### الجمهورية الجزائرية الديمقر اطية الشعبية وزارة التعليم العالي والبحث العلمي

République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

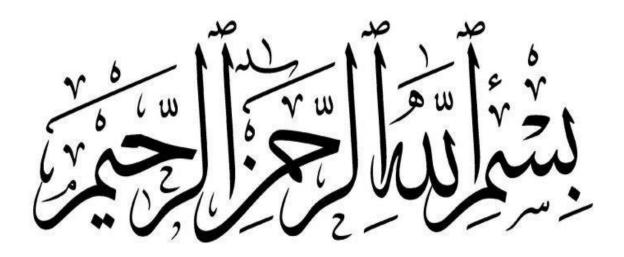


### Mémoire de Master

Présenté à l'Université 8 Mai 1945 de Guelma Faculté des Sciences et de la Technologie

Département de : Génie Civil & Hydraulique

Spécialité : Génie Civil


**Option: GEOTECHNIQUE** 

Présenté par : ABU ZARIFA Tawfiq Ammar Tawfiq
KHECHAIMIA Djalel

Thème: Comportement mécanique du sol cohérent traité avec un bio-liant.

Sous la direction de : Pr. NOUAOURIA Mohamed Salah

**Juin 2022** 



### REMERCIEMENTS

### Remerciements

Nous remercions «ALLAH EL KARIM» de nous avoir donné la Santé, la volonté, le courage et la patience tout au long de notre parcours académique et scientifique jusqu'à l'aboutissement de notre modeste travail.

Tout d'abord, nous tenons à exprimer nos remerciements et notre gratitude à notre encadreur **Pr. NOUAOURIA Mohamed Salah** pour tout le soutien, l'assistance, l'orientation et le suivi pendant la période de préparation de ce travail, pour ses précieuses notes, idées et conseils qui nous a donnés.

C'est un privilège et une expérience à la fois. Exceptionnellement, nous avons bénéficié de ses conseils qui nous ont guidés et guidés encore pour les années à venir, que Dieu le protège.

Nous exprimons nos remerciements à tous les enseignants du département de Génie Civil et d'Hydraulique pour leurs aides, leurs encouragements et leurs conseils tout au long de notre cursus universitaire, qu'ils puissent trouver ici l'expression de notre profond respect.

Nous remercions le Doctorant **NOUAOURIA ABDESSALAM** qui nous a beaucoup aidés dans la réalisation de ce mémoire.

Nous remercions également l'honorable jury qui a bien voulu examiner notre travail.

Nos remerciements, également à l'ensemble des responsables, ingénieurs et techniciens du Laboratoire National de l'Habitat et de la Construction (LNHC) de Guelma de nous avoir accueillis pendant notre période de stage.

Nos sentiments de reconnaissance vont également à toute personne qui nous a aidés de près ou de loin.

### **Dédicace**

Je dédie ce modeste travail à :

A Mes premières écoles dans la vie, mes très chers parents mon soutien dans la vie.

A mes frères « SAAD et IHEB » je les remercie beaucoup.

A toute ma famille« KHECHAIMIA ».

A tous mes amis

A toute les étudiants de Géotechnique.

A toute personne m'ayant aidé à franchir un horizon dans ma vie et mes études.

KHECHAIMIA DJALEL

### اهـــــاع

الحمد لله الذي وفقنا لهذا العمل وما كنا لنصل إليه لولا فضل الله علينا أما بعد:

أهدي هذا العمل المتواضع إلى أمي و أبي سندي في الدنيا ولا أحصى لهم فضل حفظهما الله لي

وإلى أخي: زكي سندي في غربتي

وإلى أخوتي، وكل الأصدقاء الأحباب من دون استثناء، إلى أساتذتي الكرام وكل رفقاء الدراسة

وفي الأخير أرجو من الله أن يجعل عملي هذا نفعاً يستفيد منه جميع الطلبة المتربصين المقبلين على التخرج.

أبو ظريفة توفيق عمار توفيق

### Résumé

L'amélioration des sols par la technique de stabilisation chimique est largement utilisée dans le domaine de Génie Civil.

Le remplacement des agents de stabilisation classique comme la chaux et le ciment par des nouveaux produits moins couteux et avec un impact environnemental faible est considéré aujourd'hui comme une solution efficace.

L'objectif de ce projet est d'utiliser un bio-liant, à savoir la Caséine, pour améliorer la résistance au cisaillement et la résistance à la compression simple des sols cohérents. L'étude du sol amélioré a été effectuée à travers des essais triaxiaux et de compression non confinée.

Les résultats ont montré que l'ajout de la Caséine au sol a nettement amélioré sa cohésion tout en réduisant son angle de frottement interne et a augmenté sa résistance à la compression.

### Mots clés

Bio-liant, caséine, compression non confinée, essai triaxial, résistance au cisaillement, sols cohérents, traitement des sols.

### ملخص

يستخدم تحسين التربة بتقنية التثبيت الكيميائي على نطاق واسع في مجال الهندسة المدنية.

يعتبر اليوم استبدال المثبتات التقليدية مثل الجير والأسمنت بمنتجات جديدة أقل تكلفة وذات تأثير بيئي منخفض حلاً فعال.

الهدف من هذا المشروع هو استخدام مادة رابطة حيوية ، وهي الكازيين ، لتحسين مقاومة القص وقوة الضغط البسيطة للتربة المتماسكة. تم إجراء دراسة التربة المحسنة من خلال اختبارات الضغط ثلاثية المحاور وغير المحصورة.

أظهرت النتائج أن إضافة الكازيين إلى التربة أدت إلى تحسين تماسك التربة بشكل ملحوظ مع تقليل زاوية الاحتكاك الداخلي وزيادة مقاومة الضغط البسيط.

### كلمات مفتاحية

مادة رابطة حيوية، كازيين ، ضغط غير محصور ، اختبار ثلاثي المحاور ، قوة القص ، تربة متماسكة ، معالجة التربة.

### Abstract

Soil improvement by the chemical stabilization technique is widely used in the field of Civil Engineering.

Replacing conventional stabilizers such as lime and cement with new, less expensive products with a low environmental impact is now considered as an effective solution.

The objective of this project is to use a bio-binder, namely Casein, to improve the shear strength and the simple compressive strength of cohesive soils. The study of improved soil is carried out through triaxial and unconfined compression tests.

The results showed that adding Casein to the soil markedly improved its soil cohesion while reducing its angle of internal friction and increasing its compressive strength.

### Keywords

Bio-binder, casein, unconfined compression, triaxial test, shear strength, cohesive soils, soil treatment.

### Table Des Métiers

|                                                                                         | Page        |
|-----------------------------------------------------------------------------------------|-------------|
| Remerciement                                                                            | 8           |
| Dédicaces                                                                               |             |
| Résumé                                                                                  | I           |
| ملخص                                                                                    | II          |
| Abstract                                                                                | III         |
| Table des matières                                                                      | IV          |
| Liste des figures                                                                       | VIII        |
| Liste des tableaux                                                                      | XII         |
| Notations et Symboles                                                                   | XIII        |
| Introduction général                                                                    | 1           |
|                                                                                         |             |
| CHAPITRE I : GENERALITES SUR LES SOLS ARGILEUX                                          | _           |
| I.1 Introduction                                                                        | 5           |
| I.2 Définition des sols fins                                                            | 5<br>5<br>5 |
| 2.1 Quelques caractéristiques des sols fins                                             | 5           |
| I.3 Argiles                                                                             |             |
| 3.1 Granulométrie Des Particules                                                        | 6           |
| 3.2 Structure physique des argiles.                                                     | 6           |
| 3.3. Structure élémentaire des minéraux argileux                                        | 7           |
| Tétraèdre de silice SiO4                                                                | 7           |
| Octaèdre d'alumine Al2(OH) 6 ou de magnésium Mg3(OH) 6                                  | 8           |
| I.4 Classification des argiles                                                          | 9           |
| 4.1 Minéraux à 7 Å                                                                      | 9           |
| 4.2 Minéraux à 10 Å                                                                     | 9           |
| 4.3 Minéraux à 14 Å                                                                     | 9           |
| 4.4 Minéraux inter stratifiés                                                           | 9           |
| I.5 Types d'argile                                                                      | 10          |
| 5.1 Kaolinite                                                                           | 10          |
| 5.2 Montmorillonite                                                                     | 10          |
| 5.3 Illite                                                                              | 12          |
| 5.4 Bentonite                                                                           | 12          |
| 5.4.1 Origine de la bentonite                                                           | 12          |
| 5.4.2 Structure et composition                                                          | 12          |
| 5.4.3 Types de la bentonite                                                             | 13          |
| 5.4.4 L'utilisation de la bentonite                                                     | 13          |
| 5.5 Chlorites                                                                           | 13          |
| 5.6 Smectites L6 Propriétée des argiles                                                 | 14<br>14    |
| I.6 Propriétés des argiles I.7 Conclusion                                               | 15          |
| 1.7 Conclusion                                                                          | 13          |
| CHAPITRE II : CONSTRUCTION EN TERRE CRUE                                                |             |
| II.1 Introduction                                                                       | 17          |
| II.2 Rappel historique                                                                  | 17          |
| 2.1 Mais quelle est la raison qui a mené ces civilisations à utiliser un tel matériau ? | 17          |
| II.3 Diversité de la construction en terre crue                                         | 19          |
| II.4 Les techniques de construction en terre crue                                       | 20          |
| 4.1 Technique du pisé                                                                   | 20          |
| 4.2 Technique de l'adobe                                                                | 21          |

| 4.3 Technique du Torchis                                                    | 22 |
|-----------------------------------------------------------------------------|----|
| 4.4 Technique de la bauge                                                   | 23 |
| II.5 Brique de terre compressée (BTC)                                       | 24 |
| II.6 Normes, recommandations et Critères de choix des matériaux             | 26 |
| 6.1 Normes et recommandations                                               | 26 |
| 6.2 Choix des matériaux                                                     | 27 |
| 6.2.1 Distribution granulométrique                                          | 27 |
| 6.2.2 Plasticité : Pouvoir à se déformer sans se fissurer ou se désintégrer | 28 |
| 6.2.3 Compactage                                                            | 29 |
| 6.2.4 Résistance à la compression simple                                    | 29 |
| II.7 Synthèse bibliographique sur les briques en terre crue stabilisées     | 30 |
| 7.1 Stabilisation avec ciment                                               | 30 |
| 7.2 Stabilisation avec la chaux                                             | 31 |
| 7.3 Stabilisation avec des liants minéraux alternatifs                      | 31 |
| 7.4 Stabilisation avec des liants organiques.                               | 33 |
| II.8 Avantages du matériau terre                                            | 34 |
| II.9 Inconvénients de la construction en terre                              | 34 |
| II.10 Conclusion                                                            | 35 |
| CHAPITRE III : TRAITEMENT DES SOLS                                          |    |
| III.1Introduction                                                           | 37 |
| III.2 Produits de traitements classiques                                    | 37 |
| 2.1 Liants hydrauliques                                                     | 37 |
| 2. 1.1 Ciment                                                               | 37 |
| 2.2.2 Pouzzolane naturelle                                                  | 39 |
| 3.2.3 Cendres volantes                                                      | 39 |
| 3.2.4 Laitiers de hauts fourneaux                                           | 40 |
| 3.2.5 Dolomie                                                               | 40 |
| 3.2.6 Chaux                                                                 | 41 |
| Chaux vive                                                                  | 41 |
| Chaux éteinte                                                               | 41 |
| ➤ Lait de chaux                                                             | 42 |
| Chaux vive lourde                                                           | 42 |
| 2.2 Avantages du traitement                                                 | 43 |
| 2.2.1 Avantages techniques                                                  | 43 |
| 2.2.2 Avantages économiques                                                 | 43 |
| 2.2.3 Avantages écologiques et environnementaux                             | 43 |
| III.3 Fibres                                                                | 44 |
| 3.1 Types de fibres utilisées dans le domaine de la construction            | 44 |
| 3.2 Fibres naturelles                                                       | 44 |
| 3.2.1 Fibres animales                                                       | 44 |
| 3.2.2. Fibres minérales                                                     | 44 |
| 3.2.3 Fibres végétales                                                      | 45 |
| 3.2.3 Classification des fibres végétales                                   | 45 |
| 3.3 Fibres chimiques                                                        | 46 |
| 3.3.1 Fibres artificielles                                                  | 46 |
| 3.3.1.1 Fibres de caoutchouc                                                | 46 |
| 3.3.1.2 Fibres de verre                                                     | 46 |
| 3.3.2 Fibres synthétiques                                                   | 47 |
| III.4 Généralité sur les bio-polymères                                      | 47 |
| III.5 Classification des bio-polymères                                      | 48 |
| 5.1 Polysaccharides                                                         | 48 |

| 5.1.1 Cellulose                                                | 49 |
|----------------------------------------------------------------|----|
| 5.1.1.1 Bouse de vache et crottin                              | 49 |
| a)Matière première                                             | 49 |
| b) Principes et interprétation                                 | 49 |
| 5.1.1.2 Fibres fermentées                                      | 50 |
| a)Matière première                                             | 50 |
| b) Principes et interprétation                                 | 50 |
| 5.1.1.3 Papier washi                                           | 51 |
| a)Matière première                                             | 51 |
| b) Principes et interprétation                                 | 51 |
| 5.1.2 Gel végétal                                              | 52 |
| 5.1.2.1 Cactus, agave, aloès                                   | 52 |
| a)Matière première                                             | 52 |
| b) Principes et interprétation                                 | 53 |
| 5.1.2.2 Eau gluante                                            | 53 |
| a)Matière première                                             | 53 |
| b) Principes et interprétation                                 | 53 |
| 5.1.2.3 Algues                                                 | 54 |
| a)Matière première                                             | 54 |
| b) Principes et interprétation                                 | 54 |
| 5.1.3 Amidon                                                   | 54 |
| 5.1.3.1 Farines de blé                                         | 55 |
| a)Matière première                                             | 55 |
| b) Principes et interprétation                                 | 56 |
| 5.1.3.2 Gomme arabique                                         | 56 |
| a)Matière première                                             | 57 |
| b) Principes et interprétation                                 | 57 |
| 5.2 Lipides                                                    | 57 |
| 5.2.1 Huile de lin                                             | 57 |
| a)Matière première                                             | 58 |
| b) Principes et interprétation                                 | 58 |
| 5.2.2 Beurre de karité                                         | 59 |
| a)Matière première                                             | 59 |
| b) Principes et interprétation                                 | 59 |
| 5.3 Protéines                                                  | 60 |
| 5.3.1 Caséine                                                  | 60 |
| a) Variantes                                                   | 61 |
| b) Principes et interprétation                                 | 61 |
| c) Pourquoi la caséine précipite telle après ajout d'acide ?   | 62 |
| 5.3.2 Production de Caséine                                    | 62 |
| 5.3.2.1 Recette de colle de caséine                            | 63 |
| 5.3.3 Utilisation de la caséine en géotechnique                | 64 |
| 5.3.4 L'ovalbumine et l'albumine du sang                       | 65 |
| 5.4 Autres molécules complexes                                 | 66 |
| 5.4.1 Tanin                                                    | 66 |
| a) Matière première                                            | 66 |
| b) variantes                                                   | 67 |
| III.6 Conclusion                                               | 68 |
|                                                                | 00 |
| CHAPITRE IV : ESSAIS EXPERIMENTAUX ET ANALYSE DES RESULTATS    |    |
| IV.1 Introduction                                              | 70 |
| IV.2 Situation géographique et caractéristiques du sol utilisé | 70 |

| IV.3 Essais d'identification                                                         | 70       |
|--------------------------------------------------------------------------------------|----------|
| 3.1 Analyse granulométrique par lavage et sédimentométrie selon les normes NF        | 70       |
| P18-560 et NF P94-057                                                                | 70       |
| 3.2 Essai au bleu de méthylène (VBS) selon la norme AFNOR NF P 94-068                | 73       |
| 3.3 Limites d'Atterberg (NORME NF P 94-051)                                          | 73       |
| 3.3.1 Limite de liquidité (WL)                                                       | 73       |
| 3.3.2 Limite de fiquidité (WE) 3.3.2 Limite de plasticité WP                         | 73<br>77 |
| 3.3.3 Limite de plasticité WF 3.3.3 Limite de Retrait linéaire LR la norme BS 1377   | 80       |
| IV.4 Classification du sol étudié                                                    |          |
| 4.1 Selon GTR selon NF P11-300                                                       | 81       |
| 4.1 Selon GTR selon NF PTT-300 4.2 Selon AASHTO                                      | 81       |
|                                                                                      | 82       |
| 4.3 Essai Proctor normal selon la norme NF 94-093                                    | 83       |
| 4.4 Essai de Proctor modifié                                                         | 84       |
| IV.5 Positionnement du sol naturel (SN) par rapport aux recommandations pour les     | 85       |
| BTC                                                                                  | 0.5      |
| 5.1 Vis-à-vis de la granulométrie                                                    | 85       |
| 5.2 Vis-à-vis des limites d'Atterberg                                                | 86       |
| 5.3 Vis-à-vis du compactage                                                          | 86       |
| 5.4 Conclusion sur l'utilisation du sol naturel (SN) dans les BTC                    | 88       |
| IV.6 Produit de traitement utilisé                                                   | 88       |
| 6.1 Caséine                                                                          | 88       |
| 6.2 Choix des dosages de mélanges                                                    | 89       |
| 6.3 Confection des éprouvettes                                                       | 90       |
| IV.7 Essai triaxial (NF P94-074)                                                     | 92       |
| 7.1 Dispositif expérimental                                                          | 92       |
| 7.2 Types d'essais triaxiaux                                                         | 94       |
| 7.3 Mode opératoire et procédure de l'essai                                          | 94       |
| 7.4 Résultats des essais triaxiaux(UU)                                               | 96       |
| 7.4.1 Echantillon 01 : sol naturel (témoin)                                          | 96       |
| 7.4.2 Echantillon 02 : 99% sol traité par 1% Caséine à 7 jours de cure               | 97       |
| 7.4.3 Echantillon 03 : 99% sol traite par 1% Caséine à 14 jours de cure              | 98       |
| 7.4.4 Echantillon 04 : 98% sol traite par 2% Caséine à 7 jours de cure               | 99       |
| 7.4.5 Echantillon 05 : 98% sol traite par 2% Caséine à 14 jours de cure              | 100      |
| 7.5 Analyse des résultats des essais triaxiaux réalisés sur des échantillons témoins | 101      |
| et des échantillons du sol traité à la Caséine                                       |          |
| IV.8 Essai de compression simple selon la norme NF P94-077                           | 102      |
| 8.1. Mode opératoire et procédure d'essai                                            | 102      |
| 8.2 Résultats des essais de compression                                              | 105      |
| 8.3 Prévision pour la résistance à la compression simple                             | 107      |
| IV.9 Conclusion                                                                      | 107      |
| Conclusion générale                                                                  | 109      |
| Références bibliographiques                                                          | 112      |
| Annexes                                                                              | 117      |

### Liste Des Figures

|              | Chapitre I                                                                                   | Page |  |  |  |
|--------------|----------------------------------------------------------------------------------------------|------|--|--|--|
| Figure 1.1   | Différentes couleurs d'argiles.                                                              | 5    |  |  |  |
| Figure 1.2   | Triangle de texture.                                                                         | 6    |  |  |  |
| Figure 1.3   | Trois structures types des sédiments argileux                                                | 7    |  |  |  |
| Figure 1.4   | Structure des sols constituent de particules grossières et de                                | 7    |  |  |  |
|              | particules fines                                                                             |      |  |  |  |
| Figure 1.5   | Structure Elémentaire Tétraédrique                                                           | 8    |  |  |  |
| Figure 1.6   | Structure élémentaire Octaédrique                                                            | 8    |  |  |  |
| Figure 1.7   | Présentation des tétraèdres et octaèdre.                                                     | 8    |  |  |  |
| Figure 1.8   | Structure de la kaolinite                                                                    | 10   |  |  |  |
| Figure 1.9   | Structure de la Montmorillonite.                                                             | 10   |  |  |  |
| Figure 1.10  | Structure de l'illite.                                                                       | 11   |  |  |  |
| Figure 1.11  | Structure de la montmorillonite.                                                             | 12   |  |  |  |
| Figure 1.12  | Feuillet de la Chlorite                                                                      | 13   |  |  |  |
| Figure 1.13  | Feuillet de la Smectites                                                                     | 14   |  |  |  |
| Figure 1.14  | Effet de rétrécissement du sol                                                               | 15   |  |  |  |
|              | Chapitre II                                                                                  |      |  |  |  |
| Figure 2.1.a | Arche de Ctésiphon.                                                                          | 17   |  |  |  |
| Figure 2.1.b | Pyramide d'El-LAHOUN.                                                                        | 17   |  |  |  |
| Figure 2.1.c | Ziggourat d'ETEMENANKI.                                                                      | 17   |  |  |  |
| Figure 2.1.d | Cité CHAN-CHAN.                                                                              | 17   |  |  |  |
| Figure 2.2   | Architecture de terre dans le monde                                                          | 18   |  |  |  |
| Figure 2.3   | "Roue" des techniques de construction en terre                                               | 19   |  |  |  |
| Figure 2.4   | Le coffrage du pisé.                                                                         | 20   |  |  |  |
| Figure 2.5   | Hôpital régional de Feldkirch, Vorarlberg, Autriche, 1993.                                   | 20   |  |  |  |
| Figure 2.6   | Schéma explicatif de préparation et construction des adobes.                                 | 21   |  |  |  |
| Figure 2.7   | Stockage massif d'adobes, Villa Janna, Marrakech, Maroc.                                     | 22   |  |  |  |
| Figure 2.8   | Technique de la construction en terre : Torchis.                                             | 22   |  |  |  |
| Figure 2.9   | Construction d'une maison en colombage et torchis près de Rouen, France.                     | 23   |  |  |  |
| Figure 2.10  | Maison en bauge à Gevezé.                                                                    | 24   |  |  |  |
| Figure 2.11  | Système de construction monolithique en terre crue empilée (bauge).                          | 24   |  |  |  |
| Figure 2.12  | Maison en BTC, photos d'Abidjan, Côte d' Ivoire.                                             | 25   |  |  |  |
| Figure 2.13  | Construction en blocs de terre compressée stabilisés (BTC) à Bangalore, Inde.                | 26   |  |  |  |
| Figure 2.14  | Schéma des presses manuelle et mécanique pour produire des BTC.                              | 26   |  |  |  |
| Figure 2.15  | Fuseaux de courbes granulométriques conseillées pour construire en BTC, en Pisé ou en adobe. | 28   |  |  |  |
| Figure 2.16  | Fuseaux de plasticité conseillée pour construire en BTC, en Pisé ou en BTM                   | 28   |  |  |  |
| Figure 2.17  | Fuseaux de compactage recommandé pour construire en BTC,                                     | 29   |  |  |  |
| Figure 2.18  | Résistance à la compression simple de la terre crue (non                                     | 30   |  |  |  |
|              | stabilisée) séchée à l'air libre,                                                            |      |  |  |  |
|              | Chapitre III                                                                                 |      |  |  |  |
| Figure 3.1   | Ciment.                                                                                      | 37   |  |  |  |
| Figure 3.2   | Pouzzolane naturelle.                                                                        | 39   |  |  |  |

| Figure 3.3  | cendres volantes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 3.4  | Laitiers de haut fourneau.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40        |
| Figure 3.5  | Dolomie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40        |
| Figure 3.6  | Chaux vive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41        |
| Figure 3.7  | Chaux éteinte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42        |
| Figure 3.8  | Lait de chaux.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42        |
| Figure 3.9  | Cycle de la chaux.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43        |
| Figure 3.10 | Fibres animales.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44        |
| Figure 3.11 | Fibre d'alumine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45        |
| Figure 3.12 | Classes de fibres végétales.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45        |
| Figure 3.13 | Différents types des fibres des pneus de caoutchouc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46        |
| Figure 3.14 | Une mèche composée de fibres de verre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46        |
| Figure 3.15 | Différents types des fibres synthétiques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47        |
| Figure 3.16 | Quatre grandes familles des bio-polymères.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48        |
| Figure 3.17 | Bouse de vache.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49        |
| Figure 3.18 | Conservation traditionnelle de la case obus des MOUSGOUMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50        |
|             | (Cameroun).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Figure 3.19 | Balle est l'enveloppe qui entoure le grain de riz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50        |
| Figure 3.20 | Restauration de la Grande Mosquée de Mopti(Mali).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51        |
| Figure 3.21 | Papier washi traditionnellement fabriqué au Japon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51        |
| Figure 3.22 | Fibres du papier washi sont utilisées dans la couche de finition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52        |
| F: 2.22     | de cet enduit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>50</b> |
| Figure 3.23 | Pulpe de l'aloe donne un gel translucide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52        |
| Figure 3.24 | Ces feuilles sèches, fouga, font partie des végétaux qui forment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53        |
| F' 2.05     | des gels au contact de l'eau.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F.4       |
| Figure 3.25 | Eau gluante (Vuolu) Ghana.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54        |
| Figure 3.26 | Décoction de cette algue séchée forme un gel en refroidissant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54        |
| Figure 3.27 | Algue, Ginnan, du Japon gonfle dans l'eau froide avant d'être bouillie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55        |
| Figure 3.28 | Farine de blé.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55        |
| Figure 3.29 | Farine de blé contenant de l'amidon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56        |
| Figure 3.30 | Colle de farine (Canada).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56        |
| Figure 3.31 | Gomme arabique est secrétée par les arbres de la famille des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57        |
| rigures.si  | acacias.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| Figure 3.32 | L'huile de lin est extraite des graines par pression à froid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58        |
| Figure 3.33 | Huile de lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58        |
| Figure 3.34 | Beurre de karité.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59        |
| Figure 3.35 | Beurre de karité est extrait des noix de karité bouillies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59        |
| Figure 3.36 | Beurres de karités utilisés dans stabilisation traditionnelle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60        |
| Figure 3.37 | Molécules des caséines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61        |
| Figure 3.38 | Schéma de principe de la structure des micelles de caséine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62        |
| Figure 3.39 | Diagramme de la caséine en fonction de ph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62        |
| Figure 3.40 | Principales étapes des la production de Caséine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63        |
| Figure 3.41 | Recette de France à base de colle de caséine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63        |
| Figure 3.42 | Modèle d'interaction bio-polymères à base de protéines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64        |
| Figure 3.43 | Traitement du sol à base de bio polymère (BPST).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65        |
| Figure 3.44 | Gouttes d'eau sur un enduit de terre rouge au blanc d'œuf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66        |
| Figure 3.45 | Cosses de néré de couleur rouge-brun foncé.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67        |
| Figure 3.46 | Pierres de limonite composées d'oxydes de fer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67        |
| I           | I and the second | l         |

| Figure 3.47 | Décoction appliquée en badigeon sur la couche de finition.                          | 68        |
|-------------|-------------------------------------------------------------------------------------|-----------|
|             | Chapitre IV                                                                         |           |
| Figure4.1   | Gisement de Kaolin de Bendjerrah                                                    | 70        |
| Figure4.2   | Tamis dans l'ordre décroissant                                                      | 71        |
| Figure 4.3  | Tamisage du sol étudié                                                              | 71        |
| Figure 4.4  | Essai de sédimentation                                                              | 71        |
| Figure 4.5  | Matériel utilisé pour la sédimentation                                              | 71        |
| Figure 4.6  | Courbe granulométrique du sol étudié                                                | 72        |
| Figure 4.7  | Dispositif pour l'essai VBS                                                         | 73        |
| Figure 4.8  | Les résultats de l'essai VBS                                                        | 74        |
| Figure 4.9  | Classification du sol selon la valeur de bleu de méthylène.                         | 74        |
| Figure4.10  | Diagramme variation de la consistance d'un sol fin selon les                        | <b>75</b> |
|             | limites et la variation de la teneur en eau.                                        |           |
| Figure4.11  | Appareil de Casagrande utilisé dans l'essai de Limite de liquidité                  | 76        |
| Figure4.12  | Sol se referme sur une longueur de 12 à 13 mm après être tombé                      | <b>76</b> |
|             | 25 fois.                                                                            |           |
| Figure4.13  | Détermination de la limite de liquidité                                             | 77        |
| Figure4.14  | Détermination de la limite de plasticité                                            | 78        |
| Figure 4.15 | Seuils d'Argilosité                                                                 | 79        |
| Figure4.16  | Abaque de Casagrande                                                                | 79        |
| Figure4.17  | Matériel utilisé dans l'essai de Limite de Retrait linéaire                         | 80        |
| Figure4.18  | Deux échantillons pour l'essai du retrait                                           | 80        |
| Figure4.19  | Vue générale de l'équipement de l'essai Proctor.                                    | 83        |
| Figure4.20  | les Courbe de l'essai Proctor normal et modifié                                     | 85        |
| Figure4.21  | 21 Distribution granulométrique du sol naturel et le fuseau recommandé pour le BTC. | 86        |
| Figure4.22  | Limites d'Atterberg du sol naturel et le fuseau recommandé pour                     | 86        |
| 9           | BTC                                                                                 |           |
| Figure 4.23 | Essais de compactage (OPN et OPM) du sol naturel (SN) et la                         | 87        |
|             | zone recommandée pour les BTC.                                                      |           |
| Figure4.24  | Caséine en poudre                                                                   | 88        |
| Figure 4.25 | Mélange sol-liant à sec,                                                            | 89        |
| Figure4.26  | Mélange dans des sacs en plastique                                                  | 89        |
| Figure4.27  | Machine de compactage UNIFRAME                                                      | 90        |
| Figure4.28  | Eprouvettes compactées statiquement                                                 | 91        |
| Figure4.29  | (a) la trousse coupante, (b) Echantillon après extraction, (c) Fil métallique.      | 91        |
| Figure 4.30 | Eprouvettes du sol traité scellées dans un papier film                              | 91        |
| Figure 4.31 | Eléments principaux de l'appareil de triaxial                                       | 93        |
| Figure 4.32 | Appareil triaxial du laboratoire (LGCH) Guelma                                      | 93        |
| Figure 4.33 | Etapes de déroulement de l'essai triaxial                                           | 96        |
| Figure 4.34 | Relation déviateur-déplacement vertical du sol témoins.                             | 96        |
| Figure 4.35 | Détermination des paramètres de cisaillement de l'échantillon                       | 97        |
|             | témoin.                                                                             |           |
| Figure4.36  | Relation déviateur-déplacement vertical du 99% sol traite par 1%                    | 97        |
|             | Caséine à 7jours.                                                                   |           |
| Figure4.37  | Détermination des paramètres de cisaillement du 99% sol traite par 1%               | 98        |
|             | Caséine à 7jours.                                                                   |           |
|             |                                                                                     |           |

| Figure4.38  | Relation déviateur-déplacement vertical du 99% sol traite par 1% Caséine à 14 jours.                             | 98  |
|-------------|------------------------------------------------------------------------------------------------------------------|-----|
| Figure4.39  | Détermination des paramètres de cisaillement du 99% sol traite par 1% Caséine à 14jours.                         | 99  |
| Figure4.40  | Relation déviateur-déplacement vertical du 98% sol traite par 2% Caséine à 7 jours.                              | 99  |
| Figure4.41  | Détermination des paramètres de cisaillement du 98% sol traite par 2% Caséine à 7jours.                          | 100 |
| Figure4.42  | Relation déviateur-déplacement vertical du 98% sol traite par 2% Caséine à 14 jours.                             | 100 |
| Figure4.43  | Détermination des paramètres de cisaillement du 98% sol traite par 2% Caséine à 14 jours.                        | 101 |
| Figure4.44  | Histogramme des résultats finaux des essais triaxiaux traités par différents dosages de Caséine.                 | 102 |
| Figure 4.45 | Diverses procédures de l'essai de compression simple                                                             | 105 |
| Figure4.46  | Histogramme des résultats finaux de la résistance à la compression simple                                        | 106 |
| Figure4.47  | Courbes des effets du dosage et le temps sur la résistance moyenne à la compression simple.                      | 106 |
| Figure4.48  | Courbes des interactions de la résistance moyenne à la compression en fonction de temps pour différents dosages. | 107 |

### LISTE DES TABLEAUX

### Liste Des Tableaux

|             | CHAPITRE I                                                                         | Page      |
|-------------|------------------------------------------------------------------------------------|-----------|
| Tableau1.1  | Classification des principaux groupes de minéraux argileux et de                   | 9         |
|             | leurs espèces.                                                                     |           |
| Tableau1.2  | Synthétise et compare les caractéristiques de ces trois argiles                    | 11        |
| Tableau1.3  | Surface spécifique et C.E.C de quelques minéraux argileux                          | 15        |
|             | CHAPITRE II                                                                        |           |
| Tableau2.1  | Programme de construction en Terre, en Algérie depuis 1970,                        | 18        |
| Tableau2.2  | Classification granulométrique des sols selon ASTM D2487 [                         | 27        |
| Tableau2.3  | Synthèse bibliographique sur les briques en terre crue stabilisées au              | 31        |
|             | ciment.                                                                            |           |
| Tableau2.4  | Synthèse bibliographique sur les briques en terre crue stabilisées à               | 31        |
|             | la chaux                                                                           |           |
| Tableau2.5  | Synthèse bibliographique sur les briques en terre crue stabilisées                 | 32        |
|             | avec des liants minéraux alternatifs.                                              |           |
| Tableau2.6  | Synthèse bibliographique sur les briques en terre crue stabilisées                 | 33        |
|             | avec des liants organiques                                                         |           |
|             | CHAPITRE III                                                                       |           |
| Tableau3.1  | Différents types de ciments courants.                                              | 38        |
| Tableau3.2  | Caséine couramment utilisés en géotechnique.                                       | 64        |
|             | CHAPITRE IV                                                                        |           |
| Tableau4.1  | Données des essais d'analyse granulométrique et la                                 | 72        |
|             | sédimentométrie                                                                    |           |
| Tableau4.2  | Tableau récapitulatif de l'essai VBS                                               | 74        |
| Tableau4.3  | Classification du sol étudié                                                       | 75        |
| Tableau4.4  | Résultats de la limite de liquidité                                                | 77        |
| Tableau4.5  | Résultats de la limite de plasticité                                               | 78        |
| Tableau4.6  | Etat du sol en fonction de l'indice de plasticité                                  | <b>78</b> |
| Tableau4.7  | Limites d'Atterberg de certaines argiles d'après (Monaco A. et CHASSEFIERE B.1976) | 79        |
| Tableau4.8  | Résultat de l'essai du retrait                                                     | 81        |
| Tableau4.9  | Classification des sols fins selon GTR                                             | 81        |
| Tableau4.10 | Tableau synoptique de classification des matériaux selon leur                      | 82        |
|             | nature                                                                             |           |
| Tableau4.11 | Tableau de classification AASHTO                                                   | 83        |
| Tableau4.12 | Résultats de l'essai Proctor Normal                                                | 84        |
| Tableau4.13 | Résultats de l'essai Proctor modifié                                               | 84        |
| Tableau4.14 | La teneur en eau optimale et la masse volumique sèche maximale                     | 86        |
|             | pour chaque essai                                                                  |           |
| Tableau4.15 | Teneurs en eaux initiales et les poids volumiques secs maximales                   | 87        |
|             | des BTC                                                                            |           |
| Tableau4.16 | Quantités de chaque composant des mélanges sol - liant                             | 90        |
| Tableau4.17 | Résultats finaux des essais triaxiaux traités par différents dosages               | 101       |
|             | de Caséine                                                                         |           |
| Tableau4.18 | Quantités de chaque composant des mélanges sol - liant                             | 105       |
| Tableau4.19 | Résultats finaux de la résistance à la compression simple                          | 105       |

### Notations et Symboles

USDA: United States Department of Agriculture.

C.E.C: Capacité d'Echange Cationique

CAP: Centre Algérien du Patrimoine.

**BTC:** Brique de Terre Compressée

**ASTM:** American Society for Testing and Materials

GTS: Guide Du Traitement De Sol

**LHR**: Liant Hydraulique Routier

**GTR**: Guide De Terrassement Routier

**VBS**: Valeur de Bleu de Méthylène.

**OPN:** Optimum Proctor Normal

**OPM**: Optimum Proctor Modifié

CU: Essais triaxial consolidés-non drainés.

UU: Essais triaxial non consolidés-non drainés.

CD: Essais triaxial consolidés-drainés.

VBS: Valeur de Bleu de Méthylène.

I<sub>P</sub>: Indice de plasticité.

L<sub>P</sub>: Limite de plasticité.

L<sub>L</sub>: Limite de liquidité.

**Wopt**: La teneur en eau optimum.

 $\Phi'$ : Angle de frottement interne

C: Cohésion.

**ρd:** Masse volumique sèche

**ρh:** Masse volumique humide.

 $\sigma$ 3: Contrainte principale mineure.

**σ1:** Contrainte principale majeure.

Rc: résistance à la compression simple

### Introduction Générale

### Introduction générale

La croissance démographique dans les zones urbaines s'accompagne d'une forte demande de logements. D'un de vue économique, cela a été une aubaine pour les professionnels de la construction dont le chiffre d'affaires a augmenté au fil des années. En Algérie, le secteur du bâtiment a connu des problèmes, afin de fournir le nombre requis pour couvrir les besoins nécessaires. Ce besoin de la construction rapide est lié à la consommation des matériaux courants comme l'acier et le béton. La capacité de durcissement en un temps record, les résistances mécaniques élevées, la flexibilité d'un point de vue architectural ainsi que son excellente durabilité ont fait du béton un matériau de référence de la construction. Glavind et al., 2009 ont estimé qu'avec près de 10 milliards de tonnes chaque année, le béton est le matériau le plus utilisé dans le monde. Cette importante consommation de béton s'accompagne d'une forte demande en ciment qui en est le constituant essentiel. Pacheco-Torgal et al., 2011 ont estimé la consommation mondiale en ciment à près de 6 milliards de tonnes dont environ 50% reviennent aux pays en voie de développement et notent une baisse de la demande dans les pays développés par apport aux pays en voie de développement. Ceci traduit le fait que, dans les prochaines décennies, les pays en voie de développement feront face à un défi croissant en matière de construction notamment de logements à cause de leur croissance démographique et les auteurs ont envisagé le béton comme le principal matériau qu'utiliseront ces pays pour répondre à ce défi.

Or, la prise de conscience des conséquences de l'activité humaine sur le réchauffement climatique conduit à remettre en question le modèle de croissance de l'ensemble de l'industrie, y compris la construction. En fait, Taylor et al., 2006 ont rapporté que la part de la production du ciment dans les émissions mondiales de CO<sub>2</sub> a été estimée à 9-10 %, ce qui représenterait 74-81 % des émissions de CO<sub>2</sub> du béton (Pacheco-Torgal et al., 2011). A cela s'ajoute désormais une consommation importante de certains composants de base du béton, en l'occurrence le sable dit constructible. Tout cela conduit aux limites du modèle de construction popularisé jusqu'à présent : tout construire en béton de ciment.

En raison de ce contexte, l'accent a été renouvelé sur le développement de matériaux de construction alternatifs qui respectent l'environnement et surtout s'adaptent aux typologies de

### INTRODUCTION GENERALE

construction et sont disponibles localement. La terre crue s'impose alors comme un candidat sérieux. Un coup d'œil sur le patrimoine construit en terre vierge montre qu'il a une histoire et une culture riches qui peuvent inspirer l'architecture moderne.

La reconsidération de ce matériau de construction, après près d'un siècle d'abandon dans les pays développés au profit des matériaux cimentaires, ont ses avantages écologiques et socio-économiques ainsi que ses propriétés hygroscopiques. Minke et al., 2009; Houben et al., 2006; Morton et al., 2008 détaillent toutes ces qualités de la terre crue. Cette construction s'agit d'un mélange de base de terre plus ou moins argileuse avec de l'eau et séchée au soleil. L'agglomération des blocs et leur résistance est due à la cohésion de la fraction argileuse qui joue le rôle de liant naturel. Plusieurs modes de fabrication ont été développés au fil des âges : l'adobe, le pisé, la bauge, le torchis et plus récemment les briques de terre comprimée (BTC) ou extrudée, et la terre coulée (béton de terre). Enfin, une des qualités les plus promues de la terre crue, est sa capacité hygroscopique. En effet, son aptitude à absorber et rejeter l'humidité de l'air intérieur au gré des fluctuations du microclimat du bâtiment garantit un confort intérieur passif qui permettrait d'économiser de l'énergie.

En dépit de tous ses avantages, le matériau en terre crue doit surpasser l'obstacle d'une règlementation limitée, de résistances mécaniques et d'une tenue à l'eau faibles vis-à-vis des matériaux cimentaires pour passer le cap de l'industrialisation (Morton et al., 2008). Sur le plan des résistances mécaniques, bien qu'elles soient de loin inférieures au béton, la stabilisation n'est pas absolument nécessaire pour que les choix architecturaux s'adaptent aux limites du matériau. Certaines pratiques traditionnelles, notamment dans les pays en voie de dévelopement, et quelques récentes études scientifiques ont montré que l'utilisation de liants organiques d'origine naturelle pouvait être une alternative plus prometteuse du point de vue environnemental aux liants minéraux. Ces produits organiques présentent une très grande diversité et donc un potentiel important d'étude scientifique à l'image de la variété de pratiques selon l'endroit du globe.

L'objectif de notre travail est de proposer une méthode de stabilisation de la terre crue à faible impact environnemental et économique utilisant un matériau de terre locale (le gisement d'argile de BenDjerrah et un liant bio-sourcé et renouvelable (la caséine). Ce travail est mené dans le cadre du projet de fin d'étude de Master au sein du département de Génie Civil et d'Hydraulique de l'université 8 Mai 1945 Guelma.

### INTRODUCTION GENERALE

Le mémoire est scindé en quatre chapitres.

Dans le chapitre 1, des généralités sur les sols argileux sont présentées en Détails.

Le chapitre 2 dédié à la présentation de l'état de l'art sur la construction en terre crue sur toute la technique de la brique en terre compressée BTC, ainsi que les fuseaux recommandés pour la construction en BTC.

Le chapitre 3 expose les différents liants utilisés dans la stabilisation des sols, avec les liants classiques le ciment et la chaux, les fibres artificiels et organiques, des liants bio-sources.

A la fin de ce chapitre, une partie bibliographique tentera d'expliquer les mécanismes qui ont lieu dans les mélanges sols et liants ( la caséine) qu'on va utiliser dans notre étude.

Le dernier chapitre est consacré à la présentation des résultats des essais d'identification du sol utilisé (argile de Bendjerrah) et la vérification vis-à-vis des nomes de BTC recommandées. Enfin, nous nous intéresserons aux résultats des essais Proctor sur les terres stabilisées que nous utiliserons pour formuler les éprouvettes en BTC stabilisées pour étudier les paramètres mécaniques de ce matériau. La discussion des résultats portera sur les effets d'un certain nombre de paramètres : la durée de cure humide ainsi que la quantité (0, 1, 2 et 4%) de liants utilisés.

Enfin, ce manuscrit de thèse se terminera par une conclusion générale de nos travaux et une présentation de nombreuses perspectives possibles.

## CHAPITRE I: GÉNÉRALITÉS SUR LES SOLS ARGILEUX

### Chapitre I : Généralités Sur Les Sols Argileux

### I.1 Introduction

Dans ce chapitre, nous parlerons d'un type de sol fin appelé sol argileux avec ses différents types. Les sols sont des matériaux hétérogènes aux propriétés très variables. Les développements de la mécanique des sols, et la recherche en techniques géotechniques, ont permis de mieux connaître les sols par des essais de caractérisation afin de développer des techniques d'amélioration des sols à faibles propriétés mécaniques.

### I.2 Définition des sols fins

Les sols fins où les éléments fins sont divisés en deux groupes, argile et limon. Les particules d'un diamètre de 75  $\mu$ m à 2  $\mu$ m sont appelées limon et les particules à inférieur de 2  $\mu$ m de diamètre sont appelées argiles. [1]

### 2.1 Quelques caractéristiques des sols fins

- Les sols fins sont identifiés sur la base de leur plasticité. Les particules individuelles ne sont pas visibles à l'œil nu.
- La description des sols fins est effectuée sur la base de leur résistance à sec, de leur dilatance, de leur dispersion et de leur plasticité.
- Les sols fins présentent une faible capacité portante.
- •Les sols fins sont pratiquement imperméables par nature en raison de la petite taille de leurs particules.
- Le changement de volume se produit avec le changement de teneur en eau.
- La résistance change avec le changement de la condition d'humidité.
- Le sol fin est susceptible au gel.
- Les propriétés techniques sont contrôlées par des facteurs minéralogiques. [1]

### I.3 Argiles

En général le terme argile s'applique à tous les matériaux dont la fraction granulométrique prédominante (taille des particules) est inférieure à 2µ. Elle est une roche sédimentaire composée pour une large part de minéraux argileux et couleurs (**Figure 1.1**), en général des silicates d'aluminium plus ou moins hydratés présentant une structure feuilletée expliquant leur plasticité, ou fibreuse expliquant leurs qualités d'absorption. [2]



Figure 1.1 Différentes couleurs d'argiles. [26]

### 3.1 Granulométrie des particules

L'argile possède la plus petite taille de particules de tous les types de sol, les particules individuelles étant si petites qu'elles ne peuvent être visualisées qu'au microscope électronique. Cela permet à une grande quantité de particules d'argile d'exister dans un espace relativement petit, sans les espaces qui seraient normalement présents entre les plus grosses particules de sol. Cette caractéristique joue un rôle important dans la texture (figure 1.2) lisse de l'argile, car les particules individuelles sont trop petites pour créer une surface rugueuse dans l'argile. [1]

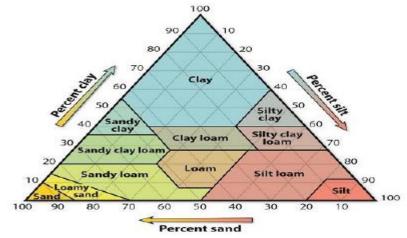



Figure 1.2 Triangle de texture. (USDA).

### 3.2 Structure physique des argiles.

Les particules d'argile qui constituent la base des sols argileux ont des propriétés très différentes de celles des particules des sols grenus. Chaque particule d'argile est normalement entourée de couches de molécules d'eau plus ou moins liée, aux propriétés différentes de celles de l'eau libre. On admet généralement que le contacte de deux particules d'argile peut être de type « solide-solide », de type « air-solide », de type « eau-solide » ou « eau-eau », ou être contrôle par des forces de répulsion ou d'attraction électrique. Mais toutes ces représentations des contacts de particules de dimensions inferieures au micromètre sont encore un peu hypothétiques et les recherches se poursuivent pour mieux les caractériser. Nous retiendrons que la pesanteur joue un rôle secondaire dans l'arrangement des particules d'argile et que les forces dominantes sont les forces d'attraction et de répulsion électrique, qui conditionnent le volume occupé par une masse donnée de particules d'argile. Des expériences de laboratoire ont montré que la floculation des particules d'argile (qui leurs fait occuper un plus grand volume) est favorisée par l'augmentation de la concentration en électrolyte (par

exemple le chlorure de calcium), de la valence des ions et le PH. Ces comportements élémentaires expliquent par exemple pourquoi les argiles déposées dans l'eau de mer sont différentes des argiles déposées en eau douce ou dans des lagunes. Les résultats finals des interactions physico-chimiques des particules lors de la sédimentation des argiles est qu'il existe des structures plus ou moins lâches, dont la représentation traditionnelle est donnée sur la figure 1.3 : une structure floculée « en nid d'abeilles » ou les particules forment des sortes de chaines fermées, une structure floculée « en château de cartes » ou les particules s'appuient les unes sur les autres et une structure dispersée ou les particules sont empilées « structure en paquet de cartes ». [5]

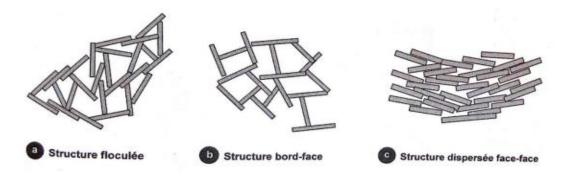



Figure 1.3 Trois structures types des sédiments argileux. [5]

Dans le cas fréquent des sols comportant à la fois des particules grossières et des particules argileuses, les structures observées sont des combinaisons des précédentes, suivant les conditions physico -chimiques de la sédimentation. On pourra par exemple trouver des structures lâches (Figure 1.4.a) ou des structures plus denses (Figure 1.4.b). [5]

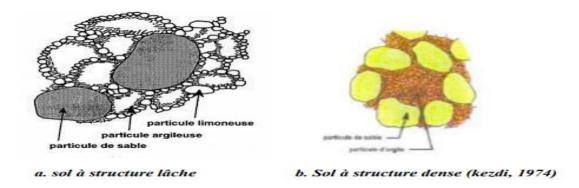



Figure 1.4 Structure des sols constituent de particules grossières et de particules fines [5]

### 3.3. Structure élémentaire des minéraux argileux

Minéraux argileux sont composés par l'assemblage, d'eau (H<sub>2</sub>O), de silice, sous forme de silicates (SiO<sub>3</sub>) et d'aluminium, sous forme d'alumine (Al<sub>2</sub>O<sub>3</sub>). Leur structure élémentaire, appelée feuillet, est constituée d'un arrangement de deux cristaux de base : silicates et alumines. Chaque minéral argileux est composé d'un empilement de feuillets. Ce dernier a un nombre variable de couches pouvant être regroupées en deux types :

Tétraèdre de silice SiO<sub>4</sub>: Quatre atomes d'oxygène disposés au sommet d'un tétraèdre régulier enserrent un atome de silicium. Les tétraèdres se combinent entre eux pour former des couches planes dites couches tétraédriques (Figure 1.5).

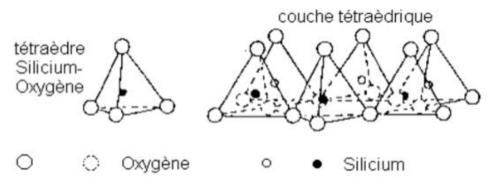



Figure 1.5 Structure Elémentaire Tétraédrique. [4]

➤ Octaèdre d'alumine Al<sub>2</sub>(OH) 6 ou de magnésium Mg<sub>3</sub>(OH) 6 : Six ions hydroxydes enserrent un atome d'aluminium ou de magnésium. Les octaèdres se combinent également pour former des couches planes dites couches octaédriques (Figure 1.6). [4]

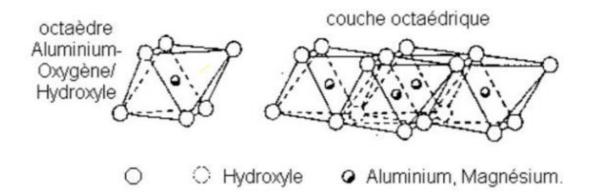



Figure 1.6 Structure élémentaire Octaédrique. [4]

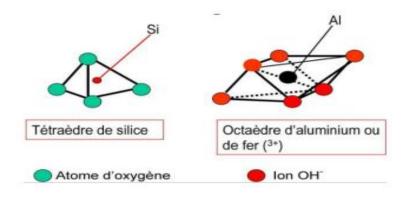



Figure 1.7 Présentation des tétraèdres et octaèdre. [4]

### I.4 Classification des argiles

Les différents groupes de minéraux argileux se différencient par l'arrangement des couches tétraédriques et octaédriques. On distingue 4 groupes : [8]

### **4.1 Minéraux à 7 Å :** (Kaolinite, Halloysite, Dombasite, ....)

Le feuillet est constitué d'une couche tétraédrique et d'une couche octaédrique. Il est qualifié de T : O ou de type 1:1.

### **4.2 Minéraux à 10 Å :** (Pyrophyllite, Illite, Montmorillonite, Saponite,...).

Le feuillet est constitué de deux couches tétraédriques et d'une couche octaédrique. Il est qualifié de T : O : T ou de type 2 : 1.

### 4.3 Minéraux à 14 Å: (chlorites)

Le feuillet est constitué de l'alternance de feuillets T : O : T et de couches octaédriques inter foliaires.

### 4.4 Minéraux inter stratifiés :

L'épaisseur du feuillet est variable. Ces minéraux résultent du mélange régulier ou irrégulier d'argiles appartenant aux groupes ci-dessus.

Les principaux groupes de minéraux argileux sont classés dans le tableau I.1.

**Tableau1.1** Classification des principaux groupes de minéraux argileux et de leurs espèces. [8]

| Groupe de                        | Espèce                                        | Structure                       |  |
|----------------------------------|-----------------------------------------------|---------------------------------|--|
| Minéraux                         | Minérale                                      | T= couche de tétraèdre          |  |
| Argileux                         |                                               | O= couche d'octaèdre            |  |
| Kaolinites                       | Kaolinite<br>Halloysite<br>Dickite            | Minéraux à 2 couches<br>T-O T-O |  |
| Smectites                        | Montmorillonite                               | Minéraux à 3 couches            |  |
|                                  | Saponite<br>Beidellite<br>Nontronite          | T-O-T T-O-T                     |  |
| Illites<br>Vermiculites<br>Micas | Illite<br>Vermiculite<br>Muscovite<br>Biotite | H <sub>2</sub> O, cations       |  |
| Chlorites                        | Chlorite                                      | Minéraux à 4 couches            |  |
|                                  |                                               | T-O-T-O T-O-T-O                 |  |
| Sépiolites<br>Palygorskites      | Sépiolite<br>(écume de mer)<br>Attapulgite    | Minéraux en lattes T-O-T T-O-T  |  |

### I.5 Types d'argile

Les types d'argiles les plus fréquents sont :

### 5.1 Kaolinite

La kaolinite est constituée d'une succession alternée de feuillets en tétraèdre (silice) et de feuillets en octaèdre (aluminium ou gibbsite). Les deux feuillets sont liés de telle manière que les sommets du feuillet de silice et ceux d'une des couches du feuillet en octaèdre ne forment qu'une seule et même couche.[4]

Formule structurale: Al<sub>2</sub>O<sub>3</sub>, 2SiO<sub>2</sub>, 2H<sub>2</sub>O (Figure 1.8).

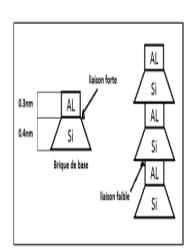





Figure. 1.8 Structure de la kaolinite [4,6]

### 5.2 Montmorillonite

La montmorillonite, parfois appelée Smaltite, est un minéral argileux important composé de deux feuillets de Silice et d'un feuillet d'Alumine (Gibbsite). Les feuillets en octaèdres se trouvent entre deux feuillets de Silice et les sommets des tétraèdres se confondent avec les hydroxyles du feuillet en octaèdre pour ne former qu'une seule couche. Les sols qui contiennent de la montmorillonite peuvent être gonflants lorsque leur teneur en eau augmente, les pressions de gonflements qui en résultent peuvent provoquer la dissociation complète des feuillets ce qui va causer des dommages aux structures légères et pavages (Figure 1.9). [4]

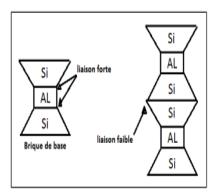



Figure 1.9 Structure de la Montmorillonite. [Lambel 1953]

### 5.3 Illite

L'illite est une autre composante importante des sols argileux, elle a une structure analogue à la montmorillonite mais il ya des ions de potassium intercalés entre les feuillets tétraédriques. Grâce à ces ions la liaison est relativement forte et les molécules d'eau ne peuvent pratiquement plus s'intercaler. Aux extrémités de la particule d'argile, il y a également des déséquilibres électriques et adsorption de cations. Ces cations dits échangeables jouent un rôle important dans le comportement des argiles et Formule structurale: (K, H<sub>3</sub>O) Al<sub>2</sub>(Si<sub>3</sub>A<sub>1</sub>) O<sub>10</sub> (H<sub>2</sub>O, OH)<sub>2</sub> (Figure 1.10). [4]

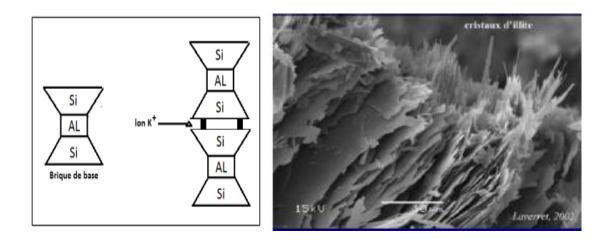



Figure 1.10 Structure de l'illite. [Lambel 1953] [6]

| Type d'argile           | Feuillets    | Nombre de<br>feuillets par | Dimensions d'une particule |                    |
|-------------------------|--------------|----------------------------|----------------------------|--------------------|
| Lype ii iii giie        | Elémentaires | particule                  | largueur<br>en jum         | épaisseur<br>en µm |
| Kaotinite               | 盘            | 100-150                    | 1                          | 0,1                |
| Illite                  |              | 10                         | 0,3                        | 0,01               |
| Montmorillonite<br>(Na) | <b>#</b>     | 1                          | 0,1                        | 0,001              |

**Tableau1.2** Synthétise et compare les caractéristiques de ces trois argiles [7]

### **5.4 Bentonite**

La bentonite est une argile douée de propriétés de surface (caractère, affinité pour l'eau, capacité d'adsorption de composés électropositifs,...). Les caractéristiques physico-chimiques, les propriétés clarifiants de bentonites d'origines diverses firent l'objet de nombreuses études. En Algérie, les gisements de bentonite les plus importants économiquement se trouvent dans l'oranie (ouest algérien). On relève en particulier la carrière de Maghnia (Hammam Boughrara) dont les réserves sont estimées à un million de tonnes et de celle de Mostaganem (M'zila) avec des réserves de deux millions de tonnes. [7]

### 5.4.1 Origine de la bentonite

Les bentonites sont des argiles d'origine volcanique, constituées principalement de montmorillonite; l'altération et la transformation hydrothermale de cendres des tufs volcaniques riches en verre entraînent la néoformation des minéraux argileux, qui font partie principalement du groupe des smectites. Les roches argileuses ainsi formées portent le nom de bentonite, d'après le gisement situé près de Fort Benton (Wyoming, Etats-Unis). Elle contient plus de 75 % de montmorillonite ; cette dernière fut découverte pour la première fois en 1847 près de Montmorillon, dans le département de la Vienne (France). La bentonite est une dénomination de la montmorillonite. Les bentonites découvertes dés 1888 contiennent au moins 75% de montmorillonite. [7]

### **5.4.2** Structure et composition

Sous sa forme brute naturelle, la bentonite est une roche tendre ayant à peu prés la consistance du kaolin, c'est à dire friable, onctueuse au toucher, sa teinte est blanche, grise ou légèrement teinte de jaune. Elle provient de la dévitrification des couches volcaniques sous l'influence des eaux à réaction alcaline ou acide. En plus de la montmorillonite (Figure1.11), cette terre peut contenir d'autres minéraux argileux (kaolinite, illite,...) ainsi que des impuretés sous forme de gypses, de carbonates,...etc. [7]

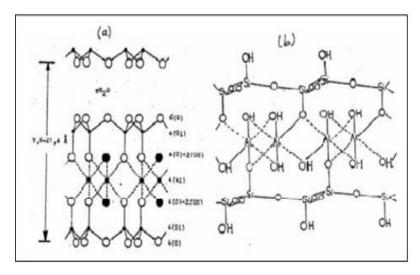



Figure 1.11 Structure de la montmorillonite. [7]

### 5.4.3 Types de la bentonite

- Bentonites naturelles
- Bentonites activées

### 5.4.4 Utilisation de la bentonite

La bentonite est l'argile industrielle la plus importante en raison de son principal composant de montmorillonite qui lui confère une capacité d'absorption et de gonflement très élevées qui sont exploités dans différents domaines :

- -Protection environnementale.
- Forage.
- Les céramiques.
- Les peintures.
- L'agroalimentaire.
- Décoloration des huiles.
- Raffinage du pétrole.
- Additif dans la fabrication du papier.
- Génie civil (additif dans le ciment).
- Traitement des eaux usées.
- La pharmacie et la cosmétique. [8]

### 5.5 Chlorites

Les chlorites sont des argiles de composition semblable à celle des smectites. L'espace inter foliaire contient une couche composée de magnésium (Mg<sub>2</sub><sup>+</sup>) et d'ions hydrogène (OH<sup>-</sup>). L'Aluminium (Al<sub>3</sub><sup>+</sup>) est remplacé localement par le fer (Fe<sub>2</sub><sup>+</sup>), la liaison inter foliaire est, de ce fait, affaiblie, ce qui permet une infiltration d'eau (Figure1.11). Les chlorites existent parfois dans les roches magmatiques. Elles sont également rencontrées dans les roches sédimentaires. Les argiles contenant un pourcentage de chlorite supérieur à 15% peuvent être sujettes de gonflement. [5]

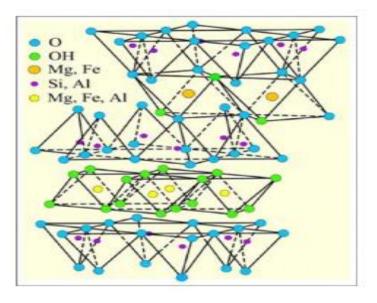



Figure 1.12 Feuillet de la Chlorite. [5]

### **5.6 Smectites**

Sa structure est similaire à celle des illites, sauf que l'empilement des feuillets élémentaires est composé de feuillets renversés. L'empilement met en contact deux couches d'oxygène appartenant au tétraèdre de silice, rendant ainsi la liaison inter foliaire faible. La distance inter foliaire est à l'origine, de 14A°. Elle peut s'élargir pour atteindre 18A°. Les liaisons entre les feuillets sont moins fortes que celles des kaolinites et des illites. La structure minéralogique des smectites offre de grands espaces inter foliaires. De ce faite, l'inclusion de molécules d'eau ou de matières organiques et cations est favorisée (figure 1.13). Le potentiel de gonflement de ce type d'argile est, par conséquent, élevé. [5]

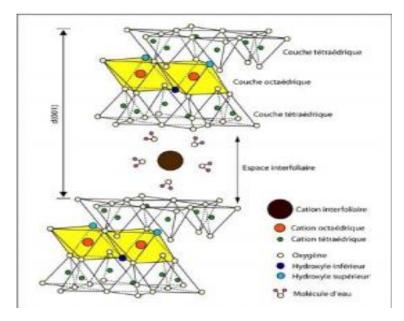



Figure 1.13 Feuillet de la Smectites. [5]

### I.6 Propriétés des argiles

Les propriétés bien particulières des minéraux argileux sont dues à la petite taille, la structure en feuillets et la charge négative des particules. Elles forment avec l'eau des solutions colloïdales qui floculent lorsque les charges de surfaces des particules sont neutralisées par des ions. Ce phénomène est réversible : les particules retrouvent l'état dispersé lorsque les ions sont éliminés par rinçage. Les argiles fixent l'eau par adsorption à leur surface et augmentent de volume par gonflement. Elles constituent ainsi une réserve d'eau. L'argile sèche développe une tension de succion importante pour l'eau qui peut s'opposer à celle des racines des plantes. Avec adjonction croissante d'eau, la tension de succion diminue, l'ensemble eau- argile devient plastique, puis visqueux et finalement les particules d'argiles se dispersent dans l'eau en formant une solution colloïdale. L'argile imprégnée d'eau qui se dessèche se rétracte et se casse par des fentes de retrait (Figure 1.14). [7]



Figure 1.14 Effet de rétrécissement du sol [1]

Tableau1.3 Surface spécifique et C.E.C de quelques minéraux argileux [Morel, 1996].

| Minéral     | Surface interne                    | Surface externe                    | Surface totale | C.E.C        |
|-------------|------------------------------------|------------------------------------|----------------|--------------|
|             | (m <sup>2</sup> .g <sup>-1</sup> ) | (m <sup>2</sup> .g <sup>-1</sup> ) | $(m^2.g^{-1})$ | (m éq /100g) |
| Kaolinite   | 0                                  | 10-30                              | 10-30          | 5-15         |
| Illite      | 20-55                              | 80-120                             | 100-175        | 10-40        |
| Smectites   | 600-700                            | 80                                 | 700-800        | 80-150       |
| Vermiculite | 700                                | 40-70                              | 760            | 100-150      |
| Chlorite    | -                                  | 100-175                            | 100-175        | 10-40        |

### I.7Conclusion

A travers ce chapitre, nous avons passé en revue une recherche bibliographique sur les différents types de sols argileux, leur type et leur structure, et leurs caractéristiques les plus importantes, ainsi que sur l'un de ses types, qui est la bentonite.

# CHAPITRE II: CONSTRUCTION EN TERRE CRUE

#### Chapitre II: Construction En Terre Crue

#### **II.1 Introduction**

La terre est un matériau disponible en quantité offrant une très large gamme de possibilités pour la construction des bâtiments. Les techniques de construction en terre ont évolué à travers l'histoire de l'humanité et les techniques les plus importantes sont le torchis, le pisé, l'adobe et la bauge. Dans le présent chapitre, on présente ces techniques et leur mode de mise en œuvre ainsi que les critères de choix des matériaux destinés à la construction en terre.

On mettra l'accent sur la brique de terre compressée sans oublier les aspects essentiels du comportement de la BTC.

# II.2 Rappel historique

La terre, utilisée depuis plus de onze millénaires, est sans aucun doute un des matériaux de construction les plus anciens de l'histoire de l'humanité. En effet, les fouilles archéologiques ont montré que les civilisations perses, assyriennes, égyptiennes et babyloniennes édifiaient déjà de nombreux bâtiments à l'aide de ce matériau. Certains étaient même monumentaux tout comme l'arche de Ctésiphon en Irak (Figure 2.1a), certaines pyramides en Égypte (pyramide d'El-LAHOUN (Figure 2.1b) par exemple), la ziggourat d'ETEMENANKI à Babylone (Figure 2.1c), la cité précolombienne de CHAN-CHAN au Pérou (Figure 2.1d) et encore bien d'autres. Les sites archéologiques en terre crue sont donc présents sur tous les continents habités. Cela est dû au fait que « la terre est l'un des trois matériaux premiers, au même titre que la pierre et le bois ». [10]



**Figure 2.1** (a) Arche de Ctésiphon ; (b) Pyramide d'El-LAHOUN ; (c) Ziggourat d'ETEMENANKI ; (d) Cité CHAN-CHAN.

#### 2.1 Mais quelle est la raison qui a mené ces civilisations à utiliser un tel matériau?

Elle est plutôt simple : en effet, il s'agissait de « construire avec ce que l'on a sous les pieds » [11].Si on prend l'exemple de la Grande Muraille de Chine, on peut voir que celle-ci s'adapte tout au long de son parcours à la nature du sol sur lequel elle est construite. Ainsi, on retrouve des parties construites en pierre sur la roche, en terre sur la terre et même parfois en sable dans certaines parties désertiques. En effet, vu l'ampleur des territoires traversés par cet édifice, celui-ci a été construit à l'aide des matériaux locaux afin de limiter le transport de la zone d'extraction à celle de chantier. Exploiter les matériaux locaux afin de bâtir son logement est un comportement universel. Et souvent, la terre est le seul matériau disponible. [12]

Les constructions en terre crue sont majoritairement présentes dans presque toute l'Afrique, le Moyen-Orient et l'Amérique Latine (Figure 2.2). On les retrouve également en Chine et en Inde dans les habitats vernaculaires. En Europe par contre, cette façon de construire a pratiquement disparu, mais les bâtiments en terre crue restent tout de même présents dans le paysage, comme un témoignage du passé. On les retrouve au Danemark, en Suède, en Allemagne, dans les Pays de l'Est, et également en Espagne, en France, en Grande-Bretagne et en Belgique [13]. L'Europe compte tout de même plusieurs millions de constructions en terre, mais il s'agit surtout de bâtiments anciens. Ceux-ci sont toujours habités mais nécessitent un entretien annuel relativement cher [14].

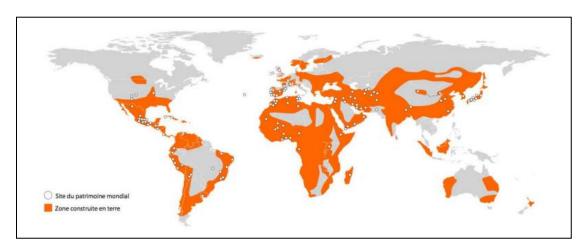



Figure 2.2 Architecture de terre dans le monde. [15]

Aujourd'hui, beaucoup de programmes ont été réalisés dans notre pays et notamment dans les années 70 [16], (tableau 2.1). Il y a aussi le CAP terre (centre Algérien du patrimoine culturel bâti en terre) qui est chargé de faire la promotion des architectures de terre en Algérie, il est installé à Timimoune (Adrar). Le centre est divisé en deux départements techniques, dont l'un s'occupera de la recherche sur les matériaux et les techniques de construction. [9]

**Tableau 2.1** Programme de construction en Terre, en Algérie depuis 1970, [16]

| Date      | Techniques                      | Nombre                      | lieu                     |
|-----------|---------------------------------|-----------------------------|--------------------------|
| 1969-1970 | Terre coulée                    | 02                          | Zéralda                  |
| 1971-1973 | Terre remplissante              | /                           | Abadla                   |
| 1972      | Pisé                            | 136                         | Batna                    |
| 1973-1975 | Pisé (R+2)                      | 30/300                      | Sdi Bel Abbes            |
| 1976      | Toub                            | 100                         | Felliache (Biskra)       |
| 1980      | Bloc de terre compressée        | 120                         | Madher (Boussaâda)       |
| 1981      | Bloc de terre compressée        | 40                          | Chéraga                  |
| 1984      | Bloc de terre compressée        | 20                          | Tamanrasset              |
| 1984      | Bloc de terre compressée 02     |                             | Tamanrasset et Souidania |
| 1986      | Bloc de terre compressée        | 10                          | Reggane (Adrar)          |
| 1993      | Bloc de terre compressée        | e compressée 68 Tamanrasset |                          |
| 1999      | Pisé 01 Souidania (Al           |                             | Souidania (Alger)        |
| 2007      | Bloc de terre compressée        | 01 Souidania (Alger)        |                          |
|           | (panneaux solaire, énergétique) |                             |                          |

## II.3 Diversité de la construction en terre crue

La terre crue est un matériau de construction composé d'un mélange de sol et d'eau, qui a été utilisé depuis l'antiquité sous diverses formes, (Adobes, pisé, bauge, torchis, blocs de terre comprimé). La technique de construction en terre offre des possibilités inimaginables tant d'un point de vue diversités d'application, que des traditions culturelles reproduites. La terre crue se prête à bien des manipulations permettant de l'utiliser en murs massifs monolithes (pisé, bauge), en pâtes garnissant un support de nature diverse (torchis, terre pailles), ou en blocs appareillés (BTC, Adobes). CRAterre a présenté douze techniques d'utilisation de terre pour la construction. Parmi celle-ci sept à huit sont d'un usage courant et constituent les techniques majeurs. (Figure 2.3). [9]

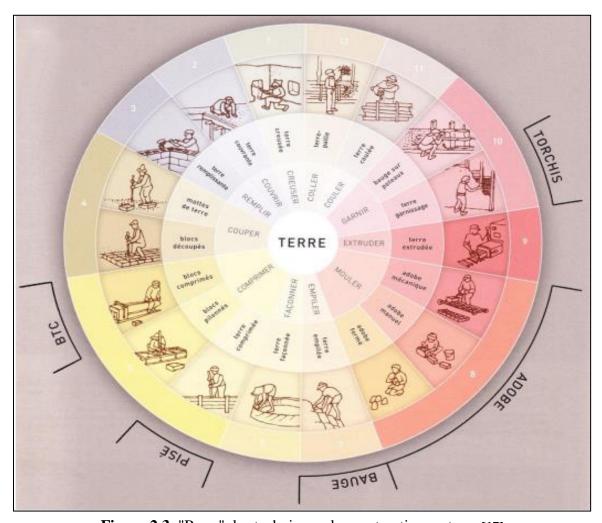



Figure 2.3 "Roue" des techniques de construction en terre [17]

# II.4 Les techniques de construction en terre crue 4.1 Technique du pisé

Le pisé est une technique de construction où les murs porteurs sont faits d'un matériau compacté dans un coffrage. Le pisé est traditionnellement réalisé avec de la terre argileuse, riche en sable et graviers. Après son extraction sur le site, la terre est débarrassée de ses plus gros cailloux, humidifiée, puis déposée en couches épaisses (15 à 20 cm) dans des coffrages (ou banches), traditionnellement en bois. Chaque couche de terre est ensuite compactée à la main avec un pilon en bois, le « passoir », et ramenée ainsi à moitié d'épaisseur (7 à 10 cm). Cette technique traditionnelle nécessite donc peu d'outillage mais demande beaucoup de main d'œuvre (Figure 2.4).

De nos jours, l'utilisation de moyens plus sophistiqués (compresseur pneumatique, malaxage et levage mécaniques, coffrages métalliques) permet de construire plus rapidement. [9]

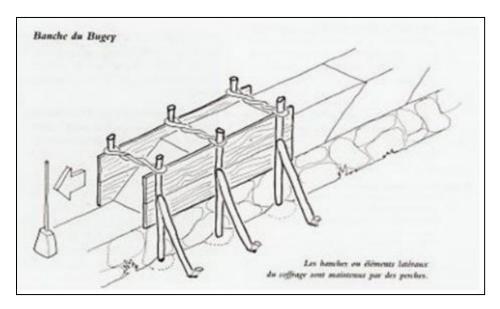



Figure 2.4 Le coffrage du pisé. [18]



Figure 2.5 Hôpital régional de Feldkirch, Vorarlberg, Autriche, 1993. [19]

#### 4.2 Technique de l'adobe

Les adobes sont des briques de terre crue moulées à l'état de pâte plastique ou façonnée à la main, sans compactage, amendée de fibres naturelles ou des sable et puis séchées à l'air libre pendant plusieurs semaines.

L'une des plus anciennes pratiques de l'architecture durable est l'hiéroglyphe égyptien. La construction en adobe est encore largement répandue en Amérique du Sud, en particulier au Pérou,

• L'adobe, par des moyens simple, fournit rapidement un logement. Elle est Synonyme d'une grande rapidité d'exécution, (figure 2.6).

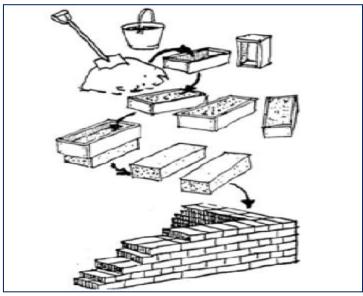



Figure 2.6 Schéma explicatif de préparation et construction des adobes. [19].

- Elle crée un bon niveau de confort de vie.
- Elle consiste à mélanger de la terre crue humide amendée par les pailles ou autres fibres façonnée manuellement à la main ou dans des moules parallélépipédiques.
- Les dimensions de blocs sont assimilées aux briques classiques ordinaires.
- L'adobe offre la possibilité de construire des arcs, voutes et des coupoles.
- Laconstructiondes adobes sont réalisées presque sans outils (extrêmement économiques), (figure 2.6).
- Faible coût dans la production, avec la possibilité de créer une masse production. (figure 2.7). [9]



Figure 2.7 Stockage massif d'adobes, Villa Janna, Marrakech, Maroc, [19]

#### 4.3 Technique du Torchis

Le mot torchis vient de « torche », qui désignait des fibres nouées en torsades et destinées à allumer les fagots de bois, où, la paille servait comme matériau d'entretien et d'hygiène. Par définition : Le torchis est un matériau de remplissage non-porteur (le principe du colombage), à l'inverse de la bauge et du pisé utilisés en murs monolithes, son matériau à base de terre argileuse et de paille ou d'autres fibres. Il est utilisé pour les murs, les cloisons et les plafonds dans les constructions à ossatures en bois, avec une épaisseur minime entre (6 à 30 cm), (figure 2.8).

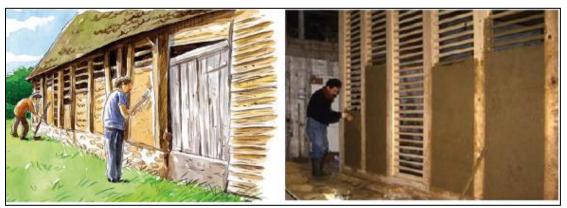



Figure 2.8 Technique de la construction en terre : Torchis. [9]

- La technique consiste à réaliser une structure porteuse en bois garnie de terre à l'état plastique, le plus souvent mélangée à la paille.
- La terre recouvre une structure en lattis de bois fixée entre des poteaux, appelés colombes, la structure en bois est en général extrêmement légère et rapide à monter (figure 2.9).
- Le torchis, matériau souple, d'une bonne résistance mécanique et bonne durabilité tant utilisé à l'extérieur qu'à l'intérieur des bâtiments.
- Le torchis peut être utilise pour garnir l'entre-solive des plafonds, constituer les sols des greniers et pour édifier aussi les cheminées et leurs conduites. [9]



Figure 2.9 Construction d'une maison en colombage et torchis près de Rouen, France. [9]

#### 4.4 Technique de la bauge

La construction en bauge consiste à empiler des boules de terres grossières malléables mélangées à des fibres naturelles, les unes sur les autres et entassées légèrement à l'aide des mains ou des pieds jusqu'à confectionner des murs monolithiques. Les surfaces verticales sont dressées par découpe après un court temps de séchage, alors que le matériau n'est pas trop dur.

- En Afghanistan, des habitats ruraux fortifiés construits en bauge (boules entassées en levées de terre ensuite réglées).
- En France, la construction rurale consiste à empiler à la fourche des paquets de terre plastiques qui ressemblent aux murs en pisé et généralement façonnée à la main, (Figure 2.10).
- Elle consiste à amender la terre avec des fibres de natures diverses et confectionner sous forme de boules comme de la pâte à modeler, qui sont empilées les unes sur les autres à l'aide des mains ou des pieds, (figure 2.11).
- La bauge est incorporée dans une structure en bois, dans des cas particuliers comme par exemple les plafonds.
- Dans la plupart des régions du monde, la construction en bauge est entièrement façonnée à la main, à la manière de sculpture géante. [9]



Figure 2.10 Maison en bauge à Gevezé. [9]



Figure 2.11 Système de construction monolithique en terre crue empilée (bauge). [9]

# II.5 Brique de terre compressée (BTC)

Les BTC « sont des éléments de maçonnerie, de dimensions réduites et de caractéristiques régulières et contrôlées, obtenus par compression statique ou dynamique de terre à l'état humide suivie d'un démoulage immédiat. Les BTC sont constitués principalement de terre crue et doivent avoir leur cohésion à l'état humide et à l'état sec essentiellement à la fraction argileuse composant la terre; un additif peut être ajouté néanmoins à la terre pour améliorer ou développer des caractéristiques particulières des produits. Les caractéristiques finales des BTC dépendent de la qualité des matières premières (terre, additif) et de la qualité de l'exécution des différentes étapes de fabrication (préparation, malaxage, compression, cure) [20].

Ainsi, comme pour la technique du pisé, les briques de terre comprimée sont réalisées avec une terre sèche. Cette dernière est comprimée au moyen d'une presse puis est laissée à sécher durant plusieurs semaines. Après cela, les briques de terre crue peuvent être utilisées dans la construction au même titre que les briques d'adobe, les briques cuites ou encore les blocs de ciment [10].

Aujourd'hui les bâtiments produits en BTC sont intégrés dans la ville et font désormais partie de son paysage physique et social, comme l'exemple de maison en BTC, d'Abidjan, Côte d' Ivoire, (figure 2.12).

La brique ou Bloc de terre crue compressée BTC : est la terre humide compressée dans des presses à une densité relativement élevée à l'intérieur d'un moule parallélépipédique avec les dimensions d'une brique standard. [9]



Figure 2.12 Maison en BTC, photos d'Abidjan, Côte d' Ivoire. [13]

- La BTC en terre crue répondra largement au besoin local comme le sud de l'Algérie (Adrar, Béchar, Tamanrasset et Ouargla, etc.).
- Le taux des précipitations dans ces régions est très faible (désert) qu'on n'aura pas besoin des Blocs de terre comprimé stabilisé, (figure 2.13).
- elle consiste à compressée la terre sous forme de bloc (ou brique) dans un moule à l'aide des presses dont il existe une grande variété.
- Presse Manuelle transportable appliquent des charges statiques comprises entre 1 à 2 MPa, elle a le rendement de 300 à 800 blocs par/jour, (figure 2.14. a).
- Presse mécanique qui applique des charges Statiques comprises entre 2 et 15 MPa. son rendement dépend la puissance de la presse, (figure 2.14. b).
- Les blocs obtenus sont immédiatement stockables contrairement aux adobes qui doivent sécher sur de vastes aires de production avant de pouvoir les utiliser.
- Les nouvelles formes des BTC peuvent améliorer les contacts inter blocs jusqu'au bloc parasismique. dispensée la nuit, et vice versa pour la fraîcheur emmagasinée la nuit et répandue le jour valent mieux qu'une climatisation. [9]

La fabrication du BTC est une formidable évolution dans le domaine de la construction et l'architecture de terre. Pour cela la valorisation des sédiments de dragage en brique de terre crue compressée doit satisfaire plusieurs critères. [9]



Figure 2.13 Construction en blocs de terre compressée stabilisés (BTC) à Bangalore, Inde. [9]

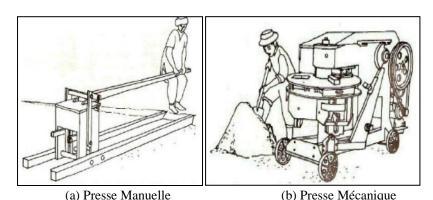



Figure 2.14 Schéma des presses manuelle et mécanique pour produire des BTC. [9]

# II.6 Normes, recommandations et Critères de choix des matériaux

#### **6.1 Normes et recommandations**

Les normes générales sur la construction en terre constituent une référence utile pour satisfaire aux exigences particulières du cadre réglementaire et de la culture de la construction, afin d'améliorer les propriétés des matériaux utilisés dans ces structures. Durant ces dernières années, plusieurs normes en matière de construction en terre ont été publiées en USA (New Mexico, NMAC 14.7.4 (2000) pour les adobes, BTC et pisé), France (XP P 13-901 (2001) pour les BTC), Nouvelle-Zélande (NZS 4297-1998a, 1998b, 1998c pour les adobes, BTC et pisé). Régional Africa -ARSO 1996 pour les BTC, et Zimbabwe SAZS 724-2001 pour les pisés, et Peru NTE E 080-2000 sur le comportement sismique dans la construction d'adobe. Ces normes permettent de créer un environnement favorisant l'acceptation des nouvelles constructions en terre. Pour que le matériau terre soit largement utilisé, il est nécessaire de disposer des recommandations et méthodes simples d'identification et de caractérisation des terres qui se référeront directement aux caractéristiques de résistance des matériaux structuraux, une fois les matériaux mélangés et séchés ou compactés.

• Il est nécessaire de connaître le matériau, ses caractéristiques, ses propriétés et ses performances.

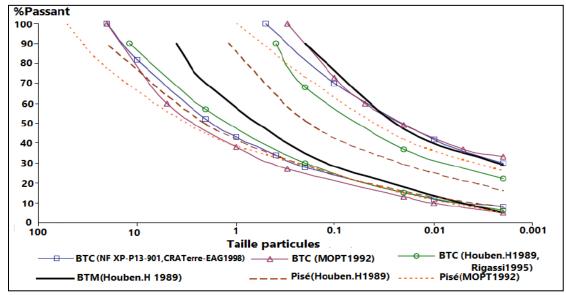
- Il est aussi nécessaire de connaître les particularités de la ou des techniques de construction employées (adobe, pisé, bloc comprimé, bauge, torchis, etc.), leur outillage adapté et leurs mode de mise en œuvre spécifiques.
- Nécessairement adopter des systèmes constructifs simples et compatibles avec les modes de travail du matériau : bonne résistance à la compression, faible résistance à la traction, flexion et cisaillement. [9]

#### 6.2 Choix des matériaux

La terre utilisée pour la fabrication de la BTC devrait être exemptée des matières organiques et doit aussi répondre à des exigences spécifiques, en termes de granulométrie, de propriétés plastiques, cohésion et densité sèche. De plus, la relation entre ces propriétés et le comportement hydromécanique macroscopique est mise en évidence. Bien qu'il existe une approche qualitative utilisée, des propriétés structurelles fiables telles que : La résistance à la compression, le module d'élasticité. L'effet de l'eau (séchage humidification, succion), la durabilité (érosion de surface), les résistances à la flexion et la traction. [9]

#### 6.2.1 Distribution granulométrique

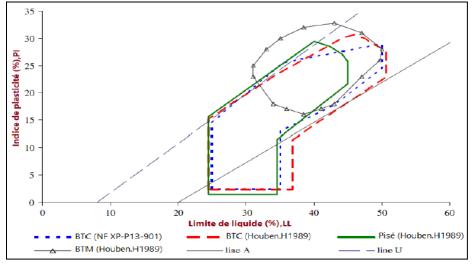
La distribution granulométrique est la première propriété à prendre en compte lors de l'évaluation de l'aptitude d'un matériau en terre pour la construction. La terre est un matériau granulaire dont la distribution granulométrie peut être particulièrement large. Il peut y avoir une différence de taille plus de 105 entre les granulats les plus grossiers et les particules les plus fines. La granulométrie contribue à définir la texture du sol par les techniques les plus courantes (Analyses granulométrique et sédimentométrie).


On distingue dans un premier temps les éléments grossiers de diamètre supérieur à 2mm comme graviers et cailloux et les autres classes granulométriques classiques de diamètre inférieur à 2mm, sont les sables, les limons et les argiles (Tableau 2.2). [9]

|        |               | Éléments          | grossiers  |                     |         |          |
|--------|---------------|-------------------|------------|---------------------|---------|----------|
| <2µ    | 2μ - 20μ      | 20μ - 50μ         | 50μ - 200μ | 200μ- 2mm           | 2mm-2cm | >2cm     |
| Argile | limons<br>fin | limon<br>grossier | sable fin  | sable gros-<br>sier | gravier | cailloux |

Tableau 2.2 Classification granulométrique des sols selon ASTM D2487 [19]

La distribution granulométrique contrôle en quelque sorte largement toutes les autres propriétés. Plusieurs chercheurs ont examiné des documents techniques y compris les normes et les recommandations internationales sur la distribution granulométrique des matériaux en terres, ([Norme-NF-XP-P13-901, 2001], [CRATerre-EAG, 1998], [MOPT, 1992], [Moevus et al. 2012] et [Houben and Guillaud, 1989]). À partir de ces normes et recommandations, ils ont conclu que les prescriptions relatives à la taille des particules sont plus restrictives pour la construction en pisé, BTM: (Brique de terre moulée comme l'adobe) et BTC.

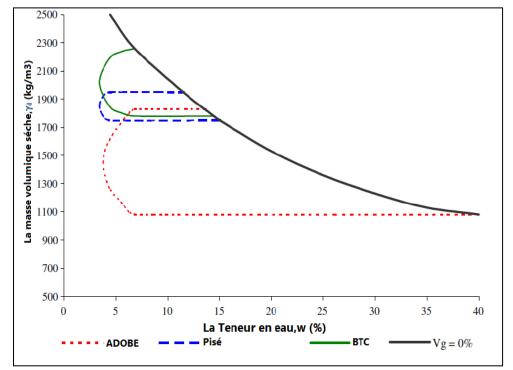

La figure 2.15 montre les limites inférieure et supérieure de la distribution granulométrique des matériaux en terre (BTC, Pisé, BTM). [9]



**Figure 2.15** Fuseaux de courbes granulométriques conseillées pour construire en BTC, en Pisé ou en adobe (BTM = Brique de Terre Moulée) selon la norme française [Norme-NF-XP-P13-901, 2001], CRATerre-EAG [1998], MOPT [1992].

#### 6.2.2 Plasticité : Pouvoir à se déformer sans se fissurer ou se désintégrer

La plasticité d'une terre et les limites entre différents états de consistance sont déterminées par les mesures des limites d'Atterberg (limite de liquidité LL, limite de plasticité PL, l'indice de plasticité PI). Pour obtenir la meilleure résistance des matériaux de terre (BTC, pisé et adobe), tant aux sollicitations mécaniques qu'a l'action de l'eau, il est nécessaire de choisir les limites les mieux adaptées pour les blocs de terre selon la norme française [Norme-NF-XP-P13-901, 2001]. Cette norme recommande que le sol doive présenter un minimum de plasticité assurant une cohésion entre les grains du matériau lors du compactage. La plasticité d'une terre dépend directement de la teneur en argiles et de leur capacité d'adsorption d'eau, (figure 2.16). [9]

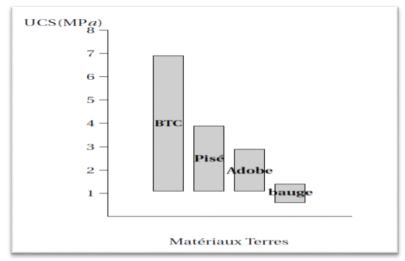



**Figure 2.16** Fuseaux de plasticité conseillées pour construire en BTC, en Pisé ou en BTM selon la norme française [Norme-NF-XP-P13-901, 2001], CRA Terre-EAG [1998] et Houben and Guillaud [1989]

#### 6.2.3 Compactage

Un certain nombre d'études s'est intéressé à la relation entre la densité de la terre et l'effort de compactage. La teneur en eau optimale est celle pour laquelle la masse volumique est maximale. Pour cela on utilise un essai de Proctor normal ou modifié, pour choisir la terre utilisable en fabrication des Matériaux en terre (BTC) et déconseillé pour les sols argileux mais le compactage statique est mieux adapter aux sols argileux. Par contre ces essais ne sont pas utilisés pour déterminer la teneur en eau optimale de la BTC. [9]

La figure 2.17 présente les fuseaux de compactage recommandés pour construire en BTC, en pisé ou en adobe selon Houben and Guillaud [1989] et Houben and Guillaud [1994].




**Figure 2.17** Fuseaux de compactage recommandé pour construire en BTC, en Pisé ou en adobe selon Houben and Guillaud [1994].

#### 6.2.4 Résistance à la compression simple

La résistance à la compression simple de la terre crue (non stabilisée) séchée à l'air libre est généralement de quelques dixièmes de MPa, (0.5 à 1.5 MPa pour la bauge, 1 à 2.5 MPa pour l'adobe) à quelques MPa pour le pisé (1 à 4MPa) et les blocs de terre compressée BTC entre (1 à 7MPa), (figure 2.18).

Dans la littérature, le manque des normes sur la terre crue constitue le point délicat. La résistance à la compression simple de la terre, c'est une propriété mécanique faisant l'objet d'exigences réglementaire fortes. [9]



**Figure 2.18** Résistance à la compression simple de la terre crue (non stabilisée) séchée à l'air libre, [Van-Damme and Houben, 2017].

# II.7 Synthèse bibliographique sur les briques en terre crue stabilisées

#### 7.1 Stabilisation avec ciment

Il existe de nombreuses études sur la stabilisation des briques de terre à l'aide de ciment. Le Tableau 2.3 présente les données de 10 articles sur la stabilisation des briques de terre fabriquées selon différentes techniques comme les blocs de terre comprimée (BTC) ou les adobes (terre moulée à la main et séchée au soleil). Le temps de cure et l'élancement sont donnés dans ce tableau.

Tableau 2.3 Synthèse bibliographique sur les briques en terre crue stabilisées au ciment. [22]

| Reference                        | Туре  | Elancement | Temps de cure (j) | Ciment (%) | fc (MPa) |
|----------------------------------|-------|------------|-------------------|------------|----------|
|                                  |       |            |                   | 0          | 1,6      |
|                                  |       |            |                   | 4          | 2,3      |
|                                  |       |            |                   | 6          | 3,2      |
| (Bahasatal 2004)                 | втс   |            | 28                | 8          | 4,0      |
| (Bahar et al., 2004)             | ыс    | 1          | 20                | 10         | 4,1      |
|                                  |       |            |                   | 12         | 5,2      |
|                                  |       |            |                   | 15         | 6,1      |
|                                  |       |            |                   | 20         | 6,4      |
| (Alavéz-Ramírez et al., 2012)    | втс   | 1          | 28                | 0          | 0,6      |
| (Alavez-Italiffiez et al., 2012) | ыс    | '          | 20                | 10         | 23,5     |
|                                  |       |            |                   | 0          | 1,0      |
| (Medjo Eko et al., 2012)         | втс   | 0,2        | 28                | 4          | 3,0      |
| (Wedjo Eko et al., 2012)         | BIC.  | 0,2        | 20                | 7          | 10,4     |
|                                  |       |            |                   | 10         | 11,6     |
|                                  |       |            |                   | 0          | n.m.     |
| (Lima et al., 2012)              | BTC   | 1          | 28                | 6          | 0,7      |
|                                  |       |            |                   | 12         | 3,1      |
| (Eires et al., 2014)             | втс   | 1,2        | 56                | 0          | 1,0      |
| (Elics et al., 2014)             |       |            | 30                | 4          | 1,5      |
|                                  |       | 1          | Pas de cure       | 0          | 1,0      |
| (Alam et al., 2015)              | втс   |            |                   | 5          | 1,0      |
| (Alam Grai., 2010)               | Віс   |            |                   | 7          | 1,3      |
|                                  |       |            |                   | 10         | 2,0      |
| (Seco et al., 2017)              | втс   | 1,2        | 28                | 0          | n.m.     |
| (5000 07 al., 2017)              | 5.0   | 1,2        | 20                | 10         | 11-14    |
|                                  |       |            |                   | 0          | 0,6      |
| (Tran et al., 2018)              | втс   | 2          | 28                | 4          | 1,5      |
| (11411 51411, 2515)              | 2.0   | _          |                   | 8          | 5,6      |
|                                  |       |            |                   | 12         | 6,0      |
| (Sore et al., 2018)              | втс   | n.m        | 21                | 0          | 1,4      |
| (5515 51 41., 2515)              | 210   |            | 21                | 8          | 8,2      |
|                                  |       |            |                   | 0          | 2,2      |
|                                  | Adobe |            |                   | 2          | 2,6      |
| (Dao et al., 2018)               |       | 1          | Pas de cure       | 4          | 2,8      |
|                                  |       |            |                   | 8          | 3,0      |
|                                  |       |            |                   | 12         | 3,2      |

Les résultats du Tableau 2.3 montrent que le gain de résistance en compression avec l'ajout de ciment est très peu marqué sauf dans l'étude de (ALAVEZ-RAMIREZ et al. 2012) où l'ajout de 10% de ciment permet de passer d'une résistance en compression de 0,6 à 23,5 MPa. [22]

#### 7.2 Stabilisation avec la chaux la chaux

Il existe aussi certaines études dans lesquelles les briques de terre crue sont stabilisées à la chaux. Le Tableau 2.4 présente les résultats synthétiques de 5 références. Les données présentées sont les mêmes que pour le Tableau 2.3 mais une colonne a été ajoutée sur la nature de la chaux utilisée car les comportements sont très différents entre une chaux hydraulique (mélange de chaux et de minéraux hydrauliques) et une chaux « pure » qu'elle soit éteinte (Ca(OH)<sub>2</sub>) ou vive (CaO).

Tableau 2.4 Synthèse bibliographique sur les briques en terre crue stabilisées à la chaux. [22]

| Reference                      | Туре  | Elancement | Durée de<br>cure (j) | Test de<br>tenue à<br>l'eau | Type de chaux                                       | Chaux<br>(%) | fc<br>(MPa) |
|--------------------------------|-------|------------|----------------------|-----------------------------|-----------------------------------------------------|--------------|-------------|
|                                |       | 1          | Pas de<br>cure       |                             |                                                     | 0            | 2,3         |
|                                |       |            |                      |                             | Mélange de<br>chaux vive et<br>de chaux<br>hydratée | 4            | 3,2         |
|                                |       |            |                      |                             |                                                     | 6            | 3,3         |
| (Millogo et al., 2008)         | Adobe |            |                      |                             |                                                     | 8            | 3,4         |
|                                |       |            |                      |                             |                                                     | 10           | 3,5         |
|                                |       |            |                      |                             |                                                     | 12           | 3,2         |
| (Mary) = Dans(are at at 10040) | CEB   | 1          | 28                   | х                           | Chaux<br>hydratée                                   | 0            | 0,6         |
| (Alavéz-Ramírez et al., 2012)  |       |            |                      |                             |                                                     | 10           | 16,5        |
|                                |       |            |                      |                             |                                                     | 0            | 1,0         |
| (Eires et al., 2014)           | CEB   | 1,2        | 56                   | х                           | Chaux<br>hydratée                                   | 4            | 0,8         |
|                                |       |            |                      |                             | Chaux vive                                          | 4            | 1,9         |
|                                |       |            |                      |                             |                                                     | 0            | 1,0         |
|                                | CEB 1 |            | Pas de               | х                           | Non spécifié                                        | 5            | 0,6         |
| (Alam et al., 2015)            |       | 1          | cure                 |                             |                                                     | 7            | 0,8         |
|                                |       |            |                      |                             |                                                     | 10           | 1,3         |
| (Seco et al., 2017)            | CEB   | 1,2        | 28                   | Х                           |                                                     | 0            | n.m.        |

Comme pour les résistances avec 10% de ciment, les résistances en compression sèche avec 10% de chaux des travaux de (ALAVEZ-RAMIREZ et al. 2012) sont anormalement élevées en comparaison des résultats des autres études (16,5 MPa à 28 jours). Pour les autres études, le gain de résistance en compression sèche est très faible quelle que soit la teneur en chaux (jusqu'à 12%) et quelle que soit la nature de la chaux utilisée (même pour une chaux hydraulique). [22]

#### 7.3 Stabilisation avec des liants minéraux alternatifs

Le Tableau 2.5 présente les stabilisations de la terre crue avec les liants minéraux alternatifs.

**Tableau 2.5** Synthèse bibliographique sur les briques en terre crue stabilisées avec des liants minéraux alternatifs. [22]

| Référence                     | Liant alternatif                           | Туре  | Elancement | Durée de<br>cure (jour) | Liant (%) | fc (MPa) |
|-------------------------------|--------------------------------------------|-------|------------|-------------------------|-----------|----------|
|                               |                                            | втс   |            | -                       | 0         | 0,6      |
| (Aloués Bomíros et al. 2012)  | Chaux - Cendres de                         |       | 1          | 7                       | 20        | 17,7     |
| (Alavéz-Ramírez et al., 2012) | bagasse de canne à sucre                   |       | '          | 14                      | 20        | 20,8     |
|                               |                                            |       |            | 28                      | 20        | 21,3     |
|                               |                                            |       |            | -                       | 0         | 0,1      |
|                               |                                            |       |            |                         | 2         | 0,5-1,7  |
|                               | Poussière de fourneau de                   | втс   | 2          | 7 44 20 50              | 5         | 1,5-3,1  |
|                               | ciment                                     | ыс    | _          | 7,14,28,56<br>et 90     | 10        | 1,5-4,3  |
|                               |                                            |       |            |                         | 15        | 2,1-5,3  |
| (Hossain et al., 2011)        |                                            |       |            |                         | 20        | 2,7-6,0  |
|                               |                                            |       |            |                         | 5         | 0,5-1,2  |
|                               | Conden valorations                         | BTO   |            | 7,14,28,56              | 10        | 0,5-1,8  |
|                               | Cendre volcanique                          | втс   | 2          | et 90                   | 15        | 0,5-2,8  |
|                               |                                            |       |            |                         | 20        | 0,5-3,1  |
|                               |                                            |       |            |                         | 0         | 1,9      |
| Villamizar et al. (2012)      | Cendre de charbon                          | втс   | 0,5        | -                       | 5         | 3,3      |
|                               |                                            |       |            |                         | 10        | 1,0      |
|                               | Gypse                                      | Adobe | 1          | -                       | 0         | 1        |
|                               |                                            |       |            |                         | 5         | 1,2      |
|                               |                                            |       |            |                         | 10        | 3,0      |
|                               |                                            |       |            |                         | 15        | 4,5      |
| (Degirmenci, 2008)            |                                            |       |            |                         | 20        | 4,6      |
|                               |                                            |       |            |                         | 25        | 4,8      |
|                               |                                            | Adobe | 1          | -                       | 5         | 1,1      |
|                               | Phosphogypse                               |       |            |                         | 10        | 3,0      |
|                               |                                            |       |            |                         | 15        | 3,0      |
|                               | Chaux (CL90-S) + laitier de                |       |            |                         | 0         | n.m      |
| (Cara et al. 2047)            | haut fourneau (LHF))                       | BTC   | 1,2        | 28                      | 10        | 11,7     |
| (Seco et al., 2017)           | Ciment + laitier de haut                   |       |            | 28                      | 0         | n.m      |
|                               | fourneau (LHF)                             | BTC   | 1,2        |                         | 10        | 13,6     |
| (41                           | 0                                          |       |            | -                       | 0         | 1,0      |
| (Alam et al., 2015)           | Gypse                                      | Adobe | 1          |                         | 10        | 2,4      |
|                               |                                            | втс   | n.m        | 7                       | 0         | 1,4      |
|                               |                                            |       |            |                         | 5         | 2,8      |
| (Sore et al., 2018)           | Géopolymère<br>(Métakaolin activé au NaOH) |       |            |                         | 10        | 4,4      |
|                               |                                            |       |            |                         | 15        | 6,7      |
|                               |                                            |       |            |                         | 20        | 8,9      |

L'objectif de ces études est de proposer de réduire la quantité de ciment ou de chaux avec une pouzzolane à faible empreinte carbone. Un second intérêt est de valoriser des sousproduits industriels (cendres de charbon, cendre de bagasse de canne à sucre ou poussière de fourneau de ciment). Certains de ces liants sont un mélange de pouzzolanes et de ciment ou de chaux ou, dans le cas des géo polymères, l'activation de la pouzzolane (ici du méta kaolin) se fait avec de la soude concentrée (Sore et al. 2018). Bien que ces solutions soient

supposées moins polluantes que le ciment et la chaux seules, les quantités de liants utilisés semblent élevées (jusqu'à 20%).

Là également, les résultats de (ALAVEZ-RAMIREZ et al. 2012) paraissent surprenants : moyennant 20% de mélange de chaux et de cendres de bagasse de canne à sucre, il obtient jusqu'à 21,3 MPa de résistance à la compression. Pour les travaux où l'effet de la cure est étudié (ALAVEZ-RAMIREZ et al. 2012; HOSSAIN et al. 2011), on constate que les durées pour obtenir les meilleures résistances sont relativement grandes, ce qui correspond au mécanisme d'action des liants pouzzolaniques dont la cinétique est lente par rapport au ciment. [22]

#### 7.4 Stabilisation avec des liants organiques.

Le tableau 2.6 présente les résistances à la compression des matériaux stabilisés avec des liants organiques. Dans une optique de cohérence, nous avons recalculé les pourcentages massiques équivalents des liants à partir des données disponibles dans les références. En effet, certains liants sont ajoutés sous forme liquide ou sous forme diluées dans de l'eau.

**Tableau 2.6** Synthèse bibliographique sur les briques en terre crue stabilisées avec des liants organiques

| Référence                         | Liant (s)<br>organique (s)                                                                | % liant                                                       | Activation                                                            | Fibres                                                        | Type     | Elancement | fc<br>(MPa)          |
|-----------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|----------|------------|----------------------|
| (Aguilar et<br>al., 2018)         | Chitosan<br>dissoute à<br>0,5%-3% en<br>masse dans<br>une solution<br>d'acide<br>acétique | 1%                                                            | Solution de 1%<br>d'acide acétique                                    | -                                                             | adobe    | 2,1        | 3,9                  |
|                                   |                                                                                           | 0%                                                            |                                                                       |                                                               |          |            | 1,5                  |
| (Guerrieri,<br>2012)              | Gluten                                                                                    | 3%-5%                                                         | -<br>5%-10% chaux                                                     | -                                                             | втс      | n.m        | 1,2-<br>1,3<br>0,8-3 |
| ,                                 | Caséine                                                                                   | 1%-10%                                                        | 5%-10% chaux<br>+ 0,37%-0,75%<br>ammoniaque                           |                                                               |          |            | 1,3-<br>7,5          |
| (Galán-<br>Marín et al.,<br>2010) | Alginate                                                                                  | 19,5%<br>(en solution,<br>concentration<br>non<br>renseignée) | 0,5% Lignum (résine<br>de Guayacan)                                   | 0%<br>0%,<br>0,25%<br>et<br>0,50%<br>de laine<br>de<br>mouton | втс      | 1          | 3,8-<br>4,4          |
|                                   |                                                                                           | 0%                                                            |                                                                       | -                                                             |          |            | n.m                  |
| (Pineda-<br>Piñón et al.,         | Dodécylamine<br>cationique                                                                | 0,33%                                                         | 3% bitume émulsifié                                                   | -                                                             | adobe    | 1          | 2,2                  |
| 2007)                             | Acide aminé<br>anionique                                                                  | 0,25%                                                         | 3% bitume émulsifié                                                   | -                                                             |          |            | 1,8                  |
|                                   |                                                                                           | 0%                                                            | -                                                                     |                                                               |          |            | 1,0                  |
| (Camões et<br>al., 2012)          | Huile usée de<br>cuisine                                                                  | 1%                                                            | 4% chaux vive (CaO)<br>0,1% soude (NaOH),<br>+ 4% chaux vive<br>(CaO) | -                                                             | BTC/Pisé | 1          | 2,5                  |
| (Sorgho et al., 2014)             | Tanins<br>(décoction de<br>cosses de<br>Parkia<br>Biglobosa)                              | 0%<br>1,44%                                                   | -                                                                     | -                                                             | втс      | 1          | 2,0                  |
| (Millogo et<br>al., 2016)         | Bouse de vache                                                                            | 1%-3%                                                         | -                                                                     | Bouse<br>de<br>vache                                          | adobe    | 1          | 2,1<br>2,5-<br>2,7   |
| (Nakamatsu<br>et al., 2017)       | Carageenan<br>En solution                                                                 | 0%<br>0,125%-<br>0,5%.                                        | -                                                                     | -                                                             | adobe    | 2          | 2,1<br>3,9           |
| (Chang et al., 2015)              | Gomme<br>Xanthan                                                                          | 0%<br>1%                                                      | -                                                                     | -                                                             | adobe    | 1          | 0,4<br>3,7           |
| (Yalley and                       |                                                                                           | 0%                                                            |                                                                       | -                                                             |          |            | 4,6                  |
| Manu,<br>2013)                    | Bouse de<br>vache                                                                         | 5%-30%                                                        | -                                                                     | Bouse<br>de<br>vache                                          | втс      | n.m        | 4,6-<br>5,8          |

Bien qu'on retrouve les quatre grandes familles de polymères organiques naturels (polysaccharides, protéines, lipides et autres molécules complexes), le nombre de recherches sur ces types de liants reste faible au regard de la très grande variété de produits existants dans la nature. Dans la plupart des cas, les liants organiques sont utilisés en association avec des agents d'activation. [22]

# II.8 Avantages du matériau terre

Les constructions en terre crue présentent beaucoup d'avantages.

- 1. Les matériaux de constructions (béton, brique de terre cuite, parpaing) consomment beaucoup d'énergie qui sont parmi les plus élevés de tous les secteurs de l'activité humaine. La terre réduit des coûts énergétiques qui associés à la construction dont la fabrication, mise en œuvre simple (presse, les moules, coffrage légers) et le transport des matériaux terre ne nécessitent que peu d'énergie (pétrole, gaz,...).
- 2. La terre peut être entièrement recyclable qui ne produit aucun déchet d'exploitation industrielle ou chimiques.
- 3. L'utilisation de la terre comme matériau de construction limite l'épuisement des ressources naturelles.
- 4. Les constructions en terre fonctionnent également très bien de maniérés hygrothermique qui contribuent à la régulation des ambiances du confort thermique, déphasage thermique et donnent aussi aux bâtiments la possibilité de "respirer" en absorbant ou libérant de l'humidité en fonction des conditions hydriques environnantes.
- 5. Le matériau terre diminue la consommation énergétique liée à la climatisation et au chauffage.
- 6. La réduction des émissions de gaz (un bilan de pollution entièrement positif).
- 7. La création des emplois sur l'ensemble de la chaine de production.
- 8. La terre permet de prolonger l'héritage des traditions architecturales en matériaux locaux.
- 9. Les constructions en terre peuvent garantir l'accès à la dignité d'un logement décent à des populations qui vivent le plus souvent dans des conditions précaires et misérables.
- 10. quelque soit les techniques de la construction en terre, le traitement est maintenu au minimum. [9]

#### II.9 Inconvénients de la construction en terre

La terre crue présente cependant quelques inconvénients :

1. La composition de terre peut varier fortement qui empêche une standardisation de la préparation de la terre crue et nécessite une certaine identification.

- 2. Manque des normes spécifiques des constructions en terre, heureusement, les études récentes permettent de combler cette lacune.
- 3. La terre crue est plus ou moins sensible à l'eau (la pluie, la neige, la remonter capillaire), ce qu'il faut rajouter des liants, afin d'obtenir les caractéristiques souhaitable contre l'érosion de surface et faire des soubassements en pierre ou béton pour éviter la remonter d'eau. Il doit mettre aussi un toit présentant un dépassement suffisant pour protéger la construction, (des bonnes bottes et un bon chapeau).
- 4. les constructions en terre couchent par couche comme le pisé crée des zones faibles entre elles et toujours plus denses en haut que dans leur partie inférieure.
- 5. Les matériaux terre ont une résistance faible à la traction et sensibles aux séismes. [9]

#### II.10 Conclusion

Dans ce chapitre, nous avons parlé de la terre crue, qui est un matériau présentant de nombreux avantages, car il est considéré comme éternellement renouvelable et non pollué.

Elle permet également une indépendance technique et économique.

Il y a plusieurs types et techniques de construction. Nous sommes également intéressés par les constructions en terre, en particulier la BTC. Nous sommes particulièrement intéressés à ses propriétés physiques, chimiques et mécaniques, qui entreront dans les résultats du chapitre quatre.

# CHAPITRE III: TRAITEMENT DES SOLS

#### Chapitre III: Traitement Des Sols

#### III.1Introduction

Le sol est la première fondation de tous les bâtiments et structures, mais il est exposé à divers problèmes tels que la faible résistance à la compression et au cisaillement, l'instabilité, la nature étendue, le retrait de volume, la fissuration due à la sécheresse, la grande stabilité sous chargement et la faible tolérance aux intempéries. Des facteurs tels que le mouillage et le séchage ou le dégel et le gel ont une grande influence sur les sols en général.

Ces problèmes sont devenus contraignants pour les ingénieurs géotechniciens dans les travaux de terrassement ou de construction de grands et importants projets (routes, voies ferrées, bâtiments...)

Les propriétés géotechniques de ces sols peuvent être améliorées en utilisant certains additifs traditionnels tels que le ciment et la chaux, et en raison des émissions de dioxyde de carbone de ces dernières et de leur impact sur l'environnement, les ingénieurs ont eu recours à des matériaux respectueux de l'environnement pour renforcer le sol, tels que les fibres naturelles et les bio-polymères.

### III.2 Produits de traitements classiques

#### 2.1 Liants hydrauliques

#### 2. 1.1 Ciment

Le ciment est un liant hydraulique, c'est-à-dire un matériau minéral finement moulu qui, gâché avec de l'eau, forme une pâte qui fait prise et durcit à la suite de réactions et de processus d'hydratation et qui, après durcissement, conserve sa résistance et sa stabilité, même sous l'eau. Le ciment agglomère fortement les matériaux inertes incorporés dans le mélange. [23]



Figure 3.1 Ciment. [23]

Les liants hydrauliques courants sont subdivisés selon la normalisation en vigueur en cinq types en fonction de leur composition

- CEM I: Ciment Portland.
- CEM II: Ciment Portland composé.

- CEM III : Ciment de haut fourneau.

- CEM IV: Ciment pouzzolanique.

- CEM V : Ciment composé.

Les constituants du ciment présentent une ou plusieurs des propriétés suivantes :

Des propriétés hydrauliques : par réaction avec l'eau, ils forment des composés hydratés stables qui sont très peu solubles dans l'eau.

Des propriétés pouzzolaniques : ils peuvent former à température ordinaire, en présence d'eau et par combinaison avec la chaux, des composés hydratés stables.

Des propriétés physiques : améliorant certaines qualités du ciment (accroissement de la maniabilité et de la compacité), [25] comme le montre le tableau3.1

Tableau3.1 Différents types de ciments courants. [26]

| Désignation du type de ciment | Notation       | Composition                                                                                                                                          |
|-------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ciment Portland               | CPA/CEM I      | Au moins 95 % de clinker et de 0 à 5 % de constituants secondaires                                                                                   |
| Ciment Portland composé       | CPJ/CEM II/A   | Entre 80 et 94 % de clinker et 6<br>à 20 %<br>d'autres constituants                                                                                  |
| Cinical Fortune Compose       | CPJ/CEM II/B   | Entre 65 et 79 % de clinker et<br>21 à 35 %<br>d'autres constituants                                                                                 |
|                               | CHF/CEM III/A  | Entre 35 et 64 % de clinker et<br>36 à 65 "o<br>de laitier de haut-fourneau                                                                          |
| Ciment de haut-fourneau       | CHF/CEM III/B  | Entre 20 et 34 % de clinker et<br>66 à 80 %<br>de laitier de haut-fourneau                                                                           |
|                               | CLK /CEM III/C | Entre 5 et 19% de clinker et 81<br>à 95%<br>de laitier de haut-fourneau                                                                              |
| Ciment pouzzolanique          | CPZ-CEM IV/A   | Entre 65 à 90% de clinker et<br>10 à 35%<br>de pouzzolanes, de cendres<br>volantes siliceuses<br>de fumées de silice (< 10%<br>pour ces dernières)   |
|                               | CPZ-CEM IV/B   | Entre 45 et 64% de clinker et<br>36 à 55%<br>de pouzzolanes, de cendres<br>volantes siliceuses<br>de fumées de silice (< 10 %<br>pour ces dernières) |
| Ciment au laitier             | CLC/CEM V/A    | Entre 40 et 64% de clinker. 18<br>à 30 °o de laitier<br>et 18 à 30 °o de cendres<br>volantes ou pouzzolanes                                          |
| et aux cendres                | CLC/CEM V/B    | Entre 20 et 39 % de clinker, 31<br>à 50 % de laitier<br>et 31 à 50 % de cendres<br>volantes ou pouzzolanes                                           |

#### 2.2.2 Pouzzolane naturelle

Les pouzzolanes sont exploitées pour la production des ciments composés. Ceux sont des matériaux naturels ou artificiels riches en silice et en alumine capables de réagir avec la chaux en présence de l'eau et de former à l'issue de cette réaction des produits manifestant des propriétés liantes. Les avantages de remplacement partiel du ciment par les matériaux pouzzolaniques sont divers. Ils participent au renforcement de la résistance aux attaques chimiques et la durabilité, à la réduction de réactions alcalines des agrégats et du retrait au séchage. Ils permettent la réduction de la quantité de clinker utilisée dans la composition du ciment. Les ciments aux pouzzolanes sont obtenus en mélangeant les produits pouzzolaniques finement broyés avec le portland. [25]




Figure 3.2 Pouzzolane naturelle. [25]

#### 3.2.3 Cendres volantes

Les cendres volantes sont les résidus finement divisés résultant de la combustion du charbon pulvérisé. Elles constituent un produit minéral pulvérulent, consécutif du dépoussiérage des fumées rejetées par les centrales thermiques, qui utilisent du charbon broyé comme combustible en présence ou non de matériaux de Co-combustibles. Ces cendres sont obtenues par précipitation électrostatique ou mécanique de particules pulvérulentes contenues dans les gaz de fumée des chaudières. [25]



Figure 3.3 cendres volantes [25]

#### 3.2.4 Laitiers de hauts fourneaux

Sous-produits de l'industrie sidérurgique lors de la fabrication de la fonte dans les hauts fourneaux, les laitiers sont formés de constituants non ferreux, des fondants et des cendres de coke. Leur composition en oxydes et leur structure vitreuse obtenue par trempe à l'eau leur confèrent des propriétés hydrauliques latentes, ce qui permet d'envisager leur utilisation en tant qu'ajout dans les ciments. Le laitier de haut-fourneau vitrifié possède des propriétés particulières. Il a une structure vitreuse, c'est-à-dire une structure où les atomes sont désordonnés, contrairement à un cristal. [25]



Figure 3.4 Laitiers de haut fourneau. [26]

#### **3.2.5 Dolomie**

La dolomie est une roche sédimentaire carbonatée d'origine marine, riche en calcium, en magnésium et en oligo-éléments. On ne peut parler de dolomie que lorsqu'elle contient un minimum de 50 % de dolomite, carbonate double de calcium et de magnésium de formule CaMg(CO<sub>3</sub>)<sub>2</sub>. L'autre composant est la calcite, un carbonate de calcium de formule CaCO<sub>3</sub>. On parle aussi de calcaire dolomitique ou de calcaire magnésien. Exploitées en carrières, les dolomies constituent de bons matériaux de construction. [25]



Figure 3.5 Dolomie. [25]

#### 3.2.6 Chaux

La chaux est un produit naturel qui respecte l'environnement. La chaux est une matière, généralement, poudreuse et de couleur blanche, obtenue par décomposition thermique du calcaire.

Elle est utilisée depuis l'antiquité, notamment dans la construction. Elle trouve une place privilégiée dans le secteur du bâtiment et dans les matériaux de construction. La chaux intervient à différents stades du traitement des sols, et sa qualité à une influence directe sur l'efficacité du traitement des sols. La chaux désigne les produits dérivés du calcaire. Le calcaire est une pierre d'origine naturelle comportant des niveaux élevés de carbonates de calcium et/ou de magnésium. On extrait le calcaire dans des carrières et des mines à travers le monde. La chaux aérienne est obtenue par décarbonatation du calcaire (Ca CO<sub>3</sub>) à une température d'environ 900°C suivant la réaction :

$$CaCO_3 + 50 \text{ kcals} \rightarrow CaO + CO_2$$

La chaux aérienne peut exister sous quatre formes : chaux vive, chaux éteinte, lait de chaux et chaux vive lourde.

Chacune d'entre elles présentant avec les sols des interactions spécifiques. [26]

#### > Chaux vive

Elle est principalement constituée d'oxyde de calcium CaO (en général à plus de 90 %). Une chaux vive pour le traitement des sols définie dans le GTS. [26]



Figure 3.6 Chaux vive. [26]

#### > Chaux éteinte

Elle est principalement constituée d'hydroxyde de calcium Ca(OH) 2. Elle est fabriquée par hydratation (extinction) de la chaux vive. La réaction d'hydratation est une réaction fortement exothermique : [26]

$$CaO + H_2O \rightarrow Ca (OH)_2 + Chaleur (15,5 kcal/mole CaO).$$



Figure 3.7: Chaux éteinte. [26]

#### Lait de chaux

Le lait de chaux est obtenu par mise en suspension de chaux éteinte dans de l'eau. La concentration varie entre 300 et 400 g de chaux éteinte par litre de lait. Le lait de chaux peut également être préparé à partir de chaux vive, mais des précautions particulières sont à prendre en raison de l'exo thermicité de la réaction d'hydratation de l'oxyde de calcium. [26]



Figure 3.8: Lait de chaux. [26]

#### Chaux vive lourde

La chaux vive est alourdie par addition d'huile de colza. Cette chaux est moins volatile et, par conséquent, son emploi permet de réduire les émissions de poussières. Son utilisation est préconisée dans certaines zones de projets incluant des dispositions particulières de protection de l'environnement. [26]




Figure 3.9 : Cycle de la chaux. [26]

#### 2.2 Avantages du traitement

Traitement des sols à la chaux et/ou au ciment ou aux liants hydrauliques(LHR) est une technologie qui offre trois types d'avantages fondamentaux : la technologie, économique et environnemental. [26]

#### 2.2.1 Avantages techniques

Le traitement des sols en place à la chaux et/ou au liant hydraulique permet la réalisation des remblais et des couches de forme. Une couche traitée homogène, durable et stable, présente des caractéristiques mécaniques comparables à celles d'une grave-ciment ou grave hydraulique. En outre, cette technique assure une bonne répartition des charges sur le support, grâce à la rigidité de la nouvelle structure. Cette technique assure un bon comportement sans orniérage et un bon comportement vis-à-vis des cycles de gel-dégel, grâce à la rigidité du matériau et à l'effet de dalle induit. Enfin, le traitement des sols en place est une technique possédant une facilité d'adaptation aux contraintes d'exploitation. [26]

#### 2.2.2 Avantages économiques

Le traitement des sols en place à la chaux et/ou au liant hydraulique est une technique de traitement à froid, donc utilisant peu d'énergie. La réutilisation des matériaux en place est un facteur d'économie important puisqu'il réduit au minimum les déblais issus du décaissement, la mise en décharge, l'apport de granulats et le coût de leur transport. L'absence de transport de granulats ou des déblais en décharge contribue à la préservation du réseau routier situé au voisinage du chantier. [26]

#### 2.2.3 Avantages écologiques et environnementaux

Le travail à froid réduit sensiblement la pollution et le rejet de vapeurs nocives dans l'atmosphère. En outre, cette technique permet une importante économie d'énergie globale, par la réduction des matériaux à transporter, des matériaux à mettre en décharge et donc une diminution des impacts indirects, des gênes à l'usager et aux riverains et une réduction de la fatigue du réseau routier adjacent au chantier. La réutilisation des matériaux en place limite l'exploitation des gisements de granulats (carrières, ballastières), ressources naturelles non renouvelables. Ce qui contribue à préserver l'environnement. [26]

#### III.3 Fibres

La fibre est une composition de base, végétale ou animale, de nature filamenteuse, souvent sous forme de faisceaux.

Elles peuvent être classées selon leur origine en : (fibres naturelles, fibres animales, fibres végétales, fibre chimique, fibres synthétiques, fibres minérales...).

#### 3.1 Types de fibres utilisées dans le domaine de la construction

Plusieurs types de fibres sont utilisés dans la construction, notamment :

- 1. Les fibres animales (poil, laine, soie);
- 2. Les fibres végétales (Jute, sisal, coir, bois, bambou, palmier);
- 3. Les fibres métalliques (acier, fonte);
- 4. Les fibres organiques (polypropylènes, polyamides et polystyrènes). [24]

#### 3.2 Fibres naturelles

Les fibres naturelles sont divisées selon leur origine en trois groupes de base : Fibres animales, fibres végétales et fibres minérales. [24]

#### 3.2.1 Fibres animales

Composées de substances organiques, les fibres animales, ou protéiniques, se présentent sous forme de poils ou de plumes ou de soies tel que : (Laine, Alpaga, Chameau, Cachemire, Guanaco...). [24]

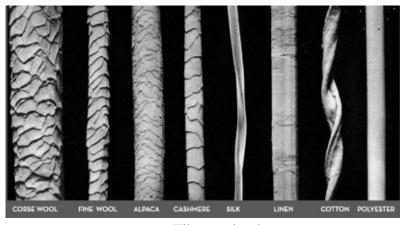



Figure 3.10 Fibres animales. [24]

#### 3.2.2. Fibres minérales

Les fibres minérales artificielles siliceuses vitreuses sont des fibres autre que l'amiante telles que la laine de verre, de roche ou de laitier, les fibres céramiques réfractaires (FCR), les fibres d'alumine, les filaments de verre continus, amiante ...etc. [27]



Figure 3.11 Fibre d'alumine. [27]

#### 3.2.3 Fibres végétales

L'utilisation des fibres naturelles d'origine végétale dans la construction remonte à la période où l'on fabrique des briques renforcées par la paille ou des roseaux. Dans le temps moderne (depuis les années 70), le premier composite liant avec les fibres végétales c'était le plâtre. Plusieurs ouvrages sont réalisés avec du plâtre renforcé de fibres végétales. Actuellement, le monde connaît de récents développements dans le domaine de renforcement du béton avec des fibres végétales. Suite aux problèmes de santé posés par les fibres d'amiante, plusieurs recherches sont orientées vers la substitution de l'amiante par des fibres végétales.

Les différents types des fibres végétales sont :(Coton ; Lin; Ramie; Alfa ; Sisal ; Bambou...) [24]

#### 3.2.3 Classification des fibres végétales

Les fibres végétales sont classées en quatre groupes (Figure 3.12) : Les fibres de feuilles, de tiges, de bois et de surface.

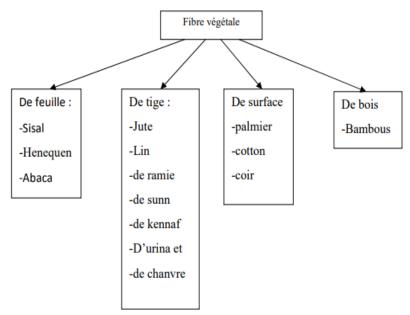



Figure 3.12 Classes de fibres végétales. [24]

#### 3.3 Fibres chimiques

Les fibres chimiques se présentent sous deux catégories : les fibres artificielles et les fibres synthétiques. Les textiles chimiques n'existent pas dans la nature, ils sont créés par l'homme et préparés industriellement. [28]

#### 3.3.1 Fibres artificielles

Une fibre textile artificielle est obtenue par le traitement chimique (dissolution puis précipitation) de matières naturelles : les caséines de lait, la cellulose de divers végétaux (écorce de pin, bambou, soja, bouleau). [28]

#### 3.3.1.1 Fibres de caoutchouc

Le caoutchouc est un matériau qui peut être obtenu soit par la transformation du latex sécrété par certains végétaux (par exemple, l'hévéa), soit de façon synthétique à partir de monomères issus de combustibles fossiles. Les fibres de caoutchouc sont extraites des roues de voitures et ce, pour une utilisation dans plusieurs domaines tels que la construction. [24]

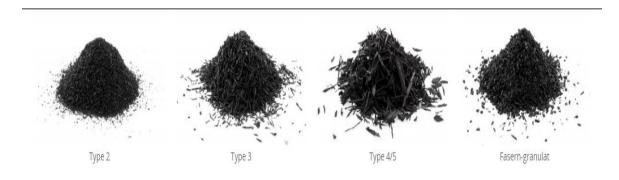



Figure 3.13 Différents types des fibres des pneus de caoutchouc. [24]

#### 3.3.1.2 Fibres de verre

Le verre utilisé comme renfort dans les composites sous formes de fils (simples, tressés, tissés...). Les fibres de verre sont produites essentiellement sous deux formes : les fibres d'isolation (souvent désignées sous le nom de "laine de verre") et les fibres textiles. Elles sont destinées à des usages très différents. La composition des fibres de verre est constituée principalement de silice, [24]

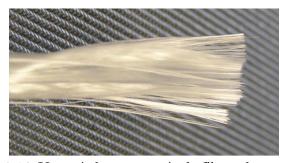



Figure 3.14 Une mèche composée de fibres de verre. [24]

#### 3.3.2 Fibres synthétiques

Les fibres synthétiques sont fabriquées de polymères de synthèse obtenus à partir de substances fournies par l'industrie pétrochimique. Elles ont fait leurs apparitions au début de  $20^{\rm ème}$  siècle, après la réussite de la fibre de Viscose, depuis lors, un grand nombre de fibres synthétiques ont été mises au point ; elles possèdent chacune des propriétés qui répondent à un type particulier d'application. Ces fibres, toutes comme les fibres artificielles, sont obtenues par filage. Elles suscitent l'intérêt de beaucoup d'industriels pour leur faible coût, leur disponibilité et leur indépendance des saisons et surtout la possibilité de les adapter et modifier leurs propriétés.

Les principales catégories de fibres synthétiques commercialisées (Figure 3.15) sont :

- Les polyamides (Nylons);
- Les polyesters ;
- Les dérivés polyvinyliques ;
- Les polyoléfines : les polyéthylènes et les polypropylènes : sont d'une importance croissante et leur production s'élève maintenant à environ 8% de toutes les fibres synthétiques. [29]



**Figure3.15** Différents types des fibres synthétiques (a-polyamides, b-polyesters, c-polyvinyliques, d-polyéthylène). (4) [29]

# III.4 Généralité sur les bio-polymères

Les bio-polymères sont de grosses chaînes de molécules constituées de maillons élémentaires appelés monomères. Les polymères organiques ont un certain nombre de propriétés caractéristiques. Ils ont des masses molaires pouvant atteindre plusieurs millions de g/mol. Leur conformation, qui est leur configuration spatiale, varie selon les conditions du milieu (température, pH, potentiel ionique).

Les liants organiques sont des polymères organiques naturels pouvant être répartis en quatre grandes familles de molécules (polysaccharides, lipides, protéines, autres molécules complexes). [30]

# III.5 Classification des bio-polymères

Les bio- polymères répartis en quatre grandes familles de molécules : polysaccharides, lipides, protéines, autres molécules complexes (Figure 3,16).

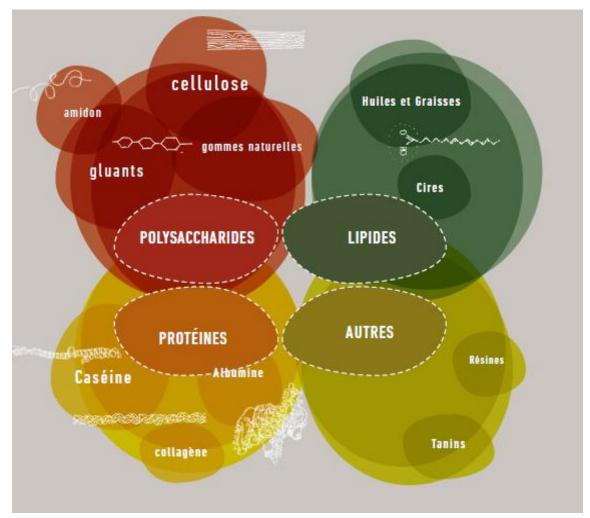



Figure 3.16 Quatre grandes familles des bio-polymères. [30]

#### 5.1 Polysaccharides

Les polysaccharides regroupent toutes les recettes de base de fibres végétales, de bouse de vache ou crottin de cheval, de gomme, jus et gel végétaux divers (cactus, agave, racines et feuilles gluantes, algues, etc.),

Les polysaccharides sont de longues chaînes de sucres qui peuvent avoir un rôle de structure (cellulose et chitine) ou de stockage de l'énergie (amidon).

Les polysaccharides consolident la terre en formant des armatures microscopiques entre les particules d'argile.

Il existe une très grande variété de polysaccharides qui peuvent être regroupés en sous familles selon leur source. [30]

#### 5.1.1 Cellulose

#### 5.1.1.1 Bouse de vache et crottin

Les excréments de ruminants ou d'équidés sont les ingrédients de stabilisation organique les plus répandus et pratiqués à travers le monde : Afrique (Burkina Faso, Mali, Cameroun, Algérie, Ghana, etc.), Amérique Latine (Pérou, Chili, Argentine, etc.), aux États Unis, en Europe (France, Allemagne, etc.), en Asie (Inde, Népal, etc.). La bouse de vache contient de nombreuses fibres de cellulose en partie décomposées : elles sont très fines et peuvent ainsi interagir davantage avec les argiles de la terre. [30]

#### a) Matière première

La bouse de vache (Figure 3.17) est essentiellement composée de fragments d'herbe non digérés : cellulose et tissus lignifiés (assemblages de fibres assez rigides) et de produits d'origine animale ou microbienne contenus dans les sucs digestifs non digérés. [30]



Figure 3.17 Bouse de vache. [30]

#### b) Principes et interprétation

La décomposition partielle des fibres de cellulose et autres tissus végétaux permet une distribution continue de la taille des fibres dans le mélange : du brin d'herbe à la macromolécule de cellulose micrométrique, toutes les tailles de fibres sont présentes. Ce sont de véritables armatures à plusieurs échelles: du grain de sable à la plaquette d'argile. La macromolécule de cellulose est assez stable et rigide quel que soit le pH du milieu et les sels présents. Sa surface porte une faible charge négative, parfois nulle. Elle est capable de s'adsorber facilement sur des particules minérales. D'ailleurs, elle est suffisamment longue pour se fixer à plusieurs plaquettes d'argile à la fois et les relier entre elles. Lorsque cette adsorption est homogène et bien proportionnée, elle participe à la cohésion du mortier et augmente la résistance de l'enduit. [30]





Figure 3.18 Conservation traditionnelle de la case obus des MOUSGOUMS (Cameroun). [30]

#### 5.1.1.2 Fibres fermentées

La pratique de la macération du stabilisant organique est très répandue : chaque continent dispose de ses variantes. La balle de riz fermentée est fréquemment utilisée au Mali. [30]

#### a) Matière première

Il existe une grande variété de sous produits agricoles s'utilisant comme matière fermente cible pour stabiliser les mortiers de terre. Parmi eux, les pailles fines ou broyées et balles de céréales, les foins sont les plus utilisés. Pour accélérer le processus de dégradation de ces matières, du jus d'ensilage ou des peaux de fruits comme le raisin ou la pomme s'emploient parfois pour déclencher la fermentation. [30]



Figure 3.19 Balle est l'enveloppe qui entoure le grain de riz. [30]

#### b) Principes et interprétation

Lorsque les conditions de température et d'humidité sont favorables, à leur décomposition par des micro-organismes (bactéries et champignons). Ils dégradent peu à peu la matière organique en commençant par absorber des sucres simples. Ils s'attaquent ensuite, par leurs enzymes extracellulaires, à des bio polymères plus ou moins aisément dégradables (pectines, amidon, cellulose, etc.). En revanche, certaines macromolécules comme la lignine sont difficilement dégradées.

Au fur et à mesure de cette dégradation, les molécules de cellulose et autres fibres microscopique

se séparent, la matière végétale se divise : la surface de contact entre les argiles et ces fibres végétales microscopiques est très grande, leurs chances d'interagir se multiplient. [30]





Figure 3.20 Restauration de la Grande Mosquée de Mopti(Mali). [30]

#### 5.1.1.3 Papier Washi

Le papier Washi s'emploie dans les enduits en terre au Japon. Une technique céramique récente, proche de la recette traditionnelle japonaise, la terre papier ou 'paperclay' est une pratique de plus en plus répandue. [30]



Figure 3.21 Papier Washi traditionnellement fabriqué au Japon. [30]

#### a) Matière première

Le papier Washi est fabriqué à partir du bois de petits arbres sauvages du Japon, de Chine, de Corée et du Népal : le mitsumata, le kouzo et le ganpi. Les débuts de la fabrication de ce papier remontent à près de 1 500 ans. Les Japonais utilisent traditionnellement les déchets de papier dans les enduits en terre. [30]

#### b) Principes et interprétation

Les étapes de trituration du papier sont déterminantes pour l'obtention de fines fibres de longueur millimétrique. Plus elles sont prolongées, plus le papier se divise en fines fibres.

L'identique de la paille à l'échelle du grain de sable, les fines fibres de papier sont de véritables armatures pour les argiles. Elles jouent un rôle structurel important en renforçant l'enduit. Lors de chocs, l'énergie emmagasinée se dissipe davantage le long des nombreuses interfaces entre les fibres et le liant, augmentant la résistance à la rupture du matériau. [30]



Figure 3.22 Fibres du papier washi sont utilisées dans la couche de finition de cet enduit. [30]

#### 5.1.2 Gel végétal

#### 5.1.2.1 Cactus, agave, aloès

Les recettes à base de cactus, d'agave ou d'aloès s'emploient fréquemment en Amérique Latine.

#### a) Matière première

La chair des tiges de deux grandes familles de cactus sont utilisées : les cactus ceux du genre Opuntia, dont les cladodes (partie de la tige en forme de feuille) sont aplaties et rondes. Pour les agaves et les aloès, c'est la pulpe des feuilles qui s'emploie comme stabilisant. [30]



Figure 3.23 Pulpe de l'aloe donne un gel translucide. [30]

#### b) Principes et interprétation

Le jus de cactus, tout comme la pulpe d'agave ou d'aloès, est composé essentiellement d'eau et d'un polysaccharide dont la structure est proche de la pectine : une longue molécule ramifiée, capable de former un gel.

Les gels de pectine se forment lorsque ces macromolécules peuvent s'approcher suffisamment les unes des autres et former des liaisons faibles. La formation de gel de pectine est facilitée par une baisse de pH (milieu acide), par l'effet déshydratant du sucre (saccharose) et/ou par la présence de cations comme le sodium ou le calcium qui neutralisent les charges négatives répulsives. L'étape de trempage, parfois de macération, est nécessaire pour réunir les conditions favorables de gélification. [30]

#### 5.1.2.2 Eau gluante

Différentes recettes à base d'eau gluante ont été recensées en Afrique de l'Ouest, notamment au Ghana et au Burkina Faso. [30]



**Figure3.24** Ces feuilles sèches, Fouga, font partie des végétaux qui forment des gels au contact de l'eau. [30]

#### a) Matière première

Différents végétaux sont susceptibles de former un gel au contact de l'eau. La recette du *vuolu* pratiquée au Ghana utilise les branches d'une sorte de vigne sauvage. D'autres tiges et branches, mais aussi des feuilles et des racines, ont également cette capacité de rendre gluante l'eau dans laquelle elles trempent. [30]

#### B) Principes et interprétation

Les molécules de ces différentes matières premières capables de former instantanément un gel au contact de l'eau ne sont pas identifiées. Il s'agit très probablement de diverses macromolécules de la famille des polysaccharides.

Au contact de l'eau, ces macromolécules s'hydratent et se déploient tout en interagissant avec leurs voisines. Généralement, les gels de polysaccharides sont constitués d'un réseau tridimensionnel de macromolécules liées à quelques endroits par des liaisons faibles qui se forment à courte distance (ponts hydrogène, ponts ioniques et liaisons de Van der Waals).

Ces gels jouent un rôle sur la consistance du mortier frais et sur le séchage des enduits. Ce dernier pourrait être un peu ralenti et plus homogène, réduisant la formation de fissures. [30]





Figure 3.25 Eau gluante (Vuolu) Ghana. [30]

#### **5.1.2.3** Algues

La recette traditionnelle de la colle d'algue est originaire du Japon. Elle a inspiré quelques expérimentations récentes en Europe, où son usage a également été recensé. [30]



Figure 3.26 Décoction de cette algue séchée forme un gel en refroidissant. [30]

#### a) Matière première

Les algues utilisées au Japon font partie de la famille des algues rouges. Tsunomata, Funor*i* sont les noms vernaculaires des algues du bord de mer, au nord du Japon.

Deux additifs alimentaires très utilisés dans l'industrie agroalimentaire sont issus des algues rouges : les carraghénanes et l'agar-agar. Ce sont deux gélifiants. [30]

#### b) Principes et interprétation

Les deux principaux extraits d'algues rouges sont l'agar-agar et les carraghénanes. Ces deux polysaccharides forment des gels en refroidissant après avoir atteint des températures entre 60 et 100° C. Ces gels deviennent de plus en plus fluides lorsqu'ils sont remués. Laissée au repos, la matière se réorganise et redevient solide.

Cette propriété facilite la mise en œuvre des enduits. La manière des autres gels de polysaccharides, le gel d'algue, en séchant, devient une colle pour les particules minérales. [30]



Figure 3.27 Algue, Ginnan, du Japon gonfle dans l'eau froide avant d'être bouillie. [30]

#### **5.1.3** Amidon

L'amidon est un glucide (sucre) complexe composé d'unités D-glucose (sucre simple). Il s'agit d'une molécule de réserve pour les végétaux supérieurs et un élément courant de l'alimentation humaine. Chez les animaux et les champignons, l'équivalent de l'amidon est le glycogène : molécule de stockage de glucides et donc d'énergie. [31]

#### 5.1.3.1 Farines de blé

La farine de blé est le résultat de la mouture de la graine du blé tendre ou froment. La mouture a pris diverses formes depuis les premiers usages de la meule à grains. [32]



Figure 3.28 Farine de blé. [32]

#### a) Matière première

La farine de blé est essentiellement composée d'amidon. Ce polysaccharide est la principale réserve nutritive du monde végétal ; il est emmagasiné dans les graines, les tubercules et les racines. Les grains de céréales en contiennent 40 à 90 % de leur poids sec et les tubercules comme la pomme de terre entre 65 et 85 %. [30]



Figure 3.29 Farine de blé contenant de l'amidon. [30]

#### b) Principes et interprétation

Les grains d'amidon ont la particularité d'éclater lorsqu'ils sont en présence d'eau et chauffés à 70C. Il se forme alors un empois, dispersion colloïdale plus ou moins visqueuse qui gélifie en refroidissant (phénomène qui provoque l'épaississement de la sauce béchamel). C'est sous cette forme d'empois que l'amidon est utilisé pour stabiliser la terre.

La présence de sels (sel de table, eau calcaire, etc.) ont une action défavorable : ils ont tendance à inhiber la formation du gel d'amidon. Le gel d'amidon est fluidifiant : plus il est agité, plus il devient fluide. L'ajout de colle de farine (Figure 3.30) dans un mortier de terre modifie sa consistance : il devient plus souple lors de l'application. En séchant, les gels de polysaccharides collent davantage les argiles de la terre, renforçant les propriétés de l'enduit. [30]



Figure 3.30 Colle de farine (Canada). [30]

#### 5.1.3.2 Gomme arabique

La gomme arabique est exportée dès l'antiquité depuis le Soudan. Elle est globalement produite en Afrique Subsaharienne. La gomme de guar est produite en Afrique de l'Ouest et la gomme de caroube dans le bassin méditerranéen. [30]



Figure 3.31 Gomme arabique est secrétée par les arbres de la famille des acacias. [30]

#### a) Matière première

Les gommes naturelles sont extraites des végétaux, à l'exception de la gomme xanthane, produite par des bactéries. Certaines gommes, comme la gomme arabique, sont des exsudats de plantes sécrétés pour cicatriser leurs plaies et se protéger de l'intrusion d'insectes ou de microorganismes. D'autres gommes proviennent de graines de légumineuses (gomme de caroube et gomme de guar). [30]

#### b) Principes et interprétation

La catégorie des gommes regroupe plusieurs polysaccharides : la gomme arabique est composée majoritairement d'un aribino-galactane, la gomme de guar et la gomme de caroube sont des galactomannanes, la gomme xanthane est un hétéropolysaccharide complexe.

Les gommes, notamment celle dont la charge de surface est faible voire nulle, jouent également le rôle de colle pour les terres sableuses. [30]

# 5.2 Lipides

La principale caractéristique des lipides est qu'ils sont insolubles dans l'eau. Ils peuvent être totalement hydrophobes ou amphiphiles. Huile, graisses et beurre peut avoir une origine animale ou végétale. Grâce à leur hydrophobicité, ces additifs ont été utilisés comme surfaces de revêtement imperméables. Le plus utilisé sont l'huile de lin et le beurre de karité, suivis de l'huile de kapok, de l'huile de pépins de raisin, du poisson l'huile d'abeille et la cire de carnauba. En raison du coût élevé de ces produits, leur utilisation est assez limitée et réservée aux finitions et revêtements couches. [33]

#### 5.2.1 Huile de lin

L'huile de lin ou « huile de graines de lin » est une huile végétale de couleur jaune d'or, tirée des graines mûres du lin cultivé, pressées à froid et/ou à chaud ; parfois, elle est extraite par un solvant en vue d'un usage industriel ou artistique, principalement comme siccatif, ou huile auto-siccative.

L'utilisation de l'huile de lin est très courante en Europe. [34]

#### a) Matière première

L'huile de lin est extraite des graines : elles sont séchées puis légèrement grillées avant d'être pressées. L'emploi de cette huile en peinture remonte au 15eme siècle. D'autres huiles, d'usage traditionnel ou récent, sont également employées pour stabilisant la terre : l'huile de kapok, de raisin sauvage, l'huile de poisson, l'huile dure (mélange d'huile de lin, de bois de chine et de ricin), etc. [30]



Figure 3.32 : L'huile de lin est extraite des graines par pression à froid. [30]

#### b) Principes et interprétation

Les huiles sont des composés hydrophobes qui ne sont pas miscibles à l'eau. Elles contribuent à améliorer la résistance à l'eau des enduits et sols en terre.

De plus, certaines huiles, dites siccatives, peuvent rendre plus résistant l'enduit ou le sol de terre, en durcissant. Le phénomène de siccativation concerne les acides gras comportant des doubles liaisons : ceux enrichis en omégas 3, 6 et 9. Il s'agit d'un phénomène très lent de polymérisation des acides gras. Ces acides gras polyinsaturés s'oxydent à l'air et forment des liaisons covalentes entre eux : les molécules d'acides gras se relient fortement les unes aux autres, l'huile durcit.

Les huiles s'utilisent dans la masse, ajoutées après l'eau de gâchage ou en imprégnation sur l'enduit de finition sec. Elles sont généralement réservées aux couches de finition et aux endroits les plus exposés aux détériorations (sols, mur extérieur particulier, etc.). [30]



Figure 3.33 Huile de lin. [34]

#### 5.2.2 Beurre de karité

Le beurre de karité est produit en Afrique de L'Ouest.

Des enduits de terre rouge additionnée au beurre de karité recouvrent ces habitations de la ville de Ségou au Mali. [30]



Figure 3.34 Beurre de karité. [30]

#### a) Matière première

Le beurre de karité est une graisse végétale issue des fruits du karité, arbre des savanes soudaniennes à guinéennes. Certaines recettes mentionnent l'utilisation des résidus ou de l'eau issus de son procédé de fabrication. L'eau de karité est quelques fois utilisée comme eau de gâchage. [30]



Figure 3.35 Beurre de karité est extrait des noix de karité bouillies. [30]

#### b) Principes et interprétation

Les graisses animales et végétales, tout comme les cires, sont des composés hydrophobes. Ajoutées à un mortier de terre, elles ont tendance à améliorer la résistance à l'eau en limitant son absorption. La présence de graisses assouplirait la consistance du mortier frais. [30]



Figure 3.36 Beurres de karités utilisés dans stabilisation traditionnelle. [30]

#### 5.3 Protéines

Les protéines sont des molécules essentielles pour le fonctionnement cellulaire tant dans le monde animal que dans le monde végétal. Elles ont des fonctions très variées suivant leur nature. Certaines ont un rôle structurel, comme le collagène (peau et os), d'autres assurent transport de molécules, comme l'albumine (œuf et sang) et la caséine (lait). Les protéines sont de longues chaines dont les maillons sont des acides amines. Un acide amine est une petite molécule composée d'un carbone asymétrique, lie à une fonction carboxyle (COOH), une fonction amine (NH<sub>2</sub>), un hydrogène (H) et un groupe (R). Cette chaine latérale, R, identifie chaque acide amine.

Il existe au total une vingtaine d'acides amines distinctes, composant toutes les protéines du vivant. Ces acides amines ont des caractéristiques très différentes : certains sont polaires, d' autres portent des charges électrique, d'autres au contraire sont hydrophobes. Les protéines interagissent fortement avec les argiles. Les parties hydrophiles s'adsorbent sur les particules argileuses recouvertes de fines couches de molécules d'eau, tandis que les parties hydrophobes restent a l'extérieur de la matière et donc au contact de l'air, formant une sorte de pellicule de surface qui repousse l'eau.

Les protéines sont de véritables colles des argiles et peuvent également présenter un effet hydrophobes en réduisant la sensibilité a l'eau des enduits en terre stabilises. [30]

#### 5.3.1 Caséine

La caséine est le nom appliqué à une famille de phosphoprotéines généralement trouvé dans le lait des mammifères. La caséine constitue 80% des protéines dans le lait de vache, et se trouve généralement sous forme de suspension de particules appelées « micelles de caséine ». Ces micelles de caséine sont maintenus ensemble par des ions calcium et des interactions hydrophobes.

La caséine isoélectrique (acide) précipite dans le lait liquide via acidification à pH 4,6 (HCl est

généralement utilisé) et par centrifugation ou filtration .La caséine a une grande variété d'utilisations, y compris dans aliments, peintures industrielles, colles, plastiques, et médicaux et dentaires produits. Parmi les applications industrielles, la caséine a été utilisée comme liants à forte résistivité à l'eau.

Les molécules de caséines (Figure 3.37) sont présentes dans le lait sous forme de micelle. C'est une pelote sphérique de 100 nm de diamètre en moyenne, constituée d'un assemblage de nombreuses molécules de caséine. La taille de ces dernières est de l'ordre de 10 nm. [35]

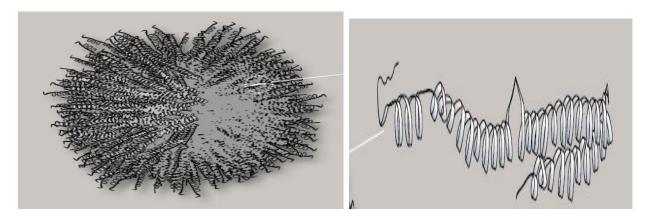



Figure 3.37 Molécules des caséines [35]

#### a) Variantes

Les sources de caséine sont variées : le lait, le fromage blanc 0 % de matière grasse et la caséine en poudre. Les molécules de caséine sont naturellement organisées en petites pelotes. Pour fabriquer la colle de caséine, cette structure doit être cassée, les molécules de caséine dispersées. Lors de cette étape, le lait ou le fromage blanc perd sa couleur blanche pour devenir translucide. Certaines recettes emploient pour cette étape une base forte, comme l'ammoniaque, du carbonate d'ammonium ou du borax. [30]

#### b) Principes et interprétation

Les molécules de caséine sont toutes petites en comparaison de la taille des pelotes de caséine. Une fois libérées par l'ammoniaque, ces molécules sont en partie chargées négativement. Elles conservent sur certains morceaux de leur chaîne leur caractère hydrophobe. [30]

Ce sont donc des molécules amphiphiles: capables de lier à la fois l'eau et à la fois l'air ou des composés ou matériaux hydrophobes. La présence d'une charge négative entraine, suivant les conditions de pH et de force ionique, une attraction ou une répulsion d'origine électrostatique. Suivant la charge portée par les argiles, la caséine peut donc avoir un rôle de dispersant (par neutralisation de charge) ou de colle en liant fortement les particules d'argile entre elles. La caséine est utilisée pour la fabrication de peintures à eau, de papier couché, de plastiques ininflammables, de fibres textiles, de produits pharmaceutiques, etc.... (Génin, 1958). La colle industrielle à base de caséine s'obtient en ajoutant un alcali dans de la caséine préalablement délayée dans l'eau (Beau, 1941). En 2015, la production du lait s'élevait à plus de 25 milliards de litres. 30% sont utilisés pour la fabrication de produits intermédiaires dont la caséine et ses dérivés. En équivalent masse sèche utile du lait, la production de caséine et de caséinate représente 2,1% ("L'économie laitière en France," 2010). [36]

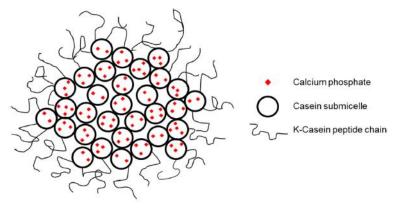



Figure 3.38 Schéma de principe de la structure des micelles de caséine (reproduit d'après Fox et al. 2015 [35]

#### c) Pourquoi la caséine précipite telle après ajout d'acide?

Lorsque le pH du lait est compris entre ses valeurs habituelles soit entre 6,3 et 6,6, les protéines sont dispersées dans le liquide et forment une solution homogène. Mais si la valeur du pH diminue par ajout d'un acide, les macromolécules de protéines se regroupent et se lient entre elles pour former un solide insoluble, les micelles de caséines, qui précipite au fond du récipient, ceci lorsque la valeur du pH du lait atteint 4,6. Ainsi, la charge électrique de la caséine varie avec le pH. [36]

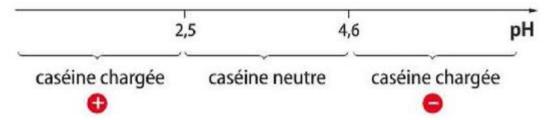



Figure 3.39 Diagramme de la caséine en fonction de ph. [36]

#### 5.3.2 Production de Caséine

Le procédé d'extraction des caséines est très spécifique. Les principales étapes sont les suivantes:

- Coagulation du lait (écrémé), obtention d'un caillé ;
- Séparation solide (caillé) / liquide (sérum), par centrifugation ;
- Purification des grains de caillé (le "lavage");
- Séchage sur séchoir vibre-fluidisé;
- Éventuellement broyage des grains.



Figure 3.40 Principales étapes des la production de Caséine. [37]

La caséine est largement utilisée comme ingrédient alimentaire (dans les glaces, les yaourts, les charcuteries, les sauces, etc.), mais aussi dans les cosmétiques, la chimie (liants dans les peintures, les adhésifs) et même par le passé pour faire de beaux boutons de vêtements [37]

#### 5.3.2.1 Recette de colle de caséine

Utiliser « 1 L de fromage blanc 0 %

Ajouter 1 petit verre à gnôle d'ammoniaque. Bien mélanger.

Laisser reposer une nuit.

Le lendemain on aura un liquide transparent/ translucide.

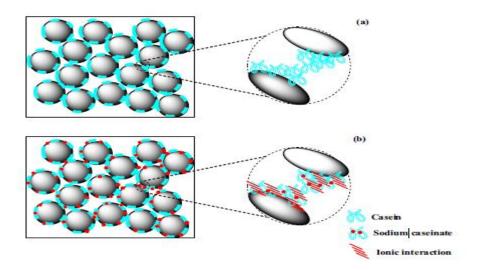
Ajouter 1 à 2 volumes équivalents en eau.

Bien homogénéiser.

Teinter avec des pigments ou simplement de l'argile (en poudre).

Utiliser dans les 2 - 3 jours. [30]

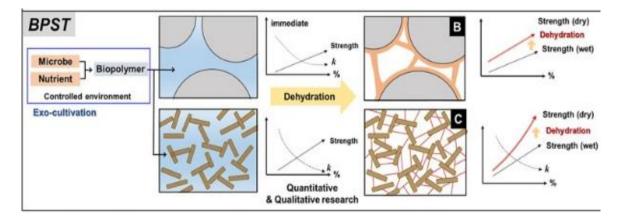





**Figure3.41** Recette de France à base de colle de caséine. In : Fontaine, L., Anger., (2007). Gisèle Taxil. [30]

Cette recette est pratiquée en Europe, notamment en France. La colle de caséine est connue depuis longtemps pour coller le bois. Elle était utilisée dans les assemblages des avions en bois pendant la première guerre mondiale. [30]

#### 5.3.3 Utilisation de la caséine en géotechnique


Depuis quelques années, la caséine est devenue l'un des bio-polymères utilisés dans les études géotechniques dont les expérimentations en laboratoire ont montré de bons résultats dans l'amélioration des propriétés mécaniques des sols sableux et argileux.



**Figure 3.42** Modèle d'interaction bio-polymères à base de protéines: (a) Sable traité à la caséine (b) Sable traité à la caséinate de sodium. [40]

**Tableau3.2** Caséine couramment utilisés en géotechnique. [41]

| Biopolymère | Caractéristiques chimiques                                            |           |    |                                                                                                                                   |                  | Co | mportement                                                                 |
|-------------|-----------------------------------------------------------------------|-----------|----|-----------------------------------------------------------------------------------------------------------------------------------|------------------|----|----------------------------------------------------------------------------|
|             | Composition                                                           | Structure | Rh | éologie                                                                                                                           | [\$/kg] avec les |    | ec les sols                                                                |
| Caséine     | C <sub>81</sub> H <sub>125</sub><br>N <sub>22</sub> O <sub>39</sub> P | Āiguti.   |    | Propriétés hydrophobes  Largement utilisé dans les aliments, les peintures, les adhésifs, les plastiques et les cabinets médicaux | 5–50<br>(~80)    |    | Renforcement  Résistance à l'eau  Réduction de la conductivité hydraulique |



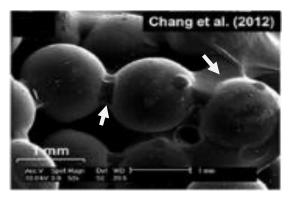



Figure 3.43 Traitement du sol à base de bio polymère (BPST) (images MEB d'après, Chang et al.).

#### 5.3.4 L'ovalbumine et l'albumine du sang

L'albumine est une protéine soluble dans l'eau que l'on retrouve dans le sérum du sang animal ou dans le blanc d'œuf (ovalbumine). L'ovalbumine représente 50% des protéines du blanc d'œuf. C'est une phosphoprotéine globulaire dont la moitié des acides aminés sont hydrophobes. On retrouve également dans le blanc d'œuf, d'autres protéines comme l'ovotransferrine (13% des protéines du blanc d'œuf) et l'ovomucoïde. Les protéines du blanc d'œuf, dont l'ovalbumine, sont réputées être très tensioactives et sont de ce fait utilisées dans diverses industries pour la formation de mousses stables (Phillips, 2009).

En 2004, on estime à 250 000 tonnes en équivalent liquide dont 8 000 tonnes sous forme déshydratée, la production d'ovo produits à base d'œuf de poule. Ces coproduits sont principalement utilisés dans l'industrie de confiserie de pâtisserie et de biscuiterie et aussi en cosmétique. [39]



Figure 3.44 Gouttes d'eau sur un enduit de terre rouge au blanc d'œuf. [38]

## 5.4 Autres molécules complexes

Les tanins sont des molécules très répandues dans le règne végétal. Ils sont présents dans quasiment toutes les parties des plantes. Le mot tanin trouve son origine dans le nom celtique du chêne tan. L'utilisation des tanins pour convertir les peaux en cuir est connue depuis la haute Antiquité. Lors du tannage des peaux, les tanins et abolissent des liaisons entre les fibres de collagène (protéiné) transformant les peaux fraiches en cuir imputrescible.

La noix de galle, très riche en tanin est une excroissance formée sur les tiges ou les feuilles de végétaux en réponse à la piqure d'un parasite. Elle est utilisée historiquement dans la préparation de l'encre noire, broyée et mélangée a du sulfate de fer. Le complexe forme s'appelle du tannante de fer.

L'effet des tanins sur la cohésion argiles est bien moins visible que celui des ions de fer. Ces ions métalliques ont une densité de charge si élevée qu'ils collent fortement les plaquettes d'argile entre elles et rendent la terre insensible a l'eau. [30]

#### **5.4.1** Tanin

Le mot « tanin » vient du terme celtique « tan » qui désigne le chêne dont il était autrefois extrait pour le tannage du cuir. Les tanins sont des composés végétaux présents sur quasiment toutes les parties de la plante. Leur rôle physiologique est essentiellement de pigmentation et de protection contre les agressions biologiques (herbivores). [38]

#### a) Matière première

Le néré est un arbre de la famille des Fabacées. Les cosses, longues gousses suspendues en grappe et contenant de nombreuses graines noires enrobées de pulpe jaune, sont l'ingrédient principal de la décoction. La décoction de cosses de néré est désignée par différents noms locaux : Dawa-Dawa au Nord Ghana, les fruits sont appelés Assansi ou Brâa au sud du Burkina Faso où le néré est connu sous le nom de Tiapogo, Makuba ou Iiru et nommé Dorowa au Nigeria. [30]



Figure3.45 Cosses de néré de couleur rouge-brun foncé. [30]

#### b) variantes

Certaines recettes mentionnent le caroubier (Ceratonia Siliqua) et l'algarrobo (Hymenaea Courbaril), espèces proches du néré (Parkia Biglobosa). Dans une autre recette, pratiquée au Burkina, des pierres de limonite (oxydes de fer) sont additionnées aux gousses d'acacia séchées dans le bain bouillant de la décoction. [30]



Figure 3.46 Pierres de limonite composées d'oxydes de fer. [30]

Dans certains cas, des écorces Ampoa et des feuilles rendant l'eau gluante sont ajoutées à la préparation. La décoction obtenue est appliquée en badigeon sur la couche de finition (décorations de terres colorées, enduits ou sols). [30]





Figure 3.47 Décoction appliquée en badigeon sur la couche de finition. [30]

# **III.6 Conclusion**

A travers ce chapitre, nous avons fourni une bibliographie assez complète sur les différentes techniques de stabilisation des sols avec des liants traditionnels comme le ciment et la chaux et non conventionnels comme le laitier, Pouzzolane naturelle, dolomite, etc....

Nous avons également résumé les types de fibres naturelles et synthétiques qui servent à renforcer le sol.

Enfin, nous avons expliqué un nouveau type de matériau améliorant le sol, à savoir les bioliants de différents types, et nous montré comment les utiliser dans les constructions.

# CHAPITRE IV: ESSAIS EXPERIMENTAUX ET ANALYSE DES RESULTATS

# Chapitre IV : Essais Expérimentaux Et Analyse Des Résultats IV.1 Introduction

Dans ce chapitre, nous présentons une description détaillée du sol étudié et son utilisation. Nous exposons ici les différentes techniques de caractérisation du sol ainsi que la méthodologie d'étude. Cette méthodologie sert à bien tracer le chemin qui mène à la faisabilité ou non de ce matériau. Notre recherche a ciblé principalement le sol du Ben Djerrah dans le but d'assurer la faisabilité technique de l'utilisation de ce sol dans la fabrication des briques en terre crue BTC.

# IV.2 Situation géographique et caractéristiques du sol utilisé

Le gisement de Kaolin de Bendjerrah se trouve à 7 km du sud de la ville de Guelma, À coté de la briqueterie de Benouhiba. L'utilisation de l'argile de Bendjerrah est une autre source de ce matériau. Cette argile sert comme matériau de base pour la construction de brique en terre cuite depuis les années quatre vingt dix du siècle précédent. La superficie sur laquelle la briqueterie de Benouhiba est construite est estimée à une vingtaine d'hectares (Figure 4.1). La fabrication des briques nécessite une consommation très énorme de l'énergie et un dégagement d'une quantité non négligeable de dioxyde de carbone.



Figure 4.1 Gisement de Kaolin de Bendjerrah

## IV.3 Essais d'identification

Dans les études géotechniques, les essais d'identifications sont des tâches principales. Ces essais sont effectués comme suit :

# 3.1 Analyse granulométrique par lavage et sédimentométrie selon les normes NF P18-560 et NF P94-057

La composition granulométrique influence de façon primordiale les comportements physique et mécanique du sol et toutes les propriétés liées à la teneur en eau et aux fluctuations de celle-ci (compacité, plasticité, portance, capacité de rétention, perméabilité, capillarité). La composition granulaire du sol est déterminée à travers deux essais: le tamisage par voie humide et la sédimentométrie selon les normes NF P18-560 et NF P94-057 successivement. L'analyse granulométrique consiste à séparer les grains agglomérés

d'une masse connue de matériau par brassage sous l'eau, à fractionner ce sol, une fois séché (Figure 4.3) au moyen d'une série de tamis (Figure 4.2) et à peser successivement le refus cumulé sur chaque tamis. La masse de refus cumulé sur chaque tamis est rapportée à la masse totale sèche de l'échantillon soumis à l'analyse. La fraction fine de taille inférieure à 80µm est reprise pour faire l'essai de sédimentométrie. Cet essai permet de fournir la distribution des tailles des particules fines par le biais de la vitesse de décantation qui est liée à leurs dimensions. La loi de Stockes donne dans le cas des grains sphériques de même masse volumique, la relation entre le diamètre des grains et leur vitesse de sédimentation. Par convention, cette loi est appliquée aux éléments d'un sol pour déterminer des diamètres équivalents de particules. Les particules passant 80µm séparées du reste du sol par tamisage sont mises en suspension dans de l'eau additionnée d'un défloculant. Les particules décantent à différentes vitesses en relation avec leur taille. La distribution pondérale de la taille des particules est calculée à partir de la masse volumique de la solution qui évolue au fur et à mesure qu'elle se décante.



Figure 4.2 Tamis dans l'ordre décroissant



Figure 4.3 Tamisage du sol étudié



**Figure 4.4** Essai de sédimentation



Figure 4.5 Matériel utilisé pour la sédimentation

Le matériel nécessaire (Figure. 4.5) est cité ci-dessous : - deux éprouvettes cylindriques graduées en verre transparent (1) - un densimètre (2) ; - un thermomètre (3) ; - un chronomètre (4) ; - un agitateur manuel (5) ; - une balance de précision de 0.01g (6) ; - un

tamis de diamètre  $80\mu m$  (7) ; - Un bac pour recueillir le tamisât (8) ; - un agitateur mécanique.

Tableau 4.1 Données des essais d'analyse granulométrique et la sédimentométrie

| Masse initiale | 1000 g   |              |              |                |
|----------------|----------|--------------|--------------|----------------|
| D tamis (mm)   | Refus(g) | Refus cum(g) | Refus cum(%) | Tamisât cum(%) |
| 6,3            | 0        | 0            | 0            | 100            |
| 5              | 0,3      | 0,3          | 0,04         | 99,96          |
| 4              | 7        | 7,3          | 0,01         | 99,08          |
| 3,35           | 15,7     | 23           | 2,87         | 97,13          |
| 2              | 25,7     | 48,7         | 6,09         | 93,91          |
| 1,18           | 60,1     | 108,8        | 13,6         | 86,4           |
| 0,6            | 67,1     | 175,9        | 21,99        | 78,01          |
| 0,425          | 29,3     | 205,2        | 25,65        | 74,35          |
| 0,3            | 11,1     | 216,3        | 27,03        | 72,97          |
| 0,212          | 11,6     | 227,9        | 28,29        | 71,51          |
| 0,15           | 16,8     | 244,7        | 30,59        | 69,41          |
| 0,08           | 17       | 261,7        | 32,72        | 67,28          |
| 0,07           |          |              |              | 65,4303        |
| 0,055          |          |              |              | 62,357         |
| 0,04           |          |              |              | 60,1657        |
| 0,025          |          |              |              | 58,156         |
| 0,018          |          |              |              | 56,2648        |
| 0,013          |          |              |              | 53,4279        |
| 0,0095         |          |              |              | 49,8818        |
| 0,007          |          |              |              | 44,4444        |
| 0,0033         |          |              |              | 32,0615        |
| 0,0024         |          |              |              | 9,45626        |

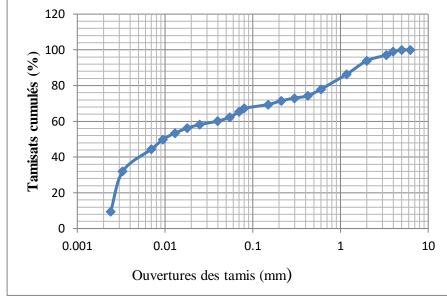



Figure 4.6 Courbe granulométrique du sol étudié

A partir de la courbe granulométrique (Figure 4.6), on peut déterminer :

• Coefficient d'uniformité Cu (coefficient de Hazen)

$$\mathbf{Cu} = \frac{D60}{D10} = \frac{0.04}{0.0025} = \mathbf{16}$$

Avec Dy : ouverture des tamis laissant passer y% du poids des grains.  $D_{10}$  est appelé diamètre efficace.

C<sub>u</sub><2 granulométrie uniforme ou serrée C<sub>u</sub>>2 granulométrie étalée

• Coefficient de courbure Cc

$$\mathbf{Cc} = \frac{D30^2}{D10 \times D60} = \frac{0.0032^2}{0.0025 \times 0.04} = \mathbf{0.10}$$

Le coefficient Cc permet d'apprécier la forme de la courbe granulométrique. C'est un autre paramètre permettant d'estimer la distribution granulométrique de l'échantillon. Un coefficient Cc = 0.10 qui est nettement inférieur à 2. (Granulométrie uniforme ou serrée).

## 3.2 Essai au bleu de méthylène (VBS) selon la norme AFNOR NF P 94-068

L'essai au bleu de méthylène dit aussi l'essai à la tache est effectué selon la norme (NF P94- 068). Cet essai permet d'apprécier globalement l'activité de la fraction argileuse d'un sol en mesurant la surface interne et externe des grains argileux.

Pour ce faire, on fixe sur les grains d'argile des molécules de bleu de méthylène et par test simple, on évalue la quantité de bleu fixé. On en déduit la valeur au bleu du sol (VBS), qui est un indicateur essentiel dans la classification des sols. Les Figures. 4.7 et 4.8 montrent les différentes étapes de l'essai au bleu de méthylène.



Figure 4.7 Equipement pour l'essai VBS

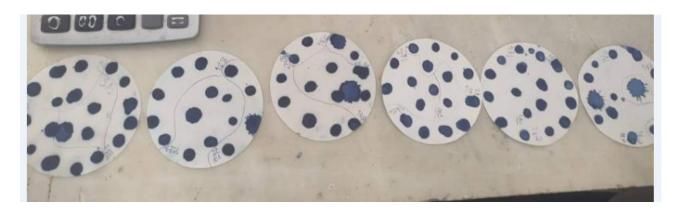



Figure 4.8 Résultats de l'essai VBS

Les résultats de l'essai au bleu de méthylène sont résumés dans le tableau 4.2.

Tableau 4.2 Tableau récapitulatif de l'essai VBS

| Poids sol (g)     | 60   |
|-------------------|------|
| Fraction 0/1 (mm) | 0.01 |
| Volume bleu (cm3) | 360  |
| Masse bleu (g)    | 3.60 |
| VBS               | 6.00 |

B : masse de bleu introduite (solution à 0/l) : B = V\*0.01

 $B=360\times0.01=3.60 g$ 

 $VBS = B/m_0 * C * 100 Si : D_{max} > 5mm.$ 

 $VBS = (B/m_0) * 100 Si : D_{max} < 5mm.$ 

Donc: VBS = (3.60/60)\*100 = 6

La valeur de bleu (VBS) s'exprime par la quantité de bleu en grammes consommée par 100 grammes de fines. La figure. 4.9 montre la classification du sol selon la valeur de bleu de méthylène.

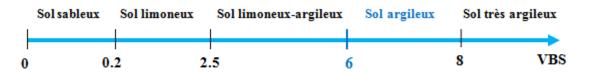



Figure 4.9 Classification du sol selon la valeur de bleu de méthylène.

D'après les résultats trouvés et rapportés au tableau 4.3, le sol étudié est considéré comme sol argileux.

Échantillon

Valeur du Bleu de méthylène (VBS)

Classification du sol

Sol argileux

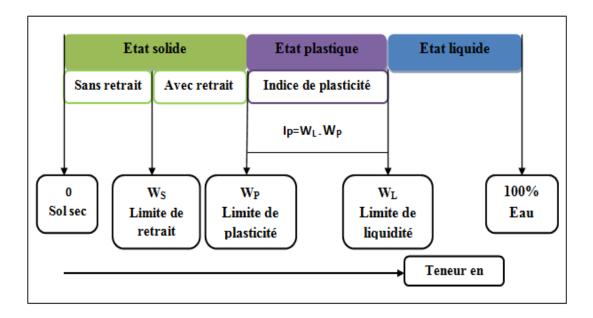

6.00

Tableau 4.3 Classification du sol étudié

#### 3.3 Limites d'Atterberg (NORME NF P 94-051)

Sol étudié

Le diagramme montré à la figure 4.10 donne une idée sur la variation de la consistance d'un sol fin en fonction de la teneur en eau et la limite de liquidité, limite de plasticité et limite de rétrécissement correspondantes.



**Figure 4.10** Diagramme variation de la consistance d'un sol fin en fonction de la teneur en eau.

#### 3.3.1 Limite de liquidité (W<sub>L</sub>)

Nous avons déterminé la limite de liquidité par l'essai du l'appareil de Casagrande (Figure 4.11). Il est réalisé sur la fraction passant au travers du tamis d'ouverture 400µm. La teneur en eau à laquelle un sol cesse d'être plastique pour devenir liquide si on y ajoute de l'eau (limite de liquidité). Cette limite est atteinte lorsque le sol se referme sur une longueur de 12 à 13 mm après 25 coups, (Figure 4.12), dans une coupelle prévue à cet effet, à une fréquence de deux chutes par secondes et d'une hauteur de 1 cm

Cet essai est effectué uniquement sur les éléments fins du sol et consiste à faire varier la teneur en eau de l'élément en observant sa consistance. Il permet également de faire une classification du sol.



Figure 4.11 Appareil de Casagrande utilisé dans l'essai de Limite de liquidité



Figure 4.12 Sol se referme sur une longueur de 12 à 13 mm après être tombé 25 fois.

Le tableau 4.4 résume l'ensemble des résultats obtenus à par l'essai de l'appareil de Casagrande.

2 3 4 1 **Essais** Masse humide (g) 26,2 26,6 24,25 18,9 Masse sec (g) 17,7 18,4 17,2 13,6 w (%) 44,56 42,44 38,97 48,02 24 **26 34 16** Nombres des coups

Tableau 4.4 Résultats de la limite de liquidité

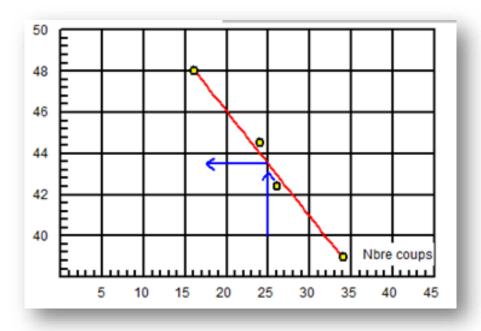



Figure 4.13 Détermination de la limite de liquidité

La limite de liquidité est la teneur en eau qui correspond à 25 coups. Elle est donc égale à  $W_L = 43.5\%$ .

#### 3.3.2 Limite de plasticité W<sub>P</sub>

Concernant la limite de plasticité  $W_P$ , l'essai consiste à la recherche de la teneur en eau pour laquelle un rouleau de sol, de dimension fixée et confectionné manuellement, se fissure en morceaux de longueurs de 1cm à 2cm, (norme NF P94-051). Il est effectué, comme pour la limite de liquidité, sur la fraction passant au travers du tamis d'ouverture  $400\mu m$ . La figure 4.14 et le tableau 4.5 montrent les échantillons sur lesquels sont effectués les essais de limite de plasticité et les résultats correspondants.



Figure 4.14 Détermination de la limite de plasticité

Tableau 4.5 Résultats de la limite de plasticité

| Masse humide (g) | Masse sèche (g) | W (%)  |
|------------------|-----------------|--------|
| 1,7              | 1,.4            | 21,42% |
| 1, 6             | 1,3             | 23,07% |
| 2,1              | 1,7             | 23,63% |

La limite de plasticité est la moyenne des trois teneurs en eau indiquées au tableau 4.5. Elle est égale à :  $W_P = 22,67\%$ 

IP est l'indice de plasticité ; c'est la différence entre les deux limites de liquidité et de plasticité, il caractérise l'étendue ou la zone où le sol étudié a un comportement plastique.

$$I_P = W_L - W_P = 43,5-22,67 = 20,83\%. \approx 21\%$$

D'après ce qui est trouvé, on peut donner la classification du sol étudié.

Tableau 4.6 Etat du sol en fonction de l'indice de plasticité

| Indice de plasticité | Etat du sol    |
|----------------------|----------------|
| 0-5                  | Non plastique  |
| 5-15                 | Peu plastique  |
| 15-40                | Plastique      |
| >40                  | Très plastique |

L'état du sol est **Plastique** (**Tableau 4.6**)

Le diagramme de la figure 4.15 et l'abaque de Casagrande (figure 4.16) montrent les différents intervalles d'argilosité.

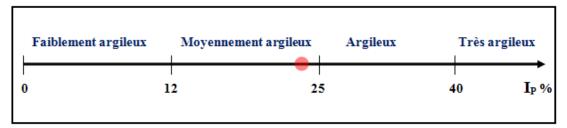



Figure 4.15 Seuils d'Argilosité



Figure 4.16 Abaque de Casagrande

Ce sol est une argile moyennement (peu) plastique.

Le tableau 4.7 montre les résultats des limites d'Atterberg pour quatre différents minéraux d'argile.

**Tableau 4.7** Limites d'Atterberg de certaines argiles d'après (Monaco A. et CHASSEFIERE B.1976)

|    | Smectite   | Attapulgite    | Illite  | Kaolinite |
|----|------------|----------------|---------|-----------|
| WL | 100 à 1000 | 150 à 270      | 60 à 90 | 30 à 75   |
| WP | 50 à 100   | 100 en moyenne | 25 à 60 | 20 à 40   |
| IP | 75 à 125   | 20 en moyenne  | 25 à 50 | 10 à 40   |

D'après le tableau 4.7, on note que le sol étudié est une argile de type Kaolinite.

#### 3.3.3 Limite de Retrait linéaire LR la norme BS 1377

Le retrait linéaire est la teneur en eau pondérale conventionnelle de dessiccation d'un sol remanié, au dessous de laquelle la longueur de l'échantillon est supposée ne plus varier. Elle est déterminée par la norme BS 1377. Après le séchage de l'échantillon dans un endroit à l'abri du courant d'air pour plusieurs jours, la longueur finale est mesurée.

Le Moule pour la confection d'éprouvettes est un demi-cylindre de 140 mm de longueur et de 12,5 mm de rayon, comme le montre la figure 4.17. Cet essai permet la mesure de la limite de retrait linéaire du sol et indique les propriétés plastiques du sol argileux.

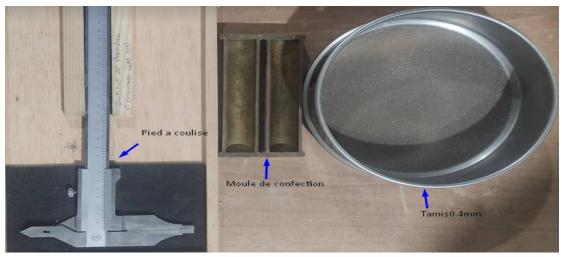



Figure 4.17 Matériel utilisé dans l'essai de Limite de Retrait linéaire





Figure 4.18 Deux échantillons pour l'essai du retrait

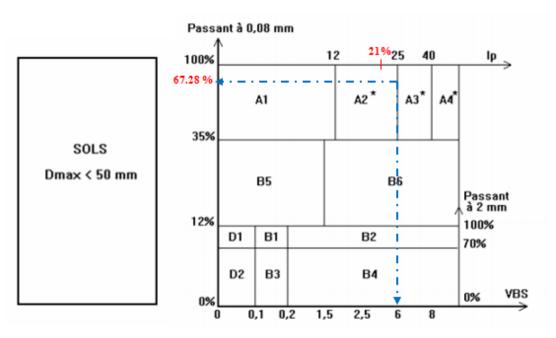
Le tableau 4.8 résume les longueurs initiales et finales des deux échantillons du sol étudié.

Longueur Retrait linéaire moyen Dosage en Longueur initiale (%)(%) finale(mm) (mm)  $SL = (L0-L1) \times 100$ 14 12.34 11.85 14 12.40 11.42 1 14 12.47 10.92 2 12,63 9,78 14 4

**Tableau 4.8** Résultat de l'essai du retrait

D'après le tableau 4.8, la limite de retrait est déminée en fonction de l'augmentation du dosage du produit de traitement (caséine).

# IV.4 Classification du sol étudié


#### 4.1 Selon GTR selon NF P11-300

En tenant compte des résultats d'Analyse granulométrique et limites d'Atterberg et du bleu de méthylène, le sol en question peut être classifié selon GTR, comme le montre le tableau 4.9

Tableau 4.9 Classification des sols fins selon GTR

NF P11-300

| Classe                                                         | Α         |                                                                 | Tableau 1 -                       | Classification des sols fins                                                                                   |                                         |
|----------------------------------------------------------------|-----------|-----------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                | Class     | ement selon la nat                                              | ure                               | Classement selon l'état hydrique                                                                               |                                         |
| Paramètres de<br>nature<br>Premier niveau<br>de classification | Classe    | Paramètres de<br>nature<br>Deuxième niveau de<br>classification | Sous classe fonction de la nature | Paramètres d'état                                                                                              | Sous<br>classe<br>fonction de<br>l'état |
|                                                                |           |                                                                 | <b>A</b> <sub>1</sub>             | IPI $^{(*)} \le 3$ ou $w_n \ge 1,25 w_{OPN}$                                                                   | A <sub>1</sub> th                       |
|                                                                |           | VBS ≤ 2,5 (*)                                                   | Limons peu plastiques, loess,     | $3 < IPI^{(1)} \le 8$ ou $1,10 \le w_n < 1,25 w_{OPN}$                                                         | A <sub>1</sub> h                        |
|                                                                |           | ou                                                              | silts alluvionnaires, sables fins | $8 < IPI \le 25 \text{ ou } 0.9 \text{ w}_{OPN} \le \text{w}_n \le 1.1 \text{ w}_{OPN}$                        | A <sub>1</sub> m                        |
|                                                                |           | $I_p \leq 12$                                                   | peu pollués, arènes peu           | $0.7 \text{ W}_{\text{OPN}} \le w_n < 0.9 \text{ W}_{\text{OPN}}$                                              | A <sub>1</sub> s                        |
|                                                                |           |                                                                 | plastiques                        | $w_n < 0.7 w_{OPN}$                                                                                            | A <sub>1</sub> ts                       |
| Dmax ≤ 50<br>mm                                                |           |                                                                 |                                   | IPI $^{(")} \le 2$ ou $I_c$ $^{(")} \le 0.9$ ou $w_n \ge 1.3$ $w_{OPN}$                                        | A <sub>2</sub> th                       |
| et _                                                           | (A)       | 12 < I <sub>p</sub> ≤ 25 <sup>(*)</sup>                         | $\rightarrow$ $(A_2)$             | $2 < IPI$ (*) $\leq 5$ ou $0.9 \leq I_c$ (*) $< 1.05$ ou $1.1$ $W_{OPN} \leq W_n < 1.3$ $W_{OPN}$              | A <sub>2</sub> h                        |
| Tamisat à                                                      |           | ou                                                              | Sables fins argileux, limons,     | $5 < IPI \le 15$ ou $1,05 < I_c \le 1,2$ ou $0,9$ $w_{OPN} \le w_n < 1,1$ $w_{OPN}$                            | A <sub>2</sub> m                        |
| 80 μm > 35%                                                    | Sols fins | 2,5 < VBS ≤ 6                                                   | argiles et marnes peu plastiques  | $1.2 < I_c \le 1.4 \text{ ou } 0.7 \text{ w}_{OPN} \le w_n < 0.9 \text{ w}_{OPN}$                              | A <sub>2</sub> s                        |
|                                                                |           |                                                                 | arènes                            | I <sub>c</sub> > 1,3 ou w <sub>n</sub> < 0,7 w <sub>OPN</sub>                                                  | A <sub>2</sub> ts                       |
|                                                                |           |                                                                 |                                   | IPI $^{(')} \le 1$ ou $I_c ^{(')} \le 0.8$ ou $W_n \ge 1.4 \ W_{OPN}$                                          | A <sub>3</sub> th                       |
|                                                                |           | $25 < I_p \le 40^{(*)}$                                         | $(A_3)$                           | 1 < IPI $^{(^{\circ})} \le$ 3 ou 0,8 $\le$ I $_c$ $^{(^{\circ})}$ < 1 ou 1,2 $w_{OPN} \le w_n$ < 1,4 $w_{OPN}$ | A <sub>3</sub> h                        |
|                                                                |           | ou                                                              | Argiles et argiles mameuses,      | $3 < IPI \le 10$ ou $1 < I_c \le 1,15$ ou $0,9$ $w_{OPN} \le w_n < 1,2$ $w_{OPN}$                              | A <sub>3</sub> m                        |
|                                                                |           | 6 < VBS ≤ 8                                                     | limons très plastiques            | $1,15 \le I_c \le 1,3 \text{ ou } 0,7 \text{ w}_{OPN} \le w_n \le 0,9 \text{ w}_{OPN}$                         | A <sub>3</sub> s                        |
|                                                                |           |                                                                 |                                   | I <sub>c</sub> > 1,3 ou w <sub>n</sub> < 0,7 w <sub>OPN</sub>                                                  | A <sub>3</sub> ts                       |
|                                                                |           |                                                                 |                                   |                                                                                                                | A <sub>4</sub> th                       |
|                                                                |           | I <sub>p</sub> > 40 <sup>(*)</sup>                              | $A_4$                             | Valeurs seuils des paramètres d'état,                                                                          | A <sub>4</sub> h                        |
|                                                                |           | ou                                                              | Argiles et argiles mameuses,      | à définir à l'appui d'une étude spécifique                                                                     | A <sub>4</sub> m                        |
|                                                                |           | VBS > 8                                                         | très plastiques                   |                                                                                                                | A <sub>4</sub> s                        |



**Tableau 4.10** Tableau synoptique de classification des matériaux selon leur nature.

D'après les tableaux 4.9 et 4.10 ce sol est sol fin de classe A2 selon l'Ip; VBS et les passant à 0.08mm.

Selon la classification GTR, le sol étudié est une argile peu plastique.

#### 4.2 Selon AASHTO

La classification AASHTO (Américain Association of States Highway and Transportation Official) est une version plus élaborée de la classification de Terzaghi (1929). Elle trouve son application essentiellement en géotechnique routière.

Dans le système de classification AASHTO, on trouve huit groupes de sol (A-1 à A-8) et quelques sous-groupes. Les seuls essais qu'il est nécessaire d'effecteur sont l'analyse granulométrique et les essais de limites de consistance. Le tableau ci-dessous fournit la classification de l'AASHTO utilisée de nos jours.

Les sols grenus sont classés dans les catégories A-1 à A-3, de la catégorie A-1 sont bien étalés alors que ceux de la catégorie A-3 sont des sables propres et à granulométrie uniforme. Quant à ceux de la catégorie A-2, ils contiennent un pourcentage significatif de particules fines (jusqu'à 35 % de particules passant le tamis N0. 200).

Dans les catégories A-4 à A-7, On trouve des limons et des argiles ; leur classification repose sur les limites d'Atterberg. Les zones contenant les valeurs de  $W_L$  et de Ip propose à chacun des groupes A-4 à A-7 et des sous-groupes de A-2. On classe généralement les sols fortement organiques (les tourbes, par exemple) dans le groupe A-8. Comme dans système **Unified Soil Classification System** (USCS), les sols A-8 sont classés d'après un examen visuel.

| General<br>Classification                                                                                            |                            | Granular materials (35% or less passing No. 200 Sieve (0.075 mm) |                   |                                       |                       |        | Silt-clay Materials<br>More than 35% passing No. 200 Sieve<br>(0.075 mm) |        |              | 00 Sieve |                |
|----------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|-------------------|---------------------------------------|-----------------------|--------|--------------------------------------------------------------------------|--------|--------------|----------|----------------|
|                                                                                                                      | A                          | _1                                                               | 100               | A-2                                   |                       |        |                                                                          | - 0    |              | A-7      |                |
| Group<br>Classification                                                                                              | A-1-a                      | А—1—6                                                            | A-3               | A-2-4                                 | A-2-5                 | A-2-6  | A-2-7                                                                    | A-4    | A-5          | A6       | A-7-5<br>A-7-6 |
| (a) Sieve Analysis:<br>Percent Passing<br>(i) 2.00 mm (No. 10)<br>(ii) 0.425 mm (No. 40)<br>(iii) 0.075 mm (No. 200) | 50 max<br>30 max<br>15 max | 50 max<br>25 max                                                 | 51 min            | 35 max                                | 35 max                | 35 max | 35 max                                                                   | 36 min | 36 min       | 36 min   | 36 min         |
| (b) Characteristics of<br>fraction passing<br>0.425 mm (No. 40)                                                      | 13 max                     | as man                                                           | TO MAX            | , , , , , , , , , , , , , , , , , , , |                       |        |                                                                          |        |              |          |                |
| (i) Liquid limit                                                                                                     |                            |                                                                  | 7 3               | 40 max                                | 41 min                | 40 max | 41 min                                                                   | 40 max | 41 min       | 40 max   | 41 min         |
| (ii) Plasticity index                                                                                                | 6 n                        | nax                                                              | N.P.              | 10 max                                | 10 max                | 11 min | 11 min                                                                   | 10 max | 10 max       | 11 min   | 11 min*        |
| (c) Usual types of<br>significant<br>Constituent materials                                                           |                            | ne Fragments  evel and sand Fine Sand Silty or C                 |                   | ity or Claye                          | or Clayey Gravel Sand |        | Silty Soils                                                              |        | Clayey Soils |          |                |
| (d) General rating as subgrade.                                                                                      |                            |                                                                  | Excellent to Good |                                       |                       |        |                                                                          |        | Fair         | o Poor   |                |

**Tableau 4.11:** Tableau de classification AASHTO

D'après le tableau 4.11. Ce sol est de classe A-7-6 selon le passant à 0.075 mm,  $W_L$ ,  $W_P$  et IP, nous pouvons alors dire que c'est un **sol argileux**.

#### 4.3 Essai Proctor normal selon la norme NF 94-093

La présente norme détermine les caractéristiques de compactage d'un sol qui sont la teneur en eau optimale (Wopt en %) et la masse volumique sèche maximale ( $\rho_d$  max). Le principe de l'essai Proctor normal consiste à humidifier un matériau à plusieurs teneurs en eau et à le compacter avec une dame normalisée, pour chacune des teneurs en eau, selon un procédé et une énergie conventionnelle. Pour chacune des valeurs de teneur en eau considérée, on détermine la masse volumique sèche du matériau et on trace la courbe de variation de cette masse volumique en fonction de la teneur en eau.



Figure 4.19 Vue générale de l'équipement de l'essai Proctor.

Les résultats de l'essai Proctor Normal sont rapportés au tableau 4.12

Tableau 4.12 Résultats de l'essai Proctor Normal

| N° de l'essai                      | 1       | 2       | 3       | 4       | 5       |
|------------------------------------|---------|---------|---------|---------|---------|
| Teneur en eau (%)                  | 12      | 14      | 16      | 18      | 22      |
| Masse du moule m(g)                | 1839    | 1839    | 1839    | 1839    | 1839    |
| Masse moule+sol humide (g)         | 3586,5  | 3692,5  | 3765,3  | 3824,8  | 3851,5  |
| Masse du sol humide (g)            | 1747,5  | 1853,5  | 1926,3  | 1985,8  | 2012,5  |
| Volume du moule (cm <sup>3</sup> ) | 995,282 | 995,282 | 995,282 | 995,282 | 995,282 |
| $\rho_h (g/cm^3)$                  | 1,756   | 1,862   | 1,935   | 1,995   | 2,022   |
| $\rho_{\rm d}~({\rm g/cm^3})$      | 1,57    | 1,63    | 1,67    | 1,69    | 1,66    |

Les résultats de l'essai Proctor Normal sont illustrés à la figure 4.20.

#### 4.4 Essai de Proctor modifié

Cet essai normalisé (NF P 94-093) permet de reproduire au laboratoire plus ou moins les conditions de compactage sur chantier. Il est effectué généralement selon deux modes de compactages d'intensités différentes : par l'essai Proctor standard (à énergie moyennement poussée) et par l'essai Proctor modifié à énergie plus intense, ce dernier a été choisi pour mener cette investigation. Si l'on fait varier la teneur en eau de l'échantillon et que l'on représente graphiquement la variation de  $\rho_d$  en fonction de w (%), on obtient une courbe en cloche qui représente un point haut qu'on l'appelle « optimum Proctor ».

Les résultats de l'essai Proctor modifié sont rapportés au tableau 4.13.

**Tableau 4.13** Résultats de l'essai Proctor modifié.

| Essai N°                            | 1       | 2       | 3       | 4       |
|-------------------------------------|---------|---------|---------|---------|
| Teneur en eau estimée (%)           | 12      | 14      | 16      | 20      |
| Masse moule m(g)                    | 1839    | 1839    | 1839    | 1839    |
| Masse moule+sol humide $m_{h(g)}$   | 3873,9  | 3958,2  | 4014,1  | 3942,4  |
| Masse sol humide (g)                | 2034,9  | 2119,2  | 2175,1  | 2103,4  |
| Volume moule (cm <sup>3</sup> )     | 995,282 | 995,282 | 995,282 | 995,282 |
| $\rho_h (g/cm^3)$                   | 2,045   | 2,129   | 2,185   | 2,113   |
| $\rho_{\rm d}$ (g/cm <sup>3</sup> ) | 1,79    | 1,87    | 1,88    | 1,76    |

Les résultats de l'essai Proctor modifié sont illustrés à la figure 4.20.

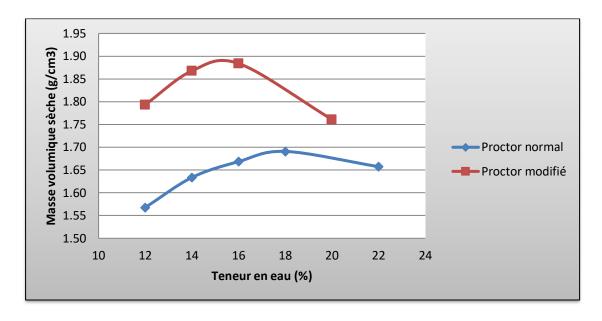



Figure 4.20 Courbes de l'essai Proctor normal et modifié

D'après la figure 4.20, la teneur en eau optimale et la masse volumique sèche maximale pour chaque essai sont rapportés au tableau 4.14.

**Tableau 4.14** La teneur en eau optimale et la masse volumique sèche maximale pour chaque essai

|                         | Proctor normal | Proctor modifié |
|-------------------------|----------------|-----------------|
| Wopt (%)                | 17.9           | 15.2            |
| ρd (g/cm <sup>3</sup> ) | 1.69           | 1.88            |

# IV.5 Positionnement du sol naturel (SN) par rapport aux recommandations pour les BTC

La norme [Norme-NF-XP-P13-901, 2001] et les recommandations [CRATerre-EAG, 1998], [MOPT, 1992], [Jimènez et al. 2007], [Houben and Guillaud, 1994] précisent les caractéristiques en termes de granulométrie, de plasticité, de densité et de résistance que doivent vérifier les matériaux aptes à être utilisés dans la confection des BTC.

# 5.1 Vis-à-vis de la granulométrie

La courbe de la distribution granulométrique est présentée sur la figure 4.21. Sur cette figure, le fuseau déduit des normes [Norme-NF-XP-P13-901, 2001], [MOPT, 1992] est représenté en pointillés. Il est à noter que la courbe granulométrique du sol naturel se positionne de manière satisfaisante (à plus de 70%) par rapport au fuseau granulométrique, Par conséquent, ce matériau peut être sélectionné en état naturel pour la confection des BTC.

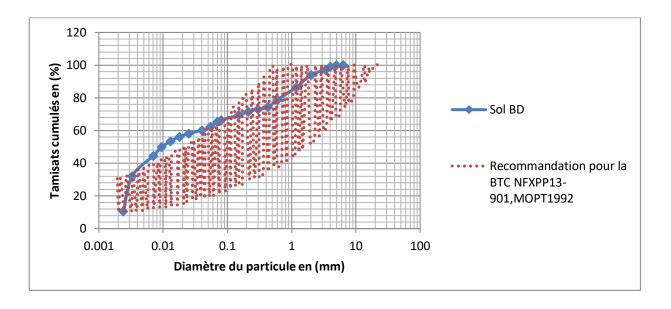



Figure 4.21 Distribution granulométrique du sol naturel et le fuseau recommandé pour le BTC.

#### 5.2 Vis-à-vis des limites d'Atterberg

La limite de liquidité et l'indice de plasticité du sol naturel sont positionnés dans le diagramme de Casagrande dans le plan (LL, PI), (figure 4.22). Sur ce même plan, nous avons rapporté les deux fuseaux recommandés par les normes [Norme-NF-XP-P13-901, 2001] et [MOPT, 1992]. On constate que le sol naturel se positionne au-dessus de la droite (A) de l'équation  $I_P = 0.73$  (LL-20). Par ailleurs, on remarque qu'il se trouve à l'intérieur des fuseaux normalisés, le rendant ainsi approprié pour être utilisé pour les BTC.

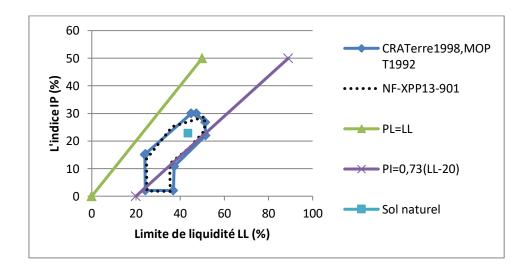
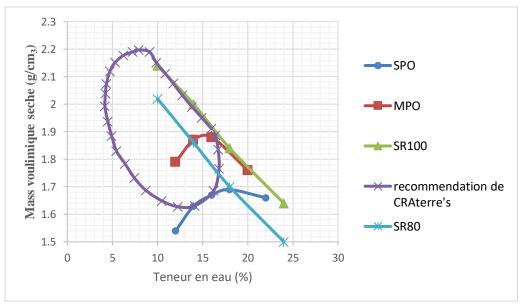



Figure 4.22 Limites d'Atterberg du sol naturel et le fuseau recommandé pour BTC

# 5.3 Vis-à-vis du compactage


Les courbes de compactage à l'optimum de Proctor Normal (SPO) et à l'optimum de Proctor Modifié (MPO) du matériau naturel (SN) sont représentées dans le plan. Sur ce

même plan, nous avons positionné le domaine du couple recommandé par Moevus et al. [2012], Houben and Guillaud [1994] et Minke [2006]. On constate que pour l'énergie SPO, la masse volumique sèche maximale est bien au deçà du fuseau recommandé, qui borne la teneur en eau de 17.9% et la masse volumique sèche maximale de 1.69 g/cm³ (figure 4.23), mais pour l'énergie MPO, le point correspondant à la masse volumique sèche maximale de 1.88 g/cm³ et à la teneur en eau optimale de 15.2% est bien dans le fuseau recommandé.

Le tableau 4.15 résume les différentes valeurs du poids volumique et la teneur en eau relevées dans la littérature concernant la mise en œuvre des BTC.

**Tableau 4.15** Teneurs en eaux initiales et les poids volumiques secs maximales des BTC ([Moevus et al. 2012], [Jiménez et al. 2007], [Houben and Guillaud, 1994])

| Référence    | Technique | $\gamma_{dmax}  (kN/m^3)$ | Wi (%)     |
|--------------|-----------|---------------------------|------------|
| Craterre2012 | BTC       | 16 à 22                   | 5 à 15     |
| Jiménez 2007 | BTC       | 17.5 à 23                 | 5 à 15     |
| Morel 2003   | BTC       | 18.6 à 18.7               | /          |
| Hakimi1996   | BTC       | 19.2 à 19.30              | 9.8 à 10.8 |
| Olivier1994  | BTC       | 18.25à 20.13              | 12 à 19    |
| Ola 1987     | BTC       | 16 à 19                   | /          |



**Figure 4.23** Essais de compactage (OPN et OPM) du sol naturel (SN) et la zone recommandée pour les BTC.

#### 5.4 Conclusion sur l'utilisation du sol naturel (SN) dans les BTC

À partir des résultats de d'identification, ce sol a montré qu'en termes de granulométrie, et de masse volumique sèche maximale et de plasticité, il répond aux normes et recommandations concernant son aptitude à être utilisé comme matière première pour les BTC.

## IV.6 Produit de traitement utilisé

#### 6.1 Caséine

Le produit de traitement utilisé est la caséine en poudre (figure 4.24). C'est un produit fabriqué par L'unité de production de la **laiterie Soummam** à Bejaïa. Les caractéristiques principales ont été présentées précédemment dans le chapitre 3.

Des études indiquent que la caséine peut être considérée comme une alternative écologique pour l'amélioration des caractéristiques mécaniques des sols. Étant donné que les matériaux traditionnels de stabilisation des sols, en particulier le ciment, ont des effets néfastes sur l'environnement, les matériaux alternatifs tels que la caséine sont respectueux à l'environnement, renouvelables et peu coûteux.



Figure 4.24 Caséine en poudre

#### 6.2 Choix des dosages de mélanges

Les quantités respectives des différents matériaux (le sol et le produit de traitement) ont été préparés à la teneur en eau optimale et la masse volumique sèche maximale, l'essai Proctor modifié ( $\rho_d$ =1880 kg/m³) et ( $w_{opt}$ =15.2%). Le sol a été mis en premier lieu à l'étuve pour séchage pendant une période de 24 heures sous une température de 105  $^{0}$ C. Puis, le sol a été mélangé à sec avec le produit de traitement, à savoir la caséine (figure 4.25). Après avoir mélangé le tout à sec, nous avons ajouté une quantité d'eau qui correspond à la teneur en eau optimale Proctor modifié. Le malaxage est réalisé jusqu'à l'obtention d'un mélange parfaitement homogène et laissé dans un sac en plastique fermé pendant 24 heures (Figure 4.26).



Figure 4.25 Mélange sol-bioliant à sec



Figure 4.26 Échantillons sol-bioliant dans des sacs en plastique

Les mélanges sont :

2

**Mélange 1**: sol + 1% caséine **Mélange 2**: sol + 2% caséine

Les masses sont présentées dans le tableau 4.16..

15.2

|        |      |                   | 1            |             |                |
|--------|------|-------------------|--------------|-------------|----------------|
| Dosage | w %  | $\rho_d (kg/m^3)$ | Masse du sol | Masse de la | Masse de l'eau |
| (%)    |      |                   | (g)          | caséine (g) | (g)            |
| 0      | 15.2 | 1880              | 1300         | 0           | 197.6          |
| 1      | 15.2 | 1880              | 1287         | 13          | 197.6          |

1274

26

197.6

Tableau 4.16 Masse de chaque composant des mélanges sol - liant

Une fois les mélanges préparés, les éprouvettes sont compactés selon le mode de compactage statique à l'aide de la presse UNIFRAME (figure 4.27).

1880



Figure 4.27 Machine de compactage UNIFRAME

#### 6.3 Confection des éprouvettes

Une fois les mélanges préparés, les éprouvettes sont compactées selon le mode de compactage statique à l'aide de la presse UNIFRAME à une vitesse de 20 mm/min.

Les éprouvettes obtenues sont présentées à la figure 4.28. Pour la réalisation de l'essai triaxial (UU), ces éprouvettes cylindriques doivent être confectionnées par carottage avec une trousse coupante (Figure 4.29.(a)), ensuite la hauteur des éprouvettes est réglée (Figure

4.29 (b)) à l'aide d'un fil métallique (Figure 4.29 (c)), enfin les éprouvettes ont été scellées à l'aide d'un papier film (Figure 4.30).



Figure 4.28 Eprouvettes compactées statiquement

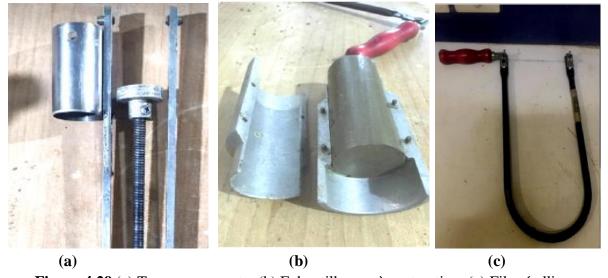



Figure 4.29 (a) Trousse coupante, (b) Echantillon après extraction, (c) Fil métallique.



Figure 4.30 Eprouvettes du sol traité scellées dans un papier film.

#### IV.7 Essai triaxial (NF P94-074)

Cet essai permet d'étudier le comportement mécanique d'un sol et définir les différents paramètres liés au comportement mécanique d'un sol dans des conditions voisines de celles observées dans la nature. Le principe de cet essai consiste à placer une éprouvette de sol, de forme cylindrique, dans une cellule pleine de liquide. L'échantillon à tester est placé dans une membrane, elle même introduite dans la cellule. Cet échantillon est donc soumis à : une pression hydrostatique de confinement  $\sigma_3$  appliquée par l'intermédiaire du liquide remplissant la cellule (en général ce liquide est l'eau). Un déviateur de contraintes appliqué par un piston chargé au moyen d'une presse.

#### 7.1 Dispositif expérimental

Le dispositif expérimental que nous avons utilisé pour réaliser notre programme d'essais se compose des éléments suivants (Figure 4.31) :

- > une cellule triaxiale de dimensions appropriées à celles de l'éprouvette à tester.
- > un dispositif de chargement et des moyens de mise en pression. Ce dispositif assure le déplacement axial et l'application des contraintes à l'éprouvette. Il comporte :
  - une presse électromécanique.
  - des contrôleurs (pression volume).
  - un vérin hydraulique.
- un dispositif de mesure pour effectuer les différentes acquisitions nécessaires en cours de l'essai. Il se compose de :
  - capteurs de déplacement
  - capteurs de force
  - capteur de pression interstitielle
- > une pompe à vide.
- > un système de pilotage et d'acquisition de données

L'ensemble de ces éléments doit assurer les fonctions suivantes :

- appliquer les chargements axiaux et radiaux désirés à une éprouvette,
- mesurer les différentes déformations provoquées durant l'essai (déformation) axiale et déformation volumique),
- mesurer les efforts appliqués (chargement axial, et pression radiale),
- mesurer la pression interstitielle.

Figure 4.31 Eléments principaux de l'appareil de triaxial

 $\begin{array}{ll} \textbf{C}_1 & = \textbf{Circuit} \text{ de mise en pression de la cellule.} \\ \textbf{C}_2 \cdot \textbf{C}_3 \text{ et } \textbf{C}_4 & = \textbf{Circuits de drainage, de contrepression et de mesure de la pression interstitielle.} \end{array}$ 



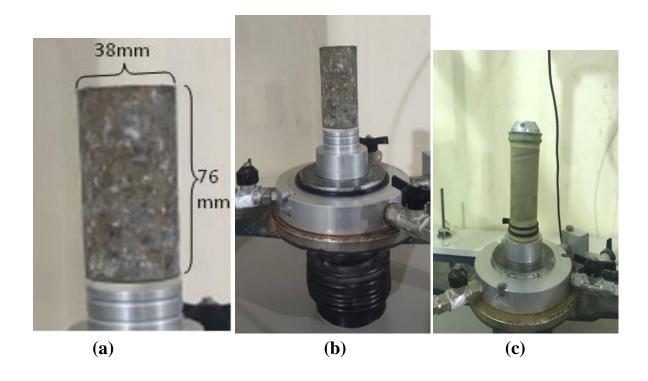
Figure 32 Appareil triaxial du laboratoire (LGCH) Guelma

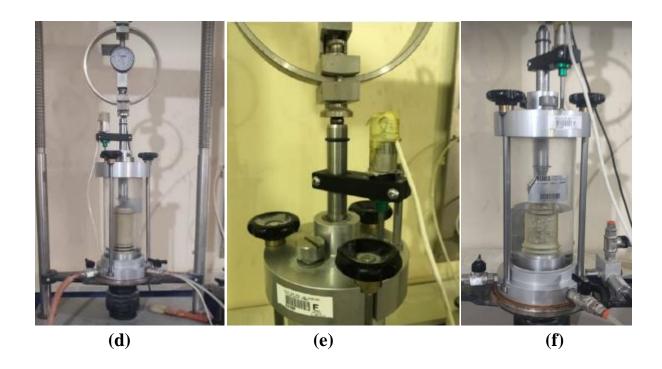
#### 7.2 Types d'essais triaxiaux

Il existe trois principales modalités de l'essai:

Essai non consolidé - non drainé **UU** : dans cet essai l'eau interstitielle est bloquée dans l'échantillon, et par conséquent la pression interstitielle est libre d'évoluer. Pendant cet essai le volume reste constant.

Essai consolidé - drainé **CD**: dans cet essai, après avoir consolidé l'échantillon, on le cisaille avec le drainage ouvert, on permet donc un changement de volume. La surpression interstitielle est donc à tout instant nul ( $u = u0 \neq 0$ ,  $\Delta u = 0$ ).


Essai consolidé - non drainé **CU**: dans cet essai l'échantillon est consolidé sous une contrainte isotrope, puis on cisaille avec le drainage fermé.


#### 7.3 Mode opératoire et procédure de l'essai

Nous avons travaillé sur des échantillons de diamètres 38 mm et de hauteur 76 mm (Figure 4.33(a)). La technique de confection se déroule selon les étapes suivantes :

- 1. Préparer la base de la cellule triaxiale. Dans cette étape, il faut vérifier que les différents circuits de la cellule (circuits des capteurs de pression, embases) ne sont pas bouchés et qu'ils sont saturés ;
- 2. Préparer la membrane à utiliser. En ce qui concerne la membrane, il est nécessaire d'effectuer une vérification de l'étanchéité. Cette vérification se fait en mettant la membrane sous air comprimé préalablement introduite dans la cellule, puis remplie d'eau. Nous appliquons ensuite une pression de confinement, une fuite est alors révélée par des bulles d'air qui s'échappent;
- 3. Ajuster ensuite la membrane sur le moule de façon à ne pas avoir des torsions dans la membrane ;
- 4. Placer l'échantillon délicatement dans le moule ;
- 5. Placer un disque de plexiglas sur le l'embase inférieure. Ensuite, placer l'ensemble moule-échantillon sur le disque (Figure 4.33 (b));
- 6. Placer un second disque de plexiglas sur la surface de l'échantillon et l'embase supérieure ;
- 7. Fixer la membrane en la déroulant sur l'embase (supérieure et inférieure) à l'aide des joints toriques (2 en haut, 2 en bas) (Figure 4.33(c));
- 8. Bien placer la cellule cylindrique en assurant le contact entre le piston de la cellule et la tête de l'échantillon, serrer les trois barres d'attache en acier inoxydable (Figure 4.33(d));
- 9. Enfin placer la bille sur laquelle vient s'appuyer le piston d'application de l'effort axial (Figure 4.33(e));
- 10. L'eau sous pression est introduite dans la cellule (Figure 4.33 (f)) et exerce une contrainte «  $\sigma_3$  » sur l'éprouvette. Trois essais sont menés pour trois différentes contraintes de confinement (100 kPa, 200 kPa et 300 kPa, respectivement);
- 11. L'essai est terminé conventionnellement lorsque le système d'acquisition détecte une chute de résistance ;

- 12. Les pressions et les déformations appliquées et produites durant l'essai sont mesurées à l'aide des capteurs et contrôleurs. Toutes ces données sont enregistrées par un ordinateur (Figure 4.33 (g)) ;
- 13. A la fin de l'essai la cellule est vidée et démontée, L'échantillon est enlevé (Figure 4.33 (h)), ainsi que la membrane et les disques doivent être bien nettoyés.





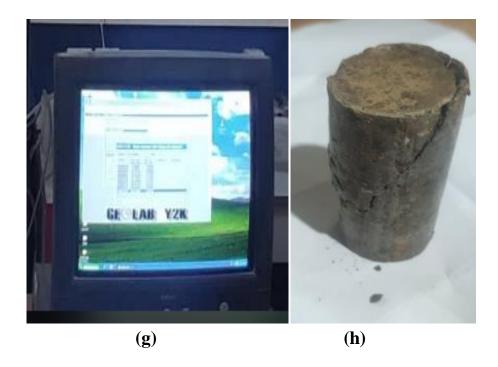



Figure 4.33 Etapes de déroulement de l'essai triaxial

#### 7.4 Résultats des essais triaxiaux(UU)

#### 7.4.1 Echantillon 01 : sol naturel (témoin)

Les relations déviateur-déformation verticale sont rapportées à la figure 4.34.

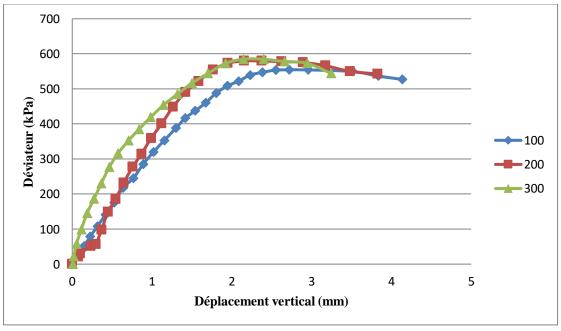



Figure 4.34 Relation déviateur-déplacement vertical du sol témoins.

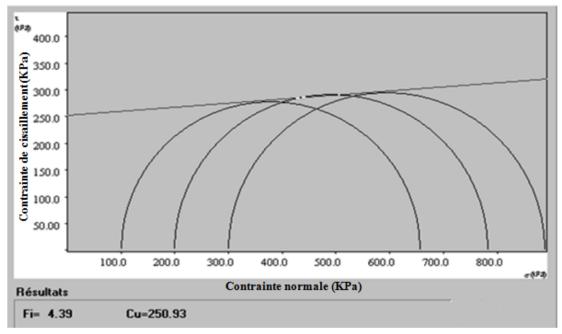



Figure 4.35 Détermination des paramètres de cisaillement de l'échantillon témoin.

La figure 4.35 présente les résultats des trois essais. D'après les cercles de Mohr montrés à cette figure, nous avons déterminé une cohésion c=250.93 kPa et un angle de frottement interne  $\phi=4,39^{\circ}$ .

#### 7.4.2 Echantillon 02 : 99% sol traité par 1% Caséine à 7 jours de cure

Les relations déviateur-déformation verticale sont rapportées à la figure 4.36

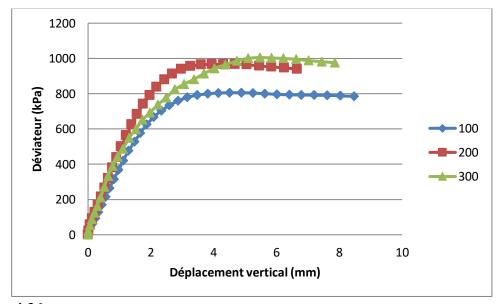
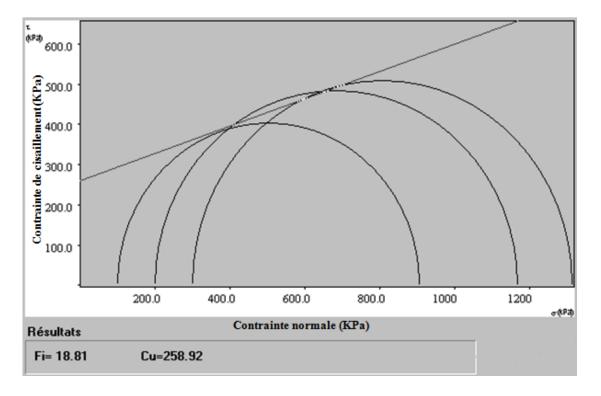




Figure 4.36 Relation déviateur-déplacement vertical du 99% sol traite par 1% Caséine à 7 jours.



**Figure 4.37** Détermination des paramètres de cisaillement du 99% sol traite par 1% Caséine à 7jours.

La figure 4.37 présente les résultats des trois essais. D'après les cercles de Mohr montrés à cette figure, nous avons déterminé une cohésion c=258.92 kPa et un angle de frottement interne  $\phi=18,81^{\circ}$ .

#### 7.4.3 Echantillon 03:99% sol traite par 1% Caséine à 14 jours de cure

Les relations déviateur-déformation verticale sont rapportées à la figure 4.38

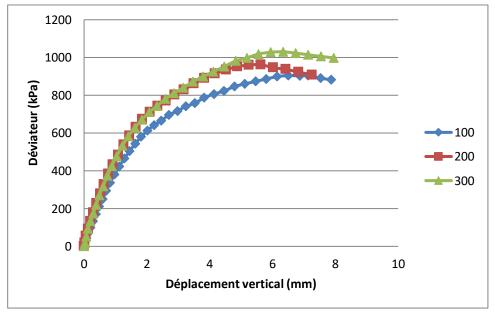
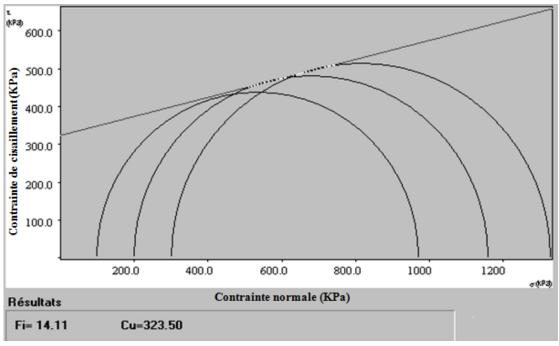




Figure 4.38 Relation déviateur-déplacement vertical du 99% sol traite par 1% Caséine à 14 jours.



**Figure 4.39** Détermination des paramètres de cisaillement du 99% sol traite par 1% Caséine à 14 jours.

La figure 4.39 présente les résultats des trois essais. D'après les cercles de Mohr montrés à cette figure, nous avons déterminé une cohésion c=323.50 kPa et un angle de frottement interne  $\phi=14,11^{\circ}$ .

### **7.4.4 Echantillon 04 : 98% sol traite par 2% Caséine à 7 jours de cure** Les relations déviateur-déformation verticale sont rapportées à la figure 4.40

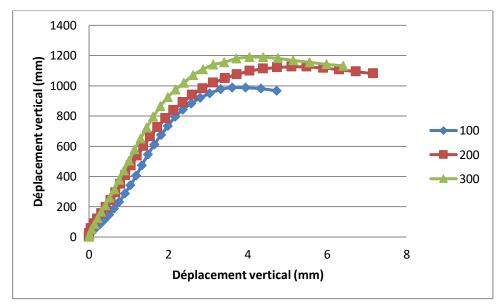
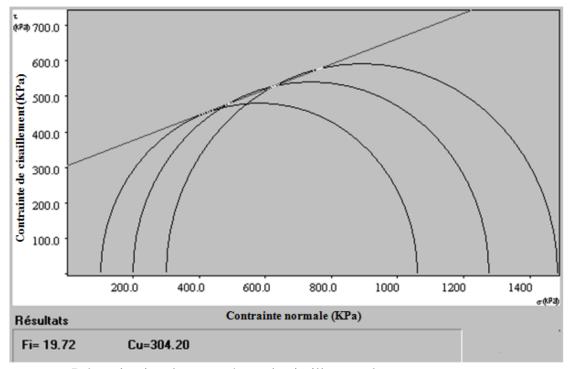
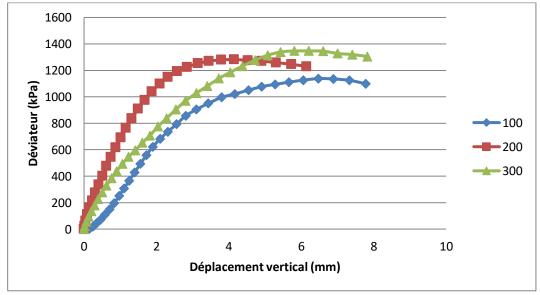
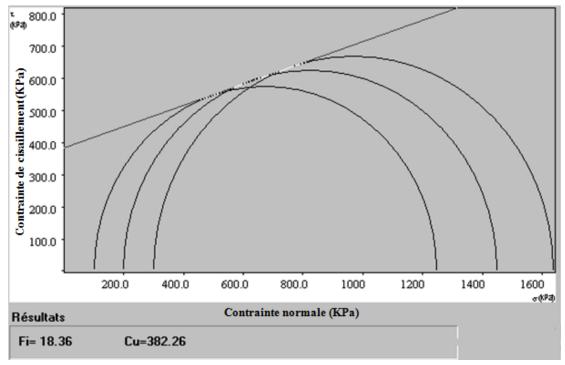




Figure 4.40 Relation déviateur-déplacement vertical du 98% sol traite par 2% Caséine à 7 jours.




**Figure 4.41** Détermination des paramètres de cisaillement du 98% sol traite par 2% Caséine à 7jours.


La figure 4.41 présente les résultats des trois essais. D'après les cercles de Mohr montrés à cette figure, nous avons déterminé une cohésion c=304.20 kPa et un angle de frottement interne  $\phi=19,72^{\circ}$ .

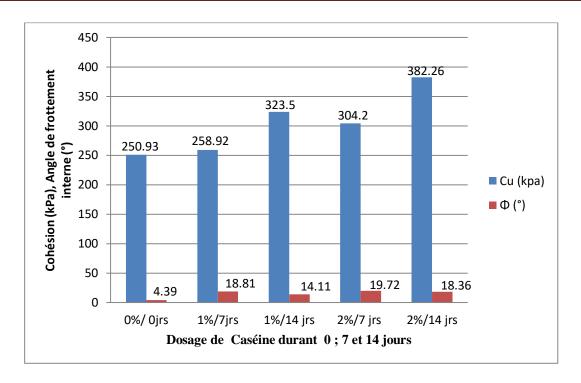
#### 7.4.5 Echantillon 05 : 98% sol traite par 2% Caséine à 14 jours de cure

Les relations déviateur-déformation verticale sont rapportées à la figure 4.42



**Figure 4.42** Relation déviateur-déplacement vertical du 98% sol traite par 2% Caséine à 14 jours.




**Figure 4.43** Détermination des paramètres de cisaillement du 98% sol traite par 2% Caséine à 14jours.

La figure 4.43 présente les résultats des trois essais. D'après les cercles de Mohr montrés à cette figure, nous avons déterminé une cohésion c=382.26 kPa et un angle de frottement interne  $\phi=18,36^{\circ}$ .

## 7.5 Analyse des résultats des essais triaxiaux réalisés sur des échantillons témoins et des échantillons du sol traité à la Caséine

Nous procédons à l'analyse des résultats d'essais triaxiaux réalisés sur différents échantillons. Nous avons rassemblé les résultats obtenus sur différents échantillons afin d'étudier l'effet de l'ajout de 1% de Caséine après 7 et 14 jours de cure d'une part, et de 2% de Caséine après 7 et 14 jours d'une autre part, sur les paramètres de cisaillement (tableau 4.17). Pour cela, Pour mieux illustrer les résultats un histogramme est présenté à la figure 4.44.

|                      | sol témoins | Sol+ Caséine |        |        |        |  |  |
|----------------------|-------------|--------------|--------|--------|--------|--|--|
| Dosage (%)           | 0 1         |              | 1      | 2      |        |  |  |
| Nombres des jours    | 0           | 7            | 14     | 7      | 14     |  |  |
| C <sub>u</sub> (kPa) | 250.93      | 258.92       | 323.50 | 304.20 | 382.26 |  |  |
| Ф (°)                | 4.39        | 18.81        | 14.11  | 19.72  | 18.36  |  |  |



**Figure 4.44** Histogramme des résultats finaux des essais triaxiaux traités par différents dosages de Caséine.

Les résultats indiquent qu'avec l'ajout de 1% de caséine, la cohésion augmente pour 7 et 14 jours de temps de cure de 250.93 kPa pour le sol témoins jusqu'à 323.5 kPa. Concernant l'angle de frottement interne, nous pouvons noter qu'il y a une augmentation de 4.39° pour le sol témoins jusqu'à 18.81° à 7 jours ; suivie d'une diminution marquée par 14.11°.

Prenons maintenant le traitement avec 2% de caséine, la cohésion a clairement augmenté de 250.93 kPa pour le sol témoins jusqu'à 382.26 kPa. Pour l'angle de frottement interne, nous pouvons noter qu'il y a une augmentation de 4.39° pour le sol témoins jusqu'à 19.72° à 7 jours ; suivie d'une légère diminution marquée par 18.36° à 14 jours.

Nous pouvons alors conclure que l'augmentation de la cohésion est due à la création de fortes liaisons entre les particules du sol à cause de l'action du produit de traitement (caséine).

Pour l'angle de frottement interne, sa diminution est peut être due à l'augmentation de la quantité des fines entre les particules du sol, ce qui traduit par la facilité de déplacement relatif entre ces dernières.

#### IV.8 Essai de compression simple (ISO 17892-7:2017)

Il s'agit de la compression d'une éprouvette cylindrique de sol entre deux plateaux, l'axe de l'éprouvette cylindrique est orthogonal aux plateaux. L'essai consiste à imposer une vitesse constante de déformation longitudinale et à mesurer la force axiale appliquée à l'éprouvette. La résistance à la compression, notée  $R_C$  est mesuré à plusieurs âges (0, 7,14 jours).

#### 8.1. Mode opératoire et procédure d'essai

Les éprouvettes soumises aux essais de compression sont de forme cylindrique. Elles ont été confectionnées dans un moule en PVC (Figure 4.45 (a)), spécialement conçu pour ce type

d'essais. Le moule a les dimensions suivantes: H=15cm et  $\emptyset$ = 7,5cm. Au total, 18 éprouvettes ont été confectionnées pour des différents dosages et différents temps de cure.

La technique de fabrication se déroule selon les étapes suivantes :

- 1. En premier lieu, le sol est mis à l'étuve pour séchage pendant une période de 24 heures sous une température de 105°C;
- 2. Mélanger le sol à sec avec le produit de traitement;
- 3. Ajouter une quantité d'eau et malaxer jusqu'à l'obtention d'un mélange parfaitement homogène et laisser le mélange dans un sac plastique fermé pendant 24 heures ;
- 4. Compacter le mélange selon le mode de compactage statique à l'aide de la presse UNIFRAME (Figure 4.45(b)) ;
- 5. Réaliser le compactage en deux couches, la première couche 2/3 de la masse totale (de chaque mélange), et la 2<sup>ème</sup> couche 1/3 de la masse totale;
- 6. Après le démoulage, sceller les éprouvettes immédiatement à l'aide d'un papier film (Figure 4.45 (c, d)) afin de prévenir l'évaporation de l'eau contenu dans les mélanges;
- 7. À l'échéance des temps de cure (7, 14 jours), réaliser les essais de compression simple selon la norme NF P94-077;
- 8. Prendre les dimensions de l'échantillon à l'aide d'un pied à coulisse (la hauteur et le diamètre sont pris quatre fois selon deux directions). Pour les calculs de la section nous utiliser les valeurs moyennes ;
- 9. Placer l'éprouvette du sol sur le plateau d'une presse à chargement axial. Après la mise en contact des deux plateaux de la presse avec l'éprouvette (Figure 4.45 (e, f)), le chargement axial est appliqué avec une vitesse de déplacement constante de 1,00 mm/min;
- 10. A la fin de l'essai, l'échantillon est enlevé (Figure 4.45 (g));
- 11. La force maximale  $(F_{max})$  à la rupture est affichée par la machine. La résistance à la compression simple Rc (la contrainte à la rupture résultant du rapport entre la force de rupture  $F_{max}$  et la section transversale de l'éprouvette (A)) s'écrit :  $Rc = \frac{F_{max}}{A}$ .

Où:

Rc (kPa): Résistance à la compression simple,

F (kN): Force maximale de compression,

A (m<sup>2</sup>): Aire de la section transversale de l'éprouvette.















Figure 4.45 Diverses procédures de l'essai de compression simple.

Les quantités de chaque composant du mélange sont synthétisées dans le tableau 4.18 :

Dosage (%) w % Masse sol Masse de la Masse de  $\rho_d (kg/m^3)$ caséine (g) 1'eau (g) (g) 15.2 1880 1300 197.6 0 0 197.6 1 15.2 1880 1287 13 2 15.2 1880 1274 26 197.6 4 15.2 1880 1248 52 197.6

**Tableau 4.18** Quantités de chaque composant des mélanges sol – liant.

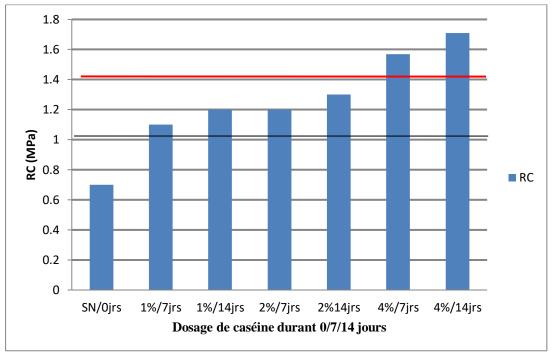
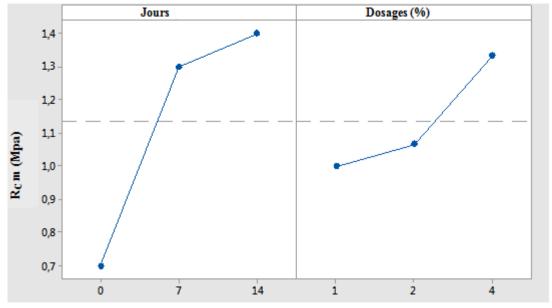
#### 8.2 Résultats des essais de compression

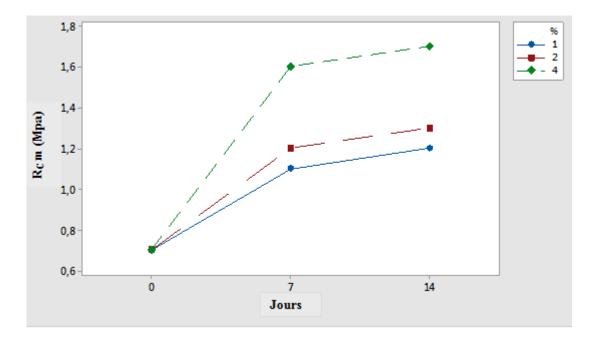
Le tableau 4.19 et la figure 4.46 synthétisent les résultats des essais de compression simple du sol naturel et de sol traité avec 1 % ; 2% ; 4% respectivement de Caséine, après 0 ; 7 ; 14 jours.

Notons bien que nous avons pris la moyenne de trois résistances de compression pour chaque dosage.

| Tubetta 112 Resultatis finativa de la resistance a la compressión simple. |            |     |              |     |     |      |      |  |
|---------------------------------------------------------------------------|------------|-----|--------------|-----|-----|------|------|--|
|                                                                           | sol témoin |     | Sol+ Caséine |     |     |      |      |  |
| Dosage (%)                                                                | 0          | 1   | 1 2          |     | 4   |      |      |  |
| Nombres de jours                                                          | 0          | 7   | 14           | 7   | 14  | 7    | 14   |  |
| Résistance à la<br>compression<br>(MPa)                                   | 0.7        | 1.1 | 1.2          | 1.2 | 1.3 | 1.59 | 1.71 |  |

**Tableau 4.19** Résultats finaux de la résistance à la compression simple.



Figure 4.46 Histogramme des résultats finaux de la résistance à la compression simple.

Les figures 4.47 et 4.48 présentent les résultats des essais de compression simple traités par logiciel MiniTab18 en utilisant la méthode du plan d'expérience.



**Figure 4.47** Courbes des effets du dosage et le temps sur la résistance moyenne à la compression simple.

La figure 4.47 montre les facteurs principaux qui influent sur la résistance à la compression simple moyenne; à savoir le temps et le dosage du liant; il est à noter que pour le facteur temps, la résistance moyenne augmente en fonction du temps pour les jours de 0 à 7; après le 7ème jour, l'influence du temps de cure diminue. Quant à l'influence du dosage du liant, la résistance à la compression moyenne augmente avec l'augmentation du dosage.



**Figure 4.48** Courbes des interactions de la résistance moyenne à la compression en fonction de temps pour différents dosages.

D'après la figure 4.48, pour les trois dosages (1%, 2% et 4 %), il est nettement clair que la résistance à la compression augmente en augmentant le temps de cure (de 0 à 14 jours).

#### 8.3 Prévision pour la résistance à la compression simple

Nous avons utilisé le logiciel MiniTab18 afin de prédire la valeur de la résistance à la compression pour un dosage de 3% en liant, et un temps de cure de 7 jours et 14 jours respectivement. Nous avons obtenu que pour 7 jours, la valeur de la résistance à la compression est égale à 1.2 MPa. Par contre, pour 14 jours cette résistance est égale à 1.61 MPa. Cette dernière résistance vérifie le seuil minimal recommandé par la Norme [NF-XP-P13-901, 2001] de construction en BTC qui est 1.6MPa.

#### **IV.9 Conclusion**

Dans ce chapitre, nous avons présenté les résultats des essais réalisés au laboratoire sur le sol de gisement de Kaolin de Bendjerrah afin d'évaluer l'efficacité de l'ajout du produit de traitement (la caséine) sur les propriétés mécaniques du sol traité, à savoir les paramètres de cisaillement et la résistance à la compression simple.

À partir des résultats d'identification, ce sol a montré qu'en termes de granulométrie, et de masse volumique sèche maximale et de plasticité, il répond aux normes et recommandations concernant son aptitude à être utilisé comme matériau de construction des BTC.

Les résultats ont clairement montré que l'ajout de produits de traitement au sol a amélioré la cohésion du sol tout en réduisant l'angle de frottement et augmentant la résistance à la compression.

# Conclusion Générale

#### Conclusion Générale et Perspective

La présente étude a pour objectif de proposer un matériau à base de terre crue stabilisée comme alternative écologique. Le but est de remplacer les liants minéraux (ciment et chaux) par d'autres liants organiques qui sont moins nocifs à l'environnement.

Dans la partie de l'état de l'art, nous avons exposé les différents types d'argiles et leurs propriétés. En outre, nous avons rappelé l'intérêt du matériau de terre crue pour les constructions contemporaines grâce à son faible impact environnemental, à son accessibilité pour des populations aux revenus modestes et à sa capacité à assurer passivement un confort naturel dans l'habitat. La plupart des stabilisations de la terre crue sont faites à base de liants minéraux en l'occurrence le ciment et la chaux. Mais les quantités de liants utilisées sont souvent très élevées pour des gains en résistances mécaniques relativement faibles, ce qui pose la question de la pertinence écologique de ces solutions. En plus, la résistance mécanique, la résistance à l'eau qui est un paramètre crucial n'est pas toujours évalué et quand c'est le cas, les méthodes ne font pas consensus. Pour tout cela, nous rejoignons les conclusions de (Van Damme et al., 2017) qui suggèrent que la quantité de liants minéraux soit réduite au strict nécessaire pour une amélioration de la tenue à l'eau de briques de terre crue. Nous proposons l'utilisation de liants alternatifs naturels de type organique pour stabiliser la terre crue.

En vue de l'utilisation du sols de Bendjerrah comme matériau dans les constructions en terre crue dans le domaine de Génie Civil, et plus particulièrement en matériaux de construction par l'élaboration de BTC (Blocs de Terre Crue Comprimée). Après avoir fait un état de l'art, nous avons décidé de nous intéresser aux caractéristiques suivantes :

- Dans un premier temps, nous nous sommes intéressés à l'identification du sol de BenDjerrah et le positionnement de ses propriétés par rapport aux normes et recommandations de BTC (granulométrie, plasticité, compactage).
- Ensuite, les résistances mécaniques que nous avons limitées dans un premier temps à la résistance en compression UCS et sa comparaison avec la norme française [NF-XP-P13-901(2001)].

-Dans un second temps, nous avons conduit des essais triaxiaux non consolidés non drainés sur ce sol non traité. Ensuite, nous avons procédé à son traitement pour étudier le changement des paramètres mécaniques du sol traité avec la caséine en différents pourcentages (1%,2% et 4%). Les résultats du sol traité par la caséine indiquent que la cohésion et l'angle de frottement interne augmentent avec l'augmentation de la teneur en liant.

#### **CONCLUSION GENERALE**

- Les résultats obtenus sur le sol de Bendjerrah montrent que leurs propriétés en termes de granulométrie, densité, plasticité vérifient les normes et les recommandations concernant son aptitude à être utilisé comme matière première pour les BTC.
- L'ajout d'un pourcentage de 4% de caséine comme bio-liant est nécessaire pour vérifier les recommandations et normes vis à vis de la résistance mécanique et la consistance du matériau, La résistance à la compression simple dans ces conditions est de l'ordre de 1.7 MPa.
- Finalement, nous avons utilisé le logiciel **MinTtab18** dans l'interprétation des résultats de compression simple, ce logiciel nous a permis de prédire la résistance à la compression simple de l'ordre 1.6 MPa à une teneur en caséine de 3% et au temps de cure de 14 jours. Cette dernière valeur est acceptable vis-à-vis des normes en vigueur...

Afin de mieux utiliser notre matériau dans la fabrication des biques en terre compressée, il serait intéressant de réaliser des essais de durabilité à la tenue d'eau.

## Références bibliographiques

#### Références Bibliographiques

- [1] Benayache Zinedine, Yahamdi Abd Raouf, Amélioration des argiles gonflantes, Mémoire de Master. Université 08 mai1945. (2019).
- [2] Benmessaoud Ahmed, Types de solutions de construction sur sols gonflants, Mémoire de Master, Université Kasdi Merbah Ouargla. (2017)
- [3] Jean- Pierre Magnan, Cours de mécanique des sols et des roches. Ecole nationale des ponts et chaussées, (1999-2000).
- [4] Guefaifia Lamia & Benrdjem Hiba, Traitement et renforcement d'un sol fin par différentes techniques d'amélioration étude expérimentale et numérique, Mémoire de Master. Université 8 Mai 1945 de Guelma. 2020
- [5] Boumzaout Nada & Benamara Meryem & Noureddine Khaoula .Amélioration d'un sol argileux par le laitier de haut fourneau activé par la poudre de dolomie. Mémoire de Master, Université 8 Mai 1945 de Guelma.2019
- [6] Benayache Zinedine Yahamdi Abd Raouf, Amélioration des argiles gonflantes, Mémoire de Master Université 8 Mai 1945 de Guelma.2019
- [7] Mouaziz Soumia, Préparation et Caractérisation des bentonites modifiées par des sels de Bis-imidazolium Application à l'adsorption du bleu TELON, Mémoire de Master, Université Abou Bekr Belkaid-Tlemcen2012.
- [8] Guenoun Narimane Gada Sadia, Activation de la Bentonite de MAGHNIA pour usage pharmaceutique, Mémoire de Master, Université MOULOUD MAMMERI DE TIZI-OUZOU 2017
- [9] **SERBAH Boumediene**. Cartographie des sédiments de dragage des barrages de l'ouest Algérien : Une solution de valorisation en BTC. THÈSE Doctorat. Université ABOUBAKR BELKAÏD-Tlemcen.2018
- [10] Jehanne Paulus. Construction en terre crue: dispositions qualitatives, constructives et architecturales Application à un cas pratique : Ouagadougou. Mémoire de Master. Université de Liège.2015.
- [11] Anger & Fontaine, Principes techniques généraux de conception architecturale en terre crue en Île-de-France 2009 : p. 9).
- [12] Anger & Fontaine, Bâtir en terre du grain de sable à l'architecture, 2009

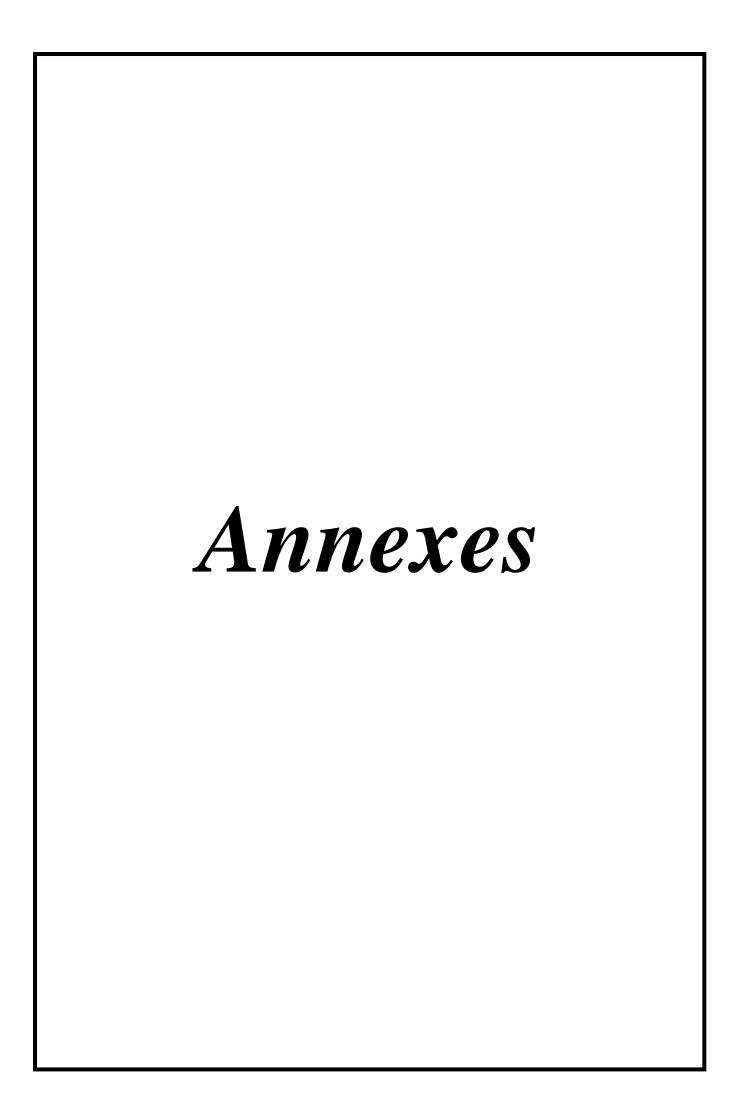
- [13] Antoine Carnaval, Architectures contemporaines en terre crue en France de 1976 à 2015 : pourquoi et comment les acteurs construisent avec ce matériau aujourd'hui ?
- [14] Anger 2011 Conception architecturale en terre crue en Île-de-France 2009 : p. 25).
- [15] http://craterre.org/
- [16] Benouali, 2015 Programme de construction en Terre, en Algérie depuis 1970
- [17] Anger 2011, Principes techniques généraux de conception architecturale en terre crue en Île-de-France 2009 : p. 26
- [18] Caractérisation expérimentale et modélisation numérique des résistances mécaniques du pisé
- [19] Van-Damme and Houben, (2017) Earth Concrete. Stabilisation revisitée. Recherche sur le ciment et le béton, 114, 90-102.
- [20] Boubekeur & Houben, 1998, Blocs de terre comprimée: une alternative de construction durable.
- [21] https://www.pinterest.com/pin/513551163735452583/
- [22] Kouka Amed Jeremy Ouedraogo, Stabilisation de matériaux de construction durables et écologiques à base de terre crue par des liants organiques et/ou minéraux à faibles impacts environnementaux. THÈSE Doctorat. L'Université Toulouse 3 Paul Sabatier.2019
- [23] Boumzaout Nada & Benamara Meryem & Noureddine Khaoula. Amélioration d'un sol argileux par le laitier de haut fourneau activé par la poudre de dolomie. Mémoire master. Université 08 mai 1945.2019
- [24] Boukemmoum Nour El Houda.Nouaouria Abdessalam. Valorisation des sédiments de barrages Cas du barrage d'Ain Dalia (Souk Ahras). Mémoire master. Université 08 mai 1945.2019
- [25] Bouhemame Nesrine. Etude expérimentale du comportement des sédiments de barrage traités avec du Ciment et Métakaolin. Mémoire master. Université 08 mai 1945.2021.
- [26] Hamlaoui Asma. Comportement D'une Marne Stabilisée Par Différents Agents De Traitement. Mémoire master. Université 08 mai 1945.2021
- [30] Aurélie Vissac, Ann Bourgès, David Gandreau, Romain Anger, Laetitia Fontaine. Argiles & Bio polymères Les Stabilisants Naturels Pour La

#### REFERENCES BIBLIOGRAPHIQUES

Construction En Terre. CRA terre éditions.2018

- [33] A.E. Losini, A.C. Grillet, M. Bellotto, M. Woloszyn, G. Dotelli. Natural additives and biopolymers for raw earth construction stabilization. Review. Construction and Building Materials.2021
- [35] Ilhan Chang, Jooyoung Im, Moon-Kyung Chung c, Gye-Chun Cho. Bovine casein as a new soil strengthening binder from diary wastes. Article. Construction and Building Materials.2018
- [38] Actes du colloque. Sciences des matériaux du patrimoine culturel. Appels à projets. (PNRCC).2008-2011. Paris, Institut national d'histoire de l'art.
- [40] Hadi Fatehi, Sayyed Mahdi Abtahi, Hamid Hashemolhosseini, Sayyed Mahdi Hejazi. A novel study on using protein based biopolymers in soil strengthening. Article. Construction and Building Materials.2018
- [41] Ilhan Changa, et al. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Review. Transportation Geotechnics.2020

#### Neto graphique


- [27] https://www.oqai.fr/fr/pollutions/les-fibres-minerales-artificielles/
- [28] https://fr.wikipedia.org/wiki/Fibre\_textile#Fibres\_chimiques/
- [29] https://www.theses-algerie.com/2430937793013176/
- [31] https://fr.wikipedia.org/Amidon/wiki/Amidon/
- [32] https://fr.wikipedia.org/wiki/Farine de bl%C3%A9/
- [34] https://fr.wikipedia.org/wiki/Huile\_de\_lin
- [36] https://tpe-colles.jimdofree.com/la-fabrication-d-une-colle/
- [37] https://www.hl-process.com/fr/caseines-et-caseinates/
- [39] https://fr.wikipedia.org/wiki/Albumine

#### Normes

- **NF P18-560**, Norme française, Analysé granulométrique par tamisage.
- **NF P94-057,** Norme française, Analyse granulométrique des sols Méthode par sédimentation.
- NF P 94-068, Norme française, Valeur au bleu de méthylène.
- NF P 94-051, Norme française, limite de plasticité
- NF P 94-052-1, Norme française, limite de liquidité
- **BS 1377,** Normes anglaises BSI ,limite de retrait
- **NF P11-300**, Norme française, Classification des matériaux utilisables dans la construction des remblais et des couches de forme d'infrastructures routières
- La classification AASHTO.

#### REFERENCES BIBLIOGRAPHIQUES

- NF P 94-093, Norme française, paramètres optimaux de compactage (Proctor).
- Norme-NF-XP-P13-901, 2001, Norme française, Blocs de terre comprimée pour murs et cloisons.
- NF P94-074, Norme française, Essais à l'appareil triaxial de révolution
- NF P94-077, Norme française, Essai de compression uni axiale.



#### Annexes

A.1 Valeurs de déviateur  $(q = \sigma_1 - \sigma_3)$  en fonction du déplacement vertical pour chaque contrainte de confinement  $(\sigma_3)$ .

**Echantillon 01 : sol naturel (témoin)** 

| $\sigma_3 = 100 \text{ (kPa)}$ |            | $\sigma_3 = 20$ | 0 (kPa)    | $\sigma_3 = 30$ | $\sigma_3 = 300  (\text{kPa})$ |  |  |
|--------------------------------|------------|-----------------|------------|-----------------|--------------------------------|--|--|
| DEPL VER                       | Déviateur  | DEPL VER        | Déviateur  | DEPL VER        | Déviateur                      |  |  |
| (mm)                           | (kPa)      | (mm)            | (kPa)      | (mm)            | (kPa)                          |  |  |
| 0                              | 0          | 0               | 0          | 0               | 0                              |  |  |
| 0,0201                         | 12,430574  | 0,075           | 21,208327  | 0,019           | 21,8305198                     |  |  |
| 0,071                          | 31,5119799 | 0,0997          | 29,7290266 | 0,053           | 57,583272                      |  |  |
| 0,1453                         | 51,1568589 | 0,2301          | 50,9124073 | 0,1134          | 99,0231022                     |  |  |
| 0,2248                         | 78,3179211 | 0,2938          | 56,7963401 | 0,1866          | 145,215772                     |  |  |
| 0,316                          | 108,12     | 0,368           | 98,0414815 | 0,2725          | 185,821634                     |  |  |
| 0,4157                         | 140,549753 | 0,4465          | 148,566458 | 0,3638          | 230,548939                     |  |  |
| 0,525                          | 175,586391 | 0,543           | 185,350493 | 0,4656          | 276,934927                     |  |  |
| 0,6353                         | 217,741232 | 0,6438          | 231,662782 | 0,5727          | 315,680719                     |  |  |
| 0,7647                         | 244,944222 | 0,7583          | 277,782467 | 0,7053          | 352,561684                     |  |  |
| 0,8877                         | 284,686633 | 0,8676          | 314,46393  | 0,8358          | 384,882497                     |  |  |
| 1,0171                         | 319,754426 | 0,9885          | 359,068903 | 0,9821          | 418,785529                     |  |  |
| 1,1529                         | 352,854088 | 1,12            | 400,456475 | 1,1423          | 453,64197                      |  |  |
| 1,3003                         | 388,189857 | 1,2632          | 448,512721 | 1,3184          | 485,017929                     |  |  |
| 1,4138                         | 416,055366 | 1,4191          | 490,34363  | 1,4987          | 516,18585                      |  |  |
| 1,54                           | 437,209726 | 1,5835          | 521,815226 | 1,7013          | 544,067455                     |  |  |
| 1,6737                         | 460,313546 | 1,7639          | 554,505353 | 1,9187          | 572,431562                     |  |  |
| 1,8031                         | 487,801744 | 1,9505          | 573,07082  | 2,1457          | 584,654167                     |  |  |
| 1,9463                         | 508,564971 | 2,1542          | 579,882833 | 2,3971          | 584,57701                      |  |  |
| 2,0842                         | 521,89783  | 2,3759          | 579,457478 | 2,658           | 577,977578                     |  |  |
| 2,2295                         | 539,232362 | 2,6219          | 577,785276 | 2,9454          | 573,076481                     |  |  |
| 2,3822                         | 547,025424 | 2,8913          | 575,536755 | 3,2435          | 544,086655                     |  |  |
| 2,5487                         | 553,501193 | 3,1745          | 566,091006 |                 |                                |  |  |
| 2,7195                         | 554,356813 | 3,4832          | 549,976283 |                 |                                |  |  |
| 2,955                          | 554,083922 | 3,8279          | 542,421265 |                 |                                |  |  |
| 3,5118                         | 549,549106 |                 |            |                 |                                |  |  |
| 3,8332                         | 536,603667 |                 |            |                 |                                |  |  |
| 4,1344                         | 527,126138 |                 |            |                 |                                |  |  |

Echantillon 02 : 99% sol traité par 1% Caséine à 7 jours de cure

| $\sigma_3 = 100 \text{ (kPa)}$ |                    | $\sigma_3 = 20$  | $\sigma_3 = 300 \text{ (kPa)}$ |                  |                    |
|--------------------------------|--------------------|------------------|--------------------------------|------------------|--------------------|
| DEPL VER<br>(mm)               | Déviateur<br>(kPa) | DEPL VER<br>(mm) | Déviateur<br>(kPa)             | DEPL VER<br>(mm) | Déviateur<br>(kPa) |
| 0                              | 0                  | 0                | 0                              | 0                | 0                  |
| 0,0053                         | 4,85221892         | 0,0159           | 22,134698                      | 0,0148           | 19,709565          |
| 0,0572                         | 34,5480525         | 0,0593           | 56,6691525                     | 0,0572           | 52,4278835         |
| 0,1389                         | 62,9676001         | 0,1325           | 91,1283254                     | 0,1251           | 86,8990518         |

| 0,2344 | 93,7223918 | 0,2174 | 127,007783 | 0,2015 | 123,103082 |
|--------|------------|--------|------------|--------|------------|
| 0,3288 | 127,128389 | 0,3118 | 167,932535 | 0,2927 | 161,632591 |
| 0,4359 | 169,165245 | 0,4147 | 214,151334 | 0,4009 | 211,19924  |
| 0,5568 | 214,956746 | 0,5271 | 265,640368 | 0,5154 | 271,768734 |
| 0,6788 | 263,000194 | 0,6438 | 319,65879  | 0,6406 | 333,313024 |
| 0,8252 | 314,685006 | 0,7785 | 379,720897 | 0,7901 | 388,502453 |
| 0,9673 | 367,989669 | 0,9111 | 437,783342 | 0,9429 | 441,95241  |
| 1,1221 | 420,714684 | 1,0521 | 499,470045 | 1,1137 | 487,268395 |
| 1,2887 | 476,724046 | 1,2176 | 562,829016 | 1,3056 | 548,655086 |
| 1,4743 | 526,394396 | 1,3852 | 624,690301 | 1,5146 | 597,082793 |
| 1,6599 | 575,518172 | 1,5613 | 683,814434 | 1,7299 | 651,414547 |
| 1,8667 | 624,796526 | 1,7575 | 740,374769 | 1,9717 | 691,855037 |
| 2,0895 | 667,16181  | 1,9664 | 790,287892 | 2,2231 | 737,572111 |
| 2,3313 | 702,905938 | 2,1839 | 837,754151 | 2,4872 | 777,776752 |
| 2,5901 | 733,834948 | 2,4331 | 878,357237 | 2,7672 | 823,979464 |
| 2,8659 | 758,801079 | 2,6835 | 912,543042 | 3,0621 | 854,428941 |
| 3,1639 | 778,958527 | 2,9666 | 939,017805 | 3,3697 | 881,585408 |
| 3,479  | 791,795291 | 3,2668 | 954,568395 | 3,6932 | 913,818882 |
| 3,8141 | 799,083775 | 3,5967 | 963,848349 | 4,0294 | 943,47424  |
| 4,1482 | 803,705702 | 3,9435 | 966,672762 | 4,3699 | 964,526258 |
| 4,5036 | 805,429544 | 4,3116 | 966,891722 | 4,7369 | 986,127043 |
| 4,878  | 805,189439 | 4,6786 | 966,824371 | 5,0986 | 1000,70156 |
| 5,2471 | 803,547509 | 5,0572 | 963,667687 | 5,4698 | 1004,79184 |
| 5,63   | 800,048046 | 5,4539 | 957,378615 | 5,8453 | 1002,5356  |
| 6,0097 | 796,283405 | 5,8442 | 952,081868 | 6,2218 | 999,908069 |
| 6,4096 | 793,40517  | 6,2515 | 946,311625 | 6,627  | 994,906572 |
| 6,7925 | 792,902227 | 6,6567 | 939,446267 | 7,0248 | 987,60091  |
| 7,1924 | 791,34648  |        |            | 7,4427 | 981,617333 |
| 7,6113 | 790,615397 |        |            | 7,8638 | 975,587937 |
| 8,0356 | 787,610746 |        |            |        |            |
| 8,4683 | 784,751201 |        |            |        |            |
| 0,0053 | 4,85221892 |        |            |        |            |
| 0,0572 | 34,5480525 |        |            |        |            |
|        |            |        |            |        |            |

Echantillon 03:99% sol traite par 1% Caséine à 14 jours de cure

| $\sigma_3 = 100  (kPa)$ |            | $\sigma_3 = 20$ | 0 (kPa)    | $\sigma_3 = 300  (\text{kPa})$ |            |
|-------------------------|------------|-----------------|------------|--------------------------------|------------|
| DEPL VER                | Déviateur  | DEPL VER        | Déviateur  | DEPL VER                       | Déviateur  |
| (mm)                    | (kPa)      | (mm)            | (kPa)      | (mm)                           | (kPa)      |
| 0,0031                  | 4,24577037 | 0               | 0          | 0                              | 0          |
| 0,0222                  | 19,7076455 | 0,019           | 19,4052004 | 0,0275                         | 16,9770999 |
| 0,0689                  | 42,7240188 | 0,0615          | 54,5466535 | 0,0668                         | 51,2097998 |
| 0,1336                  | 69,6322284 | 0,1304          | 92,6450003 | 0,1251                         | 92,9508023 |
| 0,2015                  | 99,5149944 | 0,2068          | 133,383861 | 0,2047                         | 132,78073  |
| 0,2831                  | 132,942093 | 0,2959          | 178,842416 | 0,2927                         | 174,018566 |
| 0,3733                  | 170,209215 | 0,3966          | 227,475142 | 0,3892                         | 219,961243 |

| 0,4773 | 210,35487  | 0,5154 | 278,03109  | 0,49   | 269,687333 |
|--------|------------|--------|------------|--------|------------|
| 0,5876 | 250,377148 | 0,6332 | 328,422392 | 0,6077 | 318,604725 |
| 0,7074 | 294,752742 | 0,7795 | 383,32047  | 0,7488 | 374,466051 |
| 0,8305 | 337,165525 | 0,9206 | 433,232809 | 0,8835 | 424,757207 |
| 0,9683 | 379,964206 | 1,0871 | 484,286204 | 1,0447 | 477,985279 |
| 1,1179 | 422,232727 | 1,2653 | 537,41797  | 1,225  | 533,230846 |
| 1,2823 | 464,54081  | 1,4467 | 585,499113 | 1,4096 | 582,216049 |
| 1,451  | 503,947918 | 1,6504 | 631,372897 | 1,6164 | 627,80366  |
| 1,627  | 542,825213 | 1,8593 | 673,979774 | 1,8413 | 670,589665 |
| 1,819  | 579,907024 | 2,099  | 711,613535 | 2,0799 | 710,613827 |
| 2,0184 | 612,890824 | 2,3398 | 743,678794 | 2,3239 | 743,839322 |
| 2,2369 | 642,286048 | 2,6081 | 770,553637 | 2,5944 | 780,969353 |
| 2,4618 | 666,147693 | 2,8839 | 802,695734 | 2,8648 | 811,67988  |
| 2,7057 | 695,846818 | 3,1777 | 829,424231 | 3,1618 | 840,093609 |
| 2,972  | 716,79019  | 3,5012 | 861,650896 | 3,4705 | 872,703651 |
| 3,2445 | 741,585405 | 3,8364 | 890,489982 | 3,7919 | 899,417471 |
| 3,5256 | 757,826044 | 4,1716 | 915,107018 | 4,1143 | 924,428215 |
| 3,8269 | 787,000324 | 4,5301 | 935,086086 | 4,4633 | 952,311983 |
| 4,1429 | 806,774873 | 4,8875 | 952,605835 | 4,8292 | 981,546608 |
| 4,4558 | 822,487677 | 5,2513 | 959,635551 | 5,1888 | 998,442521 |
| 4,7868 | 846,288864 | 5,6268 | 962,136145 | 5,5557 | 1018,60771 |
| 5,1156 | 860,229207 | 6,0193 | 946,132828 | 5,9418 | 1027,9007  |
| 5,4645 | 873,509458 | 6,4223 | 937,858699 | 6,3428 | 1030,26122 |
| 5,8029 | 886,42328  | 6,8254 | 922,79353  | 6,7384 | 1023,04392 |
| 6,1487 | 898,833794 | 7,2541 | 908,300338 | 7,1404 | 1014,54934 |
| 6,5019 | 904,771979 |        |            | 7,5456 | 1005,56101 |
| 6,8667 | 902,589682 |        |            | 7,9518 | 998,330828 |
| 7,1345 | 903,887654 |        |            |        |            |
| 7,5367 | 890,664763 |        |            |        |            |
| 7,8667 | 881,628332 |        |            |        |            |
|        |            |        |            |        |            |

#### Echantillon 04 : 98% sol traite par 2% Caséine à 7 jours de cure

| $\sigma_3 = 100 \text{ (kPa)}$ |            | $\sigma_3 = 20$ | 0 (kPa)    | $\sigma_3 = 300  (\text{kPa})$ |            |
|--------------------------------|------------|-----------------|------------|--------------------------------|------------|
| DEPL VER                       | Déviateur  | DEPL VER        | Déviateur  | DEPL VER                       | Déviateur  |
| (mm)                           | (kPa)      | (mm)            | (kPa)      | (mm)                           | (kPa)      |
| 0                              | 0          | 0,001           | 0,90977639 | 0                              | 0          |
| 0,0222                         | 16,9782843 | 0,0063          | 24,2598936 | 0,0169                         | 18,4958862 |
| 0,0827                         | 35,7485355 | 0,0466          | 56,073181  | 0,0657                         | 51,5136304 |
| 0,1707                         | 57,1913618 | 0,123           | 87,5071769 | 0,14                           | 85,6708182 |
| 0,2715                         | 83,4073193 | 0,2121          | 120,368604 | 0,2184                         | 122,776673 |
| 0,3882                         | 113,149237 | 0,315           | 154,937164 | 0,3086                         | 164,918443 |
| 0,508                          | 147,911203 | 0,4316          | 196,312646 | 0,4136                         | 207,524064 |
| 0,6332                         | 187,367615 | 0,5504          | 242,070093 | 0,5229                         | 259,927635 |
| 0,7615                         | 232,086643 | 0,6692          | 292,192671 | 0,6417                         | 314,255233 |
| 0,9026                         | 286,791136 | 0,7933          | 349,331038 | 0,7626                         | 377,697265 |
| 1,0426                         | 342,493671 | 0,9206          | 407,167929 | 0,8792                         | 439,764889 |
| 1,1858                         | 404,236616 | 1,0596          | 470,707866 | 1,0108                         | 505,131233 |

#### **ANNEXES**

| 1,329  | 473,191853 | 1,2123 | 535,707773 | 1,1476 | 577,990389 |
|--------|------------|--------|------------|--------|------------|
| 1,4828 | 544,474278 | 1,3746 | 600,361101 | 1,3003 | 650,736108 |
| 1,6429 | 610,937135 | 1,54   | 663,801949 | 1,4552 | 722,864171 |
| 1,8116 | 674,663029 | 1,7288 | 724,063193 | 1,6175 | 794,012301 |
| 1,9855 | 733,291806 | 1,9261 | 783,627327 | 1,7989 | 864,921854 |
| 2,1711 | 795,358541 | 2,1287 | 838,380627 | 1,9845 | 924,420823 |
| 2,3663 | 841,382756 | 2,3642 | 890,287102 | 2,1818 | 975,232091 |
| 2,57   | 882,346004 | 2,5954 | 938,169114 | 2,3896 | 1019,97517 |
| 2,8012 | 919,486458 | 2,8616 | 982,375056 | 2,623  | 1071,23064 |
| 3,043  | 950,140824 | 3,1332 | 1019,14092 | 2,8701 | 1109,0316  |
| 3,3167 | 976,177942 | 3,4291 | 1050,03147 | 3,1342 | 1140,45156 |
| 3,6084 | 988,051600 | 3,7282 | 1075,38936 | 3,4047 | 1155,5072  |
| 3,9467 | 986,945612 | 4,0475 | 1097,68805 | 3,7081 | 1179,53297 |
| 4,3286 | 981,548239 | 4,3901 | 1112,15366 | 4,039  | 1189,74785 |
| 4,7316 | 966,519376 | 4,7422 | 1120,90643 | 4,3879 | 1188,38329 |
|        |            | 5,1071 | 1125,94219 | 4,7571 | 1181,67787 |
|        |            | 5,4868 | 1124,65707 | 5,1453 | 1167,59311 |
|        |            | 5,9047 | 1117,74773 | 5,561  | 1155,34868 |
| -      |            | 6,3056 | 1106,34118 | 5,9864 | 1141,95347 |
|        |            | 6,731  | 1093,47993 | 6,4096 | 1132,06327 |
|        |            | 7,1648 | 1080,32224 |        |            |

Echantillon 05:98% sol traite par 2% Caséine à 14 jours de cure

| $\sigma_3 = 100 \text{ (kPa)}$ |            | $\sigma_3 = 20$ | 0 (kPa)    | $\sigma_3 = 300 \text{ (kPa)}$ |            |  |
|--------------------------------|------------|-----------------|------------|--------------------------------|------------|--|
| DEPL VER                       | Déviateur  | DEPL VER        | Déviateur  | DEPL VER                       | Déviateur  |  |
| (mm)                           | (kPa)      | (mm)            | (kPa)      | (mm)                           | (kPa)      |  |
| 0,0021                         | 2,72946602 | 0,001           | 0,3032588  | 0                              | 0          |  |
| 0,053                          | 2,72763795 | 0,0137          | 24,5608275 | 0,0159                         | 22,4379855 |  |
| 0,1463                         | 2,42152006 | 0,0403          | 63,6558221 | 0,0604                         | 55,4567732 |  |
| 0,246                          | 19,3472256 | 0,0869          | 110,570076 | 0,124                          | 94,1670955 |  |
| 0,3553                         | 44,6755225 | 0,1537          | 162,527786 | 0,2036                         | 134,902184 |  |
| 0,4624                         | 72,9476343 | 0,2269          | 215,896714 | 0,2906                         | 179,153614 |  |
| 0,5791                         | 107,744143 | 0,3128          | 276,054888 | 0,3935                         | 227,186198 |  |
| 0,7074                         | 149,922991 | 0,4072          | 337,248580 | 0,5016                         | 278,984213 |  |
| 0,8358                         | 196,762684 | 0,5101          | 400,354690 | 0,6236                         | 329,968535 |  |
| 0,9705                         | 251,804657 | 0,6226          | 477,362212 | 0,7605                         | 385,512517 |  |
| 1,1031                         | 306,951801 | 0,7403          | 545,393556 | 0,9026                         | 438,434138 |  |
| 1,2452                         | 365,134835 | 0,8739          | 617,281589 | 1,0585                         | 492,844883 |  |
| 1,399                          | 428,689145 | 1,0129          | 691,549440 | 1,2272                         | 546,046886 |  |
| 1,557                          | 493,729913 | 1,1614          | 764,537466 | 1,4128                         | 596,185259 |  |
| 1,7257                         | 559,004942 | 1,3194          | 836,240057 | 1,609                          | 652,224629 |  |
| 1,9007                         | 622,446501 | 1,4944          | 908,583793 | 1,8179                         | 707,253643 |  |
| 2,1022                         | 682,678344 | 1,6790          | 975,752013 | 2,0439                         | 776,297061 |  |
| 2,3133                         | 736,012007 | 1,8710          | 1039,71892 | 2,2825                         | 838,285945 |  |
| 2,5562                         | 793,101687 | 2,0948          | 1099,43675 | 2,5381                         | 904,891314 |  |
| 2,8076                         | 856,391165 | 2,3207          | 1149,33689 | 2,8065                         | 970,036384 |  |
| 3,1056                         | 904,498182 | 2,5721          | 1191,93391 | 3,1003                         | 1028,22885 |  |

| 3,4333 | 950,615013 | 2,8468 | 1224,90698 | 3,4068 | 1081,60364 |
|--------|------------|--------|------------|--------|------------|
| 3,7993 | 995,83417  | 3,1438 | 1252,73372 | 3,725  | 1139,2554  |
| 4,1652 | 1022,2106  | 3,4524 | 1269,48199 | 4,0411 | 1186,03937 |
| 4,5417 | 1050,35012 | 3,7897 | 1279,66666 | 4,3773 | 1232,85384 |
| 4,9045 | 1077,10705 | 4,1493 | 1281,38084 | 4,7231 | 1277,68127 |
| 5,2789 | 1094,08292 | 4,5227 | 1276,38036 | 5,0731 | 1314,53097 |
| 5,6586 | 1110,7353  | 4,9087 | 1269,4875  | 5,4316 | 1339,24713 |
| 6,0564 | 1126,28479 | 5,3065 | 1259,02085 | 5,8124 | 1346,84225 |
| 6,4743 | 1137,94849 | 5,7308 | 1245,59381 | 6,2102 | 1346,73972 |
| 6,8901 | 1135,07221 | 6,1487 | 1230,0812  | 6,6047 | 1345,24654 |
| 7,3292 | 1124,59351 |        |            | 7,0067 | 1327,76719 |
| 7,7832 | 1098,87431 |        |            | 7,413  | 1319,39092 |
|        |            |        |            | 7,8266 | 1304,86912 |

#### A.2 Equation de régression en unités non codées

 $Contrainte = 0.717 + 0.0286 \ \% \ + 0.0214 \ Tps + 0.01224 \ \% \ *Tps$ 

#### Configuration

| Variable | Configuration |  |  |
|----------|---------------|--|--|
| %        | 3             |  |  |
| Tps      | 7             |  |  |

#### Prévision

| Valeur ajustée | ErT ajust | IC à 95 %          | IP à 95 %           |
|----------------|-----------|--------------------|---------------------|
| 1,20952        | 0,0662401 | (1,03925; 1,37980) | (0,727911; 1,69114) |

#### Configuration

| Variable | Configuration |  |  |
|----------|---------------|--|--|
| %        | 3             |  |  |
| Tps      | 14            |  |  |

#### **Prévision**

| Valeur ajustée | ErT ajust | IC à 95 %          | IP à 95 %          |
|----------------|-----------|--------------------|--------------------|
| 1,61667        | 0,104735  | (1,34744; 1,88590) | (1,09184; 2,14149) |