Please use this identifier to cite or link to this item:
http://dspace.univ-guelma.dz/jspui/handle/123456789/510
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HALLACI, Ahmed | - |
dc.date.accessioned | 2018-07-19T07:59:26Z | - |
dc.date.available | 2018-07-19T07:59:26Z | - |
dc.date.issued | 2017 | - |
dc.identifier.uri | http://dspace.univ-guelma.dz:8080/xmlui/handle/123456789/510 | - |
dc.description.abstract | Thesubjectoffractionaldi¤erentialequationshasgainedconsiderablepopularity andimportanceduringthepastthreedecadesorso,duemainlytoitsdemonstrated applicationsinnumerousseeminglydiverseandwidespread eldsofscienceand engineering.Itdoesindeedprovideseveralpotentiallyusefultoolsforsolvingdi¤er- entialandintegralequationsaswellastheirimportanceinthemodelingofalotof physicalphenomenaassociatedtoveryrapidandveryshortchanges. Ontheotherhand,existence,uniquenessandstabilityofsolutions,represent a largepartofthequalitativetheoryofnonlinearordinaryandpartialdi¤erential equationsofnon-integerorder.Whereweareinterestedinthisthesisonthediscus- sionofqualitativeanalysisofsomekindsoffractionalordinarydi¤erentialequations andfractinalpartialdi¤erentialequations.Tothisend,weutilizethe xedpoint theoremsofBanach,SchauderandKrasnoselskiiinBanachspacesforfractionalor- dinarydi¤erentialequationsaswellasRothediscretizationmethodisusedtoshow theexistenceanduniquenessofweaksolutionforfractionaldi¤usionequationof thesecond-orderdi¤erentialVolterraoperatorinHilbertspace.Toguaranteethe e¤ectivenessandusefulnessofourobtainedresultstheoretically,someillustrative examplesaregiven. | en_US |
dc.language.iso | en | en_US |
dc.subject | Fractionaldi¤erentialequations,fractionaldi¤usionequation,initial valueproblems,boundaryvalueproblems,unboundedinterval,mixedderivatives, | en_US |
dc.title | On the study of some types of differential equations of fractional orders | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Thèses de Doctorat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
These final HALLACI Ahmed 2018.pdf | 1 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.