Please use this identifier to cite or link to this item: http://dspace.univ-guelma.dz/jspui/handle/123456789/15044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTABANE, Imane-
dc.date.accessioned2023-11-28T09:07:56Z-
dc.date.available2023-11-28T09:07:56Z-
dc.date.issued2023-
dc.identifier.urihttp://dspace.univ-guelma.dz/jspui/handle/123456789/15044-
dc.description.abstractWe consider two-dimensional Bose–Einstein condensates with attractive interac- tion, described by the Gross–Pitaevskii functional. Minimizers of this functional exist only if the interaction strength a satisfies a < a∗ = ||Q||2, where Q is the unique pos- itive radial solution of −∆u−u + u3 = 0 in R2. We present a detailed analysis of the behavior of minimizers as a approaches a∗, where all the mass concentrates at a global minimum of the trapping potential. Mathematics Subject Classification (2010). 35Q40, 46N50, 82D50.en_US
dc.language.isofren_US
dc.publisherUniversity of Guelmaen_US
dc.subjectBose–Einstein condensation, attractive interactions, Gross–Pitaevskii functional, mass concentration, symmetry breaking.en_US
dc.titleSur la concentration de masse d'un condensat de Bose-Einstein.en_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
TABANE_IMANE_F5.pdf489,31 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.