الجمهورية الجزائرية الديموقراطية وزارة التعليم العالى والبحث العلمي

République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Mémoire de Master

Présenté à l'Université 8 Mai 1945 de Guelma

Faculté des Sciences et de la Technologie

Département de : Génie Civil & Hydraulique

Spécialité : Génie Civil

Option: STRUCTURES

Présenté par : Abakar Ahmat MARINE

Abdullah Sidi Abdi SID AHMED

Sakho Papa INSA

Thème : Calcul et Optimisation de la structure d'une toiture de salle de sport

Sous la direction de : Pr NAFA Zahreddine

Septembre 2020

- Remerciements -

Nous remercions profondément ALLAH, le Très Haut, le tout puissant de nous avoir donné la vie, la santé, la sérénité et les capacités pour mener à terme ce mémoire de fin d'études de master deux, option structures. Les travaux ont été réalisés sous la direction du professeur Pr NAFA Zahreddine, à qui nous adressons nos profonds et sincères remerciements pour son aide, sa disponibilité et sa compréhension. Nous le remercions également pour ces moments qu'il a consacré pour nous, notamment pour son aide précieuse aux explications et à la réalisation de ce document. Nos remerciements vont également aux membres de jury qui nous font l'honneur d'examiner notre travail. Nous remercions l'ensemble du corps enseignants et administratif du département de génie civil et d'hydraulique de la faculté des sciences et de la technologie de l'Université 08 Mai 45 de Guelma. Nos remerciements les plus profonds à nos chères familles pour leur soutien moral indéfectible et leurs encouragements. Enfin, nos remerciements à toutes les personnes qui ont contribuées de près ou de loin dans la réalisation de ce travail.

-Dédicaces-

A nos chers parents, pour tous leurs sacrifices, leur amour, leur tendresse, leur soutien et leurs prières tout au long de nos études. Nous vous serons toujours profondément reconnaissant.

A nos chères frères et sœurs pour leurs encouragements permanents, et leur soutien moral. A toute nos familles pour leur soutien tout au long de notre parcours universitaire.

A nos Etats respectifs (Sénégal, Tchad, Sahara Occidental), qui grâce à leur bonne relation diplomatique, nous ont permis de poursuivre nos études dans ce beau pays qu'est l'Algérie.

A notre encadreur Pr. Nafa Zahreddine, dont ces qualités pédagogiques et surtout humaines sont pour nous un modèle. Votre gentillesse, disponibilité, culture scientifique, et compétences professionnelles ont toujours suscité notre admiration et respect.

A l'ensemble des professeurs qui ont contribué à notre formation. Que ce travail soit l'accomplissement de vos vœux tant allégués, et le fruit de votre soutien infaillible.

Merci

Résumé

Ce projet vise à étudier une structure métallique de nature sportive selon le règlement algérien. La structure a été étudié en plusieurs étape : d'abord l'étude des effets de la neige et du vent selon (RNV99), ensuite le dimensionnement des différents éléments (secondaires et principales), après l'étude dynamique selon le (RPA99), puis l'étude des assemblages selon le (CCM97).

Abstract

This project studies the structure of sports building with structural steel according to Algerian regulation. This project developed through several stages; first, climate study (wind and snow) by (RNV99), and evaluation of the structral steel's secondary and principal elements according to their resitances by (CCM 97). Befor, the dynamic building study according to (RPA99) using software (ROBOT) to choosing the braking system those ensure the stability of the structure. finally, study the assembly of the building's secondary and principal elements by (CCM97).

الملخص

هذا المشروع يعمد إلى دراسة مبنى معدني ذو طابع رياضي وفق التنظيم الجزائري و قد صمم هذا المبنى بشكل منتظم ليستغل كسقف لملعب, حيث تمت دراسة هذا المشروع مرور بعدة مراحل أولا دراسة تأثيرات الثلوج و الرياح وكذالك الاحتكاك و فق المنشور ثم دراسة مقاييس عناصر المبنى الأساسية منها و الثانوية وفق المنشور بتليها دراسة ديناميكية للمبنى وفق منشور للاختبار نظام التوازن من اجل استقرار المبنى باستخدام البرنامج و دراسة تجميع مختلف عناصر المبنى الأساسية منها و الثانوية وفق المنشور

Table des matières

Chapitre I : Généralités	
I.1. Introduction:	4
I.2. Avantages et inconvénients de l'utilisation de l'acier:	4
I.2.1. Introduction:	4
I.2.2. Qualité d'acier:	4
I.2.3. Coût :	4
I.3. Présentation de l'ouvrage:	5
I.4. Les différents types de structures de toiture de salles de sports :	8
Chapitre II : Etude climatique	
II.1. Introduction :	16
II.2.Etude au vent :	16
II.2.1. Les coefficients de calcul. :	17
II.2.1.1 Effet de la région (qréf) :	17
II.2.1.2 Effet de site (KT, Z0, Zmin, ε) :	17
II.2.1.3. Détermination de la pression dynamique (qdym) :	18
II.2.1.4. Calcul de coefficient d'exposition (Ce):	19
II.2.2. Détermination des coefficients de pression (façade principal) :	20
II.2.3. Calcule des pressions:	22
II.2.4. Détermination des coefficients de pression (façade latérale) :	23
II.3. Action de la neige :	26
II.3.1. Calcul de la charge de neige sur le sol:	26
II.3.2. Neige sur la toiture :	26
Chapitre III : Pré dimensionnement des éléments	
III.1.Calcul des pannes de couverture:	29
III.1.2. Données du calcul:	29

III.2.Détermination des sollicitations:	
III.2.1. Evaluation des charges et surcharges:	
III.2.2.Combinaisons des charges les plus défavorables:	
III.2.3.Les combinaisons d'actions:	
III.3.Principe de prédimensionnement:	
III.3.1.Vérification à l'ELS (flèche):	
III.3.2.Vérification à l'ELU (résistance) :	
III.4.Dimensionnement des pannes:	
III.4.1.Les combinaisons de calcul:	
III.4.2.Détermination des sollicitations:	
III.4.3. Vérification de la résistance des pannes (ELU) :	
III.5.Calcul de l'échantignolle:	
III.5.1.Définition:	
III.5.2.Détermination des sollicitations:	
III.5.2.1.Combinaison du calcul:	
III.5.2.2.Calcul des réactions:	
III.5.2.3.Calcul du moment de renversement:	
III.5.2.4.Epaisseur de l'échantignolle:	
III.6.Calcul des liernes:	
III.6.1.Définition:	
III.6.2.Dimensionnement des pannes:	
III.6.2.1Calcul de l'effort de traction dans le lierne la plus sollicitée :	
III.6.3.Calcul de la section des liernes:	
III.7.Les poutres de chainages:	
III.8.Détermination des charges revenantes sur la ferme:	
III.8.1.Calcul des charges revenantes sur les nœuds:	
Chapitre IV : Etude sismique IV.1 Introduction:	
IV.2 Modélisation:	,
IV.3 Analyse de la structure :	2

IV.3.1. Type d'analyse :	
IV.3.2 Méthodes de calcul:	
IV.3.2.1. Méthode statique équivalente :	
IV.3.2.2. Méthode dynamique modale spectrale:	
IV.4. Analyse des résultats:	
IV.4.1. Les combinaisons de calcul:	
IV.4.2. Vérification de la résultante des forces sismiques:	
IV.4.3. Vérification des déplacements:65	
Chapitre V : Dimensionnement des éléments de la toiture V.1. Introduction :	
Chapitre VI : Calcul des assemblages	
VI .1 Introduction:92	,
VI.1. Prédimensionnement du gousset :	2
VI.2. Prédimensionnement de la gorge :9	2
VI.3. Assemblage des éléments de la ferme :	2
VI.4. Vérification de la tige d'ancrage :	3
VI.5. Vérification des contraintes dans le béton et l'acier :	3
VI.6 -Dimensionnement de l'épaisseur de la platine :	3
VI.6.1 -vérification de la section 1-1:	4
VI.6.2 Vérification de la section 2-2 :	4
VI.6.3 Vérification de la section 3-3 :	5
Chapitre VII : Etude comparative	
VII.1. Introduction:	7
VII.2. Calcul du poids réel de la ferme:12	7
VII.3. Calcul du poids réel de la ferme:	9
VII 4 Calcul du poids réel de la ferme:	0

Liste des tableaux :

Tableau I.1 : Avantages et inconvénients d'utilisation de l'acier
en charpentes métallique 11:5
Tableau II.1 : valeur de la pression dynamique:
Tableau II.2 : Les valeurs des Cr et Ce et qdin:
Tableau II.3 : Les coefficients de pression Cpe:
Tableau II.4 : Coefficients Cpe correspondant à chaque zone de toiture:22
Tableau II.5 : Valeurs de la pression sur la paroi verticales-V1. 22:
Tableau II.6 : Valeurs de la pression sur la toiture-V1. :
Tableau II.7 : Les coefficients de pression Cpe correspondant
à chaque zone de paroi verticale:
Tableau II.8 : Les coefficients Cpe correspondant à chaque zone de toiture:25
Tableau II.9 : Valeurs de la pression sur la paroi verticales-V2:25
Tableau II.10 : Valeurs de la pression sur la toiture-V2 :
Tableau II.11 : coefficients de forme_ toiture à un versant 25:27
Tableau IV.1 : Pénalité de vérification:
Tableau IV.2 : Pourcentage de participation de masse. (Portique 2D) :58
Tableau IV.3: Pourcentage de participation de masse. (Treillis 2D):58
Tableau IV.4: Pourcentage de participation de masse. (Treillis spatial 3D):59
Tableau IV.5 : Combinaisons de calcul:
Tableau IV.6 : Vérification de l'effort tranchant à la base (portique 2D) :64
Tableau IV 7 : Vérification de l'effort tranchant à la base (Treillis 2D) :

Tableau IV.8 : Vérification de l'effort tranchant à la base. (Treillis spatial 3	
Tableau IV.9 : Déplacement max en situation durable. :	
Tableau IV.10 : Déplacement relatif des niveaux:	66
Tableau IV.11 : Déplacement max en situation durable:	66
Tableau IV.12 : Déplacement max en situation durable:	67
Tableau V.1 : Efforts max sollicitant les montants:	72
Tableau V.2 : Efforts max sollicitant les diagonales:	73
Tableau V.3 : Efforts max sollicitant les membrures supérieures:	80
Tableau V.4 : Efforts max sollicitant les membrures inferieures:	
Tableau V.5 : Sections choisies pour Les éléments de la ferme	
et les contreventements:	81
Tableau V.6 : Efforts max sollicitant les traverses:	82
Tableau V.7 : Efforts max sollicitant les pannes. :	85
Tableau V.8 : Efforts max sollicitant les contreventements	86
Tableau V.9 : Sections choisies pour Les éléments de la ferme et	
les contreventements :	87
Tableau V.10: Efforts max sollicitant les Montants & Diagonale:	87
Tableau V.11 : Efforts max sollicitant les membrures inférieures:	91
Tableau V.12 : Efforts max sollicitant les membrures supérieures:	93
Tableau V.13 : Sections choisies pour Les éléments de la ferme et les	
les contreventements:	95

Tableau VI.1 Épaisseur du gousset en fonction de l'effort appliqué:	108
Tableau VI.2 Efforts dans les éléments de la ferme:	117
Tableau VI.3 : Efforts dans les éléments de la ferme:	121
Tableau VI.4 : Efforts dans les éléments de la ferme:	123
Tableau VI.5 : Les sollicitations les plus défavorables :	124
Tableau VII.1 : Sections choisies pour les éléments de la ferme et	
les contreventements :	128
Tableau VII.2 : Sections choisies pour Les éléments de la ferme et	
les contreventements:	129
Tableau VII.3 : Sections choisies pour Les éléments de la ferme et	
les contreventements :	131
Tables des figures :	
Figure I.1 : vue en plan de la salle.	6
Figure I.2 : Coupe A-A.	7
Figure I.3 Vue sur la façade latérale.	7
Figure I. 4 Panneau sandwich.	8
Figure I.5 : Vue de la structure en 3D (treillis 2D).	10
Figure I.6 : Vue de la structure en 3D (Portique 2D).	12
Figure I.7 : Vue de la structure en 3D (treillis spatiale 3D)	14
Figure II.1 : La force de Vent sur les façades principales	16
Figure II.2 : La force de Vent sur les façades secondaires	17
Figure II.3 : Valeurs de Cd pour les structures mixtes (acier-béton)	18
Figure II.4 : Vue en plan et en élévation.	20
Figure II.5 : Légende pour les parois verticales	21
Figure II.6 :: Légende pour la toiture.	21
Figure II.7 : Vue en élévation cas de vent V2.	23
Figure II.8 : Légende pour les parois verticales	24

Figure II.9 : Légende pour la toiture à un versant.	.24
Figure II.10 : coefficient de forme_ toiture à un versant.	.27
Figure III.1 : position de la panne sur le verseau et repérage des axes	.31
Figure III.2 : Schéma statique sous charge d'entretien	.44
Figure III.3 :: Moment dû aux surcharges d'entretien	46
Figure III.4 : Représentation de l'échantignole	59
Figure III.5 : Dimension de l'échantignole	60
Figure III.6 : Schéma explicatif pour la disposition des liernes	60
Figure IV.1 : Mode de déformation $N^{\circ}1$ (translation suivant x-x)	61
Figure IV.2 Mode de déformation N°2 (translation suivant y-y)	62
Figure IV.3 : Mode de déformation N°1 (translation suivant x-x)	62
Figure IV.4 Mode de déformation N°2 (translation suivant y-y)	63
Figure IV.5 : Mode de déformation $N^{\circ}1$ (translation suivant x-x)	65
Figure IV.6 Mode de déformation N°2 (translation suivant x-x)	66
Figure IV.7 Mode de déformation N°3 (translation suivant y-y)	66
Figure IV.8 : Mode de déformation N°4 (translation suivant y-y)	68
Figure VI.1 : longueurs des soudures	94
Figure VI.2 : Assemblage tubulaire	108
Figure VI.3 : Vue de l'assemblage traverse – traverse	117
Figure VI.4 : Vue en face et 3D de l'échantignolle	120
Figure VI.5 : Dispositions constructives	122
Figure VI.6 : Détail de la tige d'ancrage	123
Figure VI.7 :: Vérification dans la section 1-1	123

Introduction Générale

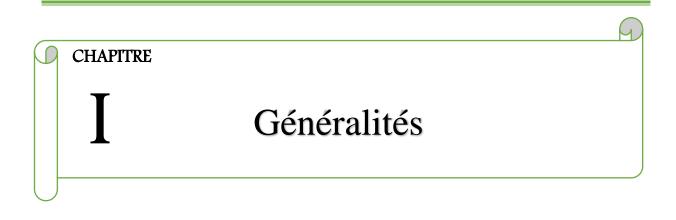
Le but des études en génie civil est de concevoir des structures capables de résister aux multiples phénomènes naturels (tremblements de terres, vent extrême ...etc.). Ceci implique la création de systèmes structuraux combinant de manière optimale les propriétés qui les rendent aptes à encaisser les efforts auquel ils seront soumis et à les transmettre aux fondations. Les structures actuelles se caractérisent par la complexité de leurs modèles telles que les formes variables et les courbures multiples, ainsi que par leurs grandes portées, ce qui a fait appel à l'utilisation des constructions métalliques qui apporte au programme de construction des avantages à savoir :

La fiabilité, la rapidité d'exécution, la grande résistance de l'acier, la tenue aux séismes du fait de la ductilité de l'acier et possibilité architecturales beaucoup plus étendues qu'on béton. De plus, le poids d'une construction métallique est faible en comparaison aux autres alternatives, et il implique de fondations moins importantes, ainsi que son utilisation à un impact évidant sur la réduction des coûts, car son usage permet une utilisation plus efficace des sites.

Face à ses avantages les plus considérables, les constructions métalliques possèdent également des inconvénients telques :

La susceptibilité aux phénomènes d'instabilité élastique, en raison de la minceur des profils, mauvaise tenue au feu et la nécessité d'entretien régulier des revêtements protecteurs contre la corrosion pour assurer la pérennité de l'ouvrage. Le calcul d'une structure exige que, sous toutes combinaisons d'actions possibles, définies par les règlements (CM66, ADDITIF 80 ou fascicule 62 titre V, EUROCOD 03), la stabilité élastique soit assurée :

- Soit dans son ensemble, ou globalement au niveau de la structure.
- Soit au niveau local, individuellement au niveau de chaque élément constituant ladite structure (poteaux, poutres, fermes, etc...).


Dans le cadre de ce présent projet de fin d'étude, qui nous a été confié nous proposons de faire une étude technique complète de dimensionnement et de vérification d'une salle de sport avec ossature en béton armé et la toiture en charpente métallique. L'étude de ce projet se fera tout en respectant les réglementations et recommandations en vigueur à savoir (RPA99/2003, BAEL et CBA93, CCM97, RNVA99).

Pour cela, nous allons suivre les démarches décrites sur le plan du travail suivant :

- ✓ Le premier chapitre, qui est consacré pour les généralités.
- ✓ Le deuxième chapitre, portera sur l'étude climatique.
- ✓ Le troisième chapitre est le prédimensionnement des éléments de la toiture.

- ✓ Le quatrième chapitre, concernant le calcul sismique de la structure
- ✓ Le cinquième chapitre portera sur le dimensionnement des éléments de la toiture
- ✓ Le sixième chapitre abordera le calcul des assemblages.
- ✓ Le dernier chapitre, pour l'étude comparative.

Enfin nous clôturons cette étude en présentant une conclusion générale qui permet de faire la synthèse des principaux résultats de ce travail et de proposer des voies pour de futurs travaux.

I.1 Introduction:

Les constructions métalliques constituent un domaine important d'utilisation des produits laminés sortis de la forge. Elles emploient, en particulier, les tôles et les profilés. Les structures constituées à partir de ces éléments nécessitent des opérations préalables de découpage, de perçage et de soudage en usine. Le cout élevé des matériaux de base conduit à rechercher le poids minimal et à développer l'emploi de l'acier pour des domaines très spécifiques permettant de mettre en valeur les qualités suivantes : la légèreté, la rapidité de mise en œuvre, l'adaptation aux transformations ultérieures et les propriétés mécaniques élevées (limite élastique, ductilité, résistance à la fatigue). Les domaines d'application des constructions métalliques sont très nombreux. Ils concernent d'abord les bâtiments, les halles industrielles lourdes ou légères (usine de transformation ou de stockage) constituent un secteur ou l'emploi de l'acier est fréquent pour la réalisation des ossatures et des bardages recouvrant celles-ci, et pour l'utilisation de ponts roulants. Même dans les pays en développement, les charpentes industrielles se montrent compétitives, grâce à la facilité du montage et de l'expédition des éléments constitutifs par voie maritime ou terrestre.

I.2 Avantages et inconvénients de l'utilisation de l'acier :

I.2.1 Introduction:

D'après la norme européenne EN 10025, l'acier est un matériau contenant en poids plus de fer que les autres éléments, ayant en général moins de 2 % de carbone et contenant d'autres éléments :

Fer: l'élément de base.

Carbone : deuxième élément caractéristique, à teneur de 2% maximum.

Impuretés: (phosphore, soufre...).

Additifs: (silicium, nickel, chrome...) en fonction des caractéristiques du

produit voulu.

I.2.2 Qualité d'acier :

La qualité d'acier caractérise la fragilité d'un matériau. Les ruptures fragiles se produisent sans apparition de déformation plastique.

I.2.3 Coût:

Outre ses caractéristiques mécaniques et physiques citées précédemment, l'acier possède d'autres facteurs permettant une diminution des coûts. En effet, en utilisant un squelette d'acier comme ossature primaire, on contribue à diminuer l'épaisseur des parois, une autre diminution est due à l'utilisation d'aciers à haute limite d'élasticité dont le coût, bien que légèrement supérieur à celui des aciers ordinaires, est largement compensé par les gains de poids et de section réalisée.

Enfin l'acier peut, dans certains cas, être le seul matériau qui répond aux contraintes économiques et techniques imposées. C'est le cas par exemple lorsque la topographie du terrain est mouvementée (sites pentus), où l'adaptation de l'ossature au sol et aux fondations est complexe ainsi que dans les zones sismiques, où la solution métallique est la plus performante grâce à la légèreté de la structure et à la ductilité du matériau.

Le tableau ci-dessous cite quelques avantages et inconvénients de l'utilisation de l'acier :

Tableau I.1: Avantages et inconvénients d'utilisation de l'acier en charpentes métallique

AVANTAGES	INCONVENIENTS
 ➢ Faible volume de matériau mis en œuvre, entrainant : • Une légèreté de la structure porteuse, donc des fondations moins coûteuses. • Des poteaux plus minces autorisant une plus grande utilisation de la surface au sol. ➢ Déformabilité supérieure par rapport à une structure de béton. ➢ Rapidité d'exécution. ➢ Valeurs élevées des propriétés mécaniques fondamentales. ➢ Adaptabilité aux travaux de réhabilitation. ➢ Propreté de chantier 	 ➤ Des protections au feu et à la corrosion sont souvent nécessaires. ➤ Coût du matériau de base plus cher que pour le bêton, et plus sensible aux fluctuations du marché. ➤ Gérer les interfaces entre les étapes fabrication/transport/montage. ➤ Peu d'inertie thermique : les structures métalliques sont très sensibles aux changements de température.

I.3 PRESENTATION DE L'OUVRAGE

Dans le cadre de notre formation de master en Génie Civil à l'Université 8 Mai 1945 de Guelma, nous sommes amenés, à l'issu de notre cursus, à réaliser un projet de fin d'études (PFE). Le but de ce projet est d'être confronté à une situation professionnelle d'ordre scientifique et technique. Il regroupe donc l'ensemble des qualités que doit posséder un ingénieur dans son travail quotidien.

Il s'agit de faire une étude technique complète de dimensionnement et de vérification de trois différents types de toiture d'une salle de sport en charpente métallique avec ossature en béton armé. Les structures proposées sont :

- ❖ Poutres en profilé 2D,
- Poutre en treillis 2D,
- ❖ Structure 3D

L'étude se fera en respectant les réglementations et recommandations en vigueur à savoir (RPA99/2003, BAEL et CBA93, CCM97, RNVA99).

Données techniques

La salle de sport est de forme rectangulaire avec ossature en béton armé et la toiture en charpente métallique, qui sera implantée dans la wilaya de Guelma qui est classée selon le règlement parasismique Algérien (RPA 99 version 2003) comme une zone de moyenne sismicité IIa.

- Longueur totale de la salle :	,95 m
- Largeur totale de la salle :	19,25 m
- Hauteur totale de la salle :	12,52 m
- Surface totale de la salle :	562,65 m2
- Surface totale de la toiture :	595,79 m2

- Toiture en charpente métallique à un seul versant avec une pente de 11,86° (21%)
- L'ossature sera en portiques auto stables en béton armé avec remplissage en maçonnerie rigide,

La stabilité de la structure est assurée par des portiques en béton armé reliées par des poutres de chainages.

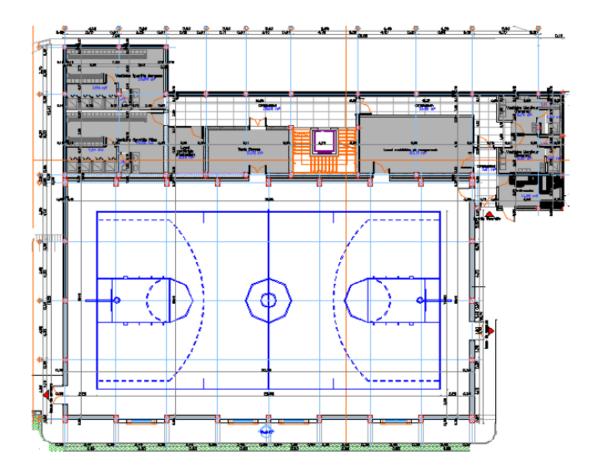


Fig I.1 : vue en plan de la salle

Fig I.2 : Coupe A-A

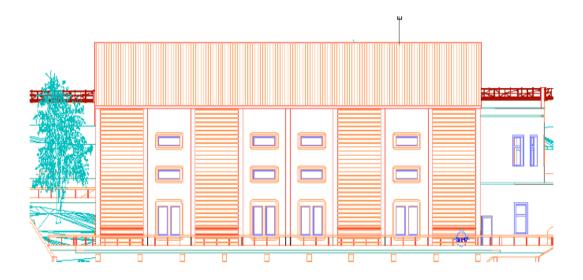


Fig I.3 : Vue sur la façade latérale

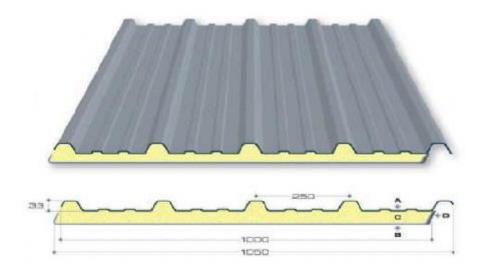


Fig I.4: Panneau sandwich

Couverture

La couverture sera réalisée par des panneaux sandwichs, appelés aussi panneaux doubles peau monoblocs, ils sont constitués :

- De deux tôles de parement intérieur et extérieur.
- D'une âme en mousse isolante.
- De profils latéraux destinés à protéger l'isolant et réaliser des assemblages aisés.

I.4 Les différents types de structures de toiture de salles de sports :

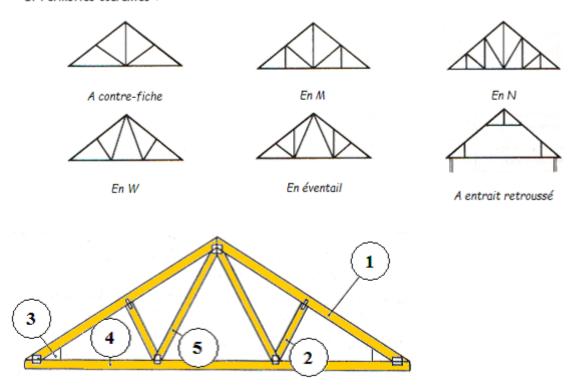
Généralement pour les salles de sports, le dégagement d'un espace à l'intérieure est une priorité pour le concepteur, ce qui nous conduit à l'utilisation d'une toiture en charpente métallique, qui nous offre plusieurs avantages, dont les plus importantes sont :

- Les poteaux intérieurs sont éliminés, permettant un usage plus souple et plus efficace de l'espace construit ;
- La légèreté de la toiture en charpente métallique par rapport à la dalle en béton armé ou plancher mixte ;
- La facilité de montage d'une toiture en charpente métallique dans une structure plus espacé.

> TREILLIS 2D

Les fermes à treillis sont composés de barres fines, généralement des doubles cornières (jumelées) : il s'agit de diagonales et de montants rejoignant la membrure inférieure (appelée aussi entrait) et la membrure supérieure (appelée aussi arbalétrier). Le tout formant un système triangulé, très efficace (maximum de résistance pour minimum de poids), mais coûteux en main d'œuvre.

Elles peuvent reposer soit sur des poteaux (ce qui est le cas dans la modélisation ci-dessus), soit être prises entre 2 murs. Ce genre de structure est mis en œuvre dans les bâtiments de grande portée (bâtiments industriels. L'ossature en treillis se caractérise par :


• Un poids plus léger que celui des portiques (le poids propre des barres est négligé).

- Les barres concourent en même point appelé nœud.
- Les efforts sont appliqués aux nœuds.

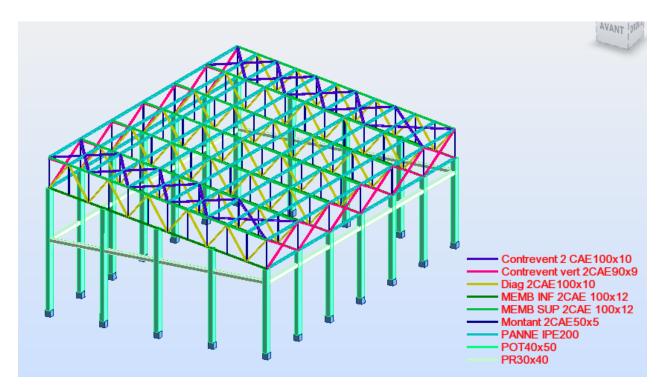
La structure sera donc assurée par le contreventement plutôt que par un comportement rigide.

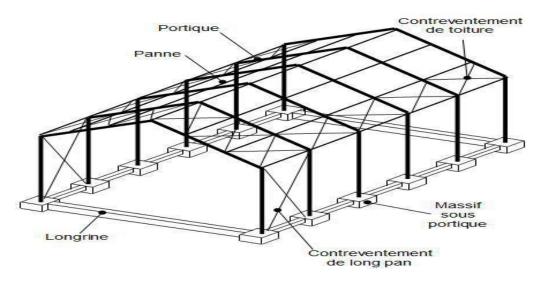
Les figures ci-dessous montrent les différents types de fermes couramment utilisés pour les treillis

1. Fermettes courantes :

Fermette en W à comble perdu

- > (1) membrure supérieure (arbalétrier).
- > (2) et (5) d'une âme treillis constituées d'élément verticaux (montant) et oblique (diagonales) elles sont généralement articulées à leurs appuis
- > (3) des nœuds situés à chaque liaison de plusieurs pièces
- ➤ (4) d'une membrure inférieure (entrait).




Fig I.5: Vue de la structure en 3D

> PORTIQUE 2D

Les fermes en portique sont réalisés par l'assemblage des poteaux, arbalétriers, entraits... Ces portiques sont reliés entre eux par des pannes (poutres).

Ces éléments de construction "rigides" permettent de dégager des grands espaces utiles au sol. La portée des éléments d'ossature peut atteindre plusieurs dizaines de mètres. En outre le poids de ces éléments d'ossature, comparé à ceux d'une même structure en béton armé (ou maçonnerie) est réduit et allège considérablement les charges transmises au sol.

Associé à des éléments de peau "légers" (bardage, façades rideau ...), ces structures sont adaptées à la réalisation de constructions telles que salles de sports, piscines, entrepôts, usines... Leur réalisation est rapide (assemblage direct d'éléments préfabriqués) et donc d'un prix très compétitif.

Les profils associés sont généralement des aciers laminés, les charpentes peuvent également être en aluminium.

Poteaux : type HEA, HEB, IPE Potelets : type UPN, tubulaires Arbalétriers : type IPE, poutres treillis

Pannes: type IPE, UPN, poutres treillis.

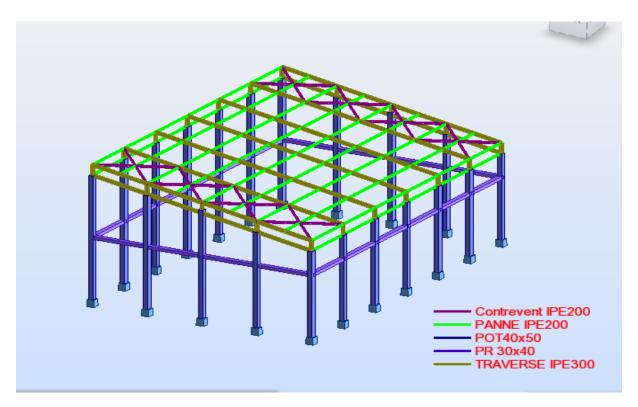
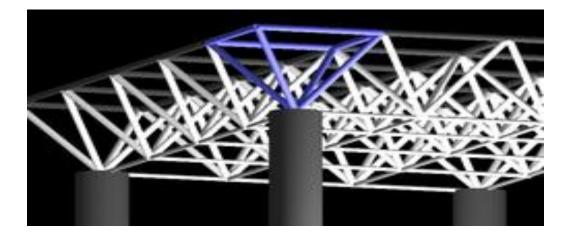



Fig I.6: Vue de la structure en 3D

> TREILLIS SPATIAL 3D

Une structure spatiale est par extension une poutre en treillis conçue dans l'espace à trois dimensions : il s'agit de « structures réticulées » parce que les dispositions de ses membrures sont organisées en réseaux de nervures. Ces nervures constituées de barres droites sont liaisonnées par des nœuds.

Ce genre de structure se réfère à une structure spatiale dont les membres sont reliés rigidement les uns aux autres de sorte qu'ils transmettent le moment et le cisaillement en plus des forces axiales. En comparaison, les poutres spatiales sont articulées et, par conséquent, leurs membres sont en tension ou en compression et ne se transfèrent pas ou ne se cisaillent.

Cette structure présente les avantages suivants :

- montage : possibilité de pré assemblage au sol et de levage d'ensembles ;
- économie de matière ;
- légèreté ;
- transparence;
- esthétique ;
- flexibilité.

Il peut y avoir en revanche des difficultés éventuelles de transport ainsi qu'un coût élevé des assemblages.

On retiendra les trois typologies de structures spatiales suivantes :

- les poutres triangulaires ;
- les doubles nappes ;
- les voûtes et les coques

Ces structures spatiales sont très rigides et peuvent résister à des forces agissant dans n'importe quelle direction. Elles sont capables de franchir des portées jusqu'à **100 m.** Au-delà, il faut faire appel à des structures formées de trois nappes de barres croisées. Comme ces structures présentent un haut degré hyperstatique, il est possible de supprimer des barres sans nuire à la sécurité ni à la rigidité de la double ou triple nappe. On procède d'ailleurs souvent à ces suppressions pour réduire le nombre de barres arrivant à un même nœud et pour libérer, à l'intérieur du treillis spatial, des espaces utilisables à d'autres fins.

La figure présente deux types d'allégement de doubles nappes: la suppression, dans un système à membrures parallèles, d'une membrure inférieure sur deux et des diagonales d'une maille sur quatre; cette disposition correspond à une grille de poutres spatiales triangulaires; on remarque sur la figure le volume libre utilisable; • la suppression, dans un système à membrures diagonales, d'une membrure inférieure sur deux et des diagonales d'une maille sur deux ; cette disposition correspond à l'assemblage de pyramides à base carrée, pointes en bas, reliées par des barres horizontales; on remarque sur la figure le volume libre utilisable.

Si les nappes supérieure et inférieure comportent des mailles triangulaires ou hexagonales, on nomme ces systèmes tri directionnels. On y retrouve des poutres à treillis planes inclinées ainsi que des volumes élémentaires.

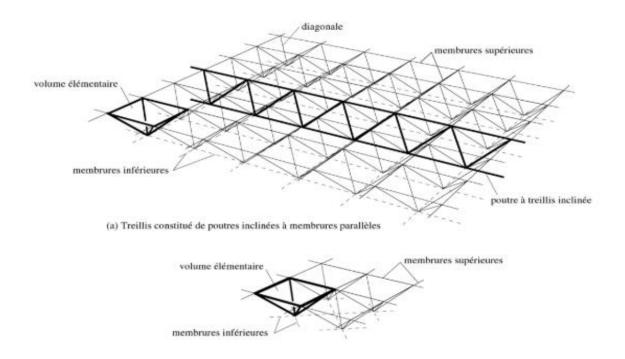
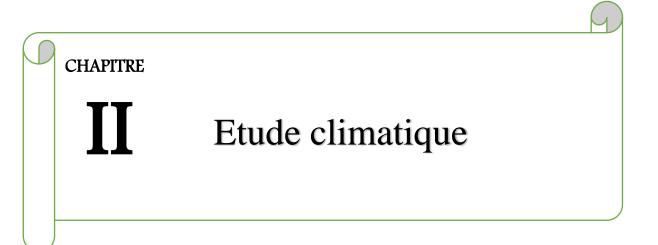



Fig I.7: vue de la structure en 3D

II.1. Introduction

La règlementation des actions climatiques sur les structures est une des étapes plus importantes et délicates, compte tenu de son impact généralisé à tous les types de constructions. Parmi ces actions, celles dues à la neige et au vent sont essentielles car elles peuvent avoir une incidence directe sur le dimensionnement et par conséquent sur l'économie et sur la sécurité des structures des bâtiments et des ouvrages de génie civil.

II.2. Etude au vent

Les règles NVA99 s'appliquent aux constructions (bâtiment, lieux de cultes, réservoirs, châteaux d'eaux, silos, cheminées, pylônes, grues, etc.) dont la hauteur est inférieure à 200m. Les actions du vent appliquées aux parois dépendent de :

- La direction
- L'intensité
- La région
- Le terrain d'implantation (site)
- La forme géométrique et les ouvertures des structures Les estimations de l'effet du vent se feront en appliquant le règlement Neige et vent

« RNV 99 (DTR –B.C- 2.4.7) » .

Ci-dessous nous indiquons les directions du vent par rapport aux façades du bâtiment.

Fig. II.1: La force de Vent sur les façades principales.

Fig. II.2: La force de Vent sur les façades secondaires.

II.2.1. Les coefficients de calcul

II.2.1.1 Effet de la région (qréf)

q_{réf}: pression dynamique de référence

Tab II.1: valeur de la pression dynamique

Zone	q _{réf} (N/m ²)	q _{temp} (N/m ²)
I	375	270
II	470	340
III	575	415

Notre structure se situe dans la zone 1 (GUELMA), sa durée d'utilisation étant supérieure à 5 ans, donc la pression de référence est : $q_{réf} = 375 N/m^2$ d'après le tableau ci-dessus.

II.2.1.2 Effet de site (KT, Z0, Z_{min} , ϵ)

La structure sera implantée en zone urbaines :

- $ightharpoonup K_T = 0,22...$ (Facteur de terrain)
- > Z₀=0.3m..... (Paramètre de rugosité)
- > Z_{min}= 8m..... (Hauteur minimale)
- $ightharpoonup \epsilon$ ==0,37..... (Coefficient pour calcul du C_d) (Tab 2-4chap II du RNV99)

Coefficient topographique (C_t)

Le coefficient de topographie C_t (z) prend en compte l'accroissement de la vitesse du vent lorsque celui –ci souffle des obstacles (collines, dénivellations isolées, etc.).

Dans le tableau 2-5(chap. II RNV99) les types de site et les valeurs de $C_t(z)$, donc en prend site montagneux ; $C_t(z)=1.5$

Coefficient dynamique (C_d) : Les valeurs de C_d doivent être déterminées à l'aide des abaques donnés dans les (Fig. I.03). Ces abaques correspondent à des bâtiments ou cheminées de moins de $200\,$ m de hauteur. Pour les valeurs intermédiaires, il y a lieu d'interpoler d'extrapoler linéairement.

La structure de notre ouvrage étant structure en (acier, bêton) on utilise l'abaque de la (fig. I.03) pour la détermination du coefficient C_d pour chaque direction donnée la lecture pour :

■ Direction V1 du vent : (Fig. II.1)

Pour h = 13 m et b = 19,25 m; après interpolation on aura : Cd ≈ 0.94

■ Direction V2 du vent : (Fig. II.2)

Pour h = 13 m et b = 30.95m; après interpolation on aura : Cd ≈ 0.92 .

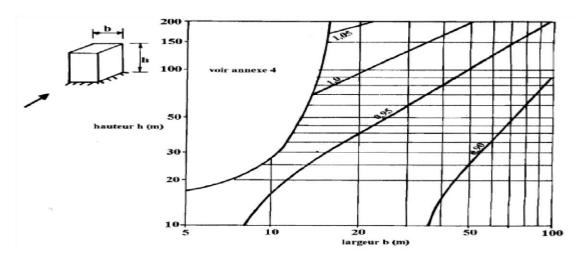


Fig. II.3: Valeurs de C_d pour les structures mixtes (acier-béton)

II.2.1.3 Détermination de la pression dynamique (q_{dym})

Les constructions avec planchers intermédiaires (bâtiment, tours, etc.) dont la hauteur est supérieure à 10m, doivent être considérées comme étant constituées de n éléments de surface, de hauteur égale à la hauteur d'étage, n'est le nombre de niveaux de la construction

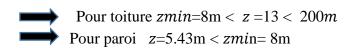
$$q_{dyn}(z_j) = q_{réf} * C_e(z_j) \qquad N/m^2$$
(Art 3.2 du RNV 99)

Z_j: la distance verticale mesurée à partir du niveau du sol au centre de l'élément j

 q_{ref} (N/m²): La pression dynamique de référence pour les constructions permanentes $C_e(Z_j)$: Coefficient d'exposition.

II.2.1.4 Calcul de coefficient d'exposition (Ce)

Le coefficient d'exposition au vent $C_e(z)$ tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol, en outre il tient compte de la nature turbulente du vent. Dans notre cas, la structure est peu sensible aux excitations car $C_d < 1.2$


$$C_e(z) = C_t(z)^2 * C_r(z)^2 * \left[1 + \frac{7*K_t}{C_r(z)*C_t(z)}\right]$$
 Chap II RNV A99 Art 3.3

a) Coefficient de rugosité

Le coefficient de rugosité $C_r(z)$ traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent. Il est défini par la loi logarithmique (logarithme népérien) :

$$C_r(z) = K_T * Ln\left(\frac{z}{z_0}\right)$$
 pour $z_{min} \le z \le 200m$ (Chap. II RNV A99 Art 4.2)
 $C_r(z) = K_T * Ln\left(\frac{z_{min}}{z_0}\right)$ pour $z < z_{min}$

Dans notre cas:

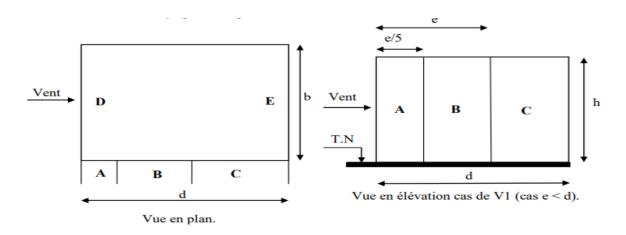
b) Détermination de Cr et Ce et qdyn

Tab. II.2: Les valeurs des Cr et Ce et qdin

	Z(m)	C_{r}	Ce	q_{dyn} (N/m ²)
Paroi	5.43	0.72	1.63	611.25
Toiture	12.52	0.82	1.51	566.25

II.2.2. Détermination des coefficients de pression (façade principal)

a) Coefficients de pression extérieure Cpe


Les coefficients de pression externe C_{pe} , des constructions à base rectangulaire et de leurs éléments constitutifs individuels dépendent de la dimension de la surface chargée. Ils sont définis pour des surfaces chargées de 1 m² et 10 m², auxquelles correspondent les coefficients de pression notés respectivement Cpe, 1 et Cpe, 10.

C_{pe} s'obtient à partir des formules suivantes :

(Art5.1du RNV)

S (m²): la surface chargée de la paroi considérée.

Parois verticales: Il convient de diviser les parois comme l'indique la (figure.I.04) les valeurs de Cpe,10 et Cpe,1 sont données dans le (tableau. I.02) b = 30,95m h = 5,43m d = 19,25m $e = \min(b; 2h) = (30,95; 10,86)$ e = 10,86m; d > e; e/5=2.17m

Les surfaces des parois sont : $S \ge 10m2 \implies Cpe, 1 = Cpe, 10$ (§ 1.1.1.2 chapitre 5 RNVA99). Les zones de pression et les valeurs respectives des coefficients correspondant à ces zones sont portées sur la figure suivante : (Fig.I.05)

Tab.II.3: Les coefficients de pression C_{pe}

Zones	A	В	С	D	Е
Cpe	-1	-0,8	-0,5	+0,8	-0,3

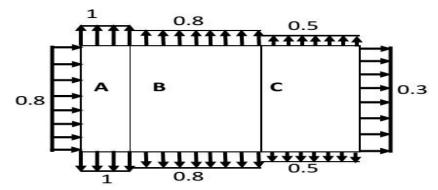


Fig.II.5: Légende pour les parois verticales.

> La toiture :

Pour un vent parallèle au génératrice (parallèle au long pan) on adopte pour Cpe la valeur correspondant à une toiture à un seul versant pour $\theta = 90^{\circ}$, En prenant pour α (en degré) la pente de versant. Dans notre cas on a:b=19,25m; d=30,95m; h=12,52, e=min ($b:2\times h=19,52m$; e/10=1,925m; e/2=9,62m.

Il convient de diviser la toiture comme l'indique la figure suivante

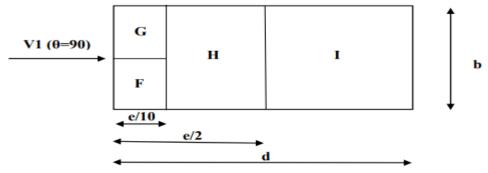


Fig.I.6: Légende pour la toiture.

Les surfaces des parois sont : $S \ge 10m2 \implies Cpe, 1 = Cpe, 10$ (§ 1.1.1.2 chapitre 5 RNVA99). Les zones de pression et les valeurs respectives des coefficients correspondants sont données dans le tableau suivant : (tableau5.3 chapitre 5 RNVA99)

La valeur de α =11.86° n'existe pas dans le tableau 5.3 RNVA99, les valeurs de Cpe s'obtiennent par interpolation linéaire entre les valeurs correspondantes à α =5° et celle de α =1

Tab.II.4 : Coefficients C_{pe} correspondant à chaque zone de toiture

Zones	F	G	Н	I
Сре	-1,39	-1,83	- 0,66	- 0,56

c) Coefficient de pression intérieure

Le coefficient de pression intérieure C_{pi} des bâtiments sans cloisons intérieures (hall industriel par exemple) est donné par la figure 5.15 du RNV A99 en fonction de l'indice de perméabilité μ_P

$$\mu_p = \frac{\sum \ des \ surface \ des \ ouvertures \ sous \ le \ vent \ et \ paralléles \ au \ vent}{\sum \ des \ surfaces \ de \ toutes \ les \ ouvertures}$$

$$\mu_p = 0.5$$
 C_{pi} = 0.8 (Voir figure 5.15 du RNV A99)

II.2.3. Calcule des pressions

Les pressions q_i sont calculées à l'aide de la formule suivante :

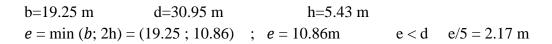
$$q_j = C_d * q_{dyn}(z_j) * [C_{pe} - C_{pi}]$$

> Paroi verticale

Tab.II.5: Valeurs de la pression sur la paroi verticales-V1.

Zones	Cd	$q_{\rm dyn} (N/m^2)$	Сре	Cpi	Cpe-Cpi	$q_j (N/m^2)$
A	0,94	611,25	-1	0,8	-1,8	-1034.23
В	0,94	611,25	-0,8	0,8	-1,6	-919,32
С	0,94	611,25	-0,5	0,8	-1,3	-746,94
D	0,94	611,25	0,8	0,8	0	0
Е	0,94	611,25	-0,3	0,8	-1,1	-632,03

> Toiture:


Tab.II.6: Valeurs de la pression sur la toiture-V1.

Zones	Cd	$q_{\rm dyn} (N/m^2)$	Сре	Cpi	Cpe-Cpi	$q_j (N/m^2)$
F	0.94	566,25	-1.39	0.8	-2.19	-1165.16
G	0.94	566,25	-1.83	0.8	-2.63	-1399.26
Н	0.94	566,25	-0.66	0.8	-1.46	-776.77
I	0.94	566,25	-0.56	0.8	-1.36	-723.89

II.2.4. Détermination des coefficients de pression (façade latérale)

a) Coefficients de pression extérieure Cpe

> Paroi verticale:

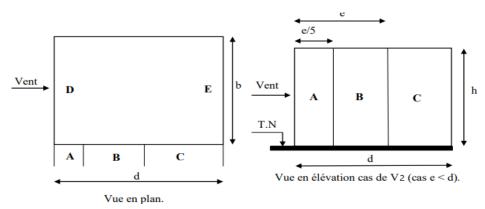


Fig.II.8: Vue en élévation cas de vent V2.

Les zones de pression et les valeurs respectives des coefficients correspondant sont portées sur la figure suivante : (Fig.I.09)

Tab.II.7 : Les coefficients de pression C_{pe} correspondant à chaque zone de paroi verticale

Zones	A	В	С	D	Е
Сре	-1	-0.8	-0.5	+0.8	-0.3

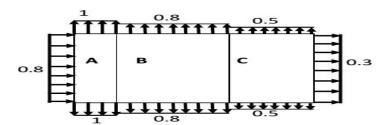


Fig.II.9: Légende pour les parois verticales.

> La toiture :

 θ = 0° correspond à un vent dont la direction perpendiculaire aux génératrices. On se réfère au paragraphe **1.1.4 chapitre 5** les différents zones de pression sont données par la figure ci dessous :

$$d = 30,95m$$
; $b = 19,25m$; $h = 12,52m$. $e = min (19,25; 2×12,52) = 19,25m$; $e/4 = 4,81m$; $e/10 = 1,92$

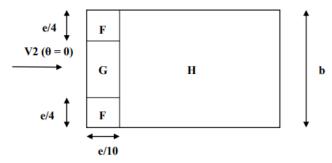


Fig. II.10: Légende pour la toiture à un versant

La valeur de $\alpha=11.86^\circ$ n'existe pas dans le tableau 5.3 RNVA99, les valeurs de Cpe s'obtiennent par interpolation linéaire entre les valeurs correspondantes à $\alpha=5^\circ$ et $\alpha=15^\circ$ On a: SF=9, 23 m², 1m² < SF<10m² => Cpe = Cpe, 1+ (Cpe, 10- Cpe, 1) Log 10 (S) Les zones de pression et les valeurs respectives des coefficients correspondants sont données dans le tableau (Tab.II.07) suivant :

Tab. II.8: Les coefficients C_{pe} correspondant à chaque zone de toiture

Zone	F	G	Н
Cpe	-1,25	-0,93	-0,39

Coefficient de pression intérieure

$$\mu_p = 1$$
 $C_{pi} = 0.8$

b) Calcul des pressions Les pressions q_j sont calculées à l'aide des formules suivant :

$$q_j = C_d * q_{dyn}(z_j) * [C_{pe} - C_{pi}]$$

Paroi verticale :

Tab. II.9: Valeurs de la pression sur la paroi verticales-V2

Zones	Cd	qdyn (N/m²)	Сре	Срі	Cpe-Cpi	$q_j (N/m^2)$
A	0,92	611,25	-1	0,8	-1,8	-1012,23
В	0,92	611,25	-0,8	0,8	-1,6	-899,76
С	0,92	611,25	-0,5	0,8	-1,3	-731,05
D	0,92	611,25	0,8	0,8	0	0
Е	0,92	611,25	-0,3	0,8	-1,1	- 618,58

> Toiture

Tab II.10: Valeurs de la pression sur la toiture-V2

Zones	Cd	q_{dyn} (N/m^2)	Сре	Срі	Cpe-Cpi	$q_j (N/m^2)$
F	0,92	566,25	-1,25	0,8	-2,05	-1067,94
G	0,92	566,25	-0,93	0,8	-1,73	-901,24
Н	0,92	566,25	-0,39	0,8	-1,19	-619,93

d) Calcul de force de frottement

Dans notre cas: (§ 1.4 chapitre 2 RNVA99)

d/b = 19,25/30,95 = 0,622 < 3

d/h = 19,25/8,92 = 2,47 < 3

⇒ Pas de force de frottement

II.3. Action de la neige :

Domaine d'application des règles RNVA99: les règles s'appliquent à l'ensemble des constructions en Algérie situées à une altitude inférieur à 2000m.

Les valeurs des surcharges considérées dépendent de la région et de l'altitude ou va se trouver la construction. La charge caractéristique de la neige « S » par unité de surface en projection horizontale s'obtient par la formule suivante :

 $S = \mu \times SK \quad [KN/m2]$

Art. 3. 1. 1 formule 1 P13 RNVA99

Où : SK (KN /m2): est la charge de neige sur le sol donnée par le règlement RNVA 99 dans le **paragraphe 4**, en fonction de l'altitude et de la zone de neige. μ : est un coefficient d'ajustement des charges, fonction de la forme de la toiture, appelé coefficient de forme et donné au paragraphe 6 RNVA99.

II.3.1. Calcul de la charge de neige sur le sol

La charge de neige sur le sol **SK** par unité de surface est fonction de la localisation géographique et de l'altitude de lieu considéré. D'après la carte de zonage de la neige en Algérie, la wilaya de Guelma est située en B.

$$Sk = \frac{(0.04 \times H + 10)}{100}$$
 [KN/m2] Art. 4. 2 P16 RNVA99

H : l'altitude du site considéré par apport au niveau de la mer.

Pour notre site : l'altitude H = 500m.

Donc : SK = 0.3 KN/m2.

Chapitre II Étude climatique

II.3.2. Neige sur la toiture

Les coefficients de forme des toitures à un versant sans obstacles de retenue de la neige (la neige est supposée pouvoir tomber librement) sont donnés par le tableaau

Tab II.11 : coefficients de forme_ toiture à un versant

(α) angle du versant par rapport à l'horizontale (en°)	0 ≤ α ≤ 30°	30° < α < 60°	α ≥ 60°
coefficient μ	0.8	$0.8\left(\frac{60-\alpha}{30}\right)$	0.0

On a : α = 11,86°, d'après le tableau 6.1 P17 RNVA99, $0 \le \alpha \le 30^\circ$:

 $\mu = 0.8$ donc:

 $S1 = \mu.Sk \implies S1 = 0.8 \times 0.3 = 0.24 \text{ KN/m2}.$

 $S2 = 0.5\mu.Sk \implies S2 = 0.5 \times 0.24 = 0.12 \text{ KN/m}2$.

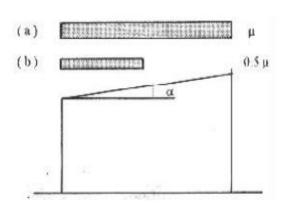


Fig.II.11 : coefficient de forme toiture à un versant

III Prédimensionnement des éléments

III.1 Calcul des pannes de couverture

Les pannes sont les éléments porteurs secondaires reposant sur les traverses de cadres. Le rôle principal de cette structure est de supporter la couverture et de transmettre les charges et surcharges s'appliquant sur la couverture à la traverse ou bien à la ferme.

En outre, elles peuvent agir comme éléments comprimés en tant que partie du système de contreventement et participent à la stabilisation vis-à-vis du déversement de la traverse. [1] Elles sont disposées parallèlement aux lignes de la toiture de façon inclinée sur les traverses principales. Une panne sera simplement appuyée sur 2 traverses, sa portée L est donc égale à l'espacement des traverses.

Pour les deux types de structures de notre projet (PORTIQUE 2D & TREILLIS 2D), les pannes sont les plus souvent utilisées en forme de IPE, auxquelles elles supportent les charges et surcharges de la toiture. On utilisera des profilés circulaires laminés comme panne pour la structure en TREILLIS SPATIAL.

III.1.2.Données du calcul

On étudie la panne la plus sollicitée qui est la panne intermédiaire de portée L=5,30m, incliné d'un angle $\alpha=11,86^{\circ}$ et dans l'entraxe « e » égale à 1,8m.

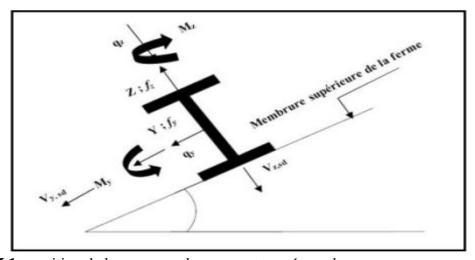


Figure III.1 : position de la panne sur le verseau et repérage des axes

III.1. Détermination des sollicitations

III.2.1 Evaluation des charges et surcharges

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D	
<u>Évaluation des charges et surcharges</u> <u>Charges permanentes (G) :</u>	Évaluation des charges et surcharges	
 Poids propre de la couverture (panneaux sandwichs) TL7514.2kg/m². Poids propre d'accessoire d'attache4kg/m². Poids propre de la panne estimé 	 Charges permanentes (G): Poids propre de la couverture (panneaux sandwichs) TL7514.2kg/m². Poids propre d'accessoire d'attache4kg/m². 	
IPE16015.8kg/m • Espacement e=1.8 cm	 Poids propre de la panne estimé CIRC 178.8 x 312.9kg/m Espacement e=1.8 cm 	
$G = [(Pcouverture + Paccesoires) \times (e)] + Ppanne$		
$G = [(14 + 4) \times 1,8] + 15.8$	$G = [(14+4)\times1,8]+12.9$	
G =48.2Kg/m.	G =45.3Kg/m.	

a) Surcharges d'entretien (P):

Dans le cas des toitures inaccessible on considère uniquement dans les calculs une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente à deux charges concentrées de 100 kg chacune située à 1/3 et 2/3 de la portée de la panne [2].

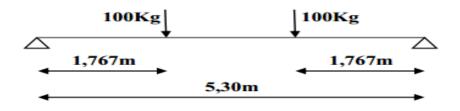


Figure III.2: Schéma statique sous charge d'entretien

$$M_{max} = 100 \times 1,7 = 170 \text{ Kg.m}$$

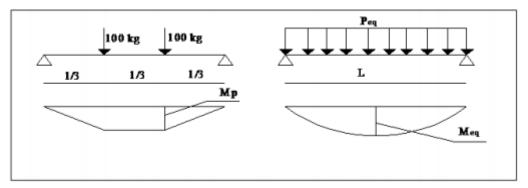


Figure III.3: Moment dû aux surcharges d'entretien

$$M_{\text{max}} = \frac{P \times l}{3} = \frac{P_{\text{eq}} \times l^2}{8}$$
 $P_{\text{eq}} = \frac{8 \times 100}{3 \times 5,30}$

$$P_{eq} = 50,314 \text{ kg/m} = 0,50314 \text{ KN/m}$$

- a) Surcharges climatiques:
- 1) Surcharge du vent (W):

La panne la plus sollicitée est celle exposée au vent sur la façade principale perpendiculaire au versant et dont CPi = +0.8 chargée en zone F:

$$W = -1,0679 \text{ KN/m}^2$$

La charge linéaire du vent est égale à :

$$W = -1,0679 \times 1,8 = -1.922KN/mW = -1.922KN/ml.$$

2) Surcharges de la neige (S):

La surcharge de la neige est en fonction de l'implantation du site de construction (région, altitude) et de la forme de la toiture (inclinaison, possibilité d'accumulation).

S : charge de la neige

Sur le sol : $Sk = 0.843KN/m^2$.

Sur la toiture :

$$S1 = 0.8 \times 0.3 = 0.24 \text{ KN/m}^2$$

$$S2 = 0.5 \times 0.24 = 0.12 \text{ KN/m}^2$$

La charge linéaire de la neige sur la toiture est égale à :

$$S = 0.24 \times 1.8 \implies S = 0.432KN/m$$
.

III.2.2. Combinaisons des charges les plus défavorables

1. Les charges et surcharges appliquée :

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
G = 0.482 KN/m;	G = 0.453 KN/m;
Q = 0.50314 KN/m	Q = 0.50314 KN/m;
W = -1.922 KN/m;	W = -1.922 KN/m;
S =0.432 KN/m	S = 0.432 KN/m
Décomposition o	les charges
➤ Suivant l'axe Z	Suivant l'axe Z
$Gzz = G \cos\alpha = 0.471 \text{ KN/m}$	$Gzz = G \cos \alpha = 0.443 \text{ KN/m}$
$Qzz = Q \cos\alpha = 0.492KN/m$	$Qzz = Q \cos\alpha = 0.492 \text{ KN/m}$
Wzz = W = -1.922 KN/m;	Wzz = W = -1.922 KN/m
$Szz = S \cos\alpha = 0.422 \text{ KN/m}.$	$Szz = S \cos\alpha = 0.422 \text{ KN/m}$
➤ Suivant l'axe Y-Y	Suivant l'axe Y-Y
$Gyy = G \sin\alpha = 0.099 \text{ KN/m}$	Gyy = $G \sin \alpha = 0.093 \text{ KN/m}$
$Qyy = Q \sin\alpha = 0.1034 \text{ KN/m};$	$Qyy = Q \sin\alpha = 0.1034 \text{ KN/m}$
Wyy = 0KN/m;	Wyy = 0KN/m;
$Syy = S \sin\alpha = 0.088 \text{ KN/m}.$	$Syy = S \sin\alpha = 0.088 \text{ KN/m}.$

III.2.3.Les combinaisons d'actions

1) **ELU**:

$$(1) \begin{cases} q_{z}^{u} = G_{z} + 1,5W_{z} \\ q_{y}^{u} = 1,35G_{y} + 1,5W_{y} \end{cases}$$

$$(2) \begin{cases} q_{z}^{u} = 1,35G_{z} + 1,5S_{z} \\ q_{y}^{u} = 1,35G_{y} + 1,5S_{y} \end{cases} =$$

$$(3) \begin{cases} q_{y}^{u} = 1,35G_{z} + 1,5Q_{z} \\ q_{y}^{u} = 1,35G_{y} + 1,5Q_{y} \end{cases}$$

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
q_z^u = -2.401 KN/m	$q_z^u = -2.44 \text{ KN/m}$
q_y^u =0.133 KN/m	$q_y^u = 0.125 \text{ KN/m}$
q_z^u =1.268 KN/m	q_z^u = 1.231 KN/m
$q_y^u = 0.265 \text{ KN/m}$	$q_y^u = 0.257 \text{ KN/m}$
q_z^u =1.373 KN/m	$q_z^u = 1.336 \text{ KN/m}$
$q_y^u = 0.288 \text{ KN/m}$	$q_y^u = 0.280 \text{ KN/m}$

On remarque que le 1^{ere} combinaison est la plus défavorable et le risque de déversement de la semelle inferieure doit être vérifié pour cette combinaison où le vent agit seul.

Selon les deux axes y et z, les charges maximales à l'ELU revenant à la panne la plus sollicitée en tenant compte de la continuité :

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
$q_z^u = 1.25 \times (-2.401) = -3.001 \text{ KN/m}$	$q_z^u = 1.25 \times (-2.44) = -3.05 \text{ KN/m}$
$q_y^u = 1.25 \times (0.288) = 0.36 \text{ KN/m}$	$q_y^u = 1.25 \times (0.280) = 0.35 \text{ KN/m}$

1. ELS

$$(1) \begin{cases} \mathbf{q}_{z}^{s} = \mathbf{G}_{z} + \mathbf{W}_{z} \\ \mathbf{q}_{y}^{s} = \mathbf{G}_{y} + \mathbf{W}_{y} \end{cases}$$

$$(2) \begin{cases} \mathbf{q}_{z}^{s} = \mathbf{G}_{z} + \mathbf{S}_{z} \\ \mathbf{q}_{y}^{s} = \mathbf{G}_{y} + \mathbf{S}_{y} \end{cases}$$

$$(3) \begin{cases} \mathbf{q}_{z}^{s} = \mathbf{G}_{z} + \mathbf{Q}_{z} \\ \mathbf{q}_{y}^{s} = \mathbf{G}_{y} + \mathbf{Q}_{y} \end{cases}$$

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
q _z ^s = -1.451 KN/m	$q_z^s = -1.479 \text{ KN/m}$
q_y^s =0.099 KN/m	$q_y^s = 0.093 \text{ KN/m}$
q_z^s =0.893 KN/m	$q_z^s = 0.865 \text{ KN/m}$
$q_y^s = 0.187 \text{ KN/m}$	$q_y^s = 0.181 \text{ KN/m}$
q_z^s =0.963 KN/m	$q_z^s = 0.935 \text{ KN/m}$
q_y^s =0.202 KN/m	$q_y^s = 0.196 \text{ KN/m}$

Selon les deux axes Y et Z ; les charges maximales à l'ELS revenant à la panne la plus sollicitée en tenant compte de la continuité :

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
$q_z^s = 1.25 \times (-1.451) = -1.813 \text{ KN/m}$	$q_z^s = 1.25 \times (-1.479) = -1.848 \text{ KN/m}$
$q_y^s = 1.25 \times (0.202) = 0.252 \text{ KN/m}$	$q_y^s = 1.25 \times (0.196) = 0.245 \text{ KN/m}$

III.3 Principe de prédimensionnement

Les pannes sont sollicitées à la flexion déviée (flexion bi axiale).

Elles doivent satisfaire les deux conditions suivantes :

- Condition de flèche (l'ELS).
- Condition de résistance (1'ELU).

Généralement, on fait le pré dimensionnement des pannes par l'utilisation de la condition de flèche, puis on fait la vérification de la condition de résistance.

III.3.1 Vérification à l'ELS (flèche)

La vérification à l'état limite de service se fait avec les charges et surcharges de service (non pondérée) :

$$f \leq fadm$$
.

Pour une poutre sur deux appuis uniformément chargées :

$$f_z = \frac{5}{384} \frac{q_{s,z} L^4}{EI_v} \le f_{adm} = \frac{L}{200}$$

> Pour une poutre sur trois appuis uniformément chargées :

$$f_y = \frac{2.5}{384} \frac{q_{s,y}(L/2)^4}{EI_z} \le f_{adm} = \frac{\frac{L}{2}}{200}$$

III.3.2. Vérification à l'ELU (résistance)

Dans la condition de résistance à l'ELU il faut faire les vérifications suivantes :

$$\left(\frac{M_y}{M_{pl,y}}\right)^{\alpha} + \left(\frac{M_z}{M_{pl,z}}\right)^{\beta} \le 1$$
 EC03Art 5.4.8.1(11)

Avec:
$$\alpha = 2$$
, $\beta = 1$.

Le prédimensionnement se fait par la condition de la flèche à l'ELS comme présenté dans le tableau ci-dessous ;

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
$f_z = \frac{5}{384} \frac{q_{s,z} L^4}{EI_y} \le f_{adm} = \frac{L}{200}$	$f_z = \frac{5}{384} \frac{q_{s,z} L^4}{EI_y} \le f_{adm} = \frac{L}{200}$
$f_z \le f_{adm} = \frac{530}{200} = 2.6 \text{ cm}$	$f_z \leq f_{adm} = \frac{530}{200} = 2.6 \text{ cm}$
$I_{y} \ge \frac{5}{384} \frac{q_{s,z} L^4}{E f_{adm}}$	$I_{y} \ge \frac{5}{384} \frac{q_{s,z} L^{4}}{E f_{adm}}$
$I_{y} \ge \frac{5}{384} \frac{1.813 \times (530)^{4}}{2.1 \times 10^{5} \times 26.5}$	$I_y \ge \frac{5}{384} \frac{1.848 x(530)^4}{2.1 x 10^5 x 26.5}$
I _y ≥334.71 cm ⁴	$I_y \ge 341.17 \text{ cm}^4$
$f_y = \frac{2.5}{384} \frac{q_{s,y}(L/2)^4}{El_z} \le f_{adm} = \frac{\frac{L}{2}}{200}$	$f_y = \frac{2.5}{384} \frac{q_{s,y}(L/2)^4}{EI_z} \le f_{adm} = \frac{\frac{L}{2}}{200}$
$f_y \leq f_{adm} = \frac{530/2}{200} = 1.325 \text{ cm}$	$f_y \le f_{adm} = \frac{530/2}{200} = 1.325 \text{ cm}$
$I_{z} \ge \frac{2.5}{384} \frac{q_{s,y} \left(\frac{L}{2}\right)^{4}}{E f_{adm}} :$	$I_{z} \ge \frac{2.5}{384} \frac{q_{s,y} \left(\frac{L}{2}\right)^{4}}{E f_{adm}} :$
$I_z \ge \frac{2.5}{384} x^{\frac{0.252 \times (530/2)^4}{2.1 \times 10^5 \times 13.25}}$	$I_z \ge \frac{2.5}{384} x \frac{0.245 x (530/2)^4}{2.1 x 10^5 x 13.25}$

$I_z \ge 2.90 \text{ cm}^4$	$I_z \ge 2.82 \text{ cm}^4$

A l'ELS; les sections correspondantes d'après le tableau des profilés sont :

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
IPE140 avec	CIRC 168x3 avec
$I_y \ge 541.2 \text{ cm}^4$	$I_y \ge 529 \text{ cm}^4$
$I_z \ge 44.92 \text{ cm}^4$	$I_z\!\geq\!1.059~cm^4$
G = [(Pcouverture + Pacceso	pires) × (e)] + Ppanne
$G = [(14 + 4) \times 1,8] + 12.9$	$G = [(14 + 4) \times 1,8] + 12.2$
G =45.3Kg/m	G =44.6Kg/m
G =0.453KN/m	G =0.446KN/m
Décomposition	ns des charges
Suivant l'axe Z Gzz =G cosα =0.443 KN/m	Suivant l'axe Z Gzz =G cosα = 0.436KN/m
Suivant l'axe Y-Y Gyy = G sinα =0.093 KN/m	Suivant l'axe Y-Y Gyy = G sinα= 0.091 KN/m

III.4 Dimensionnement des pannes

Les pannes sont dimensionnées pour satisfaire les conditions suivantes :

- ✓ Condition de la flèche.
- ✓ Condition de résistance

III.4.1 Les combinaisons de calcul

$$(1) \begin{cases} q_{z}^{u} = G_{z} + 1,5W_{z} \\ q_{y}^{u} = 1,35G_{y} + 1,5W_{y} \end{cases}$$

$$(2) \begin{cases} q_{z}^{u} = 1,35G_{z} + 1,5S_{z} \\ q_{y}^{u} = 1,35G_{y} + 1,5S_{y} \end{cases} = (3) \begin{cases} q_{z}^{u} = 1,35G_{z} + 1,5Q_{z} \\ q_{y}^{u} = 1,35G_{y} + 1,5Q_{y} \end{cases}$$

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
q_z^u = -2.545 KN/m	q_z^u = -2.447 KN/m
q_y^u =0.122 KN/m	$q_y^u = 0.122 \text{ KN/m}$
q_z^u = 1.231 KN/m	q_z^u =1.22 KN/m
q_y^u =0.257 KN/m	q_y^u =0.254 KN/m
$q_z^u = 1.336 \text{KN/m}$	q_z^u =1.326 KN/m
q_y^u = 0.280 KN/m	q_y^u =0.277 KN/m

Selon les deux axes y et z, les charges maximales à l'ELU revenant à la panne la plus sollicitée en tenant compte de la continuité :

TREILLIS SPATIAL 3D
$q_z^u = 1.25 \times (-2.447) = -3.058 \text{ KN/m}$
$q_y^u = 1.25 \times (0.277) = 0.346$ KN/m

III.4.2 Détermination des sollicitations

A. Moments:

> Sous le vent (W):

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D		
$Axe Z - Z: M_y = \frac{q_z \times L^2}{8}$	$Axe Z - Z: M_y = \frac{q_z \times L^2}{8}$		
$My = \frac{3.18x5.30^2}{8}$ $My = 11.16 \text{ KN.m}$	$My = \frac{3.058x5.30^2}{8}$ $My = 10.73 \text{ KN.m}$		
Axe Y - Y: $M_z = \frac{q_y \times (L/2)^2}{8}$	Axe Y - Y: $M_z = \frac{q_y \times (L/2)^2}{8}$		
$Mz = \frac{0.152x5.30^2}{8}$ $Mz = 0.533 \text{ KN.m}$	$Mz = \frac{0.152x5.30^2}{8}$ $Mz = 0.533 \text{ KN.m}$		

> Sous la charge d'exploitation (Q) :

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D		
$Axe Z - Z: M_y = \frac{q_z \times L^2}{8}$	$Axe Z - Z: M_y = \frac{q_z \times L^2}{8}$		
$My = \frac{1.67x5.30^2}{8}$	$My = \frac{1.65x5.30^2}{8}$		
My = 5.863 KN.m	My = 5.793 KN.m		
Axe Y - Y: $M_z = \frac{q_y \times (L/2)^2}{8}$	Axe Y - Y: $M_z = \frac{q_y \times (L/2)^2}{8}$:		
$Mz = \frac{0.35x5.30^2}{8}$	$Mz = \frac{0.346x5.30^2}{8}$		
Mz = 1.228 KN.m	Mz = 1.214 KN.m		

> Sous la charge de neige (S):

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D
$Axe Z - Z: M_y = \frac{q_z \times L^2}{8}$	$Axe Z - Z: M_y = \frac{q_z \times L^2}{8}$
$My = \frac{1.538x5.30^2}{8}$	$My = \frac{1.525x5.30^2}{8}$
My = 5.40 KN.m	My = 5.35 KN.m
Axe Y - Y: $M_z = \frac{q_y \times (L/2)^2}{8}$	Axe Y - Y: $M_z = \frac{q_y \times (L/2)^2}{8}$:
$Mz = \frac{0.321x5.30^2}{8}$	$Mz = \frac{0.317x5.30^2}{8}$
Mz = 1.127 KN.m	Mz = 1.113 KN.m

B. Efforts tranchants:

✓ -Effort tranchant due au vent :

TREILLIS SPATIAL 3D
$V_W = \frac{q_z \times L}{2}$
$V_{W} = \frac{-3.058 \times 5.3}{8}$
V_W = -2.025 kn

✓ Effort tranchant due à la neige:

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D	
$: V_{S} = \frac{q_{z} \times L}{2}:$	$: \mathbf{V}_{\mathbf{S}} = \frac{\mathbf{q}_{\mathbf{z}} \times L}{2} :$	
$V_{S} = \frac{1.538 \times 5.3}{8}$ $V_{S} = 1.018 \text{ KN}$	$V_{S} = \frac{1.525 \times 5.3}{8}$ $V_{S} = 1.010 \text{ KN}$	

✓ -Effort tranchant due à la charge d'exploitation:

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D		
$V_Q = \frac{q_z \times L}{2}$:	$V_Q = \frac{q_z \times L}{2}$:		
$V_Q = \frac{1.67 \times 5.3}{8}$ $V_Q = 1.106 \text{ KN}$	$V_{Q} = \frac{1.65 \times 5.3}{8}$ $V_{Q} = 1.093 \text{ KN}$		

III.4.3 Vérification de la résistance des pannes (ELU)

- 1) Calcul en plasticité :
- Classe de la section :

$$\left(\frac{M_y}{M_{pl,y}}\right)^{\alpha} + \left(\frac{M_z}{M_{pl,z}}\right)^{\beta} \le 1$$
 EC03Art 5.4.8.1(11)

Avec:
$$\alpha = 2$$
 , $\beta = 1$.

Les sections choisies dans notre cas, sont tous des classe (1):

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D		
$\mathbf{M}_{\mathbf{ply}} = \frac{\mathbf{W}_{\mathbf{ply}} \times \mathbf{f}_{\mathbf{y}}}{\mathbf{\gamma}_{\mathbf{M0}}}$	$\mathbf{M}_{\mathbf{ply}} = \frac{\mathbf{w}_{\mathbf{ply}} \times f_{y}}{\gamma_{M0}}$		
$Mply = \frac{88.34.10^{-3} \times 235}{1}$ $Mply = 20.75 \text{ KN.m}$	$Mply = \frac{81.7.10^{-3} \times 235}{1}$ $Mply = 19.19 \text{ KN.m}$		
$\mathbf{M_{plz}} = \frac{\mathbf{W_{plz}} \times f_y}{\gamma_{M0}}$	$\mathbf{M_{plz}} = \frac{\mathbf{W_{plz}} \times f_y}{\gamma_{M0}}$		
$Mplz = \frac{19.25.10^{-3} \times 235}{1}$ $Mply = 45.23 \text{ KN.m}$	$Mplz = \frac{63.10^{-3} \times 235}{1}$ $Mply = 14.80 \text{ KN.m}$		
$\left[\frac{11.16}{20.75}\right]^2 + \left[\frac{1.228}{45.23}\right]^1 = 0.42 < 1$	$\left[\frac{10.73}{19.19}\right]^2 + \left[\frac{1.214}{14.80}\right]^1 = 0.36 < 1$		

- ✓ Pour les deux types de structures (PORTIQUE 2D & TREILLIS 2D), l'IPE140 est suffisant en calcul plastique, en présence des liernes au milieu. On retient par conséquent l'IPE140 avec lierne comme sections pour les pannes.
- ✓ Le profilé circulaire 168x3 résiste en calcul plastique, on le retient par conséquent comme panne pour notre structure TREILLIS SPATIAL 3D. Cette structure n'a pas d'autre élément pour soutenir la panne.

1) Vérification à l'effort tranchant :

La vérification à l'effort de cisaillement est donnée par la formule suivante : $V_z \le V_{plz}$

$$V_{plz} = \frac{A_{vz} \times f_y}{\sqrt{3} \times \gamma_{M0}}$$

$$Vplz = \frac{7.64 \times 23.5}{\sqrt{3}}$$

$$Vplz = 103.65 \text{ KN}$$

• Sous le vent :

 $V_z = 2.107 \text{ KN} < V_{plz} = 103.65 \text{ KN}$ Vérifiée

• Sous la charge d'exploitation :

 $V_z = 1.106 \text{ KN} < V_{plz} = 103.65 \text{ KN}$ Vérifiée

• Sous la neige :

 $V_z = 1.018 \text{ KN} < V_{plz} = 103.65 \text{ KN}$ Vérifiée

2) Vérification au déversement :

La vérification à faire est :

$$: M_{sdy} \le \chi_{lt} \times \beta_w \frac{W_{pl,y} \times f_y}{\gamma_{M1}} \qquad EC3 \text{ Art } 5.5.2(1)$$

Classe (1)
$$\Longrightarrow \beta_w = 1$$

 χ_{LT} : coefficient de réduction en fonction de $\overline{\lambda_{LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{ply} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] (\beta_{w})^{0.5}$$

 $\overline{\lambda_{LT}}$: est l'élancement réduit vis-à-vis le déversement.

Mer: est le moment critique de déversement. (F.2, Art F.1.2 EC03)

$$G = \frac{1}{2(1+\nu)}E = 0.4E$$
;

It: moment d'inertie de torsion = 2.45 cm^4

Iw: moment d'inertie de gauchissement = 1980 cm⁶

Iz : moment d'inertie de flexion suivant l'axe faible = 44.92 cm⁴

K et K_w : les facteurs de longueur effective avec : K=1 appui simple (tableau F.1.2 EC03)

 $K_w=1$ (pas d'encastrement aux extrémités); L=265 cm

C₁, C₂, C₃: facteurs dépendant des conditions de charge et d'encastrement (K=1).

$$C_1 = 1,132$$
 $C_2 = 0,459$ $C_3 = 0,525$ (tableau F.1.2 EC03)

$$Z_g = Z_a - Z_s$$

Zg : est la distance du point d'application de la charge au centre s de la torsion (Zg est aussi positif si la charge agit vers le centre de torsion et négatif dans le cas contraire)

Za : coordonnée du point d'application de la charge

Zs : coordonnée du centre de cisaillement = 0

On a:

$$Za = -\frac{h}{2} = \frac{14}{2} = -7$$
 cm Sous le vent
 $Zg = Za - Zs = -7$ cm Sous la charge verticale

$$M_{cr} = \frac{1.132 \times 3.14^2 \times 2.1 \times 44.92}{2.65^2} \{ \left[\frac{0.198}{44.92} + \frac{2.65^2 \times 2.45}{3.14^2 \times 2.6 \times 44.92} + (0.459 \times (-0.07))^2 \right]^{1/2} - (0.459 \times (-0.07)) \}$$

 $M_{cr}=26.21\;KN.m$

$$\overline{\lambda LT} = \sqrt{\frac{1 \times 88.34 \times 10^{-6} \times 235}{26.21 \times 10^{-3}}} = 0.88$$

 $\overline{\lambda LT} = 0.88 > 0.4$ Donc il y'a un risque de déversement

Profilé laminé :
$$\alpha = 0.21$$
 ; courbe (a) $\overline{\lambda}LT = 0.7957$

Pour
$$\overline{\lambda LT} = 0.88$$
 $\chi LT = 0.7957$

La vérification à faire au déversement est :

$$M_{y,sd} \le M_{b,rd} = \chi_{LT} \times \beta_w \times W_{ply} \times \frac{f_y}{\gamma_{M1}}$$

$$M_{b,rd} = 0.7957 \times 1 \times \frac{88.34 \times 10^{-6} \times 235}{1.1}$$

$$M_{b,rd} = 15.01 \text{ KN.m}$$

$$My,sd = 13.37 \text{ KN.m} < M_{b, rd} = 15.01 \text{ KN.m}$$
 Vérifié

La section en IPE140 assure une bonne résistance vis-à-vis des différents cas d'instabilité, donc il est convenable pour les pannes de notre structure.

III.5 Calcul de l'échantignolle III.5.1 Définition

L'échantignolle est un dispositif de fixation qui permet de fixer les pannes sur les fermes ou les traverses de portiques. On utilisera des échantignoles pour les structures en **TREILLIS 2D** et **PORTIQUE 2D**.

L'excentrement « t » est limité par la condition suivante :

$$2 (b/2) \le t \le 3 (b/2)$$

Pour un IPE140 : b = 7.3cm et h = 14cm 7.3cm $\le t \le 14$ cm, on adopte t = 12cm

Figure III.4: Représentation de l'échantignole

III.5.2.1 Détermination des sollicitations

III.5.2.2 Combinaison du calcul

Sous la combinaison : G×cosα - 1.5 W (la plus défavorable)

$$q_z^u = G \times \cos \alpha + 1.5W = -0.453 \times \cos 11.86 + 1.5 \times 1.922 = 2.439KN/m$$

Charge revenant à la panne et en tenant compte de la continuité :

$$q_z^u = 1.25 \text{ x } 2.439 = 3.049 \text{ KN/m}$$

III.5.3 Calcul des réactions

L'effort **R** revenant à l'échantignolle n'est rien que la réaction d'appui des pannes. On prendra l'effort maximal correspondant à l'échantignolle intermédiaire (et non l'échantignolle de rive).

$$R = 1.25 \times q_z^u \times L = 1.25 \times 3.049 \times 5.30$$

 $R = 20.19$ KN.

III.5.3.1. Calcul du moment de renversement

L'effort \mathbf{R} risque de provoquer le pliage de l'échantignolle. Pour prévenir ce risque, il faut vérifier que le moment de renversement $\mathbf{M}_{\mathbf{R}}$ ne dépasse pas le moment de pliage.

 $M_R \le Mpliag$ Avec: $M_R = R \times t$

Pour notre IPE140 : $M_R = R \times t = 20.19 \times 0.07 = 1.413 \text{ KN.m}$

 $M_R = 1.413 \text{ KN.m}$

Mpliage est le moment résistant au pliage de l'échantignolle. Généralement les échantignolles sont des éléments formés à froid. La classe de la section est au moins de classe (3).

$$M_{\text{pliage}} = W_{\text{ely}} \times \frac{f_y}{\gamma_{M0}} \ge M_R \implies W_{\text{ely}} \ge \frac{\gamma_{M0} \times M_R}{f_y}$$

$$W_{\text{ely}} \ge \frac{1 \times 1.413 \times 10^2}{23.5} = 6.012 \text{ cm}^3$$

III.5.2.4. Epaisseur de l'échantignolle

Pour une section rectangulaire:

$$W_{ely} = \frac{a \times e^2}{6}$$

$$e \ge \sqrt{\frac{6.W_{el}}{a}}$$
 Donc :

$$e \ge \sqrt{\frac{6 \times 6.012}{21.2}}$$
 $e \ge 1.30 \text{ cm}$ soit $e = 2 \text{ cm}$

Remarque : la largeur de l'échantignolle « a » est calculée après avoir dimensionné la membrure supérieure de la ferme, 2L100*12

a = 10+10+1.2=21.2 cm; avec l'épaisseur du gousset est de 10mm.

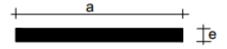


Figure III.5 : dimension de l'échantignole

III.6 Calcul des liernes

III.6.1 Définition

Les liernes sont des tirants qui fonctionnent en traction. Elles sont généralement formées de barres rondes ou de petites cornières. Leur rôle principal est d'éviter la déformation latérale des pannes.

III.6.2 Dimensionnement des pannes

III.6.2.1 Calcul de l'effort de traction dans le lierne la plus sollicitée :

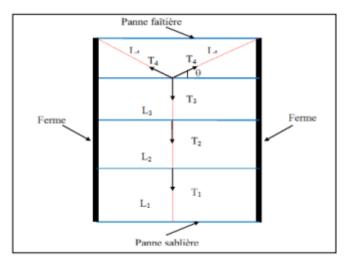


Figure III.6 : Schéma explicatif pour la disposition des liernes

La réaction R au niveau du lierne :

$$R = 1.25Qy \times ly$$
 avec: $ly = L/2$

$$Qy = 1,35Gy + 1,5Sy = 0.265 \text{ KN/m}$$

$$R = 1,25 \times 0,265 \times (5,30/2) = 0.877 \text{ KN}$$

R = 0.877 KN.

Efforts de traction dans le tronçon de lierne

L1 : Lierne1 : T1 = R/2 = 0.438 KN

Effort dans le tronçon L2:

Lierne2: T2 = T1 + R = 1.315 KN

Effort dans le tronçon L3:

Lierne3: T3 = T2 + R = 2.192 KN

Effort dans le tronçon L4:

Lierne4: T4 = T3 + R = 3.069 KN

Effort dans le tronçon L5:

Lierne5 : T5 = T4 + R = 3.946 KN

Effort dans le tronçon L6:

Lierne6: T6 = T5 + R = 4.823 KN

Effort dans le tronçon L7:

Lierne7 : T7 = T6 + R = 5.70 KN

Effort dans le tronçon L8:

Lierne8 : T8 = T7 + R = 6.577 KN

Effort dans les diagonales L9:

Lierne9 : T9 = T8 + R = 7.454 KN

Effort dans les diagonales L10:

 $2T10 \times \cos \theta = T9$

$$q = tan^{-1} \left(\frac{e}{L/2}\right) = tan^{-1} \left(\frac{1.8}{2.65}\right) = 34.18^{\circ}$$

$$T10 = \frac{T9}{2 \times \cos \theta} = \frac{7.454}{2 \times \cos 34.18}$$

T10 = 4.50 KN

III.6.3 Calcul de la section des liernes

Le tronçon le plus sollicité est L10.

Condition de vérification à la résistance est la résistance plastique de la section brute :

$$N_{t,sd} \le N_{pl,sd}$$
 avec : $N_{pl} = A \times \frac{f_y}{\gamma_{M0}} \Longrightarrow A \ge \frac{N_{t,sd} \times \gamma_{M0}}{f_y}$

$$A \ge \frac{N_{t,sd} \times \gamma_{M0}}{f_y}$$
 $A \ge \frac{4.50 \times 1}{23.5} = 0.19 \text{ cm}^2$

$$A = \frac{\pi \times \phi^2}{4} \ge 0.19 \text{ cm}^2$$
 $\phi \ge \sqrt{\frac{0.19 \times 4}{3.14}} = 0.49 \text{ cm}$

On adopte une barre ronde de ϕ =10mm comme lierne pour les deux structures de notre projet (PORTIQUE 2D & TREILLIS 2D).

III.7 Les poutres de chainages :

Elles sont déposées sur les poteaux, leur hauteur est donnée selon la condition du RPA99/V2003 suivante :

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10}$$

Lmax : portée maximale entre nœuds d'appuis de deux poutres principales. Lmax = 500 cm

$$33.33 \text{ cm} \le h \le 50 \text{ cm}$$

Vérification

Selon les recommandations du RPA 99(version2003), on doit satisfaire les conditions suivantes :

$$\begin{cases} b \ge 20cm \\ h \ge 30cm \end{cases}$$
 RPA99 V2003 Art 7.5.1
$$\frac{h}{b} \le 4$$

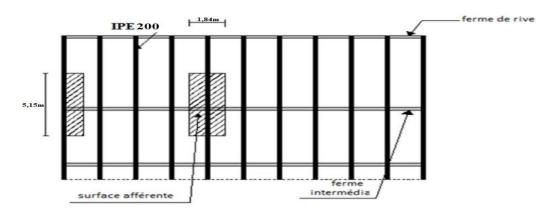
Sachant que

b : largeur de la poutre.

h : hauteur de la poutre.

Soit: h=40 cm et b=30 cm

On a : b = 30 cm > 20 cm


H = 40 cm > 30 cm

h/b = 40/30 = 1.33 < 4

Donc on adopte pour les poutres de chainages la section $(b \times h) = 30 \times 40 \text{ cm}^2$

III.8 Détermination des charges revenantes sur la ferme

On a des fermes en **TREILLIS 2D, TREILLIS SPATIAL 3D et PORTIQUE 2D** de 18,4m de longueur supportant 11 pannes. L'entre axes horizontaux des pannes est d'environ 1,8m l'entre axe des fermes est de 5,15m.

III.8.1 Calcul des charges revenantes sur les nœuds

PORTIQUE 2D & TREILLIS 2D	TREILLIS SPATIAL 3D		
 Évaluation des charges permanentes (G): Nœuds intermédiaires et de rives: La surface horizontale d'influence qui revient pour le nœud intermédiaire: S = 5,15×1,8 = 9.27m² Poids propres: La couverture (les panneaux TL75P) + accessoires de pose0,182×9,475=1,724KN La panne (IPE140) 0,129×5,15 = 0.664 KN La ferme (poids forfaitaire) 0,18×9,475 = 1,706KN Les contreventements (la moyenne des contreventements pour les halls est de 3 à 5 Kg/m2) 0,04×9,475 = 0,379KN 	 Évaluation des charges permanentes (G): Nœuds intermédiaires et de rives: La surface horizontale d'influence qui revient pour le nœud intermédiaire: S = 5,15×1,8 = 9.27m² Poids propres: La couverture (les panneaux TL75P) + accessoires de pose0,182×9,475=1,724KN La panne (CIRC 168x3) 0,122×5,15 = 0.6283 KN La ferme (poids forfaitaire) 0,18×9,475 = 1,706KN Les contreventements (la moyenne des contreventements pour les halls est de 3 à 5 Kg/m2) 0,04×9,475 = 0,379KN 		
G =4.473KN	G =4.437KN		
Surcharge d'ex	xploitation:		
$Q = 0.50314 \times 5.1$	15 = 2.591 KN		

REMARQUE: les valeurs des charges de vent et de la neige seront donné automatiquement par le logiciel Autodesk ROBOT en utilisant la norme RNV99, et tout en indiquant la zone et la région où la structure sera implantée.

Hypothèses du calcul

L'étude se fait selon la combinaison la plus défavorable des deux combinaisons suivantes :

- Cas de soulèvement : G + 1,5W
- Cas de la neige seule : 1,35G + 1,5S

La ferme a une longueur de 18m avec des forces concentrées verticales dues à la charge transmise par la toiture par l'intermédiaire des pannes

CHAPITRE

IV Étude sismique

IV.1 Introduction:

Les structures faisant l'objet de notre projet fin d'étude seront implantées dans la wilaya de Guelma qui est classée selon le règlement parasismique Algérien (RPA 99 version 2003) comme une zone de moyenne sismicité IIa.

Il est donc très important de les concevoir pour résister au maximum aux effets engendrés par les sollicitations auxquelles elles sont soumises. Pour cela elles doivent être conçues et construites de manière adéquate pour résister à ces secousses sismiques, tout en respectant les recommandations des règles parasismiques algériennes (RPA99 V2003).

IV.2 Modélisation:

Nous avons effectué les étapes de modélisation (définition de la géométrie, conditions aux limites, chargements des structures, etc.) avec le logiciel ROBOT Structural Analysis, de façon totalement graphique, numérique ou combinée, en utilisant les innombrables outils disponibles.

IV.3 Analyse de la structure :

IV.3.1. Type d'analyse :

L'analyse élastique globale, peut être statique ou dynamique, selon la satisfaction des conditions posées par les règlements en vigueur, sur les cas de chargement.

Les chargements statiques :

- Poids propre de la structure.
- Les effets dus aux actions climatiques.

Les chargements dynamiques :

• Les effets sismiques.

IV.3.2 Méthodes de calcul:

En Algérie, la conception parasismique des structures est régie par un règlement en vigueur à savoir le « RPA99 version 2003 ». Ce dernier propose trois méthodes de calcul dont les conditions d'application différent et cela selon le type de structure à étudier, le choix des méthodes de calcul et la modélisation de la structure doivent avoir pour objectif de reproduire au mieux le comportement réel de l'ouvrage. Ces méthodes sont les suivantes :

- La méthode statique équivalente ;
- La méthode d'analyse modale spectrale ;
- La méthode d'analyse dynamique par accélérogramme.

IV.3.2.1. Méthode statique équivalente :

La méthode de calcul la plus employée pour le calcul dynamique des structures, est celle basé sur l'utilisation des spectres de repense

Mais comme le « **RPA99 version 2003** » préconise que le l'effort tranchant dynamique soit supérieur à 80% de l'effort tranchant statique, donc on calcule l'effort tranchant statique par la méthode statique équivalente.

a) Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les efforts sont considérés équivalents à ceux de l'action sismique

b) Calcul de la force sismique totale :

D'après l'art 4.2.3 de RPA 99/version 2003, la force sismique totale V qui s'applique à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A.D.Q}{R}W$$

A : coefficient d'accélération de zone, donné par le tableau (4.1) de « RPA99 version 2003 » en fonction de la zone sismique et du groupe d'usage du bâtiment Dans notre cas, on est dans la Zone IIa et un Groupe d'usage 1B (Si la hauteur est inférieure ou égale à 5 niveaux ou 17 m.)

Nous trouverons:

A = 0.20

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5\eta (T_2/3.0)^{\frac{2}{3}} (3.0/T)^{\frac{5}{3}} & T > 3.0s \end{cases}$$

D: est un facteur d'amplification dynamique moyen qui est fonction de la catégorie de site du facteur de d'amortissement (η) et de la période fondamentale de la structure (T).

Avec:

T1, **T2** : périodes caractéristiques associées à la catégorie du site et donnée par le tableau **4.7** du [RPA99/ version 2003], (S1) : site rocheux :

- T1 (sec) = 0.15s.
- T2 (sec) =0.50s.

 $(\eta$) : Facteur de correction d'amortissement donnée par la formule :

$$\eta = \sqrt{\frac{7}{(2+\xi)}} \ge 0.7$$

Où ξ (%) est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

ξ est donnée par le tableau 4.2 du RPA99 V2003 :

Nous avons une structure en portiques, Donc $\xi = 6\%$

D'où : $\eta = 0.935 > 0.7$

• Estimation de la période fondamentale :

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculée par des méthodes analytiques ou numériques. La formule empirique à utiliser est donnée par le RPA 99/ version 2003 par la formule (4.6) :

$$T = C_T h_N^{3/4}$$

Avec:

 \mathbf{h} : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau $\mathbf{h} = 12.52~\mathbf{m}$

CT = est un coefficient qui est fonction du système de contreventement, du type de remplissage et est donné par le tableau 4.6 du RPA 99/version 2003. Portiques auto stables en béton armé ou en acier avec remplissage en maçonnerie

D'où : CT = 0.050

Donc:

$$T = 0.05 \times 12.52^{3/2} = 0.33s$$

Pour notre cas, on peut utiliser la formule suivante :

$$T = 0.09 \times \frac{h_N}{\sqrt{D}}$$
 RPA99/2003 (4.7. Art. 4.2.4)

D: est la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

✓ Sens transversale : Dx = 19,25m. ✓ Sens longitudinale : Dy = 30,95m

D'après le RPA 99/version 2003, il faut utiliser la plus petite valeur des périodes obtenues dans chaque direction.

$$T_X = 0.09 \times 12.52 / = 0.26 \text{ s}$$

$$T_X = \min (T; T_X) = \min (0.33s; 0.26s) = 0.26s$$

$$T_Y = 0.09 \times 12.52 / = 0.2 \text{ s}$$

$$T_Y = \min (T; T_Y) = \min (0.33s; 0.2s) = 0.2s$$

 T_X et T_Y sont inferieur à T2 = 0.4s

Donc la valeur du facteur d'amplification dynamique moyen est égale :

$$Dx,y = 2.5n = 2.5 \times 0.935 = 2.34$$

 ${f R}$: coefficient de comportement global de la structure. Sa valeur unique est donnée par le tableau 4.3 du ${f RPA99/2003}$ en fonction du système de contreventement. En cas d'utilisation de systèmes de contreventement différents dans les deux directions considérées il y a lieu d'adopter pour le coefficient ${f R}$ la valeur la plus petite. Dans notre cas on a : des portiques auto stables avec remplissages en maçonnerie rigide. On prend : ${f R}=3,5$.

Q : facteur de qualité :

Le facteur de qualité de la structure est fonction de :

- la redondance et de la géométrie des éléments qui la constituent
- la régularité en plan et en élévation
- la qualité du contrôle de la construction

La valeur de **Q** est déterminée par la formule :

$$Q = 1 + \sum_{1}^{6} P_{q}$$
 RPA99/2003 (4.4. Art. 4.2.3)

Tableau IV.1: Pénalité de vérification

Critère de qualité "q"	Pq
1. conditions minimales sur les files de contreventement	0
2. Redondance en plan	0
3. régularité en plan	0
4. régularité en élévation	0
5. Contrôle de qualité des matériaux	0.05
6. Contrôle de la qualité de l'exécution	0.05
$\sum Pq$	0.1

Q = 1 + 0 + 0 + 0 + 0.05 + 0.05 = 1.1

W: poids total de la structure:

W est égal à la somme des poids Wi, calculés à chaque niveau (i) :

$$W = \sum W_i$$

Avec:

$$W_i = W_{Gi} + \beta W_{Oi}$$

 W_{Gi} : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires de la structure

W_{Qi}: Charges d'exploitation

 β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation et donné par le tableau **4.5** du **RPA99/2003.**

Dans notre cas on a:

 β = 0,3 (Salles d'exposition, de sport, lieux de culte, salles de réunions avec places debout).

$$V = \frac{A.D.Q}{R}W$$

REMARQUE: Le poids de differentes structures sera automatiquement par le logiciel ROBOT.

W = 2209.9 KN \rightarrow Treillis 2D

$$V = \frac{0.2 \times 2.34 \times 1.1}{3.5} \times 2209.9 = 325.04 \text{ KN}$$

W = 2091.698 KN **→ PORTIQUE 2D**

$$V = \frac{0.2 \times 2.34 \times 1.1}{3.5} \times 2091.698 = 307.65 \text{ KN}$$

W = 2104.57 KN → TREILLIS SPATIAL 3D

$$V = \frac{0.2 \times 2.34 \times 1.1}{3.5} \times 2104.57 = 309.55 \text{ KN}$$

IV.3.2.2. Méthode dynamique modale spectrale

Cette méthode peut être utilisée dans tous les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

a) Principe de la méthode :

Dans cette méthode on recherche pour chaque mode de vibration le maximum d'effets engendrés dans la structure par les forces sismiques, représentées par un spectre de réponse de calcul. Ces effets vont être combinés suivant la combinaison la plus appropriée pour obtenir la réponse totale de la structure.

b) Spectre de réponse de calcul :

L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1.25A \left(1 + \frac{T}{T_1} \left(2.5\eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\ 2.5\eta \left(1.25A\right) \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\ 2.5\eta \left(1.25A\right) \left(\frac{Q}{R}\right) \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0s \\ 2.5\eta \left(1.25A\right) \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} \left(\frac{Q}{R}\right) & T > 3.0s \end{cases}$$

Avec les coefficients A, η , R, T1, T2, Q : sont déjà déterminés. Q = 1.1 A = 0.2 η = 0.935 T1 = 0.15s T2 = 0.50s

c) Nombre de modes à considérer

Le nombre de mode à considérer dans chaque direction de l'excitation sismique est donné par le **RPA99/2003** comme suit :

- ✓ La somme des masses modales effectives pour les modes retenus soit égale à 90 % au moins de la masse totale de la structure.
- ✓ Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure. Avec un minimum de modes à retenir égale à trois (3) pour chaque direction considérée. Si les conditions citées précédemment ne sont pas vérifiées le nombre de mode à considérer est donné par la formule suivante :

$$K \ge 3 \times \sqrt{N}$$
 et $T_K \le 0,2s$ RPA99/2003 (4.14. Art. 4.3.3)

Où : N est le nombre de niveaux au-dessus du sol et Tk la période du mode K.

d) Résultats du calcul :

1) Pourcentage de la participation de masse :

❖ PORTIQUE 2D

Tableau IV.2: Pourcentage de participation de masse.

Tableau 1 v.2 . 1 ourcentage de participation de masse.					
Cas/Mode	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masse Modale UX [%]	Masse Modale UY [%]
214/ 1	0,47	51,11	0,00	51,11	0,00
214/ 2	0,41	51,11	55,88	0,00	55,88
214/ 3	0,36	51,79	61,17	0,68	5,28
214/ 4	0,32	89,50	61,39	37,71	0,23
214/ 5	0,30	90,36	61,39	0,86	0,00
214/ 6	0,27	90,44	68,82	0,08	7,42
214/ 7	0,25	90,44	80,28	0,00	11,46
214/ 8	0,24	90,44	83,99	0,00	3,71
214/ 9	0,19	90,49	83,99	0,06	0,00
214/ 10	0,18	93,92	83,99	3,42	0,00
215/ 1	0,47	51,11	0,00	51,11	0,00
215/ 2	0,41	51,11	55,88	0,00	55,88
215/ 3	0,36	51,79	61,17	0,68	5,28
215/ 4	0,32	89,50	61,39	37,71	0,23
215/ 5	0,30	90,36	61,39	0,86	0,00
215/ 6	0,27	90,44	68,82	0,08	7,42
215/ 7	0,25	90,44	80,28	0,00	11,46
215/ 8	0,24	90,44	83,99	0,00	3,71
215/ 9	0,19	90,49	83,99	0,06	0,00
215/ 10	0,18	93,92	83,99	3,42	0,00

❖ TREILLIS 2D

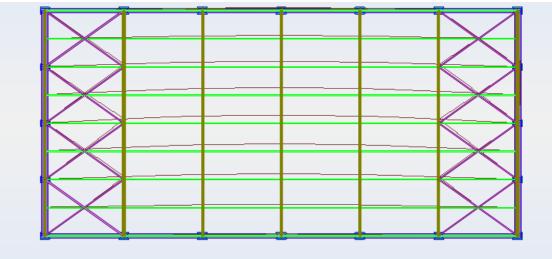
Tableau IV.3: Pourcentage de participation de masse.

		•			
Cas/Mode	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masse Modale UX [%]	Masse Modale UY [%]
127/ 1	0,45	70,00	0,00	70,00	0,00
127/ 2	0,37	70,00	46,84	0,00	46,84
127/ 3	0,36	70,18	69,10	0,18	22,26
127/ 4	0,31	92,90	69,13	22,72	0,03
127/ 5	0,30	94,64	72,90	1,75	3,77
127/ 6	0,26	94,66	79,94	0,01	7,04
127/ 7	0,25	94,79	87,54	0,13	7,61
127/ 8	0,23	94,81	89,24	0,02	1,70
127/ 9	0,22	94,84	90,79	0,03	1,55
127/ 10	0,18	94,84	90,81	0,00	0,02
128/ 1	0,45	70,00	0,00	70,00	0,00
128/ 2	0,37	70,00	46,84	0,00	46,84
128/ 3	0,36	70,18	69,10	0,18	22,26
128/ 4	0,31	92,90	69,13	22,72	0,03
128/ 5	0,30	94,64	72,90	1,75	3,77
128/ 6	0,26	94,66	79,94	0,01	7,04
128/ 7	0,25	94,79	87,54	0,13	7,61
128/ 8	0,23	94,81	89,24	0,02	1,70
128/ 9	0,22	94,84	90,79	0,03	1,55
128/ 10	0,18	94,84	90,81	0,00	0,02

❖ TREILLIS SPATIAL 3D

Tableau IV.4: Pourcentage de participation de masse.

Cas/Mode	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masse Modale UX [%]	Masse Modale UY [%]
127/ 1	0,42	93,02	1,32	93,02	1,32
127/ 2	0,38	95,99	69,84	2,97	68,52
127/ 3	0,30	96,41	93,84	0,42	24,00
127/ 4	0,18	96,41	94,16	0,01	0,33
127/ 5	0,15	96,41	94,20	0,00	0,03
127/ 6	0,14	96,42	94,40	0,01	0,20
127/ 7	0,13	97,64	94,41	1,21	0,02
127/ 8	0,12	97,64	94,42	0,00	0,01
127/ 9	0,12	97,67	95,75	0,04	1,33
127/ 10	0,11	97,70	95,80	0,03	0,04
128/ 1	0,42	93,02	1,32	93,02	1,32
128/ 2	0,38	95,99	69,84	2,97	68,52
128/ 3	0,30	96,41	93,84	0,42	24,00
128/ 4	0,18	96,41	94,16	0,01	0,33
128/ 5	0,15	96,41	94,20	0,00	0,03
128/ 6	0,14	96,42	94,40	0,01	0,20
128/ 7	0,13	97,64	94,41	1,21	0,02
128/ 8	0,12	97,64	94,42	0,00	0,01
128/ 9	0,12	97,67	95,75	0,04	1,33
128/ 10	0,11	97,70	95,80	0,03	0,04


2) Les réponses nodales de la structure

> Déformation modale

La déformation de la structure suivant les modes de vibration les plus prépondérants est illustrés par les figures suivantes :

❖ PORTIQUE 2D

- Mode 1: Translation suivant X-X

Figure IV.1: Mode de déformation N°1 (translation suivant x-x)

- Mode 2 : Translation suivant Y-Y

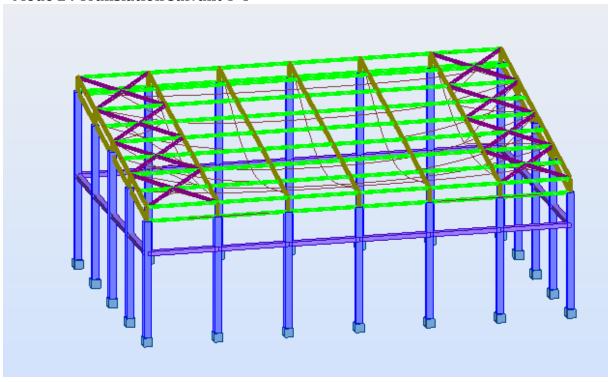
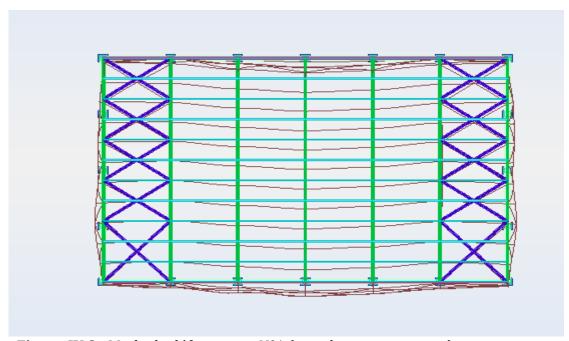



Figure IV.2: Mode de déformation N°2 (translation suivant y-y)

.

❖ TREILLIS 2D

- Mode 1: Translation suivant X-X

Figure IV.3 : Mode de déformation $N^{\circ}1$ (translation suivant x-x)

- Mode 2: Translation suivant Y-Y

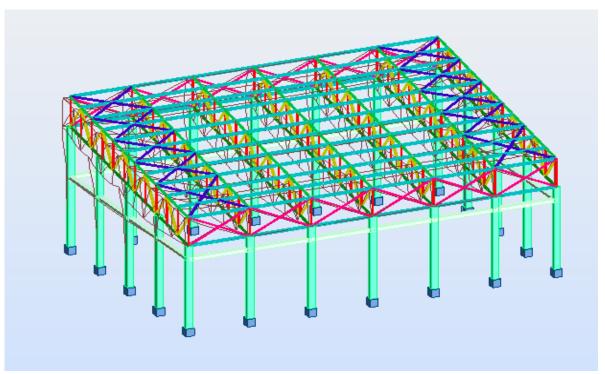


Figure IV.4: Mode de déformation N°2 (translation suivant y-y)

❖ TREILLIS SPATIAL 3D

- Mode 1: Translation suivant X-X

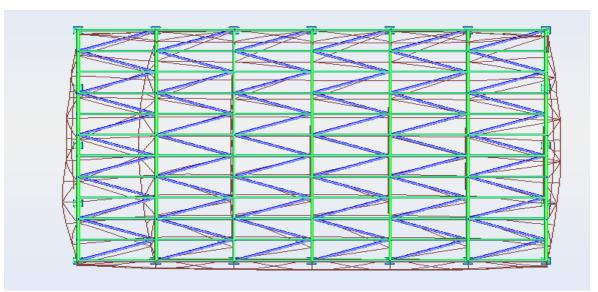
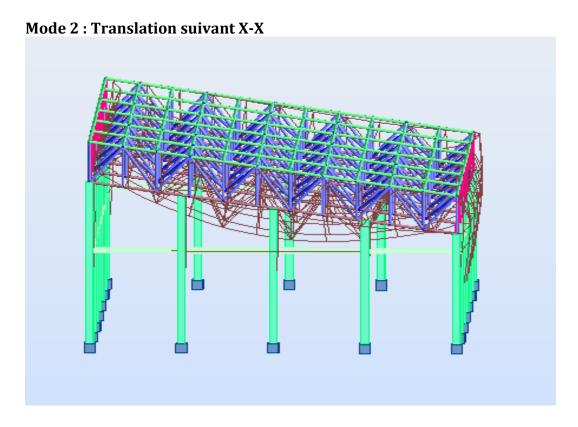
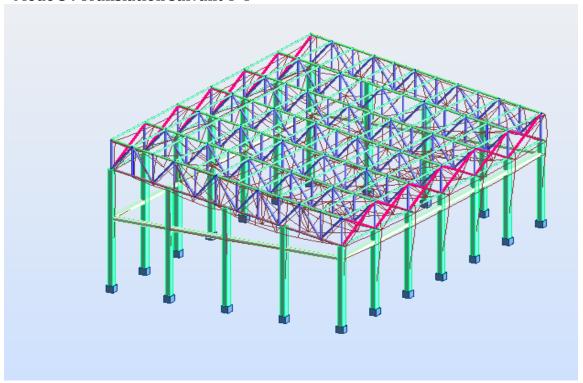




Figure IV.5: Mode de déformation N°1 (translation suivant x-x)

Figure IV.6: Mode de déformation N°2 (translation suivant x-x)

- Mode 3: Translation suivant Y-Y

Figure IV.7: Mode de déformation N°3 (translation suivant y-y)

- Mode 4 : Translation suivant Y-Y

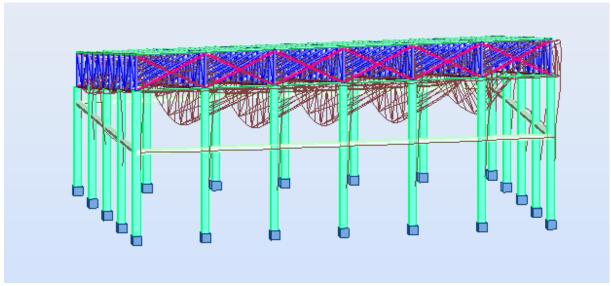


Figure IV.8: Mode de déformation N°4 (translation suivant y-y)

IV.4. Analyse des résultats

Il y a lieu de constater que la structure présente des translations suivant les deux directions horizontales et une rotation autour de l'axe verticale.

IV.4.1. Les combinaisons de calcul

Notation:

G: Poids propre.

 ${f Q}$: Charge d'exploitation.

N : Action de la neige.

W: Action du vent.

• W1D : Vent sur la façade principale avec dépression intérieure.

• W1S : Vent sur la façade principale avec surpression intérieure.

• W2D : Vent sur la façade latérale avec dépression intérieure.

• W2S : Vent sur la façade latérale avec surpression intérieure.

E : Action sismique.

Les combinaisons de calcul adopté selon les règlements en vigueur sont données dans le tableau suivant :

Tableau IV.5: Combinaisons de calcul.

Etat limite ultime	Etat accidentelle	Etat limite de service
G + 1,5V1D	G + Q + 1,2E	G + V1D
G + 1,5V1S	G + Q - 1,2E	G + V1S
G + 1,5V2D	0,8G + E	G + V2D
G + 1,5V2S	0,8G - E	G + V2S
1,35G + 1,5 Q	G + Q + E	G + Q
1,35G + 1,5 S	G + Q - E	G + S
1,35G +1.5 Q + S		G + Q +0.9 S

IV.4.2. Vérification de la résultante des forces sismiques

Selon l'article **4.3.6** du **RPA99**, la résultante des forces sismiques à la base obtenue par la combinaison des valeurs modales doit être supérieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente.

❖ TREILLIS 2D

Tableau IV.6: Vérification de l'effort tranchant à la base.

Forces sismiques	V statique (KN)	0.8V statique (KN)	V dynamique (KN)	Observation
Sens xx	325.04	260.03	212.66	Non vérifiée
Sens yy	325.04	260.03	294.34	Vérifiée

❖ PORTIQUE 2D

Tableau IV.7: Vérification de l'effort tranchant à la base.

Forces sismiques	V statique (KN)	0.8V statique (KN)	V dynamique (KN)	Observation
Sens xx	307.65	246.12	438.21	Vérifiée
Sens yy	307.65	246.12	438.21	Vérifiée

L'effort tranchant dynamique est supérieur de l'effort tranchant statique dans les deux sens.

❖ TREILLIS SPATIAL 3D

Tableau IV.8 : Vérification de l'effort tranchant à la base.

Forces	V statique	0.8V statique	V dynamique	Observation	
sismiques	(KN)	(KN)	(KN)	Observation	
Sens xx	309.55	247.64	447.55	Vérifiée	
Sens yy	309.55	247.64	447.55	Vérifiée	

L'effort tranchant dynamique est supérieur à de l'effort tranchant statique dans les deux sens.

D'après l'article 4.3.6 du l'RPA99, si Vdyn < 0.8Vst on doit augmenter tous les paramètres de la réponse (forces, déplacements, moments...etc.) en multipliant Ex, Ey par le rapport : $0.8 \times Vst/Vdyn$ respectivement.

IV.4.3. Vérification des déplacements :

1er cas: situation durable

Les déplacements sont limités à :

Déplacement horizontal:

$$\begin{cases} \frac{h}{150} & \text{Sans charge du vent} \\ \frac{h}{135} & \text{Avec charge du vent} \end{cases}$$
 EC03 Art 4. 2. 2(1)I

Ou h : hauteur du poteau.

Déplacement vertical :

$$\frac{L}{200}$$
 L: longueur de la travée EC03 Tab 4.1

❖ PORTIQUE 2D

Tableau IV.9 : Déplacement max en situation durable.

	Combinaisons	S	Déplacements max (cm)		
	Avec le vent	Sans le vent	Avec le vent	Sans le vent	
Suivant X	G + 1,5V2S	1,35G+1.5Q+S	10,1	2,4	
Suivant Y	G + 1,5V1S	1,35G+1.5Q+S	2,4	4,6	
Suivant Z	G + 1,5V1S	1,35G+1.5Q+S	0,0	0,0	

On constate que l'un des trois déplacements, avec le vent en l'occurrence, est supérieure aux déplacements calculés. Nous allons donc calculés son déplacement accidentel dans ce cas-ci ;

2ème Cas: situation accidentelle:

Le RPA 99V2003 précise que le déplacement horizontal est calculé sous les forces sismique seul dans l'article 4.4.3, il préconise de limiter les déplacements relatifs latéraux d'un étage par rapport à l'étage qui lui sont adjacent à 1% de la hauteur d'étage suivant l'article 5.10.

Le déplacement horizontal de la structure est calculé comme suit :

$$\delta_k = R \times \delta_{ek}$$

Avec:

R: Coefficient de comportement R = 3.5

Déplacement dû aux forces sismiques (d'après ROBOT)

Il s'agit de vérifier le point le plus haut de la toiture par rapport au sol.

Tableau IV.10: Déplacement relatif des niveaux

	Déplacements	(cm)	Déplacements relatifs (cm)		
Niveau	Suivant X Suivant Y		Suivant X	Suivant Y	
Toiture	1,7	1,5	5.95	5.25	

Tous les déplacements sont inférieurs à 12,52cm, donc ils sont vérifiés.

❖ TREILLIS 2D

Tableau IV.11: Déplacement max en situation durable.

	Combinaisons	5	Déplacements max (cm)		
	Avec le vent	Sans le vent	Avec le vent	Sans le vent	
Suivant X	G + 1,5V2S	1,35G+1.5Q+S	0,4	0,4	
Suivant Y	G + 1,5V1S	1,35G+1.5Q+S	0,9	1,5	
Suivant Z	G + 1,5V1S	1,35G+1.5Q+S	0,0	0,0	

On constate que les déplacements suivant les trois directions sont inférieurs aux déplacements admissibles.

2ème Cas: situation accidentelle:

Pour ce cas les déplacements relatifs ne sont pas à craindre car on a un seul niveau qui comporte des éléments en treillis (on n'a pas des masses importantes qui vont nous engendrées des déplacements importants).

❖ TREILLIS SPATIAL 3D

Tableau IV.12 : Déplacement max en situation durable.

	Combinaisons	5	Déplacements max (cm)		
	Avec le vent	Sans le vent	Avec le vent	Sans le vent	
Suivant X	G + 1,5V2S	1,35G+1.5Q+S	0,3	0,4	
Suivant Y	G + 1,5V1S	1,35G+1.5Q+S	0,5	0,7	
Suivant Z	G + 1,5V1S	1,35G+1.5Q+S	0,0	0,0	

On constate que les déplacements suivant les trois directions sont inférieurs aux déplacements admissibles.

2ème Cas: situation accidentelle:

Pour ce cas les déplacements relatifs ne sont pas à craindre car on a un seul niveau qui comporte des éléments en treillis spatial (on n'a pas des masses importantes qui vont nous engendrées des déplacements importants).

CHAPITRE

Dimensionnements des éléments de la toiture

V.1 Introduction:

Nous avons effectué le calcul avec le logiciel Robot structural, qui est doté d'options permettant le dimensionnement des éléments, et leurs vérifications (Résistance au flambement, résistance au déversement, vérification des flèches et des déplacements...) selon le profilé dimensionné et son mode de sollicitation.

Itinéraire de dimensionnement avec ROBOT :

Avant de commencer la modélisation de la structure, nous avons défini préalablement quelques paramètres (Préférences de l'affaire), concernant les règlements adoptés pour les calculs, et les unités utilisées.

❖ Unité et dimension : KN, m et cm

❖ Charge de Neige et Vent : DTR C2-47/NV99

❖ Charge sismique : RPA99 (2003)

Ainsi nous pouvons enfin commencer la modélisation de la structure, une étape primordiale pour pouvoir dimensionner une structure avec le logiciel ROBOT, et qui se traduit par la conception de la structure à étudier en 3D, en prenant soin de bien choisir pour chaque élément, un type de profilés couramment utilisés.

Après avoir modélisé la structure, on passe au chargement, en affectant à la structure les différentes charges à laquelle elle est soumise (calculées auparavant).

Notre structure est soumise aux charges suivantes :

- Poids propre de la structure.
- Charges permanentes (panneau sandwich,).
- Charges d'exploitations.
- Charges climatiques (vent, neige).
- Charges sismiques.

Ayant terminé le chargement de la structure, on passe à la définition des combinaisons (ELU, ELS, ACC) avec lesquelles le logiciel effectue le dimensionnement et les vérifications, ensuite on affecte à chaque type d'élément les paramètres de flambement et de déversement pour le calcul à l'ELU, ainsi que les déplacements et flèches limites pour le calcul à l'ELS, selon le type de chaque élément, et on lance l'analyse de la structure.

Après avoir effectué toutes ces étapes, on pourra passer à l'étape de prédimensionnement des éléments de la structure, en procédant comme suit : Pour pouvoir effectuer un prédimensionnement automatique avec ROBOT, on doit créer pour chaque type d'élément ce qu'on appelle une famille, en sélectionnant la liste des éléments de même type (montants, poutres, membrures supérieures de la ferme...), et la liste des profilés avec lesquels on veut que le logiciel dimensionne notre élément. On lance le calcul, et on choisit parmi les résultats proposés par le logiciel, le profilé le mieux adapté à notre cas.

Les vérifications à faire sont :

1. La traction:

$$N_{sd} \le N_{rd} = \frac{A \times f_y}{\gamma_{m0}}$$
 EC3 Art 5.4.3.1

2. Au flambement:

$$N_{sd} \leq N_{rd} = \chi_{\min} \times \beta_A \times A \times \frac{f_y}{\gamma_{m1}}$$

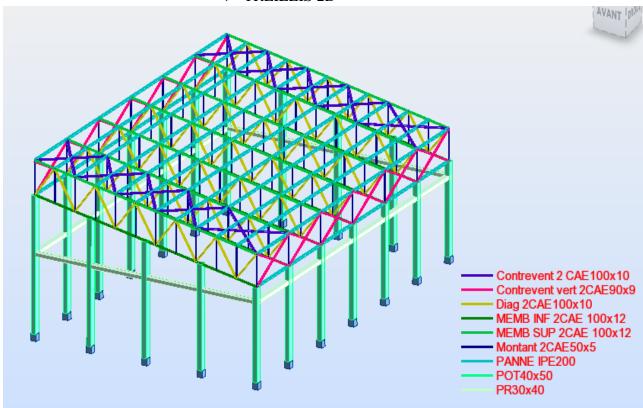
$$\chi = \frac{1}{\Phi + \left[\Phi^2 - \overline{\lambda}^2\right]^{\frac{1}{2}}}$$

$$\Phi = 0.5 \left[1 + \alpha(\overline{\lambda} - 0.2) + \overline{\lambda}^2\right]$$

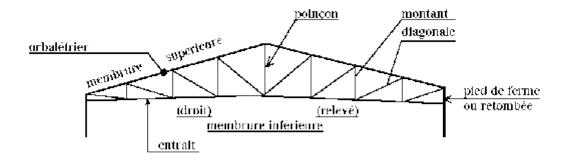
$$\lambda_y = \frac{l_y}{l_y} \quad \text{Avec} \quad l_y = \sqrt{\frac{I_y}{A}}$$

$$\overline{\lambda} = \left[\frac{\lambda}{\lambda_1}\right] [\beta_a]^{0.5} \quad avec \beta_a = 1$$
Section de classe 01

3. La condition de résistance :


$$\frac{N_{sd}}{N_{rd}} < 1$$

N_{sd}: Effort normal sollicitant.


Nrd: Effort résistant.

4. Efforts max sollicitant les éléments structuraux de la toiture :

❖ TREILLIS 2D

Il s'agit des éléments en une cornière ou double cornières sollicités en (traction, compression).

Les efforts max globaux enveloppés puisés de logiciel ROBOT sont récapitulés dans les tableaux suivants :

Tableau V.1 : Efforts max sollicitant les montants

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
Montant	2CAE50x5	ELU	7,86 KN	1.35G+1.5S	187,05 KN	1.35G+1.5S
		ELA	11,43 KN	G+Q-1.2E _y	210,77 KN	G+Q+1.2E _y
		ELS	5,82 KN	G+Q+0.9S	138,55 KN	G+Q+0.9S

Tableau V.2 : Efforts max sollicitant les diagonales.

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
Diagonale		ELU	272,71 KN	G+1.5V1S	273,21 KN	1.35G+1.5S
	2CAE100x10	ELA	420,90 KN	G+Q-1.2E _y	301,88 KN	G+Q+1.2Ey
		ELS	204,44KN	G+V1S	202,38 KN	G+Q+0.9S

Tableau V.3 : Efforts max sollicitant les membrures supérieures.

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
		ELU	36,93 KN	G+1.5V1S	169,87 KN	1.35G+1.5S
Membrure supérieure	2CAE100x12	ELA	59,67 KN	G+Q-1.2Ey	188,88 KN	G+Q+1.2E _y
		ELS	27,75 KN	G+V1S	125,83 KN	G+Q+0.9S

Tableau V.4: Efforts max sollicitant les membrures inferieures.

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
		ELU	165,84 KN	1.35G+1.5S	18,09 KN	G+1.5V1S
Membrure inferieure	2CAE100x12	ELA	130.50 KN	G+Q-1.2Ex	25,95 KN	0.8G+Ex
		ELS	122,84 KN	G+Q+0.9S	10,71 KN	G+V1S

5. Notes de calcul puisées de logiciel ROBOT des différents éléments de la toiture :

A. Montants CALCUL DES STRUCTURES ACIER

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE: MONTANTS

CHARGEMENTS:

Cas de charge décisif: 5 G+1.5V1S (1+2)*1.33+(65+67)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: Montants 2CAE50x5

tf=0.5 cm Wely=6.09 cm3 Welz=9.82 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = -1.82 kN My,Ed = -0.03 kN*m Mz,Ed = -0.37 kN*m Vy,Ed = 0.15 kN

Nt,Rd = 225.72 kN My,el,Rd = 1.43 kN*m Mz,el,Rd = 2.31 kN*m Tau,y,max,Ed = 0.33 MPa

My,c,Rd = 1.43 kN*m Mz,c,Rd = 2.31 kN*m Vz,Ed = -0.03 kN

Tau,z,max,Ed = -0.06 MPa Tt,Ed = -0.00 kN*mClasse de la section = 3

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

X

en y:

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

 $N, Ed/Nt, Rd + My, Ed/My, c, Rd + Mz, Ed/Mz, c, Rd = 0.16 < 1.00 \quad (6.2.1(7))$

 $sqrt(Sig,x,Ed*^2 + 3*Tau,z,max,Ed^2)/(fy/gM0) = 0.19 < 1.00 \quad (6.2.1.(5))$

Tau,y,max,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6.(4))

 $Tau,z,max,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 \quad (6.2.6.(4))$

B. Diagonales

CALCUL DES STRUCTURES ACIER

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE: DIAGONALES

CHARGEMENTS:

Cas de charge décisif: 9 1.35G+1.5S (1+2)*1.35+126*1.00

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: Diag 2CAE100x10

tf=1.0 cm Wply=90.95 cm3 Wplz=123.35 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

 $N, Ed = -52.57 \; kN \qquad \qquad My, Ed = 0.21 \; kN*m \qquad \qquad Mz, Ed = -0.08 \; kN*m \qquad \qquad Vy, Ed = 0.05 \; kN \; kN \; + 10.00 \; kN \; kN \; + 10.00 \; kN \; + 1$

Nt,Rd = 900.26 kN My,pl,Rd = 21.37 kN*m Mz,pl,Rd = 28.99 kN*m Tau,y,max,Ed = 0.03 MPa

 $\label{eq:main_main_main} \begin{array}{lll} My,c,Rd = 21.37 \ kN*m & Mz,c,Rd = 28.99 \ kN*m & Vz,Ed = -0.24 \ kN \\ MN,y,Rd = 21.30 \ kN*m & MN,z,Rd = 28.89 \ kN*m & Tau,z,max,Ed = -0.13 \ MPa \end{array}$

Tt,Ed = 0.00 kN*m Classe de la section = 1

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

 $N,Ed/Nt,Rd = 0.06 < 1.00 \quad (6.2.3.(1))$

 $(My,Ed/MN,y,Rd)^{1.00} + (Mz,Ed/MN,z,Rd)^{1.00} = 0.01 < 1.00$ (6.2.9.1.(6))

 $Tau,y,max,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 \quad (6.2.6.(4))$

Tau,z,max,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6.(4))

C. Les pannes

CALCUL DES STRUCTURES ACIER

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE: PANNES

CHARGEMENTS:

Cas de charge décisif: 7 G+1.5V2S (1+2)*1.33+(65+67)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: PANNE IPE200

tf=0.9 cm Wply=220.66 cm3 Wplz=44.61 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = -1.90 kN My,Ed = -8.74 kN*m Mz,Ed = 0.01 kN*m Vy,Ed = 0.01 kN

Nt,Rd = 669.38 kN My,pl,Rd = 51.85 kN*m Mz,pl,Rd = 10.48 kN*m Tau,y,max,Ed = 0.00 MPa

Mb,Rd = 32.13 kN*m Tt,Ed = -0.00 kN*m Classe de la section = 1

PARAMETRES DE DEVERSEMENT:

z = 1.00 Mcr = 46.47 kN*m Courbe,LT - XLT = 0.59 Lcr,low=5.00 m Lam LT = 1.06 fi,LT = 1.17 XLT,mod = 0.62

PARAMETRES DE FLAMBEMENT:

en y:

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

 $N,Ed/Nt,Rd = 0.00 < 1.00 \quad (6.2.3.(1))$

 $(My,Ed/MN,y,Rd)^2 2.00 + (Mz,Ed/MN,z,Rd)^1.00 = 0.03 < 1.00$ (6.2.9.1.(6))

(Tau,y,max,Ed + Tau,ty,Ed)/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6-7)

(Tau,z,max,Ed + Tau,tz,Ed)/(fy/(sqrt(3)*gM0)) = 0.07 < 1.00 (6.2.6-7)

Contrôle de la stabilité globale de la barre:

My,Ed/Mb,Rd = 0.27 < 1.00 (6.3.2.1.(1))

D. La membrure inferieure

CALCUL DES STRUCTURES ACIER

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE: MEMBRURE INFÉRIEURE

CHARGEMENTS:

Cas de charge décisif: 5 G+1.5V1S (1+2)*1.33+(65+67)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: MEMB INF 2CAE 100x12

tf=1.2 cm Wely=58.23 cm3 Welz=87.32 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Tau,z,max,Ed = -3.62 MPa Tt,Ed = -0.00 kN*m Classe de la section = 3

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N,Ed/Nt,Rd + My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.67 < 1.00 (6.2.1(7)) $sqrt(Sig,x,Ed^2 + 3*Tau,y,max,Ed^2)/(fy/gM0) = 0.69 < 1.00$ (6.2.1.(5))

 $Tau,y,max,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 \quad (6.2.6.(4))$

Tau,z,max,Ed/(fy/(sqrt(3)*gM0)) = 0.03 < 1.00 (6.2.6.(4))

E. La membrure supérieure

CALCUL DES STRUCTURES ACIER

NORME: CM66

TYPE D'ANALYSE: Vérification des pièces

FAMILLE: MEMEBRURE SUPÉRIEURE

CHARGEMENTS:

Cas de charge décisif : 5 1.35G+1.5S(1+9+7)*1.35+8*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION :MEMB SUP 2CAE 100x12

ht=10.0 cm

es=1.2 cm Wely=58.23 cm3 Welz=87.32 cm3

CONTRAINTES: SigN = -9.19/45.43 = -2.02 MPa

SigFy = -9.21/58.23 = -158.16 MPaSigFz = 0.30/87.32 = 3.39 MPa

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT :

en y:

enz:

FORMULES DE VERIFICATION:

 $SigN + SigFy + SigFz = -2.02 + -158.16 + 3.39 = |-160.18| < 235.00 \text{ MPa} \quad (3.731) \\ 1.54*Tauy = 1.54*0.04 = 0.06 < 235.00 \text{ MPa} \quad (1.313)$

1.54*Tauz = |1.54*-3.68| = |-5.67| < 235.00 MPa (1.313)

F. Le contreventement vertical de la salle

CALCUL DES STRUCTURES ACIER

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE: CONTREVENTEMENT VERTICAL

CHARGEMENTS:

Cas de charge décisif: 5 G+1.5V1S (1+2)*1.33+(65+67)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: Contreventements vert 2CAE90x9

gM0=1.00gM1=1.00 h=9.0 cm b=18.8 cm Ay=16.20 cm2 Az=14.58 cm2

Ax=31.04 cm2Iy=231.60 cm4 Iz=499.89 cm4 tw=0.9 cm Ix=8.31 cm4

Wely=35.85 cm3 tf=0.9 cm Welz=53.18 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

My,Ed = -1.16 kN*m Mz,Ed = -0.24 kN*mN,Ed = 44.26 kNVy,Ed = 0.03 kN

My,Ed,max = -1.16 kN*m Mz,Ed,max = -0.24 kN*m Tau,y,max,Ed = 0.02 MPaNc,Rd = 729.43 kN

Vz,Ed = -1.04 kNNb,Rd = 195.61 kNMy,c,Rd = 8.43 kN*m Mz,c,Rd = 12.50 kN*mTau,z,max,Ed = -0.71 MPaTt.Ed = -0.00 kN*m

Classe de la section = 3



PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:

en z:

Lz = 5.57 m $Lam_z = 1.48$ Xz = 0.35Lcr,z = 5.57 mLamz = 138.75kyz = 1.04

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

N.Ed/Nc.Rd + Mv.Ed/Mv.c.Rd + Mz.Ed/Mz.c.Rd = 0.13 < 1.00 (6.2.1(7))

 $sqrt(Sig,x,Ed^2 + 3*Tau,y,max,Ed^2)/(fy/gM0) = 0.13 < 1.00 (6.2.1.(5))$

Tau,y,max,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6.(4))

 $Tau,z,max,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 \quad (6.2.6.(4))$

Contrôle de la stabilité globale de la barre:

Lambda, y = 163.07 < Lambda, max = 210.00Lambda, z = 138.75 < Lambda, max = 210.00 STABLE N,Ed/(Xmin*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) + kyz*Mz,Ed,max/(Mz,Rk/gM1) = 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 0.31 < 01.00 (6.3.3.(4))

N,Ed/(Xmin*N,Rk/gM1) + kzy*My,Ed,max/(XLT*My,Rk/gM1) + kzz*Mz,Ed,max/(Mz,Rk/gM1) = 0.29 < 1.00(6.3.3.(4))

G. Le contreventement horizontal de salle

CALCUL DES STRUCTURES ACIER

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE: CONTREVENTEMENT HORIZONTAL

CHARGEMENTS:

Cas de charge décisif: 9 1.35G+1.5S (1+2)*1.35+126*1.00

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: Contreventements horz 2CAE100x10

gM1=1.00 h=10.0 cmgM0=1.00

b=20.8 cmAy = 20.00 cm 2Az=18.00 cm2Ax=38.31 cm2 tw=1.0 cm Iy=353.40 cm4 Iz=750.60 cm4 Ix=12.67 cm4

Wely=49.22 cm3 tf=1.0 cmWelz=72.17 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Vy,Ed = 0.08 kNN,Ed = -27.62 kNMy,Ed = -1.24 kN*mMz,Ed = -0.23 kN*m

Nt,Rd = 900.26 kNMy,el,Rd = 11.57 kN*mMz,el,Rd = 16.96 kN*mTau,y,max,Ed = 0.04 MPaMy,c,Rd = 11.57 kN*mMz,c,Rd = 16.96 kN*mVz,Ed = -1.30 kN

Tau,z,max,Ed = -0.72 MPaTt,Ed = -0.00 kN*m

Classe de la section = 3

PARAMETRES DE DEVERSEMENT:

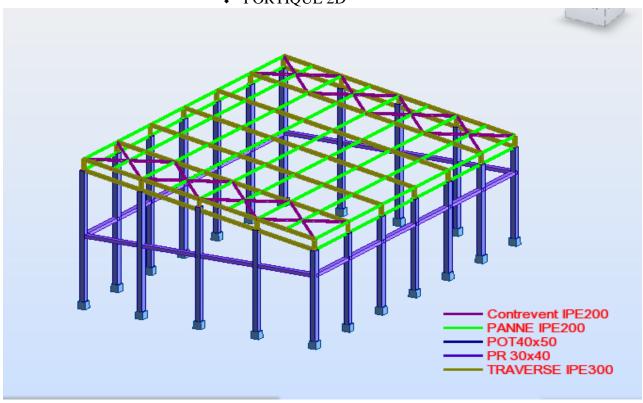
PARAMETRES DE FLAMBEMENT:

en y:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

 $N, Ed/Nt, Rd + My, Ed/My, c, Rd + Mz, Ed/Mz, c, Rd = 0.14 < 1.00 \quad (6.2.1(7))$ $sqrt(Sig,x,Ed^2 + 3*Tau,y,max,Ed^2)/(fy/gM0) = 0.15 < 1.00 (6.2.1.(5))$


Tau,y,max,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6.(4))

Tau,z,max,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6.(4))

Tableau V.5 : Sections choisies pour Les éléments de la ferme et les contreventements :

Éléments	Section choisie
Membrures supérieures et inferieures	2CAE 100x12
Diagonales	2CAE100x10
Montants	2CAE50x5
Pannes	IPE 200
Contreventement horizontal	2CAE100x10
Contreventement vertical	2CAE90x9

Il s'agit des éléments en profilés IPE sollicités en (traction, Compression). Les efforts max globaux enveloppés puisés de logiciel ROBOT sont récapitulés dans les tableaux suivants :

Tableau V.6: Efforts max sollicitant les traverses

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
		ELU	144,73 KN	1.35G+1.5S	349,36 KN	1.35G+1.5S
Traverse	IPE300	ELA	113,16 KN	G+Q-1.2E _y	284,14 KN	G+Q+1.2E _y
		ELS	138,26 KN	G+Q+0.9S	339,41 KN	G+Q+0.9S

Tableau V.7: Efforts max sollicitant les pannes.

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
		ELU	58,13 KN	1.35G+1.5S	35,94 KN	G+1.5V1S
Panne	IPE200	ELA	6.50 KN	G+Q-1.2Ex	22,60 KN	0.8G+Ex
		ELS	61,78 KN	G+Q+0.9S	26,39 KN	G+V1S

Tableau V.8: Efforts max sollicitant les Contreventements

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
		ELU	22,18 KN	G+1.5V1S	57,97 KN	1.35G+1.5S
Contrevent	IPE200	ELA	2,53 KN	G+Q-1.2E _y	53,62 KN	G+Q+1.2E _y
		ELS	12,74 KN	G+V1S	57,95 KN	G+Q+0.9S

6. Notes de calcul puisées de logiciel ROBOT des différents éléments de la toiture :

A. Les pannes CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE: PANNE

CHARGEMENTS:

Cas de charge décisif: 7 G+1.5V2S (1+2)*1.33+(164+166)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

#

PARAMETRES DE LA SECTION: PANNE IPE200

tf=0.9 cm Wply=220.66 cm3 Wplz=44.61 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Classe de la section = 1

PARAMETRES DE DEVERSEMENT :

 $z = 1.00 & Mcr = 25.39 \text{ kN*m} & Courbe, LT - & XLT = 0.41 \\ Lcr, low = 5.00 \text{ m} & Lam_LT = 1.43 & fi, LT = 1.64 & XLT, mod = 0.41 \\ \hline$

PARAMETRES DE FLAMBEMENT :

en y:

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

 $N,Ed/Nt,Rd = 0.00 < 1.00 \quad (6.2.3.(1))$

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.96 < 1.00 (6.2.5.(1))

Vy,Ed/Vy,T,Rd = 0.01 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.09 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

 $My,Ed/Mb,Rd = 0.67 < 1.00 \quad (6.3.2.1.(1))$

B. La traverse

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE: TRAVERSE

CHARGEMENTS:

Cas de charge décisif : 9 1.35G+1.5S (1+2)*1.35+(209+211+213)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: TRAVERSE IPE300

tf=1.1 cm Wply=628.40 cm3 Wplz=125.22 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Mb,Rd = 73.82 kN*m Tt,Ed = -0.19 kN*m Classe de la section = 1

PARAMETRES DE DEVERSEMENT:

kyy = 1.00

PARAMETRES DE FLAMBEMENT:

en y:

enz:

kzz = 1.00

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

 $N,Ed/Nc,Rd = 0.05 < 1.00 \quad (6.2.4.(1))$

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.40 < 1.00 (6.2.5.(1))

Vy,Ed/Vy,T,Rd = 0.00 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.11 < 1.00 (6.2.6-7)

 $Tau, ty, Ed/(fy/(sqrt(3)*gM0)) = 0.08 < 1.00 \quad (6.2.6)$

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.05 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre :

My,Ed/Mb,Rd = 0.69 < 1.00 (6.3.2.1.(1))

N,Ed/(Xmin*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Rk/gM1) + kyz*Mz,Ed/(Mz,Rk/gM1) = 0.79 < 1.00 (6.3.3.(4))

N,Ed/(Xmin*N,Rk/gM1) + kzy*My,Ed/(XLT*My,Rk/gM1) + kzz*Mz,Ed/(Mz,Rk/gM1) = 0.79 < 1.00 (6.3.3.(4))

C. Le contreventement

CALCUL DES STRUCTURES ACIER

NORME: EN 1993-1:FR-NA:2007, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE : Vérification des pièces

FAMILLE: CONTREVENTEMENT

CHARGEMENTS:

Cas de charge décisif: 7 G+1.5V2S (1+2)*1.33+(164+166)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: Contrevent IPE200

tf=0.9 cm Wply=220.66 cm3 Wplz=44.61 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Tt,Ed = 0.01 kN*mClasse de la section = 1

PARAMETRES DE DEVERSEMENT :

PARAMETRES DE FLAMBEMENT :

en y:

en z:

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section :

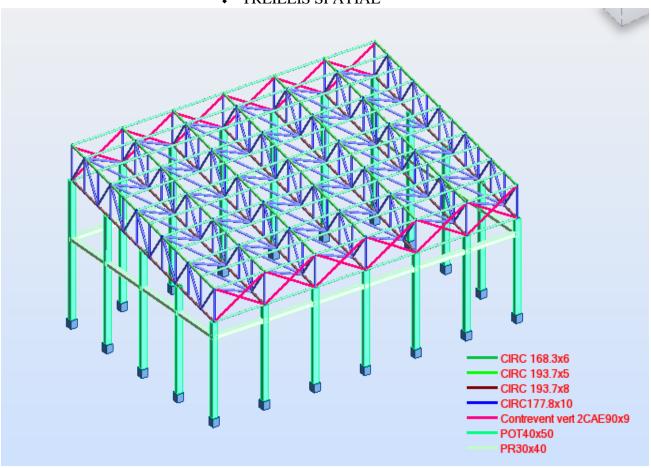
 $N,Ed/Nt,Rd = 0.01 < 1.00 \quad (6.2.3.(1))$

My,Ed/My,c,Rd + Mz,Ed/Mz,c,Rd = 0.85 < 1.00 (6.2.5.(1))

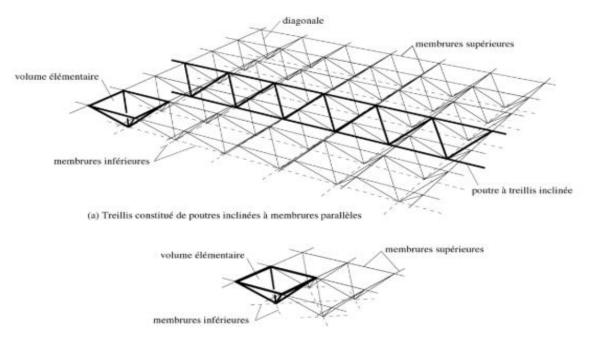
Vy,Ed/Vy,T,Rd = 0.00 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.11 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6)


Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.01 < 1.00 (6.2.6)

Profil correct!!!


Tableau V.9 : Sections choisies pour Les éléments de la ferme et les contreventements :

Éléments	Section choisie
Traverse	IPE300
PANNE	IPE200
CONTREVENT	IPE200

❖ TREILLIS SPATIAL

Il s'agit des éléments en profilés circulaires sollicités en (traction, Compression) comme le montre a figure ci-dessous.

Les efforts max globaux enveloppés puisés de logiciel ROBOT sont récapitulés dans les tableaux suivants :

Tableau V.10: Efforts max sollicitant les Montants & Diagonale

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
Montant	CIR177.8x10	ELU	263,25 KN	1.35G+1.5S	268,19 KN	1.35G+1.5S
& Diagonale		ELA	393,89 KN	G+Q-1.2Ey	292,06 KN	G+Q+1.2Ey
		ELS	195 KN	G+Q+0.9S	198,66 KN	G+Q+0.9S

Tableau V.11: Efforts max sollicitant les membrures inférieures.

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
		ELU	7,39 KN	G+1.5V1S	167,54 KN	1.35G+1.5S
Membrure inférieure	CIR193.5x8	ELA	11,73 KN	G+Q-1.2Ey	181,84 KN	G+Q+1.2Ey
		ELS	5,57 KN	G+V1S	124,10 KN	G+Q+0.9S

Tableau V.12 : Efforts max sollicitant les membrures supérieures.

Élément	Profil	Situation	Effort de traction max (-)	La combinaison	Effort de compression max (+)	La combinaison
		ELU	7,50 KN	1.35G+1.5S	165,02 KN	G+1.5V1S
Membrure supérieure		ELA	6.50 KN	G+Q-1.2Ex	104,63 KN	0.8G+E _x
		ELS	5,55 KN	G+Q+0.9S	123,71 KN	G+V1S

7. Notes de calcul puisées de logiciel ROBOT des différents éléments de la toiture :

A. Les pannes

CALCUL DES STRUCTURES ACIER

NORME: Eurocode 3 (ENV 1993-1-1:1992) TYPE D'ANALYSE: Vérification des pièces

FAMILLE: PANNE

CHARGEMENTS:

Cas de charge décisif : 7 G+1.5V2S (1+2)*1.33+(65+67)*1.50

MATERIAU:

ACIER fy = 235.00 MPa

PARAMETRES DE LA SECTION: CIRC 168.3x6

tf=0.6 cm Wely=119.83 cm3 Welz=119.83 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Vz.sd = -9.70 kNVplz.rd = 240.28 kN

Classe de la section = 1

PARAMETRES DE DEVERSEMENT :

PARAMETRES DE FLAMBEMENT:

en y:

enz:

FORMULES DE VERIFICATION:

 $(My.sd/Mny.rd)^a + (Mz.sd/Mnz.rd)^b = 0.07 < 1.00 \ (5.35) \quad a = 2.00 \quad b = 2.00 \\ Vy.sd/Vply.rd = 0.00 < 1.00 \quad Vz.sd/Vplz.rd = 0.04 < 1.00 \ (5.20)$

B. Diagonales & Montants

CALCUL DES STRUCTURES ACIER

NORME: Eurocode 3 (ENV 1993-1-1:1992) TYPE D'ANALYSE: Vérification des pièces

FAMILLE: DIAGONALES ET MONANTS

CHARGEMENTS:

Cas de charge décisif : 9 1.35G+1.5S (1+2)*1.35+126*1.00

MATERIAU:

ACIER fy = 235.00 MPa fyb = 235.00 MPa

PARAMETRES DE LA SECTION: CIRC177.8x10

tf=1.0 cm Wely=209.45 cm3 Welz=209.45 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Classe de la section = 1

PARAMETRES DE DEVERSEMENT :

PARAMETRES DE FLAMBEMENT:

🔲 eny:

 $\begin{array}{lll} Ly = 2.56 \ m & Lambda_y = 0.41 \\ Lfy = 2.30 \ m & Xy = 0.92 \\ Lambda \ y = 38.75 & ky = 0.94 \end{array}$

1.0

enz:

Lz = 2.56 m $Lambda_z = 0.46$ Lfz = 2.56 m Xz = 0.90 $Lambda_z = 43.05$ kz = 1.05

FORMULES DE VERIFICATION:

Nsd/Nc.rd = 130.76/1125.86 = 0.12 < 1.00 (5.16)

 $Nsd/(Xmin*A*fy/gM1) + ky*My.sd/(Wply*fy/gM1) + kz*Mz.sd/(Wplz*fy/gM1) = 0.34 < 1.00 \ \ (5.51)$

Vy.sd/Vply.rd = 0.00 < 1.00 Vz.sd/Vplz.rd = 0.01 < 1.00 (5.20)

C. La membrure inferieure

CALCUL DES STRUCTURES ACIER

NORME: Eurocode 3 (ENV 1993-1-1:1992) TYPE D'ANALYSE: Vérification des pièces

FAMILLE: MEMBRURE INFÉRIEURE

CHARGEMENTS:

Cas de charge décisif : 5 G+1.5V1S (1+2)*1.33+(65+67)*1.50

MATERIAU:

ACIER fy = 235.00 MPa fyb = 235.00 MPa

PARAMETRES DE LA SECTION: CIRC 193.7x8

tf=0.8 cm Wely=208.05 cm3 Welz=208.05 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

Vz.sd = 1.51 kVVplz.rd = 366.70 kV

Classe de la section = 1

PARAMETRES DE DEVERSEMENT :

PARAMETRES DE FLAMBEMENT:

en y:

en z

FORMULES DE VERIFICATION :

Nsd/Nt.rd = 539.44/997.68 = 0.54 < 1.00 (5.13)

Vy.sd/Vply.rd = 0.00 < 1.00 Vz.sd/Vplz.rd = 0.01 < 1.00 (5.20)

D. Le contreventement

CALCUL DES STRUCTURES ACIER

NORME: Eurocode 3 (ENV 1993-1-1:1992) TYPE D'ANALYSE : Vérification des pièces

FAMILLE:

PIECE: 301 Diagonale_CM66_301 POINT: 1 COORDONNEE: x = 0.00 L =

CHARGEMENTS:

Cas de charge décisif: 9 1.35G+1.5S (1+2)*1.35+126*1.00

MATERIAU:

ACIER fy = 235.00 MPa fyb = 235.00 MPa

PARAMETRES DE LA SECTION: Contrevent vert 2CAE90x9

gM0=1.10gM1=1.10h=9.0 cm

Ay=16.20 cm2b=18.8 cm Az=14.58 cm2 Ax = 31.04 cm 2Iy=231.60 cm4 tw=0.9 cm Iz=499.89 cm4 Ix=8.31 cm4

Wely=35.85 cm3 tf=0.9 cm Welz=53.18 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N.sd = 23.08 kNMy.sd = -0.84 kN*m Mz.sd = -0.36 kN*mVy.sd = 0.00 kNNc.rd = 663.12 kNMply.rd = 14.16 kN*m Mplz.rd = 19.50 kN*mVply.rd = 199.82 kNNb.rd = 165.06 kNMny.rd = 14.15 kN*m Mnz.rd = 19.47 kN*mVz.sd = 0.82 kN

Vplz.rd = 179.83 kN

Classe de la section = 1

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT :

en y:

 $Lambda_y = 1.74$

enz:

Ly = 5.57 mLz = 5.57 m $Lambda_z = 1.48$ Lfy = 4.45 mXy = 0.25Lfz = 5.57 mXz = 0.32Lambda y = 163.07ky = 1.25Lambda z = 138.75kz = 1.19

FORMULES DE VERIFICATION :

Nsd/Nc.rd = 23.08/663.12 = 0.03 < 1.00 (5.16)

Nsd/(Xmin*A*fy/gM1)+ky*My.sd/(Wply*fy/gM1)+kz*Mz.sd/(Wplz*fy/gM1) = 0.24 < 1.00 (5.51)

Vy.sd/Vply.rd = 0.00 < 1.00 Vz.sd/Vplz.rd = 0.00 < 1.00 (5.20)

Profil correct !!!

Tableau V.13: Sections choisies pour Les éléments de la ferme et les contreventements

Éléments	Section choisie
Membrures inferieures	CIR193.7x8
Diagonales & Montants	CIR177.8x10
Membrures supérieures	CIR193.7x5
Pannes	CIR168.3x6
Contreventement	2CAE90x9

VI Calcul des assemblages

VI.1 Introduction:

Les assemblages ont pour fonction d'assurer la liaison ou la continuité des composantes élémentaires entre elles en assurant la transmission et la répartition des diverses sollicitations. Il existe plusieurs types d'assemblages dans la construction et plusieurs techniques pour les réaliser. Ils doivent cependant tous obéir à la même règle : les assemblages ne doivent jamais affaiblir la résistance des pièces.

VI.2.1. Prédimensionnement du gousset :

L'épaisseur du gousset dépend essentiellement de l'effort appliqué, elle est donnée par le tableau suivant :

Tableau VI.1 : Épaisseur du gousset en fonction de l'effort appliqué.

F(KN)	≤ 200	200-450	450-750	750-1150	1150-1650
e (mm)	8	10	12	14	16

Remarque : les efforts max pour les éléments de trois toitures calculées sont comprises entre :

 \rightarrow Donc on choisit e = 10 mm.

VI.2.2. Prédimensionnement de la gorge :

La gorge de soudure doit vérifier les critères de mise en œuvre, elle est donnée par la condition suivante :

$$3mm \le a \le 0.5 t_{max}$$
 CBA93

Avec:

tmax : épaisseur maximal des pièces assemblées.

Tmax = 10 mm (épaisseur du gousset)

 $3mm \le a \le 0.5 \times 10 mm$

 $3mm \le a \le 5 mm$ donc on choisit **a=4mm**

a) Les longueurs de soudures :

Les longueurs de soudures sont données comme suit :

$$L_{talon} \geq \frac{\frac{N}{2} \gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d}{d'})}$$
 EC3 Art 6.6.5.3
$$L_{bord} \geq \frac{\frac{N}{2} \gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d'}{d})}$$
 gousset

Figure VI.1: longueurs des soudures

N/2: effort repris par une cornière

 γ_{m0} : Coefficient de sécurité γ_{m0} =1,25

 β_w : Coefficient de corrélation β_w = 0,8

 f_u : Résistance limite de rupture f_u = 360 MPa

a: Gorge de la soudure a = 4mm

d : Distance du centre de gravité au talon

d' : Distance du centre de gravité au bord

VI.2 Assemblage des éléments de la ferme

Le calcul se fait selon les sollicitations les plus défavorables données dans le tableau ci-dessous.

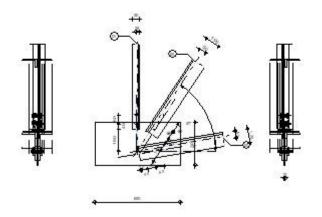
Après avoir ressorti les efforts défavorables de différents éléments, les notes de calcul de différents types d'assemblages sont puisées directement du logiciel ROBOT.

*** TREILLIS 2D**

Tableau VI.2 : Efforts dans les éléments de la ferme.

Éléments		Membrure supérieures	Membrure inférieures	Diagonales	Montants
Effort (KN)	Nmax	264,22	34,80	421,16	294,17
	Nmin	-59,67	-255,93	-423,44	-11,43
Sections	5	2CAE100x12	2CAE100x12	2CAE100x10	2CAE50x5

Les éléments de la ferme sont constitués de deux cornières d'où l'effort sollicitant sera divisé par deux.


A. Assemblage

1. Notes de calcul puisées de logiciel ROBOT des différents éléments de la toiture pour les assemblages :

> **Assemblage**: montant-diagonale-membrure inférieure

D WARRY DATE TO DE DESCRIPTION OF THE PERSON OF THE PERSON

GENERAL

Assemblage N°: 1

Nom de l'assemblage: Gousset - noeud membrure de treillis

Noeud de la structure: 22

Barres de la structure: 410, 19, 29,

GEOMETRIE

BARRES

		Barre 2	Barre 3	Barre 5	
Barre N°:		410	19	29	
Profilé:		MEMB INF 2CAE 100x12	Montant 2CAE50x5	Diag 2CAE100x10	
	h	100	50	100	mm
	bf	100	50	100	mm
	tw	12	5	10	mm
	t _f	12	5	10	mm
	r	12	7	12	mm
	А	45,43	9,61	38,31	cm2
Matériau:		ACIER	ACIER	ACIER	
	σ_{e}	235,00	235,00	235,00	MPa
	fu	365,00	365,00	365,00	MPa
Angle	α	9,3	90,0	56,8	Deg

		Barre 2	Barre 3	Barre 5		
Longueur	1	1,84	3,32	2,46		m

BOULONS

Barre 2

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

4.8 Classe = Classe du boulon d =16 [mm] Diamètre du boulon 18 [mm] Diamètre du trou de boulon $d_0 =$ 1,57 [cm²] Aire de la section efficace du boulon 2,01 [cm²] Aire de la section du boulon $A_{V} =$ $f_{yb} =$ 280,00 [MPa] Limite de plasticité 400,00 [MPa] Résistance du boulon à la traction 3 Nombre de colonnes des boulons n = 60;60 [mm] Espacement des boulons

e₁ = 40 [mm] Distance du centre de gravité du premier boulon de l'extrémité de la barre

 $e_2 = 50$ [mm] Distance de l'axe des boulons du bord de la barre

e_c = 10 [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres

Barre 3

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

4.8 Classe = Classe du boulon d =16 Diamètre du boulon [mm] $d_0 =$ 18 [mm] Diamètre du trou de boulon 1,57 [cm²] Aire de la section efficace du boulon $A_s =$ 2,01 [cm²] Aire de la section du boulon 280,00 [MPa] Limite de plasticité 400,00 [MPa] Résistance du boulon à la traction $f_{ub} =$ 2 Nombre de colonnes des boulons n =

Espacement des boulons 60 [mm]

e₁ = 40 [mm] Distance du centre de gravité du premier boulon de l'extrémité de la barre

e₂ = 25 [mm] Distance de l'axe des boulons du bord de la barre

e_c = 150 [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres

Barre 5

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

```
Classe =
            4.8
                         Classe du boulon
             16 [mm] Diamètre du boulon
             18 [mm] Diamètre du trou de boulon
d_0 =
           1,57 [cm²] Aire de la section efficace du boulon
A_v =
           2,01 [cm<sup>2</sup>] Aire de la section du boulon
        280,00 [MPa] Limite de plasticité
f_{yb} =
         400,00 [MPa] Résistance du boulon à la traction
                         Nombre de colonnes des boulons
n =
                                                             60;60 [mm]
Espacement des boulons
        40 [mm] Distance du centre de gravité du premier boulon de l'extrémité de la barre
        50 [mm] Distance de l'axe des boulons du bord de la barre
e_2 =
ec = 150 [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres
```

GOUSSET

Ip =	600	[mm]	Longueur de la platine
h _p =	300	[mm]	Hauteur de la platine
t	1.0	[mm]	Enaisseur de la nlatine

Paramètres

 $\sigma =$

h ₁ =	0	[mm]	Grugeage
V1 =	0	[mm]	Grugeage
h ₂ =	0	[mm]	Grugeage
V ₂ =	0	[mm]	Grugeage
h ₃ =	0	[mm]	Grugeage
V ₃ =	0	[mm]	Grugeage
h ₄ =	0	[mm]	Grugeage
V ₄ =	0	[mm]	Grugeage

Centre de gravité de la tôle par rapport au centre de gravité des barres

235,00 [MPa] Résistance

(0;50)

```
e_V = 100 [mm] Distance verticale de l'extrémité du gousset du point d'intersection des axes des barres e_H = 300 [mm] Distance horizontale de l'extrémité du gousset du point d'intersection des axes des barres e_0 = 0 [mm] Distance axe membrure hor.

Matériau: ACIER
```

EFFORTS

Cas: 9: 1.35G+1.5S (1+2)*1.35+126*1.00

 $N_2 =$ 88,33 [kN] Effort axial $N_3 =$ -26,16 [kN] Effort axial

 $N_5 = -70,64$ [kN] Effort axial

RESULTATS

PLATINE

Section gauche

 $N_I = 87,17$ [kN] Effort axial dans la barre

 $M_1 = 2,50$ [kN*m] Moment dans la barre

 $A_1 = 30,00$ [cm²] Section gousset

 $W_I = 150,00$ [cm³] Facteur élastique de la section

 $f < \sigma_e$ | 45,75| < 235,00 vérifié (0,19)

 $t < \sigma_e$ | 10,97| < 235,00 vérifié (0,05)

Section droite

 $N_r = -38,72$ [kN] Effort axial dans la barre

 $M_r = -0,68$ [kN*m] Moment dans la barre

 $A_r = 30,00$ [cm²] Section gousset

 $W_r = 150,00$ [cm³] Facteur élastique de la section

 $f < \sigma_e$ | 33,74| < 235,00 vérifié (0,14) $t < \sigma_e$ | 65,64| < 235,00 vérifié (0,28)

BARRES

 $T_2 = 219,34$ [kN] Résistance des boulons au cisaillement

 $M_2 = 601,68$ [kN] Résistance de la barre

 $|N_2| < min(T_2; M_2)$ | 88,33| < 219,34 vérifié (0,40)

 $T_3 = 146,23$ [kN] Résistance des boulons au cisaillement

 $M_3 = 225,72$ [kN] Résistance de la barre

 $|N_3| < min(T_3; M_3)$ |-26, 16| < 146, 23 vérifié (0, 18)

 $T_5 = 219,34$ [kN] Résistance des boulons au cisaillement

 $M_5 = 900,26$ [kN] Résistance de la barre

 $|N_5| < min(T_5; M_5)$ |-70,64| < 219,34 vérifié (0,32)

REMARQUES

Pince du boulon trop grande. 87 [mm] > 45 [mm]

Boulon hors de la platine

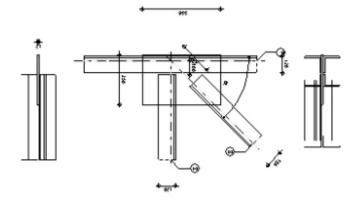
Boulon hors de la platine pour la barre 3

Boulon hors de la platine pour la barre 5

Assemblage satisfaisant vis à vis de la Norme

Ratio 0,40

> Assemblage : montant - diagonales - membrure supérieure


Autodesk Robot Structural Analysis Professional 2015

Calcul de l'assemblage au gousset

EN 1993-1-8:2005/AC:2009

Ratio 0,34

GENERAL

Assemblage N°: 3

Nom de l'assemblage: Gousset - contreventement

Noeud de la structure:

Barres de la structure: 12, 30,

GEOMETRIE

BARRES

		Barre 3	Barre 4	Barre 5	
Barre N°:		12	30	410	
Profilé:		Montant 2CAE50x5	Diag 2CAE100x10	MEMB SUP 2CAE 100x12	
	h	50	100	100	mm
	bf	50	100	100	mm
	tw	5	10	12	mm
	t _f	5	10	12	mm
	r	7	12	12	mm
	A	9,61	38,31	45,43	cm2
Matériau:		ACIER	ACIER	ACIER	
	fy	235,00	235,00	235,00	MPa
	fu	365,00	365,00	365,00	МРа
Angle	α	90,0	49,8	9,3	Deg
Longueur	1	0,00	0,00	1,84	m

BOULONS

Barre 3

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe = 4.8 Classe du boulon d = 16 [mm] Diamètre du boulon

 $d_0 = 18$ [mm] Diamètre du trou de boulon

 $A_s = 1,57$ [cm²] Aire de la section efficace du boulon

 $A_v = 2,01$ [cm²] Aire de la section du boulon

f_{yb} = 280,00 [MPa] Limite de plasticité

 f_{ub} = 400,00 [MPa] Résistance du boulon à la traction

n = 3 Nombre de colonnes des boulons

Espacement des boulons 60; 60 [mm]

e₁ = 40 [mm] Distance du centre de gravité du premier boulon de l'extrémité de la barre

 $e_2 = 25$ [mm] Distance de l'axe des boulons du bord de la barre

 $e_c = 100$ [mm] Distance de l'extrémité de la barre du point d'intersection des axes des barres

Barre 4

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe	= =	4.	8	Classe du boulon
d =		1	6 [mm]	Diamètre du boulon
$d_0 =$		1	8 [mm]	Diamètre du trou de boulon
As =		1,5	7 [cm ²]	Aire de la section efficace du boulon
A _v =		2,0	1 [cm ²]	Aire de la section du boulon
$f_{yb} =$		280,0	0 [MPa]	Limite de plasticité
$f_{\text{ub}} =$		400,0	0 [MPa]	Résistance du boulon à la traction
n =			3	Nombre de colonnes des boulons
Espac	emen	t des b	oulons 60;	60 [mm]
e ₁ =	40	[mm]	Distance du	u centre de gravité du premier boulon de l'extrémité de la barre
e ₂ =	50	[mm]	Distance de	e l'axe des boulons du bord de la barre
e _c =	100	[mm]	Distance de	e l'extrémité de la barre du point d'intersection des axes des barres

GOUSSET

$I_p =$	660	[mm]	Longueur de la platine
h _p =	660	[mm]	Hauteur de la platine
to -	1.0	[mm]	Enaisseur de la nlatine

Paramètres

$h_1 =$	0	[mm]	Grugeage
V1 =	0	[mm]	Grugeage
h ₂ =	0	[mm]	Grugeage
V ₂ =	0	[mm]	Grugeage
h ₃ =	0	[mm]	Grugeage
V3 =	0	[mm]	Grugeage
h ₄ =	0	[mm]	Grugeage
V4 =	0	[mm]	Grugeage

Centre de gravité de la tôle par rapport au centre de gravité des barres (0;0)

 $e_V = 330$ [mm] Distance verticale de l'extrémité du gousset du point d'intersection des axes des barres $e_H = 330$ [mm] Distance horizontale de l'extrémité du gousset du point d'intersection des axes des barres Matériau: ACIER

 $f_y = 235,00$ [MPa] Résistance

COEFFICIENTS DE MATERIAU

Coefficient de sécurité partiel 1,00 [2.2] γ MO =

1,25 Coefficient de sécurité partiel [2.2] $\gamma_{M2} =$

EFFORTS

Cas: 9: 1.35G+1.5S (1+2)*1.35+126*1.00

 $N_{b3,Ed} = -43,31$ [kN] Effort axial

 $N_{b4,Ed} = 48,37$ Effort axial [kN]

RESULTATS

BARRE 3

Résistance des boulons

 $F_{v,Rd} = 77,21$ [kN] Résistance de la tige d'un boulon au cisaillement

 $F_{v,Rd} = 0.6 f_{ub} A_v m/\gamma_{M2}$

Pression du boulon sur la barre

Direction x

 $k_{1x} =$ 2,19 Coefficient pour le calcul de Fb,Rd $k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$

 $k_{1x} > 0.0$ 2,19 > 0,00vérifié

 $\alpha_{bx} = 0$, 74 Coefficient dépendant de l'espacement des boulons $\alpha_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$

vérifi 0,74 > 0,00 $\alpha_{\rm bx} > 0.0$ é

75, 7 [kN] Résistance de calcul à l'état limite de plastification de la paroi du trou $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma$

Direction z

 $k_{1z} = 2,50$ Coefficient pour le calcul de Fb,Rd $k_{1z}=min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$

vérifié

2,50 > 0,00 $k_{1z} > 0.0$ $\alpha_{bz} =$ 0,46 Coefficient pour le calcul de Fb,Rd $\alpha_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$

0,46 > 0,00vérifié $\alpha_{bz} > 0.0$

 $F_{b,Rd1z} = 54,07$ [kN] Résistance d'un boulon en pression diamétrale $F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$

Pression du boulon sur la platine

Direction x

2,50 Coefficient pour le calcul de Fb,Rd $k_1=min[2.8*(e_2/d_0)-1.7, 2.5]$ $k_{1x} =$

2,50 > 0,00 $k_{1x} > 0.0$ vérifié

α_{bx} = 0,86 Coefficient dépendant de l'espacement des boulons $\alpha_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$

	v	·érifi
$\alpha_{bx} > 0.0$	0,86 > 0,00 é	
F _{b,Rd2x} 100,5 [kN 8]	Résistance de calcul à l'état limite de plastification de la paroi du tr	$F_{b,Rd2x}=k_1*\alpha_b*f_u*d*t_i/\gamma$
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de $F_{b,Rd}$ $k_{1z}=min[2.8*(e_1/e_1)]$	d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
$k_{1z} > 0.0$	2,50 > 0,00 vérifié	
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α_{bz} =min[e ₂ /(3*d ₀), f _{ub} /f _u , 1]
$\alpha_{bz} > 0.0$	1,00 > 0,00 vérifié	
$F_{b,Rd2z} = 116,80$ [I	kN] Résistance d'un boulon en pression diamétrale	$F_{b,Rd2z} = k_{1z} * \alpha_{bz} * f_u * d * t_i / \gamma_{M2}$
Vérification de l'as cisaillement des bou	ssemblage pour les efforts agissant sur les boulons ulons	
e = 11 [mn	n] Excentricité de l'effort axial par rapport à l'axe des boulons	
$M_0 = -0,47 \text{ [kN*]}$	m] Moment fléchissant réel	$M_0=N_{b3,Ed}^*e$
$F_{NSd} = -14,44$ [kN	I] Force résultante dans le boulon due à l'influence de l'effort ax	Final $F_{NSd} = N_{b3,Ed}/n$
$F_{MSd} = -3,96$ [kN	I] Effort composant dans le boulon dû à l'influence du moment	$F_{MSd}=M_0*x_{max}/\Sigma x_i^2$
$F_{x,Ed} = -14,44$ [kN	I] Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed} = F_{NSd}$
$F_{z,Ed} = -3,96$ [kN	I] Effort de calcul total dans le boulon sur la direction z	$F_{z,Ed} = F_{MSd}$
$F_{Ed} = 14,97$ [kN	I] Effort tranchant résultant dans le boulon	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
$F_{Rdx} = 75,75$ [kN	Résistance résultante de calcul du boulon sur la direction x	$F_{Rdx} = min(F_{bRd1x}, F_{bRd2x})$
$F_{Rdz} = 54,07$ [kN	Résistance résultante de calcul du boulon sur la direction z	F_{Rdz} =min(F_{bRd1z} , F_{bRd2z})
$ F_{x,Ed} \le F_{Rdx}$	-14,44 < 75,75 vé rifié	(0,19)
$ F_{z,Ed} \le F_{Rdz}$	-3,96 < 54,07 vérifié	(0,07)
$F_{Ed} \le F_{vRd}$	14,97 < 77,21 vérifié	(0,19)
Vérification de la s $\beta_3 = 0,57$	section de la poutre affaiblie par les trous Coefficient de réduction	[Tableau 3.8]
A = 4,80 [cm	n²] Aire de la section transversale de la cornière	
A _{net} = 3,90 [cm	n²] Aire de la section nette	$A_{net} = A - d_0*t_{f3}$
$N_{u,Rd} = 64,57$ [k]	N] Résistance de calcul de la section nette	$N_{u,Rd} = (\beta_3 * A_{net} * f_{u3})/\gamma_{M2}$
$N_{pl,Rd} = 101,57$ [k]	N] Résistance de calcul plastique de la section brute	$N_{pl,Rd} = (0.9*A*f_{y3})/\gamma_{M2}$
$ 0.5^*N_{b3,Ed} \leq N_{u,Rd}$	-21,65 < 64,57 vé rifié	(0,34)
$ 0.5^*N_{b3,Ed} \le N_{pl,Rd}$	-21,65 < 101,57 vérifié	(0,21)
	barre pour le cisaillement de bloc ire nette de la zone de la section en traction	

5 , $75\,\text{[cm}^2\text{]}\,\text{Aire}$ de la zone de la section en traction

Vérification de la barre pour le cisaillement de bloc

 $A_{nt} = 0$, 80 [cm²] Aire nette de la zone de la section en traction

 $V_{\text{effRd}} = 89$, 69 [kN] Résistance de calcul de la section affaiblie par les trous

 $V_{effRd} = 0.5^* f_u^* A_{nt} / \gamma_{M2} + (1/\sqrt{3})^* f_y^* A_{nv} / \gamma_{M0}$

 $|0.5^*N_{b3,Ed}| \le V_{effRd}$

|-21,65| < 89,69

vérifié

(0, 24)

BARRE 4

Résistance des boulons

 $F_{v,Rd} = 77,21$ [kN] Résistance de la tige d'un boulon au cisaillement

 $F_{v,Rd} = 0.6 f_{ub} A_v m/\gamma_{M2}$

Pression du boulon sur la barre

Direction x

 $k_{1x} = 2,50$ Coefficient pour le calcul de $F_{b,Rd}$

 $k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$

 $k_{1x} > 0.0$

2,50 > 0,00

vérifié

 $\alpha_{\text{bx}} = 0$, 74 Coefficient dépendant de l'espacement des boulons

 $\alpha_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$

 $\alpha_{\text{bx}} > 0.0$

0,74 > 0,00

vérifié

F_{b,Rd1x} 173, 0 [kN Résistance de calcul à l'état limite de plastification de la paroi du = 4] trou

 $F_{b,Rd1x}=k_{1x}*\alpha_{bx}*f_u*d*t_i/\gamma_M$

Direction z

 $k_{1z} = 2,50$

Coefficient pour le calcul de Fb,Rd

 $k_{1z}=min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$

 $k_{1z} > 0.0$

2,50 > 0,00

0,93 > 0,00

vérifié

 $\alpha_{\mathsf{bz}} = 0,93$

Coefficient pour le calcul de F_{b,Rd}

 $\alpha_{bz}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$

 $\alpha_{bz} > 0.0$

 $F_{b,Rd1z} = 216,30$ [kN] Résistance d'un boulon en pression diamétrale

 $F_{b,Rd1z}=k_{1z}*\alpha_{bz}*f_u*d*t_i/\gamma_{M2}$

Pression du boulon sur la platine

Direction x

 $k_{1x} = 2,50$

Coefficient pour le calcul de F_{b,Rd}

 $k_1=min[2.8*(e_2/d_0)-1.7, 2.5]$

 $k_{1x} > 0.0$

2,50 > 0,00

vérifié

vérifié

 $\alpha_{bx} = 0$, 86 Coefficient dépendant de l'espacement des boulons

 $\alpha_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$

 $\alpha_{\rm bx} > 0.0$

0,86 > 0,00

vérifié

F_{b,Rd2x} = 100, 58 [kN] Résistance de calcul à l'état limite de plastification de la paroi du trou F_{b,Rd2x}=k₁*α_b*f_u*d*t_i/γ_{M2}

Direction z

 $k_{1z} = 2,50$

Coefficient pour le calcul de Fb,Rd

 $k_{1z}=min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$

 $k_{1z} > 0.0$

2,50 > 0,00

vérifié

 $\alpha_{bz} = 1,00$

Coefficient pour le calcul de F_{b,Rd}

 α_{bz} =min[e₂/(3*d₀), f_{ub}/f_u, 1]

$\alpha_{bz} > 0.0$	1,00 > 0,00 vé	rifié
$F_{b,Rd2z} = 116,80$ [kN	I] Résistance d'un boulon en pression diamétrale	F _{b,Rd2z} =k _{1z} *α _{bz} *f _u *d*t _i /γ _{M2}
Vérification de l'as cisaillement des bou	ssemblage pour les efforts agissant sur les ulons	boulons
e = 22 [mm]	Excentricité de l'effort axial par rapport à l'axe des b	poulons
$M_0 = 1,05 \frac{[kN^*m]}{]}$	Moment fléchissant réel	$M_0=N_{b4,Ed}^*e$
$F_{NSd} = 16,12 [kN]$	Force résultante dans le boulon due à l'influence de	e l'effort axial $F_{NSd} = N_{b4,Ed}/n$
F _{MSd} 8,78 [kN]	Effort composant dans le boulon dû à l'influence du	$moment \qquad \qquad F_{MSd} = M_0 * x_{max} / \Sigma x_i^2$
$F_{x,Ed} = 16,12 [kN]$	Effort de calcul total dans le boulon sur la direction	x $F_{x,Ed} = F_{NSd}$
$F_{z,Ed} = 8,78 \text{ [kN]}$	Effort de calcul total dans le boulon sur la direction	z $F_{z,Ed} = F_{MSd}$
F _{Ed} = 18,36 [kN]	Effort tranchant résultant dans le boulon	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
$F_{Rdx} = {100, 5 \atop 8} [kN]$	Résistance résultante de calcul du boulon sur la dir	ection x $F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
$F_{Rdz} = {116,8 \atop 0} [kN]$	Résistance résultante de calcul du boulon sur la dir	ection z $ \begin{array}{c} F_{Rdz} = min(F_{bRd1z}, \\ F_{bRd2z}) \end{array} $
$ F_{x,Ed} \le F_{Rdx}$	16,12 < 100,58	vérifi é (0,16)
$ F_{z,Ed} \le F_{Rdz}$	8,78 < 116,80	vérifi é (0,08)
$F_{Ed} \le F_{vRd}$	18,36 < 77,21	vérifi é (0,24)
Vérification de la $\beta_3 = 0,57$	section de la poutre affaiblie par les trous Coefficient de réduction	[Tableau 3.8]
A = 19,15 [cm ²]	Aire de la section transversale de la cornière	
$A_{net} = 17,35 \text{ [cm}^2]$	Aire de la section nette	$A_{net} = A - d_0^*t_{f4}$
$N_{u,Rd} = 287, 16 \text{ [kN]}$	Résistance de calcul de la section nette	$N_{u,Rd} = (\beta_3 * A_{net} * f_{u4}) / \gamma_{M2}$
$N_{pl,Rd} = 405, 12 \text{ [kN]}$	Résistance de calcul plastique de la section brute	$N_{pl,Rd} = (0.9*A*f_{y4})/\gamma_{M2}$
$ 0.5^*N_{b4,Ed} \leq N_{u,Rd}$	24,18 < 287,16 vé	erifié (0,08)
$ 0.5^*N_{\text{b4,Ed}} \leq N_{\text{pl,Rd}}$	24,18 < 405,12 vé	erifié (0,06)
Vérification de la	barre pour le cisaillement de bloc	
$A_{nt} = 4, 10 \begin{bmatrix} cm^2 \\ \end{bmatrix} A$	ire nette de la zone de la section en traction	
$A_{nv} = 11,50 \frac{[cm^2]}{]} A$	ire de la zone de la section en traction	
V _{effRd} 215,8 [kN] R tr	ésistance de calcul de la section affaiblie par les ous	$V_{\text{effRd}} = 0.5 \text{*fu*Ant/}\gamma_{M2} + (1/\sqrt{3}) \text{*fy*Anv/}\gamma_{M0}$
$ 0.5^*N_{b4,Ed} \le V_{effRd}$	24,18 < 215,89 vé	rifié (0,11)

Assemblage satisfaisant vis à vis de la Norme Ratio 0,3	34
---	----

* TREILLIS SPATIAL 3D

L'assemblage de structure en treillis spatial est réalisé en soudant le profilé tubulaire dans les deux extrêmes par un gousset soudé avec les éléments de la structure de tel sorte que les barres assemblées forment un X.

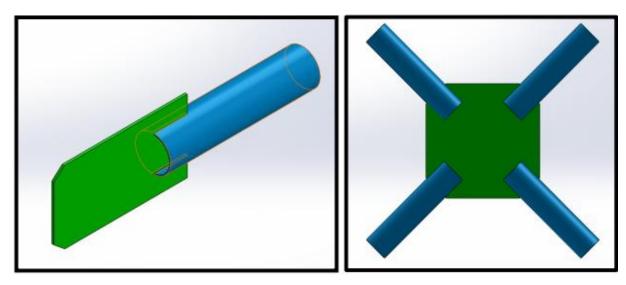


Figure .4. Assemblage tubulaire

Tableau VI.3 : Efforts dans les éléments de la ferme.

Éléments		Membrure supérieures	Membrure inférieures	Diagonales & Montants
Effort	Nmax	267,83	59,15	413,48
(KN)	Nmin	-8,82	-247,51	-408,52
Sections	5	CIR193.7x5	CIR193.7x8	CIR177.8x10

B. Assemblage

Notes de calcul puisées de logiciel ROBOT des différents éléments de la toiture pour les assemblages :

L'assemblage des structures en treillis spatial est réalisé en soudant le profilé tubulaire dans les deux extrêmes :

> **Assemblage**: montant-diagonale-membrure supérieure


Autodesk Robot Structural Analysis Professional 2015

Calcul de l'assemblage dans le noeud du treillis

EN 1993-1-8:2005/AC:2009

Ratio **0,02**

GENERAL

Assemblage N°: 1

Nom de l'assemblage: Noeud de treillis en tube

Noeud de la structure: 23

Barres de la structure: 415, 21, 4

GEOMETRIE

BARRES

		Membrure inf	Diagonale 2	Montant	
Barre N°:		415	21	4	
Profilé:		CIRC 193.7x16	CIRC 177.8x10	CIRC 177.8x10	
	h	194	178	178	mm
	bf	194	178	178	mm

		Membrure inf	Diagonale 2	Montant	
	tw	16	10	10	mm
	t _f	16	10	10	mm
	r	0	0	0	mm
Matériau:		ACIER	ACIER	ACIER	
	fy	235,00	235,00	235,00	MPa
	fu	365,00	365,00	365,00	MPa
Angle	θ	0,0	48,1	90,0	Deg
Longueur	1	1845	3409	2586	mm

EXCENTREMENT

 $e_0 = 0$ [mm] Excentrement

ESPACEMENTS

 $g_2 = -121$ [mm] Espacement de la diagonale 2

SOUDURES

a_d = 5 [mm] Epaisseur des soudures du treillis

EFFORTS

Cas: 9: 1.35G+1.5S (1+2)*1.35+126*1.00

MEMBRURE

 $N_{01,Ed} = 0,00$ [kN] Effort axial

 $M_{01,Ed} = 0$, 00 [kN*m] Moment fléchissant

 $N_{02,Ed} = 36,72$ [kN] Effort axial

 $M_{02,Ed} = -0,89$ [kN*m] Moment fléchissant

DIAGONALE 2

 $N_2 = 12,57$ [kN] Effort axial

 $M_2 = 0,23$ [kN*m] Moment fléchissant

MONTANT

 $N_3 = 1,15$ [kN] Effort axial

 $M_3 = 1,05$ [kN*m] Moment fléchissant

Les efforts tranchants n'ont pas été prises en compte lors de la vérification de l'assemblage. L'assemblage a été dimensionné en tant qu'un noeud d'un treillis.

RESULTATS

VERIFICATION DE LA RESISTANCE EUROCODE 3: EN 1993-1-8:2005

γ_{M5} = 1,00 Coefficient de sécurité partiel

[Tableau 2.1]

Modes de ruine pour assemblage (membrure CHS)

[Tableau 7.2] pour N_{i,Rd} et [Tableau 7.5] pour M_{i,Rd}

Paramètres géométriques

$\beta = 0,92$	Coefficient dépendant de la géométrie des barres de l'assemblage	$\beta = (d_2+d_3)/(2^*d_0) [1.5 (6)]$
$\gamma = 6,05$	Coefficient dépendant de la géométrie de la membrure	$\gamma = b_0/(2^*t_0) [1.5 (6)]$
$n_p = 0,00$	Coefficient dépendant des contraintes dans la membrure	$n_p = \sigma_{p,Ed}/f_{y0}$
$k_p = 1,00$	Coefficient dépendant des contraintes dans la membrure	$k_p = 1.0$

RUINE DE LA FACE DE LA MEMBRURE

Diagonale 2

 $M_{2,Rd} = 1298 \text{, } 15 \text{ [kN*m] Résistance à la flexion} \qquad \qquad M_{2,Rd} = 4.85^* \text{[f}_{y0}^* \text{t}_0^{2*} \text{d}_2/\text{sin}(\theta_2)]^* \sqrt{\gamma^* \beta^* k_p} / \gamma_{M5}$

Montant

 $M_{3,Rd} = 965 \text{ , } 68 \text{ [kN*m] Résistance à la flexion} \\ M_{3,Rd} = 4.85^* [f_{y0}^* t_0^{2*} d_3 / \sin(\theta_3)]^* \sqrt{\gamma^* \beta^* k_p} / \gamma_{M5}$

POINÇONNEMENT DE LA MEMBRURE

Diagonale 2

 $N_{2,Rd} = 1910$, 63 [kN] Résistance à la traction $N_{2,Rd} = f_{y0}/\sqrt{3} * t_0 * \pi^* d_2 * (1 + \sin(\theta_2))/(2 * \sin^2(\theta_2)) / \gamma_{M5}$

 $|N_2| \le N_{2,Rd}$ | 12,57| < 1910,63 vérifié (0,01)

 $M_{2,Rd} = 100$, 19 [kN*m] Résistance à la flexion $M_{2,Rd} = [f_{y0}*t_0^2*d_2^2/\sqrt{3}]*[(1+3*\sin(\theta_2))/(4*\sin^2(\theta_2))]/\gamma_{M5}$

 $|M_2| \le M_{2,Rd}$ |0,23| < 100,19 vérifié (0,00)

 $N_2/N_{2,Rd} + (M_2/M_{2,Rd})^2 \le 1$ 0,01 < 1,00 vérifié (0,01)

Montant

 $N_{3,Rd} = 1212$, 58 [kN] Résistance à la traction $N_{3,Rd} = f_{y0}/\sqrt{3} * t_0 * \pi^* d_3 * (1 + \sin(\theta_3))/(2 * \sin^2(\theta_3)) / \gamma_{M5}$

 $M_{3,Rd} = 68,63$ [kN*m] Résistance à la flexion $M_{3,Rd} = [f_{y0}*t_0^2*d_3^2/\sqrt{3}]*[(1+3*\sin(\theta_3))/(4*\sin^2(\theta_3))]/\gamma_{M5}$

 $|M_3| \le M_{3,Rd}$ |1,05| < 68,63 vérifié (0,02) $N_3/N_{3,Rd} + (M_3/M_{3,Rd})^2 \le 1$ 0,00 < 1,00 vérifié (0,00)

CISAILLEMENT DE LA MEMBRURE

Diagonale 2

 $A_v = 56,85$ [cm²] Aire de cisaillement de la membrure $A_v = 2*A_0/\pi$

 $N_{2,Rd} = 1036,88$ [kN] Résistance à la traction $N_{2,Rd} = f_{y0}*A_{v}/[\sqrt{3}*\sin(\theta_{2})]/\gamma_{M5}$

Montant

 $A_v = 56,85$ [cm²] Aire de cisaillement de la membrure $A_v = 2*A_0/\pi$

 $N_{3,Rd} = 771$, 33 [kN] Résistance à la traction $N_{3,Rd} = f_{y0}*A_{v}[\sqrt{3}*\sin(\theta_{3})] / \gamma_{M5}$

Résistance de la membrure

 $V_{pl,Rd} = 771$, 33 [kN] Résistance plastique pour le cisaillement $V_{pl,Rd} = (A_v^*f_{y0})/(\sqrt{3^*\gamma_{M0}})$

 $N_{0,Rd} = 2098$, 45 [kN] Résistance à la traction $N_{0,Rd} = [(A_0 - A_v)^* f_{y0} + A_v^* f_{y0}^* \sqrt{[1 - (V_{Ed}/V_{pl,Rd})^2]]}/\gamma_{M5}$

 $|N_{02}| \le N_{0,Rd}$ | 36,72| < 2098,45 vérifié (0,02)

VERIFICATION DES SOUDURES

Diagonale 2

 $\beta_{\text{w}} = 0,80$ Coefficient de corrélation [Tableau 4.1]

 $\gamma_{M2} = 1,25$ Coefficient de sécurité partiel [Tableau 2.1]

Soudure longitudinale

 σ_{\perp} = 1,44 [MPa] Contrainte normale dans la soudure

 τ_{\perp} = 1,44 [MPa] Contrainte tengentielle perpendiculaire

 $\tau_{II} = 1,83$ [MPa] Contrainte tangentielle

 $\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{\parallel}^2)]} \le f_{\text{U}}/(\beta_{\text{W}}^* \gamma_{\text{M2}})$ 4,27 < 363,38 vérifié (0,01)

Soudure transversale intérieure

 σ_{\perp} = 1,83 [MPa] Contrainte normale dans la soudure

 $\tau_{\perp} = 0,77$ [MPa] Contrainte tengentielle perpendiculaire

 $\tau_{II} = 0,00$ [MPa] Contrainte tangentielle

 $\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{\parallel}^2)]} \le f_u/(\beta_w^* \gamma_{M2})$ 2,27 < 363,38 vérifié (0,01)

Soudure transversale extérieure

 σ_{\perp} = -0, 40 [MPa] Contrainte normale dans la soudure

 τ_{\perp} = 1,31 [MPa] Contrainte tengentielle perpendiculaire

 $\tau_{II} = 0,00$ [MPa] Contrainte tangentielle

 $\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{\parallel}^2)]} \le f_{\text{u}}/(\beta_{\text{w}}^* \gamma_{\text{M2}})$ 2,30 < 363,38 vérifié (0,01)

Montant

 $\beta_{\text{w}} = 0,80$ Coefficient de corrélation [Tableau 4.1]

 $\gamma_{M2} = 1,25$ Coefficient de sécurité partiel [Tableau 2.1]

Soudure longitudinale

 σ_{\perp} = 0,20 [MPa] Contrainte normale dans la soudure

 τ_{\perp} = 0,20 [MPa] Contrainte tengentielle perpendiculaire

 $\tau_{II} = 0,00$ [MPa] Contrainte tangentielle

 $\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{II}^2)]} \le f_{\text{u}}/(\beta_{\text{w}}^* \gamma_{\text{M2}}) \qquad 0,41 < 363,38 \qquad \text{v\'erifi\'e} \qquad (0,00)$

Soudure transversale intérieure

 σ_{\perp} = 3,14 [MPa] Contrainte normale dans la soudure

 τ_{\perp} = 3,14 [MPa] Contrainte tengentielle perpendiculaire

 $\tau_{II} = 0,00$ [MPa] Contrainte tangentielle

 $|\sigma_{\perp}| \le 0.9 \text{ f}_{\text{u}}/\gamma_{\text{M2}}$ | 3,14| < 262,80 vérifié (0,01)

 $\sqrt{|\sigma_{\perp}|^2 + 3^*(\tau_{\perp}|^2 + \tau_{\parallel}|^2)} \le f_{\text{u}}/(\beta_{\text{w}}^*\gamma_{\text{M2}})$ 6,29 < 363,38 vérifié (0,02)

Soudure transversale extérieure

 σ_{\perp} = -2,73 [MPa] Contrainte normale dans la soudure

 τ_{\perp} = -2,73 [MPa] Contrainte tengentielle perpendiculaire

τ_{II} = 0,00 [MPa] Contrainte tangentielle

 $\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{\parallel}^2)]} \le f_{\text{u}}/(\beta_{\text{w}}^* \gamma_{\text{M2}})$ 5,47 < 363,38 vérifié (0,02)

REMARQUES

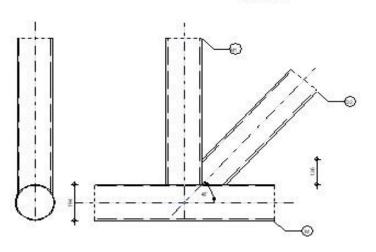
Largeur de la diagonale chevauchante trop importante

178 [mm] > 133 [mm]

Assemblage satisfaisant vis à vis de la Norme Ratio 0,02

> Assemblage: montant-diagonale-membrure inférieure

Autodesk Robot Structural Analysis Professional 2015


OK

Calcul de l'assemblage dans le noeud du treillis

CM 66

Ratio **0,15**

MH-CIRC 1778x10
D2-CIRC 1778x10
M-CIRC 1937x0

GENERAL

Assemblage N°: 4

Nom de l'assemblage: Noeud de treillis en tube

Noeud de la structure: 16

Barres de la structure: 428, 23, 9

GEOMETRIE

BARRES

		Membrure	Diagonale 2	Montant	
Barre N°:		428	23	9	
Profilé:		CIRC 193.7x8	CIRC 177.8x10	CIRC 177.8x10	
	h	194	178	178	mm
	bf	194	178	178	mm
	tw	8	10	10	mm
	t _f	8	10	10	mm

		Membrure	Diagonale 2	Montant	
	r	0	0	0	mm
Matériau:		ACIER	ACIER	ACIER	
	σ_{e}	235,00	235,00	235,00	MPa
	fu	365,00	365,00	365,00	MPa
Angle	α	0,0	48,2	90,0	Deg
Longueur	1	1842	3386	2545	mm

EXCENTREMENT

 $e_0 = 0$ [mm] Excentrement

ESPACEMENTS

 $g_2 = -122$ [mm] Espacement de la diagonale 2

SOUDURES

a_d = 5 [mm] Epaisseur des soudures du treillis

EFFORTS

Cas: 9: 1.35G+1.5S (1+2)*1.35+126*1.00

MEMBRURE

 $N_{01} = 0,00$ [kN] Effort axial

 $M_{01} = 0,00$ [kN*m] Moment fléchissant

 $N_{02} = 14,08$ [kN] Effort axial

 $M_{02} = 2,21$ [kN*m] Moment fléchissant

DIAGONALE 2

 $N_2 = 57,05$ [kN] Effort axial

 $M_2 = 0,68$ [kN*m] Moment fléchissant

MONTANT

 $N_3 = -16,23$ [kN] Effort axial

 $M_3 = -0,91$ [kN*m] Moment fléchissant

Les efforts tranchants n'ont pas été prises en compte lors de la vérification de l'assemblage. L'assemblage a été dimensionné en tant qu'un noeud d'un treillis.

RESULTATS

Mode de ruine 1:			[5.3.1.2, NF P 22-250]
$ N_2 \le N_{2res}$	57,05 < 390,21	vérifié	(0,15)
Mode de ruine 2:			[5.3.1.2, NF P 22-250]
$ N_2 \le N_{2res}$	57,05 < 832,40	vérifié	(0,07)
$ N_3 \le N_{3res}$	-16,23 < 468,42	vérifié	(0,03)
Vérification des soudures :			[5.3.1.2, NF P 22-250]
$ N_2 \le N_{2res}$	57,05 < 771,19	vérifié	(0,07)
$ N_3 \le N_{3res}$	-16,23 < 645,20	vérifié	(0,03)

Rapport des efforts trop important: Assemblage en Y.

Assemblage satisfaisant vis à vis de la Norme	Ratio	0,15

PORTIQUE 2D

Tableau VI.4 : Efforts dans les éléments de la ferme.

Élément	S	Traverses	Pannes	Contreventement
Effort (KN)	Nmax	228.34	61,03	78,09
	Nmin	-53,44	-84,97	-44,03
Sections		IPE300	IPE200	IPE200

C. Assemblage

Notes de calcul puisées de logiciel ROBOT des différents éléments de la toiture pour les assemblages :

> Assemblage : traverse – traverse

L'assemblage **traverse** – **traverse** est réalisé par l'intermédiaire d'une platine boulonnée. Si la portée du portique ne dépasse pas certaines limites pour le transport (environ 16m), L'assemblage du faitage peut être réalisé en usine, hors chantier, permettant ainsi des économies.

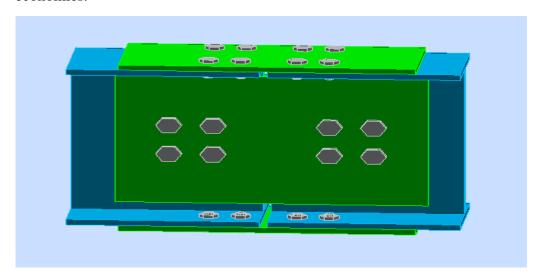
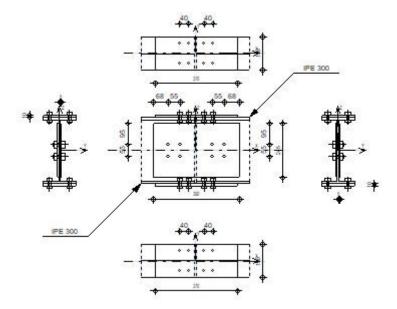



Figure VI.2 : Vue de l'assemblage traverse – traverse

Choix des diamètres des boulons :

Le choix se fait suivant l'épaisseur des pièces assemblées et selon le type de profilés, on choisit des boulons de diamètre **M16** de classe **10.9**

• Efforts de calcul:

 $M_{Max} = 345.52 KN.m.$ $N_{Max} = 228.34 \ KN.$ $V_{Max} = 92.31 \ KN$

• Disposition des boulons :

Les pièces ne sont pas soumises aux intempéries et ne sont pas situées dans des conditions favorisant l'oxydation.

• Entre axe des boulons :

 $P1 \ge 2,2d0$ $P2 \ge 3d0$

Avec : d0 = 18 mm (tableau 6.1 Eurocode 3)

 $P1 \ge 2,2 \times 18 = 39.6 \text{ mm}$ On prend: P1 = 90 mm $P2 \ge 3 \times 18 = 54 \text{ mm}$ On prend: P2 = 90 mm

• Pince longitudinale:

 $e1 \ge 1.2d0$ $e1 \ge 1.2 \times 18 = 21.6 \text{ mm}$ On prend : e1 = 60 mm

• Pince transversale :

 $e2 \ge 1.5d0$ $e2 \ge 1.5 \times 18 = 27 \text{ mm}$ On prend: e2 = 70 mm

• Détermination des efforts dans les boulons :

d1 = 680 mm d4 = 400 mm d2 = 550 mm d5 = 680 mm d6 = 550 mm

 $\sum\!di^2\!\!=680^2\!+\!550^2\!+\!400^2\!+\!400^2\!+\!680^2\!+\!550^2\!=1849800~mm^2$

$$Ni = \frac{M \times di}{\sum di^2}$$

- Vérification de la résistance de l'assemblage des boulons a L'ELU :
- **Vérification au moment résistant :**

$$M_{R} = \frac{F_{P} \times \sum di^{2}}{\sum d1}$$

$$F_p = 0.7 \times f_{ub} \times A_S \dots \dots \dots \dots (Eurocode\ 3\ chp\ 6.5.8.3)$$

F_p: Force de précontrainte dans les boulons.

 f_{ub} : 1000 MPa.

n: nombre de boulon par rangé (n= 2).

$$f_{ub} = 0.7 \times 1000 \times 10^{-3} \times 353 = 247.1 \, KN$$
 Par boulon

Soit :
$$F_p = n \times F_p = 2 \times 247,1 = 494,20KN$$
 par rangé

$$M_R = \frac{494.20 \times 1.8498}{0.68} = 1344.36 \text{ KN.m}$$

$$Msd = 345.52KN.m. < M_R = 1344.36 KN.m$$
 Vérifiée

• Résistance de l'assemblage sous l'effort tranchant :

$$V_{I} = \frac{V_{Sd \ max}}{n} \qquad F_{s} = \frac{Ks \cdot m \cdot \mu \cdot Fp}{Y_{M2}}$$

$$\mu = 0.3$$
 ; $K_S = 1$; $m = 1$

$$V_1 = \frac{92.31}{8} = 11.53 \text{ KN}$$
 $F_S = \frac{1 \times 1 \times 0.3 \times 494.20}{1.25} = 118.60 \text{ KN}$

$$V_1 = 11.53 \text{ KN} < F_S = 118.60 \text{ KN}$$
 Vérifiée

D'où l'assemblage calculé pour la traverse - traverse est satisfait.

> Assemblage de la panne sur l'échantignolle

On a utilisé des échantignolles d'épaisseur 12 cm pour les deux types de structures de notre projet : **PORTIQUE 2D & TREILLIS 2D**.

On dimensionnera le boulon au cisaillement avec Rvz / 2 (chaque boulon reprend une seule panne)

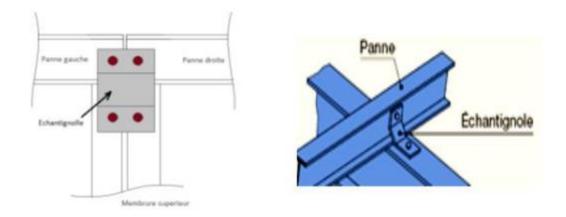


Figure VI.3 : Vue en face et 3D de l'échantignolle

On vérifiera l'assemblage pour un boulon ordinaire afin de réaliser une articulation. Soit un boulon ordinaire M16 de classe 6.8; fub = 600MPa

Rvzmax = 20.19KN est celui due au vent (voire chapitre III calcul de l'échantignolle)

Dans ce cas le boulon travaille au cisaillement seul

VI.3. Assemblage de l'échantignolle sur la membrure supérieure

Dans ce cas-là, le boulon est soumis simultanément un effort de cisaillement et de traction.

$$F_{v,rd} = \frac{\alpha_v \times f_{ub} \times A}{\gamma_{Mb}}$$

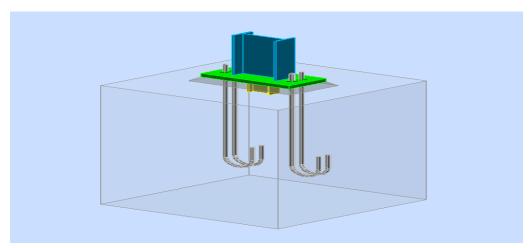
$$F_{v,rd} = \frac{0.5 \times 600 \times 157}{1.25} = 37.68 \text{ KN}$$

$$V_{Sd} = \frac{20.19}{2} = 10.095 \text{ KN} < F_{v,rd} = 37.68 \text{ KN}$$
Condition vérifiée

Conclusion : l'épaisseur de l'échantignolle choisi est capable de reprendre le moment de renversement dû au chargement.

> Assemblage de la ferme sur le poteau en béton (PORTIQUE 2D) :

Dans notre cas on a une jonction ferme et poteau en béton armé qui sera calculé comme un pied de poteau encastré à sa base qui sert à transmettre les charges au sol à l'aide d'assises en acier, ces assises sont des plaques métalliques appelées : « platines », fixées aux pieds des poteaux par des tiges d'ancrage sur le béton d'appui.


1. Sollicitations

Les sollicitations les plus défavorables sont données dans le tableau ci-dessous :

Tableau.VI.5: Les sollicitations les plus défavorables :

Combinaisons	N (KN)	My (KN.m)	V _y (KN)	Mz (KN.m)	Vz(KN)
1,35(G+Q+S)	170,55	75.21	0.9	0.85	47.24
G + 1,5V1S	-54,75	78.56	8.19	77	67.78

On opte 4 tiges avec la disposition suivante :

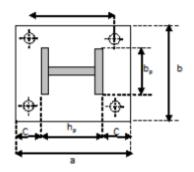


Figure VI.4: Dispositions constructives

 h_p : la hauteur de la section HEA160 \Rightarrow h_p = 152mm.

 $\mathbf{b_p}$: la largeur de la section HEA160 \Rightarrow $\mathbf{b_p} = 160 \text{mm}$.

 \mathbf{c} : le débord, donné par : $\mathbf{c} = (100 \text{ à } 150) \text{ mm}$, on prend : $\mathbf{c} = 100 \text{mm}$.

D'où:

a = hp + 2c = 352mm b = hp + 2c = 360mmSoit : $e_1 = e_2 = 50mm$.

2. Dimensionnement des tiges d'ancrages :

La tige d'ancrage sera dimensionnée avec l'effort de traction et le moment les plus défavorables

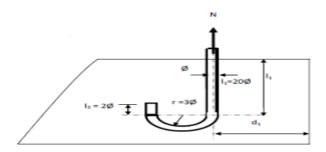


Figure VI.5 : Détail de la tige d'ancrage

Les tiges d'ancrages se dimensionnent à la traction simple, sous un effort de traction (Na) et un moment sollicitant My.

$$N_{st} = \frac{N_t}{n}$$

n : nombre de tiges.

Nt : effort sollicitant de traction.

Nt = 54.75 KN.

$$\frac{N_{st}}{4} \le \frac{\pi \times \varphi^2 \times f_y}{4} \Longrightarrow \varphi \ge \sqrt{\frac{N_t}{\pi \times f_y}}$$

$$\phi \ge \sqrt{\frac{54.75}{3.14 \times 23.5}} = 8.6 \text{ mm}$$

Soit des tiges d'ancrage de 20mm de diamètre

VI.4. Vérification de la tige d'ancrage

L'effort admissible par scellement est fixé par la règle suivante :

$$N_{a} = 0.1 \times \left(1 + \frac{7 \times g_{C}}{1000}\right) \frac{\varphi}{\left(1 + \frac{\varphi}{d_{1}}\right)^{2}} (l_{1} + 6.4r + 3.5l_{2})$$

Na : effort normal résistant d'une tige.

$$r = 3\phi$$
; $l_1 = 20\phi$; $l_2 = 2\phi$

gc: Le dosage en ciment = 350kg/m3

$$r = 3\phi = 18cm$$

$$l_1 = 20\phi = 40cm$$

$$l_2 = 2\phi = 4cm$$

$$d_1 = 5cm$$

Na = 0.1 x
$$\left(1 + \frac{7 \times 350}{1000}\right) \frac{2}{\left(1 + \frac{2}{5}\right)^2} (40 + 6.4 \times 18 + 3.5 \times 4) = 59.56 \text{ KN}$$

$$Na = 59.56 \text{ KN} > Nst = 54.75 \text{ KN}$$

Donc on opte pour des tiges de diamètre ϕ =20 mm

VI.5. Vérification des contraintes dans le béton et l'acier

e =
$$\frac{\text{Ms}d}{\text{Ns}d} = \frac{75.21}{54.75} = 13.73 \text{ cm}$$

e = $13.73 \text{ cm} > \frac{D}{6} = \frac{39}{6} = 6.5 \text{ cm}$

Donc le centre de poussée se trouve hors du tiers central de la section, et la platine est soulevée à gauche (les boulons de gauche sont sollicités en traction).

$$A = 2x3.14 = 6,28cm^2$$
 (A : aire de la section de 2 tiges à gauche du poteau)

$$l = 32.3cm$$

$$h = 30.2cm$$

$$b = 36cm$$

$$n = \frac{E_a}{E_b}$$

$$h'^3 + 3(1 - h)h'^2 + 90A\frac{1}{h}h' - 90A\frac{1}{h}h = 0$$

$$h'^3 + 6.3h'^2 + 507,11h' - 15314.722 = 0 \implies h' = 16.974cm$$

a) Les contraintes dans le béton :

$$\sigma_{\rm b} = \frac{2{\rm N}\times {\rm I}}{{\rm bh'}\left({\rm h}-\frac{{\rm h'}}{3}\right)} \le f_{bu} = \frac{0.85\times f_{c28}}{\gamma_b} \qquad {\rm avec}: \ \gamma_b = 1.5$$

$$6_{b} = \frac{2x54.75x32.3}{36x16.974(30.2 - \frac{16.974}{3})} = 2.35 \text{ MPa} \le f_{bu} = 14.2 \text{ MPa}$$
 vérifiée

b) Les contraintes des goujons à la traction :

$$\sigma_{a} = \frac{N}{A} \times \frac{1 - h + \frac{h'}{3}}{\left(h - \frac{h'}{3}\right)} \le f_{y}$$

$$6_a = \frac{54.75}{6.28} \times \frac{32.3 - 32.2 + \frac{16.974}{3}}{36 \times 16.974 \left(30.2 - \frac{16.974}{3}\right)} = 33.47 \text{ MPa} < f_y = 235 \text{ MPa} \text{ vérifiée}$$

VI.6 -Dimensionnement de l'épaisseur de la platine :

VI.6.1 -vérification de la section 1-1:

Le moment dans la section 1-1 est obtenu grâce au diagramme trapézoïdal de contraintes situées à droite de la section, que l'on peut décomposer en un diagramme rectangulaire (1) et un diagramme triangulaire (2). Les moments correspondants, pour une bonde de largeur unité (1 cm) et d'épaisseur t, sont :

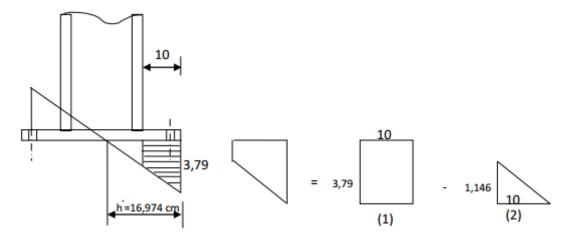


Figure VI.6: Vérification dans la section 1-1

Les moments correspondants, pour une bonde de largeur unité (1 cm) et d'épaisseur t, sont :

$$M_1 = 3,79 \times 10 \times \frac{10}{2} \times 10^{-3} = 0,189 \text{ KN. m}$$

$$M_2 = \left(10x \frac{1.146}{2}\right) \frac{10}{3} x 10^{-3} = 0.019 \text{ KN. m}$$

$$M = M_1 - M_2 = 0.17 \text{ KN.m}$$

• le module d'inertie de la platine Pour b = 1cm

$$\frac{I}{V} = \frac{\left(\frac{b \times t^3}{12}\right)}{\frac{t}{2}} = \frac{b \times t^2}{6}$$

• la contrainte de flexion dans la section est :

$$\frac{M}{\text{Wel}} \le fy$$
 $t \ge \sqrt{\frac{0.17 \times 6}{23.5 \times 10^{-2}}} = 2.08 \text{ cm}$

 $t \ge 2.08 \text{ cm}$

VI.6.2 Vérification de la section 2-2:

Par le même résonnement, on aura le moment maximal :

$$M_1 = 3.79 \times 10 \times \frac{10}{2} \times 10^{-3} = 0.189 \text{ KN. m.}$$

$$t \ge \sqrt{\frac{0.189 \times 6}{23.5 \times 10^{-2}}} = 2.19 \text{ cm}$$

 $t \ge 2.19 \text{ cm}$

VI.6.3 Vérification de la section 3-3:

Du coté tendu, la platine est soumise à un moment : M = 0.05T

$$T = Ax6_a = 6.28 \text{ x } 33.47.10^{-1} = 20.91 \text{ KN}$$

$$M = 0.05 \times 20.91 = 1.04 \text{ KN.m}$$

$$M = \frac{50t^2}{6}$$

Il faut donc vérifier que:

$$\frac{6M}{50t^2} \le fy \qquad t \ge \sqrt{\frac{6M}{50fy}} = \sqrt{\frac{6x1.04}{50x23.5}}$$

 $t \ge 0.072 \text{ cm}$

En conclusion:

On prendra une platine uniforme pour tous les poteaux d'épaisseur : t = 20 mm.

CHAPITRE

VII Étude comparative

Après avoir terminé l'étude techniques, le dimensionnement et la vérification de nos trois structures de toitures différentes, nous procédons donc à l'étude comparative et l'estimation du coût entre les trois variantes permettant ainsi de tirer plusieurs conclusions et recommandations et d'établir une estimation du montant global de la structure suivant le type d'éléments qui lui est choisi.

Pour cela, nous allons calculer le poids de différents éléments de chaque structure.

Il est à noter, que ces poids seront calculés seulement pour la structure de la toiture en charpente métallique, sans prendre en considération l'ossature en béton armé, la couverture en panneaux sandwich et la fondation de la structure.

***** TREILLIS 2D

Tableau VII.1 : Sections choisies pour Les éléments de la ferme et les contreventements :

Éléments	Section choisie
Membrures supérieures et inferieures	2CAE 100x12
Diagonales	2CAE100x10
Montants	2CAE50x5
Pannes	IPE 200
Contreventement horizontal	2CAE100x10
Contreventement vertical	2CAE90x9

VII.1. Calcul du poids réel de la ferme

• Membrures supérieures :

2CAE 100x12 à G = 17.8KN/m

Longueur total: 19.25m

Poids des membrures supérieures : WMS = $2G \times L \times Nb = 2 \times 17.8 \times 19.25 \times 7 = 4797.1$ kg

• Membrures inférieures :

2CAE 100x12 à G = 17.8KN/m

Longueur total: 19.25m

Poids des membrures inférieures : WMI = $2G \times L \times Nb = 2 \times 17.8 \times 19.25 \times 7 = 4797.1 kg$

• Diagonales:

 $2CAE100x10 \ a G = 15KN/m$

Longueur total: 23,7m

Poids des diagonales : WD = $2G \times L \times Nb = 2 \times 15 \times 23,7 \times 7 = 4977 \text{kg}$

• Montants :

2CAE50x5 à G = 3.77KN/m

Longueur total: 16,5m

Poids des montants : WM = 2G × L× Nb = $2 \times 3.77 \times 16,5 \times 7 = 870.87$ kg

• Panne:

IPE 200 à G = 22.4 KN/m Longueur total : 30.95m

Poids des pannes : $WP = L \times Nb = 22.4 \times 30.95 \times 12 = 8319.36 \text{kg}$

• Contreventement horizontal:

2CAE100x10à G = 15KN/m

Longueur total: 19.25m

Poids des contreventement h. : WcH = $2G \times L \times Nb = 2 \times 15 \times 19.25 \times 4 = 2310 \text{kg}$

• Contreventement vertical:

2CAE90x9 à G = 12.2KN/m

Longueur total: 30.95m

Poids des contreventement v. : Wcv = $2G \times L \times Nb = 2 \times 12.2 \times 30.95 \times 4 = 3020.72 \text{kg}$

Poids total de la ferme :

W = WMS + WMI + WD + WM + WP + WCH + WCV = 29092.15kg

Nous ajoutons forfaitairement 20% pour tenir compte du poids des goussets, des boulons, et de la peinture.

Poids total de la toiture est : $W = 29092.15 \times 1,2 = 34910.58$ kg

❖ TREILLIS SPATIAL 3D

Tableau VII.2 : Sections choisies pour Les éléments de la ferme et les contreventements

Éléments	Section choisie
Membrures inferieures	CIR193.7x8
Diagonales & Montants	CIR177.8x10
Membrures supérieures	CIR193.7x5
Pannes	CIR168.3x6
Contreventement	2CAE90x9

VII.2. Calcul du poids réel de la ferme

• Membrures supérieures :

CIR193.7x5 à G = 23.3KN/m

Longueur total: 19.25m

Poids des membrures supérieures : WMS = $G \times L \times Nb = 23.3 \times 19.25 \times 7 = 3139.675 \text{kg}$

• Membrures inférieures :

CIR193.7x8 à G = 36.6KN/m Longueur total : 19.25m

Poids des membrures inférieures : WMI = $G \times L \times Nb = 36.6 \times 19.25 \times 7 = 4931.85 \text{kg}$

• Diagonales:

CIR177.8x10 à G = 41.4KN/m

Longueur total: 23,7m

Poids des diagonales : $WD = G \times L \times Nb = 41.4 \times 23.7 \times 7 = 6868.26 \text{kg}$

• Oblique:

CIR177.8x10 à G = 41.4KN/m

Longueur total: 23.7m

Poids des obliques : WMI = $G \times L \times Nb = 41.4 \times 23.7 \times 6 = 5887.08 kg$

• Montants :

CIR177.8x10 à G = 41.4KN/m

Longueur total: 16,5m

Poids des montants : WM = $G \times L = 41.4 \times 16.5 \times 7 = 4781.7$ kg

• Panne:

CIR168.3x6 à G = 24KN/m

Longueur total: 30.95m

Poids des pannes : WMI = $G \times L \times Nb = 24 \times 30.95 \times 12 = 8913.6$ kg

• Contreventement vertical:

2CAE90x9 à G = 12.2KN/m

Longueur total: 30.95m

Poids des contreventement vert. : Wcv = $2G \times L \times Nb = 2 \times 12.2 \times 30.95 \times 4 = 3020.72 \text{kg}$

Poids total de la ferme :

W = WMS + WMI + WD + WM + WP + WO + WCV = 37542.885kg

Nous ajoutons forfaitairement 20% pour tenir compte du poids des goussets, des soudures, et de la peinture.

Poids total de la toiture est : $W = 37542.885 \times 1,2 = 45051.462$ kg

❖ PORTIQUE 2D

Tableau VII.3 : Sections choisies pour Les éléments de la ferme et les contreventements

Éléments	Section choisie
Traverse	IPE300
Panne	IPE200
Contreventement	IPE200

VII.3. Calcul du poids réel de la ferme

• Traverse :

IPE300 à G = 42.2KN/m

Longueur total: 19.25m

Poids des traverses : WMS = $G \times L \times Nb = 42.2 \times 19.25 \times 9 = 7311.15 kg$

• Panne :

IPE200 à G = 22.4KN/m

Longueur total: 30.95m

Poids des pannes : WMI = $G \times L \times Nb = 22.4 \times 30.95 \times 11 = 7626.08 \text{kg}$

• Contreventement :

IPE200 à G = 22.4KN/m

Longueur total: 19.25m

Poids des Contreventement : $WD = G \times L \times Nb = 22.4 \times 19.25 \times 4 = 1724.8 \text{kg}$

❖ Poids total de la ferme :

W = WT + WP + WcV = 16662.03kg

Nous ajoutons forfaitairement 20% pour tenir compte du poids des goussets, des soudures, et de la peinture.

Poids total de la toiture est : $W = 16662.03 \times 1,2 = 19994.436$ kg

Il s'avère donc par conséquent, que la structure en **PORTIQUE 2D** est plus avantageuse en termes de coût, par rapport aux autres structures. Ceci est justifié par le peu de quantités des aciers utilisées pour la conception de cette structure.

Cependant les deux autres structures (**TREILLIS 2D** et **TREILLIS SPATIAL 3D**) semble être assez efficace et très rigide en termes de résistance, mais coûteux en main d'œuvre.

CONCLUSION GENERALE

Arrivant à la fin de ce modeste travail, qui nous a donné une occasion pour appliquer et approfondir toutes nos connaissances acquises durant le cursus de formation de master. Cette expérience nous a permis aussi de faire mieux comprendre le domaine de la construction en charpente métallique, d'un côté d'assimiler les différentes techniques et logiciel de calcul ainsi que la réglementation régissant les principes de conception et de calcul des ouvrages dans ce domaine.

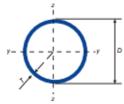
La complexité des calculs en génie civil fait inévitablement appel aux services d'outils numériques tels qu'AUTODESK ROBOT STRUCTURAL ANALYSIS, à qui on doit un gain en temps, en précision et en fiabilité.

Au cours de notre étude, nous sommes parvenus à un certain nombre de conclusions dont les plus importantes sont :

- La modélisation doit être aussi proche que possible de la réalité, afin d'approcher le comportement réel de la structure et obtenir de meilleurs résultats.
- Dans les structures métalliques les actions du vent sont souvent les plus défavorables.
- La jonction de la ferme avec le poteau en béton se fait par des tiges d'encrage et se calcule comme un pied de poteau encastré.
- ➤ Vu sa bonne rigidité et son poids léger, l'acier nous offre la possibilité de concevoir des éléments de la portée.
- ➤ Le projet s'est fixé comme objectif la prévention de tout risque afin de garantir la sécurité des vies et des biens, qui constituent la principale règle dans le domaine du génie civil

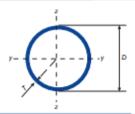
Références Bibliographie

- * RNVA Règlement Neige et Vent Algérien
- * RPA99/ version 2003, Règlement Parasismique Algérien
- ❖ Jean Morel, Calcul des Structures selon l'EUROCODE 3
- ❖ DTR BC 2.2 (charges et surcharges d'exploitation)
- ❖ Cours de constructions métalliques 3ème année licence.
- ❖ Cours de constructions métalliques 1ère année Master.
- ❖ Projet de fin d'études (université de BEJAIA, Université de Tlemcen)


Annexe 1 : Valeur de x en fonction de λ

	Coo	efficients de réduc	tion	
λ̄	Va	leur de χ pour la c	ourbe de flambem	ent
Λ	a	b	с	d
0,2	1,0000	1,0000	1,0000	1,0000
0,3	0,9775	0,9641	0,9491	0,9235
0,4	0,9528	0,9261	0,8973	0,8504
0,5	0,9243	0,8842	0,8430	0,7793
0,6	0,8900	0,8371	0,7854	0,7100
0,7	0,8477	0,7837	0,7247	0,6431
0,8	0,7957	0,7245	0,6622	0,5797
0,9	0,7339	0,6612	0,5998	0,5208
1,0	0,6656	0,5970	0,5399	0,4671
1,1	0,5960	0,5352	0,4842	0,4189
1,2	0,5300	0,4781	0,4338	0,3762
1,3	0,4703	0,4269	0,3888	0,3385
1,4	0,4179	0,3817	0,3492	0,3055
1,5	0,3724	0,3422	0,3145	0,2766
1,6	0,3332	0,3079	0,2842	0,2512
1,7	0,2994	0,2781	0,2577	0,2289
1,8	0,2702	0,2521	0,2345	0,2093
1,9	0,2449	0,2294	0,2141	0,1920
2,0	0,2229	0,2095	0,1962	0,1766
2,1	0,2036	0,1920	0,1803	0,1630
2,2	0,1867	0,1765	0,1662	0,1508
2,3	0,1717	0,1628	0,1537	0,1399
2,4	0,1585	0,1506	0,1425	0,1302
2,5	0,1467	0,1397	0,1325	0,1214
2,6	0,1362	0,1299	0,1234	0,1134
2,7	0,1267	0,1211	0,1153	0,1062
2,8	0,1182	0,1132	0,1079	0,0997
2,9	0,1105	0,1060	0,1012	0,0937
3,0	0,1036	0,0994	0,0951	0,0882

Annexe 2 : Caractéristiques des profiles


	G	h	b	t _w	t _i	r	Α	hi	d	Ø	Pmin	Pmax	AL	A _G
	kg/m	mm	mm	mm	mm	mm	mm ²	mm	mm		mm	mm	m²/m	m²/t
							x10 ²							
IPE 80 A+/*	5,0	78	46	3,3	4,2	5	6,38	69,6	59,6		-	-	0,325	64,90
IPE80	6,0	80	46	3,8	5,2	5	7,64	69,6	59,6		-		0,328	54,64
IPE A 100+/*	6,9	98	55	3,6	4,7	7	8,78	88,6	74,6	•	####	•	0,397	57,57
IPE 100*	8,1	100	55	4,1	5,7	7	10,3	88,6	74,6		-		0,400	49,33
IPE A 120+	8,7	117,6	64	3,8	5,1	7	11,0	107,4	93,4	•	-	•	0,472	54,47
IPE 120	10,4	120	64	4,4	6,3	7	13,2	107,4	93,4		-	-	0,475	45,82
IPE A 140+	10,5	137,4	73	3,8	5,6	7	13,4	126,2	112,2	•	-	•	0,547	52,05
IPE 140	12,9	140	73	4,7	6,9	7	16,4	126,2	112,2	•	•	•	0,551	42,70
IPE A 160+	12,7	157	82	4	5,9	9	16,2	145,2	127,2	•	•	•	0,619	48,70
IPE 160	15,8	160	82	5	7,4	9	20,1	145,2	127,2		-		0,623	39,47
IPE A 180+	15,4	177	91	4,3	6,5	9	19,6	164	146	M 10	48	48	0,694	45,15
IPE 180	18,8	180	91	5,3	8	9	23,9	164	146	M 10	48	48	0,698	37,13
IPE O 180+	21,3	182	92	6	9	9	27,1	164	146	M 10	50	50	0,705	33,12
IPE A 200+	18,4	197	100	4,5	7	12	23,5	183	159	M 10	54	58	0,764	41,49
IPE 200	22,4	200	100	5,6	8,5	12	28,5	183	159	M 10	54	58	0,768	34,36
IPE O 200+	25,1	202	102	6,2	9,5	12	32,0	183	159	M 10	56	60	0,779	31,05
IPE A 220+	22,2	217	110	5	7,7	12	28,3	201,6	177,6	M 12	60	62	0,843	38,02
IPE 220	26,2	220	110	5,9	9,2	12	33,4	201,6	177,6	M 12	60	62	0,848	32,36
IPE O 220+	29,4	222	112	6,6	10,2	12	37,4	201,6	177,6	M 10	58	66	0,858	29,24
IPE A 240+	26,2	237	120	5,2	8,3	15	33,3	220,4	190,4	M 12	64	68	0,918	35,10
IPE 240	30,7	240	120	6,2	9,8	15	39,1	220,4	190,4	M 12	66	68	0,922	30,02
IPE O 240+	34,3	242	122	7	10,8	15	43,7	220,4	190,4	M 12	66	70	0,932	27,17
IPE A 270+	30,7	267	135	5,5	8,7	15	39,2	249,6	219,6	M 16	70	72	1,037	33,75
IPE 270	36,1	270	135	6,6	10,2	15	45,9	249,6	219,6	M 16	72	72	1,041	28,86
IPE O 270+	42,3	274	136	7,5	12,2	15	53,8	249,6	219,6	M 16	72	72	1,051	24,88
IPE A 300+	36,5	297	150	6,1	9,2	15	46,5	278,6	248,6	M 16	72	86	1,156	31,65
IPE 300	42,2	300	150	7,1	10,7	15	53,8	278,6	248,6	M 16	72	86	1,160	27,46
IPE O 300+	49,3	304	152	8	12,7	15	62,8	278,6	248,6	M 16	74	88	1,174	23,81
IPE A 330•	43,0	327	160	6,5	10	18	54,7	307	271	M 16	78	96	1,250	29,09
IPE 330	49,1	330	160	7,5	11,5	18	62,6	307	271	M 16	78	96	1,254	25,52

	_	h h	Γ.									
	G	h = b	t	r ₁	r ₂	A	Z _s =y _s	V	U ₁	U ₂	AL	Ag
	kg/m	mm	mm	mm	mm	mm ²	mm	mm	mm	mm	m²/m	m²/t
						x10 ²	x10	x10	x10	x10		
L 20 x 20 x 3-	0,882	20	3	3,5	2	1,12	0,60	1,41	0,84	0,70	0,080	87,40
L 25 x 25 x 3x/-	1,12	25	3	3,5	2	1,42	0,72	1,77	1,02	0,88	0,100	86,88
L 25 x 25 x 4x/-	1,45	25	4	3,5	2	1,85	0,76	1,77	1,08	0,89	0,100	66,67
L 30 x 30 x 3x/-	1,36	30	3	5	2,5	1,74	0,84	2,12	1,18	1,05	0,120	84,87
L 30 x 30 x 4x/-	1,78	30	4	5	2,5	2,27	0,88	2,12	1,24	1,06	0,120	65,02
L 35 x 35 x 4x/-	2,09	35	4	5	2,5	2,67	1,00	2,47	1,42	1,24	0,140	64,82
L 40 x 40 x 4x/-	2,42	40	4	6	3	3,08	1,12	2,83	1,58	1,40	0,150	64,07
L 40 x 40 x 5x/-	2,97	40	5	6	3	3,79	1,16	2,83	1,64	1,41	0,150	52,07
L 45 x 45 x 4,5x/-	3,06	45	4,5	7	3,5	3,90	1,26	3,18	1,78	1,58	0,170	56,83
L 50 x 50 x 4x/-	3,06	50	4	7	3,5	3,89	1,36	3,54	1,92	1,75	0,190	63,49
L 50 x 50 x 5x/-	3,77	50	5	7	3,5	4,80	1,40	3,54	1,99	1,76	0,190	51,46
L 50 x 50 x 6x/-	4,47	50	6	7	3,5	5,69	1,45	3,54	2,04	1,77	0,190	43,41
L 60 x 60 x 5x/-	4,57	60	5	8	4	5,82	1,64	4,24	2,32	2,11	0,230	51,04
L 60 x 60 x 6x/-	5,42	60	6	8	4	6,91	1,69	4,24	2,39	2,11	0,230	42,99
L 60 x 60 x 8x/-	7,09	60	8	8	4	9,03	1,77	4,24	2,50	2,14	0,230	32,89
L 65 x 65 x 7-	6,83	65	7	9	4,5	8,70	1,85	4,60	2,61	2,29	0,250	36,95
L 70 x 70 x 6-	6,38	70	6	9	4,5	8,13	1,93	4,95	2,73	2,46	0,270	42,68
L 70 x 70 x 7-	7,38	70	7	9	4,5	9,40	1,97	4,95	2,79	2,47	0,270	36,91
L 75 x 75 x 6-	6,85	75	6	10	5	8,73	2,04	5,30	2,89	2,63	0,290	42,44
L 75 x 75 x 8-	8,99	75	8	10	5	11,4	2,13	5,30	3,01	2,65	0,290	32,37
L 80 x 80 x 8-	9,63	80	8	10	5	12,3	2,26	5,66	3,19	2,83	0,310	32,34
L 80 x 80 x 10-	11,9	80	10	10	5	15,1	2,34	5,66	3,30	2,85	0,310	26,26
L 90 x 90 x 7-	9,61	90	7	11	5,5	12,2	2,45	6,36	3,47	3,16	0,350	36,48
L 90 x 90 x 8-	10,9	90	8	11	5,5	13,9	2,50	6,36	3,53	3,17	0,350	32,15
L 90 x 90 x 9-	12,2	90	9	11	5,5	15,5	2,54	6,36	3,59	3,18	0,350	28,77
L 90 x 90 x 10-	13,4	90	10	11	5,5	17,1	2,58	6,36	3,65	3,19	0,350	26,07
L 100 x 100 x 8*/-	12,2	100	8	12	6	15,5	2,74	7,07	3,87	3,52	0,390	32,00
L 100 x 100 x 10*/-	15,0	100	10	12	6	19,2	2,82	7,07	3,99	3,54	0,390	25,92
L 100 x 100 x 12*/-	17,8	100	12	12	6	22,7	2,90	7,07	4,11	3,57	0,390	21,86
L 110 x 110 x 10*	16,6	110	10	13	6,5	21,2	3,06	7,78	4,33	3,88	0,429	25,79
L 110 x 110 x 12*	19,7	110	12	13	6,5	25,1	3,15	7,78	4,45	3,91	0,429	21,73
L 120 x 120 x 10-	18,2	120	10	13	6,5	23,2	3,31	8,49	4,69	4,24	0,469	25,76
L 120 x 120 x 11	19,9	120	11	13	6,5	25,4	3,36	8,49	4,75	4,25	0,469	23,54

Gamme tube de structure à froid - rond

DAMPSTRE BYTTSTRIE BYTTS	2												
mm mm kg/m cm² cm² cm² cm² cm² cm² cm² cm² m²/m m m² 165,1 3,2 12,8 16,3 533 5,73 64,6 83,9 10,67 129 0,519 78,3 319 165,1 3,6 14,3 18,3 596 5,71 72,2 93,9 1.192 144 0,519 69,7 284 165,1 4 15,9 20,2 657 5,70 79,6 104 1.314 159 0,519 62,9 256 165,1 5 19,7 25,1 807 5,66 97,7 128 1,613 195 0,519 50,7 206 165,1 6 23,5 30,0 950 5,63 115 152 1,901 230 0,519 42,5 173 165,1 6,3 24,7 31,4 992 5,62 120 159 1,985 240 0,519 40,5 165 165,1 7 27,3 34,8 1,088 5,60 132 175 2,177 264 0,519 36,6 149 165,1 8 31,0 39,5 1,221 5,56 148 198 2,442 296 0,519 32,3 131 168 2,5 10,2 13,0 445 5,85 53,0 68,5 890 106 0,528 89,0 406 168 2,9 11,8 15,0 513 5,84 61,0 79,1 1,025 122 0,528 84,7 351 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1,125 134 0,528 76,9 319 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1,125 134 0,528 76,9 319 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1,257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1,387 165 0,528 61,8 256 168 6 24,0 30,5 1,003 5,73 1119,4 158 2,006 239 0,528 41,7 173 168 6,3 25,1 32,0 1,048 5,72 124,7 165 2,095 249 0,528 39,8 165 168,1 2,5 11,8 15,1 514 5,84 61,1 79,2 1,027 122 0,528 84,6 351 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 89,8 165 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 84,6 351 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 84,6 351 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1,259 150 0,528 68,5 284 168,1 3,2 13,0 16,6	EXTÉRIEUR			SECTION					DINERTIE	DE	ATÉRALE PAR UNITÉ DE	NOMINALE	SURFACE EXTÉRIEURE
mm mm kg/m cm² cm² cm² cm² cm² cm² cm² cm² m²/m m m² 165,1 3,2 12,8 16,3 533 5,73 64,6 83,9 10,67 129 0,519 78,3 319 165,1 3,6 14,3 18,3 596 5,71 72,2 93,9 1.192 144 0,519 69,7 284 165,1 4 15,9 20,2 657 5,70 79,6 104 1.314 159 0,519 62,9 256 165,1 5 19,7 25,1 807 5,66 97,7 128 1,613 195 0,519 50,7 206 165,1 6 23,5 30,0 950 5,63 115 152 1,901 230 0,519 42,5 173 165,1 6,3 24,7 31,4 992 5,62 120 159 1,985 240 0,519 40,5 165 165,1 7 27,3 34,8 1,088 5,60 132 175 2,177 264 0,519 36,6 149 165,1 8 31,0 39,5 1,221 5,56 148 198 2,442 296 0,519 32,3 131 168 2,5 10,2 13,0 445 5,85 53,0 68,5 890 106 0,528 89,0 406 168 2,9 11,8 15,0 513 5,84 61,0 79,1 1,025 122 0,528 84,7 351 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1,125 134 0,528 76,9 319 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1,125 134 0,528 76,9 319 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1,257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1,387 165 0,528 61,8 256 168 6 24,0 30,5 1,003 5,73 1119,4 158 2,006 239 0,528 41,7 173 168 6,3 25,1 32,0 1,048 5,72 124,7 165 2,095 249 0,528 39,8 165 168,1 2,5 11,8 15,1 514 5,84 61,1 79,2 1,027 122 0,528 84,6 351 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 89,8 165 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 84,6 351 168,1 3,2 13,0 16,6 564 5,86 53,1 68,6 892 106 0,528 84,6 351 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1,259 150 0,528 68,5 284 168,1 3,2 13,0 16,6	D	Т			- 1	i	W	W	Ļ	C,	Ą		A
165,1 3,6	mm	mm	kg/m	cm ²	cm⁴	cm	cm ³	cm ³	cm ⁴	cm ³	m²/m	m	m ⁻ⁱ
165,1	165,1	3,2	12,8	16,3	533	5,73	64,6	83,9	1.067	129	0,519	78,3	319
165,1 5		3,6		18,3		5,71				144		69,7	
165,1 6 23,5 30,0 950 5,63 115 152 1,901 230 0,519 42,5 173 165,1 6,3 24,7 31,4 992 5,62 120 159 1,985 240 0,519 40,5 165 165,1 7 27,3 34,8 1,088 5,60 132 175 2,177 264 0,519 36,6 149 165,1 8 31,0 39,5 1,221 5,56 148 198 2,442 296 0,519 32,3 131 168 2.5 10,2 13,0 445 5,85 53,0 68,5 890 106 0,528 98,0 406 168 2.9 11,8 15,0 513 5,84 61,0 79,1 1,025 122 0,528 84,7 351 168 3,2 13,0 16,6 563 5,83 67,0 86,5 1,125 134 <t< td=""><td>165,1</td><td>4</td><td>15,9</td><td>20,2</td><td>657</td><td>5,70</td><td>79,6</td><td>104</td><td>1.314</td><td>159</td><td>0,519</td><td>62,9</td><td>256</td></t<>	165,1	4	15,9	20,2	657	5,70	79,6	104	1.314	159	0,519	62,9	256
165,1 6,3 24,7 31,4 992 5,62 120 159 1,985 240 0,519 40,5 165 165,1 7 27,3 34,8 1,088 5,60 132 175 2,177 264 0,519 36,6 149 165,1 8 31,0 39,5 1,221 5,56 148 198 2,442 296 0,519 32,3 131 168 2,5 10,2 13,0 445 5,85 53,0 68,5 890 106 0,528 98,0 406 168 2,9 11,8 15,0 513 5,84 61,0 79,1 1,025 122 0,528 84,7 351 168 3 12,2 15,6 529 5,83 63,0 81,7 1,059 126 0,528 84,7 351 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1,257 150 0,528	165,1	5	19,7	25,I	807	5,66	97,7	128	1.613	195	0,519	50,7	206
165,1 7 27,3 34,8 1.088 5,60 132 175 2.177 264 0,519 36,6 149 165,1 8 31,0 39,5 1.221 5,56 148 198 2.442 296 0,519 32,3 131 168 2,5 10,2 13,0 445 5,85 53,0 68,5 890 106 0,528 98,0 406 168 2,9 11,8 15,0 513 5,84 61,0 79,1 1.025 122 0,528 84,7 351 168 3 12,2 15,6 529 5,83 63,0 81,7 1.059 126 0,528 84,7 351 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1.125 134 0,528 81,9 339 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1.257 150 <t< td=""><td>165,1</td><td>6</td><td>23,5</td><td>30,0</td><td>950</td><td>5,63</td><td>115</td><td>152</td><td>1.901</td><td>230</td><td>0,519</td><td>42,5</td><td>173</td></t<>	165,1	6	23,5	30,0	950	5,63	115	152	1.901	230	0,519	42,5	173
165,1 8 31,0 39,5 1,221 5,56 148 198 2,442 296 0,519 32,3 131 168 2,5 10,2 13,0 445 5,85 53,0 68,5 890 106 0,528 98,0 406 168 2,9 11,8 15,0 513 5,84 61,0 79,1 1,025 122 0,528 84,7 351 168 3 12,2 15,6 529 5,83 63,0 81,7 1,059 126 0,528 81,9 339 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1,125 134 0,528 76,9 319 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1,257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1,387 165 0	165,1	6,3	24,7	31,4	992	5,62	120	159	1.985	240	0,519	40,5	165
168 2,5 10,2 13,0 445 5,85 53,0 68,5 890 106 0,528 98,0 406 168 2,9 11,8 15,0 513 5,84 61,0 79,1 1,025 122 0,528 84,7 351 168 3 12,2 15,6 529 5,83 63,0 81,7 1,059 126 0,528 81,9 339 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1,125 134 0,528 76,9 319 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1,257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1,387 165 0,528 61,8 256 168 5 20,1 25,6 851 5,77 101,3 133 1,702 203 0,5	165,1	7	27,3	34,8	1.088	5,60	132	175	2.177	264	0,519	36,6	149
168 2,9 11,8 15,0 513 5,84 61,0 79,1 1.025 122 0,528 84,7 351 168 3 12,2 15,6 529 5,83 63,0 81,7 1.059 126 0,528 81,9 339 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1.125 134 0,528 76,9 319 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1.257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1,387 165 0,528 61,8 256 168 5 20,1 25,6 851 5,77 101,3 133 1,702 203 0,528 49,8 206 168 6 24,0 30,5 1,003 5,73 119,4 158 2,006 239 0	165,1	8	31,0	39,5	1.221	5,56	148	198	2.442	296	0,519	32,3	131
168 3 12,2 15,6 529 5,83 63,0 81,7 1.059 126 0,528 81,9 339 168 3,2 13,0 16,6 563 5,83 67,0 86,9 1.125 134 0,528 76,9 319 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1.257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1.387 165 0,528 61,8 256 168 5 20,1 25,6 851 5,77 101,3 133 1.702 203 0,528 49,8 206 168 6 24,0 30,5 1.003 5,73 119,4 158 2.006 239 0,528 41,7 173 168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 0	168	2,5	10,2	13,0	445	5,85	53,0	68,5	890	106	0,528	98,0	406
168 3,2 13,0 16,6 563 5,83 67,0 86,9 1.125 134 0,528 76,9 319 168 3,6 14,6 18,6 628 5,81 74,8 97,3 1.257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1.387 165 0,528 61,8 256 168 5 20,1 25,6 851 5,77 101,3 133 1.702 203 0,528 49,8 206 168 6 24,0 30,5 1.003 5,73 119,4 158 2.006 239 0,528 41,7 173 168 6,3 25,1 32,0 1.048 5,72 124,7 165 2.095 249 0,528 39,8 165 168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 <	168	2,9	11,8	15,0	513	5,84	61,0	79,1	1.025	122	0,528	84,7	351
168 3,6 14,6 18,6 628 5,81 74,8 97,3 1.257 150 0,528 68,5 284 168 4 16,2 20,6 693 5,80 82,5 108 1.387 165 0,528 61,8 256 168 5 20,1 25,6 851 5,77 101,3 133 1.702 203 0,528 49,8 206 168 6 24,0 30,5 1.003 5,73 119,4 158 2.006 239 0,528 41,7 173 168 6,3 25,1 32,0 1.048 5,72 124,7 165 2.095 249 0,528 39,8 165 168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 0,528 97,9 406 168,1 2,9 11,8 15,1 514 5,84 61,1 79,2 1.027 122	168	3	12,2	15,6	529	5,83	63,0	81,7	1.059	126	0,528	81,9	339
168 4 16,2 20,6 693 5,80 82,5 108 1.387 165 0,528 61,8 256 168 5 20,1 25,6 851 5,77 101,3 133 1.702 203 0,528 49,8 206 168 6 24,0 30,5 1.003 5,73 119,4 158 2.006 239 0,528 41,7 173 168 6,3 25,1 32,0 1.048 5,72 124,7 165 2.095 249 0,528 39,8 165 168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 0,528 97,9 406 168,1 2,9 11,8 15,1 514 5,84 61,1 79,2 1.027 122 0,528 84,6 351 168,1 3 12,2 15,6 530 5,84 63,1 81,8 1.061 126	168	3,2	13,0	16,6	563	5,83	67,0	86,9	1.125	134	0,528	76,9	319
168 5 20,1 25,6 851 5,77 101,3 133 1.702 203 0,528 49,8 206 168 6 24,0 30,5 1.003 5,73 119,4 158 2.006 239 0,528 41,7 173 168 6,3 25,1 32,0 1.048 5,72 124,7 165 2.095 249 0,528 39,8 165 168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 0,528 97,9 406 168,1 2,9 11,8 15,1 514 5,84 61,1 79,2 1,027 122 0,528 84,6 351 168,1 3 12,2 15,6 530 5,84 63,1 81,8 1,061 126 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,83 67,1 87,0 1,127 134	168	3,6	14,6	18,6	628	5,81	74,8	97,3	1.257	150	0,528	68,5	284
168 6 24,0 30,5 1.003 5,73 119,4 158 2.006 239 0,528 41,7 173 168 6,3 25,1 32,0 1.048 5,72 124,7 165 2.095 249 0,528 39,8 165 168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 0,528 97,9 406 168,1 2,9 11,8 15,1 514 5,84 61,1 79,2 1,027 122 0,528 84,6 351 168,1 3 12,2 15,6 530 5,84 63,1 81,8 1,061 126 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,83 67,1 87,0 1,127 134 0,528 76,8 319 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1,259 150 <td>168</td> <td>4</td> <td>16,2</td> <td>20,6</td> <td>693</td> <td>5,80</td> <td>82,5</td> <td>108</td> <td>1.387</td> <td>165</td> <td>0,528</td> <td>61,8</td> <td>256</td>	168	4	16,2	20,6	693	5,80	82,5	108	1.387	165	0,528	61,8	256
168 6,3 25,1 32,0 1.048 5,72 124,7 165 2.095 249 0,528 39,8 165 168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 0,528 97,9 406 168,1 2,9 11,8 15,1 514 5,84 61,1 79,2 1.027 122 0,528 84,6 351 168,1 3 12,2 15,6 530 5,84 63,1 81,8 1.061 126 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,83 67,1 87,0 1.127 134 0,528 76,8 319 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1.259 150 0,528 68,5 284 168,1 4 16,2 20,6 695 5,80 82,6 108 1.389 165	168	5	20,1	25,6	851	5,77	101,3	133	1.702	203	0,528	49,8	206
168,1 2,5 10,2 13,0 446 5,86 53,1 68,6 892 106 0,528 97,9 406 168,1 2,9 11,8 15,1 514 5,84 61,1 79,2 1.027 122 0,528 84,6 351 168,1 3 12,2 15,6 530 5,84 63,1 81,8 1.061 126 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,83 67,1 87,0 1.127 134 0,528 76,8 319 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1.259 150 0,528 68,5 284 168,1 4 16,2 20,6 695 5,80 82,6 108 1.389 165 0,528 61,8 256 168,1 5 20,1 25,6 853 5,77 101 133 1.705 203	168	6	24,0	30,5	1.003	5,73	119,4	158	2.006	239	0,528	41,7	173
168,1 2,9 11,8 15,1 514 5,84 61,1 79,2 1.027 122 0,528 84,6 351 168,1 3 12,2 15,6 530 5,84 63,1 81,8 1.061 126 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,83 67,1 87,0 1.127 134 0,528 76,8 319 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1.259 150 0,528 68,5 284 168,1 4 16,2 20,6 695 5,80 82,6 108 1.389 165 0,528 61,8 256 168,1 5 20,1 25,6 853 5,77 101 133 1.705 203 0,528 49,7 206 168,1 6 24,0 30,6 1.005 5,74 120 158 2.010 239	168	6,3	25,1	32,0	1.048	5,72	124,7	165	2.095	249	0,528	39,8	165
168,1 3 12,2 15,6 530 5,84 63,1 81,8 1.061 126 0,528 81,9 339 168,1 3,2 13,0 16,6 564 5,83 67,1 87,0 1.127 134 0,528 76,8 319 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1.259 150 0,528 68,5 284 168,1 4 16,2 20,6 695 5,80 82,6 108 1.389 165 0,528 61,8 256 168,1 5 20,1 25,6 853 5,77 101 133 1.705 203 0,528 49,7 206 168,1 6 24,0 30,6 1.005 5,74 120 158 2.010 239 0,528 41,7 173 168,3 2,5 10,2 13,0 448 5,86 53,2 68,7 895 106	168,1	2,5	10,2	13,0	446	5,86	53,1	68,6	892	106	0,528	97,9	406
168,1 3,2 13,0 16,6 564 5,83 67,1 87,0 1.127 134 0,528 76,8 319 168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1.259 150 0,528 68,5 284 168,1 4 16,2 20,6 695 5,80 82,6 108 1.389 165 0,528 61,8 256 168,1 5 20,1 25,6 853 5,77 101 133 1.705 203 0,528 49,7 206 168,1 6 24,0 30,6 1.005 5,74 120 158 2.010 239 0,528 41,7 173 168,3 2,5 10,2 13,0 448 5,86 53,2 68,7 895 106 0,529 97,8 406 168,3 2,9 11,8 15,1 515 5,85 61,3 79,3 1.031 123 0,529 84,5 351	168,1	2,9	11,8	15,1	514	5,84	61,1	79,2	1.027	122	0,528	84,6	351
168,1 3,6 14,6 18,6 630 5,82 74,9 97,4 1.259 150 0,528 68,5 284 168,1 4 16,2 20,6 695 5,80 82,6 108 1.389 165 0,528 61,8 256 168,1 5 20,1 25,6 853 5,77 101 133 1.705 203 0,528 49,7 206 168,1 6 24,0 30,6 1.005 5,74 120 158 2.010 239 0,528 41,7 173 168,3 2,5 10,2 13,0 448 5,86 53,2 68,7 895 106 0,529 97,8 406 168,3 2,9 11,8 15,1 515 5,85 61,3 79,3 1.031 123 0,529 84,5 351	168,1	3	12,2	15,6	530	5,84	63,I	81,8	1.061	126	0,528	81,9	339
168,1 4 16,2 20,6 695 5,80 82,6 108 1.389 165 0,528 61,8 256 168,1 5 20,1 25,6 853 5,77 101 133 1.705 203 0,528 49,7 206 168,1 6 24,0 30,6 1.005 5,74 120 158 2.010 239 0,528 41,7 173 168,3 2,5 10,2 13,0 448 5,86 53,2 68,7 895 106 0,529 97,8 406 168,3 2,9 11,8 15,1 515 5,85 61,3 79,3 1.031 123 0,529 84,5 351	168,1	3,2	13,0	16,6	564	5,83	67,I	87,0	1.127	134	0,528	76,8	319
168,1 5 20,1 25,6 853 5,77 101 133 1.705 203 0,528 49,7 206 168,1 6 24,0 30,6 1.005 5,74 120 158 2.010 239 0,528 41,7 173 168,3 2,5 10,2 13,0 448 5,86 53,2 68,7 895 106 0,529 97,8 406 168,3 2,9 11,8 15,1 515 5,85 61,3 79,3 1,031 123 0,529 84,5 351	168,1	3,6	14,6	18,6	630	5,82	74,9	97,4	1.259	150	0,528	68,5	284
168,1 6 24,0 30,6 1.005 5,74 120 158 2.010 239 0,528 41,7 173 168,3 2,5 10,2 13,0 448 5,86 53,2 68,7 895 106 0,529 97,8 406 168,3 2,9 11,8 15,1 515 5,85 61,3 79,3 1.031 123 0,529 84,5 351	168,1	4	16,2	20,6	695	5,80	82,6	108	1.389	165	0,528	61,8	256
168,3 2,5 10,2 13,0 448 5,86 53,2 68,7 895 106 0,529 97,8 406 168,3 2,9 11,8 15,1 515 5,85 61,3 79,3 1.031 123 0,529 84,5 351	168,1	5	20,1	25,6	853	5,77	101	133	1.705	203	0,528	49,7	206
168,3 2,9 11,8 15,1 515 5,85 61,3 79,3 1.031 123 0,529 84,5 351	168,1	6	24,0	30,6	1.005	5,74	120	158	2.010	239	0,528	41,7	173
	168,3	2,5	10,2	13,0	448	5,86	53,2	68,7	895	106	0,529	97,8	406
168,3 3 12,2 15,6 532 5,85 63,3 82,0 1.065 127 0,529 81,8 339	168,3	2,9	11,8	15,1	515	5,85	61,3	79,3	1.031	123	0,529	84,5	351
	168,3	3	12,2	15,6	532	5,85	63,3	82,0	1.065	127	0,529	81,8	339

Gamme tube de structure à froid - rond

DIAMÈTRE EXTÉRIEUR SPÉCIFIÉ	ÉPAISSEUR SPÉCIFIE	MASSE LINÉIQUE	AIRE DE LA SECTION TRANSVERSALE	MOMENT D'INERTIE	RAYON DE GIRATION	MODULE ÉLASTIQUE	MODULE PLASTIQUE	MODULE D'INERTIE DETORSION	MODULE DE TORSION	SURFACE ATÉRALE PAR UNITÉ DE LONGEUR	LONGEUR NOMINALE PARTONNE	AIRE DE LA SURFACE EXTÉRIEURE PAR METRE
D	Т	М	Α	- I	i	W	W _{pl}	I,	C ^f	A,		A
mm	mm	kg/m	cm ²	cm⁴	cm	cm ³	cm ³	cm ⁴	cm ³	m²/m	m	m ⁻¹
177,8	6,3	26,6	33,9	1.250	6,07	141	185	2.499	281	0,559	37,5	165
177,8	7	29,5	37,6	1.372	6,04	154	204	2.744	309	0,559	33,9	149
177,8	8	33,5	42,7	1.541	6,01	173	231	3.083	347	0,559	29,9	131
177,8	10	41,4	52,7	1.862	5,94	209	282	3.724	419	0,559	24,2	106
193,7	3	14,1	18,0	817	6,74	84,4	109	1.634	169	0,609	70,9	339
193,7	3,2	15,0	19,2	869	6,74	89,7	116	1.738	179	0,609	66,5	318
193,7	3,6	16,9	21,5	972	6,72	100	130	1.943	201	0,609	59,3	283
193,7	4	18,7	23,8	1.073	6,71	111	144	2.146	222	0,609	53,4	255
193,7	5	23,3	29,6	1.320	6,67	136	178	2.640	273	0,609	43,0	205
193,7	6	27,8	35,4	1.560	6,64	161	211	3.119	322	0,609	36,0	172
193,7	6,3	29,1	37,1	1.630	6,63	168	221	3.260	337	0,609	34,3	164
193,7	7	32,2	41,1	1.791	6,61	185	244	3.583	370	0,609	31,0	148
193,7	8	36,6	46,7	2.016	6,57	208	276	4.031	416	0,609	27,3	130
193,7	10	45,3	57,7	2.442	6,50	252	338	4.883	504	0,609	22,1	105
193,7	12,5	55,9	71,2	2.934	6,42	303	411	5.869	606	0,609	17,9	85,5
200	3	14,6	18,6	901	6,97	90,1	116	1.802	180	0,628	68,6	338
200	3,2	15,5	19,8	958	6,96	95,8	124	1.916	192	0,628	64,4	318
200	3,6	17,4	22,2	1.071	6,94	107	139	2.143	214	0,628	57,4	283
200	4	19,3	24,6	1.183	6,93	118	154	2.366	237	0,628	51,7	255
200	5	24,0	30,6	1.457	6,90	146	190	2.914	291	0,628	41,6	205
200	6	28,7	36,6	1.722	6,86	172	226	3.444	344	0,628	34,8	172
200	6,3	30,1	38,3	1.800	6,85	180	236	3.600	360	0,628	33,2	164
200	7	33,3	42,4	1.979	6,83	198	261	3.958	396	0,628	30,0	148
200	8	37,9	48,3	2.227	6,79	223	295	4.455	445	0,628	26,4	130