Please use this identifier to cite or link to this item: https://dspace.univ-guelma.dz/jspui/handle/123456789/18266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKOUADRIA, AMINE-
dc.date.accessioned2025-10-16T08:00:09Z-
dc.date.available2025-10-16T08:00:09Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-guelma.dz/jspui/handle/123456789/18266-
dc.description.abstractThis study is situated within the context of the digital transformation of medical records and aims to automate the summarization of clinical notes to support clinical decision-making. The main objective is to develop a model capable of generating coherent and factual summaries from the discharge summaries of the MIMIC-IV dataset. The adopted methodology is based on the fine-tuning of the LongT5 model, chosen for its ability to process very long text sequences. Particular attention was given to data preproces- sing, notably the generation of coherent and precise target summaries to ensure high-quality supervision. The adaptation of the pre-trained model was then efficiently performed using the LoRA (Low-Rank Adaptation) method. Our final model, named MedSum-LongT5, achieves solid performance with scores of 52.6% for ROUGE-1, 35.3% for ROUGE-2, and 42.9% for ROUGE-L. These results signifi- cantly outperform non-specialized baseline models, validating the effectiveness of the approach. Qualitative analysis confen_US
dc.language.isofren_US
dc.publisheruniversity of guelmaen_US
dc.subjectAutomatisation de l’analyse des dossiers médicaux pour une prise de décision clinique optimiséeen_US
dc.titleAutomatisation de l’analyse des dossiers médicaux pour une prise de décision clinique optimiséeen_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
F5_8_KOUADRIA_AMINE_1751984194.pdf8,36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.