Please use this identifier to cite or link to this item:
http://dspace.univ-guelma.dz/jspui/handle/123456789/14979
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | FARTAS, Lina Soundous | - |
dc.date.accessioned | 2023-11-22T14:03:48Z | - |
dc.date.available | 2023-11-22T14:03:48Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://dspace.univ-guelma.dz/jspui/handle/123456789/14979 | - |
dc.description.abstract | The aim of this work is to discusses a mixed finite element method combined with the backward-Euler method to study the hyperbolic p−bi-Laplace equation, where the existence and uniqueness of solution for the discretized problem are shown in Lebesgue and Sobolev spaces. A mixed formulation and an inf-sup condition are then given to prove the well-posedness of the scheme and optimal a priori error estimates for fully discrete schemes are extracted. | en_US |
dc.language.iso | fr | en_US |
dc.publisher | University of Guelma | en_US |
dc.subject | Evolution p-bi-Laplace equation, mixed finite element method, inf-sup condition and mixed formulation, existence and uniqueness. | en_US |
dc.title | Sur un problème d’évolution du type p-b-Laplace | en_US |
dc.type | Working Paper | en_US |
Appears in Collections: | Master |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FARTAS_LINA SOUNDOUS_F5.pdf | 479,01 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.