Please use this identifier to cite or link to this item: http://dspace.univ-guelma.dz/jspui/handle/123456789/6220
Title: Détection et Identification des défauts de surface des produits plats dans les processus de laminage par vision artificielle et algorithmes intelligents
Authors: Mentouri, Zoheir
Keywords: Contrôle qualité, Vision, Mesure, Défaut de surface; Traitement d’image, Méthodes statistiques, Classification, Temps réel.
Issue Date: 16-Dec-2018
Abstract: Dans les procédés de fabrication de produits en acier une grande importance est allouée à l'état de surface et les possibilités de son inspection, production en cours. Le simple contrôle visuel est incapable de suivre le produit qui est, généralement, en mouvement, et même avec une vitesse réduite du process, l’inspection de la surface ne peut être réalisée qu’à titre d’échantillonnage, qui reste non exhaustif. L'inspection en fin de process, quant à elle, ne pourrait être la solution idéale, du fait qu'elle ne permettra que de retracer l'historique du process, et renseigner sur ses tendances. Par conséquent, les défauts du produit final, qui ne sont pas détectés et corrigés, conduisent au déclassement des produits et induisent des coûts supplémentaires. Le travail proposé, porte sur le développement d’application de détection et de classification automatique des défauts de surface des produits plats laminés à chaud. Ces défauts (pailles, griffes, criques, calamine, porosité, etc.) sont multiples et d’apparence complexe. Ainsi, notre contribution consiste à proposer de nouvelles approches, basées sur des descripteurs d’images, utilisés à ce jour dans quelques applications de biométrie, les appliquer à une base de données de référence pour valider les algorithmes développés, et améliorer les résultats de classification, déjà publiés par d’autres études. En outre nous élaborons une nouvelle base de données, composée d’images de défauts de bandes d’acier laminées à chaud sur une ligne de production locale, et nous démontrons l’efficacité des approches proposées par leur application sur cette nouvelle base de défauts. Nous contribuons ainsi à fournir un outil performant qui peut être utilisé en ligne pour le contrôle de la qualité des produits, et même servir dans la maintenance et l’optimisation de la conduite du process.
URI: http://dspace.univ-guelma.dz:8080/xmlui/handle/123456789/6220
Appears in Collections:Thèses de Doctorat

Files in This Item:
File Description SizeFormat 
These mentouri 2018.pdf4,52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.