وزارة التعليم العالى والبحث العلمي

République Algérienne Démocratique et Populaire

Ministère de l'enseignement supérieur et de la recherche scientifique

Présenté à l'Université du 8 Mai 1945 Guelma Faculté des Sciences et de la Technologie

Département de : Génie Civil & Hydraulique

Spécialité : **Génie civil**Option : **Structures**

Présenté par : HIMRI Yousra et KHELAIFIA Soulef

Thème : ETUDE D'UN BATIMENT A USAGE D'HABITATION R+5

Sous la direction de : Dr. MADI Rafik

Octobre 2020

Toute notre parfaite gratitude et remerciement à Allah le plus puissant qui nous a donné la force, le courage et la volonté pour élaborer ce travail.

Avant tout, nous tenons à remercier DIEU le tout puissant pour nous avoir donné la force et la patience pour mener à terme ce travail.

Nous remercions nos familles qui nous ont toujours encouragés et soutenu durant toutes nos études.

Nos plus grands remerciements vont à notre encadreur **Dr. MADI Rafik**, pour avoir accepté de nous guider sur le bon chemin tout au long de ce travail.

Nos vifs remerciements vont également à tous les enseignants, pour l'aide, l'encouragement et les moyens didactiques qu'ils ont mis à notre disposition pour mener à terme notre travail.

Nous saisissons également cette opportunité pour remercier les membres du jury d'avoir accepté de lire ce manuscrit et d'apporter les critiques nécessaires à la mise en forme de cet ouvrage.

Notre sincère gratitude va vers tous ceux qui ont participé de près ou de loin à la réalisation de ce travail

Dédicaces

"وما توفيقى إلا بالله عليه توكلت وإليه أنيب"

Je dédie ce travail à :

Mes chers parents, qui m'ont toujours encouragé et soutenu dans mes études jusqu'à la fin de ma formation.

- * A mes chers frères et sœurs
- * A mon binôme KHelaifia Soulef et sa famille.
- * Toute ma famille : Himri.
- * A mes chers amis et mes copines.
- * A toute la Promotion 2020.
- * Tous les enseignants qui m'ont dirigé vers la porte de la réussite.

Dédicaces

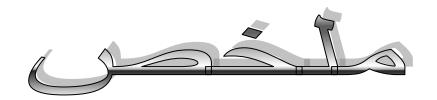
Je dédie ce modeste travail :

A l'esprit de mon père

A ma mère

A mes frères Ridha et Seif-eddine.

A mes sœurs Wassila, Naouel et Wafa.


A mon encadreur bien sûr: "Dr. MADI Rafik"

A Tous mes enseignants

je remercie mon enseignant: "Dr. HAWEM"

mon binôme Himri Yousra et tous mes amis

Enfin, A toute la promotion de génie civil 2020.

سيتعلق هذا المشروع بدراسة مبنى للاستخدام السكني 5 + R. يقع في ولاية قالمة المصنفة وفقًا للائحة 99 الجزائرية لمكافحة التطفل، إصدار 2003 (RPA 99 / إصدار 2003) في المنطقة اللزلازل المتوسطة؛ يتم توفير الدعامة بواسطة جسور متحركة ويتم تقويتها بجدران كما هو مطلوب بواسطة RPA / الإصدار 2003.

ستقسم هذه الدراسة إلى أربع مراحل متتالية:

- ﷺ الجزء الأول: هذا هو الوصف العام للمشروع مع عرض للجانب المعماري لعناصر البرج، ثم الأبعاد المسبقة للهيكل وأخيراً خفض الأحمال.
 - الجزء الثانى: خصص للعناصر الثانوية (السلم، الروافد، البلكونة، البلاطات الصلبة والحاجز).
- الدراسة الديناميكية للهيكل: بدأت في الجزء الثالث من قبل Autodesk Robot Structural الأحمال (الأحمال الدائمة Analysis Professional 2017 ومن أجل تحديد الضغوط المختلفة بسبب الأحمال (الأحمال الدائمة والتشغيلية والزلزالية).
 - # الجزء الأخير: ويشمل تقوية عناصر المقاومة المختلفة للهيكل (الأساس، الأعمدة، الكمرات). هذا مع مراعاة توصيات 99/2003 BAEL المعدلة ولوائح الزلازل الجزائرية RPA 99/2003

RESUME

Ce projet portera sur **l'étude d'un bâtiment à usage d'habitation R+5**. Situé dans la Wilaya **Guelma** qui est classé selon le Règlement Parasismique Algérien 99 version 2003 (**RPA 99 / version 2003**) en **zone IIa** de moyenne sismicité ; le contreventement est assuré par des portiques et renforcés par des voiles comme l'exige le **RPA 99 /version** 2003.

Cette étude sera divisée en quatre étapes consécutives :

- La première partie : c'est la description générale du projet avec une présentation de l'aspect architectural des éléments du bâtiment, Ensuite le prédimensionnement de la structure et enfin la descente des charges.
- ** La deuxième partie: a été consacrée aux éléments secondaires (l'escalier, poutrelles, Balcon, dalles pleines et l'acrotère).
- L'étude dynamique de la structure : a été entamée dans la troisième partie par Autodesk Robot Structural Analysis Professional 2010 et afin de déterminer les différentes sollicitations dues aux chargements (charges permanente, d'exploitation et charge sismique).
- ** La dernière partie : comprend le ferraillage des différents éléments résistants de la structure (fondation, poteaux, poutres).

Ceci, en tenant compte des recommandations du BAEL91 révisée 99 et des règlements parasismiques algériens RPA 99/2003.

ABSTRACT

This project will relate to **the study of a building for residential use R + 5.** Located in the wiley **Guelma** which is classified according to the Algerian Parasismic Regulation **99 version 2003 (RPA 99 / version 2003)** in zone **IIa** of average seismicity; the bracing is provided by portals and reinforced by walls in accordance with RPA 99 / version 2003.

This study will be divided into four consecutive stages:

- * The first part: it is the general description of the project with a presentation of the architectural aspect of the elements of the bâtiment, then the pre-dimensioning of the structure and finally the lowering of the loads.
- * The second part: was devoted to the secondary elements (the staircase, the joists, the balcony, the solid slabs and the parapet).
- * The dynamic study of the structure: was launched in the third part by Autodesk Robot Structural Analysis Professional 2010 and in order to determine the different stresses due to the loads (permanent, operational and seismic loads).
 - * The last part: includes the reinforcement of the various resistant elements of the structure (foundation, posts, and beams).

This, taking into account the recommendations of the **revised BAEL91 99** and the Algerian seismic **regulation RPA 99/2003**.

Sommaire

Intro	Introduction général			
	Chapitre I : Présentation de l'ouvrage et caractéristiques des matériaux			
I.1	Introduction	5		
I.2	Présentation de l'ouvrage	5		
I.3	Ossature et système constructif adopte	11		
	a Ossature	11		
	b Le Planchers	11		
	c Revêtement	11		
	d Escaliers	12		
	e Maçonnerie	12		
	f Isolation	13		
	g L'acrotère	13		
	h Les voiles	13		
I.4	Données du site	14		
I.5	Hypothèses de calcul	14		
I.6	Principaux caractéristiques et avantages de béton			
I.7	Les caractéristiques des matériaux			
1.,	a Le Béton			
	a LC Decon	1		

d Caractéristiques physiques et mécaniques du béton16

	g	Déformation longitudinale du béton	20
	h	Module de déformation transversale du béton	20
	i	Aciers	21
	j	Diagramme contraintes-déformations de l'acier	22
	k	Contrainte limite de traction des armatures	22
	1	Etats limites	23
I.8	A	ctions et sollicitations	26
	a	Les actions	26
	b	Sollicitations de calcul vis-à-vis des états limites	27
		Chapitre II : Pré-dimensionnement et descente de charge	
II.	1	Introduction	29
II.	.2	Pré-dimensionnement des planchers	30
	a	Définition	30
	b	Plancher à corps creux	30
	c	Dimensions des poutrelles	31
	d	Plancher en dalle pleine	32
II.	.3	Pré dimensionnement des voiles	32
	a	Définition	32
	b	Disposition des voiles	34
II.	4	Pré dimensionnement des poutres	34
	a	Les poutres principales	35
	b	Poutres secondaires (chainages)	35
	c	Poutres P_1 L = 535 cm	36
	d	Poutres $P_2 L = 622 \text{ cm}$	36
II.	.5	Pré dimensionnement des poteaux	37
	a	Définition	37
	b	Principe	37
	c	Etapes de Prédimensionnement	37

d	Dimensions des poteaux
II.6	Pré dimensionnement des escaliers
a	Définition39
b	Terminologie39
c	Caractéristiques techniques
II.7	Evaluation des charges et surcharges
a	Lesplanchers terrasse à corps creux (inaccessible)
b	Plancher étage courant et RDC
c	Plancher terrasse en dalle pleine
d	Plancher étage courant et RDC en (dalle pleine)
e	Les balcons sont en dalle pleine (Balcons)
f	Mur extérieur (double cloison)
g	Murs intérieurs (simple cloison)
h	Escalier45
i	L'acrotère
II.8	Descente de charges
a	Charges permanentes et l'effort normal «Nu»
b	Charges d'exploitation
c	Choix du poteau le plus sollicité56
d	Calcul de la longueur de flambement L _f 56
e	Calcul de l'effort Nu
f	Vérifications du 1,1 Nu \leq Nu 58
g	Vérification selon le RPA 99 version 2003
	Chapitre III : Etude des éléments secondaires
III.1	Introduction
III.2	Etude de l'acrotère
a	Introduction
b	Dimensions et modélisation de l'acrotère

c	Détermination des sollicitations	. 63
d	Évaluation et combinaison des charges	. 64
e	Calcul de l'excentricité	. 64
f	Position de centre de pression	. 64
g	Le ferraillage de l'acrotère	. 65
III.3	Etude d'escalier	70
a	Introduction	. 70
b	Charges et surcharges	. 70
c	Calcul de la charge équivalente	. 71
d	Calcul des moments max et efforts tranchants max :	. 72
e	Calcul du ferraillage	. 74
f	Etude de la poutre palière	. 78
g	Pré dimensionnement de la poutre palière	. 78
h	Evaluation des charges	. 78
i	Combinaison à considérer	. 79
j	Calcul des moments max et efforts tranchants max	. 79
k	Calcul du ferraillage	. 80
1	Vérification	. 81
m	Calcul des armatures transversales	. 82
III.4	Etude des balcons	83
a	Introduction	. 83
b	Dimension de dalle pleine	. 84
c	Evaluation des charges sur le balcon	. 84
d	Calcul des moments	. 84
e	Calcul du ferraillage des balcons	. 85
III.5	Calcul des planchers	88
a	Introduction	. 88
b	Les planchers en corps creux	. 88
c	Rôle de planchers	. 88

d	Réalisation des planchers	88
III.6	Les méthodes de calcul utilisées pour le calcul des nervures	89
a	Domaine de validité de la méthode forfaitaire	89
b	Les différents types de poutrelles	89
c	Vérification des conditions d'application de la méthode forfaitaire	90
III.7	Méthode de Caquot	91
a	Moments aux appuis	91
b	Moment en travée	91
III.8	Application de la méthode Caquot pour étage courant et RDC	92
a	Calcul des longueurs fictives	92
b	Calcul des moments	92
c	Les efforts tranchants	94
III.9	Calcul de ferraillage des nervures	96
a	Calcul à ELU	96
b	Calcul de la section d'armatures longitudinales	97
c	Calcul de la section d'armatures transversales	98
d	Espacement St	99
e	Vérification de l'effort tranchant au voisinage de l'appui	99
f	Longueur de recouvrement	99
III.10	Application de la méthode (RDM)	100
a	Moment isostatique :	100
b	Les efforts tranchants	100
c	Le moment $\mathbf{M_{Tu}}$ de la table	102
d	Ferraillage des poutrelles	102
III.11	Application de la méthode Caquot pour Plancher terrasse (inaccessible)	103
a	Calcul des longueurs fictives	103
b	Calcul des moments	103
c	Les efforts tranchants	105
III.12	Calcul de ferraillage des nervures	107

IV.6	Vérification au renversement	133
IV.5	Vérification de L'excentricité accidentelle	132
IV.4	Vérification de déplacement	130
d	Modélisation de la structure	124
c	Disposition des voiles	124
b	Détermination des paramètres du spectre de réponse	. 119
a	Classification de site	. 119
IV.3	Choix de la méthode de calcul	118
IV.2	Objective de l'étude sismique	
IV.1	Introduction	118
	Chapitre IV : Etude sismique et modélisation	
b	Schéma de ferraillage dalle de compression	115
a 1-	Schéma de ferraillage des poutrelles	
	Les schémas de ferraillages	
b	Les armatures parallèles aux nervures	
a 1-	Les armatures perpendiculaires aux nervures	
	Ferraillage de la dalle de compression des planchers avec hourdis et corps creux	
h	Longueur de recouvrement	
g	Vérification de l'effort tranchant au voisinage de l'appui	
f	Espacement S _t	
e	Calcul de la section d'armatures transversales	
d	Ferraillage des poutrelles	
c	Le moment $\mathbf{M_{Tu}}$ de la table	
b	Les efforts tranchants	
a	Moment isostatique	. 109
III.13	Application de la méthode (RDM) pour Plancher terrasse (inaccessible)	109
b	Calcul de la section d'armatures longitudinales	. 108
a	Calcul à ELU	. 107

Chapitre V : Etude des éléments structuraux

V.1	Introduction	146
V.2	Etude du ferraillage des poteaux	146
a	Combinaison des charges	146
b	Calcul des armatures longitudinales	146
c	Calcul des armatures transversales	147
V.3	Etude du ferraillage des poutres	152
a	L'étude des Poutres (30 × 45)	153
b	L'étude des Poutres (30 × 55)	159
c	L'étude des Poutres principales (30 × 40)	166
d	L'étude des Poutres secondaires (30 × 40)	174
e	L'étude des Poutres noyaux	177
V.4	Etude de ferraillage des voiles	178
a	Introduction	178
b	Conception	178
c	Stabilité des constructions vis-à-vis les charges latérales	178
d	Rôle de contreventement	179
e	Ferraillage des voiles	179
f	Combinaison	179
g	Pré dimensionnement des voiles	179
h	Vérification	183
;	Disposition dos armeturos	101

Chapitre VI : Etude de l'infrastructure

VI.1	Introduction	190
VI.2	Rôle de fondations	190
a	Les charges verticales	190
b	Les charges horizontales (ou obliques)	190
VI.3	Contrainte admissible du sol	190
VI.4	Stabilité des fondations	191
VI.5	Type des fondations	191
a	Fondations superficielles	191
b	Fondations profondes	192
VI.6	Choix du type des fondations	192
VI.7	Calcul des fondations	193
a	Combinaison d'action	193
b	Etude du voile périphérique	193
c	La surface des semelles	194
VI.8	Calcul les semelles isolées	195
a	Pré dimensionnements des semelles isolées	195
b	Vérification de chevauchement	200
c	Ferraillage des semelles isolées	203
VI.9	Calcul des semelles filantes	209

	a	Dimensionnement des semelles filantes sous voiles	209
	b	Ferraillage des semelles filantes SF (B \times L)	211
VI.10	Ca	lcul les radiers	214
	a	Généralités	214
	b	Pré dimensionnement du radier	215
	c	Calcul de ferraillage du radier	219
VI.11	La	Longrine	234
	a	Généralité	234
	b	Dimensionnement de la longrine	234
	c	Ferraillage de la longrine	234
CON	CLU	SION GENERALE	238
Riblio	ares	ahio	220

LISTES DES FIGURES

CHAPITRE I : Présentation de l'ouvrage et caractéristique des matériaux

Figure I.1	Plan RDC.	6
Figure I.2	Plan étage courant.	7
Figure I.3	Plan de terrasse.	8
Figure I.4	Coupe verticale	9
Figure I. 5	Façade principale R+5	10
Figure I.6	Plancher dalle pleine	11
Figure I.7	Dalle à corps creux	11
Figure I. 8	Présentation de l'escalier	12
Figure I. 9	Mur simple cloison	12
Figure I.10	Mur extérieur et Mur intérieur.	12
Figure I.11	Isolation	13
Figure I.12	Les voiles.	13
Figure I.13	Eprouvette cylindrique du béton	14
Figure I.14	Diagramme parabole-rectangle des contraintes-Déformations du béton	18
Figure I.15	Diagramme rectangulaire simplifié	18
Figure I.16	Diagramme contrainte déformation d'acier	22
Figure I.17	Les Ronds Lisses (RL)	23

Figure I.19	Diagramme des déformations limites de la section : règle des trois pivots	24
CHAPI	TRE II : Pré dimensionnement des éléments et décente des charge	es
Figure II.1	Plon de coffrage RDC.	29
Figure II.2	Coupe du plancher en corps creux.	30
Figure II.3	Coupe verticale du plancher à corps creux.	31
Figure II.4	Section de la poutrelle	32
Figure II.5	Coupe de voile en élévation	33
Figure II.6	Section réduite du voile	34
Figure II.7	Position des poutres et les poteaux.	38
Figure II.8	Coupe plancher terrasse	41
Figure II.9	Coupe plancher étage courant	42
Figure II.10	Mur extérieur	44
Figure II.11		45
cloison		
Figure II.12	Représentation du poteau d'angle le plus sollicité	47
Figure II.13	Représentation du poteau central le plus sollicité	50
Figure II.14	Représentation du poteau de rive le plus sollicité	52
	Chapitre III : Etude des éléments secondaires.	
Figure III.1	Acrotère	63
Figure III.2	Coupes transversales de l'acrotère	65
Figure III.3	Schéma de ferraillage de l'acrotère	69

Figure I.18 Les Hautes Adhérences (HA).....

23

Figure III.4	Schéma d'escalier	70
Figure III.5 courant	Schéma des charges sur les éléments de l'escalier (ELU) niveau RDC et étage	71
Figure III.6	Schéma des charges sur les éléments de l'escalier (ELS) niveau RDC et étage	
courant		72
Figure III.7	Diagramme des sollicitations niveau étage courant à ELU	73
Figure III.8	Diagramme des sollicitations niveau étage courant à ELS	73
Figure III.9	Ferraillage de l'escalier	77
Figure III.10	Schéma statique de la poutre palière	79
Figure III.11	Schéma de ferraillage de la poutre palière	83
Figure III.12	Schéma de balcon	84
Figure III.13	Schéma statique du balcon	85
Figure III.14	Schéma de ferraillage du balcon	87
Figure III.15	Diagramme à ELU type 1 des moments plancher étages courants	95
Figure III.16	Diagramme à ELS type 1 des moments plancher étages courants	95
Figure III.17	Diagramme à ELU type 1des efforts tranchant plancher étages courants	96
Figure III.18	Diagramme à ELS type 1des efforts tranchant plancher étages courant	96
Figure III.19	Diagramme à ELU type 2 des moments plancher étages courants.	101
Figure III.20	Diagramme à ELU type 2des efforts tranchant plancher étages courants.	101
Figure III.21	Diagramme à ELS type 2 des moments plancher étages courants	101
Figure III.22	Diagramme à ELS type 2des efforts tranchant plancher étages courants	101
Figure III.23	Diagramme à ELU type 1 des moments plancher terrasse	106
Figure III.24	Diagramme à ELU type 1 des efforts tranchant plancher terrasse	106
Figure III.25	Diagramme à ELS type 1 des moments plancher terrasse.	107
Figure III.26	Diagramme à ELS type 1 des efforts tranchant plancher terrasse	107

Figure III.27	Diagramme à ELU type 2 des moments plancher terrasse	. 110
Figure III.28	B Diagramme à ELU type 2des efforts tranchant plancher terrasse	110
Figure III.29	Diagramme à ELU type 2 des moments plancher terrasse	. 110
Figure III.30	Diagramme à ELU type 2des efforts tranchant plancher terrasse	110
Figure III.31	Schéma de ferraillage de la dalle de compression	. 115
Figure III.32	2 Disposition constructive des armatures de la dalle de compression	116
	Chapitre IV : Etude sismique et modélisation	
Figure IV.1	Modèle numérique en 3D.	125
Figure IV.2	Spectre de réponse.	127
Figure IV.3 le plan X-Y	1 ^{er} mode de déformation de la structure à cause des efforts sismiques dans (résultats de Robot 2010)	128
Figure IV.4	2 ^{eme} mode de déformation de la structure à cause des efforts sismiques dans	
le plan X-Y	(résultats de Robot 2010).	128
Figure IV.5 X-Y (résultat	3 ^{éme} mode de déformation de la structure à cause des efforts sismiques vue : de Robot 2010)	129
	Chapitre V : Etude des éléments structuraux	
Figure V.1	Crochet des barres horizontales	148
Figure V.2	Coupe de ferraillage des poteaux (45×40) cm ²	151
Figure V.3	Coupe de ferraillage des poteaux (40 ×30) cm ²	152
Figure V.4	Diagramme des moments de flexion sous la combinaison ELU	153
Figure V.5	Diagramme des moments de flexion sous la combinaison ELS	153
Figure V.6	Diagramme des moments de flexion sous la combinaison ELA	153
	Diagramme de l'effort tranchant (cas défavorable) sous la combinaison état vice	157
Figure V.8	Ferraillage Poutre (30× 45)	158
Figure V.9	Diagramme des moments de flexion sous la combinaison ELU au niveau	
terrasse		159

Figure V.10	Diagramme des moments de flexion sous la combinaison ELS au niveau
terrasse	
Figure V.11	Diagramme des moments de flexion sous la combinaison ELA au niveau
terrasse	
Figure V.12	Diagramme de l'effort tranchant (cas défavorable) sous la combinaison état
limite service.	
Figure V.13	Diagramme des moments des poutres (30×55) au niveau travée et appuis de
RDC et 1 ^{er} et	2 ^{éme} et 3 ^{éme} et de 4 ^{éme} étage (Combinaison ELU)
Figure V.14	Diagramme des moments des poutres (30×55) au niveau travée et appuis de
RDC et 1 ^{er}	, 2 ^{éme} , 3 ^{éme} et 4é ^{me} étage (Combinaison 0.8G+EX)
Figure V.15	Ferraillage poutre (30× 55) en travée
Figure V.16	Ferraillage poutre (30× 55)en appuis
Figure V.17	Diagramme des moments de flexion sous la combinaison ELU au niveau
terrasse	
Figure V.18	Diagramme des moments de flexion sous la combinaison ELS au niveau
terrasse	
Figure V.19	Diagramme des moments de flexion sous la combinaison ELA au niveau
terrasse	
_	Diagramme de l'effort tranchant (cas défavorable) sous la combinaison état ice
Figure V.21 de RDC et 1 ^{er}	Diagramme des moments des poutres principales au niveau travée et appuis et 2 ^{éme} et 3 ^{éme} et de 4 ^{éme} et 5 ^{éme} étage (Combinaison ELU)
Figure V.22 RDC et de	Diagramme des moments des poutres principales au niveau travée et appuis 1 ^{er} , 2 ^{éme} , 3 ^{éme} et 4 ^{éme} et 5 ^{éme} étage (Combinaison 0.8G+EX)
Figure V.23	Ferraillage des poutres principales au niveau travée de RDC et 1 ^{er} étage
Figure V.24	Ferraillage des poutres principales au niveau travée de 2 ^{éme} et 3 ^{éme} et 4 ^{éme} et 5
	Ferraillage des poutres principales au niveau appuis de RDC et 1 ^{er} et 2 ^{éme} et

3 ^{eme} et 4 ^{eme}	et 5 ^{eme} étage	······································	174
O	•	des moments des poutres secondaires au niveau de travée et 1 ^{éme} étage (Combinaison ELU).	174
Figure V.27	Diagramme	des moments des poutres secondaires au niveau travée et appuis	
de niveaux	RDC et 1 ^{éme}	étage (Combinaison 0.8G+EY)	174
Figure V.28	Diagramm	e des moments des poutres secondaires au niveau travée et appuis	
niveaux 2ér	me et 3éme e	et 4 ^{éme} et 5 ^{éme} étage (Combinaison ELU)	175
Figure V.29	Diagramme	des moments des poutres secondaires au niveau travée et appuis	
de niveaux	2éme et 3ém	ne étage et 4 ^{éme} et 5 ^{éme} étage (Combinaison 0.8G+EY)	175
	_	des poutres principales au niveau travée de RDC et 1 ^{er} et 2 ^{éme} et 3	176
Figure V.31	Ferraillage	des poutres principales au niveau appuis de RDC et 1 ^{er} et 2 ^{éme} et 3	
^{éme} et 4 ^{éme} e	t 5 ^{éme} étage.		176
Figure V.32	Diagramme	des moments des poutres noyées au niveau de travée et appuis de	
(Combinaison	ELU)		177
O .	Ū	des moments des poutres noyées au niveau de travée et appuis de	177
		des poutres noyées	178
Figure V.35	Coupe horiz	zontale de Ferraillage des voiles (V _{L1}) au niveau RDC	185
Figure V.36	Coupe horiz	zontale de Ferraillage des voiles (V _{L2}) au niveau RDC	185
Figure V.37	Coupe horiz	zontale de Ferraillage des voiles (V _{L3}) au niveau RDC	185
		Chapitre VI : Etude de l'infrastructure	
F F	igure 1.a. igure 1.b.	ons superficielles Semelle isolée. Semelle filante. Radier.	192
-	o		

Figure VI.2.	Coupe du schéma de ferraillage du voile périphérique	194
Figure VI.3.	Vue longitudinale du schéma de ferraillage du voile périphérique	194
Figure VI.4.	Vu en plan d'une semelle isolée	195
Figure VI.5.	Dimensions de la semelle isolée	196
Figure VI.6.	Diagramme des contraintes du sol agissant sur la semelle isolée	198
Figure VI.7.	Schéma des fondations de bâtiment	202
Figure VI.8.	Schéma de ferraillage d'une semelle isolée	205
Figure VI.9.	Semelle filante	210
Figure VI.10	Disposition des armatures d'une semelle filante SF ₁	213
Figure VI.11	Schéma du radier général nervuré	214
Figure VI.12	Représentation des sollicitations de radier	218
Figure VI.13	Ferraillage de la dalle de radier	225
Figure VI.14	Lignes de rupture des panneaux	225
Figure VI.15	Chargements de la nervure sens (x-x) à L'ELU	226
Figure VI.16	Diagramme de moment agissant au niveau de nervure sens x-x (à L'ELU)	227
Figure VI.17	Chargements de la nervure sens (x-x) à L'ELS	230
O	Diagramme des moments agissants aux niveaux des nervures sens x-x	231
Figure VI.19 (à L'ELU)	Diagramme des efforts tranchants aux niveaux des nervures sens x-x	232
Figure VI.20	Ferraillage du nervure au sens x-x en appui (A) et en travée	233
Figure VI.21	Ferraillage du nervure au sens x-x en appui (B)	233
Figure VI.22	Schéma de ferraillage de la longrine	236

LISTE DES TABLEAUX

CHAPITRE I : Présentation de l'ouvrage et caractéristique des matériaux

Tableau I.1	Caractéristiques géométriques de l'ouvrage	5
Tableau I.2	Dosage du béton	16
Tableau I.3	Caractéristiques des nuances d'acier.	21
СНАР	PITRE II : Pré dimensionnement des éléments et décente des charges	S
Tableau II.1	Pré dimensionnement des poteaux.	38
Tableau II.2	Evaluation des charges permanentes du plancher terrasse	41
Tableau II.3	Evaluation des charges permanentes du Plancher étage courant et RDC	42
Tableau II.4	Evaluation des charges permanentes du plancher terrasse en dalle pleine	42
Tableau II.5	Evaluation des charges permanentes du plancher étage courant RDC en dalle	43
Tableau II.6		
Tableau II.7	Evaluation des charges permanentes de dalle de balcon (étage courant et	44
Tableau II.8	Evaluation des charges permanentes dues au mur extérieur	44
Tableau II.9	Charge permanente du mur double cloison	45
Tableau II.10	Evaluation des charges permanentes de palier	45
Tableau II.11	Evaluation des charges permanentes de Paillasse.	46
Tableau II.12	Tableaux Surcharges d'exploitation.	47
Tableau II.13	Déterminationdes charges permanentes pour Poteau d'angle	48

Tableau II.14	Déterminationdes charges permanentes pour Poteau central	50
Tableau II.15	Détermination des charges permanentes pour Poteau de rive	53
Tableau II.16	Détermination des charges d'exploitations	56
Tableau II.17	Calcul de \overline{N}_u des poteaux	58
Tableau II.18	Vérifications du 1,1 $Nu \le \overline{N_u}$ des poteaux	58
Tableau II.19	Vérification selon le RPA 99 /version 2003des dimensions des poteaux	59
Tableau II.20	Vérification selon le RPA 99 / version 2003 des dimensions des poteaux	59
Tableau II.21	Pré-dimensionnement des poteaux	60
	Chapitre III : Etude des éléments secondaires	
Tableau III.1	Charges sur les éléments de l'escalier	71
Tableau III.2	Les moments et l'effort tranchant	72
Tableau III.3	Ferraillage d'escalier	76
Tableau III.4	Vérification à E.L.S.	77
Tableau III.5	Les moments et l'effort tranchant.	79
Tableau III.6	Ferraillage de la poutre.	81
Tableau III.7	Vérification à E.L.S.	83
Tableau III.8	Schéma statique des différents types de poutrelles	. 89
Tableau III.9	Choix des méthodes de calculs pour les différents types de poutrelles	. 90
Tableau III.10	Les charges et surcharges revenants aux poutrelles	. 92
Tableau III.11	Les sollicitations à ELU, poutrelle type 1(Plancher étage courant)	. 94

Tableau III.12	Les sollicitations à ELS, poutrelle type 1(Plancher étage courant)	95
Tableau III.13	Ferraillage des nervures.	98
Tableau III.14	Les sollicitations à ELU et ELS, poutrelle type 2 (Plancher étage courant)	100
Tableau III.15	Ferraillage de la poutrelle type 2.	103
Tableau III.16	Les sollicitations à ELU, poutrelle type 1(Plancher terrasse inaccessible)	105
Tableau III.17	Les sollicitations à ELS, poutrelle type 1(Plancher terrasse inaccessible)	106
Tableau III.18	Ferraillage des nervures.	109
Tableau III.19	Ferraillage de la poutrelle type 2.	112
Tableau III.20	Ferraillage des poutrelles.	115
	Chapitre IV : Etude sismique et modélisation	
Tableau IV.1	Coefficient d'accélération de zone A	120
	Coefficient d'accélération de zone A	120 120
Tableau IV.2	Valeurs de T ₁ et T ₂	120
Tableau IV.2 Tableau IV.3	Valeurs de T_1 et T_2 $Valeurs \ de \ \xi \ (\%).$	120 121
Tableau IV.2 Tableau IV.3 Tableau IV.4	$Valeurs \ de \ T_1 \ et \ T_2.$ $Valeurs \ de \ \xi \ (\%).$ $Valeurs \ du \ coefficient \ C_T.$	120 121 121
Tableau IV.2 Tableau IV.3 Tableau IV.4 Tableau IV.5	$Valeurs\ de\ T_1\ et\ T_2.$ $Valeurs\ de\ \xi\ (\%).$ $Valeurs\ du\ coefficient\ C_T.$ $Pénalité\ en\ fonction\ de\ critère\ de\ qualité.$	120 121 121 124
Tableau IV.2 Tableau IV.3 Tableau IV.4 Tableau IV.5 Tableau IV.6	Valeurs de T_1 et T_2 Valeurs de ξ (%) Valeurs du coefficient C_T Pénalité en fonction de critère de qualité Périodes et facteurs de participation modale (Résultats Robot 2010)	120 121 121 124 125

Tableau IV.10	Résultats des déplacements des étages suivant les différentes combinaisons	
Sismiques		130
Tableau IV.11	Caractéristiques massiques et géométriques dans les cas accidentels	133
Tableau IV.12	Vérification de renversement sens longitudinal	134
Tableau IV.13	Vérification de renversement sens transversal.	134
	Chapitre V : Etude des éléments structuraux	
Tableau V.1	Les résultats des efforts correspondant à chaque poteau a ELU, ELS et ACC	150
Tableau V.2	Ferraillage des poteaux dans les différents niveaux	150
Tableau V.3	Exemple de calcul des armatures longitudinales RDC	154
Tableau V.4	Vérification à E.L.S.	157
Tableau V.5	Exemple de calcul des armatures longitudinales niveau terrasse	160
Tableau V.6	Vérification à E.L.S.	163
Tableau V.7	Ferraillage des poutres (30×55).	165
Tableau V.8	Exemple de calcul des armatures longitudinales terrasse	168
Tableau V.9	Vérification à E.L.S.	170
Tableau V.10	Ferraillage des poutres principales	173
Tableau V.11	Ferraillage des poutres secondaires	176
Tableau V.12	Poutres noyées	177
Tableau V.13	Résultats de calcul de ferraillage des poutres noyées.	178
Tableau V.14	Pré dimensionnement des voiles.	180
Tableau V.15	Les résultats des voiles longitudinales.	180

Tableau V.16	Ferraillage du voile longitudinal VL1.	181
Tableau V.17	Ferraillage du voile longitudinal VL2.	181
Tableau V.18	Ferraillage du voile longitudinal VL3.	182
Tableau V.19	Les résultats du voile transversal.	182
Tableau V.20	Ferraillage du voile transversal VL1 .	183
Tableau V.21	Ferraillage du voile transversal VL2 .	183
Tableau V.22	Ferraillage du voile transversal VL3.	183
	Chapitre VI : Etude de l'infrastructure	
Tableau VI.1	Vérification de la semelle S ₁ à l'ELS	198
Tableau VI.2	Vérification de la semelle S ₁ à l'ELU	198
Tableau VI.3	$\label{eq:continuous} \mbox{V\'erification de la semelle S_1 `à G $+$Q$ \pm E.}$	199
Tableau VI.4	Vérification de la semelle SA à 0.8G ± E	199
Tableau VI.5	Les surfaces des semelles isolées revenant à chaque poteau.	199
Tableau VI.6	Dimensionnement des semelles isolées.	200
Tableau VI.7	Ferraillage des semelles isolées.	205
Tableau VI.8	Ancrage des barres suivant le sens A-A.	206
Tableau VI.9	Ancrage des barres suivant le sens B-B.	206
Tableau VI.10	Vérification résistance des autres semelles	207
Tableau VI.11	Vérification du poinçonnement	208

Tableau VI.12	Les différentes surfaces des semelles revenantes à chaque voile (à L'ELS)	209
Tableau VI.13	Dimensionnement des semelles filantes	211
Tableau VI.14	Ferraillage longitudinal des semelles filantes.	213
Tableau VI.15	Ferraillage transversal des semelles filantes.	214
Tableau VI.16	Ferraillage de radier suivant les deux sens	224
Tableau VI.17	Valeurs du coefficient α	234

Notations

ELU: Etat limite ultime.

ELS: Etat limite service

V: Force sismique totale, effort tranchant.

A : Coefficient d'accélération de zone, Coefficient numérique en fonction del'angle de frottement.

D: Facteur d'amplification dynamique.

R : Coefficient de comportement global de la structure.

Q: Facteur de qualité.

W: Poids total de la structure.

Wi: Poids sismique au niveau « i ».

W_p: Poids propre de l'acrotère.

C_T : Coefficient de période.

β: Coefficient de pondération.

 P_q : Pénalité à retenir selon que le critère de qualité Q.

ξ: Pourcentage d'amortissement critique.

B : Aire d'une section de béton.

N_{ser}: Effort normal pondéré aux états limites de service.

N_u: Effort normal pondéré aux états limites ultime.

 N_d : Effort normal réduit.

q_{eq}: Charge repartie équivalente.

 σ_{st} : Contrainte de traction de l'acier.

 $\sigma_{bc}, f_{bu} \text{:}$ Contrainte de compression du béton.

 $\overline{\sigma}_{st}$: Contrainte de traction admissible de l'acier.

G: Charge permanente, Module de cisaillement.

Q: Charge d'exploitation, Facteur de qualité.

q: Capacité portante admissible, charge repartie.

 $\overline{\sigma}_{bc}$: Contrainte de compression admissible du béton.

 σ_{moy} : Contrainte moyenne.

 σ_{sol} : Contrainte du sol.

 σ_{adm} , $\overline{\sigma}_{sol}$: Contrainte admissible du sol.

C: Cohésion, enrobage.

 τ_u : Contrainte ultime de cisaillement.

 $\bar{\tau}_u$: Contrainte ultime admissible de cisaillement.

 ε_{bc} : Déformation du béton en compression.

 ε_s : Déformation de l'acier.,

CP: Facture de force horizontale pour les éléments secondaires.

 A_s : Aire d'une section d'acier.

A_t: Section d'armatures transversales.

Ar: Section d'armatures de répartition.

Φ: Diamètre des armatures.

e: Espacement, excentricité.

α : Position relative de la fibre neutre, Coefficient fonction de l'élancement du poteau, coefficient qui dépend de la zone sismique et de la catégorie de site considéré,

z : Bras de levier.

 $\mu_{\mathbf{u}}$: Moment ultime réduit.

θ: Coefficient qui dépend de la durée d'application du chargement

B_r: Section réduite.

 V_0 : Effort tranchant a la base.

T: Effort tranchant, Période.

Tu: Effort tranchant ultime.

 S_t : Espacement.

L: Longueur ou portée.

L_r: Longueur de recouvrement.

Le: Longueur élastique.

l_s: Longueur de scellement.

λ: Elancement.

F_p: Force sismique d'élément secondaire.

F: Force concentrée.

M: Moment, Masse.

M₀ : Moment en travée d'une poutre reposant sur deux appuis libres.

M_u: Moment à l'état limite ultime.

M_{ser}: Moment à l'état limite de service.

M_t: Moment en travée.

Ma: Moment sur appuis.

M_R: Moment fléchissant dû au séisme.

M_{Tu}: Moment équilibré par la table de compression.

d: Hauteur utile.

f_e: Limite d'élasticité de l'acier.

f_{adm}: Flèche admissible.

f_i: Flèche dûe aux charges instantanées.

f_v: Flèche dûe aux charges de longue durée.

 $\mathbf{f_{c28}}$: Résistance caractéristique à la compression du béton à 28 jours.

 f_{t28} : Résistance caractéristique à la traction du béton à 28 jours.

 $\mathbf{f_{cj}}$: Résistance caractéristique à la compression du béton à j jours.

E: Charge accidentelle, module de Young.

Eij: Module d'élasticité instantané.

Evj: Module d'élasticité différé.

Es: Module d'élasticité de l'acier.

K : Coefficient de raideur de sol.

Y: Position de l'axe neutre.

I: Moment d'inertie.

Io: Moment d'inertie de la section totale homogène.

i: Rayon de giration.

v : Coefficient de poisson.

 η : Coefficient de fissuration, Coefficient de correction d'amortissement.

 ρ_a : Coefficient correcteur.

P: Périmètre de la section.

 γ_s : Coefficient de sécurité dans l'acier, Poids spécifique des grains.

 γ_b : Coefficient de sécurité dans le béton, Poids propre de béton.

 γ_d : Poids spécifique du sol sec.

h_r: Hauteur de radier.

S: Surface de semelle.

U_c : Périmètre du rectangle d'impact.

Introduction générale

Introduction générale

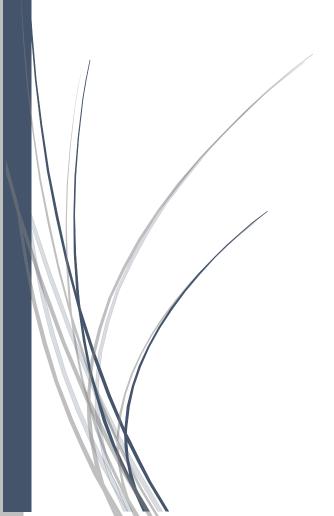
Le Génie civil représente l'ensemble des techniques concernant les constructions civiles. Les ingénieurs civils s'occupent de la conception, la réalisation, l'exploitation et la réhabilitation d'ouvrages de construction et d'infrastructures urbaines. Ils assurent la gestion afin de répondre aux besoins de la société tout en assurant la sécurité du public et la protection de l'environnement. Le domaine d'application du génie civil est très vaste, il englobe les travaux publics et le bâtiment.

Le système structurel est l'un de structures en génie civil, l'étude de ce dernier est une étape clé et un passage obligatoire dans l'acte de bâtir. Toute étude de projet d'un bâtiment dont la structure est en béton armé, a pour but d'assurer la stabilité et la résistance des bâtiments afin d'assurer la sécurité. Cependant, il existe un danger représenté par ce choix, à cause des dégâts qui peuvent lui occasionner les séismes et le vent, Pour cela, il y a lieu de respecter les normes et les recommandations parasismiques qui rigidifient convenablement structure, quels que soient les types des bâtiments en béton armé.

Les ingénieurs disposent actuellement de divers outils informatiques et de logiciels de calculs rapides et précis permettant la maîtrise de la technique des éléments finis adoptée au domaine de Génie Civil, ainsi que le calcul de diverses structures en un moindre temps. La stabilité de l'ouvrage est en fonction de la résistance des différents éléments structuraux (poteaux, poutres, voiles, etc.) aux différentes sollicitations (compression, flexion, etc.) dont la résistance de ces éléments est en fonction du type des matériaux utilisés et de leurs dimensions.

Pour le calcul des éléments constituants un ouvrage, on va suivre des règlements et des méthodes connues (BAEL91 révisée 99, RPA 99 / version 2003) qui se basent sur la connaissance des matériaux (béton et acier) et le dimensionnement et ferraillage des éléments de la structure.

Pour ce faire, nous allons répartir le travail en six chapitres à savoir :


- → Le Premier chapitre consiste à la présentation complète du bâtiment, la définition des différents éléments et le choix des matériaux à utiliser.
- → Le deuxième chapitre présente le pré dimensionnement des éléments structuraux (tel que les poteaux, les poutres et les voiles), et non structuraux (comme les planchers).

Introduction générale

- → Le troisième chapitre est consacré au calcul des éléments secondaire (l'acrotère, les poutrelles, les escaliers) fait l'objet.
- → Le quatrième chapitre portera sur l'étude dynamique du bâtiment, la détermination de l'action sismique et les caractéristiques dynamiques propres de la structure lors de ses vibrations. L'étude du bâtiment sera faite par l'analyse du modèle de la structure en 3D à l'aide du logiciel de calcul ROBOT.
- → Le cinquième chapitre calcul des ferraillages des éléments structuraux, fondé sur les résultats du logiciel ROBOT.
- → Sixième chapitre le calcul et dimensionnement de l'infrastructure pour détermination le type de fondations.

Chapitre I

Présentation de l'ouvrage et caractéristiques des matériaux

I.1 Introduction

L'étude d'un bâtiment en béton armé nécessite des connaissances de base sur lesquelles l'ingénieur prend appuis, et cela pour obtenir une structure à la fois sécuritaire et économique. A cet effet, on consacre ce chapitre pour donner quelques rappels et des descriptions du projet à étudier.

I.2 Présentation de l'ouvrage

L'ouvrage qui fait l'objet de notre étude est un bâtiment à usage d'habitation de type (**R+5**), le bâtiment est implanté à la wilaya de Guelma, classée par le règlement parasismique Algérienne **R.P.A99 au zone IIa** (zone de moyenne sismicité).

L'objet de ce projet de calcul est de présenter l'étude structurelle d'un bâtiment(**R**+**5**) en béton armé, le bâtiment se compose de rez-de-chaussée et de Cinq étages, avec terrasse inaccessible.

Les caractéristiques géométriques de l'ouvrage sont données ci-dessous :

Tableau I.1 Caractéristiques géométriques de l'ouvrage.

Dimensions en plan	(18.15 × 18.15) m
Hauteur du RDC	3.06 m
Hauteur d'étage courant	3.06 m
Hauteur totale du bâtiment avec l'acrotère	18.36 m
Surface totale	207.19 m ²

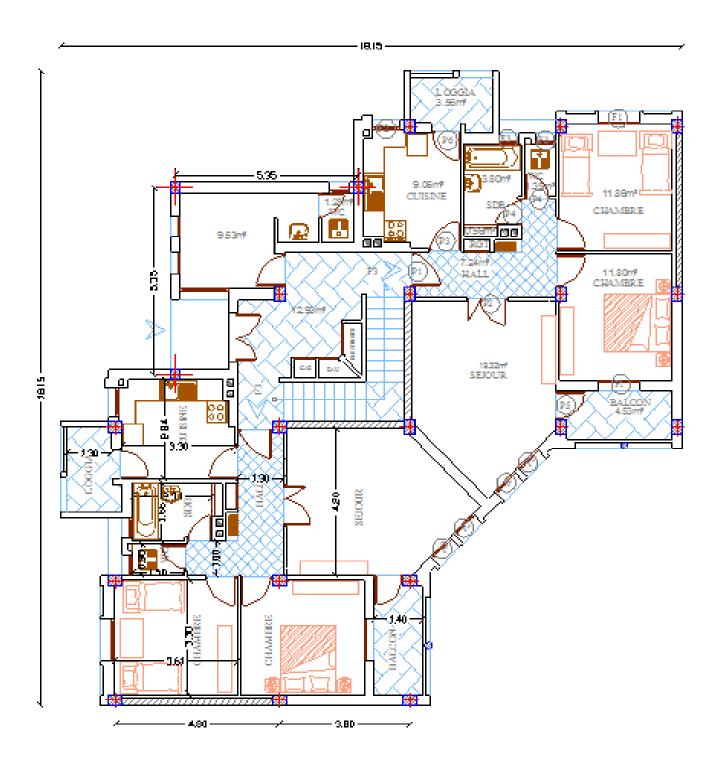


Figure I.1 Plan RDC.

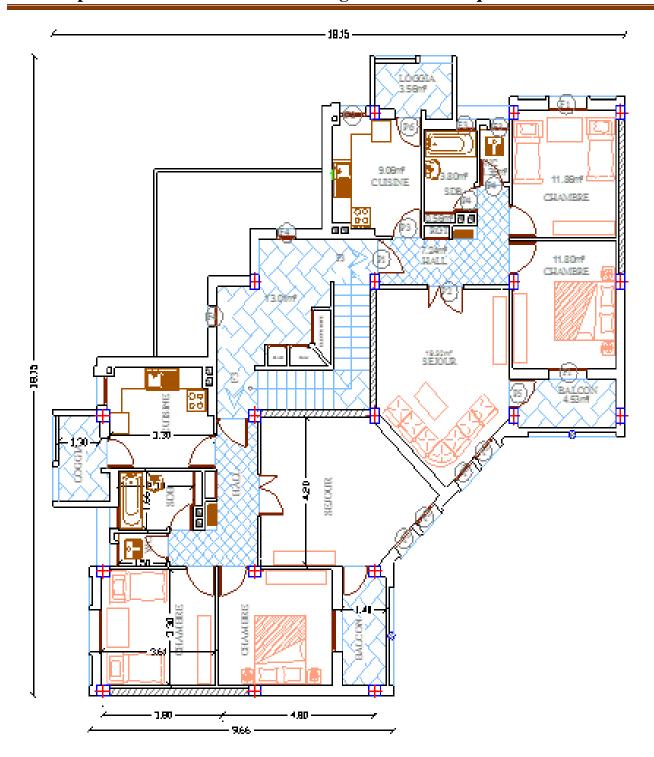


Figure I.2 Plan étage courant.

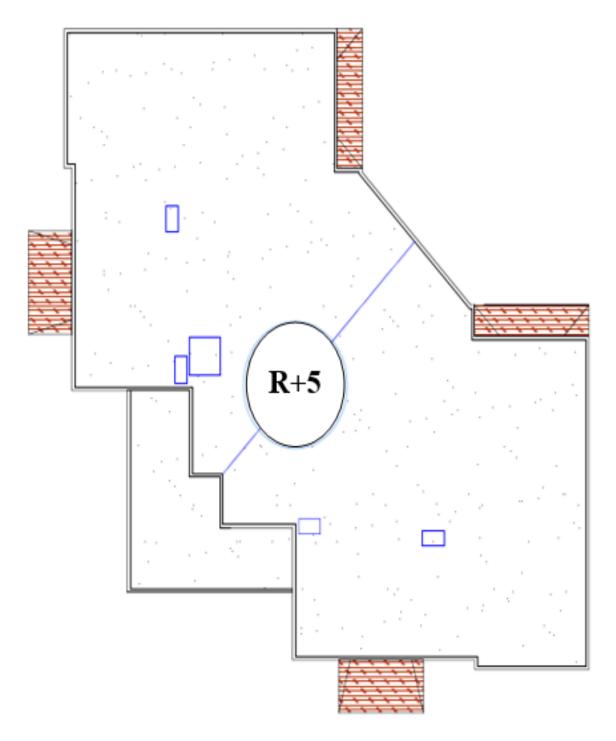


Figure I.3 Plan de terrasse.

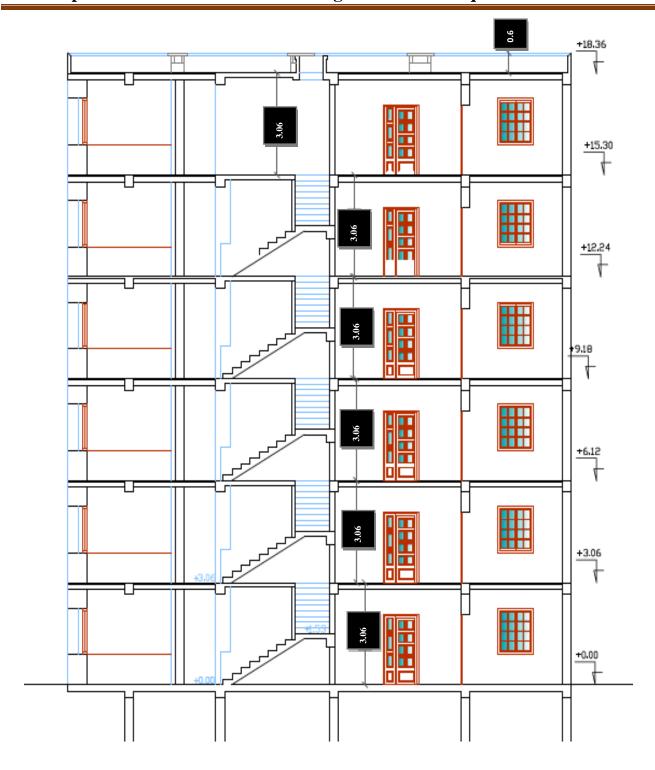


Figure I. 4 Coupe verticale.



Figure I. 5 Façade principale R+5.

I.3 Ossature et système constructif adopte

a. Ossature

Le contreventement de la structure est assuré par des portiques et renforcé par des voiles exigés par le **RPA 99** / **version 2003**, pour assurer la stabilité de l'ensemble sous l'effet des actions verticales et des actions horizontales.

b. Le Planchers

Nous avons optés pour des dalles en corps creux, pour les raisons suivantes :

- ✦ Facilité de réalisation.
- ★ Les portées de notre projet ne sont pas importantes.
- + Réduire le poids du plancher et par conséquent l'effet sismique.
- ✦ Raison économique.

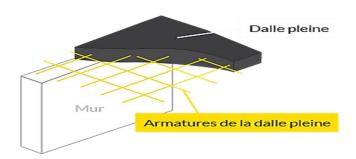


Figure I.6 Plancher dalle pleine.

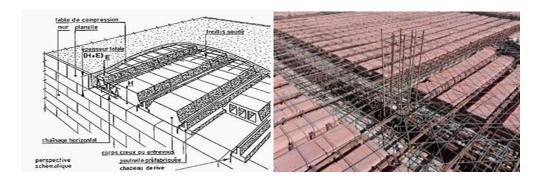


Figure I.7 Dalle à corps creux.

c. Revêtement

Le revêtement est constitué de :

- **→** Carrelage pour les planchers et les escaliers.
- **→** Enduit de plâtre pour les murs et les plafonds.
- + Enduit en ciment pour les faces extérieur des murs de façade.
- **→** Revêtement à carrelage pour les planchers.

→ Le plancher terrasse sera recouvert par une étanchéité multicouche imperméable en évitant la pénétration des eaux pluviales.

d. Escaliers

On a un seul type d'escalier. Il est constitué de deux paliers intermédiaires pour l'accès au 1^{er}étage.

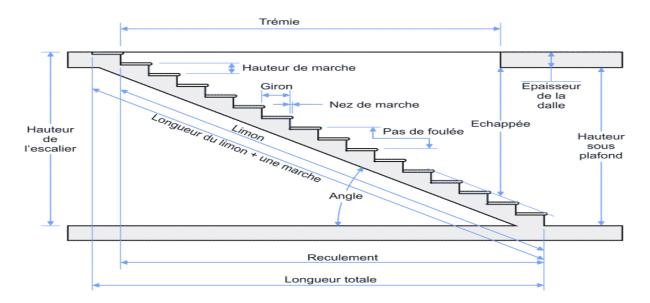


Figure I.8 Présentation de l'escalier.

e. Maçonnerie

- → Les murs extérieurs sont réalisés en doubles parois en briques creuses de (15 cm, 10 cm) séparées par un vide de 5 cm.
- → Les murs intérieurs sont réalisés en simple cloison en brique creuse de 10 cm d'épaisseur.
 La maçonnerie la plus utilisée en Algérie est en briques creuses.

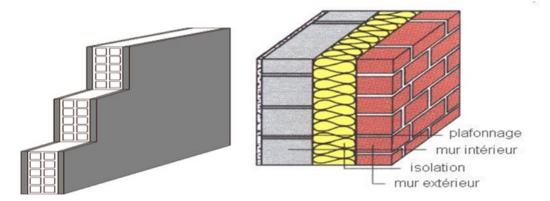


Figure I.9 Mur simple cloison.

Figure I.10 Mur extérieur et Mur intérieur.

f. Isolation

L'isolation acoustique est assurée par le vide de corps creux et la masse du plancher, par contre au niveau de murs extérieurs, l'isolation est assurée par le vide d'air entre les deux parois qui compose se dernier, et par la minimisation des ponts thermique en cour de réalisation.



Figure I.11 Isolation.

g. L'acrotère

La terrasse étant inaccessible, le dernier niveau est entouré d'un acrotère en béton armé d'une hauteur variant entre 60 cm et 100 cm et de 10 cm d'épaisseur.

h. Les voiles

Ce sont des éléments rigides en béton armé, coulés sur place, ils assurent d'une part le transfert des charges verticales et d'autre part la stabilité sous l'action des charges horizontale.

Figure I.12 Les voiles.

I.4 Données du site

Le projet susmentionné est un bâtiment situé dans la Wilaya de Guelma. Il est classé en

Zone IIa (Selon RPA 99/2003).

- **★** L'ouvrage appartient au groupe d'usage 2.
- → Le site est considéré comme un site meuble (S3).
- + Contrainte admissible du sol = 2.0 bars.

I.5 Hypothèses de calcul

Les hypothèses de calcul adoptées pour cette étude sont :

- → La résistance du béton à la compression à 28 jours est $f_{c28} = 25$ MPa.
- **→** La résistance du béton à la traction est $f_{t28} = 2.1$ MPa.
- → Le module d'élasticité différé est $E_{vj} = 10818.865$ MPa.
- → Le module d'élasticité instantané est $E_{ij} = 32164.19$ MPa.
- **+** La limite élastique de l'acier à haute adhérence est fe = 400 MPa.

I.6 Principaux caractéristiques et avantages de béton

La réalisation d'un élément d'ouvrage en béton armé, comporte les 4 opérations :

- → Exécution d'un coffrage (moule) en bois ou en métal.
- → La mise en place des armatures dans le coffrage.
- → Mise en place et « serrage » du béton dans le coffrage.
- → Décoffrage « ou démoulage » après durcissement suffisant du béton.

Les principaux avantages du béton armé sont :

- ✓ **Economie :** le béton est plus économique que l'acier pour la transmission des efforts de compression, et son association avec les armatures en acier lui permet de résister à des efforts de traction.
- ✓ **Souplesse des formes :** elle résulte de la mise en œuvre du béton dans des coffrages auxquels on peut donner toutes les sortes de formes.
- ✓ **Résistance aux agents atmosphériques :** elle est assurée par un enrobage correct des armatures et une compacité convenable du béton.
 - ✓ **Résistance au feu :** le béton armé résiste dans les bonnes conditions aux effets des incendies.

I.7 Les caractéristiques des matériaux

Les propriétés des matériaux utilisés dans la construction sont conformes aux règles techniques de conception et de calcul des structures en béton armé CBA 93 et à la réglementation du béton armé dans les cas limites, à savoir BAEL 91, ainsi qu'au Règlement sismique algérien RPA 99/2003 et à la nécessité de définir les propriétés des deux composants composant le béton armé tels que le béton et l'acier.

a. Le Béton

Le béton est un composite qui résulte du mélange intime granulats naturels (sables, gravillons), de liants normalisés (ciments artificiels), éventuellement d'adjuvants granulats naturels (sables, gravillons), de liants normalisés (ciments artificiels), et d'eau de mouillage, ces constituants sont dosés de manière à obtenir après durcissement, un produit solide dont les propriétés mécaniques peuvent être très supérieures à celles des roches naturelles.

Poids volumique:

 \blacktriangleright Béton armé $\gamma_b = 2500 \text{ kg/m}^3 = 25 \text{kN /m}^3$.

b. Les matériaux composants le béton

Ciment:

Le ciment se présente sous la forme d'une poudre fine de couleur grise ou blanche. La dimension des grains de ciment est caractérisée par la valeur de la finesse Blaine qui mesure la surface totale des grains contenus dans 1 gramme. La finesse Blaine des ciments est de l'ordre de 3 500 à 4 500 cm²/g. La dimension caractéristique des grains de ciment est d'environ 30 à 50 /Obtenu par cuisson à 1450°C d'un mélange homogène de calcaire et d'argile, dans la proportion (80/20)%.

❖ Granulats:

Les granulats rocheux sont constitués par les sables, les gravillons et les cailloux. Ils forment le squelette du béton.

Sables:

Les sables sont constitués par des grains provenant de la désagrégation des roches. La grosseur de ses grains est généralement inférieure à 5mm. Un bon sable contient des grains de tout calibre, mais doit avoir d'avantage de gros grains que de petits.

Graviers:

Elles sont constituées par des grains rocheux dont la grosseur est généralement comprise entre 5 et 25 à 30 mm. Elles doivent être dures, propres et non gélives. Elles peuvent être extraites du lit de rivière (matériaux roulés) ou obtenues par concassage de roches dures (matériaux concassés).

* L'eau:

L'eau, dite eau de gâchage, doit présenter les propriétés d'une eau potable.

! Les adjuvants :

Les adjuvants sont des produits chimiques incorporés en faibles quantités au béton frais afin d'en améliorer certaines propriétés. Ils représentent entre 1 et 3 % du poids du ciment. Leur rôle et leur efficacité dépendent de la nature du produit chimique et de l'homogénéité de leur répartition dans la masse du béton frais.

c. Dosage du béton

Le dosage du béton est lie au poids du liant employé pour réaliser un mètre cube de béton. Pour mener cette étude, le béton est dosé à 350 Kg de ciment par m³. Ce dosage est destiné à offrir les garanties de résistance escomptées et à présenter une protection efficace de l'armature. Dans un mètre cube de béton, on a les proportions suivantes.

Graviers Sable Ciment composantes Eau 15 < Dg < 25mm 0 < Dg < 5mm(CPA 325) 800L 400 L 175 L Volume 7 sacs Poids (kg) 1200 600 350 175L

Tableau I.2 Dosage du béton.

d. Caractéristiques physiques et mécaniques du béton

❖ Masse volumique

Elle varie entre 2.2à 2.5t/m³suivant la qualité d'acier mise dans le béton, elle est généralement dans les calculs prise pour béton ordinaire égale à 2.5 t/m³.

Les résistances mécaniques du Béton

○ Résistance à la compression : (BAEL 91, Art. 2-1-11)

Le béton est défini par la valeur de sa résistance caractéristique à la compression à 28 jours f_{c28} .

Par convention, la résistance à la compression du béton est mesurée par la charge conduisant à l'écrasement par compression axiale d'une éprouvette cylindrique de 16 cm de diamètre et de 32 cm de hauteur.

La résistance à la compression varie avec l'âge du béton. Ainsi, pour $j \le 28$ jours, elle suit :

Figure I.13 éprouvette cylindrique du béton.

♣ Approximativement les lois suivantes :

La résistance caractéristique à la compression : $f_{c 28} = 25 \text{ MPa}$ (valeur Minimale exigée)

✓ Pour des résistances fc28 ≤ 40MPa :

$$\begin{cases} f_{cj} = \frac{j}{4.76 + 0.83j} \times f_{c28} & \text{pour } j < 28 \text{ jours.} \\ f_{cj} = 1,1 \ f_{c28} & \text{si} & j > 28 \text{ jours.} \end{cases}$$

✓ Pour des résistances fc28> 40MPa :

$$\begin{cases} f_{cj} = \frac{j}{1.40 + 0.95j} \times f_{c28} & \text{pour } j < 28 \text{ jours.} \\ f_{cj} = fc28 & \text{si} & j > 28 \text{ jours.} \end{cases}$$

○ Résistance à la traction : [BAEL91 (A.2.1.12)]

La valeur caractéristique de la résistance du béton à la traction à « j » jours d'âge noté « f_{tj} » est déduite de celle de la compression par la relation suivante :

$$f_{\rm tj} = 0.6 + 0.06 f_{\rm cj} \, \text{si} \, f_{c28} < 60 \, \text{MPa}.$$

Dans notre cas : f_{c28} = 25 MPa \rightarrow f_{t28} = 2,1 MPa.

e. Méthode de calcul

La connaissance plus précise du comportement du matériau béton armé acquise à la suite de nombreux essais effectués dans les différents pays à permet une modification profonde des principes des méthodes de calcul et à conduit à la méthode de calcul aux états limites.

Définition de l'état limite :

Un état limite est un état particulier dans lequel une condition requise pour une construction (ou l'un de ses éléments) est strictement satisfaite et cesserait de l'être en cas de modification défavorable d'une action.

En d'autres termes, c'est un état qui satisfait strictement ces conditions par l'effet des actions revues sur la construction ou l'un de ces éléments.

f. Déformation et contrainte de calcul

Il existe deux états limites:

Etat limite ultime de résistance (ELU) :

Pour les calculs à ELU, le comportement réel du béton est modélisé par la loi

Parabole-rectangle sur un diagramme contraintes-déformations donné sur la figure suivante :

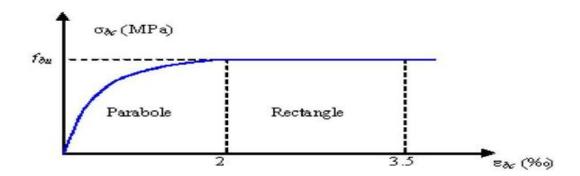


Figure I.14 Diagramme parabole-rectangle des contraintes-Déformations du béton.

$$\checkmark$$
 $\varepsilon_{bc1} = 2\%$

$$\checkmark$$
 $\epsilon_{bc2} = 3.5\%$ si fcj $\leq 40 MPa$

$$\checkmark$$
 $\epsilon_{bc1} = (4.5 + 0.025 \text{ fcj}) \text{ % si fcj} > 40 \text{MPa}$

La valeur de calcul de la résistance en compression de béton f_{bu} est donné par :

$$f_{bu} = \frac{0.85 f_{cj}}{\delta_b \times \theta}$$

 δ_b : Coefficient de sécurité du béton :

$$\begin{cases} \gamma_b = 1.5 \text{ pour les combinaisons normales} \\ \gamma_b = 1.15 \text{ pour les combinaisons accidentelles} \end{cases}$$

 \checkmark θ : coefficient qui dépend de la durée d'application du chargement. Il est fixé à :

• $\theta = 1$ situation normale.

Lorsque la durée probable d'application de la combinaison d'actions considérée est supérieure à 24 h.

- $\theta = 0.85$ situation accidentelle, lorsqu'elle est inférieure à1h.
- \checkmark ε_{bc}: Déformation du béton en compression.
- ✓ f_{bc} : contrainte de calcul pour $2\% \le \epsilon_{bc} \le 3,5\%$.
- ✓ f_{cj} : résistance caractéristique à la compression du béton à « j » jours.

D'où la contrainte σ_{bc} est en fonction de son raccourcissement.

✓
$$0 \le \varepsilon_b \le 2\%$$
 \rightarrow $\sigma_{bc} = 0.25 f_{bc} \times 103 \varepsilon_{bc} (4 - 103 \times \varepsilon_{bc})$

$$\checkmark$$
 2‰ $\leq \varepsilon_{bc} \leq 3.5\%$ \rightarrow $\sigma_{bc} = f_{bc}$

Etat limite service de résistance :

La contrainte de compression du béton a l'**ELS** (symbole σ_{bc}) est limité à :

$$\sigma_{bc}=0.6~f_{t28}\,Donc$$
 : $\sigma_{bc}=15~MPa.$

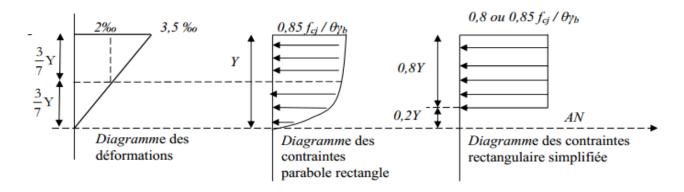


Figure I.15 Diagramme rectangulaire simplifié.

- → Sur une distante de 0,2 y compté à partir de l'axe neutre la contrainte est nulle.
- + Sur la distance restante 0,8 y la contrainte à pour valeur $\frac{0,85 \times fcj}{(\theta \times \gamma b)}$ pour les zones comprimées dont le largueur est croissante ou constante vers les fibres les plus comprimées.
- + $\frac{0.85 \times fcj}{(\theta \times \gamma b)}$ pour les zones comprimées dont la largeur est décroissante ou constante vers ces mêmes fibres.

La contrainte limite de cisaillement :

La contrainte ultime de cisaillement est limitée par : $\tau_u \leq \tau_u$

+ $τ_u$ = min (0.13 f_{c28} , 4 MPa) = 3.25 MPa→ cas normal fissuration peu nuisible.

 τ_u = min (0.10 f_{c28} , 3 MPa) = 2.50 MPa→ cas où la fissuration est préjudiciable.

La contrainte ultime de cisaillement dans une pièce en béton est définit par rapport à l'effort tranchant ultime T_u .

$$\tau_u = \frac{T_u}{bd}$$

Avec:

✓ b : largeur de la pièce.

✓ d : hauteur utile.

g. Déformation longitudinale du béton

Déformations instantanées :

Sous des contraintes normales d'une durée d'application inférieure à 24h. On admet qu'à l'âge de « \mathbf{j} » jours le module de déformation longitudinale instantanée du béton E_{ij} est égal :

•
$$E_{ij}=11000\sqrt[3]{f_{cj}}=11000\sqrt[3]{25}$$
d'où : $E_{i28}=32164.20$ MPa

Le calcul sous charges de courte durée (< 24 jours).

\Leftrightarrow Déformations différées (E_{vj}) :

Sous des contraintes de longue durée d'application on admet qu'à l'âge de « j » jours le module de déformation longitudinal différée du béton E_{vj} est donné par la formule :

$$E_{vj} = 3700 \sqrt[3]{f_{cj}} = 3700 \sqrt[3]{\mathbf{2.1}} \,\mathrm{d'où} : E_{v28} = 10721,4 \mathrm{MPa}.$$

Avec : E_{ij} , et f_{cj} en MPa.

h. Module de déformation transversale du béton

Coefficient de poisson :

L'allongement d'un objet quand il est soumis à une force de traction s'accompagne d'un rétrécissement de sa section. Le coefficient de poisson υ est le rapport entre le rétrécissement dans une direction perpendiculaire à l'effort subi et l'allongement dans la direction de l'effort.

$$\upsilon = (\frac{\Delta d}{d}) \, / \, (\frac{\Delta L}{L})$$

Avec :
$$\begin{cases} (\frac{\Delta d}{d}) : \text{ déformation relative transversale.} \\ (\frac{\Delta L}{L}) : \text{ déformation relative longitudinale.} \end{cases}$$

Il est pris égale à :

- ✓ v = 0.2 pour ELS (béton non fissuré).
- ✓ v = 0.0 pour **ELU** (béton fissuré).

i. Aciers

L'acier peut être défini comme un matériau composé essentiellement de fer et Présentant une teneur en carbone inférieure à 2 %. Il peut encore contenir d'autres éléments mais de tous ces éléments d'alliage, le carbone a l'effet le plus prononcé sur les propriétés de l'acier. Si l'on ajoute plus de 0,5 % d'éléments d'alliage à l'acier, on parle d'acier allié. Si la proportion d'éléments d'alliage est inférieure à ce chiffre, on parle d'acier non allié.

Caractéristiques mécaniques :

Les caractéristiques mécaniques des différentes nuances d'acier sont les suivantes :

Limite élastique fy (MPa) en fonction de l'épaisseur nominale.

- ✓ La résistance à la traction : $f_u = 360$ MPa.
- ✓ La limite élastique : $f_v = 235$ MPa.
- ✓ Le module de Young : E = 210000 MPa.
- ✓ Le coefficient de poisson : v = 0.3.
- ✓ Module de cisaillement : G = E/(2(1+v)) = 81000 MPa.
- ✓ Poids volumique : Acier $\gamma_h = 78.5 \text{ KN /m}^3$.

Tableau I.3 Caractéristiques des nuances d'acier.

Туре	Nuance	f _e (MPa)	(MPa) Emploi		
Ronds lisses	FeE22	215	Emploi courant.		
	FeE24	235	Epingles de levage des pièces préfabriquées		
Barres HA	FeE40	400	Emploi courant.		
Type 1 et 2	FeE50	500			
Fils tréfiles HA	FeTE40	400	Emploi sous forme de barres droites ou de		
Type 3	FeTE50	500	treillis.		
Fils tréfiles lisses	TL50 Ф> 6mm	500	Treillis soudés uniquement emploi courant		
Type 4	TL50 Φ ≤ 6mm	520			

j. Diagramme contraintes-déformations de l'acier

Dans les calculs relatifs aux états limites, on introduit un coefficient de sécurité γ_s qui a les valeurs suivantes :

ys : Coefficient de sécurité.

$$\begin{cases} \gamma s = 1,15..... \text{ situation fondamentale.} \\ \gamma s = 1,00.... \text{ situation accidentelle.} \end{cases}$$

Pour notre cas on utilise des aciers Fe E400.

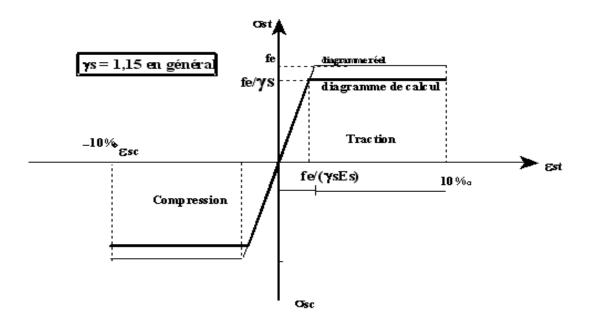


Figure I.16 Diagramme contrainte déformation d'acier.

Où
$$\varepsilon_s = \frac{\sigma_s}{E_s}$$
; Avec Es = 200 000 MPa. Avec: $\sigma_s = \frac{fe}{\gamma_s}$

k. Contrainte limite de traction des armatures

On ne limite pas de la contrainte de l'acier sauf en état d'ouverture des fissures :

- > Fissuration peu nuisible : pas de limitation.
- **Fissuration préjudiciable** : $\sigma_{st} \le \sigma_{st} = \min(2/3\text{fe}, 110\sqrt{\eta f_{ij}})$.
- **Fissuration très préjudiciable :** $\sigma_{st} \le \sigma_{bc} = \min (1/2 f_e, 90 \sqrt{\eta f_{tj}})$.

 η : Coefficient de fissuration.

• η = 1 pour les Ronds Lisses (RL).

Figure I.17 Les Ronds Lisses (RL).

• η =1.6 pour les Hautes Adhérences.

Figure I.18 Les Hautes Adhérences (HA).

l. Etats limites

Suivant les règles **BAEL** on distingue deux états limites de calcul :

- ✓ Etats limite ultime de résistance **ELU**.
- ✓ Etats limite de service **ELS**.
- **Etats limites ultimes (ELU):**

Il consiste à l'équilibre entre les sollicitations d'action majorées et les résistances calculées en Supposant que les matériaux atteignent les limites de rupture minorées ce qui correspond aussi aux règlements parasismiques algérienne RPA 99 / version 2003. On doit par ailleurs vérifier que l'ELU n'est pas atteint en notant que les actions sismiques étant des actions accidentelles.

\(\text{Hypothèse de calcul:} \)

- **→** Les sections planes avant déformation restent planes après déformation.
- → Pas de glissement relatif entre les armatures et le béton.
- → La résistance du béton à la traction est négligée.
- + Les diagrammes déformations- contraintes sont définis pour :
 - ✓ Le béton en compression.
 - ✓ L'acier en traction et en compression.

Règle des trois pivots (BAEL 91 révisée 99.p83)

Les positions limites que peut prendre le diagramme des déformations sont déterminées à partir des déformations limites du béton et de l'acier. La déformation est représentée par une droite passant par l'un des pointes A. B ou C appelés Pivots.

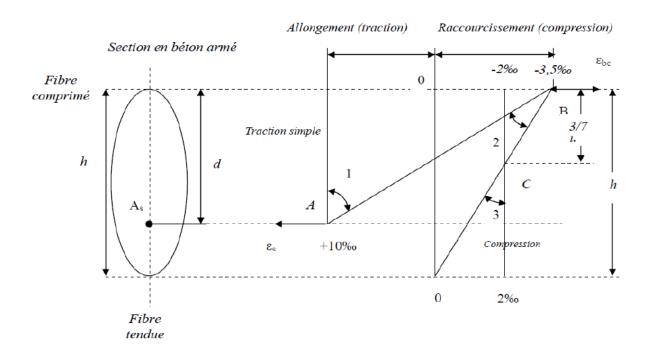


Figure I.19 Diagramme des déformations limites de la section : règle des trois pivots.

- **Traction pure** : toutes les fibres s'allongent de la même quantité, le béton se fissure et donc ne participe pas à l'équilibre des sollicitations, la pièce sera hors service lorsque la déformation de l'acier vaut 10% donc toute la section sera allongée de 10%.
- → L'acier doit être reparti dans tente la section ; la limite correspond sur le diagramme à la verticale passant par A ;
- **traction excentrée** : à la limite, la fibre la plus tendu aura un allongement de 10‰, la moins tendue ε_s < 10‰, plus l'excentrement augmente plus la tension minimale tend vers0 ; Les droits de déformation pivotent donc autour de A jusqu'à la position AO.
- + flexion (simple ou composée) : On ne peut dépasser la position AB qui correspond à un raccourcissement ε_{bc} = 3,5% de la fibre de béton la plus comprimée l'état limite ultime est atteint avec ε_s = 10% et ε_{bc} < 3,5 %.
- ★ La position limite AB correspond à un axe neutre situé à la distance $y = \alpha_{AB}$.d de la fibre a plus comprimée avec $\alpha_{AB} = 3.5/(10+3.5) = 0.259$; la flexion simple ou composée avec $0 < \alpha < 0.259$ admet le pivot A.

Cas particulier où $\varepsilon_s = 10\%$ et $\varepsilon_{bc} = 2\%$ correspond à $\alpha = 2 / (10+2) \alpha = 0.167$

 \bullet Pour augmenter la zone comprimée on ne peut plus augmenter ε_{bc} au-delà de 3,5 ‰, il faut donc diminuer σ_s la droite des déformations pivote alors autour de B jusqu'à ce que :

 $\varepsilon_s = 0$; $\alpha = Y/d$ varie de 0,259 à 1.

- ✓ La flexion simple ou composée avec armature tendues avec $0.259 \le \alpha \le 1$ admet le pivot B.
- ✓ Si on fait tourner la droite autour de B la petite partie de section située au-dessous des

Armatures pourra travailler en partie de traction (pas de contrainte et les aciers seront comprimées, c'est de la flexion composée : la flexion composée avec aciers comprimés (section de béton partiellement comprimée avec $1 \le \alpha \le h/d$ admet le pivot B.

Compression : si toute la section du béton est comprimée en compression simple, la Déformation du béton ne peut pas dépasser ε_{bc} = 2‰. La compression simple on composée admet le pivot C.

2 ‰ $\leq \varepsilon_{bc} \leq$ 3,5 ‰ sur la fibre la plus comprimée.

 $\varepsilon_{bc} \le 2$ ‰ sur la fibre la plus moins comprimée.

* En résumé :

Pivot A: traction simple ou composée, flexion avec état limite ultime atteint dans l'acier.

Pivot B: flexion avec état limite ultime atteint dans le béton.

Pivot C : compression simple ou flexion composée.

tats limites de service (ELS):

Consiste à l'équilibre des sollicitations d'action réelles (non majorées) et les sollicitations résistances calculées sans dépassement des contraintes limites. Les calculs ne se font qu'en cas de fissuration préjudiciable ou très préjudiciable.

Hypothèse de calcul :

- ★ Les sections droites restent planes.
- + Il n'y a pas de glissement relatif entre les armatures et le béton.
- ★ Le béton tendu est négligé.
- **→** Les contraintes sont proportionnelles aux déformations.

Par convention(n) correspond ou rapport du module d'élasticité longitudinal de l'acier à celui du béton.

 $n = \frac{E_s}{E_h} = 15$ « coefficient d'équivalente ».

I.8 Actions et sollicitations

a. Les actions

❖ Définitions :

Les actions sont les forces et les couples dues aux charges appliquées à une structure et aux déformations imposées, elles proviennent :

- ✓ Des charges permanentes.
- ✓ Des charges d'exploitations.

Valeurs caractéristiques des actions :

+ Les actions permanentes (G) :

Les actions permanentes ont une intensité constante ou très peu variable dans le temps. Elles comprennent :

- ✓ Le poids propre de la structure.
- ✓ Cloisons, revêtement, superstructures fixes.
- ✓ Le poids des poussées des terres ou les pressions des liquides.
- ✓ Les déformations imposées à la structure.

+ Les actions variables (Q):

Les actions variables ont une intensité varie fréquemment d'une façon importante dans le temps. Elles comprennent :

- ✓ Les charges d'exploitations.
- ✓ Les charges climatiques (neige et vent).
- ✓ Les effets thermiques.

+ Les actions accidentelles (FA):

Ce sont celles provenant de phénomènes qui se produisant rarement et avec une courte durée

D'application, on peut citer :

- ✓ Les chocs.
- ✓ Les séismes.
- ✓ Les explosions.
- ✓ Les feux.

a. Sollicitations de calcul vis-à-vis des états limites

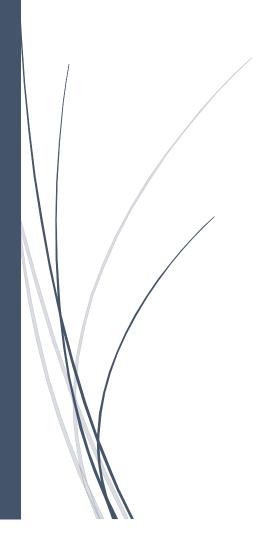
Etat limite ultime:

Les sollicitations de calcul sont déterminées à partir de la combinaison d'action suivante :

$$1,35 G + 1,5 Q$$

Etat limite de service:

Combinaison d'action suivante :


$$G + Q$$

S'il y a intervention des efforts horizontaux dus au séisme, les règles parasismiques algériennes ont prévu des combinaisons d'action suivantes :

$$\begin{cases} G + Q + E \\ G + Q \pm 1,2E \\ 0,8G \pm Ey \\ 0,8G \pm Ex \end{cases}$$
 G: charge permanente. **Q**: charge d'exploitation. **E**: effort de séisme.

Chapitre II

Pré-dimensionnement et descente de charge

II.1 Introduction

Le but de ce chapitre est de déterminer les dimensions des différents éléments de la Structure, les dimensions sont choisies selon les préconisations du **RPA99 version 2003**,

CBA93, BAEL 91. Les résultats obtenus ne sont pas définitifs, ils peuvent être augmentés après vérification et aussi on prend en considération l'économie afin d'éviter les surplus d'acier et du béton.

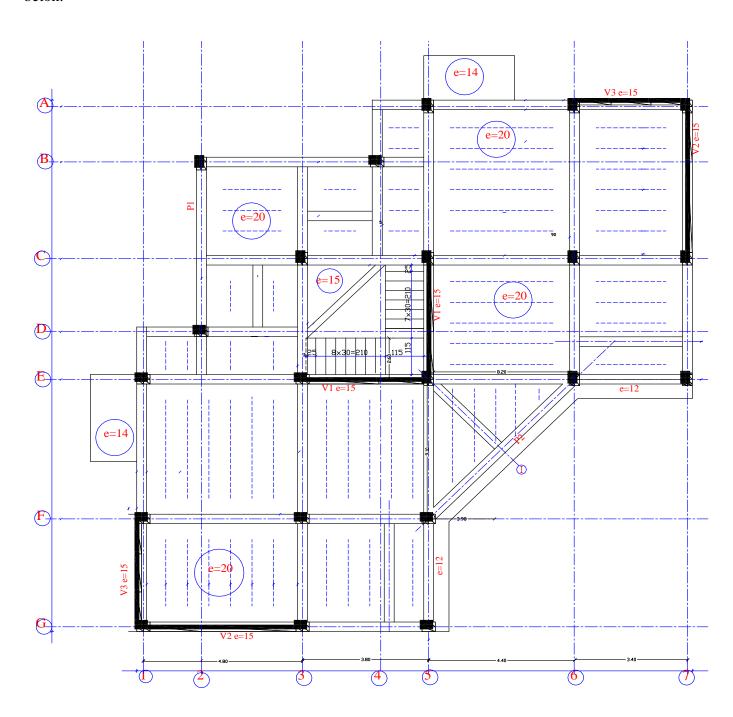


Figure II.1 Plan de coffrage RDC.

II.2 Pré-dimensionnement des planchers

a. Définition

Les planchers sont des plaques minces dont l'épaisseur est faible par rapport aux autres dimensions. Ils transmettent aux éléments porteurs (poutres, poteaux, voiles) les charges permanentes et les surcharges d'exploitation. Ils servent aussi à la transmission des efforts horizontaux. Ils jouent également le rôle d'un coupe-feu en cas d'incendie. Dans notre cas nous avons un plancher à corps creux.

b. Plancher à corps creux

On a opté pour des planchers à corps creux et ceci pour les raisons suivantes :

- ✓ la facilité de réalisation.
- ✓ Les portées de l'ouvrage sont importantes (max 4.30 m).
- ✓ Diminuer le poids de la structure et par conséquent la valeur de la force sismique.

L'épaisseur des dalles dépend le plus souvent des conditions d'utilisation et de résistance.

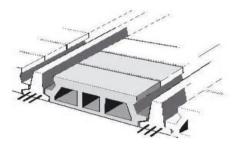


Figure II.2 Coupe du plancher en corps creux.

* Résistance au feu

+ D'après BEAL 91

- \checkmark e = 7 cm pour une heure de coupe-feu.
- \checkmark e = 11 cm pour deux heures de coupe-feu.
- \checkmark e = 17,5 pour un coupe-feu de quatre heures.

On admet que : e=18cm.

Condition de flèche

Les planchers sont constitués de poutrelles préfabriquées associées aux corps creux. Pour le Pré dimensionnement de la hauteur des poutrelles en utilisera la formule empirique suivante :

$$L_{\text{max}} - 30 = 480 - 30 = 450 \text{ cm}.$$

 $h_t \ge \frac{l_{\text{max}}}{22.5} = \frac{450}{22.5} = 20 \text{ cm (longueur max d'une travée de la poutrelle entre nus d'appuis)}.$

Donc:

 h_t =20 cm (4 cm de la da dalle de compression et 16 cm de corps creux).

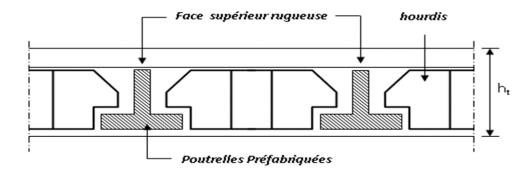


Figure II.3 Coupe verticale du plancher à corps creux.

❖ Isolation phonique

Selon les règles techniques «CBA93» en vigueur en Algérie l'épaisseur du plancher doit être supérieure ou égale à 13cm pour obtenir une bonne isolation acoustique.

On limite donc notre épaisseur à e = 16 cm.

+ Conclusion:

 $e = max \{16; 18; 20\} cm.$

 $e = (16+4) \text{ cm} \rightarrow e = 20 \text{ cm}.$

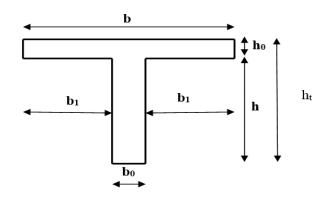
c. Dimensions des poutrelles

Les poutrelles sont des sections en T, en béton armé servant à transmettre les charges vers les poutres principales.

La disposition des poutrelles se fait selon deux critères :

- ✓ Sont disposées parallèlement à la plus petite portée (sens porteur, le plancher travaillant dans un seul sens).
- ✓ Si les poutres dans les deux sens sont égales alors on choisit le sens ou on a plus d'appuis (critère de continuité) car les appuis soulagent les moments en travée et diminuent la flèche.

✓ **b**₁= Min
$$(\frac{l_n}{2}; \frac{l_{max}}{10}; 6h_0)$$
.


- \checkmark L_n: distance entre axes des nervures.
- ✓ $\mathbf{h_0}$: Dalle de compression = 4 cm.
- ✓ $50 \text{ cm} \ge l_n \ge 80 \text{ cm donc ln} = 65 \text{ cm}$.

✓ **b**₁ = min
$$(\frac{65}{2}; \frac{450}{2}; 24) = 24$$
 cm.

Donc on adopte $b_1=25$ cm.

- ✓ $b = l_n = 65 \text{ cm}$.
- \checkmark b₀ = b 2b₁ = 65 50 = 15 cm.
- \checkmark $b_0 \ge \frac{ht}{2} \rightarrow b_0 \ge 10$ cm.

Donc $b_0 = 15$ cm.

Figure II.4 Section de la poutrelle.

d. Plancher en dalle pleine

* Résistance à la flexion

- ✓ Dalles reposant sur deux côtés : $\frac{Lx}{35} \le e \le \frac{Lx}{30}$.
- ✓ Dalles reposant sur trois ou quatre cotés : $e \ge \frac{Lx}{20} + 7$.
- ✓ Dalles encastrée sur un coté :

$$\checkmark \frac{L_x}{15} \le e^{\le \frac{L_x}{10}} \Rightarrow \frac{140}{15} \le e^{\le \frac{140}{10}} \Rightarrow 9.33 \le e^{\le 14}.$$

✓ L_x : est la petite portée du panneau le plus sollicité (cas défavorable).

Donc on adopte une épaisseur : e = 14 cm; pour les deux balcons.

II.3 Pré dimensionnement des voiles

a. Définition

Les voiles ou murs de contreventement peuvent être généralement définis comme des éléments verticaux à deux dimensions. Ils présentent une grande résistance et une grande rigidité visà-vis des forces horizontales. Par contre, dans la direction perpendiculaire à leur plan, ils offrent très peu de résistance vis-à-vis des forces horizontales et ils doivent être contreventés par d'autres murs ou par des portiques.

Les voiles sont dimensionnés en respectant les conditions du règlement parasismique algérien :

❖ D'après le RPA 99 article7.7.1 « les éléments satisfaisants la condition $(L \ge 4e)$ sont considérés comme des voiles, contrairement aux éléments linéaires ».

Avec:

- ✓ L : porté du voile.
- ✓ e: épaisseur du voile.

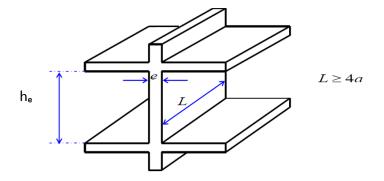


Figure II.5 Coupe de voile en élévation.

- ❖ L'article (7.7.1 RPA99 /V2003) nous dit que « l'épaisseur minimale d'un voile est 15cm » ; de plus l'épaisseur doit être déterminée en fonction de la hauteur libre d'étage (h_e) et des conditions de rigidité aux extrémités comme indique la figure ci-dessous ; c'est-à-dire :
- $\bullet \quad E \ge \max \left(\frac{he}{25}; \frac{he}{22}; \frac{he}{20}\right).$

A partir de la hauteur d'étage he = 3,06 m et de condition de rigidité aux extrémités suivantes :

$$\checkmark \quad e \ge \frac{he}{20} \Rightarrow e \ge \frac{306}{20} \Rightarrow e \ge 15.30 \text{ cm}.$$

 $e \ge 15.30$ cm.

On adopte pour tous les voiles : e = 15 cm.

 $L \ge 4e = 60 \text{ cm} \rightarrow \text{Condition vérifiée.}$

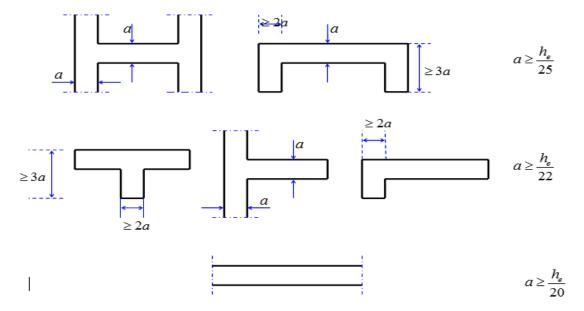


Figure II.6 Section réduite du voile.

b. Disposition des voiles

Pour notre structure le système de contreventement est assuré conjointement par des voiles et des portiques dans les deux directions en plan. Pour assurer une meilleure résistance au séisme, nous devant de préférence avoir une distribution aussi régulière que possible des masses et des rigidités tant en plan qu'en élévation.

Donc le système de contreventement doit être disposé de façon à :

- ✓ Reprendre une charge verticale suffisante pour assurer sa stabilité.
- ✓ Assurer une transmission directe des forces aux fondations.
- ✓ Minimiser les effets de torsion.

II.4 Pré dimensionnement des poutres

Les poutres de notre bâtiment sont des éléments en béton arme de section rectangulaire. Elles sont susceptibles de transmettre aux poteaux les efforts dus aux chargements verticaux ramenés par les planchers.

Les poutres seront pré dimensionnées selon les formules empiriques données par CBA 93 et vérifiées par la suite selon le **RPA99** (**V2003**).

Selon le CBA 93.

$$\checkmark \quad \frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} ;$$

$$\checkmark 0.3 h \le b \le 0.8 h.$$

Chapitre II : Pré-dimensionnement et descente de charge

Avec:

✓ L_{max} : portée entre nus des appuis.

✓ **h**: hauteur de la poutre.

✓ **b** : largeur de la poutre.

En générale, les formes et dimension des poutres sont influencées par la condition de limitation des flèches.

a. Les poutres principales

Reçoivent les charges transmise par les poutrelles et les réparties aux poteaux sur Les quelles ces poutres reposent.

✓ Relient les poteaux.

✓ Supportent la dalle.

→ La hauteur par la condition de flèche :

$$L_{\text{max}} - 30 = 480 - 30 = 450 \text{ cm}.$$

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \Rightarrow \frac{450}{15} \le h \le \frac{450}{10} \Rightarrow 30 \text{ cm} \le h \le 45 \text{ cm}$$

On prend $h_p = 40$ cm.

→ La largeur de la poutre est souvent choisie de façon à pouvoir loger les aciers :

$$\begin{cases}
0,3.h \le b \le 0,8.h \\
12cm \le b \le 32cm
\end{cases} \Rightarrow \text{ On prend } \mathbf{b} = \mathbf{30} \text{ cm.}$$
30 cm

40cm

→ Vérifications selon le RPA 99 versions 2003 :

$$\begin{cases} h \geq 30 \text{ cm} \Rightarrow \textbf{40} \geq \textbf{30 cm} \dots \dots & \textbf{Condition v\'erifi\'ee}. \\ b \geq 20 \text{ cm} \Rightarrow \textbf{30} \geq \textbf{20 cm} \dots \dots & \textbf{Condition v\'erifi\'ee}. \\ \frac{h}{b} \leq 4 \Rightarrow \frac{\textbf{40}}{\textbf{30}} = \textbf{1.33} \leq \textbf{4} \dots \dots & \textbf{Condition v\'erifi\'ee}. \end{cases}$$

✓ Les poutres principales sont d'une section (30×40) cm².

b. Poutres secondaires (chainages)

Elles sont disposées parallèlement aux poutrelles et leurs dimensions sont déterminées comme suit :

→ La hauteur par la condition de flèche :

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \Rightarrow \frac{450}{15} \le h \le \frac{450}{10} \Rightarrow 30 \text{ cm} \le h \le 45 \text{ cm}.$$

On prend hp = 40 cm.

→ La largeur de la poutre est souvent choisie de façon à pouvoir loger les aciers :

$$\begin{cases} 0.3.h \le b \le 0.8.h \\ 12cm \le b \le 32cm \end{cases} \Rightarrow \text{ On prend b} = 30 \text{ cm.}$$

★ Vérifications selon leRPA99 versions 2003 :

$$\begin{cases} h \geq 30 \text{ cm} \Rightarrow \textbf{40} \geq \textbf{30 cm} \dots \dots \\ b \geq 20 \text{ cm} \Rightarrow \textbf{30} \geq \textbf{20 cm} \dots \dots \\ \frac{h}{b} \leq 4 \Rightarrow \frac{\textbf{40}}{\textbf{30}} = \textbf{1.33} \leq \textbf{4} \dots \dots \text{Condition v\'erifi\'ee}. \end{cases}$$

✓ Les poutres principales sont d'une section (30×40) cm².

c. Poutres P_1 L= 535 cm

→ La hauteur par la condition de flèche :

$$L_{\text{max}} - 35 = 535 - 35 = 500 \text{ cm}.$$

$$\frac{500}{15} \le h \le \frac{500}{10} \Rightarrow 33.33 \text{ cm} \le h \le 50 \text{ cm}.$$

On prend $h_p = 45$ cm.

→ La largeur de la poutre est souvent choisie de façon à pouvoir loger les aciers :

$$\begin{cases} 0.3.h \le b \le 0.8.h \\ 12cm \le b \le 32cm \end{cases} \Rightarrow \text{ On prend b} = 30 \text{ cm.}$$

45cm

→ Vérifications selon le **RPA 99 versions 2003 :**

$$\begin{cases} h \geq 30 \text{ cm} \Rightarrow \textbf{45} \geq \textbf{30 cm} \dots \dots & \textbf{Condition v\'erifi\'ee.} \\ b \geq 20 \text{ cm} \Rightarrow \textbf{30} \geq \textbf{20 cm} \dots \dots & \textbf{Condition v\'erifi\'ee.} \\ \frac{h}{b} \leq 4 \Rightarrow \frac{\textbf{45}}{\textbf{30}} = \textbf{1.5} \leq \textbf{4} \dots \dots & \textbf{Condition v\'erifi\'ee.} \end{cases}$$

✓ Les poutres P_2 sont d'une section (30X45) cm².

b Poutres P_2 L= 622 cm

→ La hauteur par la condition de flèche :

$$L_{\text{max}}$$
-50 = 622-50 = 572 cm.

$$\frac{572}{15} \le h \le \frac{572}{10} \Rightarrow 38.13 \text{cm} \le h \le 57.2 \text{ cm}$$

On prend $h_p = 55$ cm.

→ La largeur de la poutre est souvent choisie de façon à pouvoir loger les aciers :

$$0.3.h \le b \le 0.8.h$$

$$16.5cm \le b \le 44cm \Rightarrow \text{ On prend b} = 30 \text{ cm.}$$

★ Vérifications selon le RPA 99 versions 2003 :

$$\begin{cases} h \geq 30 \text{ cm} \Rightarrow \textbf{55} \geq \textbf{30 cm} \dots \dots & \textbf{Condition v\'e} \\ b \geq 20 \text{ cm} \Rightarrow \textbf{30} \geq \textbf{20 cm} \dots \dots & \textbf{Condition v\'e} \\ \frac{h}{b} \leq 4 \Rightarrow \frac{\textbf{55}}{\textbf{30}} = \textbf{1.83} \leq \textbf{4} \dots \dots & \textbf{Condition v\'erifi\'ee}. \end{cases}$$

✓ Les poutres P₇ sont d'une section (30X55) cm².

II.5 Prédimensionnement des poteaux

a. Définition

Les poteaux sont des éléments porteurs verticaux en béton armé, ils constituent les points d'appuis, pour transmettre les charges aux fondations, dont la forme est généralement carrée, rectangulaire ou circulaire.

b. Principe

Les poteaux sont pré dimensionnés en compression simple en choisissant les poteaux les plus sollicités de la structure. C'est-à-dire, un poteau central, un poteau de rive et un poteau d'angle.

Chaque type de poteau est affecté de la surface du plancher chargé lui revenant, et on utilisera un calcul basé sur la descente de charge.

c. Etapes de Pré dimensionnement

- ✓ Choix du poteau le plus sollicité.
- ✓ Dimensionnements des poteaux.
- ✓ Calcul de la surface reprise par le poteau.
- ✓ Détermination des charges permanentes et d'exploitation revenant à ce poteau.
- ✓ Les dimensions de la section transversale des poteaux doivent répondre aux conditions du

RPA 99 / version 2003.

d. Dimensions des poteaux

Les dimensions de la section transversale des poteaux rectangulaire doivent répondre aux conditions du RPA 99 / version 2003 : Min $(a, b) \ge 30$ cm en zone IIa.

Tableau II.1 Pré dimensionnement des poteaux.

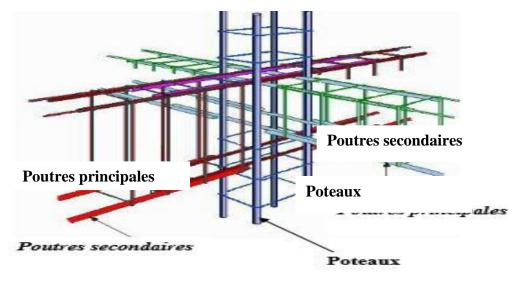
Niveau d'étage		5 ^{ème}	4 ^{ème}	3 ^{ème}	2 ^{ème}	1 ^{ème}	RDC
Dimension du	a (cm)	30	30	30	30	30	30
poteau	b (cm)	40	40	40	40	40	40

***** Conclusion:

→ Les dimensions des poutres dans les deux sens et pour tous les niveaux sont :

$$(b \times h) = (30 \times 40) \text{ cm}^2$$
.

+ Les dimensions des poutres P_1 dans les deux sens au niveau +3.06 m sont :


$$(\mathbf{b} \times \mathbf{h}) = (30 \times 45) \text{ cm}^2.$$

+ Les dimensions des poutres P_2 pour tous les niveaux sont :

$$(b \times h) = (30 \times 55) \text{ cm}^2.$$

→ Les dimensions des poteaux pour tous les niveaux sont :

$$(b \times x h) = (30 \times 40) cm^2$$
.

Figure

II.7

Position

poutres et les poteaux.

II.6 Pré dimensionnement des escaliers

a. Définition

Dans une construction, la circulation entre les étages se fait par l'intermédiaire des escaliers. Un escalier est constitué d'une suite de marches et de paliers permettant le passage d'un niveau à un autre, Les marches seront en béton armé ou métallique ou en bois. Dans notre cas, elles sont réalisées en béton coulé sur place.

Le choix de ce type d'escalier a été retenu pour les avantages suivants :

- **→** Rapidité d'exécution.
- → Utilisation immédiate de l'escalier.

b. Terminologie

- ✓ Mur d'échiffre : Mur bordant l'escalier sur un ou plusieurs côtés.
- ✓ Palier : Plate-forme située au départ et à l'arrivée de chaque volée.
- ✓ Paillasse : Dalle inclinée supportant les marches et les contre marchent.
- ✓ Marche : Surface horizontale sur laquelle repose le pied.
- ✓ Contremarche : Partie verticale séparant deux marches consécutives (auteur de 15 à 18cm environ).
- ✓ Volée : Portion d'escalier comprise entre deux paliers successifs. C'est l'ensemble constitué par les marches, les contremarches et la paillasse.
- ✓ Emmarchement : Largeur de l'escalier (≥ 80cm pour les maisons individuelles).
- ✓ Hauteur à franchir : Hauteur franchie par l'escalier. Elle est égale à la hauteur sous
- ✓ plafond + l'épaisseur du plancher.
- ✓ Rampe : Garde-corps composé d'une main courante et de balustre.
- ✓ Main courante : Partie supérieure d'une rampe sur laquelle glisse la main.
- ✓ Ligne de foulée : Ligne figurant la trajectoire moyenne des pas d'une personne sur un escalier. Si l'emmarchement de l'escalier est > à 1 m, la ligne de foulée se place à d = 0,50 m. Si l'emmarchement de l'escalier est < à 1 m, la ligne de foulée se place au milieu de l''emmarchement.
- ✓ Nez de marche : Pour faciliter le parcours de l'escalier, les marches sont superposées de façon à former saillie sur le nu de la contremarche, cette saillie est appelée nez de marche. Dans un escalier courant, la grandeur du nez est fonction de celle du giron au droit de la ligne de foulée et varie de 30mm pour les marches larges à maximum 50 mm pour les marches étroites. Dans un escalier très raide (hauteur des marches ≤ 200 mm), un nez de marche trop important constitue un danger car le pied peut y rester accroché lors de la montée. Le nez de marche empêche également le talon de buter sur la contremarche lors de la descente.

- ✓ Hauteur de la marche : est la distance verticale qui sépare la surface de 2 marches consécutives.
- ✓ Giron : est la distance horizontale entre deux contremarches consécutives ou entre le nez de deux marches successives.

c. Caractéristiques techniques

→ Pour étage courant et RDC :

✓ Hauteur : H = 3,06 m.

✓ Giron : g = 30 cm.

+ Détermination de la hauteur de la marche, nombre de marches et contremarches :

Hauteur de la marche à partir de la formule de BLONDEL:

On a: 59 < 2h+g < 66 donc: 14,5 < h < 18.

✓ h : varié de 15 cm à 18 cm.

✓ g: varié de 22 cm à 33 cm.

Pour : h = 17 cm.

$$N_C = \frac{H}{h} = \frac{306}{17} = 18$$

Avec:

 N_{C} : Nombre des contremarches.

✓ On aura 18 contremarches entre chaque étage 9 contremarches pour RDC et étage courant.

 $\mathbf{n} = N_C - 1 = 9 - 1 = 8$ marches pour RDC et étage courant.

Avec:

n: nombre des marches.

+ Inclinaison de la paillasse :

$$Tg \alpha = \frac{H'}{L'}$$

$$H = N_C \times h \Rightarrow H = 9 \times 17 \Rightarrow H = 1.53 \text{ m}.$$

$$L = (n-1) \times g \Rightarrow L = (9-1) \times 30 \Rightarrow L = 2.40 \text{ m}.$$

Tg
$$\alpha = 1.53/2.40 \Rightarrow \alpha = 32.52^{\circ}$$
.

La longueur de volée est : $L = \frac{1.53}{\sin \alpha}$; L = 2.85 m.

L'épaisseur de la paillasse est : $\frac{L}{30} < e < \frac{L}{20} \rightarrow \frac{285}{30} < e < \frac{285}{20} \rightarrow 9.5 < e < 14.25$

Donc: e = 15 cm.

L'épaisseur du palier est la même que celle de la paillasse c'est-à-dire : e = 15 cm.

II.7 Evaluation des charges et surcharges

a. Les planchers terrasse à corps creux (inaccessible)

La terrasse est inaccessible et réalisée en plancher à corps creux surmonté de plusieurs couches de protection en forme de pente facilitant l'évacuation des eaux pluviales.

***** Charge permanente :

Tableau II.2 Evaluation des charges permanentes du plancher terrasse.

Matériaux	Epaisseur	D (kg/m ³)	G (kg/m ²)
1-protection en gravillon	5	1600	85
2-Etanchéité multi couche	5	200	12
3-Forme de pente 1%	1	2200	220
4-Isolation thermique	4	400	16
6-Dalle en corps creux	16+4	/	280
7-Enduit en plâtre	2	1000	20
	.	Total	$G = 633 \text{ Kg/m}^2$

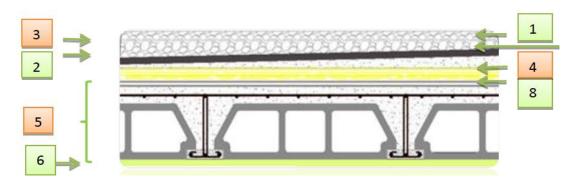


Figure II.8 Coupe plancher terrasse.

b. Plancher étage courant et RDC

Les plancher des étages courant sont en corps creux.

***** Charge permanente :

Tableau II.3 Evaluation des charges permanentes du Plancher étage courant et RDC.

Matériaux	Epaisseur (cm)	D (Kg/m ³)	G (Kg/m ²)
1-Carrelage	2	2200	44
2-Mortier de pose	2	2000	40
3-Lit de sable	2	1700	36
4-Dalle en corps creux	16+4	/	280
5-Enduit plâtre	2	1000	20
6-Cloison de séparation	10	/	75
		Total	$\mathbf{G} = 495 \text{ Kg/m}^2$

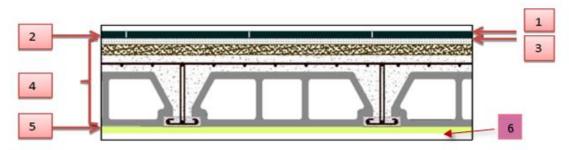


Figure II.9 coupe plancher étage courant.

c. Plancher terrasse en dalle pleine

***** Charge permanente

Tableau II.4 Evaluation des charges permanentes du plancher terrasse en dalle pleine.

Matériaux	Epaisseur (cm)	D (kg/m ³)	G (kg/m ²)
1-protection en gravillon	5	1600	80
2-Etanchéité multicouche	5	200	10
3-Forme de pente 1%	10	2200	220
4-Isolation thermique	4	400	16
5-Dalle pleine	15	2500	375
6-Enduit plâtre	2	1000	20
		Total	$G = 721 \text{Kg/m}^2$

d. Plancher étage courant et RDC en (dalle pleine)

***** Charge permanente:

Tableau II.5 Evaluation des charges permanentes du plancher étage courant RDC en dalle pleine.

Matériaux	Epaisseur (cm)	D (kg/m ³)	G (kg/m ²)
1- Carrelage	2	2000	44
2-Mortier de pose	2	2000	40
3-Lit de sable	3	1800	36
4-Dalle en BA	15	2500	375
5-Enduit de plâtre	2	1000	40
6-Cloison	10	1000	75
		Total	$G = 610 \text{ kg/m}^2$

e. Les balcons sont en dalle pleine (Balcons)

Charge permanente :

Tableau II.6 Evaluation des charges permanentes de dalle de balcon terrasse.

Matériaux	Epaisseur (cm)	D (kg/m ³)	G(kg/m ²)
1-protection en gravillon	5	1600	80
2-Etanchéité multicouche	5	200	10
3-Forme de pente 1%	10	2200	220
4-Isolation thermique	4	400	16
5-Dalle pleine	14	2500	350
6-Enduit plâtre	2	1000	20
		Total	$G = 696 \text{ Kg/m}^2$

Tableau II.7 Evaluation des charges permanentes de dalle de balcon (étage courant et RDC).

Matériaux	Epaisseur (cm)	D (KG/ m ³)	G (KG/m ²)
1-Carrelage	2	2200	44
2-Mortier de pose	2	2000	40
3-Lit de sable	2	1800	36
4-Dalle en BA	14	2500	350
5-Enduit ciment	2	2000	40
		Total	$G = 510 \text{ kg/m}^2$

f. Mur extérieur (double cloison)

***** Charge permanente :

Tableau II.8 Evaluation des charges permanentes dues au mur extérieur.

Matériaux	Epaisseur (cm)	D (Kg/m ³)	G (Kg/m ²)
1-Brique creuse	25	1400	350
2-Enduit plâtre	2	1200	24
3-Enduit ciment	2	2000	40
	1	Total	$G = 414 \text{ kg/m}^2$

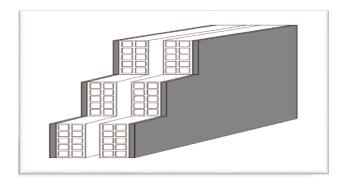


Figure II.10 Mur extérieur.

g. Murs intérieurs (simple cloison)

***** Charge permanente

Tableau II.9. Charge permanente du mur double cloison.

N°	Composants	Épaisseur(m)	Poids volumique	Poids surfacique
1	Enduit en ciment extérieurs	0.02	2000	40
2	Brique creuse	0,10	900	90
3	Enduit en ciment intérieur	0,02	1400	28
			Total	$G = 158 kg/m^2$

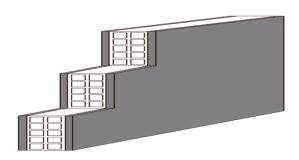


Figure II.11Mur simple cloison.

h. Escalier

***** Charge permanente de palier de repos :

Tableau II.10 Evaluation des charges permanentes de palier.

Matériaux	Epaisseur (cm)	D (Kg/m ³)	G (Kg/m ²)
1-Carrelage	2	2200	44
2-Mortier de pose	2	2000	40
3-Lit de sable	2	1800	36
4-Dalle en BA	15	2500	375
5-Enduit ciment	2	2000	40
•		Total	$G = 535 \text{ Kg/m}^2$

***** Charge permanente la paillasse :

Tableau II.11 Evaluation des charges permanentes de Paillasse.

Matériaux	Epaisseur (cm)	D (Kg/m ³)	G (Kg/m ²)
1-Carrelage	2	2200	44
2-Mortier de pose	2	2000	40
3-Lit de sable	3	1800	54
4-Marche	17	2200	(0,17/2)×2200 =187
5-Paillasse	15	2500	(2500×0,15)/cos 32,52= 444.73
6-Enduit ciment	2	2000	40
7-Gardes corps	/	/	20
		Total	$G = 829.73 \text{ Kg/m}^2$

i. L'acrotère

C'est un élément en béton armé, encastré au niveau du plancher terrasse et ayant pour rôle d'empêcher l'infiltration des eaux pluviales entre la forme de pente et le plancher terrasse. Ses dimensions sont mentionnées dans les plans d'architecture. Pour notre cas la terrasse est inaccessible.

On prend H = 60 cm.

✓ S : surface de la section droite de l'acrotère.

✓ **G** : poids d'un mètre linéaire de l'acrotère.

❖ Poids propre de l'acrotère

On considère le poids d'une bande d'acrotère de longueur unitaire appliqué en son centre de gravité soit (NG).

Enduit : $ep = 2cm \Rightarrow G \text{ enduit} = 0.055 \text{ t/ml} = 55 \text{ kg/m}.$

Béton:

$$\checkmark$$
 $\mathbf{S_{1}} = \frac{0.02 \times 0.1}{2} = 0.001 \text{m}^{2}.$

✓
$$S_2$$
= 0.08×0.1= 0.008 m².

✓
$$\mathbf{S}_2 = 0.6 \times 0.1 = 0.06 \text{ m}^2$$
.

✓ $S_{total} = 0.069 \text{ m}^2$.

 $G_{b\acute{e}ton} = 2500 \times (0.001 + 0.008 + 0.06) \times 1 \text{m} = 172.5 \text{ Kg/ml.}$

 $G_t = 172.5 + 55 = 227.50 \text{ Kg/ml.}$

✓ La charge permanente G = 227.5 Kg/ml.

Surcharges d'exploitation : (DTR B.C 2.2)

Tableau II.12 Tableaux Surcharges d'exploitation.

Eléments	Surcharges
Plancher terrasse (inaccessible)	1,00 KN/m ²
Plancher étage courant et RDC	1.5 KN/m ²
Balcon	3,50 KN/m ²
Escalier	2.5 KN/m ²
Acrotère	1.00 KN/m ²

II.8 Descente de charges

La descente de charges désigne l'opération consistant à calculer les efforts normaux résultant de l'effet des charges verticales sur les divers éléments porteurs verticaux (poteaux ou murs) ainsi que les fondations.

a. Charges permanentes et l'effort normal «Nu»

❖ Poteau d'angle

Le poteau le plus sollicite est à une surface offerte «B-2»:

La surface reprise par le poteau:

$$S_1 = (2.50 \times 2.60) = 6.5 \text{m}^2$$
.

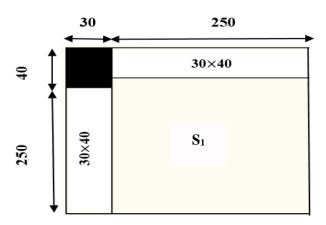


Figure II.12 Représentation du poteau d'angle le plus sollicité.

❖ Calcul des charges permanentes revenant au poteau

Tableau II.13 Détermination des charges permanentes pour Poteau d'angle.

Section	Désignation	G(KN)
(1-1)	Acrotère : G. L= $2.275 \times (2.5+0.3+0.4+2.5)$	12.97
	Plancher terrasse : $6.33 \times (2.60 \times 2.50)$	41.14
	Poutre longitudinale (P.S): $25 \times (0.3 \times 0.4) \times 2.50$	7.5
	Poutre transversale (P.P) :25× $(0.3\times0.4)\times2.50$	7.5
Σ		69.11
(2-2)	Venant de (1-1)	69.11
	Poteau: $25 \times (0.3 \times 0.4) \times 3.06$	9.18
	Mur. Ext.: 4.14× (2.5+2.5) ×2.66	55.06
Σ		133.35
	Venant de (2-2)	133.35
(3-3)	Plancher étage courant $4.95 \times (2.60 \times 2.50)$	32.17
	Poutre transversale	7.5
	Poutre longitudinale	7.5
Σ		180.52
(4-4)	Venant de (3-3)	180.52
	Poteau	9.18
	Mur. Extérieur.	55.06
Σ		244.76
(5-5)	Venant de (4-4)	244.76
	Plancher étage	32.17
	Poutre transversale	7.5
	Poutre longitudinale	7.5
Σ		291.93

	Venant de (5-5)	291.93
(6-6)	Poteau	9.18
	Mur. Extérieur.	55.06
Σ		356.17
(7-7)	Venant de (6-6)	356.17
	Plancher étage	32.17
	Poutre transversale	7.5
	Poutre longitudinale	7.5
Σ		403.34
(8-8)	Venant de (7-7)	403.34
	Poteau	9.18
	Mur. Extérieur.	55.06
Σ		467.58
(9-9)	Venant de (8-8)	467.58
	Plancher étage	32.17
	Poutre transversale	7.5
	Poutre longitudinale	7.5
Σ		514.75
(10-10)	Venant de (9-9)	514.75
	Poteau 2500× (0.3×0.4) ×3.06	9.18
	Mur. Extérieur.	55.06
Σ		578.99
(11-11)	Venant de (10-10)	578.99
	Plancher étage	32.17
	Poutre transversale	7.5
	Poutre longitudinale	7.5
Σ		626.16
(12-12)	Venant de (11-11)	626.16
	Poteau 2500× (0.3×0.4) ×3.06	9.18
	Mur. Extérieur.	55.06

Г		
II	7	690.4
II	\angle	070.4
ı		
II		

NG = 690.40 KN.

Poteau central:

Le poteau le plus sollicite est à une surface offerte «F-3»:

La surface reprise par le poteau:

$$S_1 = ((2.20+1.70) \times (1.90+2.40)) = 16.77 \text{ m}^2.$$

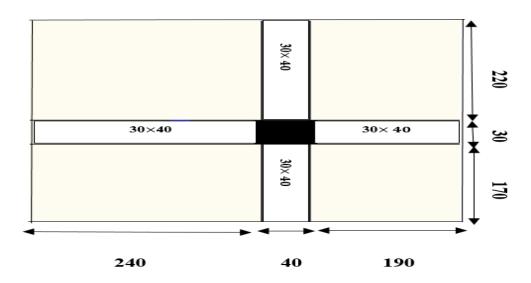


Figure II.13 Représentation du poteau central le plus sollicité.

❖ Calcul des charges permanentes revenant au poteau

Tableau II.14 Détermination des charges permanentes pour Poteau central.

Section	Désignation	G(KN)
(1-1)	Plancher terrasse : $6.33 \times ((2.20+1.70) \times (1.90+2.40))$	106.15
	Poutre longitudinale (P.S) :25× (0.3×0.4) × $(2.40+1.90)$	12.90
	Poutre transversale (P.P) :25× (0.3×0.4) × $(2.20 + 1.70)$	11.70
Σ		130.75
(2-2)	Venant de (1-1)	130.75
	Poteau: $25 \times (0.3 \times 0.4) \times 3.06$	9.18
Σ		139.93

(3-3)	Venant de (2-2)	139.93
	Plancher étage courant : $4.95 \times ((2.20+1.70) \times (1.90+2.40))$	83.01
	Poutre transversale	12.90
	Poutre longitudinale	11.70
Σ		247.54
(4-4)	Venant de (3-3)	247.54
	Poteau	9.18
Σ		256.72
(5-5)	Venant de (4-4)	256.72
	Plancher étage	83.01
	Poutre transversale	12.90
	Poutre longitudinale	11.70
Σ		364.33
(6.6)	Variant da (5.5)	364.33
(6-6)	Venant de (5-5) Poteau	9.18
	1 Oteau	
Σ		373.51
(7-7)	Venant de (6-6)	373.51
	Plancher étage	83.01
	Poutre transversale	12.90
	Poutre longitudinale	11.70
Σ		481.12
(8-8)	Venant de (7-7)	481.12
	Poteau	9.18
Σ		490.30
(9-9)	Venant de (8-8)	490.30
	Plancher étage	83.01
	Poutre transversale	12.90
	Poutre longitudinale	11.70
Σ		597.91
(10-10)	Venant de (9-9)	597.91

	Poteau	9.18
Σ		607.09
(11-11)	Venant de (10-10)	607.09
	Plancher étage	83.01
	Poutre transversale	12.90
	Poutre longitudinale	11.70
Σ		714.70
(12-12)	Venant de (11-11)	714.70
	Poteau	9.18
Σ		723.88

$$\sqrt{N_G} = 723.88$$
KN.

❖ Poteau de rive:

Le poteau le plus sollicite qui a la plus grande surface offerte est «F-5»:

La surface reprise par le poteau est :

$$S_1 = (2.20 \times (1.55 + 2.05) + \frac{(3.89*3.89)}{2\times3}) + (0.41 \times (\frac{3.10+5.73}{2})) = 10.44+1.81$$

 $S_1 = 12.25 \text{ m}^2$.

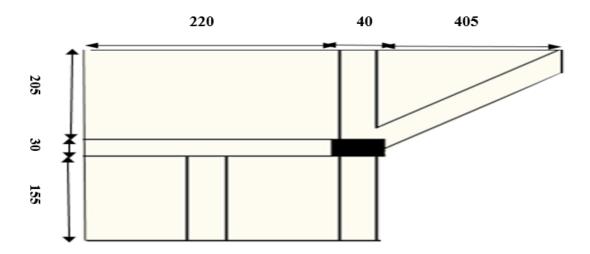


Figure II.14 Représentation du poteaude rive le plus sollicité.

***** Calcul des charges permanentes revenant au poteau

Tableau II.15 Détermination des charges permanentes pour Poteaude rive.

Section	Désignation	G(KN)						
(1-1)	Acrotère : G. L= $2.275 \times (\frac{6.22}{2} + \frac{3.40}{2})$	10.94						
	Acrotere: G. L= 2.273 $\times (\frac{1}{2} + \frac{1}{2})$	78.23						
	Plancher terrasse : 6.33×10.44+6.71×1.81							
	Poutre longitudinale (P.S) :25× $(0.3 \times 0.4) \times 2.20$							
	Poutre transversale (P.P) :25× (0.3×0.4) × (2.05 + 1.55) +2500×	13.12						
	$(0.3 \times 0.2) \times (1.55)$							
	Poutre inclinée : $25 \times (0.3 \times 0.55) \times (\frac{5.73}{2})$	11.82						
Σ		120.71						
(2-2)	Venant de (1-1)	120.71						
	Poteau: $25 \times (0.3 \times 0.4) \times 3.06$	9.18						
	Mur. Extérieur : $4.14 \times ((1.55 \times 2.66) + (\frac{5.73}{2} \times 2.51))$	47.20						
Σ		177.09						
(3-3)	Venant de (2-2)	177.09						
	Plancher étage courant : 4.95×10.44 +5.35×1.81	61.36						
	Poutre longitudinale	6.60						
	Poutre transversale	13.12						
	Poutre inclinée	11.82						
Σ		269.99						
(4-4)	Venant de (3-3)	269.99						
	Poteau	9.18						
	Mur. Extérieur.	47.20						
Σ		326.37						

(5-5)	Venant de (4-4)	226 27			
	Plancher étage	326.37			
	I falletter etage	61.36			
	Poutre transversale	6.60			
	Poutre longitudinale				
	Foure longitudinale	13.12			
	Poutre inclinée	11.00			
		11.82			
Σ		419.27			
	Venant de (5-5)	419.27			
(6-6)	Poteau	9.18			
	Mur. Extérieur.	47.20			
Σ		475.65			
(7-7)	Venant de (6-6)	475.65			
	Plancher étage	61.36			
	Poutre transversale	6.60			
	Poutre longitudinale	13.12			
	Poutre inclinée	11.82			
Σ		568.55			
(8-8)	Venant de (7-7)	568.55			
(0 0)	Poteau	9.18			
	Mur. Extérieur.	47.20			
Σ		624.93			
(9-9)	Venant de (8-8)	624.93			
	Plancher étage	61.36			
	Poutre transversale	06.60			
	Poutre longitudinale	13.12			
	Poutre inclinée	11.82			
Σ		717.83			
(10-10)	Venant de (9-9)	717.83			

	Poteau	9.18
	Mur. Extérieur.	47.20
Σ		774.21
(11-11)	Venant de (10-10) Plancher étage Poutre transversale Poutre longitudinale Poutre inclinée	774.21 61.36 06.60 13.12 11.82
Σ		867.11
(12-12)	Venant de (11-11) Poteau Mur Extérieur.	867.11 9.18 47.20
Σ		923.49

 $\sqrt{N_G} = 923.49 \text{ KN}.$

b. Charges d'exploitation

Comme il est rare que toutes les charges d'exploitation agissent simultanément, on applique pour, leur détermination la loi de dégression qui consiste à réduire les charges identiques à chaque étage de 10% jusqu'à 0,5Q.

$$Q_0 + \frac{3+n}{2n}(Q_1 + Q_2 + \dots + Q_n)$$

Avec:

- ✓ n: Nombre d'étage, on démarre de haut en bas (le premier étage est "0").
- ✓ Q_0 : La charge d'exploitation sur la terrasse.
- ✓ $Q_1, Q_2, ..., Q_n$: Les charges d'exploitations des planchers respectifs.

Tableau II.16 Détermination des charges d'exploitations.

	Q (KN/m²)		S	(m²)	Q = q x	x S (KN)	Q_{total}	$\frac{3+n}{2n}$	Q _{cum} (KN))
5 ^{ème} étage	1	1	12	2.25	1:	2.25	12.25	1	12.25
4 ^{ème} étage	3.5	1.5	1.94	10.31	6.79	15.46	22.25	1	34.50
3 ^{ème} étage	3.5	1.5	1.94	10.31	6.79	15.46	22.25	0.95	55.64
2 ^{ème} étage	3.5	1.5	1.94	10.31	6.79	15.46	22.25	0.90	75.66
1 ^{ére} étage	3.5	1.5	1.94	10.31	6.79	15.46	22.25	0.85	94.57
RDC	3.5	1.5	1.94	10.31	6.79	15.46	22.25	0.80	112.37

c. Choix du poteau le plus sollicité

Dans notre structure, le poteau le plus sollicité est les poteaux «B-4».

$$\label{eq:NG} \text{\checkmark} \quad N_{G} \!\!=\! N_{G\,max} \!\! \left\{ \begin{array}{l} N_{Gcentr} \\ N_{Gd'angl} \\ N_{Griv} \end{array} \!\! \left\{ \begin{array}{l} 723.88 \text{KN.} \\ 690.40 \text{KN.} \\ 923.49 \text{KN.} \end{array} \right. \!\!\!\!$$

Donc le poteau le plus sollicité Poteau de rives «F-5»: $N_{G max} = N_G = 923.49$ KN.

d. Calcul de la longueur de flambement L_f

Le règlement CBA93 définie la longueur de flambement L_f comme suit :

 $0.7 \times L_0$: si le poteau est à ses extrémités :

- ✓ Soit encastré dans un massif de fondation.
- ✓ Soit assemblé à des poutres de plancher.

L₀: dans les autres cas.

✓ Pour notre cas, on prend :

 $\mathbf{L}_f = \mathbf{0.7} \ \mathbf{L}_0$ (poteau avec des extrémités encastrés jusqu'à la fondation).

+ Etage courant et RDC :

$$L_f = 0.7 \times 3.06 = 2.142 \text{ m}.$$

e. Calcul de l'effort \overline{N}_u

L'effort normal admissible est
$$\overline{N_U} = \propto \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + A_S \times \frac{f_e}{\gamma_s} \right]$$

Avec:

✓ $\overline{N_u}$: Effort normal admissible à l'ELU.

 \checkmark B_r : Section réduite du poteau obtenue en déduisant de sa section réelle 1cm d'épaisseur sur toute sa périphérie.

$$\mathbf{Br} = (a_0.02) (b_0.02).$$

 $\checkmark \gamma_b$: Coefficient de sécurité du béton tel que.

$$φ_b =
\begin{cases}
1,5 \text{ situation durable ou transitoire.} \\
1,15 \text{ situation accidentelle.}
\end{cases}$$

$$\checkmark \gamma_s =
\begin{cases}
1,15 \text{ situation durable ou transitoire} \\
1 \text{ situation accidentelle.}
\end{cases}$$

✓ Résistances caractéristiques du béton et de l'acier
$$\begin{cases} f_{c28} = 25 \text{ MPa.} \\ f_{e} = 400 \text{ MPa.} \end{cases}$$

✓ A_S: Section d'armatures dans le poteau prise égale à 0,2% de la section réelle du poteau.

$$A_S = 0.2\%$$
 ab

✓ a : Coefficient fonction de l'élancement du poteau.

Selon le BAEL 91 révisée 99 (Art B.8.4.1).

$$\checkmark \quad \alpha = \begin{cases} \alpha = \frac{0.85}{1 + 0.2 \cdot \left(\frac{\lambda}{35}\right)^2} \rightarrow \text{pour } \lambda < 50. \\ \alpha = \left(0.6 \cdot \left(\frac{50}{\lambda}\right)^2\right) \rightarrow \text{pour } 50 \le \lambda \le 70. \end{cases}$$

$$\checkmark \quad \mathbf{i} = \sqrt{\frac{I}{A}} = \sqrt{\frac{a \times b^3}{12ba}} = \frac{b}{\sqrt{12}}.$$

$$\checkmark \lambda = \frac{l_f}{i}$$

Avec:

✓ i : Rayon de giration.

✓ \(\lambda\): L'élancement géométrique.

✓ L_f : Longueur de flambement.

$$\overline{N_U} = \propto \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + A_S \times \frac{f_e}{\gamma_s} \right]$$

Tableau II.17 Calcul de \overline{N}_u des poteaux.

	Dimension (cm)	$B_r(\text{cm}^2)$	$L_f(\mathbf{m})$	λ	α	As (cm²)	$\overline{N_u}(kN)$
5 ^{ème} ét	30x40	1064	2,142	18.56	0.805	240	8306.148
4 ^{ème} ét	30x40	1064	2,142	18.56	0.805	240	8306.148
3 ^{ème} ét	30x40	1064	2,142	18.56	0.805	240	8306.148
2 ^{ème} éta	30x40	1064	2,142	18.56	0.805	240	8306.148
1 ^{ére} éta	30x40	1064	2,142	18.56	0.805	240	8306.148
RDC	30x40	1064	2.142	18.56	0.805	240	8306.148

f. Vérifications du 1,1 $Nu \le \overline{N_u}$

Une majoration de 10% de l'effort normal est à considérer pour les poteaux voisins de poteaux de rive $(Nu = 1,35N_G + 1,5N_Q)$.

Tableau II.18 Vérifications du 1,1 $Nu \leq \overline{N_u}$ des poteaux.

	G (KN)	G _{cum} (KN)	Q cum (KN)	Nu (KN)	1,1 Nu (KN)	N _u (KN)	1,1 Nu ≤ <i>N_u</i>
5 ^{ème} étage	177.09	177.09	12.25	257.446	283.190	8306.148	vérifiée
4 ^{ème} étage	149.28	326.37	34.50	492.349	541.584	8306.148	vérifiée
3 ^{ème} étage	149.28	475.65	55.64	725.587	798.146	8306.148	vérifiée
2 ^{ème} étage	149.28	624.93	75.66	957.145	1052.859	8306.148	vérifiée
1 ^{ère} étage	149.28	774.21	94.57	1187.038	1305.742	8306.148	vérifiée
RDC	149.28	923.49	112.37	1415.266	1556.793	8306.148	vérifiée

g. Vérification selon le RPA 99 version 2003

D'après le RPA 99 / version 2003, les clauses suivantes doivent être vérifiées :

❖ Coffrage: RPA 99/ version2003, Art 7.4.1.

Tableau II.19 Vérification selon le RPA 99 /version 2003 des dimensions des poteaux.

condition à vérifier	Application de condition	Vérification
$Min (b, h) \ge 25cm$	Min (b, h)= Min (30, 40) cm≥25cm	vérifiée
$Min (b, h) \ge he/20$	Min(b, h) =30cm≥ (he/20)=(306-40)/20=13.3cm	vérifiée
$0.25 \le (b/h) \le 4$	0,25≤ (b/h)=0.75 ≤4	vérifiée

* Remarque:

Pour le poteau de RDC et 1 ère étage on augmenter La section qui doit vérifier : $B = (40 \times 45) = 1800 \text{ cm}^2$.

❖ Vérification spécifiques selon le RPA 99 / version 2003 : Sollicitations normale Selon l'RPA 99 / version 2003 (Art 7.4.3.1) :

Outre les vérifications prescrites par le **C.B.A 93** et dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitations d'emblée dues à séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$\frac{N_d}{B \times f_{c28}} \leq 0,3$$

Tableau II.20 Vérification selon le RPA 99 / version 2003 des dimensions des poteaux.

Niveau	(a× b) (cm²)	(KN)	f_{c28} (KN/cm ²)	B (cm ²)	$\frac{N_d}{B \times f_{c28}} \leq 0,3$	Observation
5 ^{ème} étage	(30× 40)	167,79	2,5	1200	$0.06 \le 0.3$	vérifiée
4 ^{ème} étage	(30× 40)	337,04	2,5	1200	$0.11 \le 0.3$	vérifiée
3 ^{ème} étage	(30× 40)	509,35	2,5	1200	0.16≤ 0,3	vérifiée
2 ^{ème} étage	(30× 40)	683,59	2,5	1200	$0.22 \le 0.3$	vérifiée
1 ^{ème} étage	(40×45)	862,63	2,5	1800	0.19≤ 0,3	vérifiée
RDC	(40×45)	1039,61	2,5	1800	0.23≤ 0,3	vérifiée

***** Conclusion

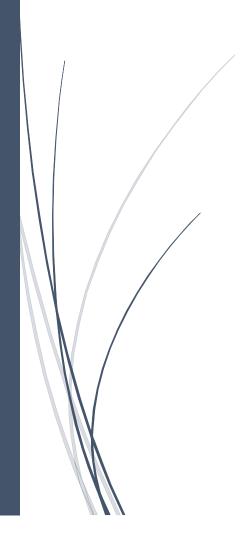

Etant donné que le pré dimensionnement des éléments structuraux est effectué, et que toutes les exigences réglementaires sont satisfaites, on adopte les dimensions suivantes :

Tableau II.21Pré dimensionnement des poteaux final.

Niveau d'étage		RDC	1 ^{ème}	2 ^{ème}	3 ^{ème}	4 ^{ème}	5 ^{ème}
Dimension du	a (cm)	40	40	30	30	30	30
poteau	b (cm)	45	45	40	40	40	40

Chapitre III

Etude des éléments secondaires

III.1 Introduction

Dans une structure quelconque on distingue deux types d'éléments :

Les éléments porteurs principaux qui contribuent directement au contreventement. Les éléments secondaires qui ne contribuent pas directement au contreventement.

Dans ce chapitre nous considérons l'étude des éléments que comporte notre bâtiment. Nous citons les escaliers, les planchers, l'acrotère et enfin le balcon.

Leur calcul se fait généralement sous l'action des charges permanentes et des surcharges d'exploitation. L'étude de ces élément et indépendante de l'action sismique, mais ils sont considères comme dépondant de la géométrie du structure.

Le calcul de ces éléments s'effectue suivant le règlement **BAEL 91 modifié 99** en respectant le règlement parasismique Algérien **RPA 99 version 2003.**

III.2 Etude de l'acrotère

a. Introduction

Notre bâtiment comporte une terrasse inaccessible délimitée par un acrotère. L'acrotère est un élément de sécurité au niveau de la terrasse. Il forme une paroi contre toute chute, il est considéré comme une console verticale encastre à sa base au niveau du plancher terrasse à une hauteur total $h=60\,\mathrm{cm}$ et une épaisseur $e=10\,\mathrm{cm}$.

Les charges qui sollicitent l'acrotère sont :

- ✓ Charges permanentes : Son poids propres sous forme d'efforts normaux verticaux.
- ✓ Charges d'exploitation : Une charge d'exploitation horizontale égale à **1KN/ml** due à la main courante.
- ✓ Charges climatiques (gradient thermique).
- ✓ Charges accidentelles: Les seules charges accidentelles à prendre en compte sont celles dues aux séismes.

L'acrotère sera étudié en **flexion composée**, et puisqu'elle est exposée aux intempéries, donc la fissuration est préjudiciable dans ce cas, le calcul se fait à l'ELU, il doit être vérifié à l'ELS.

Il a pour rôle de :

- ✓ Protection d'étanchéité.
- ✓ Servant comme garde-corps.
- ✓ Entretient des façades.

b. Dimensions et modélisation de l'acrotère

Les dimensions de l'acrotère sont données dans la figure (III.1) :

Figure III.1 Acrotère.

c. Détermination des sollicitations

***** Charge permanente :

On considère le poids d'une bande d'acrotère de longueur unitaire appliqué en son centre de gravité : soit (N_G).

+ Béton

 $\textit{Sacrot\`ere} = (0.02 \times 0.10) \ / \ (2) \ + (0.08 \times 0.10) \ + (0.10 \times 0.60) \ = 0.069 \ m^2.$

✓
$$Gb\acute{e}ton = \gamma_{b\acute{e}ton} \times Sacrot\`{e}re \times 1ml = (2500 \times 0.069) \times 1ml.$$

 $Gb\acute{e}ton = 2500 \times 0.069 = 172.5 \text{ Kg/ml}.$

+ Enduit

- ✓ G_{Enduit} (e_p= 2 cm) = 55 Kg/ml.
 - ✓ $G_{total} = 172.5 + 55 = 227.75 \text{ Kg/ml}.$

A Charge d'exploitation :

- ✓ Une charge appliquée une main horizontalement à l'extrémité de la console qui est prise égale à 100 Kg/ml; Cette charge générant un moment d'encastrement (MQ).
- ✓ Le Moment fléchissant max dû à la surcharge \mathbf{Q} : $\mathbf{M}_{\mathbf{Q}} = \mathbf{Q} \times 1 \, \text{ml} \times h.$
- ✓ Effort tranchant : $T = Q \times 1ml$.

Chapitre III : Etude des éléments secondaires

Donc on a:

✓ G_{total} : crée un effort normal N_G = 227.75 Kg/ml.

Un moment $M_G = N_G x 0 = 0$.

 \checkmark **Q**: crée un effort normal $N_Q = 0$ KN.

Un moment maximum $M_Q = Q \times 1 ml \times h = 100 \times 1 ml \times 0.60 = 60$ Kg.m.

$$\checkmark$$
 T = Q × 1ml = 100 Kg.

d. Évaluation et combinaison des charges

* Calcul à l'ELU:

✓
$$N_u = 1.35 \times G_{total} = 1.35 \times 227.5 \text{ Kg/ml} = 307.46 \text{ Kg/ml}.$$

✓
$$\mathbf{M_u} = 1.5 \times \mathbf{M_Q} = 1.5 \times \mathbf{Q} \times \mathbf{h} = 1.5 \times 100 \times 0.60 = 90 \text{ Kg.m.}$$

✓
$$T_u=1.5 \times Q = 1.5 \times 100 \text{ Kg/ml} = 150 \text{ Kg/ml}.$$

❖ Calcul à l'ELS :

✓
$$N_{\text{ser}} = G_{total} = 227.5 \text{ Kg/ml}.$$

✓
$$M_{ser} = M_Q = Q \times h = 100 \times 0.6 = 60 \text{ Kg.m.}$$

$$\checkmark$$
 T_{ser}= Q = 100 Kg/ml.

e. Calcul de l'excentricité

 e_0 : L'excentricité de l'effort normal par rapport au centre de gravité de la section considérée.

t Etat limite ultime (ELU):

$$e_{0u} = \frac{M_u}{N_u} = \frac{90}{307.46} = 0.293 \text{ m}.$$

Etat limite de service (ELS) :

$$e_{0ser} = \frac{M_{ser}}{N_{sser}} = \frac{60}{227.5} = 0.263 \text{ m}.$$

f. Position de centre de pression

$$e_{0u} = 0.293 \, m > e_1 = \frac{h}{6} = \frac{0.1}{6} = 0.0166 \text{m}.$$

$$e_{0ser} = 0.263 \ m > \frac{h}{26} = \frac{0.1}{6} = 0.0166 \ m.$$

- ✓ e₀ >e₁ : l'effort normal est un effort de compression et le centre de pression se trouve à l'extérieur de la section, celle-ci est partiellement comprimée (P.C).
- ✓ L'acrotère est sollicité en flexion composée, mais le calcul se fera par assimilation à la flexion simple sous l'effet d'un moment fictif : $M_f = MuG + Nu \times (d \frac{h}{2})$.

g. Le ferraillage de l'acrotère

❖ Calcul à l'ELU:

Le travail consiste à étudier une section rectangulaire (b x h) cm² soumise à la flexion composée.

- ✓ \mathbf{h} : Epaisseur de la section; Soit : $\mathbf{h} = 10$ cm.
- ✓ **b** : largeur de la section ; Soit : b = 100cm.
- \checkmark c= c': enrobage; Soit : c = c'= 02 cm.
- ✓ $\mathbf{d} = \mathbf{h} \cdot \mathbf{c}$: hauteur utile; Soit: $\mathbf{d} = 10 \cdot 2 = 8$ cm.
- ✓ M_f: moment fictif calculé par rapport au C.D.G des armatures tendues.
- ✓ La fissuration est préjudiciable.

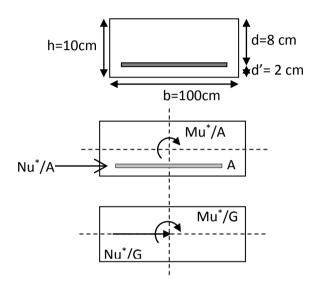


Figure III.2 Coupes transversales de l'acrotère.

***** Moment fictif:

On a:

✓
$$\mathbf{M}_{u}$$
= 90 Kg.m.

✓
$$N_u$$
= 307.46 Kg/ml.

$$Mf = Mu + Nu\left(d - \frac{h}{2}\right) = 90 + 307.46\left(0.08 - \frac{0.10}{2}\right) = 99.22kg.m.$$

On applique les formules de la flexion simple :

$$\checkmark$$
 $\mathbf{f_{bu}} = \frac{0.85 f_{cj}}{\theta \gamma_b} = \frac{0.85 \times 25}{1 \times 1.5} = 14.2 \text{ MPa.}$

✓
$$\mathbf{f_e} = 400 \text{ MPa}$$
.

Chapitre III : Etude des éléments secondaires

$$\mu_{bu} = \frac{M_f}{b_0 d^2 f_{bu}} = \frac{99.22 \times 10^4}{1000 \times (80)^2 \times 14.2} = 0.0109.$$

✓
$$\mu_l = 0.392 > \mu_{bu} = 0.0109 \Rightarrow A' = 0$$
 (les armatures comprimées ne sont pas nécessaire).

$$\checkmark$$
 $\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu}) = 0.0124.$

$$\checkmark$$
 β =1-0.4α =1-0.4×0.0124 = 0.995.

$$\checkmark$$
 $Z_b = d \times \beta = 0.8 \times 0.995 = 0.0796 \text{ m}.$

$$\checkmark$$
 $\sigma_s = \frac{fe}{\gamma s} = \frac{400}{1.15} = 348 \text{MPa.}$

Armature fictives:

$$A_f = \frac{M_f}{Z_b \times \sigma_s} = \frac{99.22 \times 10^4}{79.6 \times 348} = 35.82 mm^2 = 0.36 cm^2.$$

$$A_u = A_f - \frac{N_u}{\sigma_s} = 0.36 - \frac{307.46 \times 10}{348} = 27.18 mm = 0.27 cm^2$$
.

❖ Vérification à L'ELU :

+ Condition de non fragilité (Art. A.4.2.1 [BAEL91])

$$A_{\min} = 0.23 \times (b \times d) \frac{f_{t28}}{f_e}.$$

$$A_{\min} = 0.23 \times (100 \times 8) \times \frac{2.1}{400} = 0.966 cm^2.$$

Avec:

$$f_{t28} = 0.06 f_{c28} + 0.6 = 0.06 \times 25 + 0.6 = 2.1 \text{MPa}.$$

On trouve:

$$A_{min}$$
= 0.966 cm²> Au = 0.27 cm².

Donc:

$$A_s = A_{min} = 0.966 \text{ cm}^2.$$

A Calcul de l'espacement :

$$s_t \le \text{Min (3h ; 33) cm.}$$

$$s_t \le \min(3 \times 10; 33) \text{ cm}.$$

✓ On adopte un espacement S_t = 20 cm.

Armature de répartition :

$$Ar \ge \frac{As}{4} = \frac{2.01}{4} = 0.5025cm^2$$
.

Soit : $4HA6 = 1.13 \text{ cm}^2$.

Calcul de l'espacement [BAEL-91] :

 $S_t \le \min(4h, 45) \text{ cm} \Rightarrow S_t \le \min(40, 45\text{ cm}).$

 $S_t \leq 40$ cm.

✓ On adopte un espacement St = 20 cm.

* Vérification de l'effort tranchant :

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$

 \checkmark τ_u : contrainte de cisaillement maximale.

$$\tau_u = \frac{V_u}{b.\,d}$$

Avec:

$$V_u = 1.35V_G + 1.5V_Q = 1.35(0) + 1.5(100)$$

$$V_u = 1.5 \times 100 = 150 \text{ kg}.$$

$$\tau_u = \frac{150 \times 10}{10^3 \times 80} = 0.019 \ \text{MPa}.$$

✓ La console est un élément assimilé à une dalle, par conséquent la vérification vis-à-vis du cisaillement se fera avec :

$$\overline{\tau_u} = \frac{0.075}{\gamma_h} \times f_{c28} = \frac{0.075}{1.5} \times 25 = 1.25 \text{ MPa.}$$

$$\tau_u = 0.019 \text{MPa} \, < \overline{\tau_u} = 12.5 \, \text{MPa} \Rightarrow \text{Condition v\'erifi\'ee.}$$

✓ La condition étant vérifiée, on peut donc se dispenser des aciers transversaux.

❖ Longueur de scellement droit ([BAEL91] art 1.2.2) :

$$l_s = 40 \emptyset = 40 \times 0.6 = 24 \text{ cm}.$$

ls: Longueur de scellement.

$$l_s = 24$$
 cm.

❖ Vérification à l'Etat de service (ELS) :

On a:

✓
$$M_{\text{ser G}} = 60 \text{ kg.m.}$$

✓
$$N_{ser} = 227,5 \text{ kg/ml.}$$

$$\checkmark M_{\text{ser A}} = M_{\text{ser G}} + N_{\text{ser }} \left(d - \frac{h}{2}\right).$$

$$M_{ser A} = 60 + 227.5 (0.08 - \frac{0.1}{2}) = 66.825 \text{ kg.m.}$$

$$\sigma_{bc} = 0.6 \text{ f}_{c28} = 0.6 \times 25 = 15 \text{ MPa}.$$

Donc : $\eta = 1.6$.

$$\overline{\sigma_s} = \min \begin{cases} \frac{2}{3} fe \\ 110 \times \sqrt{n f_{t28}} \end{cases} = 202.16 \text{MPa}.$$

 \checkmark n=15.

$$y_1 = \frac{n.\overline{\sigma_{bc}}}{\left(n.\overline{\sigma_{bc}} + \overline{\sigma_s}\right)}.d = \frac{15 \times 15}{\left(15 \times 15 + 202.16\right)} \times 0.08 = 0.0421m = 4.21cm$$
.

Donc:

$$Z1 = d - \frac{y1}{3} = 8 - \frac{4.21}{3} = 6.60 \text{ cm}.$$

$$M_1 = \overline{\sigma_{bc}} \times b \times y_1 \times Z_1 \times 0,5 = 15 \times 10^5 \times 1 \times 0.0421 \times 0.066 \times \frac{1}{2} = 2083.95 \text{ kg.m.}$$

 $M_{ser A}$ = 66,825 kg.m < M_1 = 2083.95 kg.m \Rightarrow A'_{ser} = 0(La section est sans aciers comprimés).

$$A_{ser} = \frac{M_{serA}}{Z_1 \times \overline{\sigma_s}} = \frac{66.825 \times 10^4}{66 \times 202.16} = 50.08 mm^2 = 0.501 cm^2.$$

***** Conclusion

$$\checkmark$$
 A_s= Max (A_{ser}, A_{min}, A_u).

✓
$$A_s$$
= Max (0.501, 0.966, 0.27) cm².

 $A_s = 0.966 \text{ cm}^2$.

On adopte:

 $As = 4HA8/ml = 2.01 \text{ cm}^2$.

Vérification de l'acrotère au séisme :

L'action sismique sur les éléments non structuraux est données par l'article (6.3.2) des règles RPA/2003. Selon ces règles. Les forces horizontales de calcul sur les éléments non structuraux (tels que les acrotères et les cheminées par exemple) sont calculées suivant la formule suivante :

$$F_p=4\times A\times C_P\times W_P$$
.

Avec:

- ✓ A : Coefficient d'accélération de zone obtenu dans le tableau 4.1 du RPA 99/2003, dans notre cas Zone IIa, groupe 2, alors d'après les deux critères précédents on obtient :
 A= 0.15.
- ✓ C_P: Facture de force horizontale pour les éléments secondaires donné par le tableau 6.1 du RPA99/2003, pour le consol Cp = 0.8.
- ❖ W_P: Poids propre de l'acrotère W_p = 227.50 kg/ml.

$$\mathbf{F}_{\mathbf{p}} = 4 \times A \times C_{\mathbf{P}} \times W_{\mathbf{P}}$$

 $\mathbf{F}_{p} = 4 \times 0.15 \times 0.8 \times 227.50 = 109.20 \text{kg/ml}.$

 $F_p = 109.20 \text{kg/ml.} < 1.5 \text{ Q} = 150 \text{Kg/ml} \Rightarrow \text{Condition déjà vérifié.}$

Remarque : les forces horizontales (telles que le vent) peuvent agir sur les deux faces de l'acrotère.

Donc on adopte la même section pour la zone comprimée (soit As'= As)

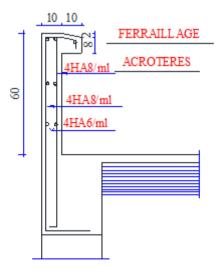


Figure III.3 Schéma de ferraillage de l'acrotère.

III.3 Etude d'escalier

a. Introduction

Les escaliers sont des éléments constitués d'une succession de gradins permettant le passage à pied entre les différents niveaux d'un immeuble et il constitue une issue des secours importants en cas d'incendie.

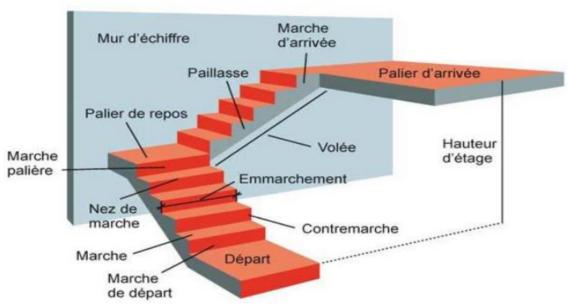
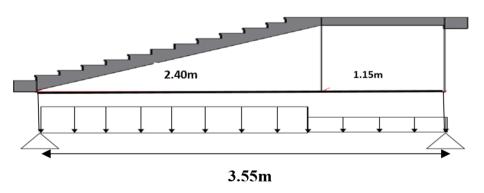



Figure III.4 Schéma d'escalier.

b. Charges et surcharges

Palier de repos :

- + Charge permanente : $G = 535 \text{ Kg/m}^2 = 5.35 \text{ KN/m}^2$.
- + Surcharge d'exploitation : $Q = 2.5 \text{ KN/m}^2 = 250 \text{ Kg/m}^2$.

❖ Paillasse:

- + Charge permanente : $G = 829.73 \text{ Kg/m} = G = 8.29 \text{ KN/m}^2$.
- + Surcharge d'exploitation : $Q = 250 \text{ Kg/m}^2 = 2.5 \text{ KN/m}^2$.

Chapitre III : Etude des éléments secondaires

Combinaison des charges :

Le calcul se fera pour une bande de 1 ml.

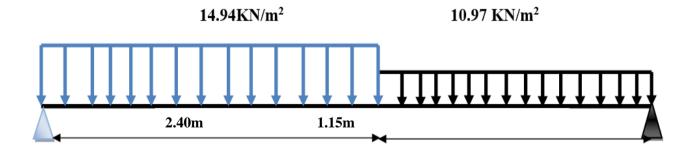
→ Etat limite ultime : 1,35G + 1,5Q.

+ Etat limite de service : G + Q.

Tableau III.1 Charges sur les éléments de l'escalier.

	G (KN/m ²)	Q (KN/m²)	ELU	ELS	
			1,35G + 1,5Q	G + Q	
Palier	5.35	2.5	10.97 KN/m ²	7.85 KN/m ²	
Paillasse	8.29	2.5	14.94 KN/m ²	10.79 KN/m ²	

c. Calcul de la charge équivalente


La notion de charge équivalente permet de faciliter uniquement les calculs. Elle se déduit de l'expression suivante :

$$\mathbf{q}_{e} = \frac{\sum_{1}^{n} q_{i} \times l_{i}}{\sum_{1}^{n} l_{i}}$$

Ce qui donne les 2 charges équivalentes suivantes :

→ Pour RDC et Pour étage courant :

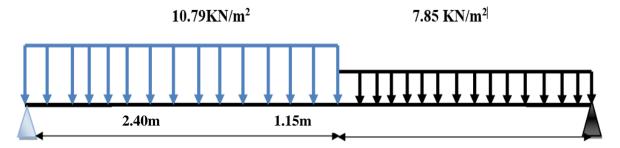

ttat limite ultime(ELU):

Figure III.5 Schéma des charges sur les éléments de l'escalier(**ELU**) niveau RDC et étage courant.

$$q_{e(u)} = \frac{14.94 \times 2.40 + 10.97 \times 1.15}{2.40 + 1.15} = 13.65 \text{ KN/m}^2.$$

***** Etat limite de service(ELS)

Figure III.6 Schéma des charges sur les éléments de l'escalier (**ELS**) niveau RDC et étage courant.

$$\mathbf{q}_{e(s)} = \frac{10.79 \times 2.40 + 7.85 \times 1.15}{2.40 + 1.15} = 9.83 \text{ KN/m}^2.$$

d. Calcul des moments max et efforts tranchants max

- → Moment (max) = $\frac{q_e}{8}$.
- $\Rightarrow \text{ Effort tranchant (max)} = \frac{q_e \times l^2}{2}.$

Le calcul se conduit pour la portée projetée. Le calcul se fait en considérons généralement un encastré partiel des escaliers au niveau des poutres. Pour cela on tiendra compte des réductions suivantes :

Moment en travée : M travée = 0,85 M isostatique.

Moment sur appui : M appui= - 0,5 M isostatique.

✓ Ce qui donne pour le cas traités les valeurs du tableau suivant :

Tableau III.2 Les moments et l'effort tranchant.

Etas	Moment isostatique	Moment travée	Moment appui	Effort tranchant	
	(KN.m)	(KN.m)	(KN.m)	(KN)	
ELU	21.50	17.20	10.75	24.22	
ELS	15.48	12.38	7.74	17.45	

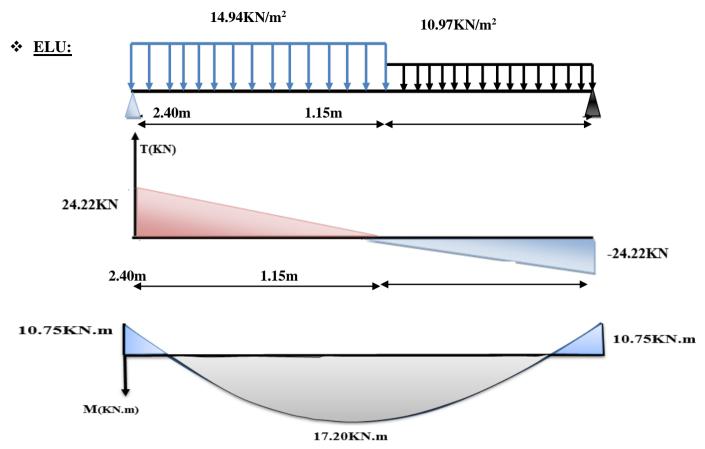


Figure III.7 Diagramme des sollicitations niveau étage courant à ELU.

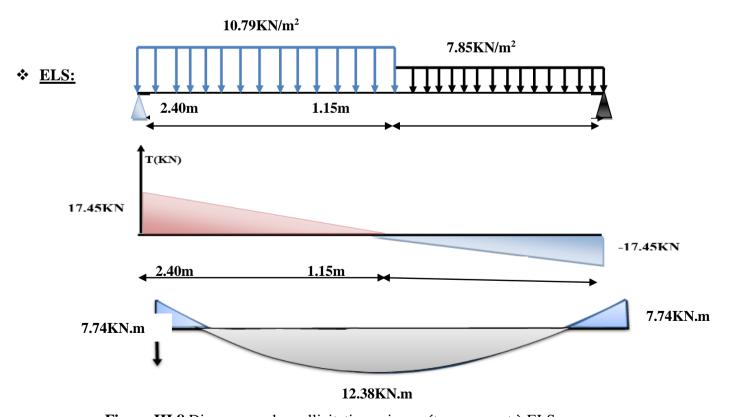


Figure III.8 Diagramme des sollicitations niveau étage courant à ELS.

Chapitre III : Etude des éléments secondaires

e. Calcul du ferraillage

On considère une bande de 1m, Le calcul de ferraillage se fait en flexion simple, la Fissuration est considérée comme peu préjudiciable, le calcul des armatures se fera uniquement à l'état limite ultime.

✓ **b**: largeur de la section;
$$b = 100$$
 cm.

$$\checkmark$$
 c= c': enrobage; c = c'= 2 cm.

$$\checkmark$$
 d = (h-c): hauteur utile; d =15-2=13 cm.

$$\checkmark$$
 $\sigma_s = 348 \text{ MPa.}$

✓
$$f_{\text{bu}} = 14,17 \text{ MPa.}$$

❖ Ferraillage longitudinal:

→ Ferraillage entravée : M _{travée} = 17.20 KN.m.

$$\mu = \frac{M_u}{b_0 d^2 f_{bu}} = \frac{17.20 \times 10^6}{100 \times 13^2 \times 14.17 \times 10^3} = 0.072 < \mu_l = 0.392 \Rightarrow A = 0.$$

Donc les armatures comprimées ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1.25 \times (1 - \sqrt{(1 - 2\mu)}) = 1.25 \times (1 - \sqrt{(1 - 2 \times 0.072)}) = 0.1.$

✓
$$\mathbf{B} = (1-0.4\alpha)=0.959$$
.

$$\checkmark$$
 Z = $d \times (1 - 0.4\alpha)$ = 13× 0.959=12.478 cm.

$$\checkmark$$
 $A_u = \frac{M_u}{Z\sigma_s} = \frac{17.20 \times 10^6}{124.78 \times 348} = 396.099 \text{ mm}^2 = 3.96099 \text{ cm}^2.$

+ vérifier la condition de non fragilité

La section minimale:

$$\checkmark$$
 A_{st} (min) $\ge 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$

$$\checkmark$$
 A st (min) $\ge 0.23 \times 100 \times 13 \times \frac{2.1}{400} = 1.57 \text{ cm}^2$

$$A=Max (A_{min}; Au) = 396.099 cm^2$$

On adopte: 6×HA12 soit 6.78 cm².

+ Armature de répartition

Pour travée

$$A_{re} = \frac{As}{4} = \frac{6.78}{4} = 1.695 \text{ cm}^2.$$

On adopte : 4×HA10 de section 3.14 cm².

+ Calcul de l'espacement des barres

 $S_t \le S_{t \text{ max}} = \min (3h; 33\text{cm}) = \min (45; 33\text{cm}) = 33.00 \text{ cm}.$

 $S_t \le 33$ cm.

On prend $S_t = 20$ cm.

+ Ferraillage en appui : M (appui) = 10.75 KN.m.

$$\mu = \frac{M_u}{b_0 d^2 f_{bu}} = \frac{10.75 \times 10^6}{100 \times 13^2 \times 14.17 \times 10^3} = 0.075 < \mu_l = 0.392 \Rightarrow A = 0.$$

Donc Les armatures comprimées ne sont pas nécessaires.

$$\checkmark \alpha = 1.25 \times (1 - \sqrt{(1 - 2\mu)})$$
 = 1.25 \times \left(1 - \sqrt{(1 - 2 \times 0.075)}\right) = 0.098.

✓ **B** =
$$(1-0.4\alpha) = 0.960$$
.

$$\checkmark$$
 Z = $d \times (1-0.4\alpha) = 13 \times 0.960 = 12.49$ cm.

$$\checkmark \mathbf{A_u} = \frac{M_u}{Z\sigma_s} = \frac{10.75 \times 10^6}{126.88 \times 348} = 243.46 \text{ mm}^2 = 2.44 \text{ cm}^2.$$

+ vérifier la condition de non fragilité

La section minimale:

$$\checkmark$$
 A st (min) $\ge 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$.

✓ A_{st} (min)
$$\geq 0.23 \times 100 \times 13 \times \frac{2.1}{400} = 1.57$$
 cm².

$$A=Max (A_{min}; Au) = 2.44 cm^2.$$

On adopte: 6×HA10soit 4.17 cm².

+ Armature de répartition

Pour appui:

$$A_{re} = \frac{As}{4} = \frac{4.17}{4} = 0.75 \text{ cm}^2.$$

On adopte : 4HA10 de section 3.140 cm².

+ Calcul de l'espacement des barres :

 $S_t \le S_{tmax} = min(3h; 33cm) = min(45; 33cm) = 33.00 cm \implies S_t \le 33cm.$

On prend $S_t = 20$ cm.

Ferraillage transversal :

- ✓ Effort tranchant maximal : Vu = 24.22 KN.
- ✓ La contrainte de cisaillement maximale est de :

$$\tau_{u} = \frac{V_{u}}{bd}$$

$$\tau_{u} = \frac{24.22 \times 1000}{1000 \times 130} = 0.186MPa.$$

✓ La fissuration étant peu nuisible, il faudra vérifier que :

$$\tau_u \leq \overline{\tau} = min~\{0,\, 2\frac{ft28}{\gamma b}; ~\text{5MPa}\}~;~~\text{Selon le B.A.E.L article A.5.1,2.}$$

$$\text{\checkmark} \quad \tau_u = 0.189 \text{ MPa} \leq min \ \{0.2 \times \frac{ft28}{\gamma b} \text{ ; 5MPa}\} = min \{3.33 MPa \text{ ; 5MPa}\} = 3.33 \text{ MPa}.$$

✓ τ_u = 0.189 MPa≤3,33 MPa.

Remarque:

La condition est vérifiée et les armatures transversales ne sont donc pas nécessaires. On placera des armatures de répartition.

Tableau III.3 Ferraillage d'escalier.

	Mu	μ	$\alpha_{\scriptscriptstyle u}$	τ	A	A	A	St
	(KN.m)			(cm)	(cm^2)	adoptée	répartitio	l'espacement
						(cm²)	n	
Travée	17.20	0.072	0.10	12.478	3.96cm ²	6×HA12 =	4×HA10 =	St=20 cm
						6.78cm ²	3.14 cm ²	
Appui	10.75	0.075	0.098	12.49	2.44cm ²	6×HA10 =	4HA10 =	St=20 cm
						4.17cm ²	3.140 cm ²	

❖ Vérification à ELS : le BAEL93 :

Vérification de la contrainte de compression d'après le B.A.E.L.91, pour les poutres à section rectangulaire soumises à la flexion simple dont les armatures sont acier de Fe = 400MPa.

✓ Si la condition suivante est vérifiée : $\alpha_u < \alpha$

$$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$$
$$\delta = \frac{M_u}{M_{ser}}$$

Tableau III.4 Vérification à E.L.S.

Section	$\mathcal{S} = \frac{M_u}{M_{ser}}$	a_u	$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$	Comparaison
Travée	Travée 1.39		0.445	0.10 < 0.445
Appui	1.39	0.098	0.445	0.098 < 0.445

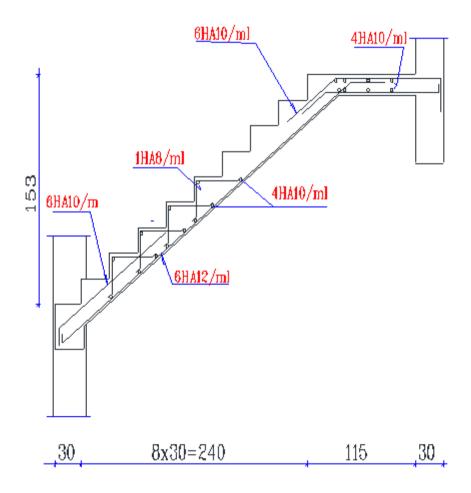


Figure III.9 Ferraillage de l'escalier.

f. Etude de la poutre palière

Le palier posé sur une poutre palier elle est soumise seulement à la flexion simple elle prévient des poids propre de la poutre palier ainsi que la réaction des escaliers, et la torsion elle provient de l'effort horizontal qui a été exercé par les volées sur la poutre Elle est prévue pour être un support d'escalier.

g. Pré dimensionnement de la poutre palière

Selon le **BAEL91** les dimensions de la poutre sont :

L: est prise entre nue d'appuis.

$$L_{\text{max}} - 40 = (380 - 40) = 340 \text{ cm}.$$

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \Rightarrow \frac{340}{15} \le h \le \frac{340}{10} \Rightarrow 22.66 \text{ cm} \le h \le 34 \text{ cm}.$$

On prend: h = 35cm.

→ La largeur de la poutre est souvent choisie de façon à pouvoir loger les aciers :

$$0.3. \text{ } b \leq 0.8.h$$

$$9cm \leq b \leq 24cm \Rightarrow \text{ On prend b} = 30 \text{ cm.}$$

❖ Vérification des conditions de l'RPA 99 / version 2003

$$\begin{cases} b \ge 20 \text{ cm} \Rightarrow 30 \text{ cm} \ge 20 \text{ cm}^2 \Rightarrow \textbf{Condition v\'erifi\'ee.} \\ h \ge 20 \text{ cm} \Rightarrow 35 \text{ cm} \ge 20 \text{ cm}^2 \Rightarrow \textbf{Condition v\'erifi\'ee.} \\ \frac{h}{b} < 4 \Rightarrow \frac{35}{30} = 1,16 < 4 \Rightarrow \textbf{Condition v\'erifi\'ee.} \end{cases}$$

Donc la section de la poutre palière est de $(\mathbf{b} \times \mathbf{h}) = (30 \times 35) \text{ cm}^2$.

h. Evaluation des charges

- ✓ Poids propre : $PP = 0.35 \times 0.30 \times 25 = 2.63 \text{ KN/ml}.$
- ✓ Charge palier : G = 5.75 KN/ml.
- ✓ Poids propre du mure RDC et étage courant : $(3.06/2+0.35) \times 4.14=7.78$ KN/ml.

Donc:

- ✓ Charge permanente : G = 15.76 KN/ml.
- ✓ Charge d'exploitation : Q = 2.5 KN/ml.

* Réaction de la poutre palier :

$$\{ELU : R_u = 24.60 \text{ KN.} \}$$

 $\{ELS : R_s = 17.69 \text{ KN.} \}$

i. Combinaison à considérer

ttat limite ultime(ELU):

$$Q_u = 1,35G + 1,5 R_u \Rightarrow Q_u = 1,35 \times 15.76 + 1,5 \times 24.54 = 47.60 KN.$$

 $Q_u = 47.60 \text{ KN}$

***** Etat limite de service(ELS) :

$$Q_s = G + Q \Rightarrow Q_s = 15.76 + 17.45 = 33.45 \text{ KN}.$$

 $Q_s = 33.21 \text{ KN}.$

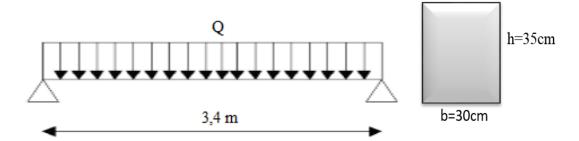


Figure III.10 Schéma statique de la poutre palière.

j. Calcul des moments max et efforts tranchants max

- ♦ Moment (max) = $\frac{q_{e \times l^2}}{8}$.
- ★ Effort tranchant (max)= $\frac{q_{e\times l}}{2}$.
- ✓ Moment en travée : M_{travée}= 0,85Misostatique.
- ✓ Moment sur appui : M_{appui} = -0,3Misostatique.

Ce qui donne pour le cas traités les valeurs du tableau suivant :

Tableau III.5 Les moments et l'effort tranchant.

Etas	Qu (KN)	Moment isostatique (KN.m)	Moment travée (KN.m)	**	Effort tranchant (KN)
ELU	47.60	68.78	58.46	20.63	80.92
ELS	33.21	47.99	40.79	14.39	56.45

Remarque :En résumé de ce qu'on avait fait précédemment on prend le cas le plus défavorable.

k. Calcul du ferraillage

Le calcul de ferraillage se fait en flexion simple, la fissuration est considérée comme peu Préjudiciable, le calcul des armatures se fera uniquement à l'état limite ultime.

- ✓ **b**: largeur de la section; b=30 cm.
- \checkmark c = c' : enrobage ; c=c'= 2 cm.
- \checkmark **d** = (**h**-**c**) : hauteur utile ; **d**= (35-2)=33 cm.
- ✓ h : Epaisseur de la section ; Soit : h=35 cm.
- ✓ $\sigma_s = 348 \text{MPa}.$
- ✓ f_{bu} = 14,17 MPa.

***** Ferraillage longitudinal:

→ Ferraillage entravée : M_{travée} = 58.46 KN.m.

$$\mu = \frac{M_u}{b_0 d^2 f_{hu}} = \frac{58.46 \times 10^6}{30 \times 33^2 \times 14.17 \times 10^3} = 0.126 < \mu_l = 0.392 \Rightarrow A = 0.$$

Donc les armatures comprimées ne sont pas nécessaires.

$$\checkmark \alpha = 1.25 \times (1 - \sqrt{(1 - 2\mu)}) = 1.25 \times (1 - \sqrt{(1 - 2 \times 0.126)}) = 0.169.$$

$$\checkmark$$
 B = $(1-0.4\alpha) = 0.932$.

$$\checkmark \tau = d \times (1 - 0.4\alpha) = 33 \times 0.932 = 30.76 \text{ cm}.$$

$$\checkmark$$
 A_u = $\frac{M_u}{Z\sigma_s} = \frac{58.46 \times 10^6}{307.3 \times 348} = 546.65 \text{mm}^2 = 5.47 \text{ cm}^2$.

+ vérifier la condition de non fragilité

La section minimale : A_{st} (min) $\geq 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$

$$A_{st}(min) \ge 0.23 \times 30 \times 33 \times \frac{2.1}{400} = 1.20 \text{ cm}^2.$$

$$A=Max (A_{min}; Au) = 5.4 7cm^2.$$

On adopte: 3×HA16soit 6.033cm².

→ Ferraillage en appui : M _(appui) =20.63 KN.m.

$$\mu = \frac{M_u}{b_0 d^2 f_{bu}} = \frac{20.63 \times 10^6}{30 \times 33^2 \times 14.17 \times 10^3} = 0.045 < \mu_l = 0.392 \Rightarrow A = 0.$$

Donc les armatures comprimées ne sont pas nécessaires.

$$\alpha = 1.25 \times \left(1 - \sqrt{(1 - 2\mu)}\right) = 1.25 \times \left(1 - \sqrt{(1 - 2 \times 0.045)}\right) = 0.058.$$

$$\checkmark$$
 B = (1-0.4 α)= 0.977.

$$\checkmark$$
 Z = $d \times (1-0.4\alpha)$ =33× 0.977=32.24 cm.

✓
$$A_u = \frac{M_u}{Z\sigma_s} = \frac{20.63 \times 10^6}{318.4 \times 348} = 186.19.32 \text{mm}^2 = 1.86 \text{ cm}^2.$$

+ vérifier la condition de non fragilité

La section minimale : $A_{st}(min) \ge 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$

$$A_{st}$$
 (min) $\ge 0.23 \times 30 \times 33 \times \frac{2.1}{400} = 1.20 \text{ cm}^2$.

$$A=Max (A_{min}; Au) = 1.86 cm^2.$$

On adopte: 3×HA10 soit 2.355 cm².

Tableau III.6 Ferraillage de la poutre.

	Mu	μ	$\alpha_{\scriptscriptstyle u}$	τ	A	A adoptée
	(KN.m)			(cm)	(cm ²)	(cm ₂)
Travée	59.38	0.126	0.169	30.76	5.55	$3 \times HA16 = 6.033 \text{ cm}^2$
Appui	30.95	0.045	0.058	32.24	1.86	$3 \times HA10 = 2.355 \text{ cm}^2$

l. Vérification

Condition du RPA99 version 2003 :

Le RPA99 exige que le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre soit 0,5% en toute section.

$$3HA16+3HA14 = 10,64cm^2 > A_{min} = 0,5\% \times b \times h = \frac{5}{100} \times 30 \times 35 = 5.25 \text{ cm}^2 \Rightarrow \text{Condition vérifiée.}$$

Vérification au cisaillement :

Effort tranchant maximal: Vu = 82.20 KN.

La contrainte de cisaille la contrainte de cisaillement maximale est de :

$$\tau_{u} = \frac{V_{u}}{bd}$$

$$\tau_{u} = \frac{80.92 \times 1000}{300 \times 330} = 0.817 MPa$$

→ La fissuration étant peu nuisible, il faudra vérifier que :

$$\tau_u \le \bar{\tau} = \min \{0, 2 \frac{\text{ft28}}{\gamma b}; \text{ Selon le B.A.E.L article A.5.1,2.}$$

$$\tau_u = 0.830 \text{ MPa} \le \min \{0.2f_{t28}/\gamma_b, 5MPa\} = \min \{3, 33MPa, 5MPa\} = 3.33 \text{ MPa}.$$

 $\tau_u = 0.830 MPa \le 3,33 MPa \Rightarrow$ Condition vérifiée.

Les armatures transversales sont des armatures droites, le diamètre des barres transversales est directement lié au diamètre des barres longitudinales selon l'expression.

m. Calcul des armatures transversales

Armatures de répartition :

Diamètre des armatures :

$$S_t \leq \min(0.9d; 40 \ cm) \ et \ aussi \ S_t \leq \frac{A_t f_e}{0.4b}$$

Calcul de At

$$\phi_t \leq \min \begin{cases} \frac{\phi_l}{\frac{h}{35}} = \begin{cases} 16 \text{ mm.} \\ 10 \text{ mm.} \Rightarrow \phi t \leq 10 \text{ mm} \Rightarrow \text{On choisit : } \phi t = 8 \text{ mm.} \\ 30 \text{ mm.} \end{cases}$$

La section d'armatures transversales est $A_t = 2.01 \text{ cm}^2$.

Service Espacement des barres :

Partir des conditions de CBA 93 les armatures transversales doit respecter les conditions suivantes :

- ✓ $S_t \le Min (0.9d; 40 cm)$.
- ✓ $S_t \le Min (29.7cm ; 40 cm) \Rightarrow d'où S_t \le 29.7 cm.$

A partir d'art 7.5.2.2 de RPA 99/version 2003, les armatures doivent respectées les conditions suivantes :

- ✓ En zone nodale : $S_t \le \min(\frac{ht}{4}; 12\phi_l)$ en prend : $S_t = 8$ cm.
- ✓ En zone courante : $S_t < \frac{ht}{2} = 17.5$ cm en prend : $S_t = 15$ cm.

On adopte les espacements suivants :

- ✓ Zone nodale : $S_t = 8$ cm.
- ✓ Zone courante : $S_t = 15$ cm.

❖ Vérification à ELS : le BAEL93 :

Vérification de la contrainte de compression d'après le B.A.E.L.91, pour les poutres à section rectangulaire soumises à la flexion simple dont les armatures sont acier de Fe = 400 MPa. si la condition suivante est vérifiée : $\alpha_u < \alpha$

$$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$$

$$\delta = \frac{M_u}{M_{ser}}$$

Tableau III.7 Vérification à E.L.S.

Section	$\delta = \frac{M_u}{M_{ser}}$	au	$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$	Comparaison
Travée	1.43	0.169	0.465	0.169< 0.465
Appui	1.43	0.058	0.465	0.058< 0.465

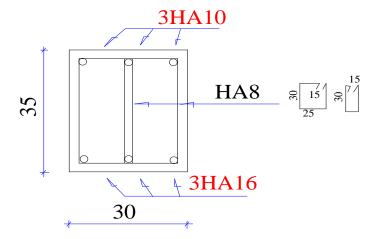
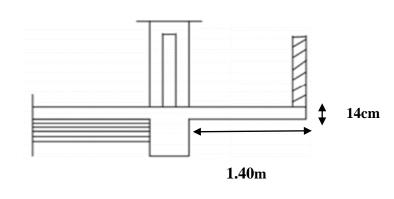


Figure III.11 Schéma de ferraillage de la poutre palière.

III.4 Etude des balcons

a. Introduction

Le balcon est considéré comme une console en béton armé encastrée à son extrémité. Par ailleurs il est également soumis à des conditions d'environnement qui conduisent à des dispositions constructives spéciales.


Ils seront ainsi sont soumis aux charges suivantes :

- → Poids propre de la dalle.
- → Poids du revêtement (mortier de pose + revêtement).
- + Charge concentrée à l'extrémité libre, représentant le garde-corps.
- → Charge d'exploitation $Q = 350 \text{ kg/m}^2$.

Les balcons seront calculés comme des consoles horizontales encastrés aux niveaux des poutres.

b. Dimension de dalle pleine

- ✓ Largeur: 1.40 m.
- ✓ Longueur : 2.59 m.
- ✓ Epaisseur : 14 cm.
- ✓ Béton : fc28= 25 MPa.
- ✓ Acier : FeE400.
- ✓ Fissuration préjudiciable.
- ✓ Enrobage des aciers c = 2 cm.

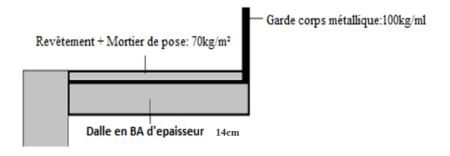


Figure III.12 Schéma de balcon.

c. Evaluation des charges sur le balcon

- 1) Epaisseur de la dalle e = 14 cm.
 - 2) Poids propre de la dalle en béton : $0.14x2500 = 350 \text{ kg/m}^2$.
 - 3) Revêtement en carrelage + Mortier de pose : 70 kg/m².
 - 4) Garde-corps métallique : 100 kg/ml.
 - 5) Surcharge d'exploitation : 350 kg/m².

d. Calcul des moments

✓ Le calcul du moment isostatique est donné par la formule suivante :

$$Moment = \frac{charge \ r\'epartie \times port\'ee^2}{2} + Charge \ concentr\'ee \ Port\'ee.$$

Effort tranchant = Charge répartie × portée + Charge concentrée.

✓ La portée ainsi que les charges supportées par nos balcons sont représentées à travers la figure suivante.

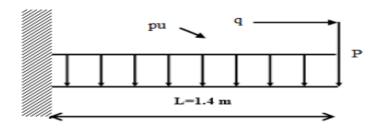


Figure III.13 Schéma statique du balcon.

& ELU:

$$M_u = (1,35G \times \frac{l^2}{2} + 1,35 \times G_1 \times L + 1,5Q \times \frac{l^2}{2}) = (1,35 \times 420 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 350 \times \frac{1.4^2}{2}) + (1,35 \times 100 \times 1.4) + (1,5 \times 100 \times 100 \times 1.4) + (1,5 \times 100 \times 100 \times 1.4) + (1,5 \times 100 \times$$

 $M_u = 1259.16 \text{ Kg}.$

& ELS:

$$\begin{split} M_u &= (G \times \frac{l^2}{2} + G_1 \times L + Q \times \frac{l^2}{2}) = (420 \times \frac{1.4^2}{2}) + (100 \times 1.4) + (350 \times \frac{1.4^2}{2}) = 894.6 \text{ Kg.m.} \\ Vu &= ((1,35G \times L + 1,35 \times G_1) + 1,5Q \times L) = ((1,35 \times 420 \times 1.4 + 1,35 \times 100) + 1,5 \times 350 \times 1.4) = 1663.80 \text{kg.} \end{split}$$

e. Calcul du ferraillage des balcons

Calcul du ferraillage longitudinal :

Le balcon étant exposé aux différentes intempéries (la température, l'eau, l'humidité, la neige etc.....) la fissuration est donc préjudiciable. Le balcon est un élément travaillant en flexion simple. Le calcul effectuera donc à l'ELU et l'ELS. Considérons une bande de 1m de largeur.

→ Ferraillage à l'état limite ultime : Mu = 1259.16 Kg.m.

$$\mu_u = \frac{M_u}{b \times f_{bc} \times d^2} = \frac{1259.16 \times 10^4}{1000 \times 14,17 \times (120)^2} = 0,062 < \mu_l = 0,392.$$

Les armatures comprimées ne sont donc pas nécessaires (A'=0).

$$\checkmark \quad \alpha = 1.25 \times (1 - \sqrt{1 - 2 \times 0.062}) = 0.080.$$

$$\checkmark$$
 $\beta = (1 - 0.4 \times 0.080) = 0.968.$

$$\checkmark$$
 A_u = $\frac{M_{ux}}{d \times \beta \times \frac{f_e}{\gamma_s}} = \frac{1259.16 \times 10^4}{120 \times 0.968 \times 348} = 311.490 \text{ mm}^2 = 3.11 \text{ cm}^2$

$$\checkmark$$
 A₁₁ = 3.11 cm².

→ Ferraillage à l'état limite de service : Ms = 894.6 Kg.m.

La fissuration est considérée comme préjudiciable. $\bar{\sigma}_s$ =Min $\left\{\frac{2f_e}{3}$; $110\sqrt{nf_{t28}}\right\}$ = 202 MPa.

\diamond Détermination de α :

$$\checkmark \quad \mu_u = \frac{30 \times M_s}{b \times d^2 \times \sigma_s} = \frac{30 \times 894.6 \times 10^4}{1000 \times 120^2 \times 202} = 0.092.$$

$$\checkmark \quad \alpha = 1.25 \times (1 - \sqrt{1 - 2 \times 0.092}) = 0.121.$$

Pour μ = 0,092, on détermine à partir d'un abaque la valeur de α = 0.121.

✓ Donc:

$$As = \frac{b \times d \times \alpha^2}{30(1-\alpha)} = \frac{1000 \times 120 \times 0.121^2}{30(1-0.121)} = 66.62 \text{ mm}^2 = 0.67 \text{ cm}^2.$$

 $As = 0.67 cm^2$.

+ Condition de non fragilité

La section minimale : $A_{st min} = 0.23 \times \frac{b \times d \times f_{t28}}{f_e} = 0.23 \times 100 \times 12 \times \frac{2.1}{400} = 1.449 \text{ cm}^2$.

 $A_{\text{stmin}} = 1.449 \text{ cm}^2$.

 $A_{principal} = Max (Au, Aser, Amin) = Max (3.11, 0.671.449) = 3.11cm^2$.

Choix: A principale $= 4HA12/ml = 4.52 \text{ cm}^2/ml$.

+ Calcul de l'espacement

$$St = min (1.5d ; 40cm) = min (18cm ; 40cm) = 18cm.$$

En prend un espacement $S_t = 15$ cm.

***** Ferraillage transversal:

La fissuration étant considérée comme préjudiciable τ_u doit être au plus égale à la plus petite des 2 valeurs suivantes :

$$\overline{\tau_u} = \text{Min } (0.15 \times \frac{f \text{c28}}{\gamma_B}; 4\text{MPa}) = 2.50 \text{ MPa (fissuration préjudiciable)}.$$

***** Contrainte tangente maximale :

$$\tau_u = \frac{V_U}{h \times d} = \frac{16638}{1000 \times 120} = 0.138 \text{MPa} < 2,50 \text{ MPa}.$$

La condition est vérifiée et les armatures transversales ne sont donc pas nécessaires. On placera des armatures de répartition.

Armatures de répartition

Les armatures de répartition sont déduites par la formule suivante :

$$A_r = \frac{A_{St}}{4} = \frac{4.52}{4} = 1.13 \text{ cm}^2.$$

Donc on adopte : 7HA8 de section 3,52 cm²/ml.

- **→** Conditions à respecter
- ✓ **Diamètre minimal :** La fissuration étant préjudiciable, on doit avoir un diamètre minimal supérieur à 6mm ⇒ condition vérifiée. Puisque le diamètre choisi est de 8mm.
- ✓ **Espacement minimal**: En présence de charges concentrées, l'espacement des barres longitudinales dans le sens porteur doit respecter la condition suivante : $S_t \le Min \{2h, 25cm\} = 25 cm \Rightarrow Condition vérifiée.$

Schéma de ferraillage du balcon :

Les armatures principales seront bien ancrées dans les poutres, et les armatures de répartition seront placées en haut.

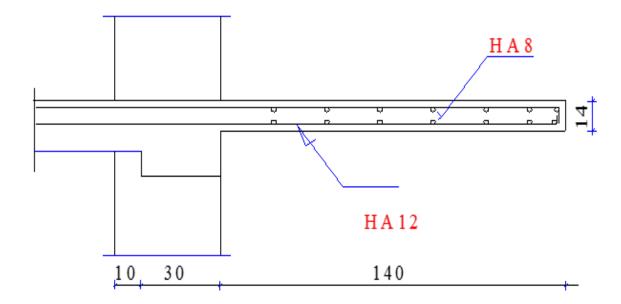


Figure III.14 Schéma de ferraillage du balcon.

III.5 Calcul des planchers

a. Introduction

Les planchers sont des aires, généralement horizontales (dans les usines, il arrive dans certains cas de donner une légère pente, afin de permettre l'écoulement des eaux de lavage) qui assurent la séparation des étages entre eux, exécutés en bois, en acier, en béton armé, ou en corps creux.

Les planchers peuvent être coulés sur place ou préfabriqués selon les cas. Dans le présent projet, nous distinguons deux types : des planchers en dalle pleine et des planchers en corps creux ; ils seront tous deux coulés sur place.

b. Les planchers en corps creux se compose de

- ✓ Un hourdis portant sur les poutrelles et éventuellement sur poutres principales.
- ✓ Des poutrelles transmettant aux poutres principales les efforts provenant l'ourdis.
- ✓ Des poutres principales recevant les poutrelles et reposant sur des murs en maçonnerie ou les piliers.

c. Rôle de planchers

- ✓ Supporter leur poids propre et les surcharges d'exploitation qui peuvent être à caractère dynamique.
- ✓ Isoler thermiquement et acoustiquement les différents étages, cette fonction peut être assurée de manière complémentaire par un faux plafond ou un revêtement du sol particulier.
- ✓ Participer à la résistance des murs et des ossatures aux efforts horizontaux.
- ✓ Assurer l'étanchéité dans les salles d'eau.
- ✓ Protection contre le feu.
- ✓ Transmission des forces horizontales du vent et de séisme au système de contreventement.

d. Réalisation des planchers

Le plancher terrasse et les planchers des étages courants seront exécutés en corps creux ; Ce type de plancher est constitué de :

- ✓ Nervures appelées poutrelles de section en T, elles assurent la fonction de portance ; la distance entre axes des poutrelles est de 65 cm.
- ✓ Remplissage en corps creux : sont utilisés comme coffrage perdu et comme isolant phonique, sa hauteur est de 16 cm.

Une dalle de compression en béton de 4 cm d'épaisseur, elle est armée d'un quadrillage d'armatures ayant pour but :

- ✓ Limiter les risques de fissuration dus au retrait.
- ✓ Résister aux efforts dus aux charges appliquées sur des surfaces réduites la terrasse est inaccessible.

III.6 Les méthodes de calcul utilisées pour le calcul des nervures

Après une analyse des liaisons avec la structure, et une modélisation de la poutre (section, portée), et des actions appliquées ; les poutrelles (nervures) d'un plancher peuvent être calculées en utilisant les méthodes classiques de la résistance des matériaux, ou bien en utilisant la méthode approchée dite forfaitaire ou méthode de Caquot.

On utilisera la méthode forfaitaire à cause de sa simplicité.

a. Domaine de validité de la méthode forfaitaire

- ✓ Selon [BAEL 91] chapitre [12; 13].
- ✓ Selon Euro code article [2-5; 3-4].

Cette méthode est applicable lorsque :

- ✓ La surcharge d'exploitation est modérée c'est-à-dire inférieure à deux fois la charge permanente et $5kN/m^2$; $Q \le Max \{2G, 5KN/m^2\}$
- ✓ Les moments d'inertie des sections transversales ou leur coffrage sont les même (b, h, b0, h0, pour les travées).
- ✓ La fissuration est considérée comme non préjudiciable à la tenue du béton armé ainsi qu'à celle de ses revêtements.
- ✓ Les portées successives sont dans rapport compris entre 0,8 et 1.25.

Dans le cas où une au moins ces condition n'est pas satisfaite, on applique la méthode de Caquot.

Le calcul sera pour deux éléments :

- ✓ Poutrelle.
- ✓ La table de compression.

b. Les différents types de poutrelles

Tableau III.8Schéma statique des différents types de poutrelles.

Types	Schéma statique									
		Poutrelles du niveau Plancher étage courant et RDC								
Type N1	Δ									
Type N ₂		Δ	L ₁ = var	\triangle						

		Poutrelles du r	niveau Plancher terras	sse (inaccessible)	
Type N ₁	Δ	L ₁ = 4,40m	Δ	$L_2 = 3,40 \text{ m}$	
Type N ₂			L ₁ = var		

c. Vérification des conditions d'application de la méthode forfaitaire

Surcharge d'exploitation au niveau de la terrasse (terrasse inaccessible) $Q = 1 \text{ KN/m}^2$.

1)
$$Q = 1 \text{ KN/m}^2 < G = 6.33 \text{ KN/m}^2 \text{ et } Q = 1 \text{ KN/m}^2 < 5.00 \text{ KN/m}^2$$
.

$$Q = 1 \text{ KN/m}^2 < \text{max } (2G, 5) =>$$
Condition vérifiée.

- 2) La section est constante dans toutes les travées (les moments d'inertie sont les mêmes dans les différentes travées) => Condition vérifiée.
- 3) Les fissurations sont considérées comme peu préjudiciable=> Condition vérifiée.
- 4) Les rapports des portées successives doivent être compris entre 0.8 et 1.25.

$$0.8 \le \frac{lx-1}{lx} \le 1.25$$

Tableau III.9 Choix des méthodes de calculs pour les différents types de poutrelles.

Type de poutrelle	Condition d'application de la méthode forfaitaire	Cause	Méthode adoptée
Type 1 N ₁	Non vérifiée	$0.8 \le \frac{4.4}{3.4} = 1.29 \le 1.25$ Condition non vérifiée	Méthode de Caquot
Type N ₂	/	Poutrelle isostatique	Poutrelle isostatique Méthode RDM

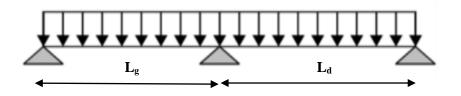
III.7 Méthode de Caquot

Cette méthode applique initialement pour les poutrelles non solidaire des poteaux, a été étendue par la suite au calcul des poutres solidaire des poteaux.

Elle est basée sur la théorie générale des poutres continue et poutres à moment d'inertie dans les différentes travées non solidaires des poteaux.

a. Moments aux appuis

Les moments aux appuis sont donnés par l'expression suivante :


$$M_a = \frac{q_g x l_g'^3 + q_d x l_d'^3}{8.5 x (l_g' + l_d')}$$

Avec:

 $\checkmark q_q, q_d$: Étant le chargement à gauche et à droite de l'appui.

 \checkmark L'_{g} , L'_{d} : Étant les longueurs fictives des travées entourant l'appui considéré.

 \checkmark L'= $\begin{cases} 0.8L : Travée intermédiaire. \\ L : Travée de rive. \end{cases}$

b. Moment en travée

$$M_{(x)} = M_{0(x)} + M_g x (1 - \frac{x}{L}) + M_d x \frac{x}{L}$$

Avece:

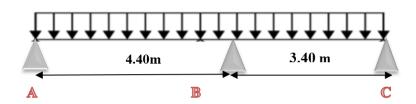
$$\checkmark M_{0(x)} = (\frac{qL}{2}x - \frac{qx^2}{2}) = \frac{qx}{2}(L-x).$$

$$\checkmark M_{(x)} = \frac{qx}{2}(L-x) + M_g x \left(1 - \frac{x}{L}\right) + M_d x \frac{x}{L}$$

Le moment est maximum($M_{(x)} = M_{max}$) lorsque :

$$T(x) = \frac{dM_{(x)}}{x} = 0 \Rightarrow T(x) = \left(\frac{qL}{2} - qx\right) + \frac{M_d - M_g}{L} = 0 \Rightarrow x = \frac{\frac{qL}{2} - \frac{M_g}{L}}{q} + \frac{M_d}{L}$$

***** Charges et combinaisons :


Tableau III.10 Les charges et surcharges revenants aux poutrelles.

				Combinaison des	s charges
Niveaux	G	Q	b [m]	ELU [KN/ml]	ELS [KN/ml]
	[KN/m ²]	[KN/m ²]		$q_u = b \times (1,35G+1,5Q)$	$q_s = \mathbf{b} \times (\mathbf{G} + \mathbf{Q})$
Terrasse inaccessible	6.33	1.00	0.65	6.53	4.76
Etage courant	4.95	1.50	0.65	5.81	4.19
d'habitation					

- \checkmark \mathbf{q}_s : C'est la charge reprise par une poutrelle à l'état limite de service.
- ✓ q_u: C'est la charge reprise par une poutrelle à l'état limite ultime.
- ✓ $\mathbf{B} = 0,65$ m étant de largeur de la table de compression efficace.

III.8 Application de la méthode Caquot pour étage courant et RDC

❖ Poutrelle type 1 : poutrelle sur trois appuis a deux travées pour étage courant et RDC.

Au niveau des étages courants seules interviennent les charges permanentes "G" et la surcharge d'exploitation "Q". Par ailleurs la fissuration étant peu nuisible, le calcul des armatures à l'état limite de service est inutile.

a. Calcul des longueurs fictives

Les deux travées sont de rive donc :

- ✓ $L'_{AB} = L_{AB} = 4.4 \text{ m}.$
- \checkmark L'_{BC}=L_{BC}=3.4 m.

b. Calcul des moments

- **❖** Moments aux appuis :
 - ➤ Les appuis de rive
 - + Appui A:

$$MA = 0 = -0.15 M_0^{AB} \left\{ \begin{array}{l} ELU = -0.15 x 14.06 = -02.11 \text{KN. m.} \\ ELS = -0.15 x 10.14 = -01.52 \text{ KN. m.} \end{array} \right.$$

+ Appui C:

$$Mc = 0 = -0.15M_0^{BC} \left\{ \begin{array}{l} ELU = -0.15x14.06 = -02.11KN.m. \\ ELS = -0.15x10.14 = -01.52\ KN.m. \end{array} \right.$$

- > Appui intermédiaire
- + Appui B:

$$M_B = \frac{q_g x l_g'^3 + q_d x l_d'^3}{8.5 x (l_g' + l_d')} = \begin{cases} ELU: M_B = \frac{5.81 x 4.40^3 + 5.81 x 3.40^3}{8.5 x (4.40 + 3.40)} = -10.91 \text{ KN. m.} \\ ELS: M_B = \frac{4.19 x 4.40^3 + 4.19 x 3.40^3}{8.5 x (4.40 + 3.40)} = -07.86 \text{ KN. m.} \end{cases}$$

❖ Moment en travée :

$$Mt(x) = \frac{qx}{2}(L-x) + M_d \times \frac{x}{L}$$

+ travée AB

A l'ELU

$$\checkmark$$
 $x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{4.40}{2} + \frac{(-10.91) - 0}{5.81 \times 4.40} = 1.77 \text{ m}.$

✓
$$M_0(x) = \frac{qx}{2}(L-x) = \frac{5.81x1.77}{2}(4.40 - 1.77) = 13.52 \text{ KN.m.}$$

✓
$$Mt(x) = \frac{qx}{2}(L-x) + M_d x \frac{x}{L} = 13.52 + (-10.91)x \frac{1.77}{4.40} = 9.13 \text{ KN. m.}$$

A l'ELS

$$x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{4.40}{2} + \frac{(-07.86) - 0}{4.19 \times 4.40} = 1.77 \text{ m}.$$

$$M_0(x) = \frac{qx}{2}(L-x) = \frac{4.19x1.77}{2}(4.40 - 1.77) = 9.75 \text{ KN.m.}$$

$$Mt(x) = \frac{qx}{2}(L-x) + M_dx \frac{x}{L} = 9.75 + (-07.86)x \frac{1.77}{4.40} = 6.59 \text{ KN. m.}$$

+ travée BC

A l'ELU

$$\checkmark$$
 $x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{3.40}{2} + \frac{0 - (-10.91)}{5.81 \times 3.40} = 2.25 \text{ m}.$

$$\checkmark$$
 $M_0(x) = \frac{qx}{2}(L-x) = \frac{5.81x2.25}{2}(3.40 - 2.25) = 7.52KN.m.$

✓
$$Mt(x) = \frac{qx}{2}(L-x) + M_g x \left(1 - \frac{x}{L}\right) = 7.52 + (-10.91)x \left(1 - \frac{2.25}{3.40}\right) = 3.83 \text{ KN. m.}$$

A l'ELS

$$\checkmark$$
 $x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{3.40}{2} + \frac{0 - (-07.86)}{4.19x3.40} = 2.25 \text{ m}.$

✓
$$M_0(x) = \frac{qx}{2}(L-x) = \frac{4.19x2.25}{2}(3.40 - 2.25) = 5.42 \text{ KN.m.}$$

✓
$$Mt(x) = \frac{qx}{2}(L-x) + M_g x \left(1 - \frac{x}{L}\right) = 5.42 + (-07.86)x \left(1 - \frac{2.25}{3.40}\right) = 2.76 \text{ KN. m.}$$

c. Les efforts tranchants

Les efforts tranchant sont calculés par les deux expressions suivantes :

$$T_{(x)} = \frac{qL}{2} - qx + \frac{M_d - M_g}{L}$$

❖ A l'ELU:

+ Travée AB : $0 \le x \le 4.40$

$$\begin{split} T_{(x)} &= \frac{q_{ux}L_{AB}}{2} - q_{u}x + \frac{M_{B}-M_{A}}{L_{AB}} = T_{(x)} = \frac{5.81x4.40}{2} - 5.81X + \frac{-10.91-0}{4.40} = -5.81X + 10.30. \\ T_{(x)} &= \begin{cases} x = 0 = > T_{(0)} = 10.30 \text{ KN.} \\ x = 4.40 = > T_{(4.40)} = -15.26 \text{ KN.} \end{cases} \end{split}$$

+ Travée BC: $0 \le x \le 3.40$

$$T_{(x)} = \frac{q_u x L_{BC}}{2} - q_u x + \frac{M_c - M_B}{L_{BC}} = T_{(x)} = \frac{5.81 x 3.40}{2} - 5.81 X + \frac{0 - (-10.91)}{3.40} = -5.81 X + 6.67.$$

$$T_{(x)} = \begin{cases} x = 0 = > T_{(0)} = 06.67 \text{ KN.} \\ x = 3.40 = > T_{(3.4)} = -13.08 \text{ KN.} \end{cases}$$

❖ A l'ELS :

→ Travée AB : $0 \le x \le 4.40$

$$\begin{split} T_{(x)} &= \frac{q_s x L_{AB}}{2} - q_s X + \frac{M_B - M_A}{L_{AB}} = \frac{4.19 x 4.40}{2} - 4.19 X + \frac{(-07.86) - 0}{4.40} = -4.19 X + 7.43. \\ T_{(x)} &= \begin{cases} x = 0 = > T_{(0)} = 07.43 \text{ KN.} \\ x = 4.40 = > T_{(4.4)} = -11.01 \text{ KN.} \end{cases} \end{split}$$

+ Travée BC: $0 \le x \le 3.40$

$$\begin{split} T_{(x)} &= \frac{q_s x L_{BC}}{2} - q_s X + \frac{M_c - M_B}{L_{BC}} = \frac{4.19 x 3.40}{2} - 4.19 X + \frac{0 - (-07.86)}{3.40} = -4.19 X + 4.81. \\ T_{(x)} &= \begin{cases} x = 0 & => T_{(0)} = 04.81 \text{ KN.} \\ x = 3.40 => T_{(3.4)} = -9.44 \text{ KN.} \end{cases} \end{split}$$

Les résultats de calcul sont résumés dans le tableau suivant :

A l'ELU:

Tableau III.11 Les sollicitations à ELU, poutrelle type 1(Plancher étage courant).

	Moments aux			Moment en	Les efforts	tranchants
Travée	L(m)	appuis		travée		
		Mg (KN.m) Md (KN.m)		M _{tu} (KN.m)	T _g (KN)	T _d (KN)
A-B	4.40	0 -10.91		9.13	10.30	-15.26
В-С	3.40	-10.91	0	3.83	-13.08	06.67

A l'ELS:

Tableau III.12 Les sollicitations à ELS, poutrelle type 1(Plancher étage courant).

Travée	L(m)	Moments aux appuis Mg (KN.m) Md (KN.m)		Moment en travée	Les efforts	tranchants
				M _{tu} (KN.m)	T _g (KN)	T _d (KN)
A-B	4.40	0	0 -07.86		07.43	-11.01
В-С	3.40	-07.86	0	2.76	-9.44	04.81

❖ A l'ELU:

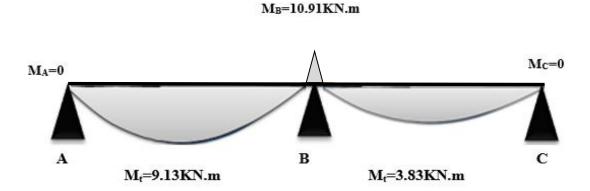


Figure III.15 Diagramme à ELU type 1 des moments plancher étages courants.

❖ A l'ELS :

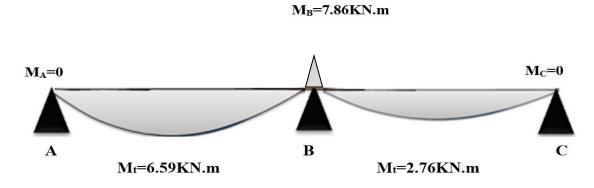


Figure III.16 Diagramme à ELS type 1 des moments plancher étages courants.

❖ Al'ELU:

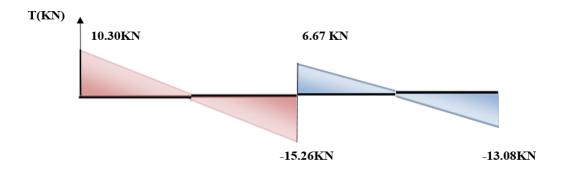


Figure III.17 Diagramme à ELU type 1des efforts tranchant plancher étages courants.

* A l'ELS:

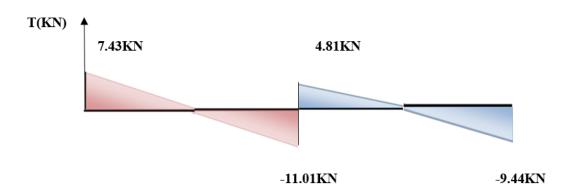
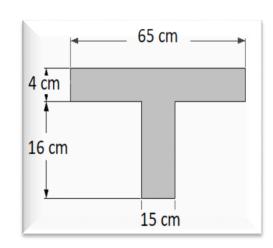


Figure III.18 Diagramme à ELS type 1 des efforts tranchant plancher étages courants.


III.9. Calcul de ferraillage des nervures

a. Calcul à ELU

- ✓ Moment en travée : $M_{tmax} = M_{tu} = 913 \text{ Kg.m.}$
- ✓ Moment en appui : M_{amax} =1091 Kg.m.
- ✓ Effort tranchant maximum : T_{umax}=1526 Kg.
- ✓ Pour le béton : f_{c28} =25MPa ; f_{bu} =14.2 MPa.
- ✓ Pour les aciers : FeE400.
- ✓ Fissuration non préjudiciable.
- ✓ Section en Té : b = 65 cm ; $b_1 = 24 \text{ cm}$; $b_0 = 15 \text{ cm}$;

 $h_t = 20 \ cm \ ; h_0 = 4 \ cm \ ; h = 16 \ cm.$

✓ Enrobage : C = 2 cm.

b. Calcul de la section d'armatures longitudinales

Plancher étage courant :

Le calcul se fera pour une section en Té soumise à la flexion simple.

✓ si $M_u \le M_{Tu} = bxh_0xf_{bu}x(d-\frac{h_0}{2}) \Rightarrow l$ 'axe neutre passe par la table de compression, donc la section sera calculée comme une section rectangulaire (b x h₀).

Si non l'axe neutre passe par la nervure, donc le calcul se fera pour une section en Té.

$$\mathbf{M}_{\mathrm{Tu}} = \mathbf{b} \mathbf{x} \mathbf{h}_{0} \mathbf{x} \mathbf{f}_{\mathrm{bu}} \mathbf{x} (\mathbf{d} - \frac{\mathbf{h}_{0}}{2}).$$

 $\checkmark~~M_{Tu}$: Le moment équilibré par la table de compression.

$$\label{eq:mtu} M_{Tu} = bxh_0xf_{bu}x\left(d-\frac{h_0}{2}\right) = 0.65x0.04x\ 14.2x\left(0.18-\frac{0.04}{2}\right) = 0.06\ \text{MN.}\ \text{m}.$$

✓
$$Mu = 0.000913$$
 MN. m $< M_{btu} = 0.06$ MN. m.

La section à étudier est une section rectangulaire (65×20) cm² soumise à la flexion simple.

❖ Ferraillage en travée :M_{tu} = 913 Kg.m.

$$\checkmark \mu_{\text{bu}} = \frac{M_{\text{tu}}}{\text{bxd}^2 \text{x} 14.2} = \frac{913 \text{x} 10}{65 \text{x} 18^2 \text{x} 14.2} = 0.03.$$

$$\mu_{bu}$$
= 0.03 <0.186 \Rightarrow Pivot A; ξ_{st} =10‰ \Rightarrow $f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348$ MPa.

✓
$$\mu_1$$
= 0.392 pour *feE*400.

 $\mu_l = 0.392 > \mu_{bu} = 0.030 \Rightarrow$ Les armatures comprimées ne sont pas nécessaires (A'_u=0).

$$\checkmark \ \alpha_u = \ 1.25 \big(1 - \sqrt{1 - 2\mu_{\rm bu}}\big) = 1.25 \big(1 - \sqrt{1 - 2x0.03}\big) = 0.038.$$

✓
$$\mathbf{Z_u}$$
= d (1-0.4 α_u)=18(1-0.4×0.038) =17.73 cm.

$$\checkmark \ A_{ut} = \frac{M_{tu}}{Z_u x \sigma_s} = \frac{M_{tu}}{Z_u x \frac{f_e}{\gamma_c}} = \frac{913 x 10}{17.73 x 348} = 1.48 \ cm^2.$$

→ Vérification de la condition de non fragilité :

$$A \ge 0.23bd\frac{f_{t28}}{f_e} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2.$$

Donc: A_u = max $(A_{ut}, Amin)$ = max $(1.48, 1.41) = 1.48 \text{ cm}^2$.

On adopte : $3 \text{ HA } 10 = 2.36 \text{ cm}^2$.

Ferraillage en appuis : $M_{au} = 1091$ Kg. m.

$$\checkmark \ \mu_{\text{bu}} = \frac{M_{au}}{\text{bxd}^2 \text{x} 14.2} = \frac{1091 \text{x} 10}{65 \text{x} 18^2 \text{x} 14.2} = 0.036$$

$$\mu_{\text{bu}} = 0.036 < 0.186 \Rightarrow \text{Pivot A}; \ \xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 \text{ MPa}.$$

✓ μ_1 = 0.392 pour *feE*400.

 μ_l =0.392> μ_{bu} = 0.036 \Rightarrow Les armatures comprimées ne sont pas nécessaires (A'_u = 0).

$$\alpha_u = 1.25(1 - \sqrt{1 - 2\mu_{\text{bu}}}) = 1.25(1 - \sqrt{1 - 2x0.036}) = 0.046.$$

$$\checkmark$$
 \mathbf{Z}_{u} = d (1-0.4 α_{u})=18(1-0.4 \times 0.046)=17.67 cm.

$$\checkmark$$
 $\mathbf{A_{ut}} = \frac{M_{tu}}{Z_u \times \sigma_s} = \frac{M_{tu}}{Z_u \times \frac{f_e}{\gamma_s}} = \frac{1091 \times 10}{17.67 \times 348} = 1.77 \text{cm}^2.$

+ Vérification de la condition de non fragilité

$$A_{min} \ge 0.23bd \frac{f_{t28}}{f_e} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2$$
.

Donc: A_u = max (A_{ut}, A_{min}) = max $(1.77, 1.41) = 1.77 \text{ cm}^2$.

On adopte : $2 \text{ HA } 12 = 2.26 \text{ cm}^2$.

Tableau III.13 Ferraillage des nervures.

	<i>M_u</i> (Kg. m)	μ _{bu}	α_u	Z _u (cm)	$A_{u \text{ calcul\'ee}}$ (cm^2)		A _{u max} (cm ²)	
travée	913	0.030	0.038	17.73	1.48	1.41	1.48	3 HA 10= 2.36
appuis	1091	0.036	0.046	17.67	1.77	1.41	1.77	2 HA 12= 2.26

c. Calcul de la section d'armatures transversales

- **Vérification de l'effort tranchant :**
 - + Vérification selon le CBA/93
- ✓ Effort tranchant ultime: T_{umax} = 1526 Kg.
- ✓ La contrainte de cisaillement ultime : $\tau_{\mathbf{u}} = \frac{T_u}{b_0 d} = \frac{1526 \times 10}{150 \times 180} = 0.56 \text{ MPa.}$

Lorsque la fissuration est jugée peu préjudiciable, la contrainte τ_u doit être au plus égale à la plus base des 2 valeurs :

$$\tau_{\rm u} = 0.56 \, MPa < \overline{\tau_{\rm u}} = \min (0.2 \, \frac{f_{\rm c28}}{\gamma_{\rm h}}; \, 5 \, \text{MPa}) = 3.33 \, \text{MPa}.$$

 $\tau_{\rm u} = 0.56 MPa < \overline{\tau_{\rm u}} = 3.33 \, MPa$ Y'a pas de risque de rupture par cisaillement.

Les armatures transversales sont des armatures droites $\alpha=90^\circ$; le diamètre des barres transversales est directement lié au diamètre des barres longitudinales selon l'expression :

Le diamètre Φ_t des armatures transversales est donner par :

$$\checkmark \Phi_t \le \min \{h_t / 35 ; b_0 / 10 ; \Phi_L\}.$$

 $\checkmark \Phi_L$: diamètre minimale des armatures longitudinale ($\Phi_L = 10$ mm).

$$\checkmark$$
 Φ_t≤ min { $\frac{200}{35}$; $\frac{150}{10}$; 10} = min {5,71 ; 15 ; 10}=5,71mm on adopte a un étrier Φ6.

Donc la section d'armatures transversales sera : $A_t = 2\Phi 6 = 0.57 \text{ cm}^2$.

d. Espacement St

L'espacement des cours successifs d'armatures transversales doit satisfaire les conditions Suivantes :

D'après le BAEL91 :

 $S_{t \text{ max}} \le min (0.9d; 40cm) = (16.2cm; 40cm) \implies S_t \le 16.2 cm.$

$$S_t \leq A_t \frac{0.8 f_e \; (sin\alpha + cos\alpha)}{b_0 \; (\tau_u - 0.3 f_{tj} k)} \begin{cases} & \text{Flexion simple.} \\ & \text{Fissuration peu nuisible.} \\ & \text{Pas de reprise de bétonnage.} \end{cases}$$

 \checkmark $\alpha = 90$ (Flexion simple, cadres droites).

$$\checkmark \ S_t \leq A_t \frac{0.8 f_e}{b_0 \ (\tau_u - 0.3 f_{t28})} = 0.57 \frac{0.8 x \ 400}{15 (0.56 - 0.3 x 2.1)} = 19.30 \ cm.$$

$$\checkmark$$
 S_t \leq At $\frac{0.8f_e}{0.4xb_0} = 0.57 \frac{0.8x 400}{0.4x15} = 53.33$ cm.

✓
$$S_t \le min\{16.2; 19.30; 53.33\} cm \Rightarrow St \le 16.2 cm$$
.

D'après RPA99 Version 2003 :

+ En zone nodale

$$S_t \le \min(\frac{ht}{4}; 12 \times \Phi_{\min}; 30 \text{ cm}) = \min(\frac{20}{4}; 12 \times 1; 30 \text{cm}) = 5 \text{ cm}.$$

+ En zone courante

$$S_t \le \frac{ht}{2} = \frac{20}{2} = 10 \text{ cm}.$$

Les premières armatures transversales doivent être disposées à 5cm au plus nu de l'appui (RPA99 Version 2003).

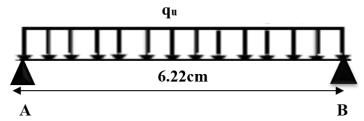
e. Vérification de l'effort tranchant au voisinage de l'appui

On doit versifier que:

$$Vu \le 0.267ab_0 f_{c28}$$
 (Art A.6.1.3 [1]).

Avec:

$$\checkmark$$
 a_{max} = 0.9×d = 0.9×18 = 16.2 cm.


f. Longueur de recouvrement

Acier en FeE400

$$L_r = 40\Phi_L = 40 \times 1.2 = 48 \text{ cm}.$$

III.10. Application de la méthode (RDM)

Poutrelle type 2 : sur deux appuis a une seul travée pour étage courant et RDC.

a. Moment isostatique

A ELU:

$$\mathsf{M}_0 = \frac{\mathsf{q_uxl}^2}{8} = \frac{5.81 \times 4.40^2}{8} = 14.06 \text{KN.m} \\ \begin{cases} M_{trav\acute{e}e} = 0.85 M_0 = 0.85 \times 14.06 = 11.95 \text{ KN. m.} \\ M_{appui} = 0.20 M_0 = 0.20 \times 28.10 = 2.81 \text{ KN. m.} \end{cases}$$

A ELS:

$$\mathsf{M}_0 = \frac{\mathsf{q}_{\rm ser}\mathsf{xl}^2}{8} = \frac{4.19\mathsf{x}4.40^2}{8} = 10.14\mathsf{KN.m} \begin{cases} M_{trav\acute{e}e} = 0.85M_0 = 0.85\mathsf{x}20.26 = 8.62 \; \mathsf{KN.\,m.} \\ M_{appui} = 0.20M_0 = 0.20\mathsf{x}20.26 = 2.03 \; \mathsf{KN.\,m.} \end{cases}$$

b. Les efforts tranchants

* A ELU:

$$V_u = \frac{q_u \times L}{2} = 5.81 \times \frac{4.40}{2} = 12.78 \text{ KN}.$$

A ELS:

Vser
$$\frac{q_{ser} \times L}{2} = 4.19 \times \frac{4.40}{2} = 9.22 \text{ KN}.$$

Tableau III.14 Les sollicitations à ELU et ELS, poutrelle type 2 (Plancher étage courant).

	Moments aux appuis	Moment en travée	Les efforts tranchants
	KN. m	KN. m	KN
A ELU	2.81	11.95	12.78
A ELS	2.03	8.62	9.22

+ A l'ELU

Figure III.19 Diagramme à ELU type 2 des moments plancher étages courants.

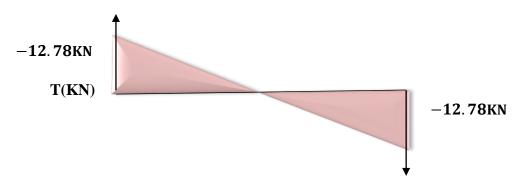


Figure III.20 Diagramme à ELU type 2des efforts tranchant plancher étages courants.

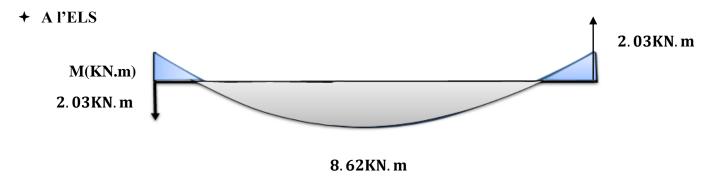


Figure III.21 Diagramme à ELS type 2 des moments plancher étages courants.

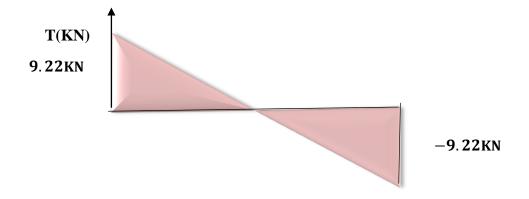


Figure III.22 Diagramme à ELS type 2des efforts tranchant plancher étages courants.

c. Le moment M_{Tu} de la table

On a ; f_e = 400 MPa ; f_{c28} = 25MPa ; f_{bu} = 14.17 MPa ; $\mathbf{b_0}$ =15 cm ; \mathbf{c} = 2 cm.

❖ En travée : M_{tu}= 18.5 KN.m.

$$M_{Tu} = bxh_0xf_{bu}x\left(d - \frac{h_0}{2}\right) = 0.65x0.04x \ 14.2x\left(0.18 - \frac{0.04}{2}\right) = 0.06 \ MN. \ m.$$

Mu = 0.01195 MN. m $< M_{btu} = 0.06$ MN. m \rightarrow l'axe neutre tombe dans la table de compression, donc on calcul la section comme une section rectangulaire (65 × 20).

d. Ferraillage des poutrelles

Ferraillage en travée : M_{tu} = 11.95 KN. m.

$$M_{tu} = 1195 \text{ Kg.m.}$$

$$\checkmark \mu_{\text{bu}} = \frac{M_{tu}}{\text{bxd}^2 \text{x} 14.2} = \frac{1195 \text{x} 10}{65 \text{x} 18^2 \text{x} 14.2} = 0.0399.$$

$$\mu_{\text{bu}} = 0.0399 < 0.186 \Rightarrow \text{Pivot A}; \ \xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 \text{ MPa}.$$

✓
$$\mu_1$$
= 0.392 pour *feE*400.

 $\mu_l = 0.392 > \mu_{bu} = 0.0399 \Rightarrow Les \ armatures \ comprimées \ ne \ sont \ pas \ nécessaires \ (A_u' = 0).$

$$\alpha_u = 1.25(1 - \sqrt{1 - 2\mu_{\text{bu}}}) = 1.25(1 - \sqrt{1 - 2\times0.0399}) = 0.051.$$

$$\checkmark$$
 \mathbf{Z}_{u} = d (1-0.4 α_{u})=18(1-0.4×0.051)=17.63 cm.

$$\checkmark$$
 $\mathbf{A_{ut}} = \frac{M_{tu}}{Z_u \times \sigma_s} = \frac{M_{tu}}{Z_u \times \frac{f_e}{\gamma_s}} = \frac{1195 \times 10}{17.63 \times 348} = 1.95 \text{ cm}^2.$

e. Vérification de la condition de non fragilité

$$A_{min} \ge 0.23bd\frac{f_{t28}}{f_e} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2.$$

Donc: $Au = max (A_{ut}, Amin) = max (1.95, 1.41) = 1.95 cm^2$.

On adopte : $3HA10 = 2.355 \text{ cm}^2$.

 Ferraillage en appuis : M_{au} =2.81 KN. m.

$$M_{au} = 281$$
Kg. m.

$$\checkmark \quad \mu_{\mathbf{bu}} = \frac{M_{au}}{\mathbf{bxd}^2 \mathbf{x} \mathbf{14.2}} = \frac{281 \mathbf{x} \mathbf{10}}{65 \mathbf{x} \mathbf{18}^2 \mathbf{x} \mathbf{14.2}} = 0.0094.$$

$$\mu_{\text{bu}} = 0.0094 < 0.186 \Rightarrow \text{Pivot A}; \ \xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 \text{ MPa}.$$

✓
$$\mu_{l}$$
= 0.392 pour *feE*400.

 $\mu_l = 0.392 > \mu_{bu} = 0.0094 \Rightarrow$ Les armatures comprimées ne sont pas nécessaires ($A_u' = 0$).

$$\checkmark \alpha_u = 1.25(1 - \sqrt{1 - 2\mu_{\text{bu}}}) = 1.25(1 - \sqrt{1 - 2\times0.0094}) = 0.012.$$

$$\checkmark$$
 Z_u = d (1-0.4 α_u) =18(1-0.4×0.012) =17.91 cm.

$$\checkmark$$
 $\mathbf{A_{ut}} = \frac{M_{tu}}{Z_u \mathbf{x} \sigma_s} = \frac{M_{tu}}{Z_u \mathbf{x} \frac{f_e}{V_c}} = \frac{281 \times 10}{17.91 \times 348} = 0.451 \text{ cm}^2.$

f. Vérification de la condition de non fragilité

$$A_{min} \ge 0.23bd\frac{f_{t28}}{f_e} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2.$$

Donc: $A_u = \max (A_{ut}, A_{min}) = \max (0.451, 1.41) = 1.41 \text{cm}^2$.

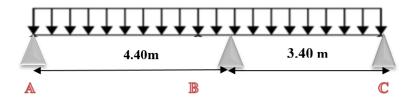

On adopte : $2HA10 = 1.57 \text{ cm}^2$.

Tableau III.15 Ferraillage de la poutrelle type 2.

	<i>M_u</i> (Kg. m)	μ _{bu}	α_u	Z_u (cm)	A _{u calculée} (cm ²)	$\begin{array}{c} A_{umin} \\ (cm^2) \end{array}$		
travée	11.95	0.0399	0.051	17.63	1.95	1.41	1.95	3HA10 = 2.355
appuis	2.81	0.0094	0.012	17.91	0.451	1.41	1.41	2HA10 = 1.57

III.11. Application de la méthode Caquot pour Plancher terrasse (inaccessible)

❖ Poutrelle type 1 : poutrelle sur trois appuis a deux travées pour terrasse (inaccessible).

a. Calcul des longueurs fictives

Les deux travées sont de rive donc :

✓
$$L'_{AB} = L_{AB} = 4.4 \text{ m}.$$

✓
$$L'_{BC} = L_{BC} = 3.4 \text{ m}.$$

b. Calcul des moments

! Les Moments isostatiques

ELU:
$$\begin{cases} M_0^{AB} = \frac{q_u x l^2}{8} = \frac{6.53 x 4.40^2}{8} = 15.80 \text{ KN. m.} \\ M_0^{BC} = \frac{q_u x l^2}{8} = \frac{6.53 x 3.40^2}{8} = 09.44 \text{ KN. m.} \end{cases}$$

ELS:
$$\begin{cases} M_0^{AB} = \frac{q_{ser}xl^2}{8} = \frac{4.76x4.40^2}{8} = 11.52 \text{ KN. m.} \\ M_0^{BC} = \frac{q_{ser}xl^2}{8} = \frac{4.76x3.40^2}{8} = 06.88 \text{ KN. m.} \end{cases}$$

❖ Moments aux appuis

Les appuis de rive

+ Appui A:

$$MA = 0 = -0.15M_0^{AB} = \begin{cases} ELU = -0.15x15.80 = -2.37 \text{ KN. m.} \\ ELS = -0.15x11.52 = -1.73\text{KN. m.} \end{cases}$$

+ Appui C:

$$\label{eq:mc} \text{Mc} = 0 = \text{-}0.15 \\ \text{M}_0^{\text{BC}} = \begin{cases} \text{ELU} = -0.15 \\ \text{x} 09.44 \\ \text{ELS} = -0.15 \\ \text{x} 06.88 \\ \text{=} -1.03 \\ \text{KN. m.} \end{cases}$$

> Appui intermédiaire :

+ Appui B:

$$M_B = \frac{q_g x l_g'^3 + q_d x l_d'^3}{8.5 x (l_g' + l_d')} = \begin{cases} ELU: M_B = \frac{6.53 x 4.40^3 + 6.53 x 3.40^3}{8.5 x (4.40 + 3.40)} = -12.26 \text{ KN. m.} \\ ELS: M_B = \frac{4.76 x 4.40^3 + 4.76 x 3.40^3}{8.5 x (4.40 + 3.40)} = -08.94 \text{ KN. m.} \end{cases}$$

❖ Moment en travée :

$$\mathbf{Mt}(\mathbf{x}) = \frac{\mathbf{q}\mathbf{x}}{2} (\mathbf{L} - \mathbf{x}) + \mathbf{M_d} \mathbf{x} \frac{\mathbf{x}}{L}$$

> travée AB

A l'ELU

$$\checkmark x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{4.40}{2} + \frac{(-12.26) - 0}{6.53 \times 4.40} = 1.77 \text{ m}.$$

✓
$$M_0(x) = \frac{qx}{2} (L-x) = \frac{6.53x1.77}{2} (4.40 - 1.77) = 15.20 \text{ KN.m.}$$

✓
$$Mt(x) = \frac{qx}{2} (L-x) + M_d x \frac{x}{L} = 15.20 + (-12.26) x \frac{1.77}{4.40} = 10.27 \text{KN. m.}$$

A l'ELS

$$\checkmark x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{4.40}{2} + \frac{(-08.94) - 0}{4.76 \times 4.40} = 1.77 \text{m}.$$

✓
$$M_0(x) = \frac{qx}{2} (L-x) = \frac{4.76x1.77}{2} (4.40 - 1.77) = 11.08 \text{ KN.m.}$$

✓ Mt(x) =
$$\frac{qx}{2}$$
 (L-x)+M_dx $\frac{x}{L}$ =11.08 + (-08.94)x $\frac{1.77}{4.40}$) = 7.48 KN. m.

> travée BC

A l'ELU

$$\checkmark x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{3.40}{2} + \frac{0 - (-12.26)}{6.53 \times 3.40} = 2.25 \text{m}.$$

✓
$$M_0(x) = \frac{qx}{2} (L-x) = \frac{6.53x2.25}{2} (3.40 - 2.25) = 8.45 \text{KN.m.}$$

✓ Mt(x) =
$$\frac{qx}{2}$$
 (L-x)+M_gx $\left(1 - \frac{x}{L}\right)$ =8.45 + (-12.26)x $\left(1 - \frac{2.25}{3.40}\right)$ = 4.30KN. m.

A l'ELS

$$\checkmark$$
 $x = \frac{L_i}{2} + \frac{M_d - M_g}{qL_i} = \frac{3.40}{2} + \frac{0 - (-08.94)}{4.76x3.40} = 2.25 \text{ m}.$

✓
$$M_0(x) = \frac{qx}{2} (L-x) = \frac{4.76x2.25}{2} (3.40 - 2.25) = 6.16 \text{ KN.m.}$$

✓ Mt(x) =
$$\frac{qx}{2}$$
 (L-x)+M_gx $\left(1 - \frac{x}{L}\right)$ =6.16 + (-08.94)x $\left(1 - \frac{2.25}{3.40}\right)$ = 3.14 KN. m.

c. Les efforts tranchants

Les efforts tranchant sont calculés par les deux expressions suivantes :

$$T_{(x)} = \frac{qL}{2} - qx + \frac{M_d - M_g}{L}$$

* A l'ELU

+ Travée AB : $0 \le x \le 4.40$

$$T_{(x)} = \frac{q_{ux}L_{AB}}{2} - q_{u}x + \frac{M_{B}-M_{A}}{L_{AB}} \Rightarrow T_{(x)} = \frac{6.53x4.40}{2} - 6.53X + \frac{-12.26-0}{4.40} = -6.53X + 11.58$$

$$T_{(x)} = \begin{cases} x = 0 = T_{(0)} = 11.58 \text{ KN.} \\ x = 4.40 = T_{(4.40)} = -17.15 \text{ KN.} \end{cases}$$

+ Travée BC: $0 \le x \le 3.40$

$$T_{(x)} = \frac{q_u x L_{BC}}{2} - q_u x + \frac{M_c - M_B}{L_{BC}} \Rightarrow T_{(x)} = \frac{6.53 x 3.40}{2} - 6.53 X + \frac{-12.26 - 0}{3.40} = -6.53 X + 7.4$$

$$T_{(x)} = \begin{cases} x = 0 = T_{(0)} = 07.49 \text{KN.} \\ x = 3.40 = T_{(3.4)} = -14.71 \text{KN.} \end{cases}$$

* A l'ELS

+ Travée AB : $0 \le x \le 4.4$

$$\begin{split} T_{(x)} &= \frac{q_s x L_{AB}}{2} - q_s X + \frac{M_B - M_A}{L_{AB}} \Rightarrow T_{(x)} = \frac{4.76 x 4.40}{2} - 4.76 X + \frac{(-08.94) - 0}{4.40} = -4.76 X + 8.44 \\ T_{(x)} &= \begin{cases} x = 0 = > T_{(0)} = 08.44 \text{ KN.} \\ x = 4.40 = > T_{(4.4)} = -12.50 \text{ KN} \end{cases} \end{split}$$

+ Travée BC: $0 \le x \le 3.40$

$$T_{(x)} = \frac{q_s x L_{BC}}{2} - q_s X + \frac{M_c - M_B}{L_{BC}} \Rightarrow T_{(x)} = \frac{4.76 x 3.40}{2} - 4.76 X + \frac{(-08.94) - 0}{3.40} = -4.76 X + 5.46$$

$$T_{(x)} = \begin{cases} x = 0 = T_{(0)} = 5.46 \text{ KN.} \\ x = 3.40 = T_{(3.4)} = -10.72 \text{ KN.} \end{cases}$$

Les résultats de calcul sont résumés dans le tableau suivant :

A l'ELU:

Tableau III.16 Les sollicitations à ELU, poutrelle type 1(Plancher terrasse inaccessible).

	Moments aux		Moment en	Les efforts t	ranchants	
Travée	L(m)	appuis Mg (KN.m) Md (KN.m)		travée		
				M _{tu} (KN.m)	T _g (KN)	T _d (KN)
A-B	4.40	0	-12.26	10.27	11.58	-17.15

В-С	3.40	-12.26	0	4.30	-14.71	07.49

A l'ELS:

Tableau III.17 Les sollicitations à ELS, poutrelle type 1(Plancher terrasse inaccessible).

Travée	L(m)	Moments aux appuis Mg (KN.m) Md (KN.m)		Moment en travée	Les efforts tranchants	
				Mtu (KN.m)	T _g (KN) T _d (KN)	
A-B	4.40	0	-08.94	7.48	08.44	-12.50
В-С	3.40	-08.94	0	3.14	-10.72	5.46

❖ Diagramme des moments plancher terrasse (inaccessible) :

+ Al'ELU

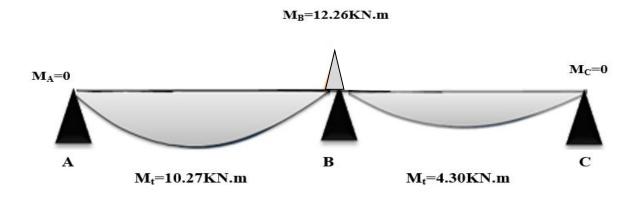


Figure III.23 Diagramme à ELU type 1 des moments plancher terrasse.

Figure III.24 Diagramme à ELU type 1 des efforts tranchant plancher terrasse.

+ A l'ELS

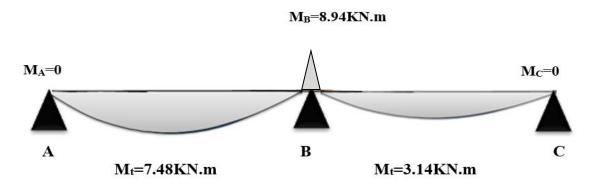


Figure III.25 Diagramme à ELS type 1 des moments plancher terrasse.

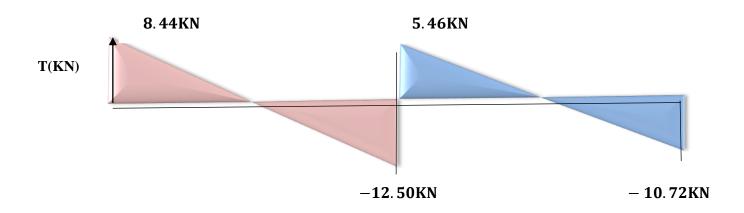
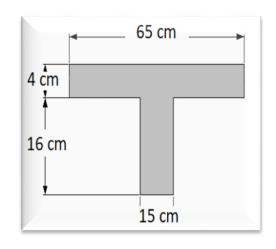



Figure III.26 Diagramme à ELS type 1 des efforts tranchant plancher terrasse.

III.12. Calcul de ferraillage des nervures

a. Calcul à ELU

- ✓ Moment en travée : $M_{tmax} = M_{tu} = 1027$ Kg.m.
- ✓ Moment en appui : M_{amax} =1226 Kg.m.
- ✓ Effort tranchant maximum : T_{umax} =1715 Kg.
- ✓ Pour le béton : f_{c28} =25MPa ; f_{bu} =14.2MPa
- ✓ Pour les aciers : FeE400.
- ✓ Fissuration non préjudiciable.
- ✓ Section en Té : b = 65 cm ; b_1 =24 cm ; b_0 =15 cm ;

$$h_t = 20 \ cm$$
.

$$\checkmark$$
 $h_0 = 4 cm$.

✓ Enrobage :
$$C = 2 cm$$
.

b. Calcul de la section d'armatures longitudinales

Plancher terrasse (inaccessible) :

Le calcul se fera pour une section en Té soumise à la flexion simple.

✓ si $M_u \le M_{Tu} = bxh_0xf_{bu}x(d-\frac{h_0}{2})$ ⇒ l'axe neutre passe par la table de compression, donc la section sera calculée comme une section rectangulaire (b x h₀).

✓ si non l'axe neutre passe par la nervure, donc le calcul se fera pour une section en Té.

$$\mathbf{M}_{\mathrm{Tu}} = \mathbf{b} \mathbf{x} \mathbf{h}_{0} \mathbf{x} \mathbf{f}_{\mathrm{bu}} \mathbf{x} (\mathbf{d} - \frac{\mathbf{h}_{0}}{2}).$$

✓ M_{Tu} : Le moment équilibré par la table de compression

$$M_{Tu} = bxh_0xf_{bu}x\left(d - \frac{h_0}{2}\right) = 0.65x0.04x \ 14.2x\left(0.18 - \frac{0.04}{2}\right) = 0.06 \ MN. m.$$

✓ $Mu = 0.01027 \text{ MN. m} < M_{btu} = 0.06 \text{ MN. m}.$

La section à étudier est une section rectangulaire (65×20) cm² soumise à la flexion simple.

***** Ferraillage en travée : $M_{tu} = 1027 \text{ Kg.m.}$

$$\checkmark \mu_{\text{bu}} = \frac{M_{tu}}{\text{bxd}^2 \text{x} 14.2} = \frac{1027 \text{x} 10}{65 \text{x} 18^2 \text{x} 14.2} = 0.034.$$

$$\mu_{\text{bu}} = 0.034 < 0.186 \Rightarrow \text{Pivot A}; \ \xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 \text{ MPa}.$$

✓
$$\mu_1 = 0.392 \text{ pour } feE400.$$

 μ_l = 0.392> μ_{bu} = 0.034 \Rightarrow Les armatures comprimées ne sont pas nécessaires (A'_u =0).

$$\alpha_u = 1.25(1 - \sqrt{1 - 2\mu_{\text{bu}}}) = 1.25(1 - \sqrt{1 - 2\times0.034}) = 0.043.$$

✓
$$\mathbf{Z}_u$$
= d (1-0.4 α_u)=18(1-0.4×0.043)=17.69 cm.

✓
$$\mathbf{A_{ut}} = \frac{M_{tu}}{Z_u \mathbf{x} \sigma_s} = \frac{M_{tu}}{Z_u \mathbf{x} \frac{f_e}{v_s}} = \frac{1027 \mathbf{x} 10}{17.69 \mathbf{x} 348} = 1.67 \text{ cm}^2.$$

+ Vérification de la condition de non fragilité

$$Amin \ge 0.23bd\frac{f_{t28}}{f_0} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2.$$

Donc: $Au = max (A_{ut}, Amin) = max (1.67, 1.41) = 1.67 cm^2$.

On adopte : $3 \text{ HA } 10 = 2.36 \text{ cm}^2$.

 Ferraillage en appuis : $M_{au} = 1226$ Kg. m.

$$\checkmark \mu_{\text{bu}} = \frac{M_{au}}{\text{bxd}^2 \text{x} 14.2} = \frac{1226 \text{x} 10}{65 \text{x} 18^2 \text{x} 14.2} = 0.041$$

$$\mu_{\mathbf{bu}} = 0.041 < 0.186 \Rightarrow \text{Pivot A}; \ \xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 \text{ MPa}.$$

✓
$$\mu_l = 0.392 \text{ pour } feE400$$

 $\mu_l = 0.392 > \mu_{bu} = 0.041 \Rightarrow \text{Les armatures comprimées ne sont pas nécessaires } (A'_u = 0).$

$$\checkmark$$
 $\alpha_u = 1.25(1 - \sqrt{1 - 2\mu_{\text{bu}}}) = 1.25(1 - \sqrt{1 - 2x0.041}) = 0.052.$

$$\checkmark$$
 \mathbf{Z}_{ν} = d (1-0.4 α_{ν})=18(1-0.4×0.052) =17.63 cm.

$$\checkmark$$
 $\mathbf{A_{ut}} = \frac{M_{tu}}{Z_u \times \sigma_s} = \frac{M_{tu}}{Z_u \times \frac{f_e}{\gamma_s}} = \frac{1226 \times 10}{17.63 \times 348} = 2.00 \text{ cm}^2.$

+ Vérification de la condition de non fragilité

$$A_{min} \ge 0.23bd \frac{f_{t28}}{f_e} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2.$$

Donc: $A_u = \max (A_{ut}, A_{min}) = \max (2.00, 1.41) = 2.00 \text{ cm}^2$.

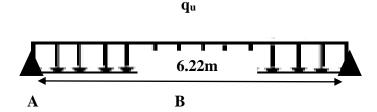

On adopte : $2 \text{ HA } 12 = 2.26 \text{ cm}^2$.

Tableau III.18 Ferraillage des nervures.

	M _u (Kg. m)	μ _{bu}	α_u	Z _u (cm)	$\begin{array}{c} A_{ucalcul\acute{e}e} \\ (cm^2) \end{array}$	$\begin{array}{ c c }\hline A_{umin}\\ (cm^2) \\ \end{array}$	$\begin{array}{ c c }\hline A_{umax}\\ (cm^2) \\ \end{array}$	A _{uadoptée} (cm ²)
travée	1027	0.034	0.043	17.69	1.67	1.41	1.67	3 HA 10 =2.36
appuis	1226	0.041	0.052	17.63	2.00	1.41	2.00	2 HA 12 =2.26

III.13. Application de la méthode (RDM) pour Plancher terrasse (inaccessible)

Poutrelle type2 : sur deux appuis a une seul travée pour Plancher terrasse (inaccessible).

a. Moment isostatique

* A ELU:

$$\mathbf{M}_0 = \frac{\mathbf{q_u x l^2}}{8} = \frac{6.53 \text{x} 4.40^2}{8} = 15.80 \text{KN.m} \begin{cases} M_{trav\acute{e}e} = 0.85 M_0 = 0.85 \text{x} 15.80 = 13.43 \text{KN.m.} \\ M_{appui} = 0.20 M_0 = 0.20 \text{x} 15.80 = 03.16 \text{KN.m.} \end{cases}$$

***** A ELS:

$$\mathsf{M}_0 = \frac{\mathsf{q}_{\rm ser}\mathsf{xl}^2}{8} = \frac{4.76\mathsf{x}4.40^2}{8} = 11.52\mathsf{KN.m} \begin{cases} M_{trav\acute{e}e} = 0.85M_0 = 0.85\mathsf{x} \ 11.52 = 9.79\mathsf{KN.m.} \\ M_{appui} = 0.20M_0 = 0.20\mathsf{x}11.52 = 2.30\mathsf{KN.m.} \end{cases}$$

b. Les efforts tranchants

* A ELU:

$$Vu = \frac{q_u xl}{2} = 6.53x \frac{4.40}{2} = 14.37 \text{ KN}.$$

***** A ELS:

$$V_{\text{ser}} = \frac{q_{\text{ser}} x l}{2} = 4.76 \times \frac{4.4}{2} = 10.47 \text{ KN}.$$

❖ A ELU:

13.4: 3.16KN.m

3.16KN.m

Figure III.27 Diagramme à

ELU type 2 des moments plancher terrasse.

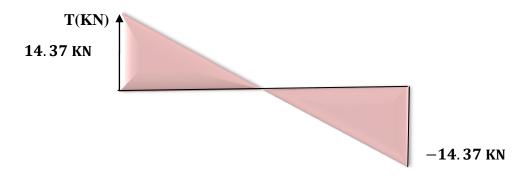


Figure III.28 Diagramme à ELU type 2des efforts tranchant plancher terrasse.

*** A ELS**:

9.79KN.m

Figure III.29 Diagramme à ELU type 2 des moments plancher terrasse.

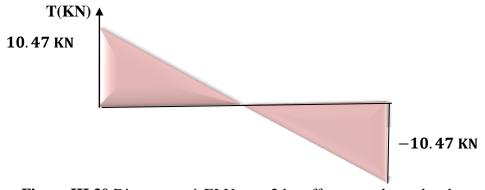


Figure III.30 Diagramme à ELU type 2des efforts tranchant plancher terrasse.

Chapitre III : Etude des éléments secondaires

c. Le moment M_{Tu} de la table

On a : $f_e = 400$ MPa ; $f_{c28} = 25$ MPa ; $f_{bu} = 14.17$ MPa ; $b_0 = 15$ cm ; c = 2 cm.

- ✓ En travée : M_{tu} =1343 Kg. m.
- ✓ En appuis : $M_{au} = 03.16$ KN. m.

$$M_{Tu} = bxh_0xf_{bu}x\left(d - \frac{h_0}{2}\right) = 0.65x0.04x \ 14.2x\left(0.18 - \frac{0.04}{2}\right) = 0.06 \ MN. m.$$

 $M_u = 0.01343$ MN. m $< M_{btu} = 0.06$ MN. m \rightarrow l'axe neutre tombe dans la table de compression, donc on calcul la section comme une section rectangulaire (65 x 20).

d. Ferraillage des poutrelles

***** Ferraillage en travée : $M_{tu} = 1343 \text{K}g. \text{ m}.$

$$\checkmark \mu_{\text{bu}} = \frac{M_{tu}}{\text{bxd}^2 \text{x} 14.2} = \frac{1343 \text{x} 10}{65 \text{x} 18^2 \text{x} 14.2} = 0.045.$$

$$\mu_{\text{bu}} = 0.045 < 0.186 \Rightarrow \text{Pivot A}$$
; $\xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 \text{ MPa.}$

$$\checkmark$$
 $\mu_1 = 0.392 \text{ pour } feE400.$

 $\mu_l = 0.392 > \mu_{bu} = 0.045 \Rightarrow$ Les armatures comprimées ne sont pas nécessaires ($A'_u = 0$).

$$\alpha_u = 1.25 (1 - \sqrt{1 - 2\mu_{\text{bu}}}) = 1.25 (1 - \sqrt{1 - 2x0.045}) = 0.057.$$

✓
$$\mathbf{Z}_{u}$$
= d (1-0.4 α_{u}) =18(1-0.4×0.057) =17.59 cm.

$$\checkmark$$
 $\mathbf{A_{ut}} = \frac{M_{tu}}{Z_u \times \sigma_s} = \frac{M_{tu}}{Z_u \times \frac{f_e}{\gamma_s}} = \frac{1343 \times 10}{17.59 \times 348} = 2.19 \text{ cm}^2.$

Vérification de la condition de non fragilité

$$Amin \ge 0.23bd \frac{f_{t28}}{f_e} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2.$$

Donc:
$$Au = max (A_{ut}, Amin) = max (2.19, 1.41) = 2.19 cm^2$$
.

On adopte: 3 HA 10= 2.36 cm².

*** Ferraillage en appuis** : $M_{au} = 316$ Kg. m.

$$\checkmark$$
 $\mu_{\text{bu}} = \frac{M_{au}}{\text{bxd}^2 \text{x} 14.2} = \frac{316 \text{x} 10}{65 \text{x} 18^2 \text{x} 14.2} = 0.011.$

$$\mu_{bu} = 0.011 < 0.186 \Rightarrow \text{Pivot A}$$
; $\xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{v_c} = \frac{400}{1.15} = 348 \text{ MPa.}$

✓
$$\mu_l$$
= 0.392 pour *feE*400.

 μ_l = 0.392 > μ_{bu} = 0.011 \Rightarrow Les armatures comprimées ne sont pas nécessaires (A'_u = 0).

$$\checkmark$$
 $\alpha_u = 1.25(1 - \sqrt{1 - 2\mu_{\text{bu}}}) = 1.25(1 - \sqrt{1 - 2x0.011}) = 0.014.$

Chapitre III : Etude des éléments secondaires

$$\checkmark$$
 $Z_u = d (1-0.4\alpha_u) = 18(1-0.4\times0.014) = 17.90 cm.$

$$\checkmark$$
 A_{ut} = $\frac{M_{tu}}{Z_u x \sigma_s} = \frac{M_{tu}}{Z_u x \frac{f_e}{\gamma_s}} = \frac{316 \times 10}{17.90 \times 348} = 0.51 \text{cm}^2$.

Vérification de la condition de non fragilité

$$A_{min} \ge 0.23bd\frac{f_{t28}}{f_e} = 0.23 \times 65 \times 18 \times \frac{2.1}{400} = 1.41 \text{ cm}^2.$$

 $\label{eq:Donc} \textbf{Donc}: A_u = max \; (A_{ut}, \, A_{min}) = max \; (0.51, \, 1.41) = 1.41 \; cm^2.$

On adopte 2 HA10 = 1.57 cm^2 .

Tableau III.19 Ferraillage de la poutrelle type 2.

_	M _u (Kg. m)	μ_{bu}	α_u	Z _u (c m)	A _{ucalculée} (cm ²)	$\begin{array}{c} A_{umin} \\ (cm^2) \end{array}$	$\begin{array}{c} A_{umax} \\ (cm^2) \end{array}$	A _{uadoptée} (cm ²)
travée	1343	0.045	0.057	17.59	2.19	1.41	2.19	3HA10=2.36
appuis	216	0.011	0.014	17.90	0.51	1.41	1.41	2HA10=1.57

e. Calcul de la section d'armatures transversales

Vérification de l'effort tranchant :

→ Vérification selon le CBA/93

✓ Effort tranchant ultime : T_{umax} =1715 Kg.

✓ La contrainte de cisaillement ultime :
$$\tau_{\mathbf{u}} = \frac{T_u}{b_0 d} = \frac{1715 \times 10}{150 \times 180} = 0.635 \text{ MPa.}$$

Lorsque la fissuration est jugée peu préjudiciable, la contrainte τ_u doit être au plus égale à la plus base des 2 valeurs :

$$\tau_{\rm u}$$
= 0.635 MPa $<\overline{\tau_u}$ = min (0.2 $\frac{f_{\rm c28}}{\gamma_{\rm b}}$; 5MPa) =3.33 MPa.

 $\tau_{\rm u}=0.635~{\rm MPa}<\overline{\tau_{\it u}}=3.33~{\it MPa}$ Y'a pas de risque de rupture par cisaillement.

Les armatures transversales sont des armatures droites $\alpha = 90^{\circ}$; le diamètre des barres transversales est directement lié au diamètre des barres longitudinales selon l'expression :

$$\Phi_t \le \min \{h_t / 35 ; b_0 / 10 ; \Phi_L\}$$

 \checkmark Φ_t : Le diamètre des armatures transversales.

✓ Φ_L : diamètre minimale des armatures longitudinale (Φ_L =10mm).

✓ $\Phi_t \le \min \{200/35; 150/10; 10\} = \min \{5,71; 15; 10\} = 5,71 \text{mm} \text{ on adopte a un étrier } \Phi_6.$

Donc la section d'armatures transversales sera : $A_t = 2\Phi 6 = 0.57 \text{ cm}^2$.

f. Espacement St

L'espacement des cours successifs d'armatures transversales doit satisfaire les conditions Suivantes :

D'après le BAEL91 :

 $S_{tma} \le min (0.9d; 40cm) = (16.2cm; 40cm) \rightarrow S_t \le 16.2 cm.$

$$\label{eq:state_state} \begin{split} \checkmark \quad S_t \leq A_t \frac{0.8 f_e \; (sin\alpha + cos\alpha)}{b_0 \; \; (\tau_u - 0.3 f_{tj} k)} \begin{cases} & \text{Flexion simple} \\ & \text{Fissuration peu nuisible} \\ & \text{Pas de reprise de bétonnage} \end{cases}$$

 $\alpha = 90^{\circ} \sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \mp \beta)$ (Flexion simple, cadres droites).

$$S_t \leq A_t \frac{0.8 f_e}{b_0 \; (\tau_u - 0.3 f_{t28})} = 0.57 \frac{0.8 x \; 400}{15 (0.635 - 0.3 x 2.1)} = 24.32 \; cm.$$

$$\checkmark$$
 $S_t \le At \frac{0.8f_e}{0.4xb_0} = 0.57 \frac{0.8x 400}{0.4x15} = 53.33 \text{ cm}.$

 $S_t \le \min\{16.2; 24.32; 53.33\} \text{ cm } \Rightarrow \text{St} \le 16.2 \text{ cm}.$

D'après RPA99 Version 2003 :

+ En zone nodale

$$S_t \le \min(\frac{ht}{4}; 12 \times \Phi_{\min}; 30 \text{cm}) = \min(\frac{20}{4}; 12 \times 1; 30 \text{cm}) = 5 \text{cm}.$$

+ En zone courante

$$S_t \le \frac{ht}{2} = \frac{20}{2} = 10cm.$$

 $S_t \le \min\{16.2; 10\} \text{cm} \rightarrow S_t = 10 \text{cm}.$

Les premières armatures transversales doivent être disposées à 5cm au plus nu de l'appui (RPA99 Version 2003).

g. Vérification de l'effort tranchant au voisinage de l'appui

On doit versifier que:

$$Vu \le 0.267 \times a \times b_0 \times f_{c28}$$
 (Art A.6.1.3 [1]).

Avec:

$$a_{\text{max}} = 0.9 \text{xd} = 0.9 \times 18 = 16.2 \text{ cm}.$$

Vu = 0.01715 MN < 0.267x0.162x0.15x25 = 0.16 2MN...Condition vérifiée.

h. Longueur de recouvrement

Acier en FeE400.

$$L_r = 40\Phi_L = 40x1.2 = 48 \text{ cm}.$$

III.14. Ferraillage de la dalle de compression des planchers avec hourdis et corps creux

Chapitre III : Etude des éléments secondaires

Le hourdis de 4cm d'épaisseur doit être ferraillé par des barres dont les dimensions de mailles ne doivent pas dépasser :

- ✓ 20cm pour les armatures perpendiculaires aux nervures.
- ✓ 30cm pour les armatures parallèles aux nervures.
- ✓ On choix 20cm pour les armatures perpendiculaires et parallèles aux nervures.

a. Les armatures perpendiculaires aux nervures

Les sections doivent être :

✓ Si
$$1 \le 50 \text{ cm} \Rightarrow A \perp_{Nervures} \ge \frac{200}{f_e} \text{ cm}^2$$
.

✓ Si
$$50 < 1 \le 80 \text{ cm} \Rightarrow A \perp_{Nervures} \ge \frac{41}{f_e} \text{ cm}^2$$
.

Avec:

 \checkmark f_e : Limite élastique des aciers utilisés (400MPa).

✓ 1 : portée entre-axes des nervures exprimée en centimètres (65cm).

Soit dans notre cas : l = 65 cm; $f_e = 400 \text{ MPa}$.

50 cm < 1 = 65 cm
$$\leq$$
 0 cm \Rightarrow $A \perp_{Nervures} \geq \frac{41}{f_e} = \frac{4x65}{400} = 0.65 \text{ cm}^2/\text{ml}.$

D'où on opte pour : $4HA8/ml = 2.01 \text{ cm}^2/ml$.

b. Les armatures parallèles aux nervures

Autres que les armatures supérieures de ces dernières, doivent avoir une section au moins égale à la moitié de celle des armatures perpendiculaires. En général, le hourdis est armé de rouleau de treillis soudés a maille carrée ou rectangulaire.

$$A //_{Nervures} = \frac{A \perp_{Nervures}}{2} = \frac{0.65}{2} = \frac{0.325 \text{cm}^2}{\text{ml}}$$

D'où on opte pour : $4HA8/ml = 2.01cm^2/ml$.

Donc $A \perp_{Nervures} = A //_{Nervures} = 2.01 \text{cm}^2/\text{ml}$.

III.15. Les schémas de ferraillages

a Schéma de ferraillage des poutrelles

Tableau III.20 Ferraillage des poutrelles.

nlanahan	schémas de ferra	illages des poutrelles		
plancher	type 1	type2		
Etage courant	2HA10 Ø6e=10 3HA10	2HA10 Ø6e=10 3HA10		
Terrasse inaccessible	2HA10 Ø6e=10 3HA10	2HA10 Ø6e=10 3HA10		

b Schéma de ferraillage dalle de compression

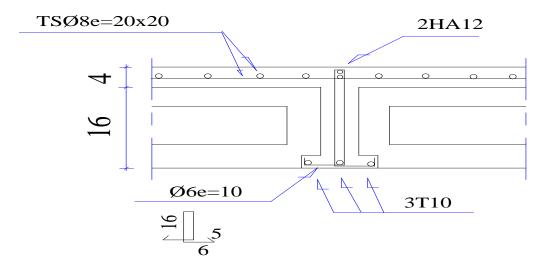


Figure III.31 Schéma de ferraillage de la dalle de compression.

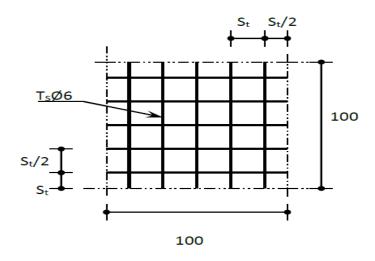
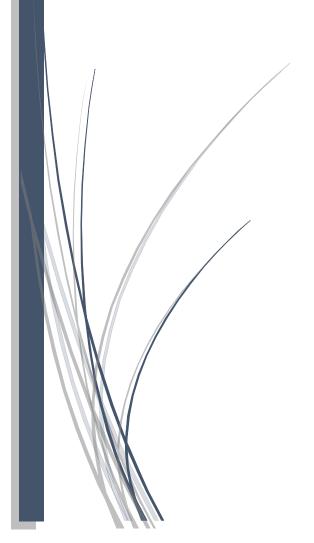



Figure III.32 Disposition constructive des armatures de la dalle de compression.

Chapitre IV

Etude sismique et modélisation

IV.1 Introduction

Le dimensionnement ou la vérification des structures au séisme a généralement pour but d'assurer la protection des vies humaines et de limiter l'étendu des dommages aux ouvrages et aux biens. La réponse d'une structure aux sollicitations dynamiques engendrées par un séisme est un phénomène très complexe qui dépend de nombreux facteurs, tels que l'intensité et la durée des secousses.

Ainsi pour un chargement dynamique, on a recoure à une étude dynamique de la structure, qui nous permet d'évaluer les résultats les plus défavorables de la réponse et que nous devons prendre en considération dans le calcul de l'ouvrage.

IV.2 Objective de l'étude sismique

L'étude parasismique nous permet d'estimer les valeurs caractéristiques les plus défavorables de la réponse sismique et le dimensionnement des éléments de résistance, afin d'obtenir une sécurité satisfaisante pour l'ensemble de l'ouvrage et d'assurer le confort des usages, l'exécution d'un ouvrage doit respecter la démarche globale de conception parasismique.

Elle doit s'appuyer sur trois points :

- ✓ respect de la réglementation parasismique.
- ✓ conception architecturale parasismique.
- ✓ mise en œuvre soigné.

IV.3 Choix de la méthode de calcul

Plusieurs méthodes approchées ont été proposées afin d'évaluer les efforts internes engendrés à l'intérieur de la structure sollicitée, le calcul de ces efforts sismiques peut être mené par trois méthodes :

La méthode statique équivalente :

Le principe consiste à remplacer l'action dynamique d'origine sismique par une charge statique dite équivalente, censée provoquée les mêmes effets.

La méthode dynamique par accélérogrammes :

Connaissant un accélérogramme type, dépendant de l'historique sismique de la région ou sera implanté l'ouvrage, du niveau de sécurité désirée, la réponse dynamique de la structure soumise à cet accélérogramme est déterminée en fonction de l'intensité et de la fréquence du phénomène sismique. Dans cette approche, l'effet de l'interaction, sol-structure est pris en compte. Cette analyse nécessite évidemment le recours aux ordinateurs et aux spécialisés développés à cet effet.

La méthode d'analyse modale spectrale :

+ Principe

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets Engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

+ Domaine d'application

La méthode dynamique est une méthode générale et plus particulièrement quand la méthode Statique équivalente n'est pas appliquée.

+ Spectre de réponse de calcul

Selon le RPA 99 / version 2003 (art 4.3.3) 'action sismique est représentée par le spectre de

$$\frac{S_a}{g} = \begin{cases}
1.25 \text{ A} \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \eta (1.25 \text{ A}) \frac{Q}{R} & T_1 \le T \le T_2 \\
2.5 \eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 0.3s \\
2.5 \eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 0.3s
\end{cases}$$

A : Coefficient d'accélération de zone.

 η : Coefficient de correction d'amortissement.

Q : Facteur de qualité.

T₁, T₂ : Périodes caractéristiques associées à la catégorie du site.

R : Coefficient de comportement.

$$\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7$$

ζ: Pourcentage d'amortissement critique donnée par [2] le tableau 4.2 (RPA 99/ version 2003).

La méthode statique équivalente est non applicable car selon l'article 4.1.2.b du RPA99/2003 (Zone IIa, et groupe d'usage 2, h= 18.36 m < 23 m), mais la structure est irrégulière en plan pour l'analyse sismique.

On utilise la méthode d'analyse modale spectrale.

a. Classification de site

Selon le RPA 99 / version 2003 les sites sont classés en quatre catégories en fonction des propriétés mécaniques des sols qui les constituent. Selon le rapport géotechnique relatif de notre ouvrage, on est présence d'un sol **meuble** (Catégorie S3).

b. Détermination des paramètres du spectre de réponse :

Coefficient d'accélération de zone A :

Zone IIa, groupe2, D'après la classification sismique de wilaya Guelma: RPA 99 / V2003

alors d'après les deux critères précédents on obtient : A= 0,15 (tableau 4.1 de RPA 99 / version 2003).

Tableau IV.1 Coefficient d'accélération de zone A.

	Z o n e					
Groupe	I	IIa	II _b	III		
1A	0,12	0,25	0.30	0,35		
1B	0,10	0,20	0.25	0,30		
2	0,08	0,15	0.20	0,25		
3	0,05	0,10	0.14	0,15		

❖ Facteur d'amplification dynamique moyen D :

La valeur de la période fondamentale de la structure est estimée par l'expression suivante :

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)_3^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5\eta (T_2/3.0)_3^{\frac{2}{3}} (3.0/T)_3^{\frac{5}{3}} & T \ge 3.0s \end{cases}$$
 Formule 4.2 : [RPA 99/V2003]

Avec:

T1et T2: période caractéristique associée à la catégorie du site et donnée par le tableau (4.7) de RPA99/ version 2003, dans notre cas on a un site meuble (S3) donc :

$$\begin{cases}
T1 = 0,15s \\
T2 = 0.50s
\end{cases}$$

Tableau IV.2 Valeurs de T_1 et T_2 .

Site	S ₁	S ₂	S ₃	S ₄
T _{1 (sec)}	0,15	0,15	0,15	0,15
T ₂ (sec)	0,30	0,40	0,50	0,70

+ Facteur de correction d'amortissement "η"

$$\eta = \sqrt{\frac{7}{2 + \xi}} \ge 0.7$$
 Formule 4.3 : [RPA 99/V2003]

Où ξ (%) est le pourcentage d'amortissement critique en fonction du matériau constitutif, du type de structure et de l'importance des remplissages. ξ est donnée par le tableau (4.2) du RPA99 : **Tableau IV.3** Valeurs de ξ (%).

200010002 2 7 00	, 0010 0015	5 (70).	
Portiques		Voiles ou	ı mı

	Portiques		Voiles ou murs
Remplissage	Béton armé	Acier	Béton armé/maçonnerie
Léger	6	4	10
Dense	7	5	

Nous avons une structure mixte (portique et voiles) avec un remplissage dense, Donc $\xi = 7\%$.

$$\eta = \sqrt{\frac{7}{2+7}} = 0.882 \ge 0.7$$
 Vérifier. Formule 4.6 : [RPA 99/V2003]

+ Estimation de la période fondamentale de la structure (T)

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculée par des méthodes analytiques ou numériques.

La formule empirique : $T = C_T h_N^{3/4}$ Formule 4.6 : [RPA 99/V2003]

- ✓ h_N: Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau $(N).h_N = 18.36 \text{ m}.$
- ✓ C_T: est un coefficient qui est en fonction du système de contreventement, du type de remplissage est donné par le tableau 4.6 du RPA99/version2003.

Tableau IV.4 Valeurs du coefficient C_{T.}

Cas n°	Système de contreventement	C _T
1	Portiques auto stables en béton armé sans remplissage en maçonnerie	0,075
2	Portiques auto stables en acier sans remplissage en maçonnerie	0,085
3	Portiques auto stables en béton armé ou en acier avec remplissage en maçonnerie	0,050
4	Contreventement assuré partiellement ou totalement par des voiles en béton armé, des palées triangulées et des murs en maçonnerie	0,050

On a portiques auto stables en béton armé avec remplissage en maçonnerie :

D'où : CT = 0.05.

Donc : $T = 0.05 \times (18.36)^{3/4} = 0.443 \text{ s.}$

Dans ce cas on peut également utiliser la formule suivante :

$$T = 0.09 h_N / \sqrt{D}$$
 Formule 4.7 : [RPA 99/V2003]

D : est la dimension du bâtiment mesurée à sa base dans la direction de calcul.

{sens transversale : Dy =
$$18.15 \text{ m} \rightarrow T_y = 0.388 \text{ s.}$$

{sans longitudinale : Dx = $18.15 \text{ m} \rightarrow T_x = 0.388 \text{ s.}$

On a:

T = Min (T=
$$C_T h_N^{3/4}$$
; 0.09 h_N / \sqrt{D}) = Min (0.443s; 0.388s) = 0.388 s.

Pour la structure étudiée, et quel que soit le type de site, la condition suivante est vérifiée :

$$0 < T_x \text{ et } T_y < \to 0 \le T = 0.388 \text{ s} \le T_2 = 0.50.$$

Le facteur d'amplification dynamique se calculera ainsi selon l'expression suivante :

$$\mathbf{D} = 2,50.\eta \rightarrow D = 2,50 \times 0.882 = 2.205.$$

D = 2,205.

❖ Coefficient de comportement R

La valeur de **R** est donnée par [2] le tableau 4.3 de **RPA 99 / version 2003** en fonction du système de contreventement tel qu'il est défini dans [2] l'article 3.4 du **RPA 99 / version 2003**.

Dans notre structure on a un système de contreventement en portique et par des voiles en béton armé. Alors le coefficient de comportement global de la structure égale à : $\mathbf{R} = 3.5$.

❖ Facteur de qualité Q

> Conditions minimales sur les files de contreventement

D' après le **RPA 99 / version 2003**, chaque file de portique doit comporter à tous les niveaux au moins **trois (3) travées** dont le rapport des portées est < **1,5**.

- ✓ Sens longitudinal on a des file 2 travées < 3 travées → Critère non observé $p_q = 0.05$.
- ✓ Sens transversal on a des file 2 travées < 3 travées \rightarrow Critère non observé $p_q = 0.05$.

Redondance en plan

Chaque étage devra avoir ; en plan ; au moins (4) files de portiques ; ces files de contreventement devront être disposés symétriquement autant que possible avec un rapport entre valeur maximale et minimale d'espacement ne dépassant pas 1,5.

✓ Sens longitudinal :
$$\begin{cases} Sym\text{\'etrique} \\ 6 \text{ fils } > 4 \\ \frac{L_{max}}{L_{min}} = \frac{4.40}{1.75} = 2.51 > 1,5 \end{cases}$$
 → Critère non observé $\mathbf{p_q} = \mathbf{0.05}$.

✓ sens transversal :
$$\begin{cases} Sym\text{\'etrique} \\ 6 \text{ fils } > 4 \\ \frac{L_{max}}{L_{min}} = \frac{4.40}{1.75} = 2.51 > 1,5 \end{cases}$$
 → Critère non observé $\mathbf{p_q} = \mathbf{0.05}$.

> Régularité en plan

- ✓ La construction présente une configuration sensiblement non symétrique vis-à-vis de deux directions orthogonales. → Condition non vérifiée.
- ✓ L'excentricité ne dépasse pas les 15 % de la dimension de la construction mesurée perpendiculairement à la direction de l'action séismique considérée.
- ✓ La structure a une force compacte, et le rapport : Longueur / largeur = $\frac{18.15}{18.15}$ = 1<4→Condition vérifiée.
- ✓ la somme des dimensions des parties rentrantes ou saillantes du bâtiment dans une Direction donnée n'excède pas 25 %.

$$\frac{l_1 + l_2}{L} = \frac{3.35 + 7.80}{18.15} = 0.61 \ge 0.25 \longrightarrow \text{Condition non v\'erifi\'ee.}$$

✓ la surface totale des ouvertures de plancher doit rester inferieur a 15% de celle de ce dernier. Donc le critère est non observé $p_q = 0.05$.

Régularité en élévation

La structure est classée régulièrement en élévation p_q= 0.

> Contrôle de la qualité des matériaux

On suppose que les matériaux utilisés dans notre bâtiment ne sont pas contrôlés donc : p_q = 0,05.

> Contrôle de la qualité de l'exécution

Il est prévu contractuellement une mission de suivi des travaux sur chantier. Cette mission doit comprendre notamment une supervision des essais effectués sur les matériaux.

On considère que ce critère est non observé : p_q = 0.10.

Tableau IV.5 Pénalité en fonction de critère de qualité.

critère q		Pq
	Sons X	Sons Y
Conditions minimales sur les files de contreventement	0,05	0,05
redondance en plan	0,05	0,05
régularité en plan	0,05	0,05
régularité en élévation	0.00	0,00
contrôle de la qualité des matériaux	0,05	0,05
contrôle de la qualité de l'exécution	0,10	0,10
la somme	0,30	0,30

La valeur de Q est déterminée par la formule : $\mathbf{Q} = \mathbf{1} + \sum \mathbf{P}_{\mathbf{q}}$

D'où P_q : est la pénalité à retenir selon que le critère de qualité Q est satisfait ou non.

$$Q = \max \{Q_x, Q_y\} = \max \{0.30, 0.30\} = 0.30.$$

$$Q_x = Q_y = 1 + 0.30 = 1,30.$$

$$Q = 1,30.$$

c. Les dispositions des voiles :

Partir des plans d'architecture, nous avons procédé à la recherche d'une meilleure disposition des voiles qui permet une bonne reprise et absorption de l'action sismique.

d. Modélisation de la structure

* Modélisation des éléments structuraux :

- + Les poutres et les poteaux sont modélisés par des éléments «Poutre-Poteau ».
 - ✓ Les poutres entre deux nœuds de même niveau « i ».
 - ✓ Les poteaux entre deux nœuds de différents niveaux « i et i+1 ».
- + Les voiles sont représentés par des éléments coques « voile » à quatre nœuds.
- → Chaque plancher a été modélisé par un diaphragme rigide. Ces planchers sont supposés indéformables dans leurs plans.

Modélisation de la masse :

La masse des planchers est calculée de manière à inclure la quantité βQ RPA99/version 2003 (dans notre cas $\beta = 0.2$) correspondant à la surcharge d'exploitation.

La masse des éléments concentrés non structuraux, comme l'acrotère et les murs extérieurs (Maçonnerie), a été répartie sur les poutres concernant.

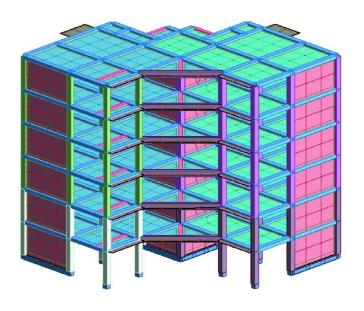


Figure IV.1 Modèle numérique en 3D.

Le tableau ci-dessous présente les périodes et les facteurs de participation massique de chaque mode. **Tableau IV.6** Périodes et facteurs de participation modale (Résultats **Robot 2010**)

Cas/	Mode	Fréque nce [Hz]	Périod e [sec]	Masses Cumul ées UX [%]	Masses Cumul ées UY [%]	Masses Cumul ées UZ [%]	Masse Modal e UX [%]	Masse Modal e UY [%]	Masse Modal e UZ [%]
4/	1	4,21	0,24	41,25	24,40	0,15	41,25	24,40	0,15
4/	2	4,89	0,20	66,15	69,19	0,15	24,90	44,78	0,01
4/	3	7,65	0,13	69,44	69,68	0,16	3,29	0,49	0,00
4/	4	10,39	0,10	69,45	69,68	1,00	0,01	0,00	0,84
4/	5	10,88	0,09	69,46	69,68	2,40	0,01	0,00	1,40
4/	6	11,44	0,09	69,47	69,70	2,85	0,01	0,02	0,45
4/	7	11,70	0,09	69,52	69,71	3,54	0,05	0,02	0,69
4/	8	12,62	0,08	69,64	69,74	5,06	0,13	0,02	1,52
4/	9	13,13	0,08	69,65	69,74	7,65	0,00	0,00	2,59
4/	10	13,16	0,08	69,65	69,74	7,65	0,00	0,00	0,00
4/	11	13,22	0,08	69,65	69,74	9,06	0,00	0,00	1,41
4/	12	13,34	0,07	69,65	69,74	10,60	0,00	0,00	1,54
4/	13	13,37	0,07	69,66	70,06	14,78	0,02	0,32	4,18
4/	14	13,48	0,07	69,66	70,06	14,87	0,00	0,00	0,09
4/	15	13,56	0,07	69,67	70,06	15,30	0,00	0,00	0,43

Selon le **RPA99/ version 2003 (Art4.2.4.b)** : la valeur de **T** calculée ne doit pas dépasser **30%** de celle estimée à partir des formules empiriques.

 $T = 0.388 \times 1,3 = 0.504 \text{ sec} > T = 0.24 \text{ sec}$ la condition vérifiée.

❖ Poids total de la structure :

Selon le RPA 99 / version 2003 (Art 4.2.3) il faut prendre la totalité des charges permanentes avec une fraction β des charges d'exploitations d'après le tableau 4.5 de RPA 99 / version 2003.

- ✓ **W**: poids total de la structure.
- ✓ W_{Gi}: poids dû aux charges permanentes et à celle des équipements fixes éventuels, solidaires
 de la structure.
- ✓ Woi: charges d'exploitation.
- \checkmark β : coefficient de pondération, fonction de la nature et la durée de la charge d'exploitation et donnée par le tableau 4.5 du RPA 99 / version 2003.

Pour notre type de bâtiment (bâtiment d'habitation) : $\beta = 0.20$.

Pour le calcul des poids des différents niveaux de la structure, les masses sont calculées par.

Le Logiciel Auto desk Robot Structural Analysis Professional 2010.

Tableau IV.7 Tableau des masses.

Cas/ Etage	Nom	Masse [kg]	
4/ 1	Etage 1	109423,02	
4/ 2	Etage 2	106195,81	
4/ 3	Etage 3	106195,81	
4/ 4	Etage 4	106195,81	
4/ 5	Etage 5	106195,81	
4/ 6	Etage 6	102215,59	

 $W = \sum masse = 636421,85 \text{ kg} = 6364,2185 \text{ KN}.$

Application de la méthode d'analyse modale spectrale :

Selon **l'RPA 99 / version 2003 (Art 4.2.3)** L'action sismique est représentée par le spectre de calcul suivant :

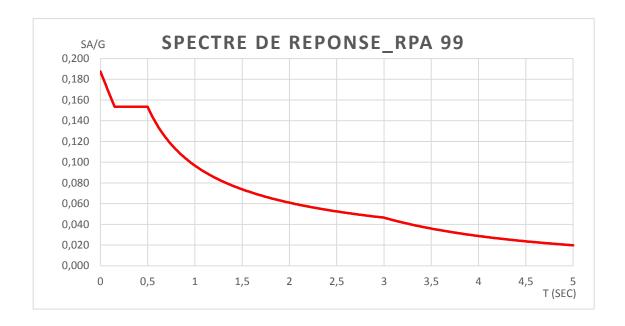
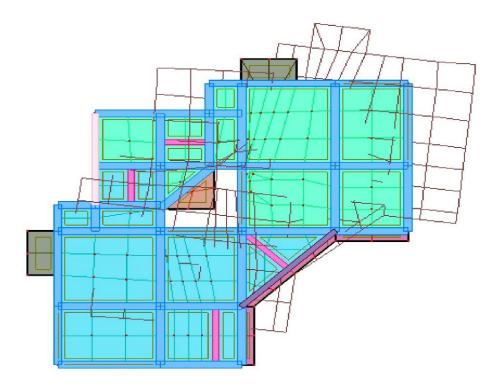
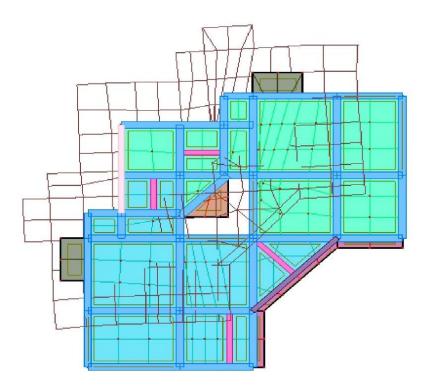


Figure IV.2 Spectre de réponse.

Nombre des modes à considérer :


Selon l'RPA 99 / version 2003 (Art 4.3.4)

Pour les structures représentées par des modèles plans dans deux directions orthogonales, le nombre des modes de vibration à retenir dans chacune des deux directions d'excitation doit être tel que :


- ✓ La somme des masses modales effectives pour les modes retenus soit égale à 90% au moins de la masse totale de la structure.
- ✓ Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale

de la structure soient retenus pour la détermination de la réponse totale de la structure. Le minimum de modes à retenir est de **trois** (3) dans chaque direction considérée.

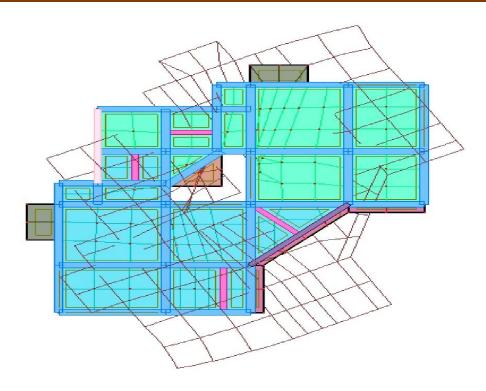

Présentation des différents modes :

Figure IV.3 1^{er} mode de déformation de la structure à cause des efforts sismiques dans le plan X-Y (résultats de **Robot 2010**).

Figure IV.4 2^{eme}mode de déformation de la structure à cause des efforts sismiques dans le plan X-Y (résultats de **Robot 2010**).

Figure IV.5 3^{éme} mode de déformation de la structure à cause des efforts sismiques vue : X-Y (résultat de **Robot 2010**).

Calcul de la force sismique statique :

La force sismique totale (V) appliquée à la base de la structure est donnée selon le RPA99/2003 par

la formule suivante :
$$V = \frac{A \times D \times Q}{R} \times W$$

$$V_{Xstatique} = V_{ystatique} = \frac{0,15 \times 2.205 \times 1,30}{0.35} \times 6364,2185 = 7818.441 \text{ KN}.$$

❖ Vérification de la résultante des forces sismiques par la méthode statique équivalente Selon RPA 99 / version 2003 (Art 4.3.6) :

La résultante des forces sismiques à la base V_t obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80 % de la résultante des forces sismiques déterminée par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

+ Les réactions à la base

Tableau IV.8 Les réactions à la base.

	$\sum Fx$ (KN)	$\sum Fy$ (KN)
Ex	5436,36	3180,83
Ey	2906,18	5191,70

$$\mathbf{V_{dinamique}} = \begin{cases} V_{x \text{ dinamique}} = \sqrt{|Fx|^2 + |Fy|^2} = 62980.55 \text{KN.} \\ V_{Y \text{ dinamique}} = \sqrt{|Fx|^2 + |Fy|^2} = 5949.769 \text{ KN.} \end{cases}$$

Tableau IV.9 Vérification de la résultante des forces sismiques.

	Ex	Ey	$0.8 imes V_{ m statique} < V_{ m dinamique}$
V _{dinamique} (KN)	62980.55	5191,70	Condition vérifiée
V _{statique} (KN)	7818.441	7818.441	Condition vérifiée

IV.4 Vérification de déplacement

❖ Justification vis-à-vis des déformations

Selon I'RPA 99 / version 2003 (Art 5.10):

Les déplacements relatifs latéraux d'un étage par rapport aux autres qui lui sont adjacents, ne doivent pas dépasser 1% de la hauteur d'étage (h).

Le déplacement total de chaque niveau :

D'après la modélisation de notre structure dans le logiciel de calcul des structures **Auto desk Robot Structural Analysis Professional 2010** on peut avoir les déplacements dans chaque niveau dans différentes combinaisons.

Tableau IV.10 les résultats des déplacements des étages suivant les différentes combinaisons Sismiques.

	MAX UX [cm]	Noeud	MA X UY [cm]	Noeud	dr UX [cm]	dr UY [cm]	MIN UX [cm]	Noeud	MIN UY [cm]	Noeud
Cas 5	'				EX					
Etage 1	0,2	1428	0,1	1423	0,2	0,1	0,0	1	0,0	1
Etage 2	0,6	1452	0,4	1447	0,5	0,3	0,1	2169	0,1	2180
Etage 3	1,1	1464	0,7	1459	0,8	0,5	0,3	2211	0,2	2222
Etage 4	1,7	1476	1,1	1471	1,1	0,7	0,6	2253	0,4	2264
Etage 5	2,3	1488	1,5	1483	1,4	0,9	0,9	2295	0,6	204
Etage 6	2,9	1440	1,9	1435	1,7	1,1	1,2	60	0,8	223
Cas 6					EY	<i>7</i> -				
Etage 1	0,1	1428	0,2	1422	0,1	0,2	0,0	1	0,0	1
Etage 2	0,3	1452	0,4	1447	0,3	0,3	0,1	2169	0,1	2180
Etage 3	0,6	1464	0,8	1459	0,4	0,5	0,2	2211	0,4	2222
Etage 4	0,9	1476	1,3	1471	0,6	0,6	0,3	2253	0,7	2264
Etage 5	1,2	1488	1,7	1483	0,8	0,8	0,4	181	1,0	204
Etage 6	1,5	1440	2,2	1435	0,9	0,9	0,6	60	1,3	223
Cas 9					G+Q-	⊦Ex				
Etage 1	0,2	1428	0,1	1423	0,2	0,1	0,0	1	0,0	1
Etage 2	0,6	1452	0,4	1447	0,5	0,3	0,1	2169	0,1	2180

Etage 3	1,1	1464	0,7	1459	0,8	0,5	0,3	2211	0,2	2222	
Etage 4	1,7	1476	1,1	1471	1,1	0,7	0,5	2253	0,4	2264	
Etage 5	2,3	1488	1,5	1483	1,4	0,9	0,8	181	0,6	2306	
Etage 6	2,8	1440	1,9	1434	1,7	1,1	1,1	60	0,8	223	
Cas 10	, , ,	-	,-	_	G+Q-		,		- , -		
Etage 1	0,0	1	0,0	1	0,2	0,1	-0,2	1428	-0,1	1423	
Etage 2	-0,1	2168	-0,1	36	0,5	0,3	-0,6	1452	-0,4	1447	
Etage 3	-0,3	2210	-0,2	128	0,8	0,5	-1,1	1464	-0,7	1459	
Etage 4	-0,6	2253	-0,4	166	1,1	0,7	-1,7	1476	-1,1	1471	
Etage 5	-0,9	2295	-0,6	204	1,4	0,9	-2,3	1488	-1,5	1483	
Etage 6	-1,2	60	-0,8	223	1,7	1,1	-2,9	1440	-1,9	1435	
Cas 11					G+Q-	-Ey					
Etage 1	0,1	1427	0,2	1423	0,1	0,2	0,0	1	0,0	1	
Etage 2	0,3	1452	0,5	1447	0,3	0,3	0,1	2	0,1	2180	
Etage 3	0,6	1464	0,8	1459	0,4	0,5	0,1	105	0,4	2222	
Etage 4	0,9	1476	1,3	1471	0,6	0,6	0,3	143	0,7	2264	
Etage 5	1,2	1488	1,8	1483	0,8	0,8	0,4	181	1,0	2306	
Etage 6	1,5	1440	2,2	1435	0,9	0,9	0,6	60	1,3	223	
Cas 12					G+Q-	-Ey					
Etage 1	0,0	1	0,0	1	0,1	0,2	-0,1	1428	-0,2	1422	
Etage 2	-0,1	2169	-0,1	2180	0,3	0,3	-0,3	1452	-0,4	1447	
Etage 3	-0,2	2211	-0,3	2222	0,4	0,5	-0,6	1464	-0,8	1459	
Etage 4	-0,3	2253	-0,6	166	0,6	0,6	-0,9	1476	-1,3	1471	
Etage 5	-0,5	2295	-1,0	204	0,8	0,7	-1,2	1488	-1,7	1483	
Etage 6	-0,6	60	-1,3	223	0,9	0,8	-1,5	1440	-2,1	1435	
Cas 13					G+Q+1						
Etage 1	0,2	1428	0,2	1423	0,2	0,2	0,0	1	0,0	1	
Etage 2	0,7	1452	0,5	1447	0,6	0,4	0,1	2169	0,1	2180	
Etage 3	1,3	1464	0,9	1459	1,0	0,6	0,4	2211	0,3	2222	
Etage 4	2,0	1476	1,4	1471	1,3	0,9	0,7	2253	0,5	2264	
Etage 5	2,7	1488	1,8	1483	1,7	1,1	1,0	2295	0,7	2306	
Etage 6	3,4	1440	2,3	1434	2.0		1 1	(0			
Cas 14	G+Q-1.2Ex										
							1,4	60	1,0	223	
Etage 1	0,0	1	0,0	1	G+Q-1 0,2	.2Ex	-0,2	1428	-0,2	1423	
Etage 2	-0,1	1 2168	0,0	1 2180	G+Q-1 0,2 0,6	.2Ex 0,2 0,4	-0,2 -0,7	1428 1452	-0,2 -0,5	1423 1447	
Etage 2 Etage 3	-0,1 -0,4	1 2168 2210	0,0 -0,1 -0,3	1 2180 128	G+Q-1 0,2 0,6 1,0	.2Ex 0,2 0,4 0,6	-0,2 -0,7 -1,3	1428 1452 1464	-0,2 -0,5 -0,9	1423 1447 1459	
Etage 2 Etage 3 Etage 4	-0,1 -0,4 -0,7	1 2168 2210 2253	0,0 -0,1 -0,3 -0,5	1 2180 128 166	G+Q-1 0,2 0,6 1,0 1,3	.2Ex 0,2 0,4 0,6 0,8	-0,2 -0,7 -1,3 -2,0	1428 1452 1464 1476	-0,2 -0,5 -0,9 -1,3	1423 1447 1459 1471	
Etage 2 Etage 3 Etage 4 Etage 5	-0,1 -0,4 -0,7 -1,1	1 2168 2210 2253 2295	0,0 -0,1 -0,3 -0,5 -0,7	1 2180 128 166 204	G+Q-1 0,2 0,6 1,0 1,3 1,7	.2Ex 0,2 0,4 0,6 0,8 1,1	-0,2 -0,7 -1,3 -2,0 -2,8	1428 1452 1464 1476 1488	-0,2 -0,5 -0,9 -1,3 -1,8	1423 1447 1459 1471 1483	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6	-0,1 -0,4 -0,7	1 2168 2210 2253	0,0 -0,1 -0,3 -0,5	1 2180 128 166	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3	-0,2 -0,7 -1,3 -2,0	1428 1452 1464 1476	-0,2 -0,5 -0,9 -1,3	1423 1447 1459 1471	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15	-0,1 -0,4 -0,7 -1,1 -1,4	1 2168 2210 2253 2295 60	0,0 -0,1 -0,3 -0,5 -0,7 -0,9	1 2180 128 166 204 223	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5	1428 1452 1464 1476 1488 1440	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2	1423 1447 1459 1471 1483 1435	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1	-0,1 -0,4 -0,7 -1,1 -1,4	1 2168 2210 2253 2295 60	0,0 -0,1 -0,3 -0,5 -0,7 -0,9	1 2180 128 166 204 223	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5	1428 1452 1464 1476 1488 1440	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2	1423 1447 1459 1471 1483 1435	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2	-0,1 -0,4 -0,7 -1,1 -1,4 0,1 0,4	1 2168 2210 2253 2295 60 1427 1452	0,0 -0,1 -0,3 -0,5 -0,7 -0,9	1 2180 128 166 204 223 1423 1447	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 0,0 0,1	1428 1452 1464 1476 1488 1440	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2	1423 1447 1459 1471 1483 1435	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2 Etage 3	-0,1 -0,4 -0,7 -1,1 -1,4 -0,1 0,4 0,7	1 2168 2210 2253 2295 60 1427 1452 1464	0,0 -0,1 -0,3 -0,5 -0,7 -0,9 0,2 0,5 1,0	1 2180 128 166 204 223 1423 1447 1459	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3 0,5	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4 0,6	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 0,0 0,1 0,2	1428 1452 1464 1476 1488 1440 1 2169 2211	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2 0,0 0,2 0,4	1423 1447 1459 1471 1483 1435 1 2180 2222	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2 Etage 3 Etage 4	-0,1 -0,4 -0,7 -1,1 -1,4 0,1 0,4 0,7 1,0	1 2168 2210 2253 2295 60 1427 1452 1464 1476	0,0 -0,1 -0,3 -0,5 -0,7 -0,9 0,2 0,5 1,0 1,6	1 2180 128 166 204 223 1423 1447 1459 1471	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3 0,5 0,7	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4 0,6 0,8	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 -3,5 -0,0 0,1 0,2 0,3	1428 1452 1464 1476 1488 1440 1 2169 2211 143	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2 0,0 0,2 0,4 0,8	1423 1447 1459 1471 1483 1435 1 2180 2222 2264	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2 Etage 3 Etage 4 Etage 5	-0,1 -0,4 -0,7 -1,1 -1,4 0,1 0,4 0,7 1,0 1,4	1 2168 2210 2253 2295 60 1427 1452 1464 1476 1488	0,0 -0,1 -0,3 -0,5 -0,7 -0,9 0,2 0,5 1,0 1,6 2,1	1 2180 128 166 204 223 1423 1447 1459 1471 1483	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3 0,5 0,7 0,9	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4 0,6 0,8 0,9	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 0,0 0,1 0,2 0,3 0,5	1428 1452 1464 1476 1488 1440 1 2169 2211 143 181	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2 0,0 0,2 0,4 0,8 1,2	1423 1447 1459 1471 1483 1435 12180 2222 2264 2306	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2 Etage 3 Etage 4 Etage 5 Etage 6	-0,1 -0,4 -0,7 -1,1 -1,4 0,1 0,4 0,7 1,0	1 2168 2210 2253 2295 60 1427 1452 1464 1476	0,0 -0,1 -0,3 -0,5 -0,7 -0,9 0,2 0,5 1,0 1,6	1 2180 128 166 204 223 1423 1447 1459 1471	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3 0,5 0,7 0,9 1,1	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4 0,6 0,8 0,9 1,1	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 -3,5 -0,0 0,1 0,2 0,3	1428 1452 1464 1476 1488 1440 1 2169 2211 143	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2 0,0 0,2 0,4 0,8	1423 1447 1459 1471 1483 1435 1 2180 2222 2264	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 16	-0,1 -0,4 -0,7 -1,1 -1,4 0,1 0,4 0,7 1,0 1,4 1,8	1 2168 2210 2253 2295 60 1427 1452 1464 1476 1488 1440	0,0 -0,1 -0,3 -0,5 -0,7 -0,9 0,2 0,5 1,0 1,6 2,1 2,7	1 2180 128 166 204 223 1423 1447 1459 1471 1483 1435	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3 0,5 0,7 0,9 1,1 G+Q-1	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4 0,6 0,8 0,9 1,1 .2Ey	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 0,0 0,1 0,2 0,3 0,5 0,7	1428 1452 1464 1476 1488 1440 1 2169 2211 143 181 60	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2 0,0 0,2 0,4 0,8 1,2 1,6	1423 1447 1459 1471 1483 1435 1 2180 2222 2264 2306 223	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 16 Etage 1	-0,1 -0,4 -0,7 -1,1 -1,4 0,1 0,4 0,7 1,0 1,4 1,8	1 2168 2210 2253 2295 60 1427 1452 1464 1476 1488 1440	0,0 -0,1 -0,3 -0,5 -0,7 -0,9 0,2 0,5 1,0 1,6 2,1 2,7	1 2180 128 166 204 223 1423 1447 1459 1471 1483 1435	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3 0,5 0,7 0,9 1,1 G+Q-1 0,1	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4 0,6 0,8 0,9 1,1 .2Ey 0,2	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 0,0 0,1 0,2 0,3 0,5 0,7	1428 1452 1464 1476 1488 1440 1 2169 2211 143 181 60	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2 0,0 0,2 0,4 0,8 1,2 1,6	1423 1447 1459 1471 1483 1435 12180 2222 2264 2306 223	
Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 15 Etage 1 Etage 2 Etage 3 Etage 4 Etage 5 Etage 6 Cas 16	-0,1 -0,4 -0,7 -1,1 -1,4 0,1 0,4 0,7 1,0 1,4 1,8	1 2168 2210 2253 2295 60 1427 1452 1464 1476 1488 1440	0,0 -0,1 -0,3 -0,5 -0,7 -0,9 0,2 0,5 1,0 1,6 2,1 2,7	1 2180 128 166 204 223 1423 1447 1459 1471 1483 1435	G+Q-1 0,2 0,6 1,0 1,3 1,7 2,0 G+Q+1 0,1 0,3 0,5 0,7 0,9 1,1 G+Q-1	.2Ex 0,2 0,4 0,6 0,8 1,1 1,3 .2Ey 0,2 0,4 0,6 0,8 0,9 1,1 .2Ey	-0,2 -0,7 -1,3 -2,0 -2,8 -3,5 0,0 0,1 0,2 0,3 0,5 0,7	1428 1452 1464 1476 1488 1440 1 2169 2211 143 181 60	-0,2 -0,5 -0,9 -1,3 -1,8 -2,2 0,0 0,2 0,4 0,8 1,2 1,6	1423 1447 1459 1471 1483 1435 1 2180 2222 2264 2306 223	

Chapitre IV: Etude sismique et modélisation

T/ 4	0.4	2252	0.0	2264	0.7	0.7	1.1	1.47.6	1 5	1 4771		
Etage 4	-0,4	2253	-0,8	2264	0,7	0,7	-1,1	1476	-1,5	1471		
Etage 5	-0,6	2295	-1,2	204	0,9	0,9	-1,5	1488	-2,1	1483		
Etage 6	-0,8	60	-1,6	223	1,1	1,0	-1,8	1440	-2,6	1435		
Cas 17					0.8G-							
Etage 1	0,2	1428	0,1	1423	0,2	0,1	0,0	1	0,0	1		
Etage 2	0,6	1452	0,4	1447	0,5	0,3	0,1	2169	0,1	2180		
Etage 3	1,1	1464	0,7	1459	0,8	0,5	0,3	2211	0,2	2222		
Etage 4	1,7	1476	1,1	1471	1,1	0,7	0,6	2253	0,4	2264		
Etage 5	2,3	1488	1,5	1483	1,4	0,9	0,9	2295	0,6	2306		
Etage 6	2,8	1440	1,9	1434	1,7	1,1	1,2	60	0,8	223		
Cas 18	0.8G-Ex											
Etage 1	0,0	1	0,0	1	0,2	0,1	-0,2	1428	-0,1	1423		
Etage 2	-0,1	2168	-0,1	2180	0,5	0,3	-0,6	1452	-0,4	1447		
Etage 3	-0,3	2210	-0,2	2222	0,8	0,5	-1,1	1464	-0,7	1459		
Etage 4	-0,6	2253	-0,4	166	1,1	0,7	-1,7	1476	-1,1	1471		
Etage 5	-0,9	2295	-0,6	204	1,4	0,9	-2,3	1488	-1,5	1483		
Etage 6	-1,2	60	-0,8	223	1,7	1,1	-2,9	1440	-1,9	1435		
Cas 19					0.8G-	-Ey						
Etage 1	0,1	1428	0,2	1423	0,1	0,2	0,0	1	0,0	1		
Etage 2	0,3	1452	0,4	1447	0,3	0,3	0,1	2169	0,1	2180		
Etage 3	0,6	1464	0,8	1459	0,4	0,5	0,2	2211	0,4	2222		
Etage 4	0,9	1476	1,3	1471	0,6	0,6	0,3	143	0,7	2264		
Etage 5	1,2	1488	1,8	1483	0,8	0,8	0,4	181	1,0	2306		
Etage 6	1,5	1440	2,2	1435	0,9	0,9	0,6	60	1,3	223		
Cas 20					0.8G-	·Ey						
Etage 1	0,0	1	0,0	1	0,1	0,2	-0,1	1428	-0,2	1422		
Etage 2	-0,1	2169	-0,1	2180	0,3	0,3	-0,3	1452	-0,4	1447		
Etage 3	-0,2	2211	-0,3	2222	0,4	0,5	-0,6	1464	-0,8	1459		
Etage 4	-0,3	2253	-0,6	2264	0,6	0,6	-0,9	1476	-1,3	1471		
Etage 5	-0,5	2295	-1,0	204	0,8	0,7	-1,2	1488	-1,7	1483		
Etage 6	-0,6	60	-1,3	223	0,9	0,8	-1,5	1440	-2,2	1435		

IV.5 Vérification de L'excentricité accidentelle

Dans cette analyse tridimensionnelle l'excentricité accidentelle, est prise en charge par le logiciel, en lui affectant la valeur exigée par le **RPA 99 / version 2003**.

± 0,05 L (L étant la dimension du plancher perpendiculaire à la direction de l'action sismique), cette valeur doit être appliquée au niveau du plancher considéré suivant chaque direction.

- ✓ **Sens X**: $e_{accidentelle}$ = 0,05 x L_{xi} = 0.05 x 36.15 = 1.80 m.
- ✓ **Sens Y**: **e**_{accidentelle}= $0.05 \text{ x L}_{yi} = 0.05 \text{ x}15.29 = 0.76 \text{ m}$.

La détermination du centre de masse est basée sur le calcul des centres de masse de chaque élément de la structure (acrotère, poteaux, poutres, plancher, escalier, voiles, balcons, maçonnerie extérieur).

Les coordonnées du centre de masse sont données par :

$$\mathbf{X}_{G} = \frac{\sum M_{i} X_{i}}{\sum M_{i}} \text{ et } \qquad \mathbf{Y}_{G} = \frac{\sum M_{i} Y_{i}}{\sum M_{i}}$$

Avec:

✓ M_i : la masse de l'élément i.

✓ X_i ; Y_i: coordonnées du centre de gravité de l'élément i par rapport au repère global.

L'analyse automatique par le logiciel **Autodesk Robot Structural Analysis Professional 2010** et **ETABS 2013** a donné les résultats qui sont illustrés dans le tableau IV-11suivant :

Tableau IV.11 Caractéristiques massiques et géométriques dans les cas accidentels.

Cas	Nom	W étage (kg)	Centre de masse (m)		centre de Torsion(m)		Excentricité calculer [m]		Excentricité Accidentel [m]	
			ХG	УG	XR	УR	ex	ey	ex	ey
4	Etage 1	109423,02	7,77	8,67	5,97	10,45	1,80	1,78	0,89	0,89
4	Etage 2	106195,81	8.02	8,38	5,97	10,45	2,05	2.07	0,89	0,89
4	Etage 3	106195,81	8.02	8,38	5,98	10,48	2,04	2.10	0,89	0,89
4	Etage 4	106195,81	8.02	8,38	5,98	10,48	2,04	2.10	0,89	0,89
4	Etage 5	106195,81	8.02	8,38	5,98	10,48	2,04	2,10	0,89	0,89
4	Etage 6	102215,59	8,04	8,36	5,96	10,48	2,08	2,12	0,89	0,89

D'après les résultats des excentricités accidentelles dans chaque étage représentée dans les deux tableaux précédents l'excentricité dans quelque étages dépassé $0,05 \times L_i$ dans chaque direction de chaque excentricité. Donc cette **condition n'est pas vérifiée**.

IV.6 Vérification au renversement

Pour que la structure soit stable au renversement il doit vérifier la relation suivante :

$$\frac{M_s}{Mr} \geq 1, 5$$

Avec:

 $\mathbf{M_s}$: Moment stabilisant. $\mathbf{M_s} = \mathbf{W} \times \mathbf{L}/2$

 $\mathbf{M_r}$: Moment renversant. $\mathbf{M_r} = \Sigma F_i \times h_i$

W: Poids du bâtiment.

F: Force sismique au niveau i.

+Sens longitudinal

Tableau IV.12 Verification de renversement sens longitudinal.

W (KN)	Lx (m)	Lx/2 (m)	Ms (KN.m)	Mr (KN.m)	Ms/Mr	vérification
6364,2185	18.15	9.075	57755.28	17163,14	3.36	Condition vérifiée

+ Sens transversal

Tableau IV.13 Verification de renversement sens transversal.

W (KN)	Ly (m)	Ly/2 (m)	Ms (KN.m)	Mr (KN.m)	Ms/Mr	vérification
6364,2185	18.15	9.075	57755.28	19087,926	3.02	Condition vérifiée

+ Remarque

On peut dire que suivant les règles parasismiques algériennes RPA 99 / version 2003 notre Structure est stable dans le cas de présence d'action sismique.

Chapitre V

Etude des éléments structuraux

V.1 Introduction

La structure du présent projet est un ensemble tridimensionnel des poteaux, poutres et voiles, liés rigidement et capables de reprendre la totalité des forces verticales et horizontales (ossature auto stable contreventée par voiles).

Pour la détermination du ferraillage on considère le cas le plus défavorable. On a utilisé l'outil informatique à travers le logiciel d'analyse des structures (Auto desk Robot Structural Analysais Professional 2010), qui permet la détermination des différents efforts internes de chaque section des éléments pour les différentes combinaisons de calcul.

- ✓ Les poteaux seront dimensionnés en flexion composée.
- ✓ Les poutres seront dimensionnées en flexion simple.
- ✓ Les voiles seront dimensionnés en flexion composée.

V.2 Etude du ferraillage des poteaux

Les poteaux sont des éléments verticaux soumis à des efforts normaux et des moments fléchissant à la tête et à la base dans les deux sens. Leur ferraillage se fait à la flexion composée avec une fissuration peu nuisible.

a. Combinaison des charges

En fonction du type de sollicitation, on distingue les différentes combinaisons suivantes :

✓ Combinaisons fondamentales **BAEL 91 révisée 99 :**

$$\left\{ \begin{array}{ll} (ELU) \ldots \ldots 1, 35 \times G \ + \ 1, 5 \times Q \\ (ELS) \ldots \ldots \ldots \ldots \ldots G \ + \ Q \end{array} \right.$$

✓ Combinaisons accidentelles **RPA 99 / version 2003 :**

$$\{G + Q \pm E \dots (ACC)\}$$

- b. Calcul des armatures longitudinales
 - ❖ D'après l'RPA 99 / version 2003 (article 7.4.2)
- ✓ Les armatures longitudinales doivent être à haute adhérence droites et sans crochets.
- ✓ Leur pourcentage minimale sera de 0,8 % (zone II).
- ✓ Leur pourcentage maximal sera de 4% en zone courante et de 6% en zone de recouvrement.
- ✓ Le diamètre minimum est de 12 mm.
- ✓ La longueur minimale de recouvrement est de 40Φ (zone II)
- ✓ La distance entre les barres verticales dans une surface du poteau ne doit pas dépasser 25 cm (zone II).

Le ferraillage sera calculer l'aide de **Autodesk Robot Structural Analysais Professional 2010** et on le compare avec le minimum du **RPA 99 / version 2003(Amin).**

c. Calcul des armatures transversales

❖ Selon l'RPA 99 / version 2003 (Art 7.4.2.2) :

Les armatures transversales des poteaux sont calculées à l'aide de la formule :

$$\frac{A_t}{t} = \frac{\rho_{a \times v_u}}{h_1 \times f_e}$$

- \checkmark Vu: effort tranchant de calcul.
- ✓ **h**₁: hauteur total de la section brute.
- \checkmark f_e : contrainte limite élastique de l'acier d'armature transversale.
- \checkmark ρ_a : coefficient correcteur (tient compte de la rupture).
- \checkmark ρ_a = 2.5 Si l'élancement géométrique λg ≥ 5.
- \checkmark $\rho_a = 3.75$ Si l'élancement géométrique $\lambda_g < 5$
- ✓ $f_e = 400 \text{ MPa}$.

Les armatures transversales des poteaux sont calculées à l'aide de la formule suivante :

$$\Phi_t \leq \min(\frac{h}{35}; \frac{b}{10}; \Phi_1)$$
.....BAEL 91 révisée 99.

Avec:

- \checkmark Φ_1 : le diamètre minimal des armatures longitudinal du poteau.
- \checkmark **t**: espacement des armatures transversales.

Avec:

 $\Phi_{1 \text{ est}}$ le diamètre minimal des armatures longitudinales du poteau.

Selon le BAEL 91 révisée 99 (Art A.8.1,21) :

 $A_u \text{ (min)} = \max (0.2\%B; 4\%P)$

Avec: B: section de béton.

P : périmètre de la section en mètre = $(45+40) \times 2=170$ cm.

 $A_u(min) = max (0,2\%45\times40; 4\%P)$

 $A_u (min) = max (36; 6.8) cm^2$

 $A_u (max) = 5\%B = 90 \text{ cm}^2.$

❖ Selon l'RPA 99 / version 2003 (Art 7.4.2) :

 $A_u(min) = 0.8\% B = 14.4cm^2$.

 $A_u(max) = 4\%$ B en zone courant.

 A_u (max) = 6% B en zone de recouvrement.

La distance entre les barres verticales dans une face de poteau ne doit pas dépasser: 25cm en zone II $Ø_{min} = 12mm$.

$$A_u$$
 (min) = max (36; 6.8; 14.4) = 36 cm².

On adopte $A_{s1} = 5HA16$ de section 10.05 cm².

 $A_{s2} = 5HA16$ de section 10.05 cm².

$$A_u \text{ (totale)} = 10.05 \times 2 + 10.05 \times 2 = 40.20 \text{ cm}^2$$
.

> Armatures transversales

Selon le BAEL 91 révisée 99 :

$$\Phi_t \le \min(\frac{h}{35}; \frac{b}{10}; \Phi_1) = \min(\frac{40}{35}; \frac{45}{10}; 1, 6) \to \Phi_t \le 1.14$$
cm.

On adopte $\Phi_t = 8$ mm.

Selon le RPA 99 / version 2003 (Art 7.4.2.2) :

- ✓ $\mathbf{t} \le \text{Min} (10\Phi_1; 15 \text{ cm}) \text{ en zone nodal } \rightarrow \mathbf{t} \le \text{Min} (10 \times 1.6; 15 \text{ cm}) = 15 \text{ cm}.$
- ✓ $\mathbf{t} \le 15\Phi_1$ en zone courante $\rightarrow \mathbf{t} \le 15 \times 1,6 = 24$ cm.

On adopte un espacement pour ce poteau de : $\begin{cases} \mathbf{t} = 10 \text{ cm dans la zone nodale.} \\ \mathbf{t} = 15 \text{ cm dans la zone courant.} \end{cases}$

Les cardes et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10\emptyset_t$ minimum (voir Figure V.1).

 $10\emptyset t = 10 \times 1,6 = 16 \text{ cm}$; alors on adopte longueur de 15 cm.

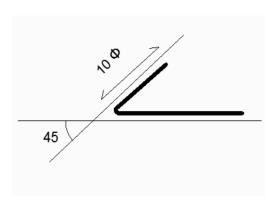


Figure V.1 Crochet des barres horizontales.

Recouvrement:

La largeur de recouvrement minimale donnée par le RPA 99 / version 2003 (page 61) est de :

40 Φ en **zone II**.

$$\Phi = 16$$
mm $\rightarrow L_r = 1.6 \times 40 = 64$ cm; alors on adopte : $Lr = 70$ cm.

► Longueur de la zone nodale :

Pour les poteaux qui restent on va calculer avec logiciel de calcul des sections de ferraillage des éléments en béton expert 2010 dans les combinaisons suivantes :

Selon le BAEL91 révisée 99

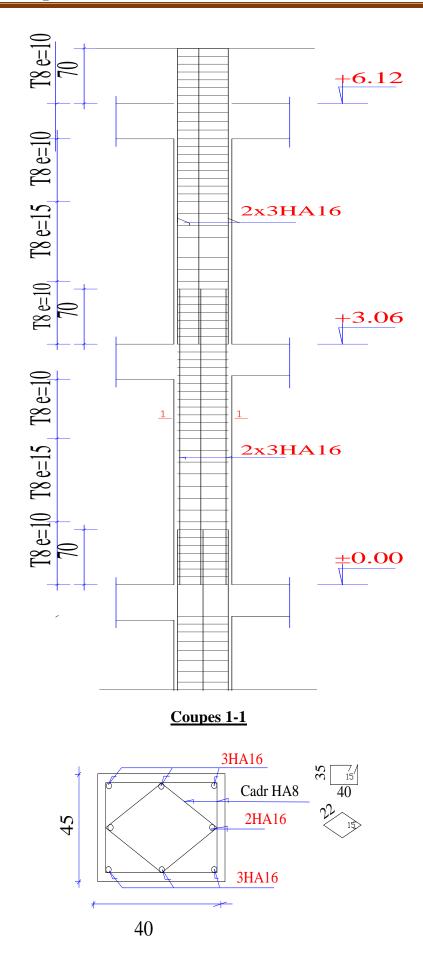
$$\left\{ \begin{matrix} (ELU) \dots 1,35 \times G \ + \ 1,5 \times Q \\ (ELS) \dots \dots G \ + \ Q \end{matrix} \right.$$

Selon le RPA 99 / version 2003

$$ACC: G+Q \pm E$$

On fait le ferraillage des poteaux étage par étage. Dans le calcul de chaque étage on prend la valeur min de l'effort N appliqué et les valeurs max de **My** et **Mz**

Tableau V.1 Les résultats des efforts correspondant à chaque poteau a ELU, ELS et ACC.


Section	Mymax (KN.m)	Fcorr (KN)	Mzmax (KN.m)	Fcorr (KN)	Fmin (KN)	Mycorr (KN.m)	Mzco (KN.m)				
ELU : 1,35G + 1,5Q											
poteaux (45× 40)	18,27	126,86	41,58	126,86	108,62	-36,25	-20,67				
poteaux (40× 30)	24,01	192,82	65,06	99,73	9,29	-0,12	-0,73				
			ELS	: G + Q		1					
poteaux (45× 40)	13,43	93,19	30,39	93,19	79,68	-26,66	-15,10				
poteaux (40× 30)	17,58	141,58	47,47	73,06	6,80	-0,09	-0,53				

$ACC : G \pm Q 1,2 E$										
poteaux (45× 40)	poteaux (45× 40) 106,50 4472,04 70,36 3054,11 -3879,31 -103,21 -40,61									
poteaux (40× 30)	158,82	177,94	108,07	133,55	-1894,49	-43,32	-54,94			

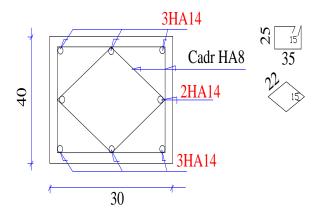

Les résultats des ferraillages sont résumés dans le tableau suivant :

Tableau V.2 Ferraillage des poteaux dans les différents niveaux.

	Section	A _{min RPA}	A calculé		aillage tudinal	Ferraillage transversal		
étage	(cm ²)	(cm²)	(cm²)	Section (cm2)	choix	t (cm)	t' (cm)	At
RDC	(45× 40)	14.4	9.7	16.088	8HA16	10	15	Ø8
01	(45× 40)	14.4	9.7	16.088	8HA16	10	15	Ø8
02	(40× 30)	9.6	9	12.312	8HA14	10	15	Ø8
03	(40× 30)	9.6	9	12.312	8HA14	10	15	Ø8
04	(40× 30)	9.6	9	12.312	8HA14	10	15	Ø8
05	(40× 30)	9.6	9	12.312	8HA14	10	15	Ø8

Figure V.2 Coupe de ferraillage des poteaux (40×45) cm².

Figure V.3 Coupe de ferraillage des poteaux (30×40) cm².

V.3 Etude du ferraillage des poutres

Les poutres sont les éléments horizontaux qui ont le rôle de transmettre les charges apportées par les dalles aux poteaux.

Les poutres serons calculées en flexion simple d'après les règlements du BAEL 91 modifie 99, on se rapportera aussi au RPA 99 / version 2003 pour la vérification.

Les combinaisons d'action sont les suivantes :

La combinaison fondamentale **BAEL 91 révisée 99** :

$$\{ (ELU) 1, 35G + 1, 5Q \\ (ELS) G + Q \\$$

Les combinaisons accidentelles RPA 99 / version 2003 :

- ✓ Pour les poutres dans l'axe $X : \begin{cases} G + Q \pm Ex \\ 0.8G \pm Ex \end{cases}$
- ✓ Pour les poutres dans l'axe \mathbf{Y} : $\begin{cases} G + Q \pm Ey \\ 0.8G \pm Ey \end{cases}$

Pour les combinaisons fondamentales et accidentelles, on prend le moment maximum de chaque portique de chaque étage et on vérifie avec la combinaison ELS.

a. L'étude des Poutres (30×45)

Poutre (30×45) (cas défavorable extrait à l'aide du logiciel robot).

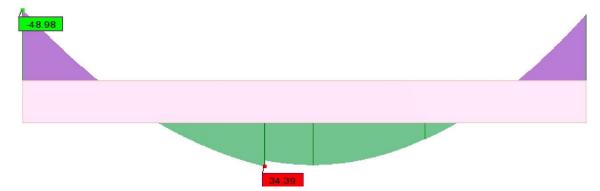


Figure V.4 Diagramme des moments de flexion sous la combinaison ELU.

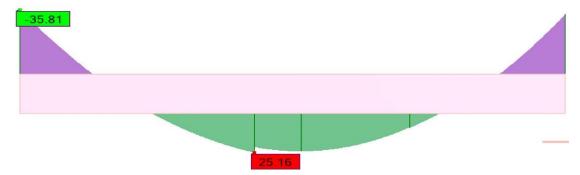


Figure V.5 Diagramme des moments de flexion sous la combinaison ELS.

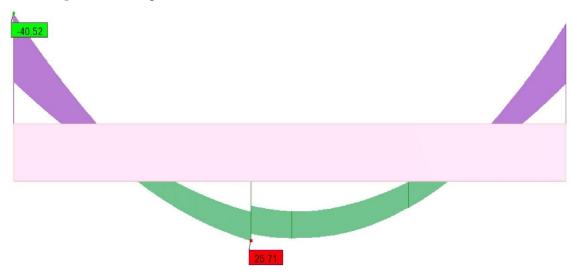


Figure V.6 Diagramme des moments de flexion sous la combinaison ELA.

Tableau V.3. Exemple de calcul des armatures longitudinales RDC.

Section	ELU		El	LS	ACC		
(cm ²)							
	Mutmax	Muamax	Mstmax	Msamax	Mt _{max}	Ma _{max}	
	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	
30×45	34.39	-48.98	25.16	-35.81	25.71	-40.52	

Calcul des armatures longitudinales

Le calcul du ferraillage est en flexion simple :

✓
$$h = 0.45 \text{ m}.$$

✓
$$b = 0.30 \text{ m}$$
.

$$\checkmark$$
 d = 0,9× h = 0,405 m.

✓
$$f_{c28} = 25 \text{ MPa}$$
.

✓
$$f_{t28} = 2,1$$
 MPa.

✓
$$f_{bc} = 14,17 \text{ MPa.}$$

$$\checkmark$$
 $\sigma_{st} = 348 \text{ MPa}.$

***** Etat limite ultime

+ En travée : $M_{ut} = 34.39$ KN.m

$$\checkmark \quad \mu_u = \frac{M_{ut}}{b \times f_{bc} \times d^2} = \frac{34.39 \times 10^6}{300 \times 14,17 \times (405)^2} = 0,049.$$

$$\mu_{\mathbf{u}} = 0.049 < \mu_{1} = 0.392$$

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,049}) = 0,063.$

$$\checkmark$$
 Z = d× (1-0,4 α) = 0,405× (1-0,4×0,063)

Z =394.82mm.

$$\checkmark$$
 A_{st} = $\frac{M_{Uapp}}{Z \times \sigma_{St}} = \frac{34.39 \times 10^6}{394.82 \times 348} = 250.29 \text{ mm}^2$

✓
$$A_{st} = 2.50 \text{ cm}^2$$
.

+ En appuis : $M_{u \text{ app}}$ = - 48.98 KN.m.

$$\checkmark \quad \mu_u = \frac{M_{uapp}}{b \times f_{bc} \times d^2} = \frac{48.98 \times 10^6}{300 \times 14,17 \times (405)^2} = 0,070.$$

$$\mu_{\rm u} = 0.070 < \mu_{\rm r} = 0.392$$
.

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark \quad \alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,070})$$

$$\alpha = 0.090.$$

$$\checkmark$$
 Z = d × (1 - 0,4 α) = 0,405 × (1 - 0,4×0,090)

$$Z = 0.390 \text{ m}.$$

$$\checkmark$$
 A_{st} = $\frac{M_{uapp}}{Z \times \sigma_{St}} = \frac{48.98 \times 10^6}{390 \times 348} = 360.89 \text{ mm}^2$

 $A_{st} = 3.61 \text{ cm}^2$.

+ Condition de non fragilité

La section minimale : $A_{st} \min \ge 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 30 \times 40.5 \times \frac{2.1}{400} = 1.47 \text{ cm}^2$.

 $A_{st} \min \ge 1,47 \text{cm}^2 \rightarrow \textbf{Condition vérifiée}.$

***** Etat limite accidentelle

+ En travée : $M_{acct} = 25.71$ KN.m.

$$\mu_{u} = \frac{M_{ut}}{b \times f_{bc} \times d^{2}} = \frac{25.71 \times 10^{6}}{300 \times 18.48 \times (405)^{2}} = 0,028 \quad \rightarrow \textbf{avec} : f_{bc} = \frac{f_{c28} \times 0,85}{1,15} = 18,48 \text{ MPa}.$$

$$\mu_{\mathbf{u}} = 0.028 < \mu_{r} = 0.392$$

Donc La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\alpha = 1,25 \times (1-\sqrt{1-2\mu}) = 1,25 \times (1-\sqrt{1-2\times0,028})$$

$$\alpha = 0.070$$
.

$$Z = d \times (1-0.4\alpha) = 0.405 \times (1-0.4\times0.070)$$

$$Z = 0.393 \text{ m}.$$

$$A_{st} = \frac{M_{Ut}}{Z \times \sigma_{St}} = \frac{25.71 \times 10^6}{393 \times 400} = 163.55 \text{ mm}^2$$

 $A_{st} = 1.64 \text{ cm}^2$.

+ En appuis : $M_{u \text{ app}}$ = - 40.52KN.m.

$$\checkmark$$
 $\mu_u = \frac{M_{uapp}}{b \times f_{hc} \times d^2} = \frac{40.52 \times 10^6}{300 \times 18,48 \times (405)^2} = 0.045.$

$$\mu_{\rm u} = 0.045 < \mu_{\rm r} = 0.392.$$

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,045})$$

$$\alpha = 0.112.$$

$$\checkmark$$
 Z = d × (1 - 0,4 α) = 0,405 × (1 - 0,4×0,112)

$$Z = 0.387 \text{ m}.$$

$$\checkmark$$
 A_{st} = $\frac{M_{Uapp}}{Z \times \sigma_{St}} = \frac{40.52 \times 10^6}{387 \times 400} = 261.75 \text{ mm}^2$.

$$A_{sa} = 2.62 \text{ cm}^2$$
.

Condition de non fragilité : La section minimale : $A_{st} \min \ge 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$ $= 0.23 \times 30 \times 40.5 \times \frac{2.1}{400}$

 $A_{st} \min \ge 1,47 \text{cm}^2 \rightarrow \text{Condition vérifiée.}$

Finalement:

$$\checkmark$$
 A_{st} = max (2.50; 1.64) = 2.50 cm².

On adopte en travée : de section : 3HA12 de section : 3.393 cm².

$$\checkmark$$
 A_{app} = max (3.61; 2.62) = 3.61 cm².

On adopte en appui : 3HA14 de section : 4.617 cm².

Condition du RPA 99 / version 2003

$$A_{min} = 0.5\% \times b \times h = 5 \times 10^{-3} \times 30 \times 45 = 6.75 \text{ cm}^2 \rightarrow \text{Condition vérifiée.}$$

***** Etat limite service :

+ En travée

Puisque la fissuration est peut nuisible et l'acier utilisé est le FeE400, alors la vérification des contraintes à l'ELS sera simplifiée comme suit :

$$\alpha = \frac{\mathcal{S} - 1}{2} + \frac{f_{c28}}{100}$$

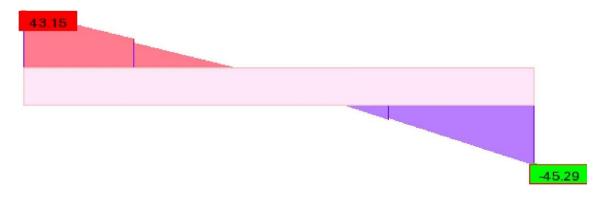

$$\delta = \frac{M_u}{M_{ser}}$$

Tableau V.4 Vérification à E.L.S.

Section	$S = \frac{M_u}{M_{ser}}$	αu	$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$	Comparaison
Travée	1.37	0,063	0.436	0,063< 0.436
				Condition vérifiée.
Appui	1.37	0,090	0.435	0,090< 0.436
				Condition vérifiée.

Donc il n'est pas nécessaire de vérifier la contrainte du béton $\sigma_{bc} < \overline{\sigma_{bc}}$.

→ Vérification au cisaillement

Figure V.7 Diagramme de l'effort tranchant (cas défavorable) sous la combinaison état limite service.

$$\tau_u = \frac{T_{umax}}{b \times d} \tau_u = \frac{45.29 \times 10^{-3}}{0.30 \times 0.405} = 0.37 \text{ MPa. Pour des fissurations peu nuisibles} :$$

$$\sqrt{\tau_u} = \min \left(\frac{0.2 \times f_{c28}}{\gamma_h} ; 5\text{MPa} \right) = 3.33 \text{ MPa}.$$

$$\checkmark \quad \tau_u < \overline{\tau_u} \rightarrow \text{Condition v\'erifi\'ee.}$$

Calcul des armatures transversales :

+ Diamètre des armatures transversales

$$\checkmark \qquad \qquad \phi_t \leq \min\left(\frac{h}{35}; \phi_1; \frac{b}{10}\right)$$

 $\phi_t \le \min(1,29;1,60;3)$

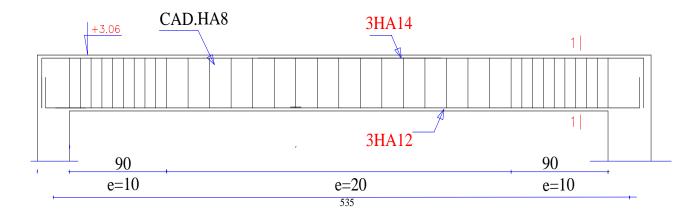
On prend : $\phi_t = \Phi 8 \text{ mm}$.

+ Calcul d'espacement des cadres

D'après le RPA 99 / version 2003 (Art 7.4.2.2) on a :

✓ **Zone nodale** : St ≤ min
$$(\frac{h}{4}; 12\phi_l; 30 \text{ cm})$$
.

St \leq min (11,25; 12 ϕ_l ; 30cm).**On prend**: **St** = **10 cm**.


✓ **Zone courante** : St
$$\leq \frac{h}{2} = \frac{45}{2} = 22,5 \text{ cm}.$$

On prend : St = 20 cm.

Les cardes et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10\emptyset_t$ minimum.

10%t =8×1,6 = 13 cm, alors on adopte longueur de 20 cm.

► Longueur de la zone nodale :

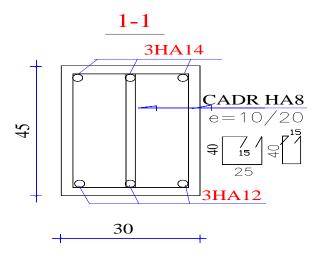


Figure V.8 Ferraillage Poutre (30×45) cm².

b. L'étude des Poutres (30×55) cm²

Poutre (30×55) (cas défavorable extrait à l'aide du logiciel robot).

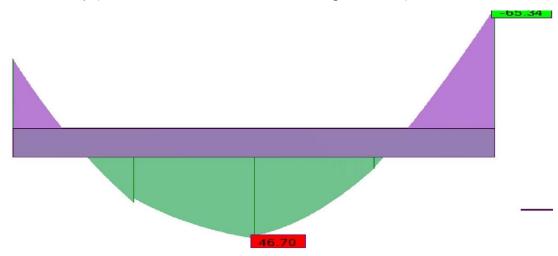


Figure V.9 Diagramme des moments de flexion sous la combinaison ELU au niveau terrasse.

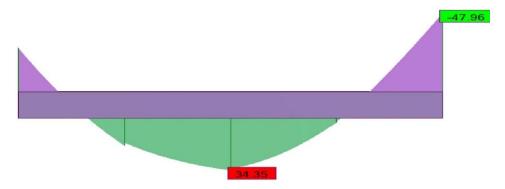


Figure V.10 Diagramme des moments de flexion sous la combinaison ELS au niveau terrasse.

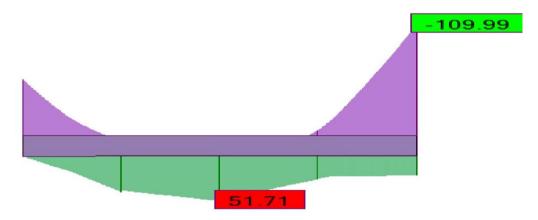


Figure V.11 Diagramme des moments de flexion sous la combinaison ELA au niveau terrasse.

Tableau V.5 Exemple de calcul des armatures longitudinales niveau terrasse.

Section	ELU		ELS		ACC	
(cm ²)						
	Mut _{max}	Mua _{max}	Mst _{max}	Msa _{max}	Mt _{max}	Ma _{max}
	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)
30×55	34.39	-48.98	25.16	-35.81	25.71	-40.52

***** Calcul des armatures longitudinales

Le calcul du ferraillage est en flexion simple :

✓
$$h = 0.55 \text{ m}.$$

✓
$$b = 0.30 \text{ m}.$$

$$\checkmark$$
 d = 0,9× h = 0,495m.

✓
$$f_{c28} = 25MPa$$
.

✓
$$f_{t28} = 2,1$$
MPa.

✓
$$f_{bc} = 14,17MPa$$
.

$$\checkmark$$
 σ_{st} = 348MPa.

***** Etat limite ultime :

+ En travée : $M_{ut} = 46.70$ KN.m.

$$\checkmark \quad \mu_u = \frac{M_{ut}}{b \times f_{bc} \times d^2} = \frac{46.70 \times 10^6}{300 \times 14.17 \times (495)^2} = 0,045.$$

$$\mu_{\mathbf{u}} = 0.045 < \mu_{\mathbf{l}} = 0.392.$$

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,045})$

$$\alpha = 0.058$$
.

$$\checkmark$$
 Z = d× (1-0,4 α) =0,495× (1-0,4×0,058)

$$Z = 0.4835 \text{ m}.$$

✓
$$A_{st} = \frac{M_{Uapp}}{Z \times \sigma_{St}} = \frac{46.70 \times 10^6}{483.5 \times 348} = 277.54 \text{ mm}^2.$$

✓
$$A_{st} = 2.78 \text{ cm}^2$$
.

+ En appuis :
$$M_{u \text{ app}}$$
= -65.34 KN.m.

$$\label{eq:muapp} \checkmark \quad \mu_u = \frac{M_{uapp}}{b \times f_{hc} \times d^2} = \frac{65.34 \times 10^6}{300 \times 14,17 \times (495)^2} = 0,063.$$

$$\mu_u = 0.063 < \mu_r = 0.392$$

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark \quad \alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,063})$$

$$\alpha = 0.081$$
.

$$\checkmark$$
 Z = d × (1 - 0,4 α) = 0, 495 × (1 - 0,4×0,081)

$$Z = 0.4789 \text{ m}.$$

✓
$$A_{st} = \frac{M_{uapp}}{Z \times \sigma_{St}} = \frac{65.35 \times 10^6}{478.9 \times 348} = 392.12 \text{ mm}^2.$$

 $A_{st} = 3.92 \text{ cm}^2$.

+ Condition de non fragilité

La section minimale : A_{st} min $\ge 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 30 \times 49.5 \times \frac{2.1}{400} = 1.79 \text{ cm}^2$.

 $A_{st} \min \ge 1,79 \text{ cm}^2 \rightarrow \text{Condition vérifiée}.$

***** Etat limite accidentelle :

+ En travée : $M_{acct} = 51.71$ KN.m.

$$\mu_u = \frac{M_{ut}}{b \times f_{bc} \times d^2} = \frac{51.71 \times 10^6}{300 \times 18,48 \times (495)^2} = 0,038 \quad \text{\rightarrowavec} : f_{bc} = \frac{f_{c28} \times 0,85}{1,15} = 18,48 \text{ MPa}.$$

$$\mu_u = 0.038 < \mu_r = 0.392$$

Donc la section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1,25 \times (1-\sqrt{1-2\mu}) = 1,25 \times (1-\sqrt{1-2\times0,038})$

$$\alpha = 0.049$$
.

$$\checkmark$$
 Z = d × (1-0,4 α) = 0, 495× (1-0,4×0,049)

$$Z = 0.4852 \text{ m}.$$

$$\checkmark$$
 A_{st} = $\frac{M_{Ut}}{Z \times \sigma_{St}} = \frac{25.71 \times 10^6}{485.2 \times 400} = 132.47 \text{ mm}^2$.

 $A_{st} = 1.32 \text{ cm}^2$.

+ En appuis : $M_{u \text{ app}}$ =-109.99 KN.m.

$$\checkmark \quad \mu_u = \frac{M_{uapp}}{b \times f_{bc} \times d^2} = \frac{109.99 \times 10^6}{300 \times 18,48 \times (495)^2} = 0.081.$$

$$\mu_{\rm u} = 0.081 < \mu_{\rm r} = 0.392.$$

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark \quad \alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,081})$$

$$\alpha = 0.106$$
.

$$\checkmark$$
 Z = d × (1 - 0,4 α) =0, 495 × (1 - 0,4×0,106)

$$Z = 0.4929 \text{ m}.$$

✓
$$A_{st} = \frac{M_{Uapp}}{Z \times \sigma_{St}} = \frac{109.99 \times 10^6}{492.9 \times 400} = 557.87 \text{ mm}^2.$$

$$A_{sa} = 5.58 \text{ cm}^2$$
.

+ Condition de non fragilité

$$La \ section \ minimale: A_{st} \ min \geq 0,23 \times b \times d \times \frac{f_{t28}}{f_e} = 0,23 \times 30 \times 49.5 \times \frac{2,1}{400}$$

 $A_{st} \min \ge 1,79 \text{ cm}^2 \rightarrow \text{Condition vérifiée.}$

***** Finalement:

✓
$$A_{st} = max (2.78; 1.32) = 2.78 cm^2$$
.

On adopte en travée : de section : 3HA12 de section : 3.39 cm².

✓
$$A_{app} = max (3.92; 5.58) = 5.58 cm^2$$
.

On adopte en appui : 2HA12+3HA16 de section : 8.29 cm².

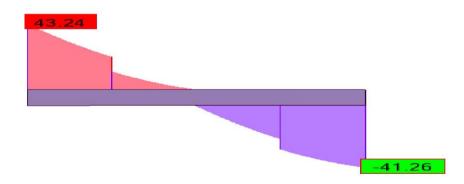
+ Condition du RPA 99 / version 2003

$$A_{min} = 0.5\% \times b \times h = 5 \times 10^{-3} \times 30 \times 55 = 8.25 \text{ cm}^2 \rightarrow \text{Condition v\'erifi\'ee.}$$

***** Etat limite service :

Puisque la fissuration est peut nuisible et l'acier utilisé est le FeE400, alors la vérification des contraintes à l'ELS sera simplifiée comme suit :

$$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$$


$$\mathcal{S} = \frac{M_u}{M_{ser}}$$

Donc il n'est pas nécessaire de vérifier la contrainte du béton $\sigma_{bc} < \overline{\sigma_{bc}}$.

→ Vérification au cisaillement

Tableau V.6 Vérification à E.L.S

Section	$\delta = \frac{M_u}{M_{ser}}$	αu	$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$	Comparaison
Travée	1.36	0,058	0.430	0,058< 0.430
				Condition vérifiée.
Appui	1.36	0,081	0.430	0,081< 0.430
				Condition vérifiée.

Figure V.12 Diagramme de l'effort tranchant (cas défavorable) sous la combinaison état limite service.

$$\tau_{u} = \frac{T_{umax}}{b \times d} \tau_{u} = \frac{43.24 \times 10^{-3}}{0.30 \times 0.495} = 0.29 \text{ MPa.}$$

Pour des fissurations peu nuisibles :

$$\sqrt{\tau_u} = \min \left(\frac{0.2 \times f_{c28}}{\gamma_b} ; 5\text{MPa} \right) = 3.33 \text{ MPa}.$$

$$\tau_u < \overline{\tau_u} \to \text{Condition v\'erifi\'ee.}$$

Calcul des armatures transversales :

+ Diamètre des armatures transversales

$$\varphi_t{\le}\min{(\frac{h}{35}\,;\,\varphi_l\,;}\frac{b}{10}\,)$$

$$\phi_t \le \min(1,57;1,60;3)$$

On prend : $\phi_t = \Phi 8$ mm.

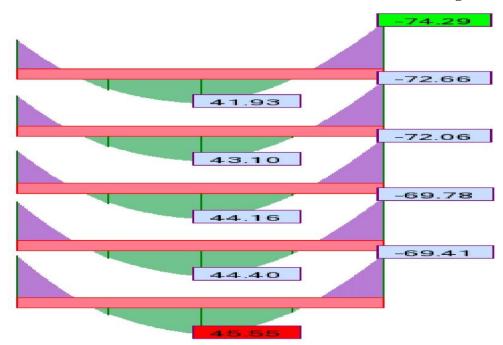
+ Calcul d'espacement des cadres

D'après le RPA 99 / version 2003 (Art 7.4.2.2) on a :

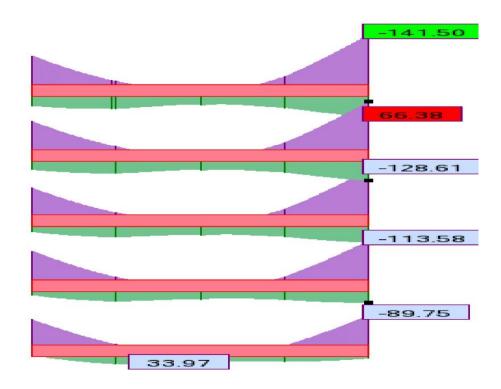
✓ **Zone nodale** : St ≤ min
$$(\frac{h}{4}; 12\phi_l; 30 \text{ cm})$$
.

$$St \le min (11,25; 12\phi_l; 30 cm).$$

On prend : St = 10 cm.

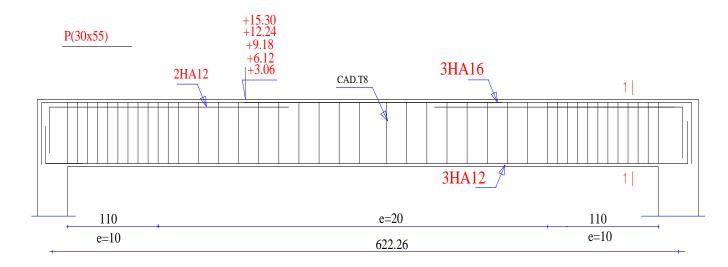

✓ **Zone courante** : St
$$\leq \frac{h}{2} = \frac{55}{2} = 27.5 \text{ cm}.$$

On prend : $S_t = 20$ cm.


Les cardes et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10\emptyset_t$ minimum.

 $10\emptyset t = 8 \times 1,6 = 13 \text{cm}$; alors on adopte longueur de 20 cm.

+ Longueur de la zone nodale


Figure V.13 Diagramme des moments des poutres (30×55) au niveau travée et appuis de RDC et 1^{er} et $2^{\text{éme}}$ et $3^{\text{éme}}$ et de $4^{\text{éme}}$ étage (Combinaison ELU).

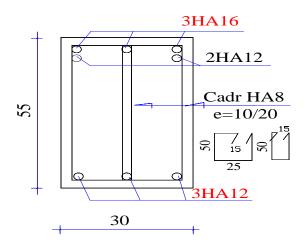
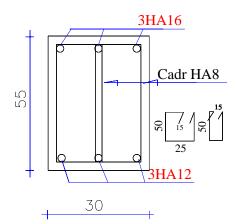


Figure V.14 Diagramme des moments des poutres (30×55) cm² au niveau travée et appuis de RDC et 1^{er}, 2^{éme}, 3^{éme} et 4é^{me} étage (Combinaison 0.8G+EX).


Tableau V.7 Ferraillage des poutres (30×55) cm².

Type de	Tra	ıvée	A	Appui A _{st} choix des armature		oix des armatures
poutre	Acal	Achoisi	Acal	Achoisi	Travée	Appuis
Terrasse	2.78	3.39	5.58	8.29	3HA12	2HA12+3HA16
4 ^{éme} étage	3.2	3.39	7.1	8.29	3HA12	2НА12+3НА16
3 ^{éme} étage	3.1	3.39	6.80	8.29	3HA12	2НА12+3НА16
2 ^{éme} étage	2.7	3.39	6.40	8.29	3HA12	2HA12+3HA16
1 ^{ére} étage	2.3	3.39	5.60	8.29	3HA12	2HA12+3HA16
RDC	2.5	3.39	4.40	8.29	3HA12	2HA12+3HA16

Figure V.15 Ferraillage poutre (30×55) cm² en appuis.

Figure V.16 Ferraillage poutre (30× 55)cm² en travée.

c. L'étude des Poutres principales (30×40) cm²

On va prendre les moments max dans chaque étage et on calcule le ferraillage de toute les poutres de chaque étage ensemble.

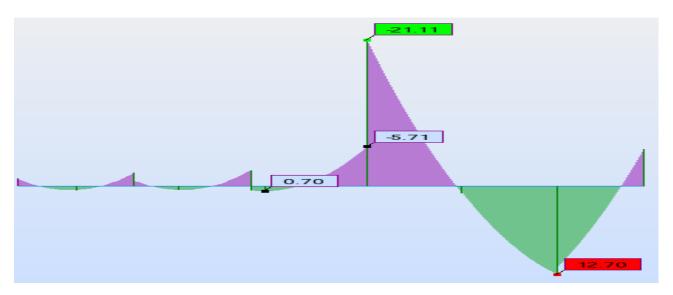


Figure V.17 Diagramme des moments de flexion sous la combinaison ELU au niveau terrasse.

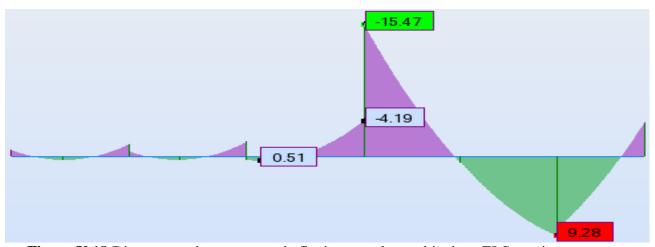


Figure V.18 Diagramme des moments de flexion sous la combinaison ELS au niveau terrasse.

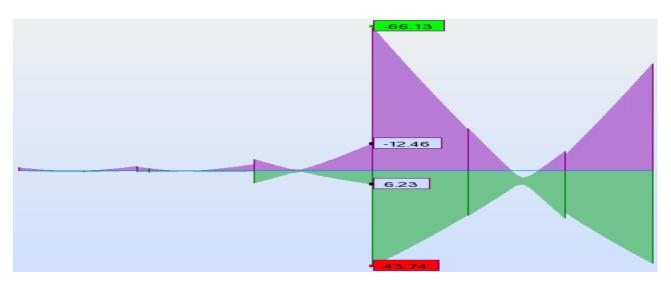


Figure V.19 Diagramme des moments de flexion sous la combinaison ELA au niveau terrasse.

Tableau V.8 Exemple de calcul des armatures longitudinales terrasse.

Section	ELU			ELS	ACC	
(cm ²)						
	Mut max	Mua max	M _{st max}	M _{sa max}	Mt max	Ma max
	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)
30×40	12.70	-21.11	9.28	-15.47	43.74	-66.13

Calcul des armatures longitudinales :

Le calcul du ferraillage est en flexion simple :

$$\checkmark$$
 h = 0,40 m.

✓
$$b = 0.30 \text{ m}$$
.

$$\checkmark$$
 d = 0,9× h = 0,36 m.

✓
$$f_{c28} = 25 \text{ MPa}$$
.

✓
$$f_{t28} = 2,1$$
 MPa.

✓
$$f_{bc} = 14,17 \text{ MPa.}$$

$$\checkmark$$
 $\sigma_{st} = 348 \text{ MPa}.$

***** Etat limite ultime :

★ En travée : M_{ut} = 34.39 KN.m

$$\checkmark$$
 $\mu_u = \frac{M_{ut}}{b \times f_{bc} \times d^2} = \frac{12.70 \times 10^6}{300 \times 14,17 \times (360)^2} = 0.023.$

$$\mu_{\mathbf{u}} = 0.023 < \mu_{1} = 0.392$$

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,023})$

$$\alpha = 0.029$$
.

$$\checkmark$$
 Z = d× (1-0,4 α) =0,36× (1-0,4×0,029) =0.3555m **Z** =355.5 mm.

$$\checkmark$$
 A_{st} = $\frac{M_{Uapp}}{Z \times \sigma_{St}} = \frac{12.70 \times 10^6}{355.5 \times 348} = 102.65 \text{ mm}^2$.

$$\checkmark$$
 A_{st} = 1.03 cm².

+ En appuis : $M_{u \text{ app}}$ = -21.11KN.m.

$$\checkmark \quad \mu_u = \frac{M_{uapp}}{b \times f_{bc} \times d^2} = \frac{\textbf{21.11} \times 10^6}{300 \times 14,17 \times (360)^2} = 0,022.$$

$$\mu_{\rm u} = 0.022 < \mu_{\rm r} = 0.392$$
.

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,022}) \cdot \alpha = 0,028.$

$$\checkmark$$
 Z = d × (1 - 0,4 α) = 0,36 × (1 - 0,4×0,028).**Z** = 0,3559 m=355.9 mm.

$$\checkmark$$
 A_{st} = $\frac{M_{uapp}}{Z \times \sigma_{St}} = \frac{21.11 \times 10^6}{355.9 \times 348} = 170.44 \text{ mm}^2$.

 $A_{st} = 1.70 \text{ cm}^2$.

+ Condition de non fragilité

La section minimale : A_{st} min $\ge 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 30 \times 36 \times \frac{2.1}{400} = 1.30 \text{ cm}^2$

 $A_{st} \min \ge 1,30 \text{ cm}^2 \rightarrow \text{Condition vérifiée}.$

***** Etat limite accidentelle :

+ En travée : $M_{acct} = 43.74$ KN.m.

$$\mu_{\rm u} = \frac{M_{\rm ut}}{b \times f_{\rm bc} \times d^2} = \frac{43.74 \times 10^6}{300 \times 18,48 \times (360)^2} = 0,061 \quad \rightarrow \text{avec} : f_{bc} = \frac{f_{c28} \times 0,85}{1,15} = 18,48 \text{ MPa}.$$

$$\mu_u = 0.061 < \mu_r = 0.392$$

Donc La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1,25 \times (1-\sqrt{1-2\mu}) = 1,25 \times (1-\sqrt{1-2\times0,061})$

$$\alpha = 0.063$$
.

$$\checkmark$$
 Z = d × (1-0,4 α) = 0,36× (1-0,4×0,063)

$$Z = 0.3509 \text{ m} = 350.9 \text{ mm}.$$

$$\checkmark$$
 A_{st} = $\frac{M_{Ut}}{Z \times \sigma_{St}} = \frac{43.74 \times 10^6}{350.9 \times 400} = 311.62 \text{ mm}^2$

 $A_{st} = 3.12 \text{ cm}^2$.

→ En appuis : M_{u app}= **- 66.13** KN.m.

$$\checkmark \quad \mu_u = \frac{M_{uapp}}{b \times f_{hc} \times d^2} = \frac{66.13 \times 10^6}{300 \times 18,48 \times (360)^2} = 0.092.$$

$$\mu_u = 0.092 < \mu_r = 0.392.$$

La section est de simple armature, les armatures de compression ne sont pas nécessaires.

$$\checkmark$$
 $\alpha = 1,25 \times (1-\sqrt{1-2\mu}) = 1,25 \times (1-\sqrt{1-2\times0,092}).\alpha = 0,120.$

$$\checkmark$$
 Z = d × (1 - 0,4 α) =0,36 × (1 - 0,4×0,120).**Z** = 0,3427m =342.7 mm.

✓
$$A_{st} = \frac{M_{Uapp}}{Z \times \sigma_{St}} = \frac{66.13 \times 10^6}{342.7 \times 400} = 482.42 \text{ mm}^2.$$

$$A_{sa} = 4.82 \text{ cm}^2$$
.

+ Condition de non fragilité

La section minimale : A_{st} min $\geq 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 40 \times 27 \times \frac{2.1}{400}$

 $A_{st} \min \ge 1,30 \text{ cm}^2 \rightarrow \text{Condition vérifiée.}$

***** Finalement:

$$\checkmark$$
 A_{st} = max (1.03; 3.12) = 3.12 cm².

On adopte en travée : de section : 3HA14 de section : 4.62 cm².

✓
$$\mathbf{A}_{app} = \max(1.70; 4.82) = 4.82 \text{ cm}^2$$
.

On adopte en appui : 2HA12+3HA14 de section : 7.70 cm².

+ Condition du RPA 99 / version 2003

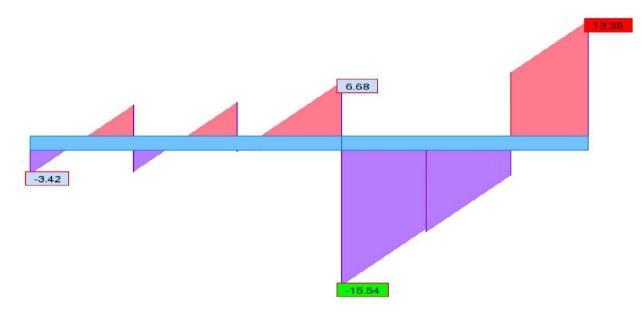
$$A_{min} = 0.5\% \times b \times h = 5 \times 10^{-3} \times 30 \times 40 = 6 \text{ cm}^2 \rightarrow \text{Condition vérifiée.}$$

***** Etat limite service :

+ En travée

Puisque la fissuration est peut nuisible et l'acier utilisé est le FeE400, alors la vérification des

Contraintes à l'ELS sera simplifiée comme suit :


Tableau V.9 Vérification à E.L.S.

$$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$$
$$\delta = \frac{M_u}{M_{ser}}$$

Donc il n'est pas nécessaire de vérifier la contrainte du béton $\sigma_{bc} < \overline{\sigma_{bc}}$.

+ Vérification au cisaillement

Section	$\delta = \frac{M_u}{M_{ser}}$	α_{u}	$\alpha = \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$	Comparaison
Travée	1.37	0,029	0.436	0,029< 0.436 Condition vérifiée.
Appui	1.37	0,028	0.435	0,028< 0.436 Condition vérifiée.

Figure V.20 Diagramme de l'effort tranchant (cas défavorable) sous la combinaison état limite service.

$$\tau_{u} = \frac{T_{umax}}{b \times d} \tau_{u} = \frac{15.54 \times 10^{-3}}{0.30 \times 0.36} = 0.14 \text{ MPa. Pour des fissurations peu nuisibles}:$$

$$\sqrt{\tau_u} = \min(\frac{0.2 \times f_{c28}}{\gamma_b}; 5\text{MPa}) = 3.33\text{MPa}.$$

✓
$$\tau_{u < \overline{\tau_u}} \rightarrow \text{Condition vérifiée.}$$

Calcul des armatures transversales

+ Diamètre des armatures transversales

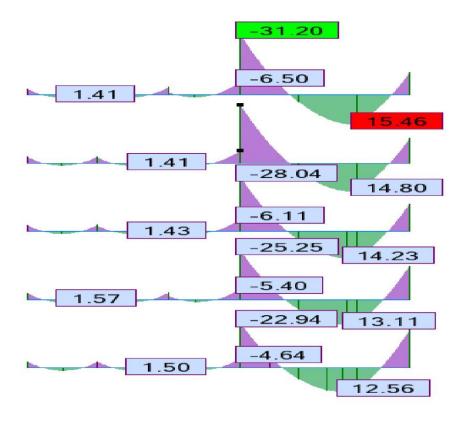
$$\phi_t \le \min\left(\frac{h}{35}; \phi_l; \frac{b}{10}\right). \phi_t \le \min(1,14;1,60;3).$$
 On prend : $\phi_t = \Phi 8$ mm.

+ Calcul d'espacement des cadres

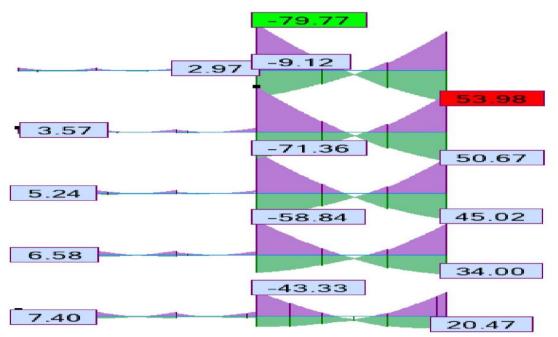
D'après le RPA 99 / version 2003 (Art 7.4.2.2) on a :

✓ **Zone nodale** : St ≤ min
$$(\frac{h}{4}; 12\phi_l; 30 \text{ cm})$$
.

St
$$\leq$$
 min (10; 12 ϕ_l ; 30cm).**On prend**: **St** = **10cm**.


✓ **Zone courante** : St
$$\leq \frac{h}{2} = \frac{40}{2} = 20$$
 cm.

On prend : St = 20 cm.


Les cardes et les étriers doivent être fermés par des crochets a 135° ayant une longueur droite de $10\emptyset_t$ minimum.

10%t =8×1,6 = 13cm; alors on adopte longueur de 20 cm.

► Longueur de la zone nodale :

Figure V.21 Diagramme des moments des poutres principales au niveau travée et appuis de RDC et 1^{er} et 2^{éme} et 3^{éme} et de 4^{éme} et 5^{éme} étage (Combinaison ELU).

Figure V.22 Diagramme des moments des poutres principales au niveau travée et appuis RDC et de 1^{er}, 2^{éme}, 3^{éme} et 4^{éme} et 5^{éme} étage (Combinaison 0.8G+EX).

Tableau V.10 Ferraillage des poutres principales.

Type de	Tra	ıvée	A	Appui A _{st} choix des armatures		oix des armatures
poutre	Acal cm ²	Achoisi cm ²	Acal cm ²	Achoisi cm ²	Travée	Appuis
Terrasse	3.12	4.62	4.82	6.88	3HA14	2HA12+3HA14
4 ^{éme} étage	3.70	4.62	5.60	6.88	3HA14	2HA12+3HA14
3 ^{éme} étage	3.50	4.62	5.50	6.88	3HA14	2НА12+3НА14
2 ^{éme} étage	3.1	4.62	5	6.88	3HA14	2HA12+3HA14
1 ^{ére} étage	2.3	3 .39	4.1	6.88	3HA12	2HA12+3HA14
RDC	1.4	3.39	3.3	6.88	3HA12	2HA12+3HA14

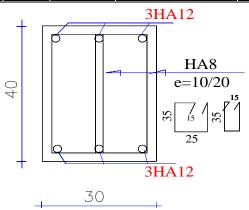
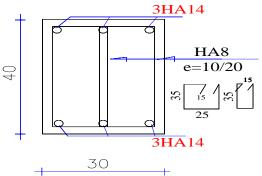
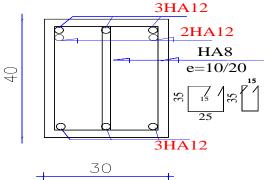
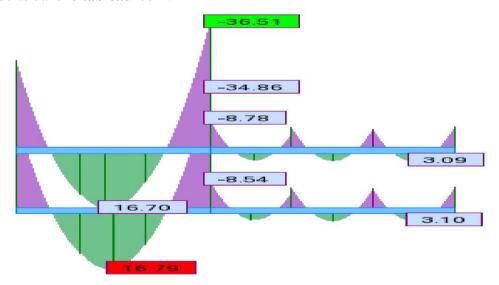
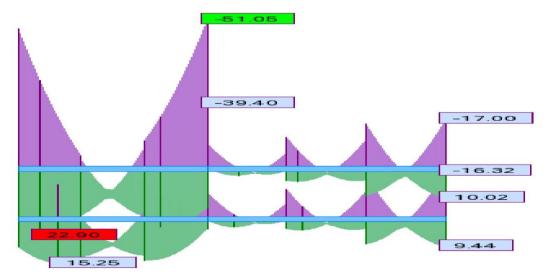
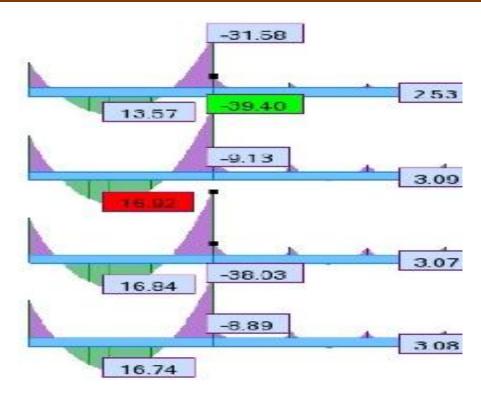




Figure V.23 Ferraillage des poutres principales au niveau travée de RDC et 1^{er} étage.


Figure V.24 Ferraillage des poutres principales au niveau travée de 2^{éme}et 3^{éme}et 4^{éme} et 5^{éme} étage.


Figure V.25 Ferraillage des poutres principales au niveau appuis de RDC et 1^{er} et 2^{éme} et 3^{éme} et 4^{éme} et 5^{ème} étage.

d. L'étude des Poutres secondaires (30×40)


Les mêmes étapes des calculs faites pour le calcul de ferraillage des poutres secondaires et les résultats réduits dans **le tableau V.11**.

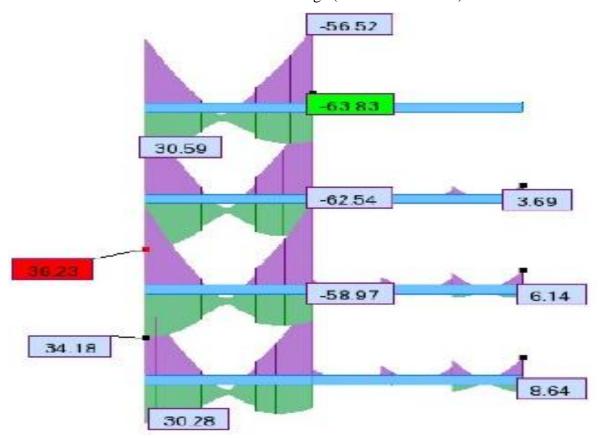

Figure V.26 Diagramme des moments des poutres secondaires au niveau de travée et appuis niveaux RDC et 1^{éme}étage (Combinaison ELU).

Figure V.27 Diagramme des moments des poutres secondaires au niveau travée et appuis de niveaux RDC et 1^{éme} étage (Combinaison 0.8G+EY).

Figure V.28 Diagramme des moments des poutres secondaires au niveau travée et appuis niveaux 2_{éme} et 3_{éme} et 4^{éme} et 5^{éme} étage (Combinaison ELU).

Figure V.29 Diagramme des moments des poutres secondaires au niveau travée et appuis de niveaux 2_{éme} et 3_{éme} étage et 4^{éme} et 5^{éme} étage (Combinaison 0.8G+EY).

Tableau V.11 Ferraillage des poutres secondaires.

Type de	Tra	ıvée	A	Appui		A _{st} choix des armatures	
poutre	Acal	Achoisi	Acal	Achoisi	Travée	Appuis	
	cm ²	cm ²	cm ²	cm ²			
Terrasse	1.2	3.39	2.5	4.96	3HA12	3HA12+2HA10	
4 ^{éme} étage	1.3	3.39	3.1	4.96	3HA12	3HA12+2HA10	
3 ^{éme} étage	1.3	3.39	3.1	4.96	3HA12	3HA12+2HA10	
2 ^{éme} étage	1.3	3.39	3	4.96	3HA12	3HA12+2HA10	
1 ^{ére} étage	1.3	3.39	2.9	4.96	3HA12	3HA12+2HA10	
RDC	1.3	3.39	2.8	4.96	3HA12	3HA12+2HA10	

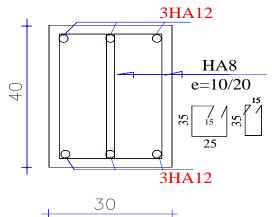
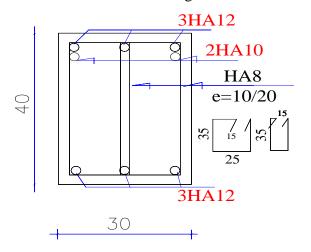
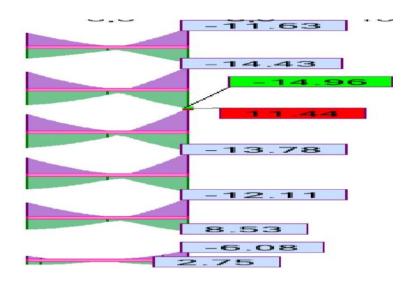



Figure V.30 Ferraillage des poutres principales au niveau travée de RDC et 1^{er} et 2^{éme} et 4^{éme} et 5^{éme} étage.


Figure V.31 Ferraillage des poutres principales au niveau appuis de RDC et 1^{er} et $2^{\acute{e}me}$ et $4^{\acute{e}me}$ et $5^{\acute{e}me}$ étage.

e. L'étude des Poutres noyau section (30X20)

Tableau V.12 poutres noyées.

Section	EI	LU	AC	CC
(cm ²)	Mutmax	Muamax	Mt _{max}	$\mathbf{M}_{\mathbf{amax}}$
	(KN.m)	(KN.m)	(KN.m)	(KN.m)
30×20	1.75	-2.57	11.44	-14.96
		7 5	-1.47 -1.99 -2.43 -2.36 -2.40	

Figure V.32 Diagramme des moments des poutres noyées au niveau de travée et appuis de (Combinaison ELU).

Figure V.33 Diagramme des moments des poutres noyées au niveau de travée et appuis de (Combinaison 0.8G+EX).

Tableau V.13 Résultats de calcul de ferraillage des poutres noyées.

Type de	Tra	vée Appui		ppui	A _{st} choix des armatures	
poutre	Acal cm ²	Achoisi cm ²	Acal cm ²	Achoisi cm ²	Travée	Appuis
RDC et les étages	2	3.39	2.7	3.39	3HA12	3HA12

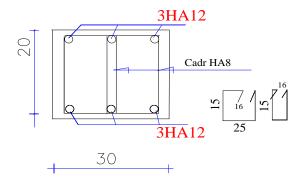


Figure V.34 Ferraillage des poutres noyées.

II.8. Etude de ferraillage des voiles

a. Introduction

Le voile est un élément structural de contreventement qui doit reprendre les forces horizontales dues au vent "action climatique" ou aux séismes (action géologique), soumis à des forces verticales et horizontales. Donc le ferraillage des voiles consiste à déterminer les armatures en flexion composée sous l'action des sollicitations verticales dues aux charges permanentes (G) et aux surcharges d'exploitation (Q), ainsi sous l'action des sollicitations dues aux séismes.

b. Conception

Il faut que les voiles soient placés de telle sorte que l'excentricité soit minimum (Torsion) Les voiles ne doivent pas être trop éloignés (Flexibilité du plancher) L'emplacement des voiles ne doit pas déséquilibrer la structure (Il faut que les rigidités dans les deux directions soient très proches).

c. Stabilité des constructions vis-à-vis les charges latérales

Du point de vue de la stabilité sous charges horizontales (vent, séisme), on distingue différents types des structures en béton armé :

- ✓ Structures auto stables.
- ✓ Structure contreventée par voiles.

Dans notre projet, la structure est contreventée par des voiles et portiques appelés contreventement, dont le but est d'assurer la stabilité (et la rigidité) de l'ouvrage vis à vis des charges horizontales.

d. Rôle de contreventement

Le contreventement a donc principalement pour objet :

- ✓ Assurer la stabilité des constructions non auto stable vis à vis des charges horizontales et de les transmettre jusqu'au sol.
- ✓ De raidir les constructions, car les déformations excessives de la structure sont source de dommages aux éléments non structuraux et à l'équipement.

e. Ferraillage des voiles

Les voiles seront calculés en flexion composée sous l'effet des sollicitations qui les engendrent, le moment fléchissant et l'effort normal est déterminé selon les combinaisons comprenant la charge permanente, d'exploitation ainsi que les charges sismiques.

f. Combinaison

Selon le règlement parasismique Algérienne (RPA 99) les combinaisons à considérer dons notre cas (voiles) est les suivants :

✓ **ELU**: 1,35G +1,5Q.

 \checkmark **ELS** : G + Q.

 \checkmark ACC : $\begin{cases} G + Q \pm E. \\ 0.8G \pm E. \end{cases}$

g. Pré dimensionnement des voiles

Les différentes épaisseurs et hauteurs des voiles sont regroupées dans le tableau suivant :

Tableau V.14 Pré dimensionnement des voiles.

Voiles	Hauteur	Epaisseur
RDC5éme étage	3.06m	15 cm

Dans les tableaux suivants on va regrouper les sollicitations max pour tous les types des voiles obtenues par le logiciel Autodesk Robot Structural Analysis Professional 2010.

NB: On utilise (M z max avec N corr) et (N min avec M z corr) dans ELU et ACC et on prend le plus défavorable.

Tableau V.15 Les résultats des voiles longitudinales.

Etage		RDC	1 ^{er}	2 éme à 5éme			
Les voiles longitudinale VL1							
ACC	M _{z max} (KN.m)	5922,85	4334,06	3370,18			
ACC	N _{corr} (KN)	1488,13	1163,50	842,23			
ELU	Mzcorr(KN.m)	135,14	134,64	133,46			
ELU	N _{min} (KN)	-1149,54	-974,06	-826,93			

ACC	T (KN)	1054,26	1279,77	1217,54
	Les vo	oiles longitu	dinale VL2	
ACC	M _{zmax} (KN.m)	4181,34	3367,79	2532,68
ACC	N _{corr} (KN)	2735,70	2398,68	1842,01
ELU	Mzcorr (KN.m)	42,78	76,75	126,94
ELU	N _{min} (KN)	-1552,84	-1400,26	-1193,95
ACC	T (KN)	1048,54	1431,67	1271,77
	Les vo	oiles longitu	dinale VL3	
ACC	M _{zmax} (KN.m)	4097,43	2950,11	1954,02
ACC	N _{corr} (KN)	2641,63	2053,55	1384,74
ELU	Mzcorr (KN.m)	-1400,26	48,05	32,62
ELU	N _{min} (KN)	76,75	-898,48	-718,11
ACC	T (KN)	1220,58	1562,89	1442,39

 $Tableau\ V.16\ {\it Ferraillage}\ du\ voile\ longitudinal\ V{\it L1}.$

Etage	Section VL1	Amin RPA	A calculé	Ferraillage longitudina	
	(cm2)	(cm ²)	(cm²)	Section cm ²	Au cm
RDC	15×440	9.90	31,29	41.56	27HA14
1 ^{ére} étage	15×440	9.90	22,28	29.41	27HA12
2 ^{ème} étage	15×440	10.12	17,84	29.41	27HA12
3 ^{ème} étage	15×440	10.12	17,84	29.41	27HA12
4 ^{ème} étage	15×440	10.12	17,84	29.41	27HA12
5 ^{ème} étage	15×440	10.12	17,84	29.41	27HA12

Tableau V.17 Ferraillage du voile longitudinal V_{L2} .

Etage	Section V _{L2}	A min RPA	A calculé	Ferraillage longitudinal	
	(cm2)	(cm ²)	(cm²)	Section cm ²	Au cm
RDC	15×340	7.59	35,57	36.95	24HA14
1 ^{ére} étage	15×340	7.59	28,65	36.95	24HA14
2 ^{ème} étage	15×340	7.76	21,54	27.14	24HA12

3 ^{ème} étage	15×340	7.76	21,54	27.14	24HA12
4 ^{ème} étage	15×340	7.76	21,54	27.14	24HA12
5 ^{ème} étage	15×340	7.76	21,54	27.14	24HA12

Tableau V.18 Ferraillage du voile longitudinal Vl.3.

Etage	Section V _{L2}	A min RPA	A calculé	Ferraillage longitudinal	
	(cm2)	(cm²)	(cm²)	Section cm ²	Au cm
RDC	15×310	6.63	37,28	42.22	21HA16
1 ^{ére} étage	15×310	6.63	27,92	42.22	21HA16
2 ^{ème} étage	15×310	6.97	21,93	23.75	21HA12
3 ^{ème} étage	15×310	6.97	21,93	23.75	21HA12
4 ^{ème} étage	15×310	6.97	21,93	23.75	21HA12
5 ^{ème} étage	15×310	6.97	21,93	23.75	21HA12

Tableau V.19 Les résultats du voile transversal.

Etage		RDC	1 _{er}	2émeà 5éme
	Les	voiles longitud	inale Vl1	
ACC	Mzmax(KN.m)	2775,17	1901,69	1459,74
ACC	Ncorr(KN)	1499,66	1173,43	891,97
ELU	Mzcorr(KN.m)	-87,70	-68,18	-68,18
ELU	Nmin(KN)	-1097,53	-921,41	-921,41
ACC	T (KN)	706,15	827,90	802,12
	Les	voiles longitud	inale VL2	***
ACC	M _{zmax} (KN.m)	2447,17	1855,03	1282,44
ACC	Ncorr (KN)	3416,45	2667,47	1850,36
ELU	Mzcorr (KN.m)	-78,04	-122,36	-104,22
ELU	Nmin (KN)	-1654,88	-1391,97	-1126,61
ACC	T (KN)	843,66	990,19	1012,32
	Les	voiles longitud	inale VL3	<u> </u>
ACC	Mzmax (KN.m)	4892,43	3870,24	2916,36

ACC	Ncorr (KN)	3762,87	2986,59	2047,17
ELU	Mzcorr (KN.m)	-44,92	-67,45	-44,92
ELU	Nmin (KN)	-820,49	-1035,46	-820,49
ACC	T (KN)	977,77	1286,90	1245,43

Tableau V.20 Ferraillage du voile transversal V_{L1} .

Etage	Section V _{L1}	A min RPA	A calculé	Ferraillage longitudinal	
	(cm2)	(cm²)	(cm²)	Section cm ²	Au cm
RDC	15×310	6.63	23,25	26.14	13HA16
1 ^{ére} étage	15×310	6.63	16,93	26.14	13HA16
2 ^{ème} étage	15×310	6.75	12,93	14.70	13HA12
3 ^{ème} étage	15×310	6.75	12,93	14.70	13HA12
4 ^{ème} étage	15×310	6.75	12,93	14.70	13HA12
5 ^{ème} étage	15×310	6.75	12,93	14.70	13HA12

 $Tableau\ V.21\ {\it Ferraillage}\ du\ voile\ transversal\ V{\it L2}.$

Etage	Section	Amin RPA	A calculé	Ferraillage longitudinal	
	VL2	(cm ²)	(cm ²)	Section	Au (cm)
	(cm2)			(cm ²)	
RDC	15×340	7.59	20,82	30.16	15HA16
1 ^{ére} étage	15×340	7.59	15,78	16.96	15HA12
2 ^{ème} étage	15×340	7.76	10,91	16.96	15HA12
3 ^{ème} étage	15×340	7.76	10,91	16.96	15HA12
4 ^{ème} étage	15×340	7.76	10,91	16.96	15HA12
5 ^{ème} étage	15×340	7.76	10,91	16.96	15HA12

Tableau V.22 Ferraillage du voile transversal Vl3.

Etage	Section	Amin RPA	A calculé	Ferraillage le	ongitudinal
	VL3	(cm²)	(cm ²)	Section cm ²	Au
	(cm2)				
RDC	15×440	9.90	19,20	20.01	13HA14
1 ^{ére} étage	15×440	9.90	15,19	20.01	13HA14
2 ^{ème} étage	15×440	10.12	11,44	14.40	13HA12
3 ^{ème} étage	15×440	10.12	11,44	14.40	13HA12
4 ^{ème} étage	15×440	10.12	11,44	14.40	13HA12
5 ^{ème} étage	15×440	10.12	11,44	14.40	13HA12

h. Vérification

Voile longitudinal:

D'après le **RPA 99 / version 2003**

Amin = $0.15\% \times b \times h$

Amin = $0.15\% \times 15 \times (480 - 40) = 9.90 \text{ cm}^2$.

+ L'espacement

Selon le BAEL 91 révisée 99,

✓ St ≤ min $\{2 \times a ; 33 \text{ cm}\}$. St ≤ min $\{2 \times 15 ; 33 \text{ cm}\}$.

 $St \le min \{30; 33 cm\}$

St≤ 30cm

Selon le RPA 99 / version 2003 on a:

✓ St ≤ min $\{1,5 \times a ; 30 \text{ cm}\}$. St ≤ min $\{22.5 \text{ cm} ; 30 \text{ cm}\}$.

 $St \le 22.5$ cm.

Donc: St ≤ min {St BAEL 91 révisée 99 ; St RPA 99 / version 2003}

 $St \le 22.5$ cm.

On adopte un espacement de 20 cm.

❖ Voile transversal:

D'après le RPA 99 / version 2003

 $Amin = 0.15\% \times b \times h$

Amin = $0.15\% \times 15(480 - 30) = 9.90$ cm².

+ L'espacement

Selon le BAEL 91 révisée 99, on â

✓ St ≤ min $\{2 \times a; 33 \text{ cm}\}$. St ≤ min $\{2 \times 15; 33 \text{ cm}\}$. St ≤ min $\{30; 33 \text{ cm}\}$.

 $St \leq 30cm$.

Selon le RPA 99 / version 2003:

✓ St ≤ min $\{1,5 \times a ; 30 \text{ cm}\}.$ St ≤ min $\{22.5 \text{ cm} ; 30 \text{ cm}\}.$

 $St \le 22.5$ cm.

Donc : St ≤ min {St BAEL 91 révisée 99 ; St RPA 99 / version 2003}

 $St \le 22.5$ cm.

On adopte un espacement de 20 cm.

- i. Disposition des armatures
 - **Armatures verticales:**

La distance entre axes des armatures verticales d'une même face ne doit pas dépasser deux fois l'épaisseur du mur ni 36 cm Selon le BAEL 91, et selon l'RPA 99 / version 2003 ne doit pas dépasser 1,5 de l'épaisseur du mur ni 22.5 cm

A chaque extrémité du voile l'espacement des barres doit être réduit de moitié sur **L/10** de la largeur du voile. Cet espacement d'extrémité doit être au plus égal à **15 cm**.

On a St = $20 \text{ cm} \rightarrow \frac{\text{St}}{2} = 10 \text{ cm} < 15 \text{ cm} \rightarrow \text{Condition vérifiée.}$

- ✓ **Voile transversal** : $L = 310 \text{ cm} \rightarrow L/10 = 31 \text{cm}$.
- ✓ **Voile longitudinal** : $L = 440 \text{ cm} \rightarrow L/10 = 44 \text{ cm}$.
- **Armatures horizontales:**

Les barres horizontales doivent être munies de crochets à 135° ayant une longueur de 10Φ .

Elles doivent être retournées aux extrémités du mur et aux bords libres qui limitent les ouvertures sur l'épaisseur du mur.

Le diamètre des barres verticales et horizontales des voiles ne doit pas dépasser L/10 de

L'épaisseur du voile.

Chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.

Armatures transversales:

Les deux nappes d'armatures doivent être reliées avec au moins 4 cadres au mètre carré.

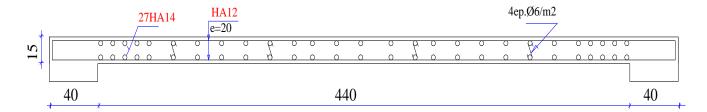


Figure V.35 Coupe horizontale de Ferraillage des voiles (V_{L1}) au niveau RDC.

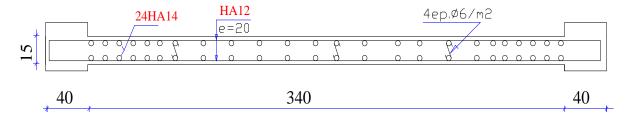


Figure V.36 Coupe horizontale de Ferraillage des voiles (V_{L2}) au niveau RDC.

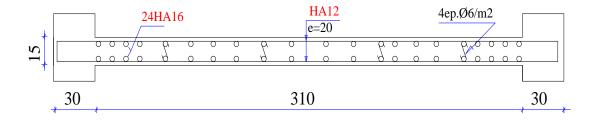
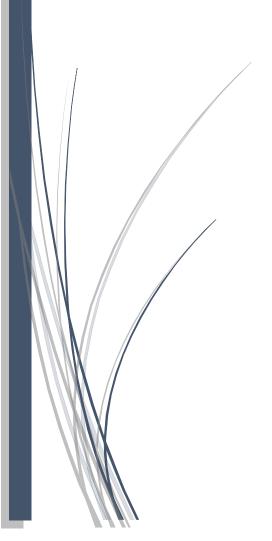



Figure V.37 Coupe horizontale de Ferraillage des voiles (V_{L3}) au niveau RDC

Chapitre VI

Etude de l'infrastructure

Chapitre VI: Etude de l'infrastructure

VI.1. Introduction

Un ouvrage quelle que soient sa forme et sa destination, prend toujours appui sur un sol d'assise. Les éléments qui jouent le rôle d'interface entre l'ouvrage et le sol s'appellent fondations. Ainsi, quel que soit le matériau utilisé, sous chaque porteur vertical, mur, voile ou poteau, il existe une fondation.

VI.2. Rôle de fondations

L'infrastructure doit constituer un ensemble rigide capable de remplir les fonctions suivantes : Réaliser l'encastrement de la structure dans le terrain.

Assurent la liaison avec le sol pour transmettent et repartissent les efforts de la superstructure. Les fondations supportent différentes charges telles que :

a. Les charges verticales

- ✓ Les charges permanentes : telles que le poids des éléments porteurs, le poids des éléments non porteurs.
- ✓ Les charges variables : telles que le poids des meubles, le poids des personnes, le poids de la neige.

b. Les charges horizontales (ou obliques)

- ✓ Les charges permanentes : telles que la poussée des terres.
- ✓ Les charges variables : telles que la poussée de l'eau ou du vent.

Un mur ou un poteau supporte une partie des charges de l'ouvrage et compte-tenu de ses faibles dimensions, risquent de poinçonner le sol. C'est pour cela que sous un mur et un poteau, on place une fondation qui permet de répartir la même charge mais sur une surface horizontale plus importante et donc de diminuer la pression exercée sur le sol, c'est à dire de diminuer la force exercée sur le sol par unité de surface.

- ✓ Elles jouent un rôle d'appuis.
- ✓ Limiter les tassements différentiels a une valeur acceptable.

Les fondations constituent donc la partie essentielle de l'ouvrage puisque de leurs bonnes conception et réalisation découle la bonne tenue de l'ensemble.

Les éléments de fondation transmettent les charges au sol, soit directement (cas des semelles reposant sur le sol ou cas des radiers), soit par l'intermédiaire d'autres organes (cas des semelles sur pieux par exemple).

VI.3. Contrainte admissible du sol

Il faudra toujours s'assurer que la pression exercée par la fondation sur le sol est inférieure à la pression que peut supporter le sol (contrainte admissible " σ_{adm} "). La pression que peut supporter le sol a été déterminée grâce aux essais de reconnaissance de sol.

La contrainte admissible du sol est déterminée en fonction des caractéristiques suivantes :

- ✓ Poids spécifique du sol $\sec \gamma_d$.
- ✓ Poids spécifique des grains γ_s .
- ✓ Cohésion non drainée Cu.
- ✓ Angle de frottement effectif φ .
- Selon le rapport géotechnique, le sol destiné à recevoir le bâtiment est considéré comme un site meuble (S3), avec une Contrainte admissible du sol $\sigma_{adm} = 2.0$ bar.
- La profondeur de la fondation(D) doit être supérieure à $\frac{H}{10}$.

Avec:

H: Hauteur totale du bâtiment H = 18.36m.

$$D \ge \frac{H}{10} = \frac{18.36}{10} = 1.84 \text{ m}.$$

Le bon sol existe à une profondeur de 1.50 m(après l'étude géotechnique).

Finalement on prend dans les calculs une profondeur des fondations D = 2 m.

VI.4. Stabilité des fondations

Les massifs de fondations doivent être en équilibre sous l'action :

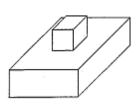
- ✓ Des sollicitations dues à la superstructure qui sont : des forces verticales ascendantes ou descendantes, des forces obliques, des forces horizontales et des moments de flexion ou de torsion ;
- ✓ Des sollicitations dues au sol qui sont : des forces verticales ascendantes ou descendantes et des forces obliques (adhérence, remblais, etc.).

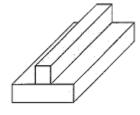
VI.5. Type des fondations

a. Fondations superficielles

Les fondations sont dites superficielles si la condition suivante est respectée: $\frac{D}{R} < 4$

Avec:


D: la distance entre le dessous de la fondation et le niveau fini du sol.


B: largeur de la fondation.

Les principaux types de fondations superficielles que l'on rencontre dans la pratique sont :

• Les semelles isolées : placée sous un poteau,

- Les semelles filantes : placées sous un mur ou plusieurs poteaux rapprochés,
- Les radiers.

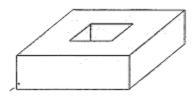


Figure 1.a Semelle isolée.

Figure 1.b Semelle filante.

Figure1.c Radier.

Figure VI.1 Les fondations superficielles.

b. Fondations profondes

Les fondations sont dites profondes si une des deux conditions suivantes est respectée :

$$\frac{D}{R}$$
 < 1.50 Ou **D** < 3 m.

Les principaux types de fondations profondes sont :

- Les pieux (fondations profondes).
- Les puits (fondations semi profondes).

VI.6. Choix du type des fondations

Le choix du type de fondation repose essentiellement sur une étude du sol détaillée, qui nous renseigne sur la capacité portante de ce dernier.

On vérifie dans l'ordre suivant : Les semelles isolées, les semelles filantes et le radier général et enfin on opte pour le choix qui convient.

Le choix du type de fonctions dépend de plusieurs paramètres dont les plus importants sont notamment :

- ✓ La capacité portante de terrain de fondation.
- ✓ La charge totale transmise au sol.
- ✓ La distance entre axes des poteaux.
- ✓ La profondeur du bon sol.
- ✓ Le type d'ouvrage à construire.
- ✓ La nature et l'homogénéité du bon sol.

Ce choix doit satisfaire deux critères essentiels à savoir :

- ✓ Assurer la sécurité des habitants et la stabilité totale de l'ouvrage.
- ✓ Solution facile à réaliser et économique.

Chapitre VI: Etude de l'infrastructure

VI.7 Calcul des fondations

a. Combinaison d'action

➤ D'après **RPA99** modifié en 2003 (**Article 10.1.4.1**), les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

$$G+Q \pm E$$
.

$$0.8G \pm E$$
.

D'après **BAEL 91** révisée 99:

$$G+Q$$
.

b. Etude du voile périphérique

Un voile périphérique est prévu entre la fondation et le niveau du plancher de base, d'après l'article 10.1.2 du RPA99/version 2003, le voile périphérique doit avoir les caractéristiques minimales ci-dessous :

- ✓ L'épaisseur du voile doit être supérieur ou égale 15cm.
- ✓ Les armatures sont constitués deux nappes d'armatures (symétriques) placées conformément au schéma de la figure ci-dessous:

Le pourcentage minimal des armatures horizontales et verticales doit être de 0,10% dans les 2 sens.

$$A_{min}(verticale) = A_{min}(horizontale) = \frac{0.1}{100}(bh).$$

❖ Dimensionnement et ferraillage du voile périphérique :

Le voile périphérique de la tour présente les dimensions suivantes :

- ✓ Hauteur = 2m.
- ✓ Epaisseur = 0.15m.

Pour le ferraillage, voile sera armé dans chaque sens (vertical et horizontal) d'au moins 0,1% de sa section ; soit :

$$A_{min}(verticale) = A_{min}(horizontale) = 0.1\% (b \times h) = \frac{0.1}{100}(15 \times 200) = 3 \text{ cm}^2.$$

D'où une section d'armatures par mètre linéaire constituée de 5HA10/ml avec espacement e = 20 cm.

Etant exposé parfois à l'eau, les armatures seront placées à 3cm des parois externes.

Le schéma de ferraillage du voile est représenté à travers la figure suivante:

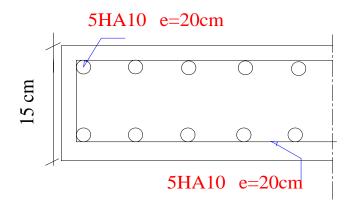


Figure VI.2 Coupe du schéma de ferraillage du voile périphérique.

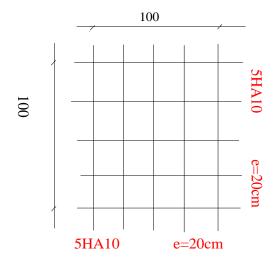


Figure VI.3 Vue longitudinale du schéma de ferraillage du voile périphérique.

c. La surface des semelles

La surface de la semelle doit être suffisante pour répartir sur le sol, les charges apportées par les porteurs verticaux.

Répartir une force sur une surface, c'est exercer une pression :

$$\sigma = \frac{N}{S_{semelle}}$$

- ✓ Pour le dimensionnement de la surface au sol ;Les semelles de fondations sont calculées à l'E.L.S.
- ✓ La capacité portante du sol doit être supérieure à la pression exercée par les fondations. La surface S d'une semelle s'exprime :

$$\sigma = \frac{N_{ser}}{S_{semelle}} \le \overline{\sigma}_{sol} \Rightarrow S_{semelle} \ge \frac{N_{ser\ total}}{\overline{\sigma}_{sol}}$$

Dont:

✓ N_{ser}: La somme des efforts amenés par l'ouvrage sur toutes les semelles à partir de la combinaison de L'ELS.

Chapitre VI: Etude de l'infrastructure

- \checkmark $\overline{\sigma}_{sol}$: Contrainte admissible du sol en bars = 2 bar = $20t/m^2$.
- ✓ $S_{semelle}$: Surface total des semelles (A × B).
- N_{sertotal}= 12233.85 KN=1223.385 t.
- $\overline{\sigma}_{sol} = 20t/m^2$ (donnée par le rapport géotechnique).
- $S_{\text{semelle}} \ge \frac{1223,385 \text{ t}}{20} = 61.17 \text{ m}^2.$

La surface totale du bâtiment est : S_{bat} =207.19 m².

$$\frac{S_{\text{semelle}}}{S_{\text{hat}}} = \frac{61.17}{207.19} = 0.29 < 0.50.$$

$$S_{\text{semelle}} = 61.17 \text{ m}^2 < 0.50 \times S_{bat} = 0.50 \times 207.19 = 103.59 \text{ m}^2.$$

La surface totale des semelles ne dépasse pas 50 % de la surface d'emprise du bâtiment. Ceci nous amène à envisager deux types de semelles :

- > semelles isolées sous poteaux.
- > semelles filantes sous voile.

La figure suivant montre la disposition des semelles filantes et des semelles isolées à la base de notre bâtiment.

VI.8 Calcul les semelles isolées

a. Pré dimensionnements des semelles isolées

Une fondation isolée définie par des caractéristiques géométriques :

- B: longueur de la semelle ou plus grand côté d'une semelle ; aux cotés b du poteau.
- A : largeur de la semelle ou plus petit côté de la semelle ; aux cotés b du poteau.

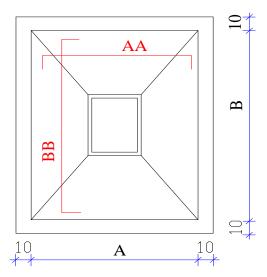


Figure VI.4 Vu en plan d'une semelle isolée.

❖ Dimensionnement de la semelle isolée S₁:

Nous donnons dans ce qui suit le détail de calcul de la semelle isolée S₁.

La surface de la semelle $S_{semelle}$ devra satisfaire la relation suivante :

$$S_{semelle} \ge \frac{N_{ser}}{\overline{\sigma}_{sol}}$$

✓ N_{ser}: Effort amené par l'ouvrage sur la semelle S₁à partir de la combinaison de L'ELS obtenue par logiciel Robot 2016.

$$N_{ser} = 894.16 \text{ KN} = 89.42 \text{ t.}$$

***** Homothétie des dimensions :

RDC: $(a \times b) = (40 \times 45) \text{ cm}^2$.

$$k = \frac{a}{b} = \frac{A}{B} = \frac{40}{45} = 0.89 \Rightarrow A = \frac{a}{b} B.$$

$$S_{\text{semelle}} = A \times B \Rightarrow S_{\text{semelle}} = \frac{a}{b} B \times B = \frac{a}{b} B^2.$$

$$S_{\text{semelle}} = \frac{a}{b}B^2 \ge \frac{N_{\text{ser}}}{\overline{\sigma}_{\text{sol}}} \Rightarrow B \ge \sqrt{\frac{N_{\text{ser}}}{\overline{\sigma}_{\text{sol}} \frac{a}{b}}} \Rightarrow B \ge \sqrt{\frac{89.42}{20\frac{0.40}{0.45}}} = 2.24 \, m.$$

On prend B = 2.30 m.

$$A = \frac{a}{b}B = 0.89 \times B = 0.89 \times 2.30 = 2.05 \text{ m}.$$

Donc finalement on choisit une semelle $S_1(A \times B) = (2,10 \text{ m} \times 2,30 \text{ m})$.

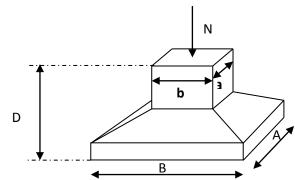


Figure VI.5 Dimensions de la semelle isolée.

\Delta La hauteur de la semelle :

La hauteur de la semelle sera déduite de la condition de rigidité qui s'écrit: $h_t \ge d + c$.

Avecd: hauteur utile.

$$\max(\frac{A-a}{4}; \frac{B-b}{4}) \le d \le \min(A-a; B-b)$$

$$\max\left(\frac{2.10 - 0.40}{4}; \frac{2.30 - 0.45}{4}\right) = 0.462 \text{ m} \le d \le \min\left(2.10 - 0.40; 2.30 - 0.45\right) = 1.70 \text{ m}.$$

$$h_t \geq ~0.50~+~0.05~=~0.55~m \rightarrow On~choisit \\ h_t = ~55~cm.$$

$$h_t = max (0.15 \text{ m}; d + 0.05 \text{ m}) \Rightarrow h_t = max (0.15 \text{ m}; 0.55 \text{ m}) = 0.55 \text{m}.$$

- **❖** Vérification de la semelle isolée S₁:
- **→** Vérification des conditions de stabilité :

N_{ser} : L'effort normal total revenant à la semelle sous combinaison de l'ELS.

 $N_{ser} = 894.16KN.$

$$M_{ser} = M_X = 5.39 \text{ KN.m.}$$

✓ Selon le BAEL 91, on a :

$$e_0 = \frac{M_s}{N_s} = \frac{5.39}{894.16} = 0.006 \text{ m}.$$

$$e_0 = 0.006 \text{ m} \le \frac{A}{6} = \frac{2.10}{6} = 0.35 \text{ m}.$$

 $\checkmark~$ Selon le RPA 99 / version 2003(Art 10.1.5), on a :

$$e_0 = 0.006 \text{ m} \le \frac{A}{4} = \frac{2.10}{4} = 0.52 \text{ m}.$$

 $e_0 = 0.006 \text{ m} \le \frac{A}{6} = 0.35 \text{ m} \Rightarrow \text{Le diagramme des contraintes est trapézoïdale.}$

→ Vérification des conditions de rigidité :

Selon l'article 10.1.4.1 des RPA99/Version 2003 Les fondations superficielles seront vérifiées selon les combinaisons accidentelles suivantes :

- ✓ G+Q+E : Pour la vérification des contraintes dans le sol.
- ✓ **0.8G+E**: Pour la vérification de la stabilité des semelles.

On ajoute à ces deux combinaisons qui sont données par les RPA99/Version 2003La Combinaison de l'ELU qui nous permet de vérifier la contrainte à ELU :1.35G+1.5Q.

La contrainte moyenne du sol σ_{moy} doit vérifier la condition suivante :

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} \le \overline{\sigma}_{sol}.$$

Avec:

$$\sigma_{max} = \frac{N}{S_{semelle}} \Big(1 - \frac{6.e}{A} \Big) \text{; Et } \sigma_{min} = \frac{N}{S_{semelle}} \Big(1 + \frac{6.e}{A} \Big).$$

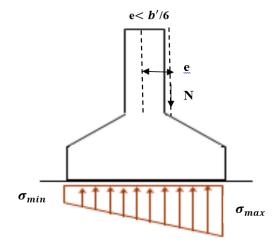


Figure VI.6 Diagramme des contraintes du sol agissant sur la semelle isolée.

\checkmark L'ELS : G+Q

Tableau VI.1 Vérification de la semelle S₁ à l'ELS.

Semelle AxB	N _{ser} KN	M _{ser} KN.m		S _{semelle} m ²	σ _{max} bar	σ _{min} bar	σ_{moy} bar	σ _{sol} bar	Vérification
2.10 x2.30	894.16	5.39	0.006	4.83	1.88	1.82	1.86	2	Condition vérifiée

✓ à L'ELU : 1.35 G+1.5 Q.

Tableau VI.2 Vérification de la semelle S₁ à l'ELU.

	N _u KN	M _u KN.m		S _{semelle} m ²	σ _{max} bar	σ _{min} bar	σ _{moy} bar	$\overline{\sigma}_{sol}$ x1.5	Vérification
2.10x2.30	1224.75	7.40	0.006	3.48	2.58	2.49	2.56	3	Condition vérifiée

✓ Par la combinaison G+Q±E.

Tableau VI.3Vérification de la semelle S_1 à $G+Q\pm E$.

Semelle AxB	N _{accid} KN	M _{accid} KN.m	e m	_	σ _{max} bar	σ _{min} bar	σ _{moy} bar	$\overline{\sigma}_{sol} \times 2$ bar	Vérification
2.10x2.30	1015.37	50.64	0.049	4.83	2.14	2.07	2.12	4	Condition vérifiée

❖ Vérification de la stabilité au renversement par la combinaison accidentelle 0.8G±E :

Pour que les semelles isolées soient stables, il suffit de vérifier la condition suivante :

$$A \ge 4.e$$
 avece $= \frac{M}{N}$.

Tableau VI.4 Vérification de la semelle SA à 0.8G±E.

Semelle AxB	N _{accid} (KN)	M _{accid} (KN.m)	e _{accid} (m)	4e(m)	A	vérification
2.10x2.30	742.48	49.48	0.067	0.268	2.00	Condition vérifiée

❖ Dimensionnement des autres semelles isolées:

Les surfaces des semelles isolées revenant à chaque poteau en tenant compte la symétrie de notre structure sont données par le tableau suivant :

Tableau VI.5 Les surfaces des semelles isolées revenant à chaque poteau.

Semelles	N _{ser} (KN)	a[cm]	b[cm]	<u>а</u> b	$\frac{N_{ser}}{\overline{\sigma}_{sol}}[m^2]$
S_1	894.16	40	45	0.89	4.47
S_2	882.59	40	45	0.89	4.41
S_3	786.57	40	45	0.89	3.93
S_4	818.46	40	45	0.89	4.09
S ₅	705.66	40	45	0.89	3.53
S_6	093.19	40	45	0.89	0.47
S ₇	465.11	40	45	0.89	2.32
S ₈	451.04	40	45	0.89	2.25

S ₉	636.95	40	45	0.89	3.18
S ₁₀	54367	40	45	0.89	2.72
S ₁₁	488.29	40	45	0.89	2.44
S ₁₂	652.26	40	45	0.89	3.26

Tableau VI.6. Dimensionnement des semelles isolées.

Semelles	S ₁	S ₂	S_3	S ₄	S ₅	S_6	S ₇	S ₈	S ₉	S ₁₀	S ₁₁	S ₁₂
B[m]	2.24	2.23	2.10	2.14	1.99	0.73	1.61	1.59	1.89	1.75	1.66	1.91
calculée												
B[m]	2.30	2.30	2.30	2.30	2.10	1.00	1.70	1.65	1.90	1.80	1.70	1.95
adoptée												
A [<i>m</i>]	2.10	2.10	2.10	2.10	2.00	0.90	1.60	1.50	1.70	1.65	1.55	1.75
$\mathbf{h_t}[m]$	0.55	0.55	0.55	0.55	0.45	0.35	0.40	0.35	0.45	0.40	0.40	0.45

✓ La dimension minimale d'une semelle encastrée est : B > 60 cm (dimension minimale permettant le travail d'un ouvrier).

$$B_{\min} = 90 \text{cm} > 60 \text{ cm}.$$

✓ De plus la hauteur ne pourra jamais être inférieure à 15 cm.

$$h_{min} = 35 \text{ cm} > 15 \text{ cm}.$$

- b. Vérification de chevauchement
- **Semelles** S_1 ; S_2 ; S_3 ; S_4 ; S_7 et S_8 :

Il faut vérifier que :

$$40cm \le x = L_{min} - \frac{(B_{S1} + B_{S2})}{2}$$
.

Tel que:

- $\bullet \quad L_{min}\text{: valeur entre axe entre deux poteaux.}$
- x: distance entre nœuds des deux semelles successives.
- B: les cotes des semelles successives.

$$L_{min1} = min\left(L_{S1-S3}; L_{S1-S2;} L_{S1-S8;}\right) = min\left(3.80; 6.22; 3.40\right) = 3.40 \; m \; . \label{eq:lmin1}$$

$$L_{min2} = min\left(L_{S2-S4}; L_{S2-S1;} L_{S2-S7;}\right) = min\left(3.80; 6.22; 3.40\right) = 3.40 \; m.$$

$$L_{min1} = L_{min2} = 3.4 \text{ m}, B_{S1,S2,S3,S4} = 2.30 \text{ m} \text{ et } B_{S7} = 1.65 \text{ m}, B_{S8} = 1.60 \text{ m}.$$

Alors:

$$40 \ cm \le 1.50 \ m = 3.4 - \frac{(2.10 + 1.70)}{2}$$
.....Condition vérifiée.

Vu que valeur entre nœuds des deux semelles successives est supérieure à 40 cm, on constate qu'il n'aura pas un chevauchement entre les semelles isolées, ce qui revient à dire que ce type de semelles convient à semelles S₁, S₂, S₃, S₄, S₇ et S₈.

Semelles S₉ (1.70m×1.90 m); S_{10} (1.65 m×1.80 m) et S_{11} (1.55 m×1.70 m); S_{12} (1.75 m×1.95 m):

$$40 \text{ cm} \le x = L_{\min} - \frac{(B_{S8} + B_{S9})}{2}$$

Tel que:

- L_{min}: Valeur entre axe entre deux poteaux.
- x: Distance entre nœuds des deux semelles successives.
- B_{S8} et B_{S9} : Les cotes des deux (02) semelles successives.

$$L = 1.75 \text{ m}, B_{S9} = 1.80 \text{ m}, A_{S8} = 1.70 \text{ m}.$$

alors:

Vu que la valeur entre nœuds des semelles S_9 et nulle, on constate qu'il aura un chevauchement entre les semelles isolées, ce qui revient à dire que ce type de semelles ne convient pas à semelles S_9 , S_{10} , S_{11} et S_{12} .

♦ Semelles S5 (2.00 m×2.10m); **S**6 (0.90m×1.00m):

$$40cm \le x = L_{min} - \frac{(B_{S8} + B_{S9})}{2}.$$

Tel que:

- $\bullet \quad L_{min} \hbox{:} \ \, Valeur \ entre \ axe \ entre \ deux \ poteaux.$
- x: Distance entre nœuds des deux semelles successives.
- B_{S5} et B_{S6}: Les cotes des deux (02) semelles successives.

$$L = 3.05 \text{ m}; B_{S5} = 2.10 \text{m}; B_{S6} = 1.00 \text{ m}.$$

alors:

Vu que la valeur entre nœuds des semelles S₅ et S₆ estsupérieure à 40cm, on constate qu'il n'aura pas un chevauchement entre les semelles isolées, ce qui revient à dire que ce type de semelles convient à semelles S₅ et S₆.

Donc:

- Semelles isolées :
 - \checkmark S_1 ; S_2 ; S_3 ; S_4 (2.10m×2.30m).
 - \checkmark S₅ (2.00 m×2.10m) $_{;}$ S₆ (0.90 m×1.00 m).
 - ✓ S_7 (1.60 m × 1.70 m); S_8 = (1.50 m × 1.65 m).
- **♣** Semelles filantes : SF₁ ; SF₂ ; SF₃.

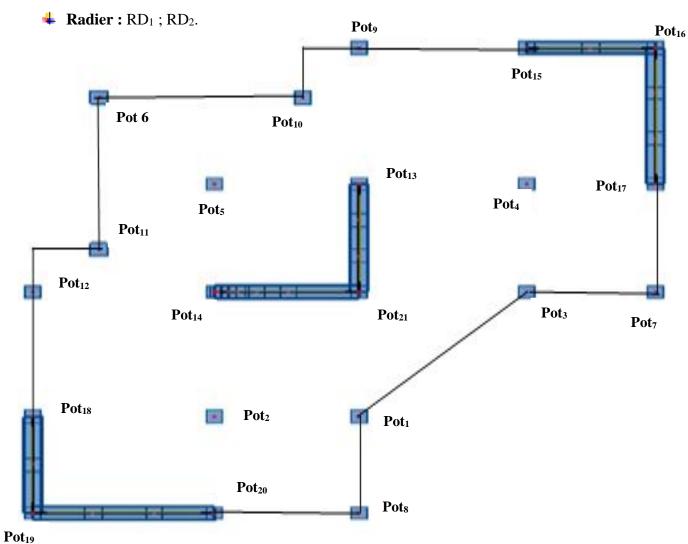


Figure VI.7. Schéma des fondations de bâtiment.

- c. Ferraillage des semelles isolées
- **❖** Ferraillage de semelle S₁ (2.10 m×2.30 m) :

Pour appliquer la méthode de bielles, il faut vérifier :

✓ Semelle rigideh_t
$$\geq \left(\frac{A-a}{4}\right) + 5$$
 cm Condition vérifiée.

Donc, on peut appliquer la méthode des bielles pour calculer le ferraillage.

La méthode des bielles suppose que les efforts provenant des murs sont transmis au sol par des bielles de béton oblique symétriques par rapport à l'axe de la semelle. Ces bielles transmettant des efforts horizontaux de traction aux aciers inférieurs et des efforts verticaux de compression au sol sous la semelle.

Les semelles isolées armées sont généralement renforcées par deux nappes d'aciers orthogonaux protégés de l'oxydation par une épaisseur d'enrobage de 4 à 5 cm.

$$\checkmark$$
 h_t = 55 cm, d_b = 50 cm, d_a = d_B - φ = 48.6 cm.

 \checkmark N_u: Effort amené par l'ouvrage sur la semelle S₁ à partir de la combinaison de L'ELU, obtenue par logiciel Robot 2016→ N_u = 1224.75 KN.

✓ G_0 : Le poids propre de la semelle = (B x A x h_t) x γ_{moy} .

Dont:
$$\gamma_{moy} = \frac{\gamma_{BA} + \gamma_{sol}}{2} = \frac{25 + 19}{2} = 22 \text{ Kn/m}^3$$
.

Donc: $G_0 = (2.30 \times 2.10 \times 0.55) \text{m}^3 \times 22 \text{ Kn/m}^3 = 58.44 \text{ KN}.$

$$V N_u' = Nu + 1.35G_0.$$

 $Nu = 1224.75 + 1,35 \times 58.44 = 1303.65 \text{ KN}.$

$$\checkmark \sigma_{\rm s} = \frac{f_{\rm e}}{v_{\rm s}} (ELU) = \frac{400}{1.15} = 348 \,\text{MPa.}.$$

$$\checkmark$$
 e₀ = 0.006 m $\leq \frac{A}{24}$ = 0.096.

> Suivant le sens B-B:

$$A_{B-B} = N'_u x \frac{(1+3\frac{e_0}{B}) + (B-b)}{8d_h \sigma_s} = 1303.65 \times 10^3 \frac{(1+3\frac{6}{2300})(2300-450)}{8x500x348} = 1747.15 \text{ mm}^2 = 17.47 \text{ cm}^2.$$

On adopte : $12 \text{ HA} 14 = 18.47 \text{ cm}^2$.

> Suivant le sens A-A:

$$A_{A-A} = N'_u \times \frac{(A-A)}{8d_a\sigma_s} = 1303.65 \times 10^3 \frac{\left(1 + 3\frac{6}{2100}\right)(2100 - 400)}{8 \times 486 \times 348} = 1652.00 \text{ mm}^2.$$

 $A_{A-A} = 16.52 \text{ cm}^2$.

On adopte: $11HA14 = 16.93 \text{ cm}^2$.

Espacement:

 $e \le \min(20\text{cm}, 15\phi_l) = \min(20\text{ cm}, 15 \times 1.4) = 20\text{cm}.$

✓ B-2c = 230 cm - 2 × 5 = 220 cm et 12 barres → 11 espacements donc e =
$$\frac{220}{11}$$
 = 20 cm.

✓ A-2c = 210 cm - 2 × 5 = 200 cm et 11 barres → 10 espacements donc e =
$$\frac{200}{10}$$
 = 20 cm.

\triangleright Ancrage des barres (Semelle S₁).

Calcul de la longueur de scellement des barres.

✓ Suivant le sens A-A:

$$l_s = \frac{\phi}{4} \times \frac{f_e}{0.6 \times \Psi_s^2 \times f_{t28}}$$

Avec:

$$\Psi_{\rm s} = 1.5$$
 (HA).
 ${\rm f}_{ti} = 0.6 + 0.06 \, {\rm f}_{ci} = 2.1 \, {\rm MPa}.$

$$l_s = \frac{14}{4} \times \frac{400}{0.6 \times 1.5^2 \times (0.06 \times 25 + 0.6)} = 493.83 \text{ mm} < \frac{A}{4} = 525 \text{ mmet} > \frac{A}{8} = 262.5 \text{ mm}.$$

✓ Suivant le sens B-B:

$$\begin{split} L_s &= \frac{\varphi}{4} \times \frac{f_e}{0.6 \times \Psi^2 \times f_{t28}} = \frac{14}{4} \times \frac{400}{0.6 \times 1.5^2 \times (0.06 \times 25 + 0.6)} = 493.83 \text{ mm} < \frac{B}{4} \\ &= 575 \text{ mm et} > \frac{B}{8} \end{split}$$

$$L_s = 287.5 \text{ mm}.$$

⇒Les barres doivent être prolongées jusqu'aux extrémités de la semelle mais peuvent ne pas comporter croche.

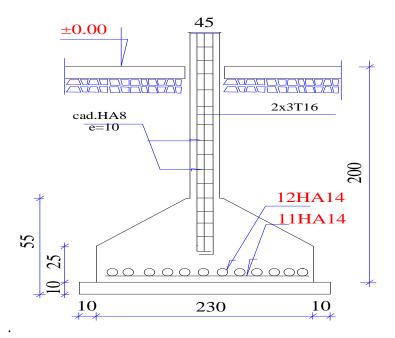


Figure VI.8 Schéma de ferraillage d'une semelle isolée

Tableau VI.7 Ferraillage des semelles isolées.

—	ır -	1	1	II-			semenes isolees.	· ·
	N'u [KN]	B [m]	A [m]	A _{B-B} [cm ²]	d _A [m]	A _{A-A} [cm ²]	A _{adoptée} [cm²]	e [cm]
S ₁	1303.65	2.30	2.10	17.47	0.486	16.52	$\mathbf{A_{B-B}} = 12 \text{HA} 14 = 18.47 \text{cm}^2$ $\mathbf{A_{A-A}} = 11 \text{HA} 14 = 16.93 \text{cm}^2$	20 20
S ₂	1287.36	2.30	2.10	17.15	0.486	16.22	$A_{B-B} = 12HA14 = 18.47cm^2$ $A_{A-A} = 11HA14 = 16.93cm^2$	20 20
S ₃	1159.59	2.30	2.10	15.45	0.488	16.26	$A_{B-B} = 14HA12 = 15.83cm^2$ $A_{A-A} = 11HA14 = 16.93cm^2$	15 20
S ₄	1203.21	2.30	2.10	16.46	0.490	15.04	$A_{B-B} = 11$ HA14 = 16.93 cm ² $A_{A-A} = 10$ HA14 = 15.39 cm ²	20 20
S5	1032.63	2.10	2.00	12.27	0.486	12.25	$A_{B-B} = 8$ HA14 = 12.32 cm ² $A_{A-A} = 8$ HA14 = 12.32 cm ²	20 20
S ₆	141.56	1.00	0.90	0.56	0.488	0.53	$A_{B-B} = 4$ HA12 = 4.52 cm ² $A_{A-A} = 4$ HA12 = 4.52 cm ²	15 15
S ₇	678.53	1.70	1.60	6.11	0.488	6.01	$A_{B-B} = 6$ HA12 = 6.79 cm ² $A_{A-A} = 6$ HA12 = 6.79 cm ²	15 15
S ₈	651.78	1.65	1.50	5.63	0.488	5.30	$A_{B-B} = 5$ HA12 = 5.65 cm ² $A_{A-A} = 5$ HA12 = 5.65 cm ²	15 15

Tableau VI.8 Ancrage des barres suivant le sens A-A.

Semelles	Vérification de l_s $l_s[mm]; rac{A}{4}[mm]; rac{A}{8}[mm]$	mode d'accrochage
S ₂	$A/8 = 262.5 \le l_s = 493.83 \le 525 = A/4$	toutes les barres doivent être prolongées jusqu'aux extrémités de la semelle mais peuvent ne pas comporter crochet
S 3	$A/8 = 262.5 \le l_s = 493.83 \le 525 = A/4$	//
S ₄	$A_{8} = 262.5 \le l_{s} = 493.83 \le 525 = A_{4}$	//
S ₅	$A/8 = 250.0 \le l_s = 493.83 \le 500 = A/4$	//
S ₆	$A/8 = 112.5 \le l_s = 423.27 \ge 225 = A/4$	toutes les barres doivent être prolongées jusqu'aux extrémités de la semelle et comporte des ancrages courbes ;
S ₇	$A_{8}=200.0 \le l_{s}=423.2 \ge 400 = A_{4}$	//
S8	$A_{8}=187.5 \le l_{s}=423.27 \ge 375=A_{4}$	//

Tableau VI.9 Ancrage des barres suivant le sens B-B.

	Vérification de $oldsymbol{l}_{s}$	mode d'accrochage
Semelles	$l_s[mm]; \frac{B}{4}[mm]; \frac{B}{8}[mm]$	
S ₂	$B_{8} = 287.50 \le l_{s} = 493.83 \le 575.0 = B_{4}$	toutes les barres doivent être prolongées jusqu'aux extrémités de la semelle mais peuvent ne pas comporter crochet
S ₃	$B_{8} = 287.50 \le l_{s} = 423.27 \le 575.0 = B_{4}$	//
S ₄	$B_{8} = 287.50 \le l_{s} = 493.83 \le 575.0 = B_{4}$	//
S 5	$B_{8} = 262.50 \le l_{s} = 493.83 \le 525.0 = B_{4}$	//
S 7	$B_{8} = 212.50 \le l_{s} = 423.27 \le 425.0 = B_{4}$	//
S ₆	$B_{8} = 125.00 \le l_{s} = 423.27 \ge 250.0 = B_{4}$	toutes les barres doivent être prolongées jusqu'aux extrémités de la semelle et comporte des ancrages courbes ;
S8	$B_{8} = 206.25 \le l_{s} = 423.27 \ge 412.5 = B_{4}$	

\triangleright La hauteur des patins h_1 :

 h_1 est donnée en fonction du diamètre ϕ des armatures tendues :

- ✓ $h_1 = h_t / 3$ à $h_t / 2$ avec $h_1 \ge 6 \phi + 6cm$
- ✓ ¢ : Diamètre de la plus grosse barre utilisée dans la semelle.

Semelle S₁:

 $h_1 = 18.33 \text{cm}$ à 27.5cmet $h_1 > 14.4 \text{ cm}$ on adopte $h_1 = 25 \text{cm}$.

Semelles	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈
h ₁ [cm]	25	25	25	20	15	20	15

d. Vérification de la résistance

***** Vérification de la résistance pour semelleS₁ :

$$\begin{split} &\sigma_{cal} \leq \ \overline{\sigma}_{sol} \\ &\sigma_{cal} = \frac{Nser + G_0}{S} \end{split}$$

Avec:

 G_0 : Le poids propre de la semelle = 58.44 KN.

$$\checkmark$$
 N'_{ser} = N_{ser} + G₀.
= 894.16 + 58.44 = 952.60 KN.

$$\rightarrow \sigma_{cal} = \frac{\text{Nser+G0}}{\text{S}} = \frac{952.60}{4.83} = 197.22 \ \frac{\text{KN}}{\text{m}^2} < \overline{\sigma}_{sol} = 200 \ \text{KN/m}^2...... \text{ Condition vérifiée}.$$

Vérification de la résistance pour autres semelles :

(a x b) = (40x45) ;
$$\sigma_S = \frac{f_e}{\gamma_s} = 348 \text{MPa}$$
 ; $d_B = h_t - c = 0.50 \text{ m}$.

Tableau VI.10 Vérification résistance des autres semelles.

Semelles	N _{ser} [KN]	S [m ²]	G ₀ [KN]	$\sigma_{\text{cal}} \left[\frac{\text{KN}}{\text{m}^2} \right]$	$\overline{\sigma}_{sol} \left[\frac{KN}{m^2} \right]$	Vérification
S ₁	894.16	4.83	58.44	197.22	200	Condition vérifiée
S_2	882.59	4.83	58.44	194.83	200	Condition vérifiée
S ₃	786.57	4.83	58.44	174.95	200	Condition vérifiée
S ₄	818.46	4.83	58.44	181.55	200	Condition vérifiée
S ₅	705.66	4.20	50.82	180.11	200	Condition vérifiée
S ₆	093.19	0.90	10.88	115.63	200	Condition vérifiée
S ₇	465.11	2.72	32.91	183.09	200	Condition vérifiée
S ₈	451.04	2.47	29.88	194.71	200	Condition vérifiée

e. Vérification du poinçonnement

Vérification du poinçonnement pour semelleS1:

Des armatures de poinçonnement ne sont pas nécessaires si :

$$P_{\rm u} \le \frac{(0.045 \times U_{\rm c} \times h \times f_{\rm c28})}{\gamma_{\rm b}}$$

- \checkmark P_u = N'_u : Charge de calcul à l'ELU(N'_u).
- ✓ h: Épaisseur totale de la dalle.
- ✓ U_c : Périmètre du rectangle d'impact : $U_c = 2(a' + b') \rightarrow U_c = 2[(a+h) + (b+h)]$
- ✓ a, b : dimensions de poteau.

$$U_c = 2[(0.40+0.55) + (0.45+0.55)] = 3.90m.$$

$$P_u = 1303.65 \text{ KN} \leq \frac{(0.045 \times 3900 \times 550 \times 25) \times 10^{-3}}{1.5} = 1608.75 \text{ KN....Condition v\'erifi\'ee.}$$

Vérification du poinçonnement pour autres semelles :

$$a = 0.40m$$
, $b = 0.45m$, $f_{c28}=25$ MPa et $y_h = 1.5$.

Tableau VI.11. Vérification du poinçonnement.

Semelles	h	U _c	N' _u	$(0.045 \times U_c \times h \times f_{c28})/\gamma_b$	$N_u' \leq \frac{(0.045 \times U_c \times h \times f_{c28})}{Y_b}$
	[m]	[m]	[KN]	[KN]	8.0
S ₁	0.55	3.90	1303.65	1608.75	Condition vérifiée
S ₂	0.55	3.90	1287.36	1608.75	Condition vérifiée
S ₃	0.55	3.90	1159.59	1608.75	Condition vérifiée
S ₄	0.55	3.90	1203.21	1608.75	Condition vérifiée
S ₅	0.45	3.50	1032.63	1181.25	Condition vérifiée
S ₇	0.35	3.10	0141.56	0813.75	Condition vérifiée
S ₆	0.40	3.30	0678.53	0990.00	Condition vérifiée
S ₈	0.35	3.10	0651.78	0813.75	Condition vérifiée

✓ Béton pour semelle armée :

300 kg/m³ en terrain sec.

350 kg/m³ en terrain humide.

✓ Les semelles reposent toujours sur une couche de béton de propreté de5-10cm d'épaisseur dosé à 150 kg.

VI.9 Calcul des semelles filantes

Le recours à des semelles filantes se fait quand les poteaux et par conséquent les semelles dans une direction donnée sont proches les unes des autres de façon que la somme des contraintes des deux semelles au niveau du point d'interface dépasse la contrainte du sol.

L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux qui se trouve dans la même ligne.

a. Dimensionnement des semelles filantes sous voiles

Tableau VI.12. Les différentes surfaces des semelles revenantes à chaque voile (à L'ELS).

Semelles		N _{ser} [KN]	$S_{\text{semelle min}}[m^2]$
	Pot ₁₆	631.69	
SF ₁	V_1	-915.63	9.45
	Pot ₁₇	343.40	
	Pot ₁₅	502.49	
SF ₂	V_2	-779.48	12.62
	Pot ₁₆	631.69	
	Pot ₁₉	610.83	
SF ₃	V ₃	-845.43	8.82
	Pot ₂₀	308.40	
	Pot ₁₈	538.24	
SF4	V ₄	-803.23	9.76
	Pot ₁₉	610.83	
	Pot ₁₃	616.00	
SF ₅	V_5	-1206.99	13.35
	Pot ₂₁	846.78	
	Pot ₁₄	418.07	
\mathbf{SF}_{6}	V_6	-1133.93	11.99
	Pot ₂₁	846.78	

❖ Dimensionnement de semelle filante(SF₁) sous voile (L= 4.8 m)et 2 poteaux (40×45) cm²

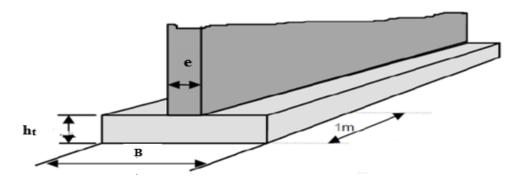


Figure VI.9 Semelle filante.

Le calcul fera à L'ELS:

Il faut que : $\sigma_{sol} \leq \overline{\sigma}_{sol}$.

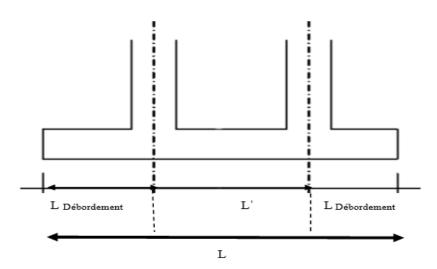
Dont:

$$\sigma_{sol} = \frac{N_{ser}}{S} = \frac{G+Q}{BL}$$
.

Donc:

$$\frac{N_{\text{ser}}}{BL} \leq \overline{\sigma}_{sol} \Rightarrow B \geq \frac{N_{\text{ser}}}{\overline{\sigma}_{sol}L}$$

$$\checkmark$$
 N_{ser} = N_{tot} = 631.69 + 915.63 + 343.40 = 1890.72 KN = 189.07 t.


✓
$$\overline{\sigma}_{sol}$$
: Capacité portante du sol ($\overline{\sigma}_{sol}$ = 02 bar = 20t/m²).

✓ L : longueur de la semelle sous voile ;

 $L=\Sigma Li+2\times L$ débordement.

✓ L débordement =
$$0.60 \text{ m}$$
.

$$L = 4.80 + 2 \times 0.60 = 6.0 \text{ m}.$$

B : Largeur de la semelle.

$$B \ge \frac{N_{ser}}{\overline{\sigma}_{sol}L} \Rightarrow B \ge \frac{189.07}{20 \times 6} = 1.57m.$$

On prend B = 1.60m

- La hauteur utile: $d \ge \frac{B-b}{4} = \frac{160-15}{4} = 36.25 \text{ cm}$; On prend: d = 40 cm.
- La hauteur totale: $h_t = d + 5 = 40 + 5 = 45$ cm; On prend: $h_t = 45$ cm.

Dimensionnement des semelles filantes :

 $\overline{\sigma}_{sol} = 2$ bar ; L $_{d\acute{e}bordement} = 0.60$ m ; b = e = 15 cm.

Tableau VI.13 Dimensionnement des semelles filantes

Semelles	N _{ser} [t]	L [m]	B [m]	d [cm]	h _t [cm]
SF ₁	189.07	6.00	1.60	40	45
SF ₂	191.32	4.60	2.10	55	60
SF ₃	176.47	6.00	1.50	35	40
SF ₄	195.23	4.60	2.20	55	60
SF ₅	266.98	5.00	2.70	65	70
SF ₆	239.88	5.00	2.40	60	65

b. Ferraillage des semelles filantes SF $(B \times L)$

Semelles		N _u [KN]
	Pot ₁₆	861.26
SF ₁	V_1	1246.04
	Pot ₁₇	466.18
	Pot ₁₅	686.60
SF_2	V_2	1064.11
	Pot ₁₆	861.26
	Pot ₁₉	832.95
SF ₃	V ₃	1149.54
	Pot ₂₀	417.96
	Pot ₁₈	736.33
SF ₄	V_4	1097.53
	Pot ₁₉	832.95
SF ₅	Pot ₁₃	845.00

	V_5	1654.88
	Pot ₂₁	1159.87
	Pot ₁₄	573.45
SF ₆	V ₆	1552.84
	Pot ₂₁	1159.87

Ferraillage de semelle filante $SF_1(B \times L) = (1.60 \times 6.00) \text{ m}^2$:

Le ferraillage se calcul par la méthode des bielles à L'ELU.

- ✓ L = 6 m; B = 1.60 m; b = 15 cm.
- \checkmark N_u : Effort amené par l'ouvrage sur la semelle SF_1 à partir de la combinaison de L'ELU, obtenue par logiciel Robot 2016.

$$N_{\rm u} = N_{\rm u1} + N_{\rm u2}.$$

$$\checkmark$$
 N_{u1} = \sum N_{ui} = $\frac{N_{u,pot1} + N_{u,pot2} + N_{u,voile}}{L} = \frac{861.26 + 466.18 + 1246.04}{6} = \frac{2573.48}{6} = 428.91$ KN.

- \checkmark N_{u2} = poids des terres + poids des semelles + poids des amorces poteaux + poids des amorces voiles.
- poids des terres = (b ×L× D) × γ_{sol} = (0.15 × 6.00 × 2.00)m³ × 19KN/m³ = 34.20 KN.
- poids des semelles = (B ×L× h_t) x γ_{BA} = (1.60 × 6.00 × 0.45) m^3 ×25 KN/ m^3 = 108 KN.
- poids des amorces poteaux= (a×L× D) × γ_{BA} = (0.40 × 0.45 × 2.00)m³ × 25 KN/m³ = 9 KN
- poids des amorces voiles = (b ×L× D) × γ_{BA} = (0.15 × 4.80 × 2.00)m³ × 25KN/m³= 36 KN.

$$N_{u2} = 34.20 + 108 + 9 + 36 = 187.20 \text{ KN}.$$

$$N_u = 428.91 + 187.20 = 616.11 \text{ KN}.$$

$$\checkmark \sigma_{s} = \frac{f_{e}}{\gamma_{s}} (ELU) = \frac{400}{1.15} = 348 \text{ MPa}.$$

***** Ferraillage longitudinal :

$$A_{long/ml} = \frac{N_u(B-b)}{8d\sigma_s}.$$

$$d = h_t - c = 450 - 50 = 400 \text{ mm}.$$

$$A_{long/ml} = \frac{616.11 \times 10^3 (1600 - 150)}{8 \times 400 \times 348} = 802.23 \text{ mm}^2 = 8.02 \text{ cm}^2.$$

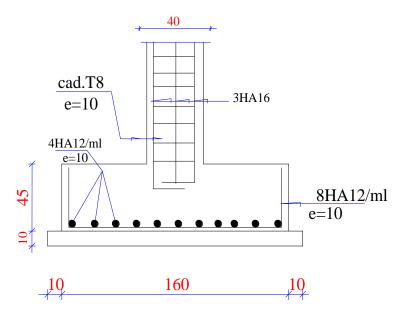
On adopte : $8 \text{ HA12} = 9.05 \text{ cm}^2/\text{ml}$.

Espacement:

$$e \le min (20cm; 15\phi_l) = min (20cm; 15 \times 1.2) = 18 cm.$$

e = 10 cm.

***** Ferraillage transversal:


$$A_{trans/ml} = \frac{A_{long/ml}}{4} = \frac{9.05}{4} = 2.26 \text{ cm}^2/ml.$$

On adopte : $4 \text{ HA12} = 4.52 \text{ cm}^2/\text{ml}$.

> Espacement:

$$e \le min (20cm; 15\phi_l) = min (20cm; 15 \times 1.2) = 18 cm.$$

On prend: e = 15 cm.

Figure VI.10 Disposition des armatures d'une semelle filanteSF₁.

***** Ferraillage des semelles filantes :

b = e = 15 cm.

 σ_s (à L'ELU) = 348 MPa.

> Ferraillage longitudinal:

Tableau VI.14 Ferraillage longitudinal des semelles filantes.

Semelle	N _{u1} [KN/ml]	N _{u2} KN	N _u [KN/ml]	$A_{long/ml(cal)}$	$A_{long/ml(adopt\'ee)}$	e[cm]
s						
SF ₁	428.91	187.20	616.11	7.93 cm ²	8HA12=09.05 cm ²	10
SF ₂	567.82	205.62	773.44	9.85 cm ²	9HA12=10.18 cm ²	10
SF ₃	400.07	169.20	569.27	7.89cm ²	7HA12 =7.92cm ²	15
SF ₄	579.74	212.52	792.26	10.61cm ²	7HA14 =10.78cm ²	15

SF ₅	731.95	302.25	1034.2	14.57cm ²	$10\text{HA}14 = 15.39cm^2$	10
SF ₆	657.23	261.00	918.23	12.36cm ²	11HA12 =12.44cm ²	10

> Ferraillage transversal:

Tableau VI.15 Ferraillage transversal des semelles filantes.

Semelles	A trans/ml(cal)= Along/ml(adoptée)/	A _{trans/ml(adoptée)}	e
	4		[cm]
SF ₁	2.26 cm ²	$4 \text{ HA}12 = 4.52 \text{ cm}^2$	15
SF ₂	2.54 cm ²	$4 \text{ HA}12 = 4.52 \text{ cm}^2$	15
SF ₃	1.98 cm ²	$4 \text{ HA}12 = 4.52 \text{ cm}^2$	15
SF ₄	2.69 cm ²	$4 \text{ HA}12 = 4.52 \text{ cm}^2$	15
SF ₅	3.85 cm ²	$4 \text{ HA}12 = 4.52 \text{ cm}^2$	15
SF ₆	3.11cm ²	$4 \text{ HA}12 = 4.52 \text{ cm}^2$	15

VI.10 Calcul du radier

a. Généralités

Un radier est une dalle pleine, éventuellement nervurée, constituant l'ensemble des fondations d'un bâtiment.

On choisit un radier dans les cas suivant :

- ✓ Un mauvais sol.
- ✓ Charges transmises au sol sont importantes.
- ✓ Les poteaux rapprochés.

Dans notre cas, on optera pour un radier nervuré, sous deux poteaux rapprochés.

L'effort normal supporté par le radier est la somme des efforts normaux des poteaux.

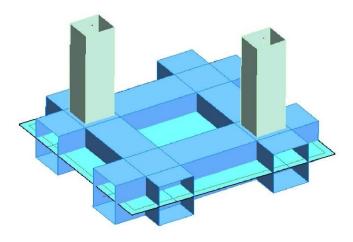


Figure VI.11 Schéma du radier général nervuré.

b. Pré dimensionnement du radier

❖ Nervure :

> Epaisseur de nervure du radier :

L'épaisseur (h_r) du radier doit satisfaire les conditions :

✓ Condition de l'épaisseur minimale :

La hauteur du radier doit avoir au minimum 25 cm ($h_{min} \ge 25$ cm).

✓ Formule empirique :

La nervure du radier doit avoir une hauteur h égale à :

$$h_r \ge \frac{L_{max}}{10} = \frac{175}{10} = 17.50 \text{ cm}.$$

L_{max} : entre axes maximaux des poteaux parallèlement aux nervures.

✓ Condition forfaitaire:

$$\frac{L_{max}}{8} \le h_d \le \frac{L_{max}}{5}$$
; $L_{max} = 1.75 \text{ m} \Rightarrow 21.87 \text{ cm} \le h_d \le 35 \text{ cm}$.

On prend :
$$h_d(h_r) = 30 \text{ cm}$$
.

✓ Condition de longueur élastique :

Pour un radier rigide on doit vérifier :

$$L_{e} = (\frac{4EI}{Kb})^{\frac{1}{4}} \ge \frac{2L_{max}}{\pi}$$

Avec:

✓ L_e: Longueur élastique (m).

✓ L_{max} : Entre axes maximal des poteaux.

✓ **E**: Le module de Young : E = 32164,20MPa.

✓ **b** : Largeur de radier par bande d'un mètre (b=1m).

✓ **I**: Inertie d'une bande d'un mètre de radier : $I = \left[\frac{b \times h^3}{12}\right]$

✓ **K** : Coefficient de raideur du sol : K = 40MPa.

De la condition précédente, nous tirons h :

D'où:

$$h_N \ge \sqrt[3]{\frac{3K}{E}(\frac{2}{\pi}Lmax)^4} = \sqrt[3]{\frac{3 \times 40}{32164,20}(\frac{2}{\pi}1.925)^4} = 20.35 \text{ cm}.$$

Choix final : L'épaisseur minimale normalisée qui correspond aux quatre conditions citées ci haut est : $h_N = 40$ cm.

> Largeur de la nervure :

$$b \ge \frac{L_{max}}{10} = \frac{175}{10} = 17.50 \text{ cm}.$$

Donc:

b = 30cm dans les deux sens (x-x et y-y)

***** Epaisseur de la dalle du radier :

La dalle du radier doit répondre à la condition suivante :

1)
$$20 \text{ cm} \le h_d \le 50 \text{ cm}$$
.

2)
$$h_d \ge \frac{L_{max}}{20}$$
.

Avec:

L_{max}: entre axes maximaux des poteaux parallèlement aux nervures.

$$h_d \ge \frac{175}{20} = 8.75 \text{ cm}.$$

3)
$$\frac{L_{max}}{8} \le h_d \le \frac{L_{max}}{5}$$
; $L_{max} = 1.75 \text{ m} \Rightarrow 21.87 \text{ cm} \le h_d \le 35 \text{ cm}$.

Choix : On prend une épaisseur de $h_d = 30$ cmpour la dalle du radier.

Détermination de la surface du radier :

$$S_{\text{radier}} \ge \frac{N_{\text{max}}}{\overline{\sigma}_{\text{sol}}}.$$

Avec:

 $\sum \mathbf{R_i}$: La somme des réactions aux niveaux des fondations à **ELS** et les combinaisons accidentelles selon l'**RPA 99 / version 2003 (Art 10.1.4)** suivant : $\mathbf{G} + \mathbf{Q} \pm \mathbf{E}$ et $\mathbf{0}$, $\mathbf{8G} \pm \mathbf{E}$ (d'après la modélisation de la structure avec logiciel (**Autodesk Robot Structural Analysis Professional 2016**).

$$\checkmark$$
 N_{ser} = 1180.62 KN.

$$S_{\text{radier}} = \frac{N_{\text{max}}}{\sigma_{\text{sol}}} = \frac{118.062}{20} = 5.90 \text{ m}^2.$$

Calcul du débordement :

Largeur minimale de débord :

$$L_{\text{débordement}} \ge \max(\frac{h}{2}; 30 \text{ cm}).$$

$$L_{débordement} \ge \max \left(\frac{25}{2}; 30 \text{ cm}\right) = 30 \text{ cm}.$$

Choix: $L_{d\acute{e}bordement} = 70$ cm.

$$S_{radier} = 9.14m^2$$
.

✓
$$S_{radier} = 9.14 \text{m}^2 > 5.90 \text{ m}^2$$
.....Condition vérifiée.

Caractéristiques géométriques du radier :

La forme du radier de notre projet est rectangulaire (1.50×1.75) m² avec un débordement de 0.70 m.

+ Centre de gravité du radier :

$$\begin{cases} X_G = \frac{2.90}{2} = 1.450 \text{ m.} \\ Y_G = \frac{3.15}{2} = 1.575 \text{ m.} \end{cases}$$

→ Les moments d'inertie du radier :

$$\begin{cases} I_x = \frac{(2.90 \times 3.15^3)}{12} = 7.55 \text{m}^4. \\ I_y = \frac{(3.15 \times 2.90^3)}{12} = 6.40 \text{m}^4. \end{cases}$$

Calcul des contraintes sous fondation :

Les réactions de sol ne sont pas uniformément réparties, leur diagramme est triangulaire où trapézoïdal La valeur de la contrainte moyenne est donné pas la formule suivante :

$$\sigma_{\text{moy}} = \frac{3\sigma_1 + \sigma_2}{4}$$

Les contraintes transmises au sol par le radier devront toujours être inférieure ou égale à la contrainte admissible du sol.

$$\sigma_{\text{moy}} = \frac{3\sigma_1 + \sigma_2}{4} \le \overline{\sigma}_{\text{sol.}}$$

Les valeurs des contraintes sous l'effet des charges verticales sont données par la formule :

$$\checkmark \sigma_1 = \sigma_{\text{max}} = \frac{N_{\text{ser}}}{S_{\text{radier}}} + \frac{M_R}{I} \times Y.$$

$$\checkmark$$
 $\sigma_2 = \sigma_{\min} = \frac{N_{\text{ser}}}{S_{\text{radier}}} - \frac{M_R}{I} \times Y.$

 σ_1 et σ_2 sont respectivement les contraintes de compression maximale et minimale normales à la semelle.

- √ V: Distances (suivant x et y) entre la fibre la plus comprimée jusqu'à l'axe neutre de la section.
- ✓ M_R: Moment fléchissant dû *au séisme*.

$$N_{ser}$$
: Effort dûe à G + Q.

On adopte une couche en béton de propreté sous le radier d'épaisseur 10 cm.

$$S_{la dalle de propreté} = (2.90 + 0.20) \times (3.15 + 0.20) = 10.39 \text{ m}^2.$$

 \triangleright Résultante des efforts : R = N_{max}

 $N_{\text{max}} = (N_{\text{Pot 9}} + N_{\text{Pot 10}} + \text{Poids propre de la fondation} + \text{Poids propre du béton de propreté} + \text{Poids propre des terres}).$

$$N_{\text{max}} = (636.95 + 543.67 + (9.14 \times 0.30 \times 25) + (10.39 \times 0.10 \times 20) + (9.14 \times 2.00 \times 13)).$$

 $N_{\text{max}} = 1507.58 \text{ KN}.$

Les coordonnées de résultante : R (X_R, Y_R)

$$\label{eq:chi_R} \checkmark \quad X_R = \frac{\sum P_i X_i}{\sum P_i} = \, \frac{543.67 \times \, 0.80 + 636.95 \times 2.30}{636.95 + 543.67} = \, 1.60 \; m \; .$$

$$\label{eq:YR} \text{\checkmark} \ \ Y_R \, = \frac{\sum_{P_i} Y_i}{\sum_{P_i}} = \, \frac{\text{543.67} \times \text{0.80} + \text{636.95} \times \text{2.55}}{\text{636.95} + \text{543.67}} = \, 1.74 \; \text{m} \; .$$

- > Excentricité :
- Excentricité suivant x-x : $e_x = 0.15$ m.
- Excentricité suivant y-y : $e_y = 0.17$ m.
- \triangleright Moment fléchissant dû au séisme M_R :
- Suivant x-x:

$$\mathbf{M_{RX}} = \mathbf{e_x} \mathbf{x} \, \mathbf{R} = 0.15 \times 1507.58 = 226.14 \, \text{KN.m.}$$

• Suivant y-y:

$$\mathbf{M_{RY}} = \mathbf{e_y} \times R = 0.17 \times 1507.58 = 256.29 \text{ KN. m}.$$

Pour les semelles soumises à des moments dans deux directions perpendiculaires simultanément (flexion bi-axiale), on aura une répartition complexe des contraintes sur le sol suivant les valeurs des deux excentricités (e_x , e_y).

On obtient une surface de contact avec le sol qui a l'allure de la figure ci-dessous :

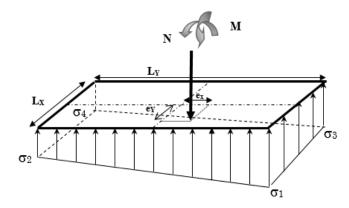


Figure VI.12 Représentation des sollicitations de radier.

Sens transversal:

$$\begin{split} \sigma_1 &= \frac{N_{max}}{S_{radier}} + \frac{M_{Rx}}{I_y} \times \ YG = \frac{150.758}{10.39} + \frac{22.614}{6.40} \times 1.74 = 20.66 \frac{t}{m^2}. \\ \sigma_3 &= \frac{N_{max}}{S_{radier}} - \frac{M_{Rx}}{I_y} \times \ YG = \frac{1507.58}{10.39} - \frac{22.614}{6.40} \times 1.74 = 8.36 \ t/m^2 \,. \\ \sigma_{moy} &= \frac{3\sigma_1 + \sigma_2}{4} = \frac{3 \times 20.66 + 8.36}{4} = 17.58 \, \frac{t}{m^2} < \overline{\sigma}_{sol} = 20 t/m^2 \,. \end{split}$$

Les contraintes sont vérifiées.

Sens longitudinal:

$$\begin{split} \sigma_1 &= \frac{N_{max}}{S_{radier}} + \frac{M_{Ry}}{I_x} \times XG = \frac{150.758}{10.39} + \frac{25.63}{7.55} \times 1.450 = 19.43 \text{ t/m}^2. \\ \sigma_2 &= \frac{N_{max}}{S_{radier}} - \frac{M_{Ry}}{I_x} \times XG = \frac{150.7.58}{10.39} - \frac{25.63}{7.55} \times 1.450 = 9.59 \text{ t/m}^2. \\ \sigma_{moy} &= \frac{3\sigma_1 + \sigma_2}{4} = \frac{3\times 19.43 + 9.59}{4} = 16.97 \frac{\text{t}}{\text{m}^2} < \overline{\sigma}_{sol} = 20 \text{t/m}^2. \end{split}$$

Les contraintes sont vérifiées.

- c. Calcul de ferraillage du radier
- **Calcul des contraintes sous fondation :**
- Résultante des efforts (à L'ELU) :

$$R = N_{Pot 9} + N_{Pot 10} = 873.95 + 741.88 = 1615.83 \text{ KN}.$$

Les coordonnées de résultante : R (X_R, Y_R)

$$\checkmark$$
 $X_R = \frac{\sum P_i X_i}{\sum P_i} = \frac{873.95 \times 0.80 + 741.88 \times 2.30}{873.95 + 741.88} = 1.49 \text{ m}.$

$$\checkmark Y_R = \frac{\sum P_i Y_i}{\sum P_i} = \frac{873.95 \times 0.80 + 741.885 \times 2.55}{873.95 + 741.88} = 1.60 \text{ m}.$$

- > Excentricité :
- ✓ Excentricité suivant x-x :

$$e_x = X_R - X_G = 1.49 - 1.45 = 0.04 \text{ m}.$$

✓ Excentricité suivant y-y :

$$e_y = Y_R - Y_R = 1.60 - 1.57 = 0.03m.$$

\triangleright Moment fléchissant dû au séisme M_R :

\checkmark Suivant x-x:

$$\mathbf{M_{RX}} = \mathbf{e_x} \times \mathbf{R} = 0.04 \times 1615.83 = 48.47 \text{ KN. m}.$$

✓ Suivant y-y:

$$\mathbf{M}_{RY} = \mathbf{e}_y \times \mathbf{R} = 0.03 \times 1615.83 = 48.47 \text{ KN. m.}$$

Calcul des contraintes sous fondation au sens transversal :

$$\sigma_1 \ = \frac{\textit{N}_{max}}{\textit{S}_{radier}} + \frac{\textit{M}_{Rx}}{\textit{I}_y} \times \textit{Y}_G = \frac{161.58}{10.39} + \frac{4.847}{6.40} \times 1.375 \ = 16.59 \ t/m^2.$$

$$\sigma_3 = \frac{N_{\text{max}}}{S_{\text{radier}}} - \frac{M_{\text{Rx}}}{I_{\text{v}}} \times Y_{\text{G}} = \frac{161.58}{10.39} - \frac{4.847}{6.40} \times 1.375 = 14.51 \text{ t/m}^2.$$

$$\sigma_{\text{moy}} = \frac{3\sigma_1 + \sigma_2}{4} = \frac{3 \times 16.59 + 14.51}{4} = 16.07 \text{ t/m}^2.$$

La contrainte prise en considération dans les calculs de ferraillage est : 16.07t/m².

Calcul des contraintes sous fondation au sens longitudinal :
$$\sigma_1 = \frac{N_{max}}{S_{radier}} + \frac{M_{Ry}}{I_x} \times X_G = \frac{161.58}{10.39} + \frac{4.847}{7.55} \times 1.450 = 16.48 t/m^2.$$

$$\sigma_2 = \frac{\textit{N}_{\textit{max}}}{\textit{S}_{\textit{radier}}} - \, \frac{\textit{M}_{Ry}}{\textit{I}_x} \, \times \, \textit{X}_G \, = \, \frac{161.58}{10.39} - \frac{4.847}{7.55} \, \times \, 1.450 \, = \, 14.62 t/m^2 \, .$$

$$\sigma_{moy} = \frac{3\sigma_1 + \sigma_2}{4} = \frac{3\times 16.48 + 14.62}{4} = 16.01 t/m^2.$$

La contrainte prise en considération dans les calculs de ferraillage est : 16.01t/m².

Calcul de ferraillage de la dalle :

Le calcul se fait à la flexion simple avec une section de : « 1.00×0.30 » m² et en deux directions, l'une suivant x-x et l'autre suivant y-y à l'ELU.

Concernant les dalles rectangulaires librement appuyés sur leurs contours, nous distinguons deux cas:

✓
$$0 < \alpha < 0,4 \Rightarrow$$
 la dalle porte sur un sens.

✓
$$0.4 \le \alpha \le 1 \Rightarrow$$
 la dalle porte sur deux sens.

Avec:

$$\alpha = \frac{L_x}{L_v}$$

✓ L_x : Petit côté du panneau.

✓ L_v: Grand côté du panneau.

Les chargements des panneaux du radier seront équivalents aux contraintes moyennes calculées diminuées des contraintes induites par le poids propre du radier, et ce comme suit :

$$\alpha = \frac{L_x}{L_y} = \frac{150 - (20 + 22.5)}{175 - (20 + 22.5)} = \frac{107.5}{132.5} = 0.81.$$

 $0.4 < \alpha = \frac{L_x}{L_y} = 0.81 < 1 \Rightarrow \text{La dalle travaille dans les deux sens.}$

Les moments fléchissant développés au centre du panneau ont pour valeurs :

$$\text{Avec} : \begin{cases} \mu_x = \frac{1}{8(1 + 2.4 \ \alpha^3)} & \text{II faut que } \mu_y \geq \ \mu_x \,. \\ \mu_y = \alpha^3 (1.9 - 0.9 \alpha) & \text{II faut que } \mu_y \geq \ \mu_x \,. \end{cases}$$

On utilise les tables du **C.B.A 93** pour déterminer les coefficients μ_x et μ_y en fonction du rapportvet du coefficient de poisson du matériau.

$$\label{eq:mux} \left\{ \begin{aligned} \mu_x &= 0.0549, \\ \mu_y &= 0.622. \end{aligned} \right.$$

A L'ELU:

$$\begin{cases} M_x = \mu_x \ q \ L_x^2 \ = 0.0549 \ \times 16.07 \times 1.50^2 = 1.98 t. \ m. \\ M_y = \mu_y M_x = 0.622 \ \times 1.98 = 1.23 t. \ m. \end{cases}$$

A L'ELS:

$$\begin{cases} M_x = \mu_x \ q \ L_x^2 \ \Rightarrow M_x = \ 0.0549 \ \times 17.58 \ \times 1.50^2 = 2.17 \ t. \ m. \\ M_y = \mu_y M_x = \ 0.622 \times 2.17 = 1.35 \ t. \ m. \end{cases}$$

Pour prendre en compte la continuité des dalles le C.B.A 93 propose les formules suivantes :

$$M_{\text{ trav\'ee}} \begin{cases} 0.85 \; \text{M}_0 \; \; \text{dalle de rive.} \\ 0.75 \; \text{M}_0 \; ... \; ... \; ... \; \text{dalle interm\'ediaire.} \end{cases}$$

$$M_{\text{ appui}} \begin{cases} 0,3 \; M_0 \; \; \text{dalle de rive.} \\ 0,5 \; M_0 \; ... \; ... \; \text{dalle intermédiaire.} \end{cases}$$

❖ Moment en travée et sur appuis à l'ELU (v=0) sens x-x.

✓ Moment en travée : $M_{tx} = 0.75 M_x = 0.75 \times 1.98 = 1.49 t. m.$

$$M_{ty} = 0.75 M_y = 0.75 \times 1.23 = 0.92 t. m.$$

✓ Moment sur appuis: $M_{ax} = M_{ay} = 0.5$.

$$M_x = 0.5 \times 1.98 = 0.99 \text{ t. m.}$$

→ Moment en travée et sur appuis à l'ELS (v=0,2) sens x-x.

✓ Moment en travée : $M_{tx} = 0.75 M_x = 0.75 \times 2.17 = 1.63 t.m.$

$$M_{ty} = 0.75 M_y = 0.75 \times 1.35 = 1.01 t. m.$$

✓ Moment sur appuis: $M_{ax} = M_{ay} = 0.5 M_x = 0.5 \times 2.17 = 1.08 t. m.$

L En travée:

+ Ferraillage suivant x-x : $M_{ut(x)} = 1.49 \text{ t.m.}$

$$\checkmark \ \mu_u = \frac{M_{ut(x)}}{b \times f_{hc} \times d^2} = \frac{1.49 \times 10^7}{1000 \times 14.17 \times (250)^2} = 0.017.$$

 $\mu_u = 0.017 < \mu_l = 0.392 \Rightarrow$ les armatures de compression ne sont pas nécessaires $(A'_s = 0)$.

$$\checkmark \alpha = 1.25 \times (1 - \sqrt{1 - 2\mu}) = 1.25 \times (1 - \sqrt{1 - 2 \times 0.017})$$

 $\alpha = 0.021$.

$$\checkmark$$
 Z = d x (1 – 0.4 α) = 0.25 × (1 – 0.4×0.021).

Z = 0.248 m.

$$A_{st} = \frac{M_{ut(x)}}{Z \times \sigma_{st}} = \frac{1.49 \times 10^7}{248 \times 348} = 178.44 \text{ mm}^2 = 1.78 \text{ cm}^2.$$

On adopte : $6HA12 = 6.79 \text{ cm}^2 / \text{ml}$.

+ Ferraillage suivant y-y: $M_{ut(y)} = 0.92 \text{ t. m.}$

$$\checkmark$$
 $\mu_u = \frac{M_{\text{ut(y)}}}{b \times f_{bc} \times d^2} = \frac{0.92 \times 10^7}{1000 \times 14,17 \times (250)^2} = 0.011.$

 $\mu_u = 0.011 < \mu_l = 0.392 \Rightarrow$ les armatures de compression ne sont pas nécessaires ($A_s' = 0$).

$$\checkmark$$
 $\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu}) = 1.25 \times (1 - \sqrt{1 - 2 \times 0.011}).$

 $\alpha = 0.014$.

$$\checkmark$$
 Z = d × (1 – 0.4 α) = 0.25 x (1 – 0.4 x 0.014).

Z = 0.249 m.

$$A_{st} = \frac{M_{ut(y)}}{Z \times \sigma_{st}} = \frac{0.92 \times 10^7}{249 \times 348} = 110.79 \text{ mm}^2 = 1.11 \text{ cm}^2.$$

On adopte : $6HA12 = 6.79 \text{ cm}^2 / \text{ml}$.

+ Vérification de Condition de non fragilité :

$$A_{\rm st} \ge \max\left(\frac{b \times h}{1000}; 0.23 \times b \times h \times \frac{f_{t28}}{f_e}\right).$$

$$A_{st} \ge \max\left(\frac{1000 \times 300}{1000}; 0.23 \times 1000 \times 300 \times \frac{2.1}{400}\right).$$

- **❖** Vérification à l'ELS :
- **♣** En travée
 - + En travée suivant x-x:

$$\delta = \frac{M_{ut\,(x)}}{M_{\mbox{ser}}} = \frac{1.49}{1.63} = \ 0.914 \ . \ \ \mbox{avec:} \ \alpha = 0.021.$$

$$\alpha = 0.021 \le \frac{0.914 - 1}{2} + \frac{f_{c28}}{100} = 0.207.$$

+ En travée suivant y-y:

$$\delta = \frac{M_{ut\,(y)}}{M_{ser}} = \frac{0.92}{1.01} = 0.91 \,. \ \ \text{avec:} \, \alpha = 0.014 \ \ .$$

$$\alpha = 0.014 \le \frac{0.91 - 1}{2} + \frac{f_{c28}}{100} = 0.205$$
.

Donc il n'est pas nécessaire de vérifier la contrainte du béton $\sigma_{bc} < \overline{\sigma}_{bc}$.

Ln appuis:

Même étapes de calcul faites pour les niveaux d'appuis :

+ Ferraillage suivant x-x : $M_{ua(x)} = 0.99$ t.m

$$\checkmark \ \mu_u = \frac{M_{ut(x)}}{b \times f_{hc} \times d^2} = \frac{0.99 \times 10^7}{1000 \times 14,17 \times (250)^2} = 0.012.$$

 $\mu_u = 0.012 < \mu_l = 0.392 \Rightarrow$ les armatures de compression ne sont pas nécessaires ($A_s' = 0$).

$$\checkmark \alpha = 1.25 \times (1 - \sqrt{1 - 2\mu}) = 1.25 \times (1 - \sqrt{1 - 2 \times 0.012})$$

 $\alpha = 0.015$.

$$\checkmark$$
 .Z = d × (1 – 0.4 α) = 0.25 × (1 – 0.4×0.015)

 $.\mathbf{Z} = 0.248 \text{ m}.$

$$A_{st} = \frac{M_{ut(x)}}{Z \times \sigma_{st}} = \frac{0.99 \times 10^7}{248 \times 348} = 19.34 \text{ mm}^2 = 1.19 \text{ cm}^2$$
. On adopte : 6HA12 = 6.79cm² /ml.

→ Ferraillage suivant y-y:

 $A_{sa} = 1.19 \text{ cm}^2$.

On adopte : $6HA12 = 6.79cm^2 / ml$.

→ Vérification de Condition de non fragilité :

 $A_{st} \ge 3.02 \text{ cm}^2$.

- **❖** Vérification à l'ELS :
- + En appui suivant x-x et y-y:

$$\delta = \frac{M_{ua(x)}}{M_{ser}} = \frac{0.99}{1.08} = 0.92$$
. avec: $\alpha = 0.015$.

$$\alpha = 0.015 \le \frac{0.92 - 1}{2} + \frac{f_{c28}}{100} = 0.21$$
.

Tableau VI.16Ferraillage de radier suivant les deux sens.

dalle		Travée	Appui		
dane	A _{calculée} A _{adoptée}		A _{calculée}	A _{adoptée}	
Suivant x-x	1.78 cm ²	$6 \text{ HA } 12 = 6.79 \text{ cm}^2$	1.19 cm ²	$6 \text{ HA } 12 = 6.79 \text{ cm}^2$	
Suivant y-y	1.11 cm ²	$6 \text{ HA } 12 = 6.79 \text{cm}^2$	1.19 cm ²	$6 \text{ HA } 12 = 6.79 \text{ cm}^2$	

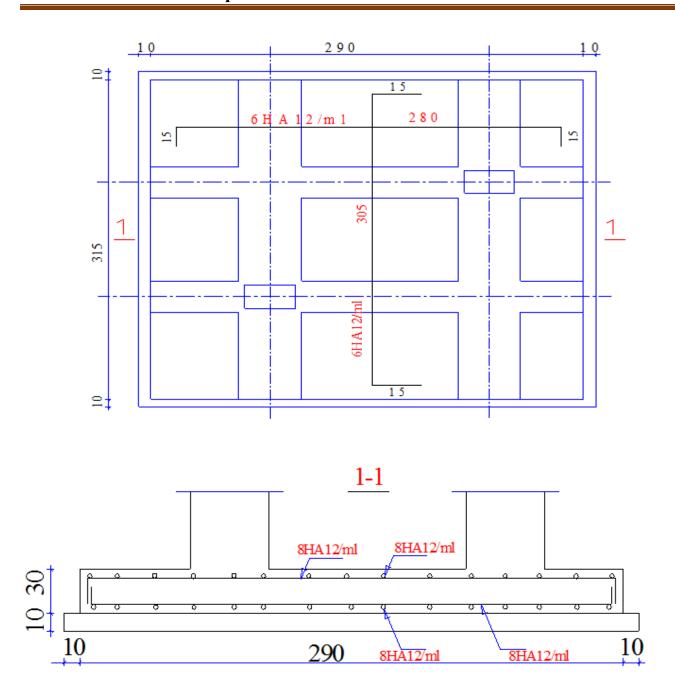


Figure VI.13 Ferraillage de la dalle de radier.

Calcul de Ferraillage de la nervure :

Le radier est considéré travaillant comme un plancher renversé qui est sollicité par la réaction du sol, il transmet cette réaction aux nervures.

Le calcul se fait à la flexion simple à L'ELU.

Les charges réparties linéairement sur les travées des nervures sont évaluées par la méthode des lignes de rupture.

Les lignes de rupture d'un panneau de dalle encastré sur son contour (lignes où se concentrent les déformations au cours d'un chargement, assimilables à des lignes droites) se composent de tronçons :

- ✓ Formant un angle de 45° avec les rives du panneau.
- ✓ Ou parallèles à son grand côté.

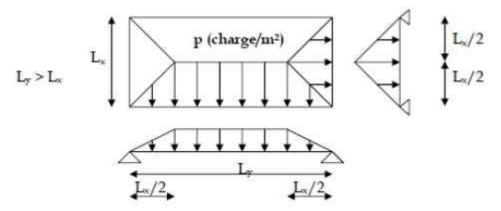


Figure VI.14 Lignes de rupture des panneaux.

Les charges réparties sur les nervures sont triangulaires et trapézoïdales, et les charges uniformément réparties équivalentes (produisant le même effort tranchant ou le même moment fléchissant) sont données par les formules suivantes :

❖ Les charges réparties sur les nervures (à L'ELU):

+ Pour panneau 1:

$$q_{eq} = \sigma_{moy} \times \frac{L_{x-x}}{2}$$
.

Avec:

 L_{x-x} : Valeur entre axe entre deux poteauxau sens x-x.

$$L_{x-x} = 1.50 \text{ m}.$$

$$\frac{L_{x-x}}{2} = \frac{1.50}{2} = 0.75 \text{ m}.$$

$$q_{eq} = 16.01 \times 0.75 = 12.01 \frac{t}{ml}$$

+ Pour panneau 2:

$$q_{eq} = \sigma_{moy} \times L_{x-x}$$

Avec:

 L_{x-x} : Valeur entre axe entre deux poteauxau sens x-x.

$$L_{x-x} = 0.70 \text{ m}.$$

$$q_{eq} = 16.01 \times 0.70 = 11.21 \frac{t}{ml}$$

+ Chargements de la nervure :

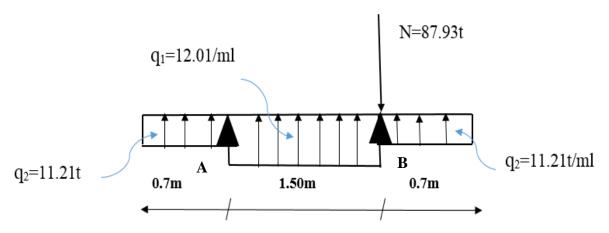


Figure VI.15 Chargements de la nervure sens (x-x) à L'ELU

La majoration des charges n'intervient pas dans le calcul des dimensions de la fondation qui sont déterminées à l'état limite de service. Le dimensionnement vis-à-vis de leur comportement mécanique (ferraillage) s'effectue à l'état limite ultime.

La combinaison à considérer est essentiellement:1,35G + 1,5Q

→ Diagrammes des moments fléchissant : [tf.m]

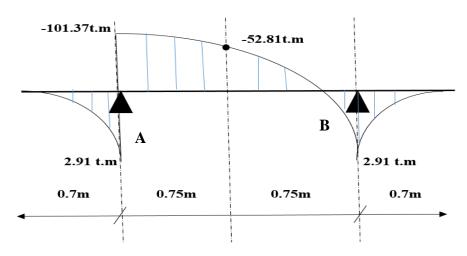


Figure VI.16 Diagrammede moment agissant au niveau de nervure sens x-x (à L'ELU).

Calcul de l'armature longitudinale :

- **❖** Le calcule faite en flexion simple avec une section rectangulaire (0.30 m×0.40 m).
- Pour un moment en travée $M_u = 53.52t$. m.

On a:

$$d = 0.9 \times h = 0.36 \text{ m}.$$

$$\mu_u = \frac{_{M_u}}{_{b \times f_{\it bc} \times d^2}} = \frac{53.52 \times 10^7}{_{300 \times 14,17 \times (360)^2}} = 1.02.$$

 $\mu_u=1.02 > \mu_1=0.392 \Rightarrow$ les armatures de compression sont nécessaires ($A_s^{'}\neq 0$).

$$M_{f1} = \mu_l f_{bc} \, bd^2$$

$$M_{f2} = 0.392 \times 14.17 \times 300 \times 360^2 = 215.96 \text{ KN. m} = 21.60 \text{ t. m.}$$

$$\mathbf{M}_{f2} = \mathbf{M}_f - \mathbf{M}_{f1}.$$

$$M_{f2} = 53.52 - 21.60 = 31.92 \text{ t.m.}$$

$$\checkmark$$
 $\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu_1}) = 1.25 \times (1 - \sqrt{1 - 2 \times 0.392}) = 0.669.$

✓
$$Z = d \times (1-0.4\alpha) = 360 \times (1-0.4 \times 0.669) = 2958.84 \text{ mm}^2 = 29.59 \text{ cm}^2$$
. $A'_{su} = \frac{M_{f2}}{(d-d')\times\sigma_s} = \frac{31.92\times10^7}{(360-50)\times348} = 2958.84 \text{ mm}^2 = 29.60 \text{ cm}^2$.

✓
$$A_{su} = \frac{M_{f1}}{z \times \sigma_s} + A'_s \frac{\sigma'_s}{\sigma_s} = \frac{21.60 \times 10^7}{263.66 \times 348} + 2958.84 \times \frac{348}{348} = 5312.97 \text{ mm}^2 = 53.13 \text{ cm}^2.$$

• Pour un moment en travée $M_u = 103.03t$. m.

On a: $d = 0.9 \times h = 0.36 \text{ m}$.

$$\mu_{\rm u} = \frac{M_{\rm u}}{b \times f_{bc} \times d^2} = \frac{103.03 \times 10^7}{300 \times 14,17 \times (360)^2} = 1.87.$$

 μ_u =1.87> μ_l = 0,392 \Rightarrow les armatures de compression sont nécessaires ($A_s^{'} \neq 0$).

$$\mathrm{M}_{f1} = \mu_l f_{bc} \, bd^2$$

$$M_{f1} = 0.392 \times 14.17 \times 300 \times 360^2 = 215.96 \text{ KN. m} = 21.60 \text{ t. m}.$$

$$\mathbf{M}_{f2} = \mathbf{M}_f - \mathbf{M}_{f1}.$$

$$M_{f2} = 103.03 - 21.60 = 81.43 \text{ t.m.}$$

$$\checkmark$$
 $\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu_1}) = 1.25 \times (1 - \sqrt{1 - 2 \times 0.392}) = 0.669.$

✓ Z = d × (1-0.4
$$\alpha$$
) = 360× (1 - 0.4× 0.669) = 259.34mm. A'_{su} = $\frac{M_{f2}}{(d-d')\times\sigma_s}$ = $\frac{81.43\times10^7}{(360-50)\times348}$ = 7548.20 mm² = 75.48cm².

✓
$$A_{su} = \frac{M_{f1}}{z \times \sigma_s} + A_s' \frac{\sigma_s'}{\sigma_s} = \frac{21.60 \times 10^7}{259.34 \times 348} + 7548.20 = 9941.56 \text{mm}^2 = 99.42 \text{cm}^2.$$

On remarque que les sections d'armatures sont très grandes, donc il faut redimensionner la hauteur de la section.

On adopte une section de (55×110) cm².

- **❖** Le calcule faite en flexion simple avec une section rectangulaire (0.55 m×1.10 m).
- Pour un moment en travée $M_u = 53.52t$. m.

On a:

 $d = 0.9 \times h = 0.99 \text{ m}.$

$$\checkmark \quad \mu_u = \frac{M_u}{b \times f_{bc} \times d^2} = \frac{53.52 \times 10^7}{550 \times 14.17 \times (990)^2} = 0.07.$$

✓
$$\mu_u$$
=0.07 < μ_l = 0,392⇒les armatures de compression ne sont pas nécessaires ($A_s^{'}=0$).

$$\checkmark$$
 $\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu_u}) = 1.25 \times (1 - \sqrt{1 - 2 \times 0.07}) = 0.091.$

$$\checkmark$$
 Z = d × (1-0.4 α) = 990× (1 - 0.4×= 0.091) = 953.96 mm.

$$\checkmark A_{su} = \frac{M_u}{Z \times G_c} = \frac{53.52 \times 10^7}{953.96 \times 348} = 1612.15 \text{mm}^2 = 16.12 \text{cm}^2.$$

On adopte : $16HA16/ml = 32.17cm^2/ml$.

• Pour un moment en travée $M_u = 103.03t$. m.

On a:

 $d = 0.9 \times h = 0.99 \text{ m}.$

$$\checkmark \quad \mu_{\mathbf{u}} = \frac{_{M_u}}{_{b \times f_{\mathit{hc}} \times d^2}} = \frac{103.03 \times 10^7}{_{550 \times 14,17 \times (990)^2}} = 0.135.$$

✓
$$\mu_u$$
=0.135 < μ_l = 0,392⇒les armatures de compression ne sont pas nécessaires ($A_s^{'}$ = 0).

$$\checkmark$$
 $\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu_u}) = 1.25 \times (1 - \sqrt{1 - 2 \times 0.135}) = 0.182.$

✓ **Z**= d ×
$$(1-0.4\alpha)$$
 = 990× $(1 - 0.4 \times 0.182)$ = 917.93 mm.

✓
$$A_{su} = \frac{M_u}{Z \times \sigma_s} = \frac{103.03 \times 10^7}{917.93 \times 348} = 3225.33 \text{mm}^2 = 32.25 \text{ cm}^2.$$

On adopte $:16HA16 + 2HA12 / ml = 34.43 cm^2 / ml.$

+ Vérification de Condition de non fragilité :

$$A_s \ge \max\left(\frac{b \times h}{1000}; 0.23 \times b \times h \times \frac{f_{t28}}{f_e}\right).$$

$$A_s \ge \max\left(\frac{550 \times 1100}{1000}; 0.23 \times 550 \times 1100 \times \frac{2.1}{400}\right) = \max(605; 730.54) = 730.54 \,\mathrm{mm}^2.$$

$$A_{s \, min} = 7.30 \, \text{cm}^2.$$

+ Condition du RPA 99 / version 2003 :

 $A_{\min(RPA 99)} = 0.5\% \times b \times h = 5 \times 10^{-3} \times 55 \times 110 = 30.25 \text{ cm}^2$Condition vérifiée.

$$A_s = \max(A_{su}; A_{s min}; A_{\min(RPA 99)}).$$

♣ Armatures en appui B :

$$M_u = 53.52t. m.$$

$$A_s = \max(16.12; 7.30; 30.25) \text{cm}^2 = 30.25 \text{ cm}^2.$$

On adopte:
$$16HA16 = 32.17 \text{ cm}^2/\text{ml}$$
.

Les barres doivent être prolongées jusqu'aux extrémités de la semelle.

▲ Armatures en appui A et en travée :

$$M_u = 103.03t. m.$$

$$A_s = \max(32.25; 7.30; 30.25) \text{cm}^2 = 32.25 \text{ cm}^2.$$

Les barres au niveau d'appui B sont prolongées jusqu'aux extrémités de la semelle, donc la section d'armature A_s au niveau d'appui A et en travée égale à :

$$A_s = A_{s(M=53.52 \text{ t.m})} + A_{s \text{ différence}}$$

$$A_{s \text{ diff\'erence}} = A_{s(\text{M}=103.03 \text{ t.m})} - A_{s(\text{M}=53.52 \text{ t.m})} = 32.25 - 30.25 = 2.26 \text{ cm}^2.$$

On adopte: $2HA16 = 2.26 \text{ cm}^2$.

Donc:

On adopte: $16HA16 + 2HA16 = 32.17 + 2.26 = 34.43 \text{ cm}^2$.

- Les charges réparties sur les nervures (à L'ELS):
- + Pour panneau 1:

$$q_{eq} = \sigma_{moy} \times \frac{L_{x-x}}{2}$$

Avec:

 L_{x-x} :Valeur entre axe entre deux poteauxau sens x-x.

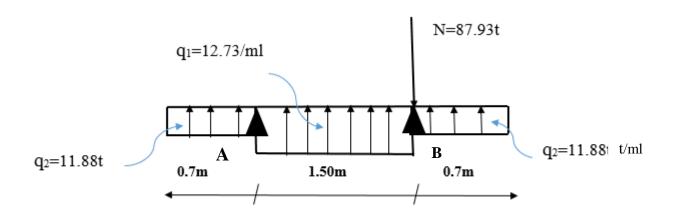
$$L_{x-x} = 1.50 \text{ m}.$$

$$\frac{L_{x-x}}{2} = \frac{1.50}{2} = 0.75 \text{ m}.$$

$$q_{eq} = 16.97 \times 0.75 = 12.73 \frac{t}{ml}$$

+ Pour panneau 2:

$$q_{eq} = \sigma_{moy} \times L_{x-x}$$


Avec:

 L_{x-x} : Valeur entre axe entre deux poteauxau sens x-x.

$$L_{x-x} = 0.70 m.$$

$$q_{eq} = 16.97 \times 0.70 = 11.88 \frac{t}{ml}$$

***** Chargements de la nervure

Figure VI.17 Chargements de la nervure sens (x-x) à L'ELS.

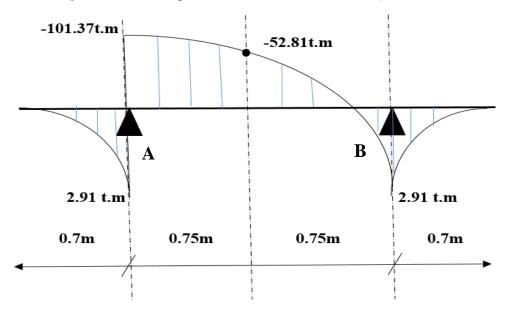


Figure VI.18 Diagramme des moments agissants aux niveaux des nervures sens x-x (à L'ELS).

+ Vérification à L'ELS:

Pour
$$M_u = -53.52$$
 t.m et $M_{ser} = -52.81$ t.m:

Puisque la fissuration est peut nuisible et l'acier utilisé est le FeE400, alors la vérification des contraintes à l'ELS sera simplifiée comme suit :

$$\alpha \leq \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$$

Avec:

$$\delta = \frac{M_u}{M_{ser}} = \frac{53.52}{52.81} = 1.01.$$

Pour $M_u = -103.03t$. m et $M_{ser} = -101.37t$. m:

$$\alpha \le \frac{\delta - 1}{2} + \frac{f_{c28}}{100}$$

Avec :
$$\delta = \frac{M_u}{M_{ser}} = \frac{103.03}{101.37} = 1.02.$$

Donc il n'est pas nécessaire de vérifier la contrainte du béton $\sigma_{bc} < \overline{\sigma_{bc}}$.



Figure VI.19 Diagramme des efforts tranchants aux niveaux des nervures sens x-x (à L'ELU).

→ Vérification au cisaillement :

- ✓ Effort tranchant ultime: $T_{umax} = 88.08 \text{ t.}$
- ✓ La contrainte de cisaillement ultime : $\tau_u = \frac{T_u}{bd} = \frac{88.08 \times 10^4}{550 \times 990} = 1.62 \text{MPa}.$
- Pour des fissurations peu nuisibles : $\tau_u = 1.62 \text{MPa} < \overline{\tau_u} = \min(0.2 \frac{f_{c28}}{\gamma_h}; 5\text{MPa}) = 3.33 \text{MPa}.$

 $\tau_u=1.62 \text{MPa} < \overline{\tau_u}=3.33 \text{MPa} {\rightarrow} \text{ Y'a pas de risque de rupture par cisaillement.}$

Calcul des armatures transversales :

Diamètre des armatures transversales :

$$\checkmark \Phi_{t} \leq \min \{ \frac{h}{35}; \frac{b}{10}; \Phi_{l} \}.$$

$$\Rightarrow \Phi_t \leq \min \{ \frac{1100}{35}; \frac{550}{10}; 16 \} \Rightarrow \Phi_t \leq \min \{ 31.43; 55; 16 \} = 16 \text{ mm}.$$

On prend : $\Phi_t = 12$ mm.

Calcul d'espacement des cadres :

✓ D'après le (BAEL91 révisée 99) :

 $S_t = min (0.9 \times d; 40) cm \rightarrow S_t = 40 cm.$

✓ D'après RPA99 Version 2003(Art 7.4.2.2) on a :

+ En zone nodale

$$S_t \le \min(h/4; 12 \times \Phi_{l \min}; 30 \text{cm}) = \min(110/4; 12 \times 1.2; 30 \text{cm}) = 14.40 \text{ cm}.$$

On prend : $S_t = 10$ cm.

→ Zone courante : $S_t \le \frac{h}{2} = \frac{110}{2} = 55 \text{ cm}.$

On prend : $S_t = 15$ cm.

Les cardes et les étriers doivent être fermés par des crochets à 135° ayant une longueur droitede $10\Phi_t$ minimums.

 $10Φ_t = 10 \times 1,2 = 12$ cm; alors on adopte longueur de 15 cm.

→ Longueur de la zone nodale :

$$h' = 2 \times h = 2 \times 110 = 220 \text{ cm}$$
......RPA 99 / version 2003 (FIG.7.2).

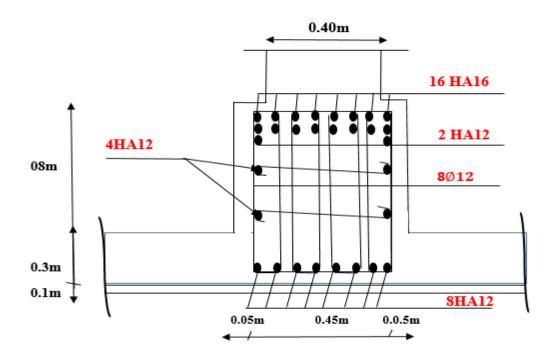


Figure VI.20 Ferraillage de la nervure au sens x-x en appui (A) et en travée.

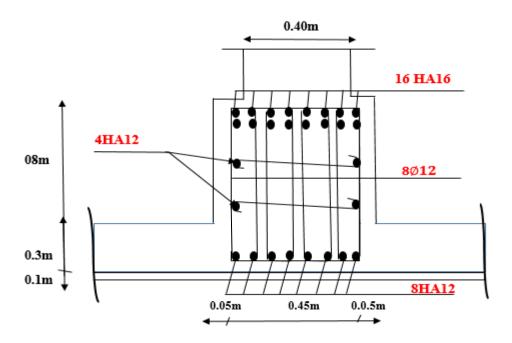


Figure VI.21 Ferraillage de la nervure au sens x-x en appui (B).

VI.11 La Longrine :

a. Généralité

Les points d'appui d'un même bloc doivent être solidarisés par un réseau bidirectionnel de longrines ou tout dispositif équivalent tendant à s'opposer au déplacement relatif de ces points d'appui dans le plan horizontal.

VII. Dimensionnement de la longrine

Selon l'RPA 99 (art.10-1-1), les Dimensions minimales des longrines, en fonction du site sont:

(25×30) cm².....sites de catégorie S2, S3.

 (30×30) cm².....site de catégorie S4.

Pour notre cas (site meuble S3) on prend une section de (25×30) cm².

VIII. Ferraillage de la longrine

Les longrines doivent être conçues et calculées pour résister à un effort traction pur sous l'action d'une force égale à :

 $F = \frac{N}{\alpha} \ge 20$ KN (d'après RPA 99 / version 2003).

Dans l'expression ci-dessus les notations sont les suivantes :

N: effort normal de compression maximal apporté par les points d'appui solidarisés (les poteaux par exemple);

α : coefficient qui dépend de la zone sismique et de la catégorie de site considéré, dont les valeurs sont présentées dans le tableau 1.

Tableau VI.17 Valeurs du coefficient α.

Site	zone				
	I	II	III		
Sı	-	-	-		
S ₂	-	15	12		
S ₃	15	12	0		
S ₄	12	10	8		

Dans notre cas : $\alpha = 12(S3, (zone II))$.

Force maximale dans les poteaux : N=1224.75 KN.

Effort de traction dans les longrines :

L'effort de traction dans les longrines se déduit à partir de l'effort de compression maximal dans les poteaux selon l'expression suivante :

$$F = \frac{N}{\alpha} = \frac{1224.75}{12} = 102.06 \text{ KN}.....$$
Condition vérifiée.

Armatures longitudinales:

La longrine travaille en traction simple, la résistance du béton est ainsi carrément négligée, et la totalité de l'effort F sera équilibrée uniquement par les armatures.

La section d'acier de :
$$A_{S \text{ cal}} = \frac{F}{\sigma_S} = \frac{F}{(\frac{f_e}{\gamma_S})} = \frac{102.06 \times 10^3}{(\frac{400}{1.15})} = 293.27 \text{mm}^2 = 2.93 \text{cm}^2.$$

Soit une section adoptée de A_{adoptée} = 4 HA14 = 2.93cm².

Condition de non fragilité :

$$A_{\min 1} = \frac{0.23 \times b \times d \times f_{t28}}{f_e} = 0.75 \text{cm}^2.$$

❖ Condition de RPA:

Le ferraillage minimal doit être de0.6% de la section de la longrine :

$$A_{\min 2} = 0.6\% \times b \times h \Rightarrow A_{\min} = 0.006 \times 25 \times 30 = 4.5 \text{ cm}^2$$
.

$$A_S \ge (A_{\min 1}; A_{\min 2}; A_{S \text{ cal}}) = (0.75 \text{ cm}^2; 4.5 \text{ cm}^2; 2.93 \text{ cm}^2) = 4.5 \text{ cm}^2.$$

On prend : $A_{s \text{ adopt\'ee}} = 4HA14 = 6.16 \text{ cm}^2$.

Armatures transversales :

Choix du diamètre : il doit vérifier l'inégalité suivante :

$$\phi_t \ge \frac{\phi_l}{3} = \frac{14}{3} = 4.67 \text{ mm}.$$

Les armatures transversales seront constituées par des cadres ϕ 8 \Rightarrow $\phi_t = \phi$ 8.

L'espacement les armatures transversales seront constituées par des cadres dont l'espacement S_t doit répondre à la condition suivante :

 $S_t \le \min\{20cm, 15\varphi_l\}d$ 'après RPA 99 / version 2003.

 $S_t \le \min\{20 \text{ cm}, 15 \text{ x} 1, 4\} = 20 \text{ cm}.$

Soit un cadre à mettre chaque les 15 cm.

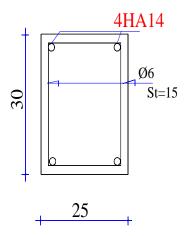


Figure VI.22 Schéma de ferraillage de la longrine

CONCLUSION GENERALE

Notre projet de fin d'études nous a permis essentiellement de mettre en pratique l'ensemble des connaissances théoriques et expérimentales acquises durant notre cycle de formation universitaire. A travers cette étude d'un bâtiment en béton armé à contreventement mixte, nous avons saisi combien il est important de bien analyser une structure avant de la calculer, et de la doter du contreventement adéquate fonction de la hauteur et de l'agressivité sismique du lieu. Concernant les notes de calcul des éléments secondaires (planchers, escaliers, acrotère et balcons), des éléments porteurs (poteaux, poutres et voiles) et de l'infrastructure (fondation sur radier), elles ont été conduites conformément aux prescriptions réglementaires en vigueur au niveau national, notamment les règles parasismiques Algériennes (RPA/93) et les règles de conception et de calcul des structures en béton armé (CBA/93).

Bibliographie

Dans le cadre de l'élaboration de mon projet de fin d'étude, les documents suivants m'ont été d'une aide précieuse à fin de résoudre les anomalies que j'ai rencontrées au cours mon projet de thèse

Règlements:

- **RPA99**: règles parasismiques algériennes version 2003.
- **BAEL91**: béton armé aux états limite.
- **CBA93**: Règle de conception et de calcul des structures en béton armé
- **DTR B.C.2.2**: document technique règlementaire (charge et surcharge).

Cours:

- Cours de béton armé (3ème Année).
- © Cours de conception technique de construction (1ère Année Master).
- © Cours de Résistance de matériaux (3ème Année).
- © Cours de dynamique des structures (master 2)
- Cours de calcul des structures en béton armé (1ère Année Master).
- © Cours ossatures bâtiment (2015-2016).master génie civil .option : structures civil et industrielles. Prof .Amar Kassoul-UHB Chleff.

Logiciels:

F	Logiciel d'analyse des structures ROBOT version 20	10
F	AUTOCAD 2010	Dessin.
F	EXCEL 2013	Calcul.
F	WORD 2013	Traitement de texte.
F	EXPERT 2010	Calcul

- 1) GUERGOURI AMIR ET AMADOU OUMAROU CHAPIOU. Etude d'un bâtiment à usage d'habitation r+15. Mémoire de master. Université 08 mai 1945 de Guelma. Juin 2017.
- 2) BOUDOUR ZEYD HEMRI MOHAMMED. Etude du ferraillage et du métré d'une tour en béton armé fondée sur pieux. Université 08 mai 1945 de Guelma. Juin 2018.
- 3) HOUAOUSSA MOHAMMED AMIN. BOUROUMANA ISSAM. Etude d'un bâtiment C+5. Université 08 mai 1945 de Guelma. 2018/2019.
- 4) AIT AMMAR TAOUS. MALDJI NABILA. Etude d'un bâtiment «R + 5 + Entre sol», contreventé par voiles porteurs en béton armé, en utilisant un spectre de réponse du RPA et un spectre de réponse du KEDDARA. Université 08 mai 1945 de Guelma. 2016-2017.
- 5) BENKACHER MALIKA.DELLOUL MEHA. Etude d'un bâtiment à usage d'habitation R+14. Université 08 mai 1945 de Guelma. Juin 2016.

Livre:

Cher ait, "Calcul des ouvrages en béton armé", éditions offices des publications universitaires, (2008).

Polycopiées:

- Dr. MADI Rafik, "Cours : béton armé", Université 8 mai 1945-Guelma, 2014.
 - © Dr. MADI Rafik, "Cours :ouvrages en béton", Université 8 mai 1945-Guelma, 2014.