Please use this identifier to cite or link to this item: http://dspace.univ-guelma.dz/jspui/handle/123456789/14979
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFARTAS, Lina Soundous-
dc.date.accessioned2023-11-22T14:03:48Z-
dc.date.available2023-11-22T14:03:48Z-
dc.date.issued2023-
dc.identifier.urihttp://dspace.univ-guelma.dz/jspui/handle/123456789/14979-
dc.description.abstractThe aim of this work is to discusses a mixed finite element method combined with the backward-Euler method to study the hyperbolic p−bi-Laplace equation, where the existence and uniqueness of solution for the discretized problem are shown in Lebesgue and Sobolev spaces. A mixed formulation and an inf-sup condition are then given to prove the well-posedness of the scheme and optimal a priori error estimates for fully discrete schemes are extracted.en_US
dc.language.isofren_US
dc.publisherUniversity of Guelmaen_US
dc.subjectEvolution p-bi-Laplace equation, mixed finite element method, inf-sup condition and mixed formulation, existence and uniqueness.en_US
dc.titleSur un problème d’évolution du type p-b-Laplaceen_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
FARTAS_LINA SOUNDOUS_F5.pdf479,01 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.