Please use this identifier to cite or link to this item:
http://dspace.univ-guelma.dz/jspui/handle/123456789/15044
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | TABANE, Imane | - |
dc.date.accessioned | 2023-11-28T09:07:56Z | - |
dc.date.available | 2023-11-28T09:07:56Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://dspace.univ-guelma.dz/jspui/handle/123456789/15044 | - |
dc.description.abstract | We consider two-dimensional Bose–Einstein condensates with attractive interac- tion, described by the Gross–Pitaevskii functional. Minimizers of this functional exist only if the interaction strength a satisfies a < a∗ = ||Q||2, where Q is the unique pos- itive radial solution of −∆u−u + u3 = 0 in R2. We present a detailed analysis of the behavior of minimizers as a approaches a∗, where all the mass concentrates at a global minimum of the trapping potential. Mathematics Subject Classification (2010). 35Q40, 46N50, 82D50. | en_US |
dc.language.iso | fr | en_US |
dc.publisher | University of Guelma | en_US |
dc.subject | Bose–Einstein condensation, attractive interactions, Gross–Pitaevskii functional, mass concentration, symmetry breaking. | en_US |
dc.title | Sur la concentration de masse d'un condensat de Bose-Einstein. | en_US |
dc.type | Working Paper | en_US |
Appears in Collections: | Master |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TABANE_IMANE_F5.pdf | 489,31 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.