Please use this identifier to cite or link to this item: https://dspace.univ-guelma.dz/jspui/handle/123456789/18256
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCISSE Dramane, BEN ZIADI NABIL SKANDAR-
dc.date.accessioned2025-10-15T13:51:58Z-
dc.date.available2025-10-15T13:51:58Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-guelma.dz/jspui/handle/123456789/18256-
dc.description.abstractThe energy transition and the digitalization of electrical infrastructure have led to the emergence of Smart Grids—intelligent networks that optimize energy production, distribution, and consumption. This thesis addresses the dual challenges of data indexing and prediction within Smart Grids. It presents a comprehensive review of indexing methods (time series indexing, RMI, autoencoders) and predictive models (regression, random forests, LSTM). A prototype system combining intelligent indexing and automatic forecasting using energy time series data was implemented. The experimental results demonstrate significant improvements in query response time and prediction accuracy, validating the proposed approach as an effective solution for managing massive and heterogeneous energy data in Smart Grid systems.en_US
dc.language.isofren_US
dc.publisherUniversity of Guelmaen_US
dc.subjectsmart grids; data indexing; machine learning; data managementen_US
dc.titleIndexation des Données dans les Réseaux Intelligents en utilisant l’Apprentissage Automatiqueen_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
F5_8_CISSE_Dramane.pdf4,32 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.