveau d'énergie situé au-dessus de la bande de valence où l'énergie à fournir aux électrons de valence pour passer sur ce niveau est faible, et le passage des électrons entraîne l'apparition de porteurs des charges dans la bande de valence. (Figure I.5).

Figure I.5 : dopage de type p.

I.5. Dopage du dioxyde de titane

Une des applications les plus importantes du TiO_2 est la photo-catalyse. Mais, en raison de la largeur de bande interdite et de l'absorption uniquement dans la région UV, ce semiconducteur ne peut pas être utilisé dans la photo-catalyse à la lumière visible. Le dopage est une méthode permettant de créer des états intermédiaires dans la bande interdite de TiO_2 afin de déplacer le bord d'absorption vers la zone visible. L'incorporation d'impuretés augmente la capacité d'absorption de la lumière visible en agissant sur la bande interdite de TiO_2 pur.

La structure de bande des semi-conducteurs peut être modifiée par le processus de dopage. Pour le TiO₂, le procédé est habituellement mis en œuvre afin d'étendre sa plage de réponse optique dans la région visible en remplaçant les ions Ti⁺⁴ ou O⁻² dans la structure par des substituant métalliques ou non métalliques. Les sites de dopage ne sont pas limités à la substitution d'atomes dans le réseau mais peuvent également être situés entre les sites Ti⁺⁴ et O⁻², en positions interstitielles, Les espèces dopantes sont généralement incorporées dans la structure pour réduire la valeur E_g en abaissant le bord supérieur de la bande de conduction ou en élevant le bord inférieur de la bande de valence. Cela pour sensibiliser TiO₂ dans le domaine visible.

I.5.1. Dopage cationique

Pour ce type de dopage, on peut utiliser plusieurs méthodes, par exemple le traitement à haute température, l'implantation des ions, ... etc. Ce dopage est effectué avec des métaux de transition Fe, Co, Ni, Mn, les lanthanides La, Ce et autres [**14-15**].

Les différentes propriétés du TiO_2 comme la photo-réactivité et le taux de recombinaison des charges peuvent être modifiées selon le pourcentage ou la concentration de cations substitués **[16]**.

I.5.2. Dopage anionique

En 1986 SATO et al ont réalisé le premier rapport sur le dopage anionique [17] où ils ont effectué un dopage avec l'azote. Ils ont remplacé les ions O^{-2} par des atomes non métalliques, tels que: C, N, S, Cl ... etc. L'azote est peut-être le plus prometteur en termes d'amélioration de la photo-activité de TiO₂ dans le visible [18]. Celui-ci peut être facilement introduit dans le réseau de TiO₂ car il est similaire en taille atomique à l'oxygène, est très stable et a une faible énergie d'ionisation.

I.5.3. Co-dopage de TiO₂

Les propriétés de TiO₂ peuvent également être modifiées par co-dopage, ce qui peut être obtenu par la combinaison de paires métal / métal, non métal / non métal ou non métal / métal. Un effet synergique (le non-métal peut provoquer un décalage rouge dans la région de la lumière visible, alors que le métal peut faciliter le transfert des porteurs de charge photo générés supprimant ainsi la recombinaison) peut être obtenu avec une combinaison appropriée de co-dopants TiO₂ dopé ou non dopé aux ions. Mis à part les co-dopants facilitant le rétrécissement des bandes interdites, leur combinaison peut entraîner la formation de différentes hétéro structures (c'est-à-dire différentes structures électroniques) par rapport au TiO₂.

Le co-dopage des ions lanthanides avec d'autres éléments est de plus en plus populaire en raison de leurs différentes propriétés d'absorption et de leur activité photo-catalytique améliorée par rapport au TiO₂ dopé individuellement. Les métaux des terres rares ont été dopés avec d'autres ions de métaux des terres rares, des ions métalliques et des non-métaux, pour améliorer la réponse de la lumière visible à l'activité photo-catalytique.

Les résultats de ces chercheurs ont montré l'activité photo-catalytique augmente et l'absorbance de la lumière visible par les combinaisons de métaux par rapport aux systèmes de TiO₂ non dopés et dopé individuellement.

I.6. Photo-catalyse hétérogène

I.6.1. Introduction

Parmi les techniques d'oxydation avancée (TOA), on trouve la photo-catalyse qui peut être décrite comme un processus catalytique d'une réaction photochimique. Elle est utilisée pour la dégradation des polluants organiques et inorganiques en CO_2 , H_2O . La photo-catalyse est une accélération de la vitesse d'une réaction chimique en présence de la lumière. Dans la photocatalyse le TiO₂ est un matériau stable et efficace.

I.6.2 Principe

L'irradiation d'un semi-conducteur soit naturellement ou artificiellement, s'appelle la photo-catalyse hétérogène. Ceci contribue à l'accélération de la photo réaction en faisant intervenir des réactions entre les paires électron/trou et les produits adsorbés à la surface du semi-conducteur. Lorsque ce dernier absorbe une énergie photonique supérieure à la valeur de son gap (hv>Eg), provoque une excitation qui permet à un électron de la bande de valence de passer dans la bande de conduction, créant un site d'oxydation/et de réduction (h^+/e^-) suivant la réaction suivante :

Semi – Conducteur
$$\rightarrow e_{BC}^- + h_{BV}^+$$

 $OH_{ads}^- + h_{BV}^+ \rightarrow OH_{ads}^0$ (I.1)

L'activité photo-catalytique d'un semi-conducteur est donc largement contrôlée par :

- Les propriétés d'absorption de la lumière comme le spectre d'absorption de la lumière et le coefficient d'absorption.
- Taux de réduction et d'oxydation à la surface par électrons / trous.
- Taux de recombinaison (trous/électrons).
- Une surface importante avec une densité de surface absorbante constante conduit à une vitesse de réaction photo-catalytique plus rapide.

I.7. Les applications de TiO₂

 TiO_2 possède de nombreuses applications dans plusieurs domaines industriels, tel que le domaine de la teinte, la photo-catalyse, la protection contre les rayonnements ultraviolet grâce à ses propriétés optiques.

I.7.1. Photo-catalyseurs au TiO₂

Les premiers effets photo actifs du TiO_2 ont été rapportés par Renz en 1920 qui a observé un assombrissement du matériau dû à l'irradiation UV [19]. Goodeve et Kitchener ont

ensuite décrit ses effets photo sensibilisants en 1938 lorsqu'ils l'ont exploité comme un pigment blanc dans les teintes et les papiers peints **[20]**. Cependant, ce n'est qu'en 1972 avec le travail de Fujishima et Honda que les recherches intensives sur les propriétés photo-catalytiques de TiO₂ ont commencé sérieusement.

Les photo-catalyseurs au TiO_2 ont été utilisés dans plusieurs applications, de la décomposition de l'eau et de la conversion du combustible solaire, à la décomposition des polluants organiques pour l'assainissement de l'environnement [21-22].

 TiO_2 est un semi-conducteur qui passe à un état d'énergie élevée en recevant de l'énergie lumineuse, et libère des électrons de sa surface éclairée. Si l'énergie reçue à ce stade est suffisamment élevée, les électrons initialement situés dans la bande de valence sautent tous dans la bande de conduction. La paire de trous d'électrons est générée, ce qui génère des radicaux libres capables de subir une réaction secondaire. Cela forme le principe de l'activité photo-catalytique. Le trou produit a un fort pouvoir oxydant et les électrons ont un fort pouvoir réducteur.

L'excitation du TiO₂ par un rayonnement ultraviolet permet à un électron de la bande de valence de passer à la bande de conduction :

$$\mathrm{TiO}_2 \to \mathrm{TiO}_2 + h_{BV}^+ + e_{BC}^- \tag{I.2}$$

Les donneurs d'électrons tels que l'eau réagissent avec Les trous h^+ , les produits (R) et les anions OH adsorbés à la surface du semi-conducteur en formant des radicaux hydroxyles et des produits intermédiaires notés R° selon les équations suivantes :

$$\begin{array}{l} H_2 O_{ads} \rightarrow H^+ + O H^0_{ads} \\ O H^-_{ads} + h^+ \rightarrow O H^0_{ads} \\ R_{ads} + h^+ \rightarrow R^0_{ads} \end{array}$$
(I.3)

Les accepteurs d'électrons tels que le dioxygène réagissent avec les électrons pour former des radicaux super oxydes. Cette réaction limite la recombinaison des trou/électron.

$$0_2 + e^- \to 0_2^- \tag{I.4}$$

En l'absence d'accepteur et de donneur d'électrons appropriés, on assiste à l'annihilation trou/électron c'est la réaction de recombinaison très rapide de l'ordre de la picoseconde :

$$\mathrm{TiO}_2 + h_{BV}^+ + e_{BC}^- \to \mathrm{TiO}_2 \tag{I.5}$$

Figure I.6 résume le mécanisme photo-catalytique à la surface de TiO₂.

Figure I.6: Mécanisme de dégradation photo-catalytique à la surface de TiO₂.

I.7.2. Pigment

Une grande quantité de TiO_2 est consommée chaque année, Grace à ses propriétés comme l'indice de réfraction et sa blancheur font qu'il est exploité dans les teintes, plastiques, ...etc. Il est encore utilisé dans la composition de médicaments et les colorants alimentaires

I.7.3. Produits cosmétiques

Le TiO_2 entre récemment dans la composition des produits cosmétiques grâce à ses propriétés. On le trouve dans plusieurs produits présents sur le marché, notamment dans les crèmes solaires car il a la capacité d'absorber les rayonnements ultraviolets.

I.7.4. Cellules solaires :

La structure nanocristalline et poreuse de la phase anatase du TiO₂, donne la meilleure photo-électrode dans les cellules solaires à colorant (DSCs), grâce à sa surface spécifique, ce qui permet d'adsorber une grande quantité du colorant.

Références bibliographiques

[1] Diebold, U. (2003). The surface science of titanium dioxide. *Surface science reports*, 48(5-8), 53-229.

[2] Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. *nature*, *238*(5358), 37-38.

[3] Paz, Y. (2010). Application of TiO₂ photocatalysis for air treatment: Patents' overview. *Applied Catalysis B: Environmental*, 99(3-4), 448-460.

[4] Zhang, L., Dillert, R., Bahnemann, D., & Vormoor, M. (2012). Photo-induced hydrophilicity and self-cleaning: models and reality. *Energy & Environmental Science*, 5(6), 7491-7507.

[5] Momoli, R., Giacomazzo, S., Gandin, A., & Brusatin, G. (2022). Anti-fog nanocomposite coatings of enhanced durability. *Journal of Sol-Gel Science and Technology*, *101*(1), 46-57.

[6] Augugliaro, V., Bellardita, M., Loddo, V., Palmisano, G., Palmisano, L., & Yurdakal, S. (2012). Overview on oxidation mechanisms of organic compounds by TiO₂ in heterogeneous photocatalysis. *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, *13*(3), 224-245.

[7] Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. *Catalysis today*, *147*(1), 1-59.

[8] Hanaor, D. A., & Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. *Journal of Materials science*, *46*(4), 855-874.

[9] Bickley, R. I., Gonzalez-Carreno, T., Lees, J. S., Palmisano, L., & Tilley, R. J. (1991). A structural investigation of titanium dioxide photocatalysts. *Journal of solid state chemistry*, 92(1), 178-190.

[10] Hamdy, M. S., Saputera, W. H., Groenen, E. J., & Mul, G. (2014). A novel TiO₂ composite for photocatalytic wastewater treatment. *Journal of catalysis*, *310*, 75-83.

[11] Marques, S. M., Tavares, C. J., Oliveira, L. F., & Oliveira-Campos, A. M. F. (2010). Photocatalytic degradation of CI Reactive Blue 19 with nitrogen-doped TiO₂ catalysts thin films under UV/visible light. *Journal of Molecular Structure*, *983*(1-3), 147-152.

[12] Mo, S. D., & Ching, W. Y. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. *Physical Review B*, *51*(19), 13023.

[13] Simon, P. (2011). *Synthèse de nanoparticules d'oxydes de titane par pyrolyse laser-Etude des propriétés optiques et de la structure électronique* (Doctoral dissertation, Paris 11).

[14] Inturi, S. N. R., Boningari, T., Suidan, M., & Smirniotis, P. G. (2014). Visible-lightinduced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO₂. *Applied Catalysis B: Environmental*, *144*, 333-342. **[15]** Song, K., Han, X., & Shao, G. (2013). Electronic properties of rutile TiO₂ doped with 4d transition metals: First-principles study. *Journal of Alloys and Compounds*, *551*, 118-124.

[16] X., Cheng, C., Yang, M., Yang, T., ... & Quan, X. (2022). DFT and experimental study on visible-light driven photocatalysis of rare-earth-doped TiO₂. *Vacuum*, 200, 110972.

[17] Ansari, S. A., Khan, M. M., Ansari, M. O., & Cho, M. H. (2016). *Nitrogen-doped titanium dioxide (N-doped TiO₂) for visible light photocatalysis. New Journal of Chemistry, 40(4), 3000–3009.*

[18] Piątkowska, A., Janus, M., Szymański, K., & Mozia, S. (2021). *C-,N- and S-Doped TiO*₂ *Photocatalysts: A Review. Catalysts, 11(1), 144.*

[19] Renz, C. (1921). Légères réactions des oxydes de titane, de cérium et des acides terreux. *Helvetica Chimica Acta*, *4* (1), 961-968.

[20] Goodeve, C. F., & Kitchener, J. A. (1938). Photosensitisation by titanium dioxide. *Transactions of the Faraday Society*, *34*, 570-579.

[21] Matthews, R. W. (1990). Purification of water with near—UV illuminated suspensions of titanium dioxide. *Water research*, 24(5), 653-660.

[22] Shourong, Z., Qingguo, H., Jun, Z., & Bingkun, W. (1997). A study on dye photoremoval in TiO₂ suspension solution. *Journal of Photochemistry and Photobiology A: Chemistry*, *108*(2-3), 235-238.

Chapitre II :

1

Théorie de la fonctionnelle de la densité

et méthode de calcul FP-LAPW

Introduction

Le développement progressif des calculs ab initio est dû à l'augmentation des ressources de calcul et à l'amélioration des algorithmes. Ces calculs de premier principe confirment non seulement les résultats expérimentaux mais aussi guider et prédire les matériaux et leurs propriétés prometteuses. En utilisant la théorie quantique, on peut facilement différencier les métaux des isolants, ou encore caractériser les matériaux en fonction de leurs propriétés optiques, magnétiques et autres.

II.1. Équation de Schrödinger

L'équation d'onde de Schrodinger est une expression mathématique décrivant l'énergie et la position de l'électron dans l'espace et le temps, en tenant compte de la nature de l'onde de matière de l'électron à l'intérieur d'un atome. L'équation de Schrödinger indépendante du temps est exprimée comme suit :

$$\widehat{H} \Psi = \mathbb{E} \Psi \tag{II.1}$$

Où :

E : l'énergie totale du système.

 Ψ : *la* fonction d'onde.

\widehat{H} : l'opérateur Hamilton qui opère sur la fonction d'onde.

Les forces électrostatiques d'interaction (répulsion ou attraction) sont la cause de la forme de l'hamiltonien exact du cristal [1]. Il s'écrit comme suit :

$$\hat{H} = \hat{T}_e + \hat{T}_n + \hat{V}_{e-e} + \hat{V}_{n-n} + \hat{V}_{n-e} .$$
(II.2)

 $\hat{T}_e = -\sum_{i=1}^{N} \frac{1}{2} \nabla_i^2$: L'énergie cinétique des N électrons.

$$\begin{split} \widehat{T}_n &= -\sum_{l=1}^n \frac{1}{2M} \nabla_l^2 \colon \text{L'énergie cinétique des n noyaux de M masse.} \\ \widehat{V}_{e-e} &= \sum_{i=1}^N \sum_{j>i}^N \frac{1}{|\overrightarrow{r_j} - \overrightarrow{r_i}|} \colon \text{L'énergie potentielle de répulsion entre les N électrons.} \\ \widehat{V}_{n-n} &= \sum_{l=1}^n \sum_{j>l}^n \frac{z_l z_j}{|\overrightarrow{R_l} - \overrightarrow{R_j}|} \colon \text{L'énergie potentielle d'interaction entre les n noyaux.} \\ \widehat{V}_{n-e} &= -\sum_{i=1}^N \sum_{l=1}^n \frac{z_l}{|\overrightarrow{R_l} - \overrightarrow{r_i}|} \colon \text{L'énergie potentielle d'attraction entre noyaux/ electrons.} \end{split}$$

L'équation de Schrödinger s'écrit sous la forme suivante :

$$\left[-\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{I=1}^{n} \frac{1}{2M} \nabla_{I}^{2} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{|\vec{r_{j}} - \vec{r_{i}}|} + \sum_{I=1}^{n} \sum_{j>I}^{n} \frac{z_{I} z_{j}}{|\vec{R_{I}} - \vec{R_{j}}|} - \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{z_{I}}{|\vec{R_{I}} - \vec{r_{i}}|}\right] \Psi = E \Psi$$
(II.3)

Pour un système de plusieurs noyaux et électrons, l'équation de Schrödinger est très difficile à résoudre de façon analytique. On peut obtenir une solution de cette équation à l'aide des approximations parmi celles-ci, on trouve l'approximation de Born-Oppenheimer.

II.2. Approximation de Born-Oppenheimer

L'approximation de Born-Oppenheimer [2] également appelée approximation adiabatique, est la première approximation qui vise à résoudre l'équation de Schrödinger à plusieurs corps. Les calculs dans cette approximation est basée sur le fait que pour un système de particules en interaction, les mouvements des électrons et des noyaux peuvent être dissociés car la masse des noyaux est beaucoup plus grande que celle des électrons. On néglige le terme \hat{T}_n et le terme \hat{V}_{n-n} devient une constante donc l'équation (II.2) s'exprime maintenant comme suit :

$$\widehat{H} = \widehat{T}_e + \widehat{V}_{e-e} + \widehat{V}_{n-e} \tag{II.4}$$

On trouve plusieurs méthodes de résolution de l'équation (II.4), Hartree **[3]** et Hartree-Fock **[4]** basées sur l'hypothèse des électrons libres sont les premières approximations et souvent utilisées dans la chimie quantique. Mais il existe une méthode moderne et certainement plus forte, qui est la Théorie de la Fonctionnelle de la Densité.

II.3. Approximation de Hartree-Fock

L'équation de Schrödinger à plusieurs corps a été simplifiée davantage par l'approximation de Hartree, mais maintenant cette approximation ne satisfaisait pas au principe d'exclusion de Pauli qui exige que la fonction d'onde soit antisymétrique par rapport à l'échange d'électrons. C'est alors que Fock est arrivé et a prouvé que la méthode de Hartree peut être antisymétrique en ajoutant et en soustrayant toutes les permutations possibles de la méthode de Hartree. C'est l'origine de la fonction d'onde de Hartree-Fock (HF). La fonction d'onde finale est le déterminant d'une matrice, connu sous le nom de déterminant de Slater [5-6]. Slater a exprimé la fonction d'onde à l'aide d'un déterminant unique qui se compose d'orbitales de spin. L'expression est la suivante :

Avec cette fonction d'onde, l'équation complète de Hartree-Fock peut être écrite comme :

$$\left[\frac{\hbar^2}{2m}\nabla^2 + V_{ext} + \phi_i\right]\psi_i(r) + V_{exch}\psi_i(r) = E_i\psi_i(r)$$
(II.6)

L'approximation de Hartree-Fock apparaît comme qualitativement précise, bien que la forme à déterminant unique de la fonction d'onde ne tienne pas compte de l'effet des corrélations entre les électrons.

II.4. Théorie de la fonctionnelle de la densité (DFT)

La théorie de la fonctionnelle de densité trouve ses racines conceptuelles dans le modèle de Thomas-Fermi d'un gaz d'électrons uniforme **[7-8]** et l'approximation d'échange local de Slater **[9]**. Une preuve formelle de l'exactitude du modèle de Thomas-Fermi a été fournie par les théorèmes de Hohenberg-Kohn **[10]**. La DFT est très populaire pour les calculs dans la physique de l'état solide depuis les années 1970. Dans de nombreux cas, la DFT avec l'approximation de densité locale (LDA) et l'approximation du gradient généralisé (GGA) donnent des résultats tout à fait satisfaisants, pour les calculs de l'état solide, par rapport aux données expérimentales, et d'autres méthodes de résolution du problème de la mécanique quantique à plusieurs corps.

II.4.1. Théorèmes de Hohenberg et Kohn

En 1964, Hohenberg et Kohn ont publié deux théorèmes révolutionnaires qui sont à l'origine du développement de ce qui a été appelé plus tard la théorie de la fonction de densité **[10].**

Le premier théorème énonce que l'énergie *E* d'un système d'électrons en interaction dans un potentiel extérieur (dans ce cas le potentiel dû aux noyaux dans un solide) est donnée exactement comme une fonctionnelle de la densité électronique de l'état fondamental ρ :

$$E = E[\rho(\vec{r}) = F[\rho(\vec{r})] + \int \hat{V}_{ext}(\vec{r})\rho(\vec{r}) d^{3}\vec{r}]$$
(II.7)

Où $F[\rho(\vec{r})]$ est la fonctionnelle universelle de Hohenberg et Kohn, définie comme suit :

$$F[\rho(\vec{r})] = \left\langle \psi \middle| \hat{T} + \hat{V} \middle| \psi \right\rangle \tag{II.8}$$

Le second théorème affirme que la densité réelle de l'état fondamental ρ est la densité qui minimise $E[\rho]$ et que toutes les propriétés de l'état fondamental sont également des fonctionnelles de la densité de l'état fondamental, ce qui permet d'établir une correspondance biunivoque entre la densité de l'état fondamental du système multi-électronique et le potentiel externe V_{ext} . $E[\rho]$ atteint alors sa valeur minimale E_0 (correspondant à l'énergie de l'état fondamental) pour la densité de l'état fondamental correspondant à V_{ext} . Malheureusement, ce théorème reste insuffisant à cause de l'absence d'une expression analytique pour cette fonctionnelle.

II.4.2. L'approche de Kohn et Sham

Basés sur les théorèmes de HK, Kohn et Sham ont développé un modèle pour trouver l'état fondamental d'un système à plusieurs électrons en introduisant un système fictif de particules sans interaction qui génèrent la même densité d'état fondamental que les particules en interaction [11]. L'hamiltonien du système sans interaction est donné par :

$$\widehat{H}s = \sum_{i=1}^{N} (-\frac{1}{2}\nabla_{i}^{2}) + \sum_{i=1}^{N} Vs(\vec{r_{i}})$$
(II.9)

Dans l'approche Kohn et Sham, l'équation de Schrödinger pour N particules s'écrit comme suit :

$$\left[\frac{\hbar^2}{2m}\nabla^2 + V_{eff} + \right]\varphi_i(\vec{r}) = E_i\varphi_i(\vec{r}) \tag{II.10}$$

Avec :

$$V_{eff} = V\left(\overrightarrow{v}\overrightarrow{r}\right) + \int \frac{\rho(\overrightarrow{r}')}{|\overrightarrow{r}-\overrightarrow{r}'|} d(\overrightarrow{r}') + V_{xC}(\overrightarrow{r})$$
(II.11)

Où le potentiel d'échange et de corrélation est donné par la fonctionnelle dérivée :

$$\hat{V}_{xc}(\vec{r}) = \frac{\delta E_{xc}[\rho(\vec{r})]}{\delta \rho(\vec{r})}$$
(II.12)

la densité électronique pour le système à N particules est :

$$\rho(\vec{r}) = \sum_{i=1}^{N} |\phi_i(\vec{r})|^2$$
(II.13)

La densité électronique de l'état fondamental peut alors être trouvée en résolvant ces équations de manière auto-consistante, on commence par introduire une densité électronique initiale, la densité introduit permet de construire un potentiel V(r), ainsi résoudre l'équation de Schrodinger pour trouver les valeurs et les vecteurs propres ε_i et ϕ_i de Kohn-Sham, une nouvelle densité électronique ρ_{out} sera obtenu à base des fonctions d'ondes ϕ_i . Cette densité est utilisée pour calculer l'Energie total. Si le critère de convergence atteint pour cette énergie le calcul sera arrêté et les propriétés calculées, sinon mélanger la densité obtenue ρ_{out} et la densité initiale ρ_{in} pour construire une nouvelle densité d'entrée. Le cycle du calcul se répète jusqu'à la vérification d'un certain critère de convergence. Ce cycle est décrit dans la figure II.1.

Figure. II.1 : Diagramme de la résolution des équations de Kohn-sham.

- $i: i^{eme}$ itération.
- α : un parametre de mixage.

II.4.3. La fonctionnelle d'échange-corrélation

Bien que les équations de Kohn-Sham puissent être utilisées pour trouver la densité électronique exacte d'un système à plusieurs électrons, il n'existe aucune forme exacte connue pour la fonction de corrélation d'échange $Exc[\rho]$. Cependant, il existe de très bonnes approximations qui peuvent être utilisées pour calculer très précisément des quantités physiques. Mais les plus célèbres et utilisées sont : l'approximation de la densité locale (LDA) et l'approximation du gradient généralisé (GGA).

II.4.3.1. L'approximation de la densité locale (LDA)

L'approximation de la densité locale (Local Density Approximation LDA) consiste sur la considération du solide comme un gaz des électrons homogènes ou uniforme et dépend que de la valeur locale de densité $\rho(\vec{r})$. L'énergie d'échange-corrélation s'exprime sous la forme suivante :

$$E_{xc}^{LDA}[\rho(\vec{r})] = \int \rho(\vec{r}) \varepsilon_{xc}^{LDA}[\rho(\vec{r})] d^3\vec{r}$$
(II.14)

Où :

 $\varepsilon_{xc}^{LDA}[\rho(\vec{r})]$: est l'énergie d'échange-corrélation par particule.

L'approximation LDA suppose que $\varepsilon_{xc}^{LDA}[\rho(\vec{r})]$ est complètement local. Cette énergie peut s'écrit comme suit :

$$\varepsilon_{xc}^{LDA}[\rho(\vec{r})] = \varepsilon_x \left[\rho(\vec{r})\right] + \varepsilon_c \left[\rho(\vec{r})\right]$$
(II.15)

Les matériaux magnétiques fournissent un degré de liberté supplémentaire à cause de spin électronique, donc l'approximation LDA doit être étendue à l'approximation de la densité de spin locale (LSDA). Où l'énergie d'échange et de corrélation E_{XC} devient une fonctionnelle des deux densités de spin électronique majoritaires et minoritaires :

$$E_{xc}^{LDA}[\rho(\vec{r})\uparrow,\rho(\vec{r})\downarrow] = \int \rho(\vec{r})\varepsilon_{xc}^{hom}[\rho(\vec{r})\uparrow,\rho(\vec{r})\downarrow] d^{3}\vec{r}$$
(II.16)

II.4.3.2. L'approximation du gradient généralisé (GGA)

L'approximation du gradient généralisé (GGA, generalized Gradient Approximations) est introduite pour aller au-delà des limites de la LDA, qui considère que le solide est un gaz des électrons homogène, mais dans la réalité la densité électronique possède une variation locale donc est inhomogène. Dans l'approximation GGA, l'énergie d'échange-corrélation dépend de la densité $\rho(\vec{r})$ et de son gradient $\nabla \rho(\vec{r})$.

L'énergie d'échange-corrélation s'écrit sous la forme suivante :

$$E_{xc}^{GGA}[\rho(\vec{r})] = \int \rho(\vec{r}) \varepsilon_{xc}[\rho(\vec{r}), |\nabla \rho(\vec{r})|] d^3\vec{r}$$
(II.17)

Où : $\varepsilon_{xc}[\rho(\vec{r}), |\nabla \rho(\vec{r})|]$ est la fonction d'échange et de corrélation dépendante de la densité électronique et son gradient.

Il existe plusieurs paramétrisations pour la GGA. Parmi celles-ci : de Perdew, Burke et Erenterhof (GGA-PBE), GGA-WC... **[12].**

II.4.3.3. L'approximation du Potentiel de Becke et Johnson modifié mBJ

Généralement, la DFT sous-estime la valeur de l'énergie de la bande interdite par rapport à celle trouvée dans l'expérimentale. Cette sous-estimation peut atteindre jusqu'à 50%. Le potentiel de Becke-Johnson modifié par Tran et Blaha (TB-mBJ, mBJ) est développé spécifiquement pour donner des corrections de la bande interdite [13].

La forme de potentiel TB- mBJ s'écrit comme suit :

$$V_{x,\sigma}^{mBJ} = cV_{x,\sigma}^{BR} + (3c-2)\frac{1}{\pi}\sqrt{\frac{5}{12}}\sqrt{\frac{2t_{\sigma}(\vec{r})}{\rho_{\sigma}(\vec{r})}}$$
(II.22)

où :

 σ : la notion de spin.

 $\rho(\vec{r})$: la densité électronique.

 $V_{x,\sigma}^{mBJ}$: le potentiel de Becke-Roussel [14].

$$V_{x,\sigma}^{BR} = -\frac{1}{b_{\sigma}(\vec{r})} \left(1 - e^{-x_{\sigma}(\vec{r})} - \frac{1}{2} x_{\sigma}(\vec{r}) e^{-x_{\sigma}(\vec{r})} \right)$$
(II.23)

II.5. Méthode FP-LAPW (Full Potential-Linearized Augmented Plane Wave)

La méthode des ondes planes augmentées linéarisées (FP-LAPW) développée par Anderson [15], est l'une des méthodes les plus précises utilisées pour la résolution des équations de Kohn-Sham pour les systèmes semi-conducteurs. C'est une amélioration de la méthode des ondes planes augmentées APW développée par Slater [16].

L'idée de la méthode FP- LAPW est de diviser la cellule unitaire en deux régions différentes : des sphères non chevauchantes autour de la position des noyaux, et la région interstitielle restante.

II.5.1. La méthode des ondes planes augmentées (Augmented Plane Waves ou APW)

Slater **[16]**, énonce clairement et de manière concrète le principe de la méthode et sa motivation : à proximité d'un noyau atomique, le potentiel et les fonctions d'onde sont similaires à ceux d'un atome, ils sont fortement variables mais presque sphériques. A l'inverse, dans l'espace interstitiel entre les atomes, le potentiel et les fonctions d'onde sont plus réguliers. On distingue deux régions :

- La région interne où les solutions de l'équation de Schrodinger sont des solutions radiales à l'intérieur de sphères non chevauchantes centrées sur les atomes.
- La région interstitielle est la région restante, où les solutions sont des ondes planes.

La base peut être divisée en deux régions :

$$\phi(\vec{r}) = \begin{cases} \phi(\vec{r}) = \frac{1}{\Omega^{\frac{1}{2}}} \sum_{G} C_{G} e^{i(\vec{G}+\vec{k})\vec{r}} & r > R_{MT} \\ \phi(\vec{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} A_{lm} U_{l}(\vec{r}) Y_{lm}(\theta,\phi) & r < R_{MT} \end{cases}$$
(II. 24)

 $\phi(\vec{r})$: la fonction d'onde.

 R_{MT} : Le rayon « Muffin-Tin ».

 Ω : volume de la cellule.

 $C_G et A_{lm}$: Les coefficients d'expansion.

Les vecteurs \vec{K} et \vec{G} sont respectivement le vecteur d'onde dans la zone de Brillouin irréductible (IBZ) et le vecteur de réseau réciproque.

La fonction $U_l(\vec{r})$: est une solution pour la partie radiale de l'équation de Schrödinger suivante :

$$\left[\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(\vec{r}) - E_l\right] r U_l(\vec{r}) = 0$$
(II.25)

ici, C_G et A_{lm} sont des coefficients d'expansion, E_l est un paramètre et $V(\vec{r})$ est la composante sphérique du potentiel dans la sphère où les unités de Rydberg sont adoptées.

Dans la méthode APW, cela se fait en définissant les coefficients A_{lm} en termes de C_G par l'expansion harmoniques sphériques des ondes planes. Le coefficient de chaque composante l_m est adapté à la frontière de la sphère :

$$A_{lm} = \frac{4\pi^l}{\sqrt{\Omega}U_l(R_{mt})} \sum_G C_G J_l \left(|\vec{\mathbf{K}} + \vec{\mathbf{G}}| R_\alpha \right) Y_{l,m}^* (\vec{\mathbf{K}} + \vec{\mathbf{G}})$$
(II.26)

où l'origine est prise au centre de la sphère et R_{α} est le rayon de la sphère. Ainsi, les A_{lm} sont complètement déterminés par les coefficients des ondes planes C_G et les paramètres énergétiques E_l . Ce sont les coefficients variationnels de la méthode APW. Les fonctions individuelles, qui sont étiquetées par G et consistent en des ondes planes simples dans

l'interstitiel appariées à des fonctions radiales dans les sphères, sont les ondes planes augmentées.

II.5.2. La Méthode des ondes planes augmentées linéarisées (LAPW)

La méthode LAPW est fondamentalement une amélioration de la méthode originale APW. Dans cette méthode où les fonctions de base à l'intérieur des sphères sont des combinaisons linéaires de fonctions radiales $U_l(\vec{r}) Y_{lm}(\vec{r})$ et leurs dérivées par rapport aux paramètres de linéarisation E_l . Les fonctions radiales $U_l(\vec{r})$ sont définis exactement comme dans la méthode APW, avec un E_l fixe. La dérivée d'énergie, $\dot{U}_l(\vec{r})Y_{lm}(\vec{r})$ satisfait à :

$$\left[-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(\vec{r}) - E_l\right] r \dot{U}_l(\vec{r}) = r U_l(\vec{r})$$
(II.28)

dans le cas non-relativiste. Ces fonctions sont mises en correspondance avec les valeurs et les dérivées des ondes planes sur les frontières de la sphère. Les ondes planes, ainsi augmentées constituent les fonctions de base LAPW. En termes de cette base, les fonctions d'onde sont :

$$\phi(\vec{r}) = \begin{cases} \frac{1}{\sqrt{\Omega}} \sum_{G} C_{G} e^{[i(\vec{G} + \vec{K})\vec{r}]} & r > R_{MT} \\ \sum_{lm} [A_{lm} U_{l}(\vec{r}) + B_{lm} \dot{U}_{l}(\vec{r})] Y_{lm}(\vec{r}) & r < R_{MT} \end{cases}$$
(II.29)

II.5.3 Le concept de la méthode FP-LAPW

Dans la méthode FP-LAPW à potentiel complet (Full Potential Linearized Augmented Plane Waves : FP-LAPW), il n'y a pas d'approximations de forme pour le potentiel et la densité électronique dans la région interstitielle et à l'intérieur des sphères muffin-tin. Le potentiel interstitiel constant est remplacé par le potentiel déformé $V_k e^{i\vec{k}\vec{r}}$ et au potentiel muffin-tin sphérique, le terme non-sphérique est ajouté :

$$V(\vec{r}) = \begin{cases} \sum_{k} V_{k} e^{i\vec{k}\cdot\vec{r}}; & r > R_{MT} \\ \sum_{lm}^{k} V_{lm}(\vec{r}) Y_{lm}, & r < R_{MT} \end{cases}$$
(II.34)

La densité de charge $\rho(\vec{r})$ est représentée de la même manière que le potentiel :

$$\rho(\vec{r}) = \begin{cases} \sum_{k} \rho_{k} e^{i\vec{k}\vec{r}}; & r > R_{MT} \\ \sum_{lm} \rho_{lm}(\vec{r}) Y_{lm}(\vec{r}), & r < R_{MT} \end{cases}$$
(II.35)

II.6. Structure du code Wien2k

La méthode des ondes planes augmentées et linéarisées (LAPW) est une méthode plus précise qui nous permit de faire des calculs sur la structure électronique des solides dans le cadre de la théorie fonctionnelle de la densité. Cette méthode est implémentée dans le code de calcul Wien2k mis en œuvre par Blaha et ses assistants. Wien2k est écrit en langage Fortran 90 et s'installe et exécute seulement sur linux. Les taches de ces différents programmes sont représentées sur la figure II-2. Le calcul se déroule en trois étapes :

II.6.1 L'initialisation

L'initialisation du calcul est faite par une séquence des programmes. Afin que les deux dossiers d'entrée de base aient été créés (case.inst et case.struct).

NN : calcul la distance entre les plus proches voisins jusqu'à une distance indiquée et aide aussi à déterminer les rayons atomiques des sphères Muffin-tin.

LSTART : détermine comment les orbitales sont traitées dans les calculs de structure de bande et donne les densités atomiques.

SGROUP : détermine les groupes spatial et ponctuel.

SYMMETRY : génère à partir du dossier case.struct des opérations de symétrie de groupe expansions LM pour les harmoniques de réseau et les matrices locales de rotation.

KGEN : génère une maille de K dans la zone de Brillouin.

DSTART : engendre une densité électronique de départ pour le cycle SCF par la superposition des densités atomique produites dans *LSTART*.

II.6.2. Le cycle auto-cohérent (SCF)

Le cycle auto-cohérent SCF est exécuté à travers un script, avec les options désirées. Le SCF comprend les étapes suivantes :

LAPW0 : génère le potentiel à partir de la densité calculée par DSTART.

LAPW1 : calcule les bandes de valence (les valeurs propres et les vecteurs propres)

LAPW2 : calcule les densités de valence à partir des vecteurs propres.

LCORE : calcule la densité et les états du cœur.

II.6.3. Le calcul des propriétés

Les propriétés physiques se calculent à l'aide des programmes suivants :

OPTIMISE : détermine l'énergie totale en fonction du volume qui sert à calculer le paramètre de réseau et le module de compressibilité.

LAPW5 : génère la densité de charge.

TETRA : détermine la densité d'état totale (TDOS) et partielle (PDOS).

SPAGHETTI : calcule les structures de bandes.

OPTIC : calcule les propriétés optiques.

Figure II-2 : L'organigramme des programmes du code wien2k.

Références bibliographiques

[1] Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. *Physical review*, 28(6), 1049.

[2] Born, M., & Heisenberg, W. (1985). Zur quantentheorie der molekeln. In *Original Scientific Papers Wissenschaftliche Originalarbeiten* (pp. 216-246). Springer, Berlin, Heidelberg.

[3] Hartree, D. R. (1928, January). The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. In *Mathematical Proceedings of the Cambridge Philosophical Society* (Vol. 24, No. 1, pp. 89-110). Cambridge university press.

[4] Fock, V. (1930). "Selfconsistent field "mit Austausch für Natrium. Zeitschrift für Physik, 62(11), 795-805.

[5] Slater, J. C. (1929). The theory of complex spectra. *Physical Review*, 34(10), 1293.

[6] Slater, J. C. (1951). A simplification of the Hartree-Fock method. *Physical review*, *81*(3), 385.

[7] Thomas, L. H. (1927, January). The calculation of atomic fields. In *Mathematical proceedings of the Cambridge philosophical society* (Vol. 23, No. 5, pp. 542-548). Cambridge University Press.

[8] FERMI, E. (1927) Un metodo statistico per la determinazione di alcune priorieta dell'atome. *Rend. Accad. Naz. Lincei* (vol. 6, No. 32, pp. 602-607).

[9] Slater, J. C. (1953). A generalized self-consistent field method. *Physical Review*, 91(3), 528.

[10] Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. *Physical review*, 136(3B), B864.

[11] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. *Physical review*, *140*(4A), A1133.

[12] Perdew, J. P., Burke, K., & Ernzerhof, M. (1998). Perdew, burke, and ernzerhof reply. *Physical Review Letters*, *80*(4), 891.

[13] Becke, A. D., & Johnson, E. R. (2006). A simple effective potential for exchange. *The Journal of chemical physics*, *124*(22), 221101.

[14] Becke, A. D., & Roussel, M. R. (1989). Exchange holes in inhomogeneous systems : A coordinate-space model. *Physical Review A*, *39*(8), 3761.

[15] Andersen, O. K. (1975). Linear methods in band theory. *Physical Review B*, 12(8), 3060.

[16] Slater, J. C. (1937). Wave functions in a periodic potential. *Physical Review*, 51(10), 846.

Chapitre III :

 \bigcap

A

Résultats et Discussion

III.1. Introduction

Les oxydes semi-conducteurs comme le TiO_2 ont une grande importance dans la recherche. Grâce à ses performantes propriétés telles que l'importante activité catalytique, la stabilité chimique et thermique, la non toxicité, l'efficacité réduction-oxydation...etc. le TiO2 est utilisé dans plusieurs domaines de la recherche scientifiques à savoir la protection écologique de l'environnement, la photocatalyse, les énergies renouvelables... **[1-2]**.

Dans ce chapitre notre travail est devisé en quatre (04) parties :

- Dans la première partie nous avons étudié les propriétés structurales et électroniques de l'oxyde de titane TiO₂ pur dans sa phase rutile.
- Dans la deuxième partie nous avons étudié les propriétés structurales et électroniques de l'oxyde de titane TiO₂ dopé par le cobalt (Co) ou le Cérium (Ce) Ti_{1-x}A_xO₂ (A = Co, Ce) avec une concentration x=0.125.
- Dans la troisième partie nous avons étudié les propriétés structurales et électroniques de l'oxyde de titane TiO₂ co-dopé au cobalt et au cérium Ti_{1-2x}A_xB_xO₂ (A= Co, B=Ce) avec une concentration x=0.125.
- Dans la quatrième partie nous avons étudié les propriétés optiques des composés, TiO₂ pur, TiO₂ dopé (Ti_{1-x}A_xO₂ (A = Co, Ce)) et TiO₂ co-dopé Ti_{1-2x}A_xB_xO₂ (A=Co, B=Ce) avec une concentration x=0.125.

III.2 Détails de calcul

Dans ce travail, les calculs sont effectués par la méthode des ondes planes augmentées linéarisées à potentiel total (FP-LAPW) [3], dans le cadre de la théorie de la fonctionnelle de la densité (DFT) [4] implémentée dans le code WIEN2K [5]. Le potentiel d'échange et de corrélation est traité en utilisant l'approximation du gradient généralisée dans le paramétrage de Perdew-Burke-Erenterhof (PBE-GGA) [6], en plus, du potentiel de Becke –Johnson modifié par Tran-Blaha (mBJ) [7] utilisé pour corriger les valeurs des gaps énergétiques.

Le TiO₂ rutile cristallise sous une structure tétragonale (figure III.1), avec des paramètres de réseau sont : a = b = 4.593Å et c = 2.959Å [8] et le groupe spatial *P42/mnm* (N° 136 dans les tables internationales). La configuration électronique de chaque élément est :

[Ti]: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d².
[O]: 1s² 2s² 2p⁴.
[Ce]: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰4s² 4p⁶5s²5p⁶5d¹6s²4f¹.
[Co]: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷.

Les états de valence pour les éléments utilisés sont les suivants : Ti $(4s^2 3d^2)$, O $(2s^2 2p^4)$, Ce $(4f^15s^25p^65d^16s^2)$, et Co $(4s^2 3d^7)$.

Pour un but d'étudier l'effet du dopage et du co-dopage sur les différentes propriétés de TiO_2 , nous avons choisi une super cellule de $2\times2\times1$ qui contient 24 atomes (8 atomes de Ti et 16 atomes d'O), dans laquelle la substitution de l'atome de titane Ti par le dopant A, correspond à 12.5% de la concentration qui est remplacé par des atomes de Cobalt (Co) ou de Cérium (Ce) pour le dopage, et le Cérium plus le Cobalt pour le co-dopage.

Les rayons muffin-tin RMT utilisés pour les atomes de Titane, Oxygène, Cobalt et Cérium sont respectivement : 1.84, 1.62, 1.88 et 1.88 u.s. Le nombre de fonctions de base FP-LAPW est choisi pour rendre **R**_{MT} **K**_{max}= 7. La valeur maximale des harmoniques sphérique est **L**_{max}=10. L'énergie qui sépare les états de valence des états de cœur a été choisie égale à - 6.0 Ry. L'espace réciproque est échantillonné par un maillage Monkhorst-Pack $13 \times 12 \times 12$ et $3 \times 3 \times 9$ avec suffisamment de k-vecteurs dans la zone de Brillouin irréductible. Un critère autocohérent d'énergie totale converge à moins de 10^{-4} Ry. Dans ce travail les propriétés optiques sont calculées par la correction de l'opérateur scissor.

Figure III.1: Structure cristalline de TiO₂ rutile.

III.3. Etude de l'oxyde de titane pur

III.3.1. Propriétés structurales

La détermination des différentes propriétés d'un matériau électroniques, optiques, ... etc. Exige l'étude de la stabilité du matériau ainsi que ses propriétés structurales. Ces derniers sont obtenus par une minimisation de l'énergie totale en fonction du volume de TiO₂ dans sa structure tétragonale (figure III.2). Nous calculons les paramètres (a et c) de réseau, le module de compressibilité (B_0) et sa dérivée par rapport à la pression (B'_0) selon l'équation d'état de Murnaghan.

$$E(V) = E_0 + \frac{B_0 V}{B'_0} \left[\frac{(V_0/V)^{B_0}}{B'_0 - 1} + 1 \right] - \frac{B_0 V_0}{B'_0 - 1}$$
(III. 1)

 E_0 et V_0 sont l'énergie et le volume à l'équilibre.

 B_0 et B'_0 sont le module de compressibilité et sa dérivée par rapport à la pression.

$$B_0 = V \frac{\partial^2 E}{\partial V^2} \tag{III. 2}$$

$$B'_0 = \frac{\partial B}{\partial P} \tag{III. 3}$$

Les résultats de calcul obtenus, en utilisant l'approximation GGA-PBE, des paramètres de réseau, du module de compressibilité, sont comparés avec certaines données expérimentales et théoriques, disponibles dans la littérature (voir tableau III.1).

Figure III.2: Energie totale en fonction du volume pour TiO₂ pur.

Tableau III.1 Paramètres de réseau a et c, module de compressibilité B de TiO_2 pur dans la phase rutile.

	Nos calculs	Autres calculs	Expériences
a (Å)	4.6356	4.634 ^[9] - 4.67 ^[11]	4,592 [10]
c (Å)	2.9798	2.976 ^[9] - 2.97 ^[11]	2,958 [10]
B (GPa)	230.2177	229.2183 [9]	211 [10]

[9], [11] Approximation PBE-GGA.

[10] Méthode de diffraction des rayons x sur poudre.

Les paramètres de réseau obtenu après optimisation sont a=4,6356 Å et c=2,9798 Å. Ceux-ci sont en bon accord avec les autres calculs tels que publiés dans les références suivantes [9, 11]. De même pour le module de compressibilité B. Ceci montre le bon choix de la méthode de calculs.

Le paramètre de réseau a calculé est 0.93% plus grand que la valeur expérimentale, mettant en évidence que la GGA surestime le paramètre de réseau **[12]**.

III.3.2. Propriétés électroniques

III.3.2.1. Structure de bandes

La figure III.3 montre la structure de bandes électroniques de TiO₂ pur, où la structure de bande a été calculée suivant les directions de haute symétrie dans la zone de Brillouin irréductible en utilisant l'approximation GGA-PBE (figure III.3a) corrigée par l'approche TBmBJ (figure III.3b) pour améliorer les valeurs des gaps énergétiques. Celle-ci montre que TiO₂ est un semi-conducteur à gap direct, le maximum de la bande de valence E_v et le minimum de la bande de conduction E_c sont situés au même point de haute symétrie Γ . L'énergie de la bande interdite calculée par l'approximation GGA-PBE est de 1.81 eV et de 2.51 eV après la correction par l'approche TB-mBJ (-39.6%, -16.61%). Ces valeurs de L'énergie de la bande interdite ainsi que d'autres résultats de la littérature théoriques calculés par les approximations GGA-PBE + TB-mBJ et expérimentaux sont présentés dans le tableau III.2.

Tableau III.2 : Les valeurs des gaps Eg (eV) de TiO_2 pur en comparaison aux autres calculs théoriques et résultats expérimentaux.

	Notre travail (eV)		Autres travaux (eV)		Expérimentale
Gap	GGA-PBE	TB-mBJ	GGA-PBE	TB-mBJ	(eV)
TiO2 pur	1.81	2.51	1.94 ^[9] -1.89 ^[13]	2.71 [9]	3.00 ^[13]

[13] Traitement hydrothermal.

Figure III.3 : Structure de bande de TiO_2 pur en utilisant l'approximation a) GGA-PBE et b) GGA TB-mBJ.

III.3.2.2. Densités d'états électroniques (DOS)

Les densités d'états totales et partielles (TDOS et PDOS) de TiO₂ pur sont illustrées sur la figure III.4. Les calculs sont obtenus par l'approximation GGA-PBE corrigée par le potentiel TB-mBJ et effectués dans l'intervalle d'énergie de -6 à 6 eV, en utilisant la valeur optimisée du paramètre de réseau et en considérant le niveau de Fermi comme origine des énergies. La figure III.4a montre que la bande de valence (BV) est constituée essentiellement par l'état O-2p, alors que la bande de conduction (BC) est majoritairement constitué par l'état Ti-3d. Le passage des électrons des états O-2p aux états Ti-3d contrôle le seuil de l'absorption des ultraviolets.

Figure III.4 : Densités d'états totales et partielles de TiO₂ pur.

III.4. Étude de composé Ti_{0.875}Ce_{0.125}O₂

III.4.1. Propriétés structurales

Dans ce composé, nous avons substitué 12.5% des atomes de titane (Ti) par des atomes de cérium (Ce) dans la matrice de l'oxyde de titane TiO_2 rutile (figure III. 5). Nous avons optimisé la structure par une minimisation de l'énergie totale en fonction du volume de TiO_2 dopé au Cérium dans la structure tétragonale pour cette concentration (figure III.6).

Figure III.5 : Structure cristalline de composé Ti_{0.875}Ce_{0.125}O₂.

Figure III.6: Variation de l'énergie totale en fonction du volume pour TiO₂ dopé par le cérium (Ce).

Les résultats d'optimisations structurales pour le TiO₂ pur et TiO₂ dopé au Ce sont calculés en utilisant l'approximation GGA-PBE et sont résumés dans le tableau III.3. Les paramètres de réseau (a et c) calculés, pour le composé Ti_{0.875}Ce_{0.125}O₂, augmentent de 1.9% et 3.53% respectivement, lorsque le dioxyde de titane est dopé par le Cérium alors que le module de compressibilité B diminue de 15.30% par rapport au TiO₂ pur. Ceci est relié au rayon atomique du cérium qui est plus grand que celui du titane (**R**_{Ti} =1.47 Å<**R**_{Ce}=1.87 Å).

Tableau III.3: Paramètres de réseau (a et c) et module de compressibilité B de composé Ti_{0.875}Ce_{0.125}O₂

TiO2 dopé Ce %	Paramètre de réseau (a) (Å)	Paramètre de réseau (c) (Å)	Module de compressibilité (B) (GPa)
12.5%	4.7253	3.0851	194.9748

III.4.2. Propriétés électroniques

III.4.2.1. Structure de bandes

Les calculs des propriétés électroniques de composé Ti_{0.875}Ce_{0.125}O₂ sont également effectués par l'approximation et aussi GGA-PBE corrigés par TB-mBJ.

La figure III.7 montre la structure de bandes électroniques de TiO₂ dopé par le Cérium de concentration 12.5%, où la structure de bande a été calculée suivant les directions de haute symétrie dans la zone de Brillouin irréductible en utilisant l'approximation GGA-PBE corrigés par TB-mBJ pour améliorer les valeurs des gaps énergétiques. Celle-ci montre que Ce-TiO₂ est un semi-conducteur à gap indirect suivant la direction R de haute symétrie. L'énergie de la bande interdite calculée est de 1.79 eV. Le dopage au Cérium a provoqué un rétrécissement de la bande interdite par rapport à celle de TiO₂ pur (-40.33%).

Figure III.7: Structure de bande de composé Ti_{0.875}Ce_{0.125}O₂ en utilisant l'approximation GGA-mBJ.

III.4.2.2. Densités d'états électroniques (DOS)

Les densités d'état totales et partielles de $Ti_{0.875}Ce_{0.125}O_2$ sont illustrées sur La figure III.8. La valeur de la bande interdite est en bon accord avec celle de la structure de bande c'està-dire que le gap a diminué. Nous observons que dans la région (-5.5 eV ,0 eV) est caractérisée par domination des orbitales O-2p avec une petite contribution des états Ti-3d. Ceci est cohérent avec les résultats des densités d'états où la BC est constituée principalement par une forte hybridation des orbitales Ce-4f et Ti-3d. Cette dernière est décalée vers le niveau de Fermi par rapport à TiO₂ pur. L'effet de l'orbital anti-liant Ce-4f à l'intérieur de la bande de conduction est de déplacer l'orbital Ti-3d vers les basses énergies.

III.5. Étude de composé Ti_{0.875}Co_{0.125}O₂

III.5.1. Propriétés structurales

Dans ce cas, nous avons substitué 12.5% des atomes de titane Ti par des atomes de cobalt (Co) dans la matrice de l'oxyde de titane TiO₂ (figure III.9). Nous avons optimisé la structure par une minimisation de l'énergie totale en fonction du volume de TiO₂ dopé au Co dans la structure tétragonale pour cette concentration (figure III. 10).

Figure III.9: Structure cristalline de composé Ti_{0.875}Co_{0.125}O₂.

Figure III.10: Variation de l'énergie totale en fonction du volume pour le composé Ti_{0.875}Co_{0.125}O_{2.}

Les résultats d'optimisations structurales calculés pour TiO₂ dopé au Co sont aussi simulés en utilisant l'approximation GGA-PBE. Ceux-ci sont résumés dans le tableau III.4. Les paramètres de réseau (a et c) et le module de compressibilité B calculées, pour le composé Ti_{0.875}Co_{0.125}O₂, diminuent de 0.15%, 1.1% et 0.35% respectivement lorsque le TiO₂ est dopé par le Cobalt par rapport au TiO₂ pur. Cette variation est manifestement liée à la valeur du rayon atomique du cobalt qui est plus moins que celui du titane ($R_{Ti} = 1.47$ Å> $R_{Co} = 1.35$ Å).

Tableau III.4: Paramètres de réseau (a et c) et modules de compressibilité B de composé Ti_{0.875}Co_{0.125}O₂

TiO2 dopé Co %	Paramètre de réseau (a) (Å)	Paramètre de réseau (c) (Å)	Module de compressibilité (B) (GPa)
12.5 %	4.6284	2.9470	229.3997

III.5.2. Propriétés électroniques

III.5.2.1 structure de bandes

Les calculs des propriétés électroniques de composé $Ti_{0.875}Co_{0.125}O_2$ est également effectué par l'approximation GGA-PBE corrigé par l'approche TB-mBJ. Les résultats de l'énergie de la bande interdite sont résumés dans le tableau III.5.

Tableau III.5 : Les valeurs des gaps directs Eg (eV) de composé $Ti_{0.875}Co_{0.125}O_2$ par rapport aux autres calculs théoriques.

Composé	Notre travail (eV)	Autres travaux (eV)
Ti0.875C00.125O2	1.99	2.10 ^[14] - 2.00 ^[15]

[14][·][15] Approximation GGA+ TB-mBJ.

La structure de bande est calculée suivant les directions de haute symétrie dans la zone de Brillouin irréductible, en utilisant l'approximation GGA-PBE corrigés par l'approche TBmBJ pour approcher les valeurs du gap énergétique des valeurs expérimentale. La figure III.11 montre la structure de bandes électroniques de TiO₂ dopé par le Cobalt de concentration 12.5%. Celle-ci illustre bien que Co-TiO₂ est un semi-conducteur à gap direct au point Γ de haute symétrie. L'énergie de la bande interdite calculée est de 1.99 eV. On peut noter que le gap énergétique a diminué après dopage de TiO₂ rutile par le Cobalt (-33.66 %). Nous observons l'existence de nouvelles bandes d'énergie (IELs : impurty energy Levels) au-dessus du niveau de Fermi. Ces niveaux d'impuretés jouent un rôle majeur dans les propriétés optiques des semiconducteurs, il peut être des centres de piégeage, de recombinaison comme ils facilitent la transition des électrons.

Figure III.11: Structure de bande de composé Ti_{0.875}Co_{0.125}O₂ en utilisant l'approximation GGA-mBJ.

III.5.2.2. Densités d'états électroniques (DOS)

Les densités d'état totales et partielles (TDOS et PDOS) de Ti_{0.875}Ce_{0.125}O₂ par l'approximation GGA-PBE corrigés par l'approche TB-mBJ sont illustrées sur La figure III.12. Une diminution considérable dans l'énergie de la bande interdite du TiO₂ dopé est observée. Celle-ci est due à l'hybridation des états 3d des atomes métalliques du Cobalt avec des états 2p de l'oxygène au niveau de la bande de valence et des états 3d du titane au niveaux de la bande de conduction, par rapport au TiO₂ pur. Un décalage du niveau de Fermi apparaît dans la bande de valence, les niveaux d'impuretés sont introduits au-dessus de l'énergie de Fermi et se situent à environ 0.31 eV La région [-6 (eV), 0.31 (eV)] est caractérisée par les orbitales Co-3d et O-2p avec une infime contribution des états Ti-3d. La bande de conduction est constitué principalement des états Ti-3d et Co-3d. Cette dernière est décalée vers des énergies plus basses par rapport à TiO₂ sous l'effet de l'orbital Co-3d. Les électrons peuvent alors, être excités entre les niveaux d'impuretés situés au niveau de Fermi et également avec la bande hôte. Ainsi, les électrons Co-3d contribuent de manière significative à la variation du gap énergétique. Ils peuvent être excités vers les IELs, ensuite, ils passent à la BC minimum par irradiation de la lumière visible.

Figure III.12: Densités d'états totales et partielles de composé Ti_{0.875}Co_{0.125}O₂.

III.6. Étude de composé Ti_{0.75}Co_{0.125} Ce_{0.125}O₂.

III.6.1. Propriétés structurales

Dans le cas du co-dopage, nous avons substitué 12.5% des atomes de titane par des atomes de cobalt (Co) et la même concentration de Ti par des atomes de cérium (Ce) dans la matrice de l'oxyde de titane (figure III.13). Nous avons optimisé la structure par une minimisation de l'énergie totale en fonction du volume de TiO_2 co-dopé au Co et Ce dans la structure tétragonale pour cette concentration (figure III. 14).

Figure III.13: Structure cristalline du composé Ti_{0.75}Co_{0.125} Ce_{0.125}O₂.

Figure III.14: Variation de l'énergie totale en fonction du volume pour TiO₂ co-dopé par le cobalt (Co) et le cérium (Ce)

Les propriétés structurales du composé $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$ à l'équilibre telles que les paramètres de réseau et le module de compressibilité sont calculées en utilisant l'approximation GGA. Les résultats obtenus sont résumés sur le tableau III .6.

Tableau III.6 : Paramètres de réseau (a et c) et modules de compressibilité B du composés Ti_{0.75}Co_{0.125}Ce_{0.125}O₂.

TiO2 co-dopé	Paramètre de	Paramètre de réseau	Module de compressibilité
Co-Ce	réseau (a) (Å)	(c) (Å)	(B) (GPa)
12.5%	4.6997	3.0712	191.7886

Les paramètres de réseau (a et c) calculées, pour le composé $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$, augmentent lorsque le dioxyde de titane est co-dopé par le cérium et le cobalt alors que le module de compressibilité B diminue par rapport au TiO_2 pur. Ceci est certainement l'effet de la différence du rayon atomique du cérium qui est plus grand que celui du titane.

III.6.2 Propriétés électroniques

III.6.2.1 structure de bandes

La figure III.15 montre la structure de bandes électroniques de TiO_2 co-dopé par le cobalt et le cérium avec une concentration de 25%, où la structure de bande est calculée suivant les directions de haute symétrie dans la zone de Brillouin irréductible en utilisant

l'approximation GGA-PBE corrigés par l'approche TB-mBJ pour améliorer les valeurs des gaps énergétiques. Celle-ci montre que (Co-Ce)-TiO₂ est un semi-conducteur à gap indirect suivant la direction $R \longrightarrow \Gamma$ de haute symétrie. L'énergie de la bande interdite calculée est de 1.97 eV. La bande interdite a diminué avec le co-dopage de cobalt et de cérium par rapport au TiO₂ pur, mais on peut constater que la différence entre le gap de codopage et celui de dopage par le cobalt est négligeable (1%). Ce résultat montre que l'effet de cobalt est dominant dans la détermination de gap par apport à celui de cérium. Nous observons l'existence de nouvelles bandes d'énergie (IELs) au-dessus du niveau de Fermi.

Figure III.15: La structure de bande de composé Ti_{0.75}Co_{0.125} Ce_{0.125}O₂ en utilisant l'approximation GGA-mBJ.

III.6.2.2 Densités d'états électroniques (DOS)

Les densités d'état totales et partielles (TDOS et PDOS) de $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$ par l'approximation GGA-PBE corrigés par l'approche TB-mBJ sont illustrées sur La figure III.16. La bande interdite du TiO₂ co-dopé au cobalt et au cérium a diminuée par rapport au TiO₂ pur. Un léger déplacement de la bande de valence à travers le niveau de Fermi apparaît, les niveaux d'impuretés sont introduits au-dessus de l'énergie de Fermi et se situent à environ 0.25 eV La région [-6 (eV), 0.25 (eV)] est caractérisée par les états Co-3d et O-2p. La bande de conduction est dominée par les états Ce-4f localisés au milieu de celle-ci et des états Ti-3d, avec une contribution des états Co-3d dans la région [2.2 (eV), 3.9 (eV)]. Les niveaux d'énergie d'impureté développés par les états Co-3d sont situés en haut de la VB. Dans ce cas, l'absorption de la lumière visible peuvent être excités les électrons de la bande de valence à la bande de conduction selon les IELs qui ont diminué la valeur du gap.

Figure III.16: Densités d'états totales et partielles de composé Ti_{0.75}Co_{0.125} Ce_{0.125}O₂.

III.7. Étude des propriétés optiques des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}Ce_{0.125}O₂

Les propriétés optiques d'un matériau soumis à l'effet d'une excitation externe (rayonnement) sont décrites par la fonction diélectrique $\varepsilon(\omega)$. La détermination des parties réelle et imaginaire de la fonction diélectrique permet d'évaluer d'autres paramètres optiques importants, comme l'absorption optique, l'indice de réfraction, la réflectivité....

La fonction diélectrique est déterminée par les transitions électroniques entre la bande de valence et la bande de conduction. Elle est calculée en évaluant les éléments matriciels en représentation de l'impulsion. Elle met en contribution une partie réelle (la partie dispersive) et une partie imaginaire (partie absorptive), en utilisant le formalisme de Ehrenreich et Cohen, sous forme de la formule suivante :

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$
 (III. 4)

 $\varepsilon_2(\omega)$ est évaluée à partir des éléments de la matrice des moments donnés par la relation suivante **[16]** :

$$\varepsilon_2(\omega) = \frac{4\pi^2 e^2}{3m^2 \omega^2} \sum_{\nu,c} \int_{BZ} \frac{2dk}{(2\pi)^3} |\langle ck|P_I|\nu k \rangle|^2 \delta(E_c(k) - E_\nu(k) - \hbar\omega)$$
(III. 5)

Où $\langle ck|P|vk \rangle$ représentent représente les éléments matriciels pour les transitions entre la bande de valence et la bande de conduction. La sommation est effectuée sur tous les états de la zone irréductible de Brillouin (IBZ).

La partie imaginaire $\varepsilon_2(\omega)$ de la fonction diélectrique dépend de la transition électronique a l'origine de l'absorption. On peut tirer les transitions interbandes directes à partir de l'identification avec la structure de bandes d'énergies. La partie réelle $\varepsilon_1(\omega)$ de la fonction diélectrique peut être obtenue à partir de la partie imaginaire $\varepsilon_2(\omega)$ en utilisant la relation de Kramers-Kronig suivante [17,18] :

$$\varepsilon_{1}(\omega) = 1 + \frac{2}{\pi} \int_{0}^{\infty} \frac{\omega' \varepsilon_{2}(\omega')}{\omega'^{2} - \omega^{2}} d\omega'$$

$$\varepsilon_{2}(\omega) = -\frac{2E}{\pi} \int_{0}^{\infty} \frac{\varepsilon_{1}(\omega')}{\omega'^{2} - E^{2}} d\omega'$$
(III. 6)

Les autres constantes optiques peuvent être extraites connaissant $\varepsilon_1(\omega)$ et $\varepsilon_2(\omega)$ en utilisant les relations suivantes :

$$n(\omega) = \frac{1}{\sqrt{2}} \left[(\varepsilon_1(\omega)^2 + \varepsilon_2(\omega)^2)^{1/2} + \varepsilon_1(\omega) \right]^{1/2}$$
(III. 7)

$$k(\omega) = \frac{1}{\sqrt{2}} \left[(\varepsilon_1(\omega)^2 + \varepsilon_2(\omega)^2)^{1/2} - \varepsilon_1(\omega) \right]^{1/2}$$
(III. 8)

$$R(\omega) = \left| \frac{\sqrt{\varepsilon(\omega)} - 1}{\sqrt{\varepsilon(\omega)} + 1} \right|^2 = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$
(III. 9)

$$\alpha(\omega) = \frac{4\pi}{\lambda} k(\omega)$$
 (III. 10)

où $n(\omega)$, $R(\omega)$, $\alpha(\omega)$ et $k(\omega)$ désignent respectivement l'indice de réfraction, la réflectivité, le coefficient d'absorption et l'indice d'extinction.

III.7.1. La fonction diélectrique complexe ε (ω)

La fonction diélectrique $\varepsilon(\omega)$ est utilisée pour décrire la réponse du solide à la radiation électromagnétique qui est liée à l'interaction des photons avec les électrons.

La figure III.17 (a), illustre la variation de la partie réelle de la fonction diélectrique $\varepsilon_{1xx}(\omega)$ des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}Ce_{0.125}O₂. Dans la région de basse énergie, la composante ε_{1xx} des composés Ti_{0.875}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ présentent deux pics après avoir absorbé les énergies 0.74 eV et 0.67 eV. Elle s'annule pour le composé Ti_{0.875}Co_{0.125}O₂ à environ 1 eV. Dans la région visible et ultraviolet la composante ε_{1xx} des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ à environ 1 eV. Dans la région visible et ultraviolet la composante ε_{1xx} des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et All eV, 4.26 eV, 3.8 eV et 4 eV respectivement.

La figure III.17 (b) présente la variation de la partie imaginaire de la fonction diélectrique $\varepsilon_{2xx}(\omega)$ des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}Ce_{0.125}O₂. La région infrarouge est caractérisée par la présence de deux pics pour les composés Ti_{0.875}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}Ce_{0.125}O₂ aux énergies 0.86 eV et 0.94 eV. Elle est dominée par la transition électronique des états accepteurs Co-3d vers les états inoccupés de la bande de conduction au-dessus du niveau de Fermi. Dans la région ultraviolette, la principale caractéristique de la partie imaginaire se manifeste par des larges pics correspondent aux transitions optiques de la bande de valence à la bande de conduction. Les valeurs maximales de ces pics sont autour de 4.56 eV, 5 eV, 4.18 eV et 4.26 eV pour les composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ pur, Ti_{0.875}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ pur, se respectivement.

Figure III.17 : Les fonctions diélectriques (xx) des TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ : (a) partie réelle et (b) partie imaginaire.

La figure III.18 (a) représente la variation de la partie réelle (ε_{1zz}) de la fonction diélectrique des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125} Ce_{0.125}O₂, on constate une existence d'anisotropie optique dans le domaine infrarouge. La composante ε_{1zz} du composé Ti_{0.75}Co_{0.125} Ce_{0.125}O₂ augmente rapidement jusqu'au pic correspond au 0.84 eV, et malgré cette anisotropie les composés présentent une similitude dans les domaines visible et ultraviolet. De la même allure de ε_{1xx} , on observe une augmentation de ε_{1zz} jusqu'à la formation des pics à 4.13 eV, 3.78 eV, 3.65 eV et 3.4 eV respectivement. Et dans la figure III.18 (b) illustre la variation de la partie imaginaire (ε_{zz}) de la fonction diélectrique des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125} Ce_{0.125}O₂ comparer à ε_{xx} , on constate la présence d'une anisotropie optique dans la région de basse énergie représentée par l'apparition de deux pics, l'intensité de ε_{zz} est plus important pour le composés Ti_{0.75}Co_{0.125}Ce_{0.125}O₂ que Ti_{0.875}Co_{0.125}O₂, les pics sont apparaissent aux valeurs des énergies 1 eV et 0.91 eV respectivement. Les valeurs statiques de ε_{1xx} (0) et ε_{1zz} (0) sont résumé dans le tableau III .7

Figure III.18: Les fonctions diélectriques (ϵ_{zz}) des TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ : (a) partie réelle et (b) partie imaginaire.

Tableau III .7 : les valeurs statiques de ε_{1xx} (0) et ε_{1zz} (0) en comparaison aux autres calculs théoriques.

	Nos calculs		Autres calculs	
	ε _{1xx} (0)	ε _{1zz} (0)	E1xx (0)	ε _{1zz} (0)
TiO ₂ pur	4.68	5.57	5.94 ^[9] -4.68 ^[14]	-
Ti0.875Ce0.125O2	4.77	5.56	-	-
Ti0.875C00.125O2	9.11	5.69	5.365 ^[14]	-
Ti0.75C00.125 Ce0.125O2	6.98	7.06	-	-

[9],[14] Approximation GGA+ TB-mBJ sans la correction de l'opérateur scissor.

III.7.2. Le coefficient d'absorption $\alpha(\omega)$

Le coefficient d'absorption interbande $\alpha(\omega)$ caractérise la partie d'énergie absorbée par le matériau. L'évolution du coefficient d'absorption est représentée sur la figure III.18.

La figure III.19 (a) montre que les composés $Ti_{0.875}Co_{0.125}O_2$ et $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$ absorbent dans l'infrarouge à partir des basse énergies 0.85 eV. Les spectres $\alpha(\omega)$ présentent une absorption maximale à 0.91 eV et 1 eV ce phénomène s'étale jusqu'au le domaine visible avec une intensité faible Tandis que le TiO₂ pur et TiO₂ dopé avec le cérium ne présente aucune réaction à l'irradiation électromagnétique dans cet intervalle. Dans le domaine ultraviolet tous les composés se considèrent comme des bons absorbants avec différentes intensités. L'absorption des composés Ti_{0.875}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125}Ce_{0.125}O₂ peut être interprété par ses structures de bande. Comme le montre les figures (III.13) et (III.14), il y a des IELs dans la bande interdite près du CB minimale, donc la lumière infrarouge ou visible contribuerait aux transitions des électrons des états d'impureté occupés vers les états inoccupés de la bande de conduction, ce qui correspond à l'augmentation de l'absorption dans la plage d'énergie de 0.8 eV à 3,1 eV.

La figure III.19 (b) présente la variation de coefficient d'absorption α_{zz} , en comparant avec la courbe α_{xx} , le phénomène de l'anisotropie se manifeste au long du spectre étudié avec une constatation que l'absorption selon la direction xx est meilleure que celle dans zz, spécialement pour le TiO₂ dopé par le cobalt. Ce dernier est très sensitif aux infrarouges, ce qui lui rend un bon candidat dans des applications optoélectroniques notamment les détecteurs infrarouges.

Figure III.19: Les coefficients d'absorption des TiO_2 pur, $Ti_{0.875}Co_{0.125}O_2$, $Ti_{0.875}Ce_{0.125}O_2$ et $Ti_{0.75}Co_{0.125}Ce_{0.125}O_2$: (a) Absorption xx et (b) absorption zz.

III.7.3. La conductivité optique $\sigma(\omega)$

La transition électronique des états occupés vers les états inoccupés au-dessus du niveau de Fermi, s'appelle la conduction optique. La partie réelle de la conductivité optique est calculée selon la relation suivante :

Re
$$\sigma(\omega) = \frac{\omega}{4\pi} Im \,\varepsilon(\omega)$$
 (III. 11)

La figure III.20 (a) illustre la variation de la conductivité σ_{xx} , on remarque la présence d'un pic à l'énergie 0.89 eV et un petit pic à 0.94 eV pour les composés Ti_{0.875}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125} Ce_{0.125}O₂ respectivement, due à la transition électronique du maximum de la bande de valence au minimum de la bande de conduction via les états intermédiaires de l'impureté. Une faible conductivité est observée dans le visible pour les composés Ti_{0.875}Co_{0.125}O₂ et Ti_{0.75}Co_{0.125} Ce_{0.125}O₂. La conductivité des composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125} Ce_{0.125}O₂ commence à augmenter dans le domaine ultraviolet, caractérisé par des larges pics correspondent aux transitions optiques de la bande de valence à la bande de conduction, les valeurs maximales des pics pour ses composés sont autour de 5.42 eV, 5.7 eV, 5.16 eV et 5.24 eV respectivement. D'après la figure III.20 (b), la variation de la conductivité σ_{zz} présente une anisotropie optique dans la plage d'énergie de 0.6 eV à 3,1 eV, avec la présence d'un petit pic à 0.86 eV pour le composé Ti_{0.75}Co_{0.125}O₂. Dans le domaine ultraviolet, on observe une augmentation de la conductivité jusqu'à la formation de larges pics et les valeurs maximales de ces derniers pour les composés TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}O₂ sont autour de 4.68 eV, 5.01 eV, 4.51 eV et 4.8 eV respectivement.

Figure III.20: Les conductivité optiques des TiO₂ pur, Ti_{0.875}Co_{0.125}O₂, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}Ce_{0.125}O₂ : (a) Conductivité (xx) et (b) conductivité (zz).

III.8. La dissociation photocatalytique de l'eau

La figure III.21 montre le mécanisme physique et chimique de la dissociation photocatalytique de l'eau pour générer de l'hydrogène dans le système TiO2 (Ce + Co). Par conséquent, le système TiO2 co-dopé (Ce + Co) pris comme photocatalyseur peut présenter une activité photo-catalytique dans le domaine de la lumière visible pour la production d'hydrogène par dissociation de l'eau par l'effet synergique du co-dopage (Ce + Co).

Figure III.21 : Le mécanisme physique et chimique de la dissociation photo-catalytique de l'eau pour générer de l'hydrogène dans le système TiO2 (Ce + Co).

III.9. La conclusion

Le TiO₂ pur est un semiconducteur opaque au rayonnement visible, il absorbe que 4% du spectre solaire confiné dans l'UV, ce qui limite ses performances et ses applications dans le domaine optoélectronique ainsi que la photocatalyse. Dans le but de remédier à ce problème, nous avons introduit des concentrations de 12.5% des impuretés en tant que substitution dans la matrice TiO₂. Le choix des impuretés était fait pour un métal de terres rares Ce ainsi qu'un métal de transition Co. Le calcul des propriétés structurales, électroniques et optiques ont était fait par l'approximation GGA PBE et mBJ pour rapprocher les valeurs des gaps de celles de l'expérimentales ainsi que l'ajout de l'opérateur scissor pour améliorer le gap optique. Les résultats obtenus sont prometteurs dans les applications des composés de TiO₂ dans plusieurs domaines :

Composé	Structure	Gap(eV)	Domaine d'absorption	Domaine
				d'application
TiO ₂ pur	Stable	Direct	Ultraviolet : très forte	-La photo-catalyse
-		2.51		(UV)
Ti _{0.875} Ce _{0.125} O ₂	Stable	Indirect	Visible : faible	-La photo-catalyse
		1.79	Ultraviolet : très forte	(UV)
Ti _{0.875} Co _{0.125} O ₂	Stable	Direct	Infrarouge : très forte	-Détecteur
		1.99	Visible : faible	infrarouge
			Ultraviolet : très forte	-Photovoltaïques
Ti0.75C00.125 Ce0.125O2	Stable	Indirect	Infrarouge : forte	-Détecteur
		1.97	Visible : moyenne	infrarouge
			Ultraviolet : très forte	-La photo-catalyse

Fableau III.8 : caractérist	iques et doma	aines d'applic	ation des com	poses étudiés
------------------------------------	---------------	----------------	---------------	---------------

Références bibliographiques

[1] DIEBOLD, Ulrike. The surface science of titanium dioxide. Surface science reports, 2003, vol. 48, no 5-8, p. 53-229.

[2] ETACHERI, Vinodkumar, DI VALENTIN, Cristiana, SCHNEIDER, Jenny, et al. Visiblelight activation of TiO_2 photocatalysts : Advances in theory and experiments. Journal of Photochemistry and Photobiology C : Photochemistry Reviews, 2015, vol. 25, p. 1-29.

[3] ANDERSEN, O. Krogh. Linear methods in band theory. Physical Review B, 1975, vol. 12, no 8, p. 3060.

[4] HOHENBERG, Pierre et KOHN, Walter. Inhomogeneous electron gas. Physical review, 1964, vol. 136, no 3B, p. B864.

[5] BLAHA, Peter, SCHWARZ, Karlheinz, MADSEN, Georg KH, et al. wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 2001, vol. 60.

[6] LEVY, Mel. Density functional methods in physics. The inhomogeneous electron gas, 1985, p. 32-94.

[7] TRAN, Fabien et BLAHA, Peter. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Physical review letters, 2009, vol. 102, no 22, p. 226401.

[8] http://ruby.colorado.edu/smyth/min/minerals.html S, Smyth and Bish ; crystal structures and cation sites of the rock forming minerals, 1988.

[9] Mohamad, Mazmira, et al. "A density functional study of structural, electronic and optical properties of titanium dioxide : Characterization of rutile, anatase and brookite polymorphs." Materials Science in Semiconductor Processing, 2015, vol. 31, p.405-414.

[10] GERWARD, Leif et STAUN OLSEN, J. Post-rutile high-pressure phases in TiO₂. Journal of Applied Crystallography, 1997, vol. 30, no 3, p. 259-264.

[11] SHIRLEY, Raphael, KRAFT, Markus, et INDERWILDI, Oliver R. Electronic and optical properties of aluminium-doped anatase and rutile TiO₂ from ab initio calculations. Physical Review B, 2010, vol. 81, no 7, p. 075111.

[12] CHEN, Weiguang, YUAN, Pengfei, ZHANG, Shuai, et al. Electronic properties of anatase TiO_2 doped by lanthanides : A DFT+ U study. Physica B : Condensed Matter, 2012, vol. 407, no 6, p. 1038-1043.

[13] REYES-CORONADO, David, RODRÍGUEZ-GATTORNO, G., ESPINOSA-PESQUEIRA, M. E., et al. Phase-pure TiO2 nanoparticles : anatase, brookite and rutile. Nanotechnology, 2008, vol. 19, no 14, p. 145605.

[14] ESAKKIMUTHURAJU, M., MAHESH, R., SREEKANTH, T., et al. Electronic, Magnetic and Optical Properties of Rutile $Ti_{1-x} TM_x O_2$ (TM= V, Fe, Co, Ni) Using Tran and Blaha's Modified Becke–Johnson Exchange Potential Model. Journal of Superconductivity and Novel Magnetism, 2016, vol. 29, no 10, p. 2641-2650.

[15] ELAHIFARD, Mohammadreza, PADERVAND, Mohsen, YASINI, Siamak, et al. The effect of double impurity cluster of Ni and Co in TiO_2 bulk ; a DFT study. Journal of Electroceramics, 2016, vol. 37, no 1, p. 79-84.

[16] FOURET, R., DEROLLEZ, P., LAAMYEM, A., et al. Phonons in silver gallium diselenide. Journal of Physics : Condensed Matter, 1997, vol. 9, no 31, p. 6579.

[17] KRONIG, R. de L. On the theory of dispersion of x-rays. Josa, 1926, vol. 12, no 6, p. 547-557.

[18] KRAMERS, H. A. Some remarks on the theory of absorption and refraction of x-rays. Nature, 1926, vol. 117, no 2952, p. 774-775.

CONCLUSION GÉNÉRALE

A

Ð

Conclusion générale

L'objectif de ce travail est d'étudier les propriétés structurales, électroniques et optiques de l'oxyde de titane TiO₂. La phase cristalline étudiée est le TiO₂ rutile pur et dopé par le cérium ou/et le cobalt. Cette étude de premier principe est basée sur la méthode FP-LAPW implémentée dans le code Wien2k et dans le cadre de la théorie de la fonctionnelle de la densité (DFT).

Pour les propriétés structurales, l'approximation employée est celle du gradient généralisé GGA-PBE, pour les propriétés électroniques le potentiel d'échange et de corrélation est traité par l'approximation GGA-PBE et l'approche TB-mBJ. Le gap optique est corrigé en adoptant "l'opérateur scissor ".

L'étude des propriétés structurales des composés $Ti_{1-x}A_xO_2$ (A= Co, Ce et x =0, 0.125) et du composé $Ti_{1-2x}A_xB_xO_2$ (A= Co, B=Ce et x =0.125), a montré que les valeurs des paramètres structuraux tel que les paramètres de maille a et c, le module de compressibilité et B sa dérivée B' concordent bien avec les autres travaux théoriques, cependant la surestimation de la GGA est évidente par rapport aux résultats expérimentaux pour TiO_2 pur. La substitution des atomes de Ti par le cobalt et le cérium augmentent /diminuent les paramètres selon la taille de l'atome substitué par rapport à la matrice hôte.

L'investigation des propriétés électronique a montré que les composés TiO₂ pur et Ti_{0.875}Co_{0.125}O₂ possèdent un gap direct au point de haute symétrie Γ et les composés, Ti_{0.875}Ce_{0.125}O₂ et Ti_{0.75}Co_{0.125}Ce_{0.125}O₂ possèdent un gap d'énergie indirect suivant la direction R \longrightarrow Γ . les valeurs calculées de ces gaps sont en bon accord avec les résultats des autres travaux théoriques. Les résultats montrent que TiO₂ dopé au cérium (Ce) réduit la bande interdite du TiO₂ rutile, tandis que le dopage avec le cobalt (Co) induit des niveaux d'énergie d'impureté au-dessus du niveau du Fermi, qui peuvent être responsables de l'absorption de la lumière visible et infrarouge.

Pour les propriétés optiques des composés $Ti_{1-x}A_xO_2$ (A= Co, Ce et x = 0, 0.125) et de composé $Ti_{1-2x}A_xB_xO_2$ (A= Co, B=Ce et x =0.125). Cette étude a montré que l'absorption optique peuvent améliorer dans les régions visibles et IR avec le dopage et le co-dopage du TiO₂. La combinaison de Co-Ce comme co-dopant de TiO₂ améliore significativement l'activité photo-catalytique du TiO₂ rutile dans le domaine visible.