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Abstract 

The absence of general theoretical models describing linear sweep voltammetry (LSV) 

or cyclic voltammetry (CV) responses for soluble-insoluble systems such as one-step 

electrodeposition reactions under quasi-reversible condition makes it difficult to extract 

quantitative kinetic information from experimental voltammograms. In this work, the semi-

analytical method and the finite-element method included in COMSOL Multiphysics software 

for simulating LSV and CV responses for one–step electrodeposition process are described, 

for a case where instantaneous nucleation takes place, such as metal deposition on same 

metal. Voltammetric peaks were analyzed following variation of both dimensionless rate 

constants and charge transfer coefficients in a broad range. Therefore, kinetic curves for 

electron transfer processes were established and fitted perfectly by sigmoidal Boltzmann 

function and linear models. With these models, LSV or CV experimental data can be used to 

measure electrodeposition reactions kinetics whatever the degree of reversibility. The 

Cu(I)/Cu(0) couple in acetonitrile was selected as an experimental example. The model 

developed in this work predicts accurately the current response for Cu electrodeposition 

reaction and an excellent experiment-theory agreement was found. Furthermore, the LSV and 

CV models developed in this work, allow the theoretical concentration profiles for soluble-

insoluble redox couples to be established for either reversible, quasi-reversible and 

irreversible cases. 

 

Keywords: Simulation, Metal deposition, Soluble-insoluble system, Linear sweep 

voltammetry, Cyclic voltammetry. 

 

 

 

 

 

 

 



Résumé 

L'absence de modèles théoriques généraux décrivant les réponses de la 

voltampérométrie à balayage linéaire (LSV) ou de la voltampérométrie cyclique (CV) pour 

les systèmes solubles-insolubles tels que les réactions d'électrodéposition en une seule étape 

dans des conditions quasi-réversibles rend difficile l'extraction d'informations cinétiques 

quantitatives à partir es voltampérogrammes expérimentaux. Dans ce travail, la méthode 

semi-analytique et la méthode des éléments finis sous le logiciel COMSOL Multiphysics sont 

décrites pour simuler les réponses LSV et CV pour le processus d'électrodéposition en une 

seule étape, dans le cas où la nucléation instantanée a lieu, comme le dépôt de métal sur le 

même métal. Les reponses voltamperometriques  ont été analysés suite à la variation à la fois 

de la constant de vitesse adimensionnelle et de la coefficient de transfert de charge dans une 

large intervalle. Par conséquent, des courbes cinétiques des processus de transfert d'électrons 

ont été établies et parfaitement ajustées par une fonction sigmoïde de Boltzmann et des 

modèles linéaires. Avec ces modèles, les données expérimentales LSV ou CV permettent de 

mesurer la cinétique des réactions d'électrodéposition quel que soit le degré de réversibilité. 

Le couple Cu(I)/Cu(0) dans l'acétonitrile a été choisi comme exemple expérimental. Le 

modèle développé dans ce travail prédit avec précision les réponses en courant pour la 

réaction d'électrodéposition de Cu. Un bon accord entre la théorie et l'expérimental a été 

trouvé. De plus, les modèles LSV et CV développés dans ce travail, permettent d'établir les 

profils de concentration théoriques des couples redox solubles-insolubles pour les cas 

réversibles, quasi-réversibles et irréversibles. 

 

Mots clés: Simulation, Déposition du métal, Système soluble-insoluble, Voltampérométrie à 

balayage linéaire (LSV), Voltampérométrie cyclique. 

 

 

 

 

 

 



 ملخص

غير قابل -نماذج نظرية تستعمل لوصف استجابات النظام الذي تكون فيه التفاعل من نوع قابل للذوبانعدم وجود  

تخضع   التي  لاسيما  الدورية  أو  الخطية  الفولتميتيرية  الطريقة  باستعمال  المعادن  ترسب  تفاعلات  حالة  في  مثل  للذوبان 

تخراج معلومات كمية تصف الخصائص الحركية لهذا النظام.  ادى الى عجز المجرب في حساب واس  شبه العكوسة،لشروط  

 COMSOLالطريقة الشبه التحليلية وطريقة العناصر المحدودة المندرجه في برنامج    :طريقتينفي هدا العمل تم استعمال  

MULTIPHYSIC التنوي حدوث  حالة  في  واحده،  خطوة  في  تحدث  التي  الكهربائي  الترسيب  عملية  محاكاة  بهدف   .

و الف السرعه  ثابت  من  كل  اثرتغيير  دراسة  بعد  الفولتميتيرية  القمم  تحليل  المعدن.تم  نفس  على  المعادن  ترسب  مثل  وري 

معامل نقل الشحنات في مجال واسع. بناءا على ذلك تم إنشاء منحنيات حركية لعملية نقل الإلكتروني وتم نمذجتها باستعمال 

م خطيا  نموذجا  وكذا  السيني  بولتزمان  الدورية  نموذج  أو  الخطية  الفولتميتيرية  البيانات  استخدام  يمكن  النماذج  هذه  ع 

اختيار   تم  العكوس.  الكهربائي مهما كانت درجة  الترسيب  تفاعل  لقياس حركية  للنظرية   Cu(I)/Cu(0)الثنائية  التجريبية 

التي  الدورية  أو  الخطية  الفولتميتيرية  النماذج  فان  ذلك،  على  علاوة  تطويرها.  تم  في    التي  تطويرها  تسمح   هذاتم  العمل 

العكوسة، والغير قابلة للذوبان في الحالات -بانشاء مخطاطات تغير التراكيزالنظرية للنظام الأكسدة والارجاع القابلة للذوابان

 .الشبه العكوسة، والغير العكوسة

 

الكلمات المفتاحية:المحاكاة ، الترسيب المعدني، النظام القابل للذوابان-الغير قابل للذوبان ،الطريقة الفولتميتيرية الخطية، 

 .الطريقة الفولتميتيرية الدورية
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Introduction  



1 
 

Introduction 

 

Our thesis research concerns the visualization and the electrochemical evaluation by 

means of the potential scanning methods of voltammetry, the behavior of a metal 

electrodeposition reaction. Electrochemical electrodeposition is one-of-a-kind methods that 

aimed on depositing metal or alloy coatings on conductive substrates in the presence of an 

electrolyte using an electric field [1]. Owing to its possible applications in advanced 

technologies such as. microelectronics and, most recently, to energy conversion, it has attracted 

increasing attention in the research community [2]. 

 

Voltammetry techniques are a group of electroanalytical techniques which imposes a 

controlled variable voltage power source on the solution to be analyzed, to force an 

electrochemical reaction to proceed [3], and then monitors the corresponding current behaviors. 

Information on the redox reaction process is represented by a peak or trough in the current 

signal. Because there are so many ways to vary a potential, there are also many different types 

of voltammetric techniques, including polarography (DC Voltage), linear or cyclic sweep, 

differential staircase, normal pulse, reverse pulse, differential pulse, and others [3]. In this 

study, we focus solely on Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV), 

which may be the most selective techniques for the rapid quantitative determination of the 

kinetic and thermodynamic characteristics of an electrode reaction in electrochemistry. 

 

On another note, an analysis of typical voltammetric behavior, such the position and 

shape of peak can be helpful, but it is often not enough to probe kinetic and thermodynamic 

properties of redox process, and a computer simulation, becomes indispensable then. When 

introducing simulation in LSV or CV techniques, naturally the well-known simple one-step 

redox system is usually discussed, which allows researchers working on electrochemistry to 

become acquainted with the main processes involved in a voltammetry experiment. An analysis 

of the literature allows distinguishing various redox system types. Firstly, by describing the 

nature of the redox couples which are involved in an electrochemical system, we can cite 

soluble-soluble, insoluble soluble and soluble-insoluble redox systems. And secondly by 

examining the rate of the reaction, we cite reversible, quasi-reversible and irreversible systems 

[4]. 



2 
 

For the case of soluble-soluble redox system, diverse theoretical studies have simulated 

the current responses and many models are available that can be used in the estimation of kinetic 

parameters [5], pointing that the first LSV responses were first theorized in 1948 by Randles 

for reversible processes [6], and over the years subsequently expanded and developed for 

additional aspects, irreversible or quasi-reversible electron transfers, coupled chemical or 

adsorption–desorption processes and multiple charge transfer process, etc.  

 

Likewise, to predict mathematically how does an insoluble-soluble system respond 

under LSV or CV conditions, several studies were done [4]. While there has been comparatively 

little effort to theoretically model voltammetry experiments involving soluble-insoluble couples 

[7]. and until this study, the full CV theory for reversible and irreversible cases has not yet 

completely understood and the quasi-reversible electron transfer has never been addressed 

before. That is why, many researchers incorrectly use general models developed for soluble-

soluble systems also for soluble-insoluble systems, leading to misinterpretation of the 

experimental data, so there is clearly a need for LSV and CV models and characteristic 

diagnostic criteria also for soluble-insoluble system. 

 

In light of this, the objective of this thesis is to: 

- Study, understand and model the theoretical LSV and CV behaviour for reversible, quasi 

reversible and irreversible soluble-insoluble redox reactions. for this purpose, the semi-

analytical method and the finite element method have been chosen to build a theoretical model 

based on Butler-Volmer type equation to produce theoretical LSV and CV curves. 

- Developing algorithm, by matching the theoretical and experimental LSV or CV responses, it 

should be possible to extract useful mass transport and kinetic information whatever the degree 

of the reversibility. 

- Propose mathematical models for use in direct determination of kinetic electrochemical 

parameters from experimental LSV or .CV curves of metal deposition process.  

 

To verify the theoretical conclusions and demonstrate the accuracy and the effectiveness 

of our numerical models, experimental tests with the system Cu(I)/Cu(0) are performed. The 

accurate estimation of the electrochemical kinetics of this process is required to understand 

better the limitations for the nonaqueous batteries utilizing Cu(I)/Cu(0) couple as the negative 

redox couple. 

 



3 
 

This thesis is divided into four chapters. The first chapter is background, literature 

review of previous fundamental studies on simulation of voltammetry responses, and it also 

contains the problematic and detailed scope of this work.  The second describe the experimental 

devices and simulation tools employed in this study. The subsequent two chapters describe in 

detail the mathematical approaches to the solution used for the simulation of LSV and CV 

responses. 
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CHAPTER I 

Background and literature review 

 

In this chapter, we provide a full description of solid-liquid electrochemical system with 

fundamental thermodynamic, kinetic, and mass transfer laws that may govern such systems.  

Next, we summarize main progresses made to predict the behavior of the system involving 

soluble-soluble and soluble-insoluble redox couples, by Linear potential scan voltammetry 

and cyclic voltammetry, we then outline the most common mathematical models. 

At the end of this chapter, goals of the present thesis are defined.  
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I.1. Description of electrochemical systems  

Electrochemistry is the study of different electrochemical systems in which charged particles 

(ions or/and electrons) cross the interface when two phases are brought into contact, can be 

either: solid/liquid, liquid/liquid or of solid/solid type [1]. This thesis is concerned with 

phenomena occurring in solid-liquid electrochemical systems.  

A solid-liquid electrochemical system (Fig.I.1) can be described as having two electrically 

conducting media which can be classified as electrodes connected to an external circuit, two 

electrodes at least, and an electrolyte in between [1,2]. 

Figure I.1. Simple structure of solid-liquid electrochemical systems. Electrode materials 

can either be metals, semimetals, or semiconductors, which choice should depend on the 

application. The electrolytic ions perform the role of enabling electric current to flow through 

an electrochemical cell from one electrode to the other [3]. 

 

At solid-liquid phase boundaries, an arrangement of two opposite charges carriers occurs and 

the interface becomes electrified. Thus, local electric fields and potential differences are 

produced in the interfacial region. This arrangement area is called the Electrical Double Layer 

(EDL) [4]. 

In the context of understanding the structure and proprieties of the EDL, we will briefly 

review the current EDL models such us those given by Helmholtz, Gouy-Chapman, Stern and 

Garahme. 

I.1. 1. Helmholtz EDL model 

The concept that when the charged electronic conductors is brought into contact with a liquid 

ionic conductor can repel the co-ions of the charge while attract countersigns ions to their 
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surfaces was firstly studied in 1853 by the physicist Helmholtz as exemplified in Fig I.2 (a) 

[5,6]. The gist of this model is that the structure of the interfacial region is treated as two-plate 

conventional capacitors and the potential falls linearly.  The Electrical Double Layer 

Capacitance (EDLC) can be described as [5]:  

4
H

A
EDLC

d




=           (1) 

where ε is the dielectric constant of the electrolyte, A is the area of electrode exposed to the 

electrolyte and d is the thickness of electric double layer. 

This model ignores the capacitance dependence on the temperature and voltage, and hence is 

inadequate for accurate EDLC estimation [5]. 

I.1. 2. Gouy-Chapman EDL model 

The Helmholtz simple model was farther extended to the diffuse model of EDL by Gouy and 

Chapman to include the influence of the thermal motion near the surface, so that the ions 

would not remain static but would be subject to thermal fluctuation and have a tendency to 

spread out into solution, forming what is called a diffuse double layer [5-7]. Moreover, the 

theory of Gouy-Chapman described the dependence of the Electrical Double Layer 

Capacitance (EDLC) on surface potentials Es at temperature T as follows [5]: 

22

2

s
G

zqEq N
EDLC z cosh

kT kT

  
=  

 
        (2) 

where z is the valence of the ions, q is the elementary charge, N is the number of ions per 

centimeter, ε is the dielectric constant of the electrolyte, and k is the Boltzmann constant. 

In such situation, the surface charge potential profile exponentially decreases with distance as 

shown in Fig I.2 (b) [7]. 

I.1. 3. Stern EDL Model 

Stern combined the Helmholtz and Gouy-Chapman models and suggested then the existence 

of two regions of ion distribution namely, (i) the inner compact region also known as the 

Stern layer, constituted by a layer of strongly adsorbed ions at the electrode surface, and the 

other (ii) is referred to the diffuse layer region, as exactly what the Gouy-Chapman model 

defines [8-10]. So that, the total EDLC can be treated as a combination of the capacitances 

from two regions as [5]: 
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1 1 1

H GEDLC EDLC EDLC
= +         

 (3) 

As shown in Fig I.2 (c), the potential decays linearly in the Stern layer and then exponentially 

in diffuse layer [11]. 

 

 

 

 

 

 

 

 

 

Figure I.2. Electric charge and potential distribution in EDL. (a)  Helmholtz, (b) Gouy -

Chapman and (c) Stern models [7]. 

 

I.1. 4. Grahame EDL Model 

Based on assumptions from earlier models, Grahame suggested further refinement by dividing  

the compact layer into two parts with the introduction of two plans: (i) an inner Helmholtz 

plane (IHP) consisting of non-hydrated coions and counterions that are specifically adsorbed 

on the surface of the electrode and (ii) an outer Helmholtz plane (OHP) consists of solvated 

ions of opposed charge compared to the electrode, that are non-specifically adsorbed and 

attracted by the columbic force [8]. Therefore, the Grahame model proposed the existence of 

three regions: IHP, OHP, and “diffuse layer” (see Fig I.3). the potential drop and the 

capacitance are similar to what stern described [8]. 

 



CHAPTER I:  Background and literature review 

8 
 

 

Figure I.3. Schematic representation of the Grahame model of the double layer [8]. 

 

I.2. Electrochemical thermodynamic and kinetics  

I.2.1. Steps of electrode process 

An electrochemical reaction occurring in an electrochemical system involves transfer of 

charges across electrode/electrolyte interface. A simplified mechanism for an electrochemical 

reaction consists of a sequence of steps (Fig I.4) involving electron transfer, mass transport, 

adsorption/desorption and chemical reactions [12-13].  

 

Figure I.4. Essential steps of electrochemical reactions [12]. 

Solvated cation 

Solvated anion 

Specifically adsorbed 
anion 
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I.2.2. Nernst equation 

Consider a generalized process involving the transfer of n electrons: 

 
R

O

k

k
O ne R− ⎯ →⎯⎯+ ⎯           (4) 

Where: 

O:   Oxidized species 

 n:   Number of electrons, e-, involved  

R:  Reduced species of the redox couple 

kO, kR:   Electron kinetic transfer constants for the oxidation and for  

the reduction, respectively. 

Thermodynamically speaking, when the system is in a state of zero applied potential, the 

standard free energies for the reduction reaction (cathodic) and oxidation reaction (anodic) are 

respectively 
0cG   and 

0aG  (see solid curve in Fig I.5). By changing the potential to the new 

value E, the energy of an electron on the electrode changes by nFE, consequently the dashed 

curve for the reduction O+ne-→R move up or down by that amount [14].  

 

According to the law of conservation of energy, the change in chemical energy should be 

equal to the electrical energy produced by the system [14-15]. Hence, the Gibbs free 

energy change is given by:  

G nFE = −            (5) 

Under standard conditions (atmospheric pressure and a temperature of 298K), the above 

equation can be given as [15]: 

0 0G nFE = −            (6) 

According to the thermodynamic theory, the Gibbs free energy under given conditions can be 

related to Gibbs free energy under the standard condition and the reaction quotient Q as [15]: 

0 R lnQG G T =  +           (7) 

By combining the above three equations eqs (5-7), the following Nernst type equation is 

obtained: 

0 ln
RT

E E Q
nF

= −           (8) 

Which can be simplified to: 

 
 

0 ln
O

R

CRT
E E

nF C
= +           (9)
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Figure I.5. Free- energy reaction coordinate diagram for a simple redox reaction. Full lines: 

zero applied potential E = 0, dashed line: with applied potential E=E [16].  

 

I.2.3. Butler-Volmer equation 

As a result of shift in potential from 0 to a value E, the system gains the enough energy for the 

forward reaction to become dominant over the reverse (see Fig I.5). in such situation, we 

should define the amount of energy necessary for each reaction to occur, which mainly 

depend on the transfer coefficient α [17]. 

For the forward reaction, the new activation barrier is higher than 
0cG  by an amount nFE  

[14]: 

0 Fc cG G n E  =  +           (10) 

For the reverse reaction, the activation barrier is less than
0aG  by an amount ( )1 Fn E−  

[14]: 

( )0 1 Fa aG G n E  =  − −          (11) 

The rate constants, kO and kR defined previously in eq (4), obeys to Arrhenius equation, and 

can be expressed as a function of the applied voltage E by the following generalized 

equations: 

0c cG G nFE

RT RT RT
R R Rk A e A e e

  
− − −

= =         (12) 

And 

( )0 1a a nFEG G

RT RT RT
O O Ok A e A e e

  − 
− −

= =         (13) 
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Here, AR and AO were used to denote the pre-exponential factors of the reduction and the 

oxidation reaction, respectively. 

At equilibrium, the rate of the forward reaction is equal to the rate of the reverse, then we can 

write [14]:  

O O R RC k C k=             (14) 

For equal concentrations of ‘O’ and ‘R’, it follows: 

0

ROk k k= =             (15) 

where k0 is standard rate constant of the redox reaction, eq (4). The rate constants can be 

expressed in terms of the standard rate constant by rewriting equations (12) and (13): 

( )0

0

nF E E

RT
Rk k e

 −
−

=           (16) 

( ) ( )01

0

nF E E

RT
Ok k e

− −

=           (17) 

The expression relating the overall current to the electrode potential, 

for an electrode of surface area, A, is formulated in term of the sum of the partial anodic Ia, 

and partial cathodic Ic, currents [18]: 

    a c O R R OI I I nFAk C nFAk C= + = −         (18) 

Substituting for kO and kR from equations (16) and (17): 

( ) ( ) ( )0 0

0
1

F  R O

nF E E nF E E
I n Ak C exp C exp

RT RT

  
 
 

   − − − −
   = −
   
   

   (19) 

Which is known as the Butler-Volmer equation. 

I.3. Mass transport phenomena 

Regarding to Fig I.4, we can say that the electroactive species should come from the bulk 

solution to reach the electrode surface or to transfer into the solution from the electrode to 

allow the electron transfer to occur. Therefore, besides the knowledge of the fundamental 

concepts and laws of thermodynamics and kinetics, transport processes are as well decisive 

for performing efficient electrochemical processes. There are three modes of mass transport: 

Diffusion, Migration and Convection, each with its own effect on the observed current 

characteristics of the system [19]. 

I.3.1. Diffusion  

The movement of electroactive species under concentration gradient is called diffusion. This 
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is mainly described by Fick's first and second laws [19].  

Fick's first law describes the diffusive mass flux as a function of diffusion coefficient and 

spatial concentration gradient. For the one-dimensional case, it is expressed as [20]: 

d

C
J D

x


= −


           (20) 

Where, Jd is the diffusion flux, D is the ion diffusion coefficient, C is the ion concentration, x 

is the diffusion distance and 
C

x




 is the ion concentration gradient.   

While the Fick’s second law of diffusion describes how the concentration of a species 

changes with respect to time and position. For one spatial dimension, it can be expressed as 

[20]: 

( ) ( )2

2

, ,C x t C x t
D

t x

 
=

 
          (21) 

I.3.2. Migration 

Migration is the mechanism of moving of species, i, with charge zi under potential gradient 

[17]: 

i
m

z F
J DC

RT
=            (22) 

Where Jm, is the migration flux, and Δ𝜙, is the electrical filed gradient. 

Due to the mathematical complexity in the treatment of electrochemical systems, the 

migration contribution can be neglected. This can be achieved, if a 

sufficiently large concentration of supporting electrolyte is added, that effectively cancels 

the potential gradient around the electrode surface [20]. 

 

I.3.3. Convection 

Convection is the movement of particles resulting from an imbalance of force, either forced or 

natural. Forced convection occurs when the solution is forced to flow by an external source 

(e.g., due to stirring, such as generated by the rotating disc electrode). While, natural 

convection is often due to temperature and solution density gradients and is random in nature, 

which make it difficult to model. However, it can be considered insignificant for short time 

periods [22]. 
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I.4. Voltammetry-sweep techniques to study electrochemical systems 

In electrochemical systems, understanding and controlling electron transfer process is of 

critical importance. However, the topic of interest of this chapter is how an experimenter can 

visualize and assess the behavior of such system using voltammetry techniques. The term of 

voltammetry covers a range of electroanalytical methods, based on the measurement of 

current responses due to a voltage excitation. the obtained data is usually presented as a plot 

of current versus potential, known as a voltammogram [23]. 

Depending on the type of potential signal applied to the system, one can distinguish different 

electrochemical voltammetries that have been reviewed in several literature books [21,22]. In 

the work described in this thesis, we concentrate only on Linear Sweep Voltammetry (LSV) 

and Cyclic Voltammetry (CV) under diffusion mass transport control. CV or LSV is capable 

of yielding a fast and clear view about kinetics, thermodynamics, and mechanisms of 

electrode reactions, from the inspection of the shape and position of the experimental current-

potential curves.  

I.4.1. Linear Sweep Voltammetry (LSV) 

In LSV, the current is measured at the electrode while the potential sweeps linearly in time 

from a lower potential Ei to a higher upper potential Ef, or vice versa. The potential-time 

profile can be expressed as [24,25]: 

iE E vt=             (23) 

The characteristics of the LSV   recorded depend crucially on the following factors: the rate of 

the electron transfer reaction, the chemical reactivity of the electroactive species and the 

potential scan rate.  

The results of LSV are presented as one of oxidation or reduction peak. 

A linear sweep anodic potential ramp applied to an electrode is shown in Fig I.6.a, and the 

corresponding voltammogram is shown in Fig I.6.b. 
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Figure I.6. a) Potential function applied at the electrode to oxidize the reduced species in the 

solution Redox couple. b) linear potential sweep voltammogram [26].  

 

I.4.2. Cyclic Voltammetry (CV)  

Same as linear sweep voltammetry except that the applied potential goes one step further and 

does not finish with a single sweep (see Fig I.7). So that, it is ramped up or down linearly 

form a starting potential Ei to a defined potential value and then, at switching time t, turned 

back in a cyclic manner. The following equation is obeyed [27]: 

,  

2 ,  

i

i

E vt t t
E

E vt vt t t



 

 
= 

  
         (24) 

Where upper signs refer to forward anodic sweeps and lower signs refer to forward cathodic 

sweeps. 

Figure 1.7a shows the triangular wave potential applied to the working electrode and Figure 

I.7b shows the resulting voltammogram. 
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Figure I.7. a) Potential function applied in cyclic voltammetry to oxidize the reduced species 

in the solution Redox couple. b) cyclic voltammogram [26]. 

 

From the analytical point of view, parameters that are most useful of CV are [26]:  

- Peak potential is the potential at which almost the analyte species on electrode surface is 

oxidized or reduced.  

- Peak current is the maximum (or minimum) intensity of the current attained by an oxidation 

or reduction peak during an applied potential scan. 

- Half wave potential is defined as the potential at half height of the peak current. 

- Peak to peak current ratio is the ratio of the forward peak current density to the reverse peak 

current density which generally used as an indicator of the reversibility of the redox reaction. 

- Peak separation is defined as a quantitative measure for how well two peak potentials 

(anodic and cathodic) are separated. 

I.4.3. Electrochemical voltammetry Measurement System  

Electrochemical voltammetry measurement systems typically consist of three electrodes [28]: 

auxiliary, working and reference electrode, immersed in cell medium and connected to a 

potentiostat circuit (see Fig I.8). 
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Figure I.8. Schematic sketch of the three-electrode voltammetry measurement system [29]. 

 

The potentiostat sets the desired control potential of the experiment and monitors the 

corresponding current. The working electrode is where the reactions of interest take place. 

The role of the auxiliary electrode is to balance the reactions occurring at the working 

electrode by acting as a source/sink for electrons to complete the electrical circuit [27-29]. 

The role of the reference electrode is to provide a stable potential for measurement in the 

voltammetry measuring systems [30]. 

I.4.4. Common causes of Distortion in voltammetric curves 

As the assessment of the behavior of an electrochemical system depend strongly on the shape 

and position of voltammograms, so that, a considerable care should be taken when 

interpreting the voltametric responses. However, a knowledge of the causes of errors in data 

obtained from voltammetry techniques, are indispensable. Among these, the uncompensated 

resistance, and the charging double layer current [31].  

The uncompensated resistance in an electrochemical system is defined as the sum of 

resistances in all current path to the working electrode. The origin of these resistances can be 

divided into three groups.  Group 1: ion migration in the electrolyte, Group 2: electron 

transport, Group 3: contact resistances [32], with the possible presence of the dominance of 

one resistance, depend on the type of the system. In the case of voltammetry Measurement 

System, the uncompensated resistance is often dominated by the resistance of electrolyte 

solution which in combination with the flowing current yields to the voltage ohmic drop [32]. 

The effect of the ohmic drop on LSV and CV include: A shift of the current-voltage curve 
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along the x-axis, which lead to a displacement of the peak potential, broadening of the peak 

width and a decrease in the peak current [22]  

On the other hand, due to the capacitive nature of the electrode-electrolyte interface, an EDL 

charging current is induced as a result of the applied potential [34]. This current can distort 

the accuracy of the measurement via a displacement of the voltammogram along the current 

axis, and this interference can be eliminated either by working with microelectrodes or by 

separating faradaic current from charging current [34-35]. 

I.5. General Overview on the LSV and CV theories in the case of one-step 

electrode process  

I.5.1. Survey of existing simulation approaches 

The days when the analysis of LSV or CV curves based only on the position and shape of 

their peaks are almost past. Mostly, nowadays, the simulation methods allow an entire 

voltammogram to be analyzed. 

Indeed, the simulation may be used in a predictive way to identify a phenomenon that has not 

(yet) been or cannot be experimentally studied or as an ideal tool for getting qualitative (e.g. 

to determine elementary reaction steps) or quantitative information (e.g. to determine the 

heterogeneous rate constant of electron transfer reaction) by concordance between the 

experimental curve ¨and simulated one. It is worthwhile to note that “Computer modelling” 

and “Simulation” are often used as synonyms [16]. 

Generally, as illustrated in Fig I.9, to simulate controlled current experiments, the following 

steps should be considered [16]: 

- Kinetics of the electron transfer reaction, most often modelled by a Butler-Volmer type 

equation. 

- Transport properties of the involved molecules: only diffusion is considered as means of 

mass transport of the analytes to the electrode, so that, a no stirred solution with a sufficiently 

high concentration of supporting electrolyte is assumed.  

- Reaction scheme: reaction scheme may include: the adsorption reaction of electroactive 

species which can be described by isotherms, heterogeneous/homogeneous chemical reactions 

with their appropriate kinetics, and thermodynamics, etc. 
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- The electrical perturbation applied: e.g. triangular potential-excitation signal for CV 

measurements. 

These steps should be combined to formulating theoretical models of voltammetry 

experiments usually results in partial differential equations (PDE), and subsequently solved 

using either: analytical, numerical, or semi-analytical methods. The solution to the problem is 

the concentration profiles of electroactive species, and the system's current-potential-time 

response for a given electrical excitation can be determined from them [21]. 

 

 

Figure I.9. Diagrammatic representation of the most important steps to predict voltammetric 

responses. 

 

I.5.1.1. Analytical method 

Analytical method is a method which gets exact relationship between current and voltage to 

establish theoretical voltammograms. It is the output of a mathematical analysis of all steps 

cited below [21]. Besides, analytical method does not require to waste too much time and 

money on experiments [36]. In a recent example, redox-electrode reactions with fast electron 

transfer were investigated analytically by A. Samin et al. In this paper, the series solution to 

predict cyclic voltammetry responses are derived [37]. 
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Nevertheless, a significant deficiency in employing this method for more complex 

voltammetry problems can be appeared. In such case, numerical methods are more effective 

and desired than analytical ones [21]. 

I.5.1.2. Numerical method  

It uses numerical step-by-step methods, which are based on the time-space discretization of 

PDEs, to obtain an approximate expression for the current vs. voltage. Of the several methods 

available, the most common are: Finite Difference Method, Finite Element Method, and 

orthogonal collection method. It processes data and solves problems by means of computer or 

computational model [36].  For example, in the recent work of G. Jia-yao et al [38], finite 

element method was used to simulate the cyclic voltammetric behaviors of heterogeneous 

electron transfer coupled with Faradic adsorption/desorption processes. 

There are different and distinct kinds of software based on numerical methods, which can be 

used to solve voltammetry problems faster and more accurately. 

 

I.5.1.3. Semi analytical method 

It is a method based on combined of two above methods: it solves first analytically the spatial 

aspects of the voltammetry problem to turn PDEs equations into an integral equation and then 

solved it numerically by discretizing the time variable [39]. 

I.5.2. Chronology of some important events in history of LSV and CV theories  

In this portion of this chapter, important historical trends in the study of electrochemical 

system by LSV and CV techniques are summarized in Table I.1. The systems of interest in 

this thesis are:  

-Redox electrochemical reactions involving soluble species.  

-Redox electrochemical reaction involving insoluble species. 
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Table I.1. Chronology of some important events in history of LSV and CV theories to study 

soluble-soluble and soluble-insoluble redox couples. 

soluble-soluble redox reactions 

1948 Randles and Ševčík have developed the LSV theory in the case of reversible 

electron transfer reactions involving soluble species and published a well-

known model relating the peak current in the reduction (oxidation) process to 

the scan rate, that is nowadays commonly used in estimation of the diffusion 

coefficient [40].  

 

1955 

 

Matsuda and Ayab have treated the case of quasi-reversible soluble-soluble 

redox reaction. subsequently, they have summarized the overall LSV responses 

as a function of kinetic rate constant and charge transfer coefficient into series 

diagrams. With these diagrams, one can estimate the standard rate constants 

regardless of the degree of reversibility and assess reversibility/irreversibility of 

the electrochemical reactions [22,41-42,44]. 

  
1964 Nicholson and Shain based on the two above theories, have simulated cyclic 

voltammetric behavior: First they solved PDEs for soluble-soluble redox 

couples, and tabulated their results in the form of dimensionless current-

potential dependence. Next, they solved eight electrochemical mechanisms in 

which specific types of chemical reaction (preceding or following chemical 

reactions), that may occur in solution, were considered [22,43]. 

soluble-insoluble redox reactions 

1953 Berzins and Delahay were the first ones who established the LSV theory for 

studying the soluble-to-insoluble type of redox reaction by assuming fast 

electron transfer kinetics, and they derived an expression to describe the 

variation of peak current as a function of scan rate [45]. 

 

1953 

 

P.Delahay was first who simulated LSV responses when the electron transfer is 

fully irreversible [45]. 

 

1986 D.J. Schiffrin developed the theoretical model for calculating cyclic 

voltammograms for reversible metal-metal ion couples under the hypothesis 

that there is no nucleation overpotential at the solid electrode and 

an instantaneous transition from bare electrode to an electrode with a 

monolayer of reduced species [46]. 

 

 

Since these works, there have been numerous studies investigating soluble–soluble process 

including a large class of models such as multiple charge transfer process, coupled chemical 

or adsorption–desorption processes, etc. [21,22]. On the contrary, only a few researchers have 
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been addressed to the simulation of voltammetric behavior in the case of solid product 

formation [47]. A visit to the Compton group website (http://compton.chem.ox.ac.uk/) is 

suggested if one wishes to get a feel for the remarkable breadth of voltammetric mechanisms 

that have been simulated in the last decade [43]. 

I.5.3. Calculation of voltammograms for soluble-soluble redox reaction using semi 

analytical method 

In what follows, we describe the simulation of potential sweep experiments (LSV and CV), 

case soluble-soluble redox reaction, through which a strategy, namely the Integral Equation 

(IE) method, also called Nicholson and Shain method which falls under the category of semi- 

analytical methods is used. For a full description of IE method, the reader is addressed to the 

following references: [21,48-50]. 

Let us consider an electroactive species “O” that is engaged in a single-step electrochemical 

reaction [26,51]: 

O ne R−+            (25) 

O undergoes a n-electrons transfer at the electrode surface to give the product species R. Both 

species are soluble in the electrolytic solution for the so-called soluble-soluble redox reaction.  

Main assumption: 

- A one- step reaction is studied on planar electrode. 

- All case, only diffusion is considered, so mass-transport of species O and R is expressed by 

Fick’s second law as: 

( ) ( )2

2

, ,O O

O

C x t C x t
D

t x

 
=

 
         (26) 

( ) ( )2

2

, ,R R

R

C x t C x t
D

t x

 
=

 
         (27) 

To solve these differential partial equations, it is important to define the initial conditions and 

the boundary conditions [26]: 

a. Initial conditions 

- Initially, it considers that only one electroactive species is present in solution: 

( ) *,0O OC x C=          (28) 

( ),0 0RC x =          (29) 

b. Boundary conditions 
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- Concentrations in a distant region from the electrode surface reach constant values (

*  OC  for oxidized specie and zero for reduced one). 

( ) *lim ,O O
x

C x t C
→

=         (30) 

( )lim , 0R
x

C x t
→

=         (31) 

- By Considering the charge and mass balance at the working electrode, the other 

boundary condition results into the following equation: 

0 0O Rx x

I
J J

nF= =
= − =        (32) 

- Concentrations of redox couple at the electrode surface vary as a function, f, of the 

electrode potential E: 

( ) ( )0,OC t f E=         (33) 

( ) ( )0,RC t f E=         (34) 

Where f(E) depends on the kinetics of electron transfer. 

 

In this context, it should be noted that the electrochemical reversibility, depends on the 

dimensionless electrode kinetic parameter Ʌ:

1/2

0 nF
k D v

RT

−

 
 =  

 
 as reported in references 

[22,50]. 

If 15  , the electrochemical reaction is classified as reversible. 

If 
( )2 1

15 10
− +

   , the reaction is classified as quasi-reversible.  

If 
( )2 1

10
− +

  , the reaction is termed irreversible. 

I.5.3.1. Reversible system  

I.5.3.1.1. Theory and mathematical models   

Since the reaction is reversible, the concentrations of the oxidized and reduced species at the 

interface are related via the Nernst equation, as [50]: 

( )

( )
( )( )0

0,
exp

0,

O

R

C t nF
E t E

C t RT

 
= − 

 
        (35) 

following the Nicholson's procedure, in solving eqs (26) and (27) with the initial and 

boundary conditions, eqs. (28)-(35), case of linear and cyclic potential sweeps leads to the 

following integral equation [52]: 
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( )( )
( )

1/2 1/2 *1

2

0 1

t
O OnFA D C

I t d
S t


  

 

−
− =

+        (36) 

Recognizing that  is a dummy variable that disappears with integration, ( )
1/2

O Rξ= D /D ,

( )  / i eqexp nF RT E E  = −
 

, specifically, for linear sweep excitation: ( ) -σt S t =e , while for 

cyclic sweep excitation: ( )
-σt

σt-2σ

e ,  
S t

e ,  
t

t t

t t





 
= 


, and σ= /nFv RT  

Performing the change, I(t) to I(E) by a simple substitution and dividing by ( 1/2 *

O OD C ), one 

arrives at: 

( )

( ) ( )1/20

1

1

t z dz

S tt z






=

+−
          (37) 

Defining further that
( )

1/2*

O O

I

nFAC D 
 =  is the so-called dimensionless current function. 

The integral in eq (37) was solved numerically, and then rearranged to finally give the 

following voltammetry algorithm represented in the form of summation series (for a detailed 

analysis see [21-22, 49-52]). 

( ) ( ) ( )
( )

1

1

1
2 1 1

1

k

j

k k j k k
S k


 

−

=

 
  + −  + − =   + 

     (38) 

So single scan or cyclic current-potential curves can be computed easily. 

An example of voltammogram for reversible soluble-soluble system is illustrated in Fig I.10.  

I.5.3.1.2. Potential and current peaks in LSV and CV for reversible soluble-soluble 

redox reaction 

The most prominent features that can be extracted from the red portion of the curve (i.e. curve 

corresponds to single scan) are [26,51]:  

-The minimum value of the function is 0.4463 = −  , therefore, the scan rate-dependent peak 

current can be expressed as: 

( )
1/2

* 1/2 1/20.4463p Orev

nF
I nFAC v D

RT

 
= −  

 
       (39) 

The potential where the peak cathodic current is observed: 

0 1.2 /pE E RT nF− = −          (40) 

The potential at half the peak current can be related to the peak potential as: 
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/2 2.20p p

RT
E E

nF
− = −          (41) 

 

Figure I.10. Adimensional CV responses for reversible soluble-soluble system, for Ʌ=103. the 

cathodic portion of CV curve is the same for the LSV. Insert is a potential cycling profile. 

 

In fact, on the return scan (backward CV component indicated in bleu in Fig I.10), the height 

and position of the anodic portion depend on the choice of the switching potential and the 

difference between the peak potential Ep and switching potential E. For Nernstian charge 

transfer: 

-Peak current ratio is unity: / 1
r fp pI I = , (valid, when the product of the reaction is stable and 

( ) 35 /pE E nmV−  ). 

-Peak to peak separation: 2.3 /pE RT nF =  ,which equal to 58 /  nmV , at exactly 25C. 

I.5.3.2. Quasi-reversible system 

 I.5.3.2.1. Theory and mathematical models   

The quasi-reversible redox system differs from the Nernstian case in that the relation between 

the redox couple concentrations at the electrode surface does not obey to Nernst equation. In 

such situation, the conditions at the electrode surface are dictated by the Butler-Volmer 

formalism [53]: 
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( ) ( )( )
( ) ( )

( )( )0 0

0

0

,
0, 0,

nF nF
E t E E t E

O RT RT
O O R

x

C x t
D k e C t C t e

x

− − −

=

   
=  −   

   

   (42) 

By similar way, numerical method was applied. Then, the formula representing the 

dimensionless current function of the quasi-reversible system is given by: 

( )
1

* 1/2
2/ /OI nFAC D vnF RT

 
 =  

 
        (43) 

An example of CVs under quasi-reversible conditions by varying kinetic parameter are 

portrayed in Fig I.11.  

 

Figure I.11. Different CV responses for different Ʌ values in quasi-reversible region  

 

 

 

I.5.3.2.2. Potential and current peaks in LSV and CV for quasi-reversible soluble-soluble 

redox reaction 

In quasi-reversible region might show qualitatively different voltametric responses depending 

on the kinetic parameter and the charge transfer coefficient. In such scenario, general 
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formulae describing peak current, peak potential, and half-peak potential were given by 

[22,42]: 

( ) ( ),p p rev
I I K =            (44) 

( )1 2 ,p

RT
E E

nF
− = −           (45) 

( )2 ,pp

RT
E E

nF
− =            (46) 

Where ( ),K   , ( ),   and ( ),   are dimensionless parameters defined by Matsuda 

and Ayabe, which account for the kinetic factor, and the charge transfer coefficient governing 

LSV responses. 

When we deal with the cyclic voltammograms, other important criteria concerned the peak 

potential separation in cyclic voltammetry should be mentioned. Returning to the theory of 

Nicholson and shain who demonstrated that the magnitude of the peak potential separation is 

function of a dimensionless kinetic parameter and unaffected by the variation in charge 

transfer coefficient, in the interval [0.3-0.7]. we have presented in Tab I.2 the theoretical 

values of 
pE  which is restricted in the range of 61-212/n mV for quasi reversible system 

[54]. 

Table I.2. Variation of the peak potential separation with dimensionless kinetic parameter at 

25 °C for a One-Step Reaction, and for α=0.5. 

π1/2Ʌ 20 7 6 5 4  3 2 1 0.75 0.50 0.35 0.25 0.10 

p nE   

(mV) 

61 63 64 65 66 68 72 84 92 105 121 141 212 

 

These theoretical values can be used to estimate the standard rate constants for quasi-

reversible systems. 

 

I.5.3.3. Totally irreversible system 

I.5.3.3.1. Theory and mathematical models   

In the case of totally irreversible redox reactions. it is necessary to take into account the 

boundary condition described the surface flux in eq (47) instead of eq (42) [50]: 
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( )
( )

0

,
0,

O bt

O O i

x

C x t
D C t k e

x
=

 
= 

 

        (47) 

Where:  

( )( )0 0exp( /i ik k nF RT E E= − −          (48) 

And  

/b nFv RT=           (49) 

In addition, it’s important to pointing that only electro-reduction of O through reaction in eq 

(25) is considered [50]. 

Following the same sequence of steps as for reversible system, thus, the unknown current 

function can be determined by [51]: 

( )
1/2* 1/2 1/2/ /OI nFAC D v nF RT  =

 
        (50) 

An example of the obtained adimensional current-potential curve, for irreversible case is 

illustrated in Fig I.12.  

 

Figure I.12. Adimensional CV responses for irrreversible soluble-soluble system, for α=0.5 

and Ʌ=0.0001. 

 

I.5.3.3.2. Potential and current peaks for irreversible soluble-soluble redox reaction 

Relationships for peak current, peak potential, and half peak potential are given by equations 

(51), (52) and (53) respectively [51]: 

( ) ( )
1/25 * 1/2 1/22.99 10p O OI n n AC D v=         (51) 
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1/21/2
0

0
0.78 ln lnO

p

DRT nF
E E

nF k RT





    
= − + +    

    

      (52) 

/2

1.857
p p

RT
E E

nF
− =          (53) 

 

I.5.4. Calculation of voltammograms for soluble-insoluble redox reaction 

A simple electrodeposition reaction, Mn+ cations that is react with electrons e- at the surface of 

the electrode and are reduced to metal M, is theoretically described, and discussed elsewhere 

and can be in general presented as [45-48]: 

nM ne M+ −+           (54) 

This reaction was modeled under the following hypothesis [55]: 

- The activity of the metal is unity, 1nM
a + = . 

- The starting potential is equal to the equilibrium potential of the metal/metal-ion electrode. 

- Metal-ion transport is governed by Fick’s Law as: 

( ) ( )2

2

, ,n nM M
O

C x t C x t
D

t x

+ + 
=

 
        (55) 

Eq (55) was integrated with initial and boundary conditions: 

( ) ( ) *,0 ,0n n nM M M
C x C x C+ + += =         (56) 

0,   0x t=  :  

( ),n

n

M

M

C x tI
D

nFA x

+

+

 
− =    

         (57) 

- If the electron transfer is fast, Nernstian boundary condition is applied: 

0 *ln( )n nEq M M

RT
E E C

nF
 + += +           (58) 

- If the electron transfer follows Butler-Volmer kinetics, the following boundary condition is 

used: 

( ) ( )( )
( )

( )( )0 0

0

0

,
0,

n

n n

nF nF
E t E E t E

M RT RT

M M

x

C x t
D k e C t e

x

+

+ +

− − −

=

   
=  −       

    (59) 
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- When the electron transfer kinetics is fully irreversible, the boundary conditions given in eqs 

(58) and (59) should be simplified as: 

( )
( )

0

,
0,

n

n n

btM
iM M

x

C x t
D C t k e

x

+

+ +

=

 
=   

       (60) 

I.5.4.1. Reversible system  

I.5.4.1.1. Theory and mathematical models   

An analytical solution to the relevant PDE joined to its initial and boundary conditions was 

obtained by using Laplace transform and inverse Laplace transform techniques. The 

response current is expressed, in the following forms: 

For a single voltammetric wave [45]: 

( )

( )

3/2 1/2

1/2 1/2

1/21/2

2
dawnM

nF nF
I AD C v vt

RTRT
+

  
= −   

   

       (61) 

For cyclic voltammetric wave [46]: 

( )

( )

( ) ( ) ( )( )
( ) ( ) ( )( )

1/2 1/2
3/2

1/2 1/2

1/21/2
1/2

2 daw daw
1

1.772 erf
n

t

t t

M
t tt

t t

t e t t HnF
I AD C v

RT e e t t H













 



  

  
+

−

−

−−

−

    − −
    

=  
− − 
 

 (62) 

where erf and daw are tabulated functions defined by [56]:  

( ) ( )

( )

2 2

0

2

1/2 0

exp( )    

2
erf = exp( )  

z

z

daw z exp z d

z d

 

 


 = −


 −





        (63) 

Meanwhile, it is worth noting that H(t) is the Heaviside step-unit function that was used by 

D.J. Schiffrin to define the triangular potential-sweep [46]. 

 

 

I.5.4.1.2. Potential and current peaks in LSV and CV for reversible soluble-insoluble 

redox reaction 

The Dawson function exhibits a maximum corresponding to 

1/2

0.9241
nF

vt
RT

 
= 

 
, thus the 

peak current Ip of the reduction wave is given by [44]: 
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( )

( )

3/2

1/2 1/2

1/2
0.6104 np M

nF
I AC D v

RT
+= −         (64) 

The peak potential can be calculated from that maximum value to give [55]: 

0.854p eq

RT
E E

nF
= −           (65) 

likewise, the peak potential at the half height is expressed by [55]: 

/2 0.77p p

RT
E E

nF
= +           (66) 

It is important to mention that the certain features such as the peak potential separation cannot 

be used to diagnisis a soluble-insoluble system. Also, the peak current of stripping response is 

strongly dependent of the morphology of the deposit. 

I.5.4.2. quasi-reversible system 

The quasi-reversibility behavior of metal-ion/metal couple, exploiting the boundary condition 

in eq 58, will be studied in this thesis in details. 

I.5.4.3. Totally irreversible system 

I.5.4.3.1. Theory and mathematical models   

Returning to the boundary condition eq (60), applying it at x =0, and by proceeding again 

analogously to the steps leading to equation (50), one finds the relation for the current 

according to [45]: 

( )
1/21/2 1/2 /nM

I nFAD C v nF RT+=         (67) 

I.5.4.3.2. Potential and current peaks for irreversible soluble-insoluble redox reaction 

The criteria for irreversibility are [57]: 

Peak current: 

( )
1/2

0.495 /np M
I nFAC nFv RT+= −         (68) 

Peak potenetial: 

1/2

0 00.78
ln

n

p

M

RT RT RT
E E k

F F FD v   +

 
= − +  

 
 

       (69) 

Half peak potential: 
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/2 1.857p p

RT
E E

nF
− =          (70) 

I.6. Scope of the present thesis  

 

The research problem in this work is determined by the lack of sufficient criteria for 

investigating the soluble-insoluble type redox reactions via LSV or CV technique. This lack is 

caused by the absolute absence of theoretical models to predict current responses under quasi 

reversible conditions, incomplete theory to deal with full voltammograms, and the difficulty 

accessing to evaluate accurately the reversibility-irreversibility of that reactions.  

 

Under this framework, the objective of this thesis is to make a contribution to the modeling of 

LSV/CV responses for reversible, quasi-reversible and irreversible soluble-insoluble systems. 

The developed models will be used to: determine what is not understood for such systems, to 

provide general relationships that can be used in the estimations of kinetic parameters 

whatever the degree of reversibility and at the end to determine the field that need to be 

investigated further. 
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CHAPTER II 

Experiment and simulations details 

 

In order to validate the simulation prediction, the system Cu(I)/Cu(0) was investigated in 

organic medium.  This chapter presents first, chemicals and describes the preparation process 

to carry out the copper deposition reaction under LSV conditions. Meanwhile, the rest of this 

chapter discusses simulation approaches and how it has been used to establish theoretical 

voltammograms in this thesis. 
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II.1. Chemicals and supplies  

Without further purification, all chemicals were used as received. The electroactive species: 

Tetrakis(acetonitrile) copper(I) tetrafluoroborate (Cu(CH3CN)4]BF4; 98% purity) was 

purchased from TCI, it’s a white crystal powder that slowly decompose into a greenish solid in 

moist air. Supporting salt: Tetraethylammonuim Tetrafluoroborate (C8H20BF4N; 99% purity) 

was obtained from ABCR, which it can be used in CV up to 3 V without any degradation. 

Solvent: Acetonitrile (CH3CN; 99.9% Extra Dry, over Molecular Sieves) was from Across 

Company. Electrodes were made with copper of 1 mm diameter, (99.99% purity), from 

GoodFellow. Ultrapure water is employed to clean electrodes and glassware,  

II.2. Apparatus and accessories 

Linear sweep voltammetry (LSV) experiments were carried out by employing Autolab 

PGSTAT302N potentiostat equipped with the SCAN250 analog scan generator module, and 

the data for the Cu(I)/Cu(0) couple was processed using the Nova 1.9 software. All the 

experiments were executed in classical electrochemical cell setup with three electrodes 

immersed in a solution containing the analyte as well as an excess of the supporting electrolyte. 

Coils of copper wire, diameter 1 mm, were used as reference electrode and auxiliary electrode. 

In order to ensure a larger area compared to the WE, the auxiliary electrode was coiled.  The 

WE was fabricated by heat sealing a length of 1 mm diameter copper wire in glass tube of 

suitable diameter, then polishing it with consecutively finer abrasive papers followed by 

different sizes of alumina, down to 0.05 μm particles, on polishing cloths. the effects of solution 

resistance were corrected by Positive Feedback iR Compensation.  Noted that, all experimental 

steps (solution preparation, LSV measurement) were carried out at ambient temperature (25 °C) 

under anaerobic conditions using a nitrogen filled glove box. 

II.3. Procedure 

The linear sweep voltammetric (LSV) method was used to perform cathodic reduction of the 

Cu(I) to Cu(0). LSV scanning was carried out in the range of 0 V to -0.4 V, with an initial 

potential (Ei) of 0 V, for which the scan rate was ranged from 25 to 200 mV/s . All potentials 

are expressed vs. the Cu wire in the solution of the given concentration of [Cu(CH3CN)4]BF4. 

the potential of the Cu reference in equilibrium with 10 mM Cu+ solution in acetonitrile on the 

“non-aqueous standard copper electrode” scale (SCuE), i.e. vs. Cu+ solution with the activity 

of 1 in equilibrium with Cu in acetonitrile is assumed to follow the Nernst equation considering 

the γCu+ = 1, i.e. The potential of the reference is −0.118 V vs. SCuE in acetonitrile. To 
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establish the relation with the ferrocene (Fc) scale recommended by IUPAC, the potential of 

the Fc+/Fc couple vs. Cu/10 mM Cu+ in ACN was measured as 0.69 ± 0.01 V, i.e. the potential 

of our reference electrode is −0.69 V vs. Fc+/Fc. 

Electrolytic solutions were prepared by dissolving Tetrakis(acetonitrile) copper(I) 

tetrafluoroborate and Tetraethylammonuim Tetrafluoroborate in acetonitrile. Concentrations 

for Cu(CH3CN)4]BF4 and TEABF4 were 10 and 100 mM, respectively.  

II.4. Choice of Working Electrode material  

The material of working electrode used was a metallic copper. This electrode was chosen in 

order to get an accurate estimation of the electrochemical kinetics of the Cu(I)/Cu(0) reduction 

process which is of outmost importance to better understand the limitations for the nonaqueous 

batteries utilizing Cu(I)/Cu(0) couple as the negative redox couple.  

II.5. Simulation and Analysis tools  

In this thesis, the semi-analytical and numerical method were employed for simulating LSV 

and CV problem for soluble-insoluble redox reaction, with Butler-Volmer type kinetics. A 

semi-analytical solution is obtained under one-dimensional mass transport, using the Nicholson 

and Shain method [1], and subsequently, the models were coded in Fortran. Also, Finite element 

simulations with COMSOL Multiphysics was undertaken to compute theoretical 

voltammograms. 

II.5.1. Semi-analytical method  

The solution methodology of voltammetry problem, case of soluble-insoluble system, by using 

semi-analytical method is summarized in flowchart in Fig II.1.  

To define the system fully, the used inputs were the type of redox reaction: one step soluble-

insoluble redox reaction, type of potential sweep: single- or cyclic- sweep, the type of reaction 

kinetics: Butler-Volmer (BV) and the type of mass transport process: Fickian diffusion transport 

process. the main outputs were the integral voltammetry equation (i.e. integral current function) 

and the infinite series summation formula for using to compute voltammetry responses. 

As shown in Fig II.1, solution occurs in two stages: 

In the first stage, the Partial Differential Equations (PDEs) involved in the mass transport 

models integrated with initial and boundary conditions were solved analytically using the 
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Laplace transform and numerical inversion, and by combining the obtained solution with the 

reaction kinetics, with some computation, we arrived at the voltammetry integral. 

In the second stage, the numerical resolution was proceeded for solving the integral equation 

using the integral subdivision process and the integral by part method, and then an expression 

to calculate potential sweep curves was derived at the end. 

Figure II.1. Flowchart of semi-analytical simulation of LSV.  

II.5. 2. Finite element method software using COMSOL multiphysics 

The software used to define and solve voltammetry models during this thesis was COMSOL 

Mutiphysics. COMSOL Multiphysics is a software package for simulating physical phenomena 

using partial differential equations (PDEs) and then solving it using finite element methods 

(FEM). The finite element method (FEM) is a numerical technique for finding approximate 

solutions to partial differential equations (PDE) and their systems, as well as (less often) integral 

equations that occur in a variety of engineering and applied sciences fields [2-3].  
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II.5. 2.1. Finite elements solution procedure 

The first step to solve the system of PDEs with FEM is to define the computational domain 

geometry, then this domain is partitioned into numerous subdomains, named finite element 

components [4]. An assembly of these elements called mesh which interconnected in points 

called nodes or vertices. the PDE problem thus can be converted into a discretized finite element 

with unknown nodal values. These unknowns combine to form a system of linear algebraic 

equations that can be numerically solved. There are several types of Finite Elements depending 

on their geometry [4]. In this thesis, we deal only with a simple, one-dimensional domain 

geometry (planar diffusion: macroelectrode). 

II.5. 2.2. COMSOL Multiphysics calculation process  

Simulation of voltammetry for either single- or cyclic- sweep, under COMSOL Multiphysics, 

includes three stages: Pre-processing, processing and postprocessing [5].  

The first stage (pre-processing) entailed the formulation of the voltammetry problem, case of 

metal deposition reaction. During this process. The system's governing equations were 

identified, notably the equation of mass transport, mass conservation equations, potential sweep 

equation, and the proposed kinetics equation. Then, to define the electrodeposition process, 

initial and boundary conditions were set, model geometry and meshing were done.  

In the second stage (processing), the formulated problem was solved and plotting current vs. 

potential for soluble-insoluble redox reaction was made possible.  

In the end-stage (post-processing), the results can be visualized, analyzed, and evaluated. 

The above stages of model development are summarized in Fig II.2. 
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Figure II.2. Flow chart of COMSOL Multiphysics model to simulate voltammetric responses. 

 

II.5.3. Semi-integral method 

To get information on the diffusion of Cu(I) ions in acetonitrile, experimental LSV data were 

first recorded and then convoluted into semi-integral current vs voltammetric potential, using 

the semi-integral method with Saila’s algorithm [6]. 
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II.5. 4. Fortran  

Fortran 90 is the programming language used in this thesis. This type of tool is necessary and 

can be thought of as a supplement to the semi-analytical solution in order to calculate the infinite 

series summation and theoretical voltammograms. 

II.5.5. Origin software 

The origin software platform was used to analyze and process the data in order to plot various 

graphs in this thesis. 
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CHAPTER III 

Simulation of Linear sweep 

voltammetric behaviour for soluble-

insoluble redox reaction 

 

In this chapter, we use two methods: semi-analytical method and finite element method to 

construct the theory of linear sweep voltammetry for soluble-insoluble redox reaction with 

Butler-Volmer kinetics.  

In the first part of this chapter, we present the details of the solution derivation for 

voltammetry in the case of one–step electrodeposition processes. Following that, we present a 

full analysis of the voltammetric responses following variation of both dimensionless rate 

constants and charge transfer coefficients in a broad range. In the second part, we propose 

numerical expressions for the peak parameters of the LSV curves and three limit regimes in 

terms of a global rate constant based on the nature of the electrode process. Finally, we 

conclude with the validation of the developed theoretical framework by studying the 

electrodeposition of Cu(I)/Cu(0) in acetonitrile.  
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III.1. Mathematical formulation of the problem 

III.1.1. Hypotheses to metal/metal-ion system 

Five hypotheses are formulated to establish the LSV theory for soluble-insoluble redox 

reaction:  

(1): In our model we suppose that a one-step reaction process occurs to form a metal deposit, 

as follows: 

( ) ( )nM sol ne M s+ −+          (1) 

(2): All the calculations are based on the assumption that the metal's activity during the 

reaction is equal to 1. 

(3): We suppose that at the initial state (t=0), the equilibrium is achieved at the surface of 

electrode, so that the Nernst Equation applies:   

( )0 *
ni eq M

RT
E E E ln a

nF
+= = +        

Where 0* *
n n nM M M

a C C+ + += is the bulk activity of the metal cation (Mn+), nM
 +  is the 

activity coefficient and C0 is the standard concentration of 1 mol L–1. 

(4): The Butler-Volmer type expression is employed to describe the reaction kinetics, in 

which the heterogeneous electron-transfer rate k0 is exponentially related to overpotential 

(E(t)-E0) as: 

0 0 0(1 )
( ) (0, ) ( ( ) ) (0, ) ( ( ) )nM M

nF nF
I t nFAk C t exp E t E C t exp E t E

RT RT

 
+

 
 

− −   
= − − −   

   
 (3) 

Where α and 1-α are the cathodic and anodic charge transfer coefficients, respectively. 

 (5): By using LSV technique, the electrode potential is swept linearly in one direction: 

( ) iE t E vt= −            (4) 

III.1.2. Governing equations of mass transport process 

By considering the planar diffusion of metallic cation at the macroelectrode surface, and 

neglecting migration and convection contribution, the process of the mass transport can be 

quantified in accord with Fick's laws as: 

( ) ( )2

2

, ,n n

n

M M

M

C x t C x t
D

t x

+ +

+

 
=

 
        (5) 

Eq (5) is subject to the following initial and boundary conditions:  
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( ) *0; ,0n nM M
t C x C+ += =          (6) 

( ) *; ,n nM M
x C t C+ +→  =          (7) 

( ) ( )

0

,
0;

n

n

M

M

x

C x tI t
x D

nFA x

+

+

=

 
→ = −  

 
       (8)

 

 

III.2. Solution methodology via use of semi analytical techniques  

IV.2.1. Stage I: Analytical solution  

IV.2.1.1 Application of the Laplace transform and numerical inversion to diffusion 

equation. 

The first step in proceeding to the solution of the equations system described by eqs (5) to (8), 

is to apply the Laplace transforming both sides of the equation (5) with respect to t, one 

arrives at: 

( ) ( )
( )2

2

x,s
sC x,s x,0

n

n n n

M

M M M
C D

C

x

+

+ + +


− =


     (9) 

Where the over-bar denotes the Laplace transform and s is the Laplace variable. 

Recalling the boundary condition in (6), one obtains: 

( )
( )* 2

2

x,s
x,s

n n

n

n n

M M

M

M M

C Cs
C

D D x

+ +

+

+ +


− =


       (10) 

For our calculations it is convenient to rewrite the previous equation (10) in the following 

form: 

( )
( )

2
2 *

2

x,s
x,s

n n

n

n

M M

M

M M

C Cs
C

x D D

+ +

+

+ +

 
= − 

   

       (11) 

Hence, the Laplace transform of eq (11) with the respect to the variable x is: 

( ) ( ) ( )
*

2 2 sC 0 0
n

n n n

n

M

M M M

M

C
C s s a C

D s

+

+ + +

+

 − = + −      (12) 

With: a=
nM

s

D +

  

by rearrangement we have: 
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( )

( ) ( )

( )

*

2

2 2

0 sC 0
n

n n

n

n

M

M M

M

M

C
s C

D
C s

s s a

+

+ +

+

+

+ −

=
−

       (13) 

After converting (13) into fractional equations, one arrives:   

( )
( ) ( ) ( )

nM

A s B s D s
C s

s a s a s
+ = + +

 

+ −


         (14) 

Where A'(s), B'(s), D(s)' are employed to describe the decomposition constants. 

Multiplying equations (13) and (14) by s, and then setting s=0, one finds by comparison the 

value of the decomposition constant D'(s) which is equal to: ( )* 2/n nM M
C a D+ +  

Inverting eq (14), the general solution is obtained: 

( ) ( ) ( )
*

x,s
n n nM M

n

s s
x x

D D
M

M

C
C A s e B s e

s

+ + +

+

−

 = + +       (15) 

 Now let us determine the value of A'(s) and B'(s): 

Taking the first boundary condition eq(7), where we have: 

( ) ( ) ( )
*

*

xc
l m x, ii s l m

n n nM M

n n

s s
x x

D D
M

x M M

C
C A s e B s e C

s

+ + +

+ +


−

→ →

 
 = + + =
 
 

     (16) 

In this case, this term  ( )
n+M

s
x

D

B s e  should be tend to zero, which yields to: B'(s)=0 

Hence, Eq (15) turn to be: 

( ) ( )
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x,s
n nM

n

s
x

D
M

M

C
C A s e

s

+ +

+

−
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After Laplace transforming eq (8), the second boundary condition takes the following form: 

( ) ( )

0

,
0,

n

n

M

Mx

C x s I s
x

x nFAD

+

+
=

 
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when deriving Eq (17), we have: 

( )
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s
x

D
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x D
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For x =0, eq (19) becomes: 
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From the equality between equations (18) and (20), ( )A s , can be calculated: 

( )
( )

nFD

n

n

M

M

DI s
A s

s

+

+

=          (21) 

If we insert eq (21) into eq (17), and after inverse Laplace-transforming, we obtain 

the time evolution equation for the concentration: 

( )
( )*

0

1 1
0,t dτ

nFA
n n

n

t

M M
M

I
C C

D t



 
+ +

+

= +
−

       (22) 

IV.2.1.2. Derivation of the voltammetry integral equation   

Our starting point in this section is eq (3), we can introduce the expression 

describing the applied potential in LSV, eq (4): 

( ) ( )
( )

( )

( )
( )

( )
0 0

1

0 00, 0,
i i

n

nF nF nF nF
E E vt E E vt

RT RT RT RT
M M

I t nFAk C t e e nFAk C t e e

 

+

− −
− −

− −   
= −   

   
 (23)

 

Where CM denotes the metal concentration, and it can be expressed as: 0 0

M MC a C C= = . 

On the other hand, for modelling purposes, it is more convenient to convert the dimensioned 

variables into a non-dimensional form. One then defines: 

Dimensionless initial potential, INIT: 

( )0INIT i

nF
E E

RT
= −           (24) 

Dimensionless end potential, LIMIT: 

( )0LIMIT f

nF
E E

RT
= −          (25) 

Dimensionless applied potential,  : 

( )( )0 INIT
nF

E t E t
RT

 = − = −         (26) 

Dimensionless scan rate,  : 

nF
v

RT
 =            (27) 

substituting eqs 22, 24, 25, and 27 into Eq (23) and after rearrangement, we get: 
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( ) ( )
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            (28) 

where we have defined: ( ) ( )S t exp t= − , and 

*

0

0
exp( )

nM
i

CnF
E E

RT C


+

 = − =   

Now we divide by 
* 0/nM

C C+  and rearrange equation (28), we arrive at: 
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     = − + − 

−  
  

   (29) 

Its solution is usually non-analytical and entails the numerical resolution of integral equations. 

IV.2.2. Stage II: Numerical resolution  

In order to adimensionalize Eq (29), we used the following redefinitions: Z =  and 

( ) ( )I t g z= . 

Thus, eq (29) turn to be: 

( ) ( )
( ) ( )

*

*00
0

0

1
n

n

t
M

M

M

Cg z I t
dz nFA D S t S t

CCt z
nFA k

C

 
   

 

+

+

+

 
 
    = − + −   

−  
  

  (30) 

And then dividing the resulting equation side by side by 

*

0

n

n

M

M

C
nFA D

C


+

+  , One then 

defines the dimensionless current ( )t  as: 

( )
( )

1/2

* 1/2( )n nM M

I t
t

nFv
nFAC D

RT



+ +

 =
 
 
 

       (31) 

Rewriting eq (30): 
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( ) ( )
( ) ( )*0

0

0

1
n

t

M

z I t
dz S t S t

Ct z
nFA k

C

 
  

 +

 
 
    − = − − +   

−  
  

      (32) 

 Multiplying the second member on the right of Eq (32) by 
n

n

M

M

D

D

 

 

+

+

 , and putting that: 

0

1/2

k

nF
D v

RT





 

=
 
 
 

         (33) 

Here   denotes the dimensionless heterogeneous rate constant. Hence, we obtain: 

( )
( ) ( ) ( )

0

1
1

t z
dz t S t S t

t z

 
  



  
   = − − − +    

−  
      (34) 

to solve Eq (34), it needs to divide the integration interval into equidistant sub-intervals, each 

of distance δ. 

 Thus, assuming that:        z k= and t N =  

By using the above definitions, Eq (34), takes the form: 

( )( ) ( )( ) ( ) ( )
0

1 1
1

N

z k dk z N S N S t
N k

 
    



 
    = − − − +    

−  
  (35) 

Performing the integration by part of the left-hand side of Eq (35), yields 

 ( ) ( ) ( ) ( ) ( )
0

1
2 0 2   ( ) 1

N

N N k d k N S N S t
 

      


 
    + −  = − − − +    

 
 (36) 

the left-hand side of eq(36), can be expressed as a summation: 

( ) ( ) ( ) ( ) ( ) ( )
N 1

i 1

1 1
1 N N i i 1 i 1

2
N S N S t


   



−

=

 
      + −  + − = − − − +      

 
  (37) 

Where: ( ) ( )i i =   

 The development of the summation formula of eq (37) leads to: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 N N 1 2 1 N 2 3 2 N 3 4 3 ..... N N 2     + − − + − − + − − + + − −          
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N 1 N 2 N N 1 CN N 1 A N B N N     + − − − + − −  ++ − − = −  +

            (38) 

Where: 

( ) ( )
1

2
A N S N


  =             (39) 

( ) ( )
1 1

2
B N S N


 



 
 =   

 
        (40) 

And  

1
C

2 
=            (41) 

Noting that there are N equations of ( )i .  

( ) ( ) ( ) ( ) ( ) ( )
1

1
1 C

n

i
N N i N i i A N B N N

−

=

  + − − − −  = − +  +
    (42) 

 

Finally, we can deduce the following expressions required to establish adimensional curves of 

current ( )K  versus potential Φ(k) as: 

Dimensionless current expression:  

( ) ( )
( ) ( )

( )

1

1

1

1

k

i

k i k i i
k A k C

B k

−

=

 − − − − 
 = − − +

−
      (43) 

Dimensionless applied potential expression:  

( )0nF
init δk

RT
E E = − = −          (44) 

With:      

( ) ( )
1

2
A k S k


  =             (45)

( ) ( )
1 1

2
B k S K


 



 
 =   

 
        (46) 
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IV.2.3. Implementation of developed models in Fortran  

In Fig III.1 there is a flowchart of our implementation based on the above LSV models, with 

a step-by-step calculation. These models are implemented using a Fortran code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program QREV 

Parameter (nmax=5000) 

Implicit double precision (a-h,o-z) 

Double precision INIT, LIMIT 

Character*12Fich1 

Character*12Fich2 

Dimension Y(0: NMAX) , PHI(0: NMAX), 

PHId(0:NMAX), Yd(0:NMAX), 

X(0:NMAX) 

Equivalence (PHI (0), INIT) 

 

 

 

 

 

pot(0 : 

Equivalence (pot(o), INIT) 

 

DATA y(o) / p.do ) 

               

Open Results File 

 

Pi=3.1416 

R=8.314 

F=96485.31 

Delta=0.1 

INT1=IT 

INT2=2*IT 

C=1.d0/2.d0*dsqrt(DELTA) 

IT= ((INIT-LIMIT)/DELTA) 

F1=2*(LIMIT-INIT) 

F2=R*T/n*F 

C2=n*F* 










2F

v
*D  

TETHA=dexp(INIT) 

 

                                                           

 

 

               

DO 10 k=1 , INT1 

A 
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Yes      No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Write on File Fich 1 PHI(k) , Y(k) 

 

A 

A=C*(exp(DELTA*k)) 

B=C**(THETA*exp(DELTA*k))  

Pot (k)=init–delta*k 

Sigma=0.d0 

Do 20 j =1, k-1 

SIGMA=SIGMA-[√𝑘 + 1-j −√𝑘 − 𝑗]. 𝑋(𝑗) 

k=1 

   k=1 

X(k)=(-A +C+SIGMA)/(1-B) 

Y(k)=-X(k)*dsqrt(pi) 

Continue 

B 
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No     Yes 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure III.1. Flowchart of the implemented LSV models 

 

Thus, the algorithm under the name “QREV” enables the dimensionless voltammograms to be 

calculated, provided that the values of INIT, LIMIT, ω and α are known. 

III.3. Solution methodology via use of the finite element COMSOL 

Multiphysics software 

We also numerically solved the Butler-Volmer LSV problem described in section III.1.1 by 

using the finite element commercial software package, COMSOL Multiphysics 5.2a.  

To carried out the simulation of theoretical voltammograms, we go through the following 

stages: 

 

 

Continue  

Rep=0 

Open File Fich2 

Do11 k=1,INT1 

Read n,T ,D,v 

CE? 

  ?  

 

 

 ,Cccc

 

PHId(k)=F2*pot(k) 

Yd(k)=y(k)*C2 

Write on File Fich2 

PHId (k) ,Yd(k) 

 

 

Close file 

Fich1 

po 

Stop 

End 

 B  

 

Close File Fich2 
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III.3.1. Stage I: Pre-processing Stage 

The pre-processing stage includes 5 steps: 

III.3.1.1. Definition of governing equations 

Three governing equations were required to define the linear sweep voltammetry problem for 

the case soluble-insoluble system in COMSOL: 

III.3.1.1.1. Mass transport and mass conservation equations 

To describe the transport of ionic species i to and away from the electrode surface, Nernst-

Planck equation was used: 

i i i i i i iJ D C z u FC V uC= −  −  +   (47) 

In COMSOL Multiphysics, this equation is embedded in the dilute species transport node. 

Mass conservation equation for ionic species was expressed as: 

i
i i

C
J R

dt


+ =   (48) 

Note that it is assumed that there are no homogeneous reactions in the electrolyte, and no 

migration or convection contribution will be considered. In this case, eq (48) is reduced to the 

Fick's law of diffusion.  

III.3.1.1.2.  Potential sweep equation 

In our model, through the use of a triangular waveform, the LSV experiment's potential was 

forward swept. 

III.3.1.1.3. Electrochemical reaction kinetics 

Quasi-reversible kinetics is assumed and the Butler-Volmer type expression was used to 

determine the current density at the electrode-electrolyte interface.  

III.3.1.2. Drawing the Geometry domain 

In our model, the one-dimensional transport was assumed and represented by a single line on 

the domain 0 ≤ x ≤ L (see Fig III.2), where 2L Dt=  , is the diffusion distance traveled by 

an electroactive species over the duration of the voltammetry experiment [1]. 
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Figure III.2. 1D geometry model used for simulating the diffusion of metal ion. 

 

III.3.1.3. Setting of initial and boundary conditions 

Initially, the concentration of metal ions is equal to the concentration in the bulk. As shown in 

Fig III.2, the 1 D model consists of two boundaries, where the following conditions are 

imposed as follows: 

- Boundary 1 is at the electrode surface x=0, that is, where the Butler-Volmer expression was 

used to define the flux boundary condition as follows: 

0
* *nf b MMx

J k C k a+
=
= − +   (49) 

Where kf  and kb are the forward and backward rate constants, respectively with: 

( )( )0

0

nF
E t E

RT
fk k e

− −

=   (50) 

and 

( ) ( )( )01
0

nF
E t E

RT
bk k e

− −

=   (51) 

 

- Boundary 2 is at the domain's right-hand edge x=L, where we assume that a uniform 

concentration of metal ion equal to that in the bulk. 

Furthermore, it should note that a zero-flux condition was applied at the outer boundaries of 

the geometry:  

0inJ− =   (52) 
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III.3.1.4. Meshing  

To solve the voltammetry equation in the domain geometry defined above we need to create 

an element mesh. For this purpose, our computational domain is discretized into segments. 

During the meshing process, the properties shown in Table III.1 were used. 

Table III.1. Mesh properties 

Mesh property value 

Maximum element size 0.02 

Minimum element size 6 × 10−4 

Element ratio 100000 

Number of elements 1000 

Resolution of narrow regions 1 

Maximum element growth 1.1 

 

 III.3.2. Stage II: Processing stage 

The governing equations under the defined boundary conditions described above are solved 

employing the time-dependent solver with a backward differentiation formula (BDF) time-

stepping method (maximum BDF order: 2). the relative error tolerance used was 10-9.  

III.3.3. Stage III: Post-processing stage 

The graphical representations of the current-potential responses as well as the listing of their 

values, were made at this stage. 

III.4. Results and discussion  

III.4.1. Theoretical results  

III.4.1.1. Calculation of linear scan voltammograms using semi analytical method and 

finite element method (COMSOL Multiphysics) 

As examples, in Fig III.3 we plot the non-dimensional current-potential response curves 

calculated using the algorithm “QREV” (solid curves) and COMSOL software (dashed 

curves) with the set parameters of α=0,5, INIT=0, LIMIT=-30, a) ω=103 and b) ω=10-1. 
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As it seen, we find agreement when testing the derived semi-analytical solutions against 

simulations using finite element method (COMSOL Multiphysics) to calculate 

voltammograms for soluble-insoluble system. 

 

 

 

Figure III.3. Simulated LSV with the Butler-Volmer equation through use of the derived 

semi-analytical solutions (solid curve) and by the finite element method. α=0,5, INIT=0, 

LIMIT=-30 and ω=103 LIMIT=-30, a) ω=103 and b) ω=10-1. 

 

III.4.1.2. Effect of the kinetic rate  

Generally, the critical parameters used for the diagnosis of electron transfer reactions via 

linear sweep voltammograms are the magnitudes of the peak current, the peak potential, and 

the half peak width. These LSV responses may depend on multiple variables including the 
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charge transfer coefficient α, the potential sweep rate v, and the heterogeneous standard rate 

constant k0. In the present paper, the mutual influence of k0 and v is expressed through the 

magnitude of the dimensionless parameter, ω, defined by Eq (33). The effects of varying ω 

for a constant value of α on the position, high and width of peak are examined and shown in 

Fig III. 4, in which three distinct regions can be seen: 

1) ω≥103 

For which, the dimensionless current-potential curves become insensitive to the dimensionless 

rate constant (curves a, b, c in the inset of Fig III.4). The dimensionless peak current, 1/2

p  , 

takes a constant value of -0.6105, as reported by Berzin and Delahay [2] for reversible 

system. 

 

2) ω≤10-3  

In this region, the calculated linear sweep voltammograms retain their shape (curves i-k in Fig 

III.4). The dimensionless peak current ( 1/2

p  ) keeps stable in value of -0.350, which is in 

good agreement with literature values for irreversible systems [3]. Contrary to the peak shape, 

the peak position is shifted towards more negative potentials as ω decreases. 

 

3) 10-3<ω<103 

Within these two kinetic regions (curves d–h in Fig III.4), a decrease in ω leads to a 

diminution in the peak height, an increase in peak half width, and a shift of the dimensionless 

peak potential (
p ) towards more negative values. These observations refer to characteristics 

of quasi-reversible waves. 
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Figure III.4. Calculated linear sweep voltammograms for various value of ω with α=0.5; a: 

ω=105, b: ω=104, c: ω=103, d: ω=102, e: ω=101, f: ω=1, g: ω=10–1, h: ω=10–2, 

 i: ω=10–3, j: ω=10–4, k: ω=10–5 

 

III.4.1.3. Effect of the charge transfer coefficient 

A series of theoretical voltammograms in which the charge transfer coefficient α is varied, are 

displayed in Fig III.5. Note that the impact of α on the peak parameters depends upon the 

magnitude of the dimensionless kinetic rate ω.  

- For ω=103, no change occurs in current and potential values with α varying from 0.2 to 0.8. 

This observation agrees reasonably with previous studies for reversible system [2].  

- For ω=1, an increase in α value from 0.2 to 0.8 is followed by a slightly increase in the 

dimensionless peak current (in absolute value), while the peak potential remains almost 

constant.  

- For ω=10−3, the effect of the electron transfer coefficient has an appreciable influence on the 

height, position, and the shape of the peak. 



Chapter III: Simulation of linear sweep voltammetric behaviour for soluble-insoluble redox 

reaction 

 

60 

 

 

Figure III.5. The effect of transfer coefficient α on theoretical voltammograms 

 

III.4.1.4. Kinetics curves: coupling effects of kinetic rate and charge transfer coefficient 

It is clear from the above results that the voltammograms in the intermediate region, 

10−3<ω<103, are qualitatively different. Furthermore, until now, as no characteristic equations 

or practical tools for analysis of experimental voltammograms for soluble-insoluble quasi-

reversible systems has been reported, our goal in this section is to provide a general, simple, 
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and direct model capable to solve the problem of the determination of the kinetic parameters 

in the case of these systems.  

 

In the next set of figures, we have constructed three kinetic curves (i.e. the so-called working 

curves) for single electron transfer process, in which we show quantitatively the coupling 

effects of the dimensionless kinetic rate ω and the electron transfer coefficient α on LSV 

responses. The values of ω in these calculations was varied from 106 to 10−6 while the values 

of α was varied from 0.2 to 0.8. Indeed, the original 'working curves', the first curves relating 

a system's responses to the LSV excitations with kinetic parameters originated from Matsuda 

and Ayab models [4] which were utilized later for the calculation of rate constant for quasi-

reversible soluble-soluble redox reactions.  

Fig III.6 shows the plot of the peak current ratio 
rev/ ( )p p   vs. ( )log  , where 

rev( )p  is the 

reversible dimensionless peak current. Fig III.7 shows quantitatively the variation of the peak 

shape through the half peak width changes, ( )/2 p/2p p

nF
E E

RT
 = − as a function of log(ω) 

and α and Fig III.8 describes how the cathodic peak position 
p , ( )p p eq

nF
E E

RT
 = − , 

changes as a function of log(ω) and α. It is apparent from Fig III.6 and Fig III.7, that the plots 

of the LSV responses as a function of both, the dimensionless heterogeneous rate constant ω 

and the charge transfer coefficient α, exhibit sigmoidal shapes. Data were then fitted perfectly 

by the sigmoidal Boltzmann functions: 

( )
( )

( )

0.5

0.248

0.811 1
1

0.528 0.099
1 exp

0.477

p

p rev
X







−
= +

 − − −
+  

 

      (53)

( )
( )

1

/2 0.216

0.316

1.857 0.770
0.770

0.557
1 exp

0.445

p

X







−

−

−
− = +

 +
 +
  

      (54) 

Where: X = log (ω). 
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Figure III.6. Variation of the peak current ratio, 
rev/ ( )p p  , as the function of the 

dimensionless rate constant for several values of α. Solid lines are best fits to the sigmoidal 

Boltzmann functions with a correlation coefficient of 0.99. Zones A, B, C denote the 

reversible, quasi-reversible and totally irreversible zones, respectively. 

 

 

Figure III.7. Dependence of the half peak width of linear sweep voltammograms (
/2p ) on 

the logarithm of the kinetic parameter ω for various α values. Solid lines are best fits to the 

sigmoidal Boltzmann functions with a correlation coefficient of 0.98. 
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Figure III.8. Plots of the reduction peak position
 
(

p ) against log(ω) for various α values 

 

Each of these fit models enables voltammetric quantification of the electrode kinetics from 

simple peak current and peak potential measurements of the experimental linear sweep 

voltammograms for either reversible, quasi reversible or totally irreversible electron transfer 

process, provided that the value of α is known or can be estimated accurately.  

Also, from Figs III.6–III.8, the following kinetic zones properties can be concluded:  

In the zone A ( 310  ) both the current and the peak potentials are independent of the values 

of α and the dimensionless kinetic rate ω. All peak parameters 
p , 

p , and 
/2p , reach 

their reversible values, yielding to the following reversible criteria: 

ω≥103 

1/2

* 1/20.6105 ( )n np M M

nFv
I nFAC D

RT
+ + 

 
= −  

 
       (55) 

eq 0.854p

RT
E E

nF
= −           (56)

 

p/2 0.77p

RT
E E

nF
− = −           (57) 

These criteria for kinetically reversible system are in excellent agreement with those of 

previous theoretical investigations [2,5-7, 8].  
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Quasi-reversible features are observed in the zone B (−3 < log ω < 3), where marked changes 

in the various peak parameters as a function of both log ω and α are evident. As shown in Figs 

III.6–7, the peak height ratio increases while the half peak width decreases for increasing 

values of α. Both values decrease with decreasing values of log ω. This effect of the charge 

transfer coefficient can be interpreted by the change in the symmetry of the energy barrier.  

 

Irreversible behaviour is evident in the zone C 310 − , where the peak current and half peak 

width remain constant with decreasing log ω for specific values of α while the peak potential 

continues to decrease linearly as the function of decreasing log ω. As for the quasi-reversible 

case, the peak height ratio and peak potential increase and the half peak width decreases for 

increasing values of α. Therefore, the following conclusions can be drawn: 

ω≤10-3  

1/2

* 1/2 1/20.4951 ( )n np M M

nFv
I nFAC D

RT
+ +

 
= −  

 
      (58) 

p/2 1.857p

nF
E E

RT
− =          (59) 

These equations show a very good agreement with those obtained by Delahay for irreversible 

soluble–insoluble redox system [3].  

A further key point to consider in Fig. III.8, which was also observed and demonstrated by 

Krulic et al [9], is that in the region when log ω≤−1, the magnitude of ηp depends linearly on 

the logarithm of the kinetic parameter ω. Therefore, by using linear regression 

approximations, the dependency of 
p on ω and α could be expressed as follows: 

( )2.303 0.115log 0.78p X  = − +         (60) 

This equation coincides with that established by Krulic for α=0.5 [9], it can be used for 

estimation of the kinetic rate constant, in particularly for quasi-reversible and irreversible 

electrodeposition processes if the value of α is known or can be estimated. 
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On the other hand, when we move to compare the profiles of the working curves for peak 

current to reversible peak current ratio and the difference between the peak and half peak 

potentials against decimal logarithm of kinetic rate constant (Figs III.6 and III.7) with as 

presented by Matsuda and Ayab for soluble-soluble redox couple [4], we note that they have 

qualitatively the same shape, but they have completely different quantitative behavior. 

Meanwhile, It is worth to mention that it’s not possible to compare the last working curve 

plotted in Fig III.8 with that down by Matsuda and Ayab, because the manipulated variable 

are not identical (a y-axis variable for soluble-insoluble system was ( )p p eq

nF
E E

RT
 = − , 

while for soluble-soluble system was ( ) 1/2, ( )p

nF
E E

RT
  = − − ). 

 

III.4.2. Experiment–theory comparison 

In order to test the validity of our numerical approach to extract kinetic and mass transport 

parameters from LSV data, an example of Cu electrodeposition reaction in organic solution is 

presented. The Cu system includes a simple one-electron transfer reaction according to [10]: 

( )Cu +e Cu 0+ − →           (61) 

although, the removal of the complexing solvent should also be considered [11-12].  

Fig III.9a depicts typical LSV profiles collected at different scan rates for reduction reaction, 

Cu(I)/Cu(0), in acetonitrile. Regarding to the peak heights, an increasing trend was observed 

on increasing the scan rates. Furthermore, the peak potential was seen to shift gradually 

towards more negative potential values over 25–200 mV/s scan rate suggesting a quasi-

reversible character. To deduce the mass-transport and kinetic proprieties of the Cu(I)/Cu(0) 

system, the unknown parameters values: 
( )Cu I

D , and 0k need to be derived. There are two 

ways for the calculation of 
( )Cu I

D , and 0k : by either computationally (Utilization of 

working curves) or by adjustment to linear sweep voltammograms (Fit and simulation) 

based only on QREV algorithm  and different combinations of 
( )Cu I

D ,  and 0k . 
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Figure III.9. (a) LSV curves of electrodeposition of Cu(I) on Cu disc electrode from 10.25 

mM of tetrakis(acetonitrile)copper(I) tetrafluoroborate in acetonitrile at various scan rates. 

(b) LSV curve of reduction reaction of Cu(I) recorded scan rate of 100 mV/s. The dotted line 

indicates semi-integrated current for forward scan (c) Tafel curve derived from the rising 

part of the LSV curve at scan rate of 100 mV/s. The inset shows the LSV data used for 

drawing the Tafel curve. The potential is expressed vs. the Cu reference in equilibrium with 

10.25 mM Cu+ in solution, i.e. –0.118 V vs. standard copper electrode in acetonitrile. 

 

III.4.2.1. Utilization of working curves 

First, we used the common employed procedure, the semi-integrative voltammetry, for the 

calculation of Cu(I) diffusion coefficient and a direct Tafel analysis for the measurement of 

the transfer coefficient α. Fig III.9b shows a sigmoidal curve (dotted line) obtained from semi-

integration of typical voltammetric current recorded at 100 mV/s. It should be noted that we 
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have employed the Saila methodology [13] for establishing semi-integrated plots. As shown 

in Fig III.9b and as per principle of semi-integration technique, the semi-integration of the 

voltammetric current responses with respect to time yields to the sigmoidal-type curve with a 

plateau. This plateau level represents the limiting semi-integral current, of height *m  : 

* * 1/2
n nM M

m nFAC D+ +=           (62) 

and the diffusion coefficient of Cu(I) in acetonitrile at 25 °C was computed utilizing this 

equation (as shown in Table 1) by considering the following experimental values: n = 1, 

* 10.25
Cu

C mM+ = . Fig III.9c depicts the representation of the Tafel plot obtained from 

experimental LSV data, at a scan rate of 100 mV/s. Using the slope calculated from Fig III.9c 

and the Tafel equation, the value of α was calculated and the result is reported in Table 1. In 

the next step, a more detailed examination of the voltammetric peaks allowed us to quantify 

the standard rate constant (k0 in cm2/s) for the Cu(I)/Cu(0) redox couple according to the 

models presented in Section III.4.1.4 .The results are listed in Table 1. With these values, Eqs 

(53), (54) and (60) were used to obtain the final value for the k0. 

 

Table III.2. Kinetic-mass transport parameters extracted from the LSV curve at 100 mV/s, for 

Cu(I)/Cu(0) redox couple  

 

Diffusion coefficient Charge transfer coefficient Rate constant 

 

C
u

(I
)/

C
u

(0
) 

S
y

st
em

 DCu(I)[10-9m2s-1] α k0[10-5cms-1] 

Semi 

integration 

Fit Tafel Fit Working curves Fit 

Eq (53) Eq (54) Eq (60) 

1.75 1.70 0.82 0.80 3.835 4.99 7.73 5.12 

 

III.4.2.2. Fit and simulation 

The parameters, 
( )Cu I

D ,α and 0k were also obtained by comparison of theoretical and the 

experimental linear scan voltammograms (in 100 mM TEABF4 and 10 mM 

Cu(CH3CN)4BF4), using the LSV model algorithm with a series of adjustments in the input 

values. For this purpose, theoretical voltammograms were obtained by utilizing the diffusion 

coefficient of Cu ions within the range reported in the literature [14], and varying the values 
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for 0k  and α for the Cu(I)/Cu(0) system as these values have not been reported previously in 

the literature. In our work, α was varied from 0.1 to 0.9 while the dimensionless kinetic rate 

was varied from 10−3 to 103.  

 

In the purpose to compare the two approaches: i) theoretical fitting and ii) working curves, 

and to illustrate the LSVs are obtained with the parameters from Eqs (53), (54) and (60), an 

analysis study was performed first with the voltammetric data collected at 100 mV/s. To 

achieve best fit to experimental LSV data obtained at 100 mV/s, we tested various values of 

( )Cu I
D ,α and 0k .  . With the following parameters: 

( )
9 2 -1

Cu
1.7 10

I
D m s−=  , 0.8 = and 

0 5 15.12×10 cm sk − −= , the resultant theoretical voltammogram is in very good agreement with 

the experimental LSV curve (see Fig III.10a).  

 

To demonstrate the applicability of the working curves, theoretical voltammograms were 

calculated with Eq (53) with the parameters shown in Table III.2 and the results are presented 

in Fig III.10b. Better agreement was obtained by using Eqs (53) and (54) than by Eq (60). The 

small discrepancy in kinetic prediction using Eq (60) could be attributed to the dimensionless 

kinetic rate constant ω of copper reduction which was just out of range of applicability of Eq 

(60). We have found above that Eq (60) is valid for ω ≤ 0.1; however the ω value calculated 

for Cu reaction is 0.15.  

 

Table III.2 shows the obtained parameters for the reduction of Cu(I) to Cu(0) in acetonitrile at 

100 mVs−1 . The obtained 
( )Cu I

D values are similar with the values previously reported in 

reference [14], i.e, 1.64 × 10−5 m2s-1, although slightly higher diffusion coefficient was 

obtained from semi-integration analysis. Furthermore, the calculated values of k0 indicated 

that the Cu deposition process in acetonitrile is quasi-reversible. Likewise, the kinetics of the 

Cu(I)/Cu(0) system were analyzed at all scan rates. The use of Eqs. (53), (54) and (60), 

yielding average values of the standard rate constant 0k  : 4.86 ( ± 0.68) × 10−5 , 4.63 ( ± 0.22) 

× 10−5 and 7.76 ( ± 0.76) × 10−5 cm/s, respectively. Excellent fits were reproduced between 

the experimental LSVs and simulated ones under various scan rates (see Fig III.10) and the 

average fitted 0k  value was found: 5.43 ( ± 0.52) × 10−5 cm/s.  
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These results confirm the above conclusions and reveal that the working curves provided in 

this work can be used to accurately analyze the linear scan voltammetric current responses for 

quasi-reversible soluble/insoluble system. The high transfer coefficient value of 0.8 obtained 

in this work is in line of the values obtained for Cu deposition on amalgams from nitrile 

solvents, indicating that the reaction site is located in the inner part of the electric double layer 

[11,12]. However, the apparent rate constants measured in this work for Cu deposition are 

three orders of magnitude smaller than the standard rate constants obtained for copper 

deposition on mercury [11,12], indicating that ion transfer into mercury is easier than 

nucleation on copper surface. 

 

Figure III.10. (a) Comparison between theoretical linear scan voltammogram and 

experimental voltammogram obtained and recorded at 100mV s–1 scan rate. The parameters 

used for theoretical prediction are: 
( )

9 2 -1

Cu
1.70 10

I
D m s−=  , 0.8 =  and 

0 5 15.12×10 cm sk − −=  (b) Comparison of theoretical LSV responses with experimental data 

using Fit models presented by Eq (53), Eq (54) and Eq (60). Parameters used for LSV 

modelling: 
( )

9 2 -1

Cu
1.75 10 0.82

I
D m s −=  =  and 0 5 13.83×10 cm sk − −= calculated from Eq 

(53), 0 5 13.83×10 cm sk − −= calculated from Eq (54) and 0 5 15.88×10 cm sk − −=  calculated from 

Eq (60) The potential is expressed vs. the Cu reference in equilibrium with 10.25 mM Cu+ in 

solution, i.e. –0.118 V vs. standard copper electrode in acetonitrile. 
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III.5. Conclusion 

In summary, using a semi analytical method, a new LSV algorithm has been proposed for use 

in the computing of voltammograms in the case of soluble-insoluble system where the 

electron transfer takes place in a single step. A numerical method based on finite element 

method (COMSOL) has been also used in simulating LSV responses. 

The experimental verification of the theoretical framework is carried out by studying the 

electrodeposition of Cu(I) / Cu (0) in acetonitrile. 

In this chapter, the presentation, and the analysis of the results are divided into three parts: 

- In the first part, a comparison was made between the semi-analytical (using QREV 

algorithm) and numerical solution (using COMSOL software) which shows a good agreement 

between them. 

- The second part is dedicated to the theoretical analysis of simulated LSV responses. The 

effect of the kinetic parameters on the LSV responses has been examined. Through the 

variation of the peak parameters with dimensionless kinetic rate (ω) and the transfer 

coefficient (α), series of kinetic curves have been established. The obtained results showed 

that according to the magnitude of the dimensionless rate constant the various LSV responses 

limitation could be divided into three zones: Zone A: ω ≥ 103, reversible process. Zone B: 

10−3 < ω < 103 , quasi-reversible process. Zone C: ω ≤ 10−3 , irreversible process. Moreover, 

we offer here three working curves to extract kinetic details with high accuracy and simplicity 

to use, as only the experimental values corresponding to the peak high, peak position and peak 

width are required.  

- In the third part, the voltammetry comparison of simulation and experiment was performed. 

Kinetic and diffusive parameters of Cu(I) ions were determined. The calculated k0 indicated 

that the Cu(I)/Cu(0)  was quasi-reversible. The LSV theory developed in this study showed an 

accurate prediction to the current responses for Cu(I)/Cu(0) couple in acetonitrile medium and 

a very good agreement between experiment-theory was obtained.  
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CHAPTER IV 

Simulation of cyclic voltammograms for 

soluble-insoluble redox reaction 

In this chapter, first we build based on the Butler-Volmer type rate expression, a cyclic 

voltammogram simulation model for one–step electrodeposition reactions using the semi-

analytical method and the finite element COMSOL software. Second, we show how the 

soluble-insoluble redox system behaves under cyclic voltammetry condition through the 

variation of the following parameters: dimensionless rate constants, charge transfer 

coefficients and switching potential. At the end of this chapter the theoretical concentration 

profiles for reversible, quasi-reversible and irreversible electron transfer are established and 

analysed.  
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IV.1. Modelling cyclic voltammetry profile for metal/metal-ion system 

For simulation of cyclic voltammograms for the metal/metal ion system, we have used the 

same assumptions as in the previous chapter, except we now consider the forward-backward 

potential sweep. The CV curve is then modelled using the bipartite function [1]: 

,  

2 ,  

i

i

E vt t t
E

E vt vt t t



 


=

−

+ −





         (1) 

Where t is the switching time. 

IV.2. Resolution 

IV.2.1. Semi-analytical approach 

We have followed step-by-step procedures used in chapter III, to develop the current–

potential profile, to arrive at: 

Dimensionless current expression:   

( ) ( )
( ) ( )

( )

1

1

1

1

k

i

k i k i i
k A k C

B k

−

=

 − − − − 
 = − − +

−
      (2) 

Dimensionless applied potential expression  

For the forward sweep:   

( )0nF
init δk

RT
E E = − = −          (3) 

With:  

( ) ( )p δk
1

2
ex -A k


=             (4)

( ) ( )exp -
1 1

2
δkB k






 
 =   

 
        (5) 

For the backward sweep 

INIT 2LIMIT δk = − + +          (6) 

With: 

( )
(( )

1 1
A k

2 δ 1 θexp 2 LIMIT INIT) δk

 
 =

  + − +  

      (7) 
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( ) (( )exp 2 LIMIT IN
1 1

2
IT) δkB k






 
 −=  


+ 


      (8) 

Noted that the dimensionless switching potential is expressed as follows: 

( )0LIMIT
nF

E E
RT

= −          (9) 

The above equations were implemented in Fortran according to algorithm shown in Fig IV.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Program QREVC 

Parameter (nmax=5000) 

Implicit double precision (a-h,o-z) 

Double precision INIT, LIMIT 

Character*12Fich1 

Character*12Fich2 

Dimension Y(0: NMAX) , PHI(0: NMAX), 

PHId(0:NMAX), Yd(0:NMAX), 

X(0:NMAX) 

Equivalence (PHI (0), INIT) 

 

 

 

 

 

pot(0 : 

Equivalence (pot(o), INIT) 

 

DATA y(o) / p.do ) 

               

Open Results File 

 

 

                                                           

 

 

               

DO 10 k=1, INT2 

A 

Pi=3.1416 

R=8.314 

F=96485.31 

Delta=0.1 

INT1=IT 

INT2=2*IT 

C=1.d0/2.d0*dsqrt(DELTA) 

IT= ((INIT-LIMIT)/DELTA) 

F1=2*(LIMIT-INIT) 

F2=R*T/n*F 

C2=n*F*
2

D *
v

F

 
 
 

 

TETHA=dexp(INIT) 
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Figure IV.1. Flowchart of the implemented CV models 

oui non 

Write on File Fich 1  PHI (k) , Y(k) 

 

k =1 

SIGMA=0.d0 

Do 20 j =1, k-1 

SIGMA=SIGMA- k 1-j . ( )k j X j + − −
 

 

    

         X(k)=(-A +C+SIGMA)/(1-B) 

             Y(k)=X(k)*dsqrt(pi) 

                  Continue 

 B  

 

A 

k- INT2 

A=C*(exp(-DELTA*k)) 

B=C/*(THETA*exp(-DELTA*k))  

Pot (k)=init–delta*k 

A=C*(exp(DELTA*k+F1))  

B= C/*(THETA*exp(DELTA*k +F1)   

pot(k)=2*limit–init+delta*k 

<0 >0 
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As a result, the “QREVC” algorithm can calculate cyclic voltammograms if the values of 

INIT, LIMIT, ω and αvalues are put. 

IV.2.2. Finite element approach (COMSOL Multiphysics)  

Essentially, same steps involved in LSV model development are also followed for finite 

elements simulation of cyclic voltammograms, except for the point of type of potential sweep, 

which was swept linearly forward and backward, using a triangular waveform. 
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IV.4. Results and discussion 

IV.4.1. Calculation theoretical cyclic voltammograms using semi analytical method and 

finite element method (COMSOL Multiphysics)  

Figure IV.2 shows an example of dimensionless cyclic voltammograms calculated by using 

the algorithm “QREV (black dashed curve) as well as that calculated by COMSOL software 

(red-dashed curve), the agreement between the two curves is remarkably good. 

 

 

Figure IV.2. Simulated cyclic voltammograms obtained with the Butler-Volmer equation 

through use of the derived semi-analytical solutions (black curve) and by the finite element 

method (red-curve). α=0.5, INIT=0, LIMIT=-5 and ω=103  

 

IV.4.2. Effect of the kinetic rate 

To illustrate the transition from reversible to irreversible behaviour, in Fig IV.3 we showed a 

set of simulated CVs in which the dimensionless kinetic parameter took the following values: 

103, 10-1 and 10-3 for reversible, quasi-reversible and irreversible cases, respectively. Several 

key differences in the effect of ω on the theoretical CVs can be identified. Peak currents 

decrease in intensity when the behaviour of the soluble-insoluble system changed from 

reversible to quasi-reversible or irreversible. The forward and backward potential peaks are 

very close to each other for reversible case (ω=103) and they become well separated for 

irreversible case (ω=10-3). This is the consequence of the shift of the anodic branch to more 

anodic values and the shift of the cathodic peak to more cathodic values when the 

dimensionless rate constant goes towards quasi reversible or irreversible zone. The same 

observation was found with the soluble-soluble redox system [2]. 
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Figure IV.3. Calculated cyclic voltammograms for various value of ω with α=0.5, INIT=0, 

LIMIT=-30. (a) reversible case (ω=103), (b) quasi-reversible case (ω=10-1), (c) irreversible 

case (ω=10-3). 

 

 

a) 

b) 

c) 
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IV.4.3. Effect of the charge transfer coefficient 

Fig IV.4a and IV.4b showed the dependence of the CV responses on the transfer coefficient 

for the quasi-reversible and irreversible cases, respectively. As the cathodic transfer 

coefficient α increases, the cathodic peak potential shifts to more anodic values. In addition, 

we must mention that the reversible systems are not infected by the variation of the charge 

transfer coefficient. 

 

 

Figure IV.4. Effect of the transfer charge coefficient on the cyclic voltammetry responses for 

soluble-insoluble system. (a) quasi-reversible case (ω=10-1), (b) irreversible case (ω=10-3). 

a) 

b) 
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IV.4.4. Effect of the switching potential 

In Figs. IV.5a, IV.5b and IV.5c the variations of the CV responses with the switching 

potential are shown for the three general cases of reversible, quasi-reversible and irreversible 

systems. It seems that increasing the value of the dimensionless switching potential increases 

the magnitude of the peak current. In contrast, no effect was observed on the cathodic branch 

of the CVs. 

 

 

 

Figure IV.5. The effect of switching potential on theoretical CVs. (a) reversible case (ω=103), 

(b) quasi-reversible case (ω=10-1), (c) irreversible case (ω=10-3). 

a) 

c) 

b) 
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IV.4.5. Theoretical visualization of concentration profiles 

Contrary to the soluble-insoluble redox system, the concentration profile for soluble-soluble 

system have been theoretical investigated in several studies [3]. In the Fig IV.6 the theoretical 

concentration–distance plots at different times of the cyclic voltammogram were shown. We 

can observe that the time at which the concentration of the metal ion dropped to zero at the 

electrode surface increases with the degree of reversibility. This is due to the rate of 

consumption of reduced species at solution-electrode interface. For reversible system, the 

kinetic rate constant is high resulting in rapid consumption of the electroactive species. 

In addition, it's worth noting that the variation in concentration during metal cation reduction 

is less than that during metal oxidation. This is explained by the fact that the reduction 

reaction of the metal ion is under diffusional control, but the metal oxidation reaction is under 

pure activation. 

 

IV.5. Conclusion 

Theory of cyclic voltammetry for soluble-insoluble redox reaction was established by using 

two different methods, semi analytical and finite element method. This theory is applicable to 

planar electrode. It was found that Both methods yield the same results.  

Different theoretical CVs responses under variation of kinetic rate constant, charge transfer 

coefficient and switching potential have been presented. 

Using the developed CV models in this chapter, it’s possible to visualize the theoretical 

concentration profiles whatever the degree of the reversibility.  
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Figure IV.6. Simulated CVs (a1, a2 and a3) and theoretical concentration profiles (b1, b2 

and b3) of the soluble-insoluble redox system. a1-b1: reversible case (ω=103), a2-b2: quasi-

reversible case (ω=10-1) and a3–b3: irreversible case (ω=10-3). 

 

 

 

a1) 

a2) 

a3) 

b1) 

b2) 

b3) 
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General conclusion 

We are interested in the theoretical and numerical study of electrochemical systems that include 

an insoluble product formation using voltammetry-sweep techniques. 

In this regard, to have theoretical tools to approach the diagnosis and the theoretical prediction 

of experimental voltammograms corresponding to the soluble-insoluble redox reactions, we 

have first built mathematical models based on the Butler-Volmer type kinetics and then we have 

solved them by using two different methods: a semi-analytical method that incorporates Laplace 

transform and inverse Laplace transform, and the finite-element method included in COMSOL 

Multiphysics software, and finally, the proposed mathematical models have been tested by 

experiment where the system Cu (I)/Cu (0) in acetonitrile medium was investigated.  

The following conclusions are reached: 

-Two algorithms based on the semi analytical method were proposed to simulate the LSV and 

CV responses where the electron transfer takes place in a single step. The results of the 

simulation were compared to those produced using finite element method and excellent 

agreement was confirmed. 

The influence of kinetic factors on LSV and CV responses was investigated. series of kinetic 

curves have been produced by varying the peak parameters with the dimensionless kinetic rate 

(ω) and the transfer coefficient (α). The obtained simulation results showed that according to 

the magnitude of the dimensionless rate constant the various voltammetric responses limitation 

could be divided into three zones: Zone 1: ω ≥ 103 , reversible process. Zone 2: 10−3 < ω < 103 

, quasi-reversible process. Zone 3: ω ≤ 10-3 , irreversible process. Moreover, we have offered 

three working curves to extract kinetic details with high accuracy and simplicity to use, as only 

the experimental values corresponding to the peak high, peak position and peak width are 

required. Moreover, our developed CV model can be used for establishing theoretical 

concentration profile for soluble-insoluble redox couples whatever the degree of the 

reversibility. 

-The kinetic and mass transport properties of the Cu deposition that required to understand 

better the limitations for the nonaqueous batteries utilizing Cu(I)/Cu(0) couple as the negative 

redox, were successively computed using models suggested in this work calculated value of the 
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kinetic rate k0 was found to be equal to 5.12 × 10−5 cm s−1 which indicated that the Cu deposition 

process in acetonitrile is quasi-reversible, the diffusion coefficient was 1.7 × 10−9 m2s−1 and 

the cathodic transfer coefficient was 0.8.  

-LSV or CV models proposed in this work are applicable only to a situation where instantaneous 

nucleation takes place, such as metal deposition on same metal, or for example silver deposition 

on gold in some specific conditions. If nucleation overpotential is required to induce the 

nucleation, followed by for example progressive 3D nucleation, the shape of the voltammogram 

will change, LSV and CV models should be thoroughly studied.  

In perspective, it will be necessary to modify the LSV or CV theory developed in this study in 

the case where the activity of the metal as the function of surface coverage would be required.  

 


	CHAPTER I
	Background and literature review
	In this chapter, we provide a full description of solid-liquid electrochemical system with fundamental thermodynamic, kinetic, and mass transfer laws that may govern such systems.
	Next, we summarize main progresses made to predict the behavior of the system involving soluble-soluble and soluble-insoluble redox couples, by Linear potential scan voltammetry and cyclic voltammetry, we then outline the most common mathematical models.
	At the end of this chapter, goals of the present thesis are defined.

