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Abstract

The aim of this thesis to interest in the theoretical and numerical study of a differential

equation of the hyperbolic type.

In the first work we extend the Rothe method for to time discretization and finite element
method for the spatial discretization of telegraph equation with nonlocal term associated with
initial conditions and boundary conditions.

The main idea in this work is to give semi discrete and fully discrete schemes and extract a pri-
ori estimates and a priori error estimates for in suitable spaces. As for the numerical aspect,
the presence of non-local coefficients in the equation causes difficulties to solve a system of
nonlinear equations obtained. Therefore, we had to address these difficulties by applying a
dedicated numerical method to solve this type of problem, and at the end of this work we pro-

vide a numerical example to support our theoretical estimates.

The purpose of the second work is to study the same non-local hyperbolic differential equa-
tion by combining the H'-Galerkin mixed finite element method with the Rothe method.
A priori estimates and error estimates are derived for both semi discrete and fully discrete
schemes in spaces that fit this work and we finish our work with a numerical experiment that

proves our theoretical results.

Key-words: Rothe’s method, finite element method, H 1_Galerkin mixed finite element method,

telegraph equation, nonlocal term and a priori estimate.
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Résumé

Cette these a pour objectif de s'intéresser a I’étude théorique et numérique d'une équation

différentielle de type hyperbolique.

Dans le premier travail, nous étendons la méthode de Rothe pour la discrétisation tem-
porelle et la méthode des éléments finis pour la discrétisation spatiale d'une équation télé-
graphique avec un terme non local associé aux conditions initiales et aux conditions aux lim-
ites.

Lidée principale de ce travail est de donner des schémas semi discrets et totalement discrets et
d’extraire des estimations a priori et des estimations d’erreur a priori dans des espaces appro-
priés. Quant a I'aspect numérique, la présence de coefficients non locaux dans I’équation pose
des difficultés pour résoudre un systéme d’équations non linéaires obtenu. Par conséquent,
nous avons di résoudre ces difficultés en appliquant la méthode numérique dédiée pour ré-
soudre ce type de probléme, et fin de ce travail nous fournissons un exemple numérique pour

étayer nos estimations théoriques.

L objectif du second travail est d’étudier la méme équation différentielle hyperbolique non
locale en combinant la méthode des éléments finis mixtes H'-Galerkin avec la méthode de
Rothe.

Les estimations a priori et les estimations d’erreur sont dérivées a la fois pour des schémas
semi discrets et totalement discrets dans les espaces qui correspondent a ce travail et nous

terminons notre recherche par une expérience numérique qui prouve nos résultats théoriques.

Mots-Clés : Méthode de Rothe, méthode des éléments finis, la méthode des éléments finis

mixtes H!-Galerkin, équation de télégraphe, terme non local, estimation a priori.
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Introduction

The motivation for choosing to study partial differential equations with nonlocal
coefficient is the interest in describing how important these equations in the modeling
of many physical, biological and mechanical phenomena.

The problems that contain partial differential equations with nonlocal coefficient in-
clude different applications in many problems, including population activity such that
describe the population density subject to evolution (see [18]), and also conduction
heat transfer process where a phase transition occurs, and in moisture transport such
as swelling grains or polymers (see [8, 10, 50, 52] and references cited therein),... etc.
The presence of non-local coefficient in the problems leads to improving the advan-

tages of qualitative and quantitative analysis of these problems.

In the recent period, great emphasis has been placed on how to apply basic func-
tional methods to boundary problems accompanied by linear or non-linear differen-
tial equations in order to improve the theoretical and practical results of studying these

problems, especially in Banach or Hilbert spaces, in contrast to the classical methods.

The topic of the thesis is the interest in the numerical study of the partial differential



Introduction

equation of the type of hyperbolic with the term nonlocal, and it is also accompanied
by initial conditions and boundary conditions by using various approximations meth-
ods.

These approximate methods have many advantages, including :

-Create algorithms for numerical solutions.

-Finding approximate solutions to the difficulty in obtaining an accurate solution.
-Prove the existence of the solution and its uniqueness...etc.

Among the most commonly used approximate methods for solving problems involv-
ing linear or nonlinear differential equations, we mention: The finite element method,

H!-Galerkin mixed finite element method and mixed finite element method...

The aim of our research, in the first work, we combine the Rothe method and the
finite element method to study a problem containing the acoustic telegraph equation
with nonlocal term, constant coefficients accompanied by boundary conditions, and
initial conditions which this equation is used to model effects of the mixture propa-
gation and wave propagation by introducing a term that explains the effects of finite
velocity on standard heat or standard mass transport (see [22, 40]). The nonlocal term
a in our equation is the diffusion that depends on a nonlocal quantity [, u(x, t)dx and
assumed to depend on the entire population in the domain Q. Recent years have seen
an increasing interest in studying nonlocal problems, of these problems it is possible

to refer to [14, 19, 26]. It also has extended applications which you can see in [51].

In the second work, we are expanding the H!-Galerkin mixed finite element method
to the spatial discretization and applying the Rothe method for the time discretization
in order to study the same problem in the first work. These methods enable us to ob-

tain an approximate solution and, facilitate finding the optimal a priori estimates.

Manal DJAGHOUT 2 University of 8 May 1945-Guelma
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The H'-Galerki finite element mixed method is a developed method for mixed fi-
nite element, this proposed method has the advantage of not subjecting the choice of
the finite element spaces to the LBB consistency conditions, and we refer to some ref-
erences interested in studying problems by using the H'-Galerkin mixed finite element
method [16, 17, 43, 44, 56].

In ref [15], Che et al. proposed H 1_Galerkin mixed finite element method for the fol-
lowing nonlinear viscoelasticity-type equation based on H'-Galerkin method, and ex-

panded mixed element method.

u—V.a(alx,w)Vus+ b(x,u)Vu) = f(x,1), (x,1) €Qx ],

u(x, 1) =0, (x,t)€edQ xJ,
u(x,O) = uO(x)) ut(x,O) = ul(x) X € Q)

where J = (0; T] with 0 < T < co. the given data u0(x), ul(x), a(x, u), b(x,u), and f are
sufficiently smooth.
In ref [42], PANL studied and analyzed H 1_Galerkin mixed finite element method for

the following parabolic partial differential equations with nonselfadjoint elliptic parts.

pt_(apx)x+bx+cp:f(x; t); (x) t)E(O,].) X])

p0,1)=p,1), te],
p(x,0) = po, x€(0,1),

where J = (0; T] with T < 1. The coefficients a, b, c are smooth functions depends of x

and a is bounded below by ay = 0.

Manal DJAGHOUT 3 University of 8 May 1945-Guelma



Introduction

For the Rothe method, itis an efficient tool that can be cited in the the discretization
of linear or non-linear evolution equations.

The Rothe method (or the method of lines) is the One of the most popular methods
for solving partial equation; this method is used in the time discretization of evolution
equations where the derivatives with respect to one variable are replaced by the cor-
responding difference quotients that finally lead to systems of differential equations
for functions of the remaining variables. Rothe’s method was presented by E.Rothe in
1930, it has been adopted and developed by many authors for example O.A. Ladyzen-
skaja [33, 34] and K. Rektorys[48, 49] for solving second order linear and quasilinear
parabolic problems. Recently Rothe’s method has been studied linear and quasilin-
ear hyperbolic equations we can see in [9, 28, 53, 2, 6, 27]. It also applied to different

types of problems some of them mentioned [3, 28, 32, 36, 38, 39, 41].

The discretization scheme of the Rothe method is given as follows :
We subdivide the interval [0, T] into n subintervals of length 7 = % and denote by u;l
thevaluesof uy at t = it, fori = 1,..., n. We define the first and second finite differences

i i1 I
Mandézpil: P " forall = 1.
T

i_
asop, =
-We obtain a system formed of n equations in x where the unknown is u'(x) sowe
approximate the problem posed at any point ¢ = t;, for all i = 1, n by a new discrete
problem.
-We determine the functions u* solutions of the system obtained.

-We construct the Rothe functions defined by

W=u T v (- o)6ut Yielnoy,t], 1<i<n,

Manal DJAGHOUT 4 University of 8 May 1945-Guelma
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Su=6u" +(t—t;_1)6%u’ Yteltiy,t], 1<i<n,

and the auxiliary functions

u' teltiy, til,

u te[-71,0],

Content of the thesis

This thesis is composed of three chapters.

In the first chapter, we give fundamental notions of functional analysis, those of
Sobolev spaces and Bochner spaces. afterwards, we also determine definitions, prop-
erties and fundamental theorems for this work: Cauchy-Lipschitz, Lax-Milgram Young
inequality, Gronwall inequality, ect.

We give as well an overview of finite elements and mixed finite elements.

In the second chapter, we treat the telegraph equation with nonlocal term by com-
bining Rothe’s method for time discretization and finite elements method to spatial
discretization. We start with a general introduction to this chapter, we give a definition
of the weak formulation and the basic assumptions for this work.

Next, we derive the discretization scheme, the a priori estimates and the error esti-
mates based on the time discretization.

Thereafter, for the spatial discretization we deduce the fully discrete scheme and we
derive the a priori estimates and the error estimates. Finally, we describe a numerical

experiment to support the theoretical result of this work.

Manal DJAGHOUT 5 University of 8 May 1945-Guelma
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The third chapter is devoted to studying the nonlocal hyperbolic equation based
on the H!-Galerkin mixed finite element method, for spatial discretization and on the
Roth method for time discretization. First, we give a general introduction to this chap-
ter ; we give to a clear and precise formulation of the mentioned problem, followed by
the variational formulation. After that, the use the H!-Galerkin mixed finite element
method for spatial discretization, which allows us to extract the semi discrete scheme
and derive the optimal error estimates. We then divide the time domain and give the
fully discretization scheme; the a priori estimates and the error estimates according
to the Rothe method. Finally, we finish with a digital experiment that describes our
theoretical results.

We end this thesis with a conclusion, perspectives and bibliography.

Manal DJAGHOUT 6 University of 8 May 1945-Guelma



Preliminaries

In this chapter, we determine fundamental notions of functional analysis, those of
Sobolev spaces and Bochner spaces. After which, we also recall definitions, proper-
ties and fundamental theorems for this work: Cauchy-Lipschitz, Lax-Milgram Young
inequality, Gronwall inequality, ect. We also give an overview of finite elements and
mixed finite elements.

Most of these reminders are mostly drawn from books [1, 4, 7, 20, 31, 54, 55].



Chapter 1. Preliminaries

1.1 Functional spaces

Let Q is a bounded domain of R? with d = 1 and T a strictly positive real number :

1.1.1 Spaces L”(Q)

Definition 1.1.1. [7] For 1 < p < oo, we denote by L (Q) the space of measurable func-

tions u from Q inR such that

fﬂllu(x)llpdx<oo, (1.1)

with the norm

lull iy = (fgnu(x)nl’dx)%. 1.2)

Remark 1.1.2. If p = 2, L?(Q) is the space of measurable functions with square inte-

grable over Q) for the scalar product defined as

(u,v) :f ux)v(x)dx, (1.3)
Q

with the norm
1
Nl 2y = (fQ|u|2dx)2. 1.4)
Remark 1.1.3. if p = oo, we define the space L™ as the space of all functions u that are

essentially bounded over Q), with the corresponding norm

lull Loo) = essupeqlu(x)| = inf{C =>0:|ux)|=Cpp overQ}. (1.5)

Manal DJAGHOUT 8 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

Definition 1.1.4. We say that u a function of L2(Q) is weakly derivable in I2(Q), if there

exists w; € [*(Q),Vi=1,...,N, such that

0
usl — —f wiv, Yve C(Q), (1.6)
o 0x; Q

where % = w; and C°(Q) is the space of compactly supported class C* functions

over Q)

1.1.2 Sobolev spaces

Definition 1.1.5. [1] For an integer m = 0, the space H"(Q) is the Sobolev space of the

order m, built on L*(Q) :
H™(Q) = {u:ue L*(Q) and, Ya € N"such that |a| < m,D%u € L*(Q)}, (1.7)

here D% is the weak partial derivative.

H™(Q) is a Hilbert space for the scalar product

(w,Vamy = Y, (D%, D), (1.8)

lal=m

and for the norm

D=

Il = (3, 1D ulf2q)? (1.9)

lal=sm

Proposition 1.1.6. if m = 1, the Hilbert space H(Q) equipped with the scalar product

(U, V) g (q) = (w(x), v(x)) + Vulx), Vv (x)), (1.10)

Manal DJAGHOUT 9 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

and the norm

N ou 112 1
— 2 2
||u||H1(Q)_(||u||L2(Q)+i;Haxi e (1.11)
Definition 1.1.7. We pose
Hy(Q) ={ue H'(Q) :u=00n0Q}, (1.12)

it is the adherence of C°(Q) in H(Q)

Remark 1.1.8. The space H™'(Q) is the dual of space Hy(<2).

The duality product between H, (Q) and H™'(Q) is as follows

(u,p) :f px)u(x)dx, V(pEH&(Q). (1.13)
Q

H1(Q)x H} (Q)

Definition 1.1.9. [I] For 1 < p < oo, and m € N we define the sobolev space WP (Q) as

follows
WmP(Q) = {u € LP(Q); D%ue LP(Q), Va € N such that |a| < m} (1.14)

with the norm

leellm,p = Z 1D ull . (1.15)

lalsm

Remark 1.1.10. Ifp =2, we have

WP Q) = H™(Q). (1.16)

1.1.3 Bochner spaces

We recall the following spaces :

e CY0, T; L2(QQ) (also denoted C(0,T; LZ(Q))) is the space of defined and continuous

Manal DJAGHOUT 10 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

functions on [0, T| with values in L2(Q), it is a Banach space for the norm

Ul oo 7.72 = max || u(t)|l ;2.0 1.17
leell co o, 1:22) OstsTll (Dl 2 (1.17)

e 120, T; H& (Q)) is the space of functions with integrable square over [0, T] with values

in H& (Q), it is a Hilbert space for the scalar product

T
(®, V) 120,311 () :fo (u(®), (D) g1 A1, (1.18)
and the norm
2 r 2
8 gy = [ NI (1.19)

¢ [°(0, T; H& (Q))is the space of functions essentially bounded on [0, T| with values in

H& (Q), it is a Banach space for the norm

2el roo o, 712 ) = sup lul g1 - (1.20)

)

e [2(0, T; L2(Q)) is a Hilbert space for the scalar product

T
(u, U)LZ(O,T;LZ(Q)) = fo (u(t), U(t))Lg(Q)dt (121)

and the norm

T
el 0, 7.0200) = fo lu(t)%, o, dr. (1.22)

Let X be a Banach space, we also mention the norms in the discrete form for some
Bochner spaces

el Looo, 7m0 = max [l u | x. (1.23)
1=m<]

Manal DJAGHOUT 11 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

J
L S 17
m=1

where 1 is the discretization step of the interval [0, T']

1.2 Some properties and fundamental theorems

Lemma 1.2.1. (Young’s inequality)

Ifa,szcmdlSp,qSoosuchthat%+%:1, then

1 1
ab< —aP +=b1.
p q

Lemma 1.2.2. (The e¢-inequality)

Foralle =0 andifa,b=0, then
2 1.5
2ab<ea +Eb’

or in other words

2ab <ea®+ C.b.

Remark 1.2.3. C. = C(e™!) withe is small.

Lemma 1.2.4. [14](Abel’s summation principle)

2a(a-b)=a’-b*+(a-b)?, VYa,b.

Lemma 1.2.5. (Poincaré inequality)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

Manal DJAGHOUT 12

University of 8 May 1945-Guelma



Chapter 1. Preliminaries

Forallue Hé (Q), there exists a constant C(Q), such that

sl

) = CO(
i=1

Theorem 1.2.6. [7](Cauchy-Schwarz inequality)
Forallu,v e L?(Q), we have

¢ Continuous form

1 1
‘f u(x)v(x)dx‘s(flu(x)l 2 flv(x)l 2.
Q Q

¢ Discrete form

N N ) % N ) %
‘Zuividx‘S(Zluil) (Z|Vl|) .
l:l l:1 l=1

Theorem 1.2.7. (Holder inequality)
It is a generalization of Cauchy-Schwarz inequality.
Forl<p,q<oo,ucLP(Q) andve L1(Q) such that% + é =1, we have

¢ Continuous form

’f u(x)v(x)dx‘S(f Iu(x)l"’ E fIV(X)I" 5
Q Q

¢ Discrete form

|| = (S ) (2 )
Theorem 1.2.8. (Triangular inequality)

1

1 1 1
(fg(z,t(xwru(x))2 )’ f(u(x)) dx) + f(v(x)) dx)’.

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

Manal DJAGHOUT 13 University of 8 May 1945-Guelma



Chapter 1. Preliminaries

Lemma 1.2.9. [14](Gronwall inequality, continuous form)

Let u, v, w be real valued functions on I = [a, +00], we assume u and w are continu-

ous functions, if u(t) = 0, v is nondecreasing and if w(t) satisfies the inequality

t
w(t) < v(t) +f u(s)w(s)ds, vtela,b], (1.35)

a

then
t

w(t) <v(t) exp(f u(s)ds), VYtela,bl. (1.36)

a
Lemma 1.2.10. [/4](Gronwall inequality, discrete form)

Let u;, wy, be nonnegative real numbers and v, = v,_1 , if

n—-1
wy, <v,+ Z uiw;, vyn=0, (1.37)
i=0
then
n-1
wy, < vy, exp( Y ui), Vn=0. (1.38)

i=0
Theorem 1.2.11. /1/(Green’s formula)
Let Q be a regular bounded open of class C?, and n(x) its exterior normal. Let u € H*(Q)

and v e H*(Q), we have

jAuvdx:—f Vqudx+f a—uvda. (1.39)
Q Q aq 0n

Definition 1.2.12. (Continuity of a bilinear form a(., .))

We say that a(.,.) is a continuous bilinear form if it satisfies

AM >0 Vu,veV : |la(u,v)| < Mlulllv]. (1.40)

Manal DJAGHOUT 14 University of 8 May 1945-Guelma
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Definition 1.2.13. (Coercivity of a bilinear form a(.,.))

we say that a(.,.) is a coercive bilinear form if it satisfies

Ja>0 YueV : |alu,w)| = alul? (1.41)

Theorem 1.2.14. [7](Lax-Milgram)

Let V be a Hilbert space, and let a(.,.) : V x V — R a continuous and coercive bilinear
formand L(.) : V — R a continuous linear form. Then, there exists a unique u € V such
that

YveV, a(u,v) =1(v). (1.42)

1.3 The finite element method

1.3.1 Introduction

The finite element method is one of the numerical tools that depend on the varia-
tional formulation ( and therefore on the weak solutions), meaning that this method
proposes creating a discrete algorithm based on weak formulas, as it allows us to search
on an approximate solution to a partial differential problem on a compact domain with

boundary conditions or inside the compact.

The finite element method changes the space of test functions of infinite dimension
for the variational formulation by a space of approximate test functions of finite dimen-
sion. And then talking about the existence and uniqueness of the solution, stability and
convergence of numerical methods, as well as estimating the error between the exact

solution and approximate solution. To clarify more on this method we see [20, 35]
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1.3.2 General principle of the finite element method: resolution of a

matrix system

The general approach of the finite element method is as follows. Let a bounded open
domain Q of R" (n = 1), with a boundary 0Q). the variational formulation of partial

differential equation (PDE) is generally taken as follows : Find u € V such that
a(u,v) =1l(v), Yve V. (1.43)

In order to find the approximate solution of u we are using internal approximative, as
shown below:

Let Y, be a partition of Q) made of a finite number of elements 9, such that

Q=Ugey, T (1.44)
TNL=0ifT £%L. (1.45)

We note hg := diam I the diameter of 9 and h := maxgcy, hg the step of the mesh.
Thanks to which we will create an approximation space Vy, c V of finite dimension. So
that Vy, will be the set of continuous functions on Q) and affine on each a mesh.

For example in the first dimension we choose Q) the interval]la, b[, We divide this inter-
val into N+1 subintervals of length h; = x;j+1—x; for1 <i < N+1, takes h = max;<j<n+1 h;.

The approximation space V}, can be determined as follows
Vi = {CDh € C%((a, b)) such that Dy |y, x,,, is linearyi =1, N+ 1}. (1.46)

and let {®; (x)}ﬁ.\i Jil be the basic functions for the space Vy,, taken as follows
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%, if x€lxi—1,xil,
: = Xit1—X 7 . .
Pilx) =4 ==, if x€lx;xis1l,
0, if not.
and
1, if k=1,
@;(xp) =0k =
0, if not.

oi(x)

Fig1 : basis function for dimension two.

For the second dimension, we choose Q) as a rectangle (example : Q =]0,1[x]0,1[) and
we take Yy, is a triangulation made of triangles 9 such that no nodes of every triangle
lies in the interior of a side of another triangle.

The bellow figure is a uniform mesh of Q =10,1[x]0, 1[
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Fig?2 : mesh of the ().

Then the approximation space V), written as follows
Vi = {th € C°(QY) tel que @) 7 is polynomial of degree oneN I € Yt
where its base is determined by the functions {® j}ﬁ.V: | Which it satisfies

1, if k=],
G (X, ye) =0k = ,
0, if not.
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Fig 3 : basis function for dimension two.

The approximate problem in the general case is written as follows : Find uy, € Vy, such

that

a(up, vy) =1(vy), Yo, € Vp. (1.47)

Let {¢ j};V: | be basic functions for the space Vi,. We write the approximation uy, of u as

N
up=y ajdp;e V. (1.48)
j=1

Therefore the problem (1.43) becomes : Find a = [ay, &y, ..., a ] such that

N
Y ajalpj,vp) =1wp), vy € V. (1.49)
j=1

Take into account the linearities of a(.,.) and l(.) : Find a = [a1, @2, ..., @ N] Such that
N
Y ajalgj, o) =1pi), Vk=1,..,N. (1.50)
j=1
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Hence obtaining the linear system must be solved

alpr,P1)  aldr,¢2) - aldr,dn) ay l(¢p1)
a(pz,d1)  alpa,p2) -+ aldpa,Pn) a l(¢p2)

= (1.49)
alpn,$1)  alPpn,P2) -+ alpn,Pn) ay l(pn).

1.3.3 Convergence

Lemma 1.3.1. (Lemma of Cea.)

Let the exact solution u and be the approximate solution uy,. We have the following error

M

lu—upl<— inf |u—wvyl. (1.50)
a vpeVy
M

lu—uyll < — inf d(u,vy). (1.51)
@ vueVy

Here M and « are constants that satisfy (1.40) and (1.41) respectively, and d is the dis-

tance induced by the norm |.|.

1.4 The mixed finite element method

1.4.1 Introduction

Among the numerical methods proposed for solving partial differential equations is
the mixed finite element method, and it is considered one of the preferred methods over
traditional methods because one of its advantages is the preservation of physical quan-

tities such as the amount of mass, temperature and Movement quantity ...
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This method allows to solve mixed problems whose unknowns are two functions rep-
resenting on the one hand the state of the considered system, and on the other hand a
Lagrange multiplier associated to a constraint that the state must satisfy. For more de-

tails can be found on the following references [23, 24, 30, 37, 47].

1.4.2 General principle of the mixed finite element method: resolu-

tion of a matrix system

Let V, W be two Hilbert spaces, the mixed variational problem writes as follows : Find

(u,w) e Vx W such that

alu,v)+c(w,v) =ly(v) YveV

c(u,n) =0 VneWw. (1.52)

Here a(.,.), c(.,.) two bilinear forms on V x V, V. x W respectively, and ly(.) linear

formonV.

Theorem 1.4.1. (Inf-sup stability) For u €V, we have

y<C inf clw,m)

sup —————. (1.53)
0#£neW oxyev llullv Inliw

This theorem implies that the mixed problem (1.51) is well posed. In other words, it
admits a unique solution (u, w) € V x W which satisfy | ul?, + |wl§, < Al 17, where A
is a positive constant.

For internal approximative, we substitute the two spaces V and W which often have

an infinite dimension by two subspaces Vi, and W), whose dimension is finite, we will
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also try to get an approximate solution to the following mixed problem : Find (up, wy) €

Vi, x Wy, such that

a(up, vy) + c(wy, vy) = Ly (vy) Yvp,eVy

c(up,np) =0 Vnn € Wy. (1.54)
Therefore, we can write the approximate mixed problem in the following matrix form

A, C Up In
= (1.55)

Ch 0 wy, 0

where Ay, : Vi, — Vi, and Cy, : Vi, — Wy, are operations defined as follows
(Apup, vp)v = alup, vy) and (Cpnp, vp)w = ¢(Mp, Vi) Yup, vy € Vi, V1, € Wy,

and (fp, vi)v = l(vy) Yvp € V.

1.4.3 Convergence

c(..) verify the inf-sup condition on the V, x Wy, i.e. the approximate mixed problem
is well posed. We affirm the existence and uniqueness of the solution to this approximate
mixed problem that achieves convergence with the solution of the mixed problem. This

convergence is explained in the following theorem

Theorem 1.4.2. There exist a positive constant C independent of h such that

lu—uplly +llw—wplw <{ inf llu—vpllyv+ inf llw—nplw}. (1.56)
l/hEVh nhEWh
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Full Discretization to an Hyperbolic

Equation with Nonlocal Coefficient

2.1 Introduction

In this chapter, we present a full discretization of the telegraph equation with nonlo-
cal coefficient by combining the Rothe method to the time discretization and the finite
element method for the spatial discretization. After that we derive a priori estimates and

the optimal a priori error estimates for both semi discrete and fully discrete schemes.
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The fully discrete scheme for our problem gives a system of nonlinear equations. We use
Newton Raphson method to solve this system. It is known that the Newton Raphson it-
eration is the most popular for solving nonlinear algebraic equations because it is fast
convergent in a small number of iteration. One of the main difficulties of using Newtons
is the fully Jacobien matrix, this difficulty can be addressed by reformulate the system

through the application of the technique used by Sudhakar [ 14].

2.2 Position of the problem

Let Q is a simply connected bounded domain of R*, k = 1 with Lipschitz continuous

boundary 0Q). Consider the following nonlocal hyperbolic problem.

0’u ou .
W+E+a(1(u))(£¢u)—f(x, Lu inQ=QxI

1 w(x,0) = up(x), ur(x,0) = u(x) inQ (2.1)
u=0 onoQ x 1.

Where a is a function depends of | (u) with

I(u) :f ulx, dx. (2.2)
Q

We introduce the elliptic differential operator A defined by
Sdu:=-div(Ax)Vu) + b(x)u, (2.3)

where A(x) is a symmetric matrix with entries that are uniformly bounded and mea-
surable, b(x) is a bounded function and we assume that f, uy, uy and A(x) are smooth

enough functions.
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2.3 Definitions and assumptions

In this section, we present a definition of the weak formulation and we assume hy-
potheses necessary for this work to prove the existence and uniqueness of the weak solu-

tion.

Definition 2.3.1. let (.,.) s be the inner product of V defined by
(u, V) = (AVU, Vo) + (bu,v) VYu,veV, (2.4)

and the norms on 'V is denoted ||.| ..

Definition 2.3.2. A function u is called a weak solution of (2.1) if

Du:Q—R and ue H(I,L*(Q)) N L*(I,V)such that,

Yve H(I; I*(Q)nL*(I,v) withv(x, T) =0.

4 (2.5)

2) —fl(étu,atv) — (w1, v(, 0)) +[I(6[u, v) +fla(l(u))(u, V), :fl(f, v)

u(x,0) = up(x), us(x,0) = up(x).

Along this work we shall always assume the following assumptions
(H) u’eV, u' e I*(Q)

(H2) f:Q x I xR — R is Lipschitz continuous in the sense

I f(x, 1,8 — f(x, ¢, s < Clle—£|(Is| +1s| +|s— "D}, (2.6)
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and satisfies the condition of growth

1f(x 6,0 =CA+IED, V(x,1,8)eQxIxR. 2.7)

(H3) a:R — R is lipschitz continuous with the lipschitz constant Ly, this means

la(l(w) —a(lw))| < Lyllu—vl, Yu,veV, (2.8)

and satisfies

O<mg=<a(s)=M,<oo, VseR. (2.9)

(H4) A(x) is symmetric matrix satisfies

(A&, &) = C|IE1%. 2.10)

and let (.,.) s be a bounded, coercive and symmetric bilinear form according to choose

the coefficients A(x), i.e.,

|, V)| < Cllulleg 1 Vg, (w,w)er =Cllull?, Yu,veV. (2.11)

2.4 Time discretization

In this section, we create a scheme of discretization in time based on the Rothe method

and also extract some a priori estimates and the optimal a priori error estimates.

We divide the interval I into n subintervals of length T = % and denote u' = u(t;, x),

ti=i1,i=0,1,...,n. Letu™! bedefined as u™'(x) = u®(x) —tu'(x), the reccurent approx-
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imation scheme for i = 1,...,n becomes

Findu' = u(,t;) € Vi=1,2,..., nsuch that the equation,
(2.12)

(6%u,v) + (6u’,v) + alwh) (u',v) , = (f,v).

We define the Rothe'’s functions by a piecewise linear interpolation with respect to the

timet,

W=u"r+ (1= ti_)0u' Vieltig, ), 1<i<n, (2.13)
Su=6u" +(t—t;_1)6%u’ Vteltiy, 4], 1<i<n, (2.14)
together with the step function
u' reltio, ),
u’  re(-1,0] (2.15)
We denote by f" the function

fioteltiy, til,

0 =0 (2.16)
Then, the problem (2.12) can be redefined as follows :

Yve HY(I; L2(Q)) n L*(1,v) with v(x, T) =0,
(2.17)

(0,0u™, v) + (8,u”, v) + al@™)(a",v), = (f",v).
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By integrating the above equation over I, we get

Yve H'(I; L*(Q)) n L*(I, v) with v(x, T) =0,

(2.18)

—f (6u",0tv)—(6u"(0),v(.,0))+f (0,u”, v)+f a(l@m)(a", v)d:f (F"v).
1 1 1

I

2.4.1 A prioriestimates
Lemma2.4.1. Forl <i < s <n, the estimates

S S S
16w 12+ 16w’ —=ou' " 12+ TIou' 1P+ mallusl?, + mg Y lu' —u' "%, < C7. (2.19)
i=1 i=1 i=1

Proof.

Choose v =56u' in the equation (2.12), we get

Gu' —5u'L6ul) +TI6ul|? + ma(ut, ut — u Y < Tl NS U,

Using Young, we obtain

12 i—1 2 ' i~12 w w i—12 | ie1y2
16w 1° = 16w~ 1"+ 16u’ = 5u' |12+ 716w’ |12+ ma(lu' 115, = lu' 15, + ' —u' =%

<t IN8u].

Taking summation fromi =1 to s to get
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S N
2 02 j i—12 i 12 2 02
1612 = 166012 + Y 160" =5~ 1% + Y. 1166l 12 + mallu’ll?, — mallull?,

i=1 i=1

N S
il . .
+mg Y I —u'7HE, < Y Tl fSu ).
i=1

i=1

Applying the Abel’s summing formula, we obtain

N N N
2 ' i—12 w 2 | ie1y2
81+ Y N6u’ =6u' 1%+ Y wh6u' I° + mallu’ls, + ma ) lu' —u' =12,
i=1 i=1 i=1

s . s .
<C+e) TlfiIP+C Y Tlsu’ 1%,

i=1 i=1
s i—1

(1+ZZT 16u"I2) + Ce Zrll6u 12,
i=1lr=

(2.20)

Using the Gronwall’s lemma (see, e.g.[45]) inequality and choosinge = T to get

S N S
16w 12+ Y 16u’ —ou' " 12+ Y TI6u’ I? + mallu'll?, + mg y_lu' —u' %, <Cr. m

i=1 i=1 i=1

Corollary 2.4.2. There exists a positive constant C such that

2 2
”al’un ”LZ(I;LZ(Q)) = C) ” ul’l ”LZ(I;V) = C; (221)
C
n_ gn
” u —u ”LZ(I LZ(Q)) = ” u ||L2(I LZ(Q)) = 5 (223)
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l6u" —0,u"| ) (2.24)

2 C
< —
L2(LL2(Q) — n

where ! = u"* (., t — 7).

Proof.
All the estimates of this corollary are a result of Lemma 2.4.1 and the definitions of u”,
ou™ and ui"". The estimates (2.21), and (2.23) are a result of (2.19)3 and the definition of
il!, whereas (2.21), is a result of (2.19)4. The estimates (2.19)5 and (2.19), imply (2.22)

and (2.24), respectively.l

2.4.2 A priori error estimates

We denote by e, = u—u" and ey = f — f".

Theorem 2.4.3. Under the assumptions (H1) — (H4), we have

+mglleyl? <CT*+71). (2.25)

2
lewlle 2y L2(1V)

Proof.

Subtracting (2.18) from (2.5) and using v = e, (t) as a test function we obtain

2 2 2 2 Mg n -nn2 . Ma 2
< - — -
leyl +maf1||eu|| _€||€f||Lz(I;Lz(Q))+Cef1|€u| + > f[”u ulo,+ > fllleullgﬂ-CT-
(2.26)
Now we consider

sy S ) \IFGW = FOunP+1f 6w+ f(anl+1f 6 a) - fe, apr?)

/|
fl(leu|+|u”—ﬁf|2+rz).

IA

(2.27)

Substituting from (2.27) in (2.26), using Corollary2.4.2, choosing e sufficiently small and
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applying Gronwalls lemma the proof completes.R

2.5 Full Discretization

This section contains a fully discrete scheme by using the finite element method for
spatial discretization and also the numerical method used to solve nonlinear equations
obtained from the fully discrete scheme of a problem. In addition, we give some a priori

estimates and the optimal a priori error estimates.

At each time t;, 0 < i < n, we consider a triangulation Y;l made of triangles T' such
that no nodes of every triangle lies in the interior of a side of another triangle. Let V, be

the discrete space of V' defined by
V)= {cl)h € C°(Q) tel que ®p| 7 is polynomial of degree one¥ T € Y}, }.

Let {p j}ﬁ.V: | be interior nodes of Y;l et {®; (x)}é.\’: | be the basic functions for the space V}i
such that any function will be the pyramid form in V}i and wich takes the value 1 at

{p j}ﬁ.V: 1 and vanishes at exterior nodes. We can write the solution u;l as

. N . .
up, (1) = Zla;.cpj(x) ev,.
]:
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Then, the fully discrete scheme for problem (2.1) reads as

Find u;l € V,;' (Q) such that :

u(0) = u%, uy(0) = u;l and u;l =u
4 (2.28)

and, Yve V}f,

(8% 14y, vn) + (81ay, vn) + a(Lwy) (1, vr) oy = (f, vn)-

We introduce the orthogonal projection operator I} :Hj (Q) — V] (Q)
such that

(Vw,Vv) = (VII, w,Vv) Yw e Hy(Q), v e VE(Q). (2.29)

From fully discrete weak formulation of (2.26), we have

Find u;l € V}i (Q) such that :

up(0) = uf), up(0) = uy and uy' = ul) —Tu;,

{ and, YveV], (2.30)
i ZTI i~ il pilyi? wi I !
( h Th h_ "h Th h ’ Vh) -l-T( h h”h yVh)

+ra(lwh))(ul, vn) , =1(f vp).
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This implies,
Find u;l € V/(Q) such that :
up(0) = u(;l, up(0) = u}l and u;l = u% - Tu;l,

{ and, Yve V}ﬁ, (2.31)

A +7) (), vp) +T2a(lwh)) (uh, vi) ,

=27 )+ (D (- ), ),

2.5.1 Numerical method

The problem (2.31) give as a system of nonlinear algebraic equations by using finite

element, then can be given this system as follows :
Fj@)=F;u})=0 1<j<N, (2.32)
where &' = [ai,aé,...,aﬁv], and

Fih) = Q+1)(up, vp) +2a(l@l)) (u), vi) , —7*(f' vn) - (A + DI uj

+(u"_1 - H;l_l u;l_z), vp).

We use Newton-Raphson method to solve (2.31), but the presence of nonlocal term in

the equation destroys the sparsity of Newton-Raphson method.
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We compute the Jacobian matrix ] To get the value of aj. by Newton’s method, every
element of the Jacobian matrix takes the form

OF;(ul)

dat = D100 w12 [ 9))a i) b0, + 1al1)) 01,01,

—1*(f (W), 1)

(2.33)
In order to ensure the sparsity of the Jacobian matrix we modify the scheme (2.31) accord-
ing to the technic used by Chaudhary in [14]. Then the problem (2.31) can be rewritten
as follows

Find d € R, and u;l € V;i such that

l(ul)—d=0. (2.34)

1+ T)(u;l, vp) + Tza(l(u;'l))(uz, Vh) .y — Tz(fi, vp)— (1 + T)H;;u;'l_l

+(u' =T 2), v,) =0 Yo, e VL

(2.35)

Take vy, = ¢ j, and reformulate the equations (2.34 — 2.35) as follows
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Fj(up, d) = (1+7) (uy, ¢1) + 72a(d) (uy,, ¢1) o, — 72 (F1, 1)

—(+Du + (W =T w2, ¢).

(2.36)
Fipp = 1ul)—d. (2.37)
This implies '

A b _

al al Fi

J = c 511 = )

p p Fp
(2.38)

where A= AnxN, b = byx1 and ¢ = c1«x N take the form

Aj = Q+0)(p) 1) +12ald) (¢, 1), — T2 (f Wp) s ),
bjy = v°d(d)(uj,¢1),,

cyy = (QCPj),

obn = -1,

I T mi i i -
anda' = [ai, a,...ayl", F' = [F],F},..,F]".
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The matrix system (2.38) can be solved by using the Sherman-Morrison Woodbury for-

mula or block elimination with one-refinement algorithm in [25, 26].

2.5.2 Apriori estimates

Lemma 2.5.1. The estimates

IVIL u'| < C. (2.39)
I 'l < c. (2.40)

Proof. For w = u' in (2.29), we have

(Vu', V) = (VIT, u’, Vo).

Choosing v, =11} u', to get

IVIT, u'|? = (Vu!, VI, u)
< VU IIVIT,u').
Thus,
IVIu'l = 1va
< C.
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Further

ITL w112, (I u', T u') o

(AVILL u!, VIT, u') + (a(0)TLE u!, 11 u')

IA

CUIVIT, u' |12+ 11T ' ).

Using Poincaré inequality, we obtain

IA

I u'lly, < CUVITu'l)

IA

C.

where ¢ and C are some positive constants.

Lemma 2.5.2. Let u € V) and u} € V) and for1 < i < s < n, then the solution u} € V}

of the problem (2.28) satisfied

s 2 s 2
||6uh ||L2(0,T;L2(Q)) + ma” uh ||L2(0,T;V) = C (241)

Proof. We use the same proofin lemma?2.4.1 to obtain the existence of u;1 and a priori

estimates.

N N N
2 j —12 i 12 2 j —12
16wy 1%+ Y N6uy —8uy 17+ Y Tl6uyI” + malluy |12, + ma Y Nuy —uy ', < Cr.
i=1 i=1 i=1

This means

2 2
16w 12+ malluf |12, < C.

Manal DJAGHOUT 37 University of 8 May 1945-Guelma



Chapter 2. Full Discretization to an Hyperbolic Equation with Nonlocal Coefficient

We integrate from 0 to T, to obtain

s 2 2
||6uh”L2(O,T;L2(Q)) + ma” uh”Lz(O,T;V) = C .

2.5.3 A priori error estimates

. . . i i
We introduce the orthogonal projection to get an optimal convergence between u', u, .

Therefor, we can take the error as follows

i i i i i
e=u—-u, = u—Hhu +Hhu—uh

Pl + O}

(2.42)

Theorem 2.5.3. ([46]) : There exists a positive constant C, independent of h such that

lv—-T,vl; < Chillvl; Yve HnHy j=0,1;i=1,2 (2.43)
lve=Tl,wllj < CRYllv,l; Yoe HnHy j=0,1;i=1,2, (2.44)
lve =T vl < Ch;'.u vll; Yve H nH} j=0,1;i=1,2. (2.45)
. 3.2
Theorem 2.5.4. We assume that mm(zb () > 18¢C Iva 3 pere ¢ is given in Eq.(2.38). Then,

a
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there exists a positive constant C such that
i_ i 2
! =, || 120,711y < CLRA RP). (2.46)

Proof. From equations (2.12),(2.28), we have

(620}, vn) + (66}, v) + ah 01, vh)d = (62T u’, v + (611} u!, v + af (I vh)d
~(6%up, vn)  (14h vn) - @ (uh vn)
i VA7) R G VAT B X RZ
+aj (Ml v,)
= — (%!, vi) - (60, vn) - @' (', vi)
+(67 M’ v + (ST, ! v ) + af (1! )
+a' (1wl vy) - o (11 ul, vy

- —(52(ui ~11} '), Uh) - (5(ui —In,u'), U”)

—ai((ui - H;lui), Uh)d + (“2 - ai)(l'lzu;;, Uh)d'

Manal DJAGHOUT 39 University of 8 May 1945-Guelma



Chapter 2. Full Discretization to an Hyperbolic Equation with Nonlocal Coefficient

Thus,

(6262, vh) + (662, vh) + a%(@é, vh)d = —(62p;l, vh) - (6.02, vh)

—di(pt, +i_i(l—[ii,).
a(ph vh)d (aj,—a') |} u Vh

(2.47)
Choosing vy, = 7269;1 in (2.47), we obtain
w2(6°0},50}) + 7%(60},80} ) + 7a} (0}, 604)  =—7*(6%0},60}) ~7*(6p},,60})
—rzai(p;l,éeil)d +7%(a}, - a")(HZu",é‘H;;)d
(2.48)

New left-hand side of (2.48) can be estimated as follows.

. . . ) o . 5 . . 5. .
v2(8%0}, 80} ) +7%(60},80} ) +*a, (6}, 60}) = 2166312 +7°60, |+ 7 ma |60}

T . T . . T . T -
= 2190412 60} | 72604 >+ mall0} I, ~ = mall0f ' -

(2.49)

To estimate the right-hand side of (2.48), we need the following steps.

Stepl. We estimate ) -7 (52102» 592) - rz(ép};, 592)
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Using Cauchy-schwarz, we get

=7[6%0}, 7156, + 7l 603,756,

‘ —1? (6%2,662) - 12(5p2,592)
Thus,

<—||<5ZP |*+ 72603, +—||510h||

|- 72(6%0},,60},) - 72(5p}, 60}

(2.50)
Step2. We estimate ‘ — Tzai(p;;,é%) +7%(al - a') (H;lui,éez) ‘
Applying Cauchy-schwarz inequality and Using the inequality ab < ‘”az + 355 b2 with

w= 8 , Wwe obtain

|- 7%a'(0},60}) | +7*(a}, - a)(1u',50}) | = Maz|l0} ], 16}~ 057

+et|ay - a'|[0}, 0,7,

2
m .
< 1—(:1'”9;1—

+£T|a —a| +—T||9’ 9’ 1||
mg P 16 o’

4M?

4c® ;i
o+ 2 el -

— Tl + 105 1.)"
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Using Lipschitz continuity of a, we have

A

-l = Ly, Ju- o]

IA

LMa” ué—H%ui+H2ui— u’||

Lo, (103 + 131

IA

Thus,

E ! (p},80}) +7%(a},~ ai)(ﬂizui,592)d‘ < 4:142 Zrwaa(nehn

Hlo ) + 2 5 TUOA]L, +10371.)"

(2.51)

From (2.49), (2.50) and (2.51), we get
2
T : T : ; T . T - T
2180317~ S 005 I +22 604 1+ S mallog |, - S mallof I, = S 16704 P +22 o0 |

402 . . \2
2tz (103 + 1o}

sl A R [ 8
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This implies,

T .
S 1804+ T 221032, = 6%} + 7

8c?

8¢” o i in? Tiispi-1]2
+mﬂTLMu(||9h||+||ph||) + S 190511
Taking sum from i =1 to n to get
T & ;
EZ|I592||2+ ZIIHhIIM—TZZH@zp e
8c2 ) n—
+m—aTLMaZI(||9hII+thII) TZ||9h||&¢+ Z||69h||
iz

Now applying Gronwall’s inequality, we get

T n|2, M mg 2 %" |[ 52 2 2
52 6051+ ||59 "+ TZ A o 1 P &(r Z||5 pull"+e Z||5ph||
: l:

+—rill thJr TL?VIaZ(He’l”Hlph”))

i_

Thus,

T n n
2 2 ll06; 1" + Z||9h||d<e (v M L e
i=1 i=1

16c2

—%TZ (1651 + o311
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Again,

n .
—Z||59h|| + TZCIIV%II + 5 min (b(0)T ZIIH [*<(x X Il
i=

+T

16c2

—L2 Z||9h|| —L?waTZ”PhII ?),
So,

S sni 12 ..V P12 NC i 12— 2] 500 (12 2% (52 i |12

3 loof 3 0L+ 3 04 < oo+ o5 o

i= i= i= i=

n . n . n .
et 3 oy P+ ol I+ 3 Do ).
i= i= i=

This implies

Manal DJAGHOUT 44 University of 8 May 1945-Guelma



Chapter 2. Full Discretization to an Hyperbolic Equation with Nonlocal Coefficient

n i n .
104 200,701 < 71065 + €[ 2 9% [*+7° 2 [9e; I
1= 1=

n . n .
2 o}l + 3 leil),
i= i=

(2.52)
We have
l663]° =< foamu®-up|”®
< 6@Ou® — uO| + |6 - ud)|?.
If we take u(;l = H‘;l u®, then
i 12 oy 17 T
H2(Q)’

< Ch® || u’ — Wl -1uh ||i12(9),

< CR| ulniﬂ(m-
(2.53)

So,

605 < Ch'| ! e

Again, we note that
.1 [t
8%p) == as0pn(s)ds.

li-1
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This shows
. 1
||52.0;1||2 = ;”Phtt||iZ(n_1,ti;L2(Q))'
and
2\ (82 i |12 - 2
T ;”5 onl” = i;”Phtt||L2(ti,1,ti;L2(Q))’
= ”ph””iz(O,T;LZ(Q))’
< cnt ” Ut ”iz(o, T;H2(Q))"
Thus,
n .
7° Zi ”52:0;1”2 <ChY| u””iZ(O,T;HZ(Q))' (2.54)
=
Further
i Ly
160, < ;”Phr||L2(tl~,1,tl-;L2(Q))*
n ) n )
25 Jopil = 3 OH il
n .
'ZIH(SP;Z”Z = Ch4”u[”iz(0,T;H2(Q))'
1=
So,
n .
7? Zi ”6plh”2 <Ch* “ ut”iZ(o,T;HZ(Q))' (2.55)
i
Also
loil? = cr?|u|ipq)
n ) n )
Sl = oS
1= 1=
n .
Tzi”P;l”Z = Ch4||u”iz(0,T,r;H2(Q))'
i=
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Finally

lohls = (AVPL.VP}) +(b(p) 03,

< C(|VoLl*+eLl?),
S bl = coX okl

< C||ph||i2(o,T,T;Hl(Q))’

< Ch2”u“i2(0,T,T;H2(Q))'

New using the estimates (2.53 —2.55) in (2.52), we get
n .9 )
7205150 = Ch* + 1),
i=1

So,

Heh”iZ(O,T,r,Hl @) = C(h*+ k%),

2
Uy ” 12(0,T; H2(QY)

Where C is is constant depending on || u || iz Uy || iz(o, T:H2(Q))

0,7,7;H2(Q))’ |

and ” u! ”?LIZ(Q)'

We conclude

|’ = w20, 1,00 @y = CC+ 1) W
2.6 Numerical experiment.

In this section, we set up a numerical experiment to find an approximate solution of

problem (2.1), if we use Rothe’s approximation in time discretization and finite element
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scheme in the spatial discretization in wich we prescribe the computational domain Q) =
(0,1), the time interval (0,1) i.e. T =1 and we take A(x) = b(x) = 1.
In order using Newton’s we take initial guess u® and u' as follows

ul = 0,

and,

1, atinterior node

0, atboundary node

The tolerance for stopping iteration is defined to be 107'°, we have considered the

step length h = %, %, %, ﬁ and t =0.001. We plot the error in loglog-plot.

2.6.1 Exemple

We choose f(x, t, u) according to test solution u(x, t) = x(1 — x) te " and a(l(u) =
1+ cos(l(u)). The table below gives the error and the order of convergence of the solution

and Fig.1 shows the results of error in loglog-plot

h IIui—uZIIHl(Q) Order

L | 9.8689¢—-003 ——

>~ | 5.6454e—003 | 0.8058

+ | 3.9796e—003 | 0.8624

L | 3.0748e—003 | 0.8966
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Fig 1. Log-log plot of the H' norm error at t=T

Figure 4: The results of error in log log-plot.
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Rothe-H'-Galerkin Mixed finite element

approximation for Nonlocal evolution

equation

3.1 Introduction

In this chapter,we combine H' -Galerkin mixed finite element method for the spatial

discretization and Rothe's method to time discretization of nonlocal hyperbolic equa-

50



Chapter 3. Rothe- H!-Galerkin Mixed finite element approximation ...

tion.

The principle of the use H' -Galerkin mixed finite element is to introduce the auxiliary
variable p that depends on u, which leads to split our equation into a system of two
equations, thus eliminating the difficulties explained in [21] caused by the presence of
the non-local term in the Jacobian matrix of the Newton Raphson method. In other
words, this system achieves the sparsity of the Jacobian matrix and thus the calculations
are easier.

The optimal a priori error estimates for both semi discrete and fully discrete schemes to
functions u and p are proved in H' and L2, respectively. Finally the convergence of the

obtained scheme is verified by a numerical experiment.

3.2 Position of the problem

Let Q) is a simply connected bounded domain oka, (k =1,2,3) with Lipschitz continu-

ous boundary 0. Consider the following non local hyperbolic problem.

u ou . .
FTo +E +all(w)(—div(Ax)Vu)+b(x)u) = f(x,t) inQ=Qx][0,T]

V1 u(x,0) = up(x), us(x,0) = 1y (x) inQ (3.1)

u=0 onxx[0,T].

Where T = 0 and a is a function depends of [(u) with

() :f u(x, t)dx, (3.2)
Q
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and satisfies

O<mg=<a(s)<My<oo, VseR. (3.3)

Here A(x) is a invertible and symmetrical matrix with uniformly delimited and measur-

able components, b(x) is bounded function.

3.3 The variational formulation

Let us make the following choice of auxiliary variable

p=AX)Vu, (3.4)

If we set

o(x) = A (x).

Then, Problem (1.1) can be written as the mixed system

Vu=o0x)p,

(3.5)

0°u ou .
FToR a(l(w)(=div(p) + b(x)u) = f(x, 1).

Using the fact that u;(0, x) = u;+(1, x) = 0, Green formula implies

02_u Vw)——(O(x)az—p w) (d_u Vw)——(U(x)a—p w)
or2’ B o2’ 7 " ot’ B ot’

This allows us to write the weak formulation of (3.5) as : Find a pair (u, p) € Hj x H'

such that
(Vu,Vv) - (c(x)p,Vv) =0,

(3.6)

0’p ap
(U(x)ﬁ, w) + (U(x)E’ w)+all(w)[(Vp,Vw) = (b(x)u,Vw)] = —=(f,Vw).
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3.4 Semi-Discretization

In this section we present a semi-discrete scheme by using the H' -Galerkin mixed finite

element method and extract a priori error estimates.

Let V), c HO1 (Q), Wy, « HY(Q) be the discrete finite spaces which comprises of piece-
wise linear polynomials of order k and 1, respectively, satisfying approximation proper-

ties (see [17])

S ¢ =@nllop+hld=Pulip = CHE Il p € Ho (@ WP (),
h=Vh

and

: +1 +1,
inf {lo—wpllo,p + hlw—wpl,pt < CA™ @l rs1,p, @ € WTHP(Q).
hEWh

The semi-discrete H'-Galerkin mixed finite element approximation for (3.6) reads as :
find (uy, pn) € Vi, x Wy, such that
(Vup,Vop) = (0pp, Vop) =0,
(3.7)

0*ph opp B
(UW’ wy) + (UW’ wp) + all(up))[(Vpn, Vwy) — (buy, Vwy)] = —=(f, Vwy,).

Integrating (3.7) over the interval [0, T], we get

f[O,T] (Vup,Vuy) - -/.[O,T] (opn,Vup) =0,

(3.8)

0 h awh 0 h
= o @=L =) = (pr, wl, 0D + o 1y (0L wy)

-

+./‘[0,T] ﬂ(l(uh))[(vphvah) - (bUh,VLUh)] = _-/‘[O,T] (f,VWh),
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where py = AVu,.

3.4.1 A priorierror estimates

In order to get an optimal convergence, we will decompose the error in the following way

U—Up=Uu—Up+—ip—up=0,+y, (3.9)

P—Ph=p—Pr+—Pn—Pr=0p+(p, (3.10)

where the elliptic projections iy, € Vy, and py, € Wy, satisfy

(Vp—Vﬁh,thH/l(p—ﬁh, wh):o, thewh, (3.11)
(Vp=VpnVwp) =0, Y, €V, (3.12)

and A is chosen so that the first equation is H! -Coercive.

Hence, we may proceed as in [56] and obtain

2 aigp 2 6ip

"< CRTTYIY =L l,41, 20,1, 3.13
MLl LIl | (3.13)
2 99, 2 dlu

L1l < Chrrt1- : L i=0,1. 3.14
;}u —1; ;)nat, ls1s J (3.14)

Theorem 3.4.1. Assume that py(0) = py(0) and py(0) = pp(0). There exists positive

constant C such that

|~ up) (]|, < Cpmink+Lr+l),

” (p—pr)(0) || < Cpmintk+Lr+1)
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Proof. From equations (3.6), (3.7) and by employing (3.11), (3.12), we get

(VCu, Vi) = (06,,Vvg) +(a¢p, Vup), (3.15)

(0Cp wn) + (0, wi) + alp)(VEp, Vwp) = = (00),,, wp) = (06, wp)

+a(l(w)) (A0, wp)—la(l(w)—a(l(up))(V pp, Vwp)+a(l(w)) (b0, Vwp)

+la(l(w) — a(l(u)(bip, Vwy) + all(up)) (b y, Vwy,).

(3.16)
Applying the differential operator % on (3.15), we find
(VCus,Vop) = (00,1, Vop) + (00 Vup), (3.17)
choosing vy, = {y in (3.15) and wy, = (¢ in (3.16), we arrive at
1 1
Vel = o6, +]lo2¢p|
< clloph + .. 3.18)
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d, 1 1 d
%HUZCM ”2 + ”Uzcl’r ”2 + a(l(uh))E ”V(P” = _(o-gptt’(pt) - (O'th,(pt)
+a(l(w)(A0p,(p,) — lall(w) — all(up)(VPn, VEp,) + allw) (b0, V{p,)

+lalw) - al ) (bin, V¢ p,) + alwp) (bl u, V¢ ),

(3.19)
Now, by setting vy, = (¢ in (3.17), we have
IVCuel = o0, + 03¢,
= C|0pell +1Epe)-
(3.20)

Integration in time in inequality (3.19) yields
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t t d t !
||g%(pt||2+f0 ||a%(pt||2ds+j0 a(l(uh))E”V(p”dS: _fo (ngw(m)ds_fo (00p,:¢p,)ds

t

t
; fo all(w)(A0,,¢ ) ds - fo a(lw) - alw)) (VP VE,,)ds

t

t
+f0 a(l(u))(b@u,V(pt)ds+fo la(l(w) — a(l(up)](biin, VEp,)ds

t
n fo all(up) (b, V) ds,

(3.21)

thus,

1 t 1 t d t t
lobepl+ [ lotenlPas+ [ atwnZIve lds<c( [ Nop s+ [ 1p as

t t t
+f0 ||9p[||2ds+f0 ||9p||2ds)—f0 la(l(w)) — al(up)(V PR, V{,p,)ds

t

t
+f0 a(l(u))(b@u,V(pt)ds+fo la(l(w) — a(l(up)](biin, VE ,,)

t
n fo all(up) (b V) ds,

(3.22)

on the other hand, we see
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t

t
fo[a(l(u))—a(l(uh))](Vﬁh,V(pt)dSZjo (la) - al(up)IV pp, VEp,)ds

td i tod i
= fo E([a(l(u))—a(l(uh))]vph,v(p)ds— fo (E([a(l(u))—a(l(uh))w;ah),vcp)ds

‘' d
= (law) - a@u)IV p1, V¢ ) - fo (- (@) - al IV pn)-VE, )ds,

(3.23)

Thanks to Cauchy-Schwarz and Poincare inequalities we conclude

(1) - al@)1¥py, V¢p) < Cllu-un|[|VE, |
<e|Ve,|* + Clow+ul’
<e|[Vep|* + C(lu]” + [ V¢ul)
<e|Vep|*+Clloul” + o] + 0%)

t
S€||Wp||2+C(||49u||2+f0 v s +]16,]°).

(3.24)
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Now making use of the estimates (3.18), (3.20) we have
t d t
fo (E(m(z(u))—a(l(uh))]v;ah),vcp)ds= fo (([a(l(u))—a(l(uh))]Vﬁht),V(p)ds
t d ~
+ fo (- (atiw) - am) VP, V¢, ) ds
t _ t 3
< | Nu=wnl 19 JIVEplds+ [ ue= w1959, s
t t
< ([ U0l + beull+ Ve, 1) s+ [ (100 + e+ 1€, %))
t
<C [ (10l + Rl + 10 + e+ 19, ) as
t
<C [ (loul? + 19l + 10+ 1920 1+ 156, s

t
<C [ (10ull+ Repll+ 10,1 + 101 I+ N I+ 1051 + 92, ) s

t
< [ (10 + 1001l 165, 03, I+ 9, s

(3.25)

Substituting (3.24) and (3.25) into (3.23) we see that
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t t
fo (@) = all ) (VPn VG p,)ds = e[V, |+ (0] + 6, + fo 6.]"as

t t t t t
v [ Noplass [ 10wl ass [ ey Pas+ [ 6y ds+ [ [9¢ | as)
0 0 0 0 0

(3.26)

By the same arguments we get

t t
fo (1) - allun) (b, VEp,)ds < | V0, |2+ 0]+ 10, + fo 16, |2 ds

t t t t t
v [Noplass [ N0ulass [ ey Pas+ [ 6y ds+ [ [9¢ | as)
0 0 0 0 0

(3.27)

Our next target is to estimate fot(a(l(u)) (b0, V{¢)ds. For this purpose, we have

t

t
fo(a(l(u))(beu,vcm)ds:fo (bO,a(l(w),V,,)ds

__fti(be a(l(w), V¢ )als‘lft(i[b‘9 la(l(u),Vep)ds
“2J)y @\ N Y P

t

1 1
= 2 all)(b0,¢,) - fo a(1(u)) (b0, VL) ds,

(3.28)
It follows from

(@(l@w) (b0, V) < C||0.| +€| Ve, (3.29)
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that

t t t
foa(l(u))(beut,V(p)dssC(fo ||9ut||2ds+f0 V¢, | ds), (3.30)

This allows us to write

t t t
fo (@) (D0, VT i) ds < |V | + C([0u]” + fo 10,2 ds + fo IV¢,|2ds). 33D

Analogously we estimate

t t t
J, tetten (v ve, Jas=elve, |+ clleul s [ e as+ [ 96 as)
2 2 ! 2 ! 2
<9I+ ClIwealP « [ 96 Fas [ |96, [Fas

t t t
<e|[ Ve, 1P+ 0+ 161"+ [ N6y s+ [ ¢ IPas+ [ 196, ds)

(3.32)

Combining (3.26) — (3.27), (3.31) — (3.32) and (3.22), we come to the inequality
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1P+ [ Vo lZds s mlve, P <e [ 196, 2ds+ (6,17 + 6]+ [ 6p]2ds
0 0 0
t 2 t 2 t 2
+ [ MoulPds | [¢n s [ op ) ds

t t t
o [ M0ulPas+ [ 19¢, s+ [ 16, 17as)

(3.33)

According to Gronwall’s lemma with a suitable €, we obtain

t t t
[0+ [ 1p P s+ mvep | = c(lo, 1 N0l + [ 0,1 ds+ | “ou|*ds

t t t
+ [ ey s+ [ oulPds [ 05,1 ds).

(3.34)

Thanks to (3.13) and (3.14), we have

t
€5+ 1€l ds+ mp9E, | < [+ ne2), 35

Nouw, it follows from

t
I6ol= [ 1eplas
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that

Jel® = Nl
= C|ve,|?
= c(lo, I+, 1?)
t
< cllepl*+ [ 1¢pilas)

C(hk+l n hr+1),

(3.36)

where C is constant depending on ”p”LOO(O,T;H”l)’ u”L"O(O,T;Hk“)’ |p”L2(O,T:H”1)’ pt||L2(0,T;Hr+1)’

” ptt”LZ(O,T;HH—I); | u||L2(0,T;Hk+1) and ” ut||L2(0,T;Hk+1)' This achieves the proof.l

3.5 Full Discretization

In this section, we focus on time discretization by using Rothe’s method and prove the
existence and uniqueness of a fully discrete scheme solution with a priori estimates and

error estimates.

We subdivide the interval [0, T] into n subintervals of length T = % and denote by
pZ, u}i the values of py, uy, respectively at t = it, fori =0,...,n. Let p;l be defined as

p;, (x) = p) (x) — Tp; (x),the recurrent approximation scheme for i = 1, ..., n becomes
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Find u;l Zul,4)eVy andp}'l =p(, t;)eVyi=1,2,..,nsuchthat,

(Vul ,Vvp) = (@pl,Vvy) =0, V(vp, wp) € Vi, x Wy,
< (3.37)

(062 P}, wi) + (08P, wi) + al @) (Vpl, Vwy) - (bul, Vwy)]

= —(fi,th), Y (vy, wy) € Vi, x Wy,

o o
Py = Py andazpzzap;—apz _
T T

Let us introduce the Rothe’s functions by a piecewise linear interpolation with respect to

here 6p;l =

the time t, defined as follows

pi=pit+(t—t-1)0p), Vieltii,t], 1sisn (3.38)
Spll=06pit+(t—ti_)8%p), Yteltintl, 1sis<n, (3.39)

together with the auxiliary functions

ul  reltiy, b,
=

u) te(-7,0], (3.40)
and

pi reltiy,til,
Pp=

p)  tel-7,0l (3.41)

We denote by f" the function
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fioteltiy til,

=]
~
Il

=]

(3.42)

Then, the problem (3.37) can be rewritten as follows :

Y (vp, wp) € Vi x Wy, with v(x,T) =0 and w(x, T) = 0.
(Vity,Vop) = (0py, Vo) =0, V(vp, wy) € Vi, x W,
(3.43)

(00:8p}, wy) + (00:p]}, wp) + a(l@H) (VP Vwy) — (bi), Vwp)]

=—(f",Vwp), V(vp, wp) € Vi, x Wy,

we integrate the above equations over [0, T], we get

Y (vp, wp) € Vi x Wy, with v(x, T) =0 and w(x, T) = 0.
f[O,T] (VL_tZ, Vy) - ./‘[O,T] (UﬁZ,Vvh) =0,
(3.44)

- Jo1 (06pZ,6twh) - (5pZ(0), wp(.,0)) + fio.171 (Uatpz, wp)

+ Jio.1 @U@V P}, Vwy) — (i), Vwp)l = = [, 71 (f", Vwn),
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3.5.1 Existence and uniqueness

Proposition 3.5.1. The problem (3.37) admits a unique solution (p;'l, u;'l), forl<i<n.

Proof. We can write the problem (3.37) as

Findul = u(,t;) €V, and p}, = p(,t;) € Wy, i = 1,2,...,nsuch that,

(vu;l’vyh) - (O.p;l’vvh) = Or V(Uh, Wh) € Vh X Wh!

(3.45)
4
(3 + (0P, wn) + al@)(Vp,, Vwn) = (buj, Vwp)] = Gwy),
Y (vp, wp) € Vi x Wy,
where
i 2 1 i1 L. i
Gwp) = —(f",Vwp) + (5+ ;)(Uph ,wy) - ?(Uph , wy) (3.46)
Let us introduce ¥ : Vi, x Wy, — V; x W} such that
1 1
W (up, pp) = (wh = (5 ;)(Uph, wp) + all(up) [(Vpr, Vwy) — (bup, Vwy)],
vp — (Vup, Vop) — (UPh,VVh)-)
Then, for (uy, pn) € Vi, x Wy, we have
1 1
(g + ;)(UPh, wp) + all(up)[(Vpr, Vwy) = (bup, Vwy)] =0, (3.47)
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(Vup,Vvy) — (opp,Vuy) =0. (3.48)

It’s easy to verify that for wy, = py, in (3.47) and vy, = uy, in (3.48) we get

1 1 1
(=5 + o2 pull® + mo Vpul* = Clun IV pall, (3.49)
IVunll < Clipal. (3.50)

Now, Poincarré inequality shows that

1 1
(= + DIpull® + moll Vil < (CIV PRI Pl (3.51)
Hence, the inequality ab < §a* + 5-b* fore = é, allows us to say that
1 1 1
(; + ;)Ill)hll2 +m|Vpul? < CT2|Vppl? + ;th I12. (3.52)

This leads us to the estimate

1 2 2
0= ;”Ph 1+ IVprll©<0. (3.53)

Therefore uy, = py, = 0. Consequently, Yy, is injective, which means it is bijective.

This allows us to solve (3.37) in sequence fori=1,...,n. R
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3.5.2 A priori estimates

Lemma 3.5.2. Fori=1,...,s, 1< s < n, the following estimates hold
IVuj,ll < C. (3.54)

s . . S . s . .
18p3 1+ Y 18p;, —8p, 12+ Y Tl6p, 12+ 1VpsI2+ > IVp, - Vpi HI* < C. (3.55)
i=1 i=1 i=1

Proof. Set vy, = u;l and wy, = T(Spfl in (3.37). Then

IVul I = (op},Vul),
(3.56)
(c@6pl—o6pi~h,6pk)+ T||0'%5p;.l 1>+ allw})(Vp),Vpi —Vpi~) =
a(l(u}))(bul ,Vp! —Vpi=hy—(f1,Vpi -Vpi~1),
by using the Abel’s summing formula for (3.56), we get
IVul |l < Clpil,
(3.57)
lo28pi 12~ lo26pi 12 + 1102 G pl —8pi-HI2 + o2 pl |12

+molIVp} 12 = IVpi 12+ IVpl = Vpit2] <

Mollbul 1V p} =V pi I+ 1 FHHV pl = Vit
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summing fromi =1 to s for (3.57)}, we obtain

1 s 1 . . S 1 . S . s . -
lo28p; 1P+ lazGp)—-6p, DIP+Y tlo2ép, I*+mo Y IV, I°+me Y IVp}-Vpi 'l <
i=1 i=1 i=1 i=1

l S . . . S . . .
+lo28pd 1> = IVpIZ+ Mo Y 1buy IV, =Vpy, I+ Y 1 F VP, =Vp), .
i=1 i=1

Now making use of Poincare inequality and e—Young inequality with particular choice

mo

€=, we have

N

1 S 1 . . s 1 . .
l026p},1° + 3 102 (6 p), = 8p; DI+ Y tlloz8pyli*+mo ) IVpj,I°

i=1 i=1 i=1

mo S . .
= Y IVp; -Vp, il =C.
i=1

Therefore

i=1 i=1 i

S . . S . S . m S . .
1812+ 16 p,—8p, P+ Y T16p) 17 +me Yy ||Vp;l||2+—2° Y Ivp,-Vp;li=C.
. ; =1 i=1

By means of the Poincare inequality for (3.57), once more, we deduce that
IIVuZ \?> < C. This achieves the proof.-l

Corollary 3.5.3. Suppose that p; = p;(.,t —1). There exists a positive constant C such
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that

@yl 20,30 = Cr 1PR1 200, 3 ) = Cr 10ePR N 20,11, 1260) = €, (3.58)
_ _ 2
PR = Pill 2o,y < €T 1Py = Phllzzqo,mirzan < €77 (3.59)
= 2
1Py = Pl 2o, mi2) < CT°55 10 Py = 0Pyl 20, 1151202 =< CT- (3.60)

3.5.3 A priori error estimates
We denote by ep = pp, — py, ey = up— Uy and ey = i

Theorem 3.5.4. There exists a constant C such that

||ep||2+m0f[0 . IIVep||2+f[0 . IVe,lI* < C(r +72). (3.61)

Proof. Subtracting (3.8) from (3.44), setting vy = e, and wy, = e, and applying e-

Young inequality withe = 72, we get
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Jo.r IVeul? < C fig 1 lepl?,

(3.62)
Lllepl2+ 0 [0 1 1Vepli2 < C(fio.r 191 = P+ fio. 7y ll€ull®

2
I

7 2
+ Jio.ry Ny — @R 1% + fio 1y llep 1 +7),

Finally, using Gronwall’s lemma, Poincare inequality and corollary 3.1, we come at

f[O,T] ||V€u||2 = C-/'[O,T] ||ep||2,
(3.63)

lepll+mo fio 7 I Vepll> < C(T+72). M

3.6 Numerical experiment.

In this section we present a numerical experiment that demonstrates the accuracy
and efficiency of our theoretical results. we choose r = k = 1 means that the functions u
and p are approximated by piecewise linear polynomials.

The nonlinear system of equations obtained are solved using Newton— Raphson method.
To do this we give initial guess p°, p', u® and u'. For the test example we take the com-
putation domainQ = (0, 1) and the timeinterval (0,1) i.e. T = 1 and also A(x) = b(x) = 1.

The step length h € {%, %, %, ﬁ, %} and 1 = 27°. We plot the error in loglog-plot.
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We choose f(x,t,u) according to test solution u(x,t) = %sin(nx)z‘e‘t2 and a(l(uw)) =
1+ cos(l(u)). The table 1 and the table 2 below gives the numerical errors for u and

p, respectively.

”u"uZ”HHQ)

2

22

23

24

25

4.5446e - 004

1.6166e—003

5.6110e-003

1.5106e - 002

1.3645e - 002

3.3278e - 004

1.0986e - 003

3.6608e - 003

9.6777e—-003

8.8336e - 003

2.9523e - 004

9.1652e - 004

2.9471e-003

7.6638e —003

7.0620e - 003

2.8246e - 004

8.3389e - 004

2.6005e -003

6.6648¢e — 003

6.1934e-003

2.8032e-004

7.9394e - 004

2.4116e-003

6.1023e-003

5.7128e - 003

Table 2

lp— P;l ||L2(Q)

2

22

23

24

25

4.1725e - 004

1.3581e—-003

4.7115e-003

1.2813e - 002

1.1451e—-002

1.6810e - 004

6.7223e - 004

2.4776e—-003

6.8469e - 003

6.0929e - 003

1.1418e—004

4.5866e — 004

1.6942e - 003

4.6862e - 003

4.1679e - 003

8.6608e — 005

3.4809e - 004

1.2861e - 003

3.5577e—-003

3.1640e - 003

6.9765e — 005

2.8034e-004

1.0357e—-003

2.8648e—003

2.5479e-003

Table 3
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The H' and 12 norm error at t=2% E The H' and L? norm error at 1=1

lIp-g .2 ——lppl 2

Ilu-tfl 1 - gt

Error
Error

Figure5: The results of error for u and p in log log-plot.
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Figure6 : The surface for u;l and p;'l on[0,1] x [0,1].
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Conclusion and perspectives

In this thesis, we proposed two works to study a problem that includes a differential
equation of a hyperbolic type accompanied by a nonlocal term in addition to initial con-

ditions and boundary conditions.

In the first work we combined the Rothe method with the finite element method to
analyze and study this problem. Here, we get a fully discretization scheme that leads us
to a system of non-linear equations, but we face difficulties in searching for a solution to
this system caused by the presence of non-local term in the equation, so it is necessary to

develop a numerical plan to get rid of these difficulties.

For the second work, we suggested the H' -Galerkin mixed finite element method for
the spatial discretization and Rothe's method to time discretization to solve the same
problem. The H'-Galerkin mixed finite element method gives us a system of two equa-
tions, thus eliminating the difficulties described in the first work. More clearly, the Ja-
cobian matrix of the Newton Raphson method for this system is not full, therefor ensure

the sparsity of the Jacobian matrix and facilitate its calculation.
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Conclusion and perspectives

In both works, a priori estimates and error estimates are given for both semi discrete
and fully discrete schemes. We also complete the two works with a numerical experiment

that proves our theoretical results.

Among the points of view that we may address is an interest in a posteriori analysis
of the error in the study of partial differential equations. It is also possible to study and

analyze PDEs of high degrees.
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