Please use this identifier to cite or link to this item: http://dspace.univ-guelma.dz/jspui/handle/123456789/13246
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNOUAR, IKRAME-
dc.date.accessioned2022-10-13T11:38:36Z-
dc.date.available2022-10-13T11:38:36Z-
dc.date.issued2022-
dc.identifier.urihttp://dspace.univ-guelma.dz/jspui/handle/123456789/13246-
dc.description.abstractThe Industrial Internet of Things (IIoT) is a collection of daily interconnected devices in an industrial environment, equipped with light processors and network cards, which can be managed by web services and/or other types of interface. IIoT network vulnerabilities increase dramatically with complex cyberattacks, such as botnets. A botnet attack is a large-scale cyberattack carried out by remotely controlled, malware-infected devices. It turns compromised devices into "zombie robots" for the botnet controller. A botnet can initiate a number of activities, such as Distributed Denial of Service (DDoS) attacks, keylogging, phishing, spamming, click fraud, spoofing, etc. . The objective of this subject is to study and propose a security method to detect Botnet attacks in IIoT systems.en_US
dc.language.isofren_US
dc.publisherUNIVERSITÉ DE GUELMAen_US
dc.subjectCybersécurité, Apprentissage en profondeur, Botnet, Système de détec- tion de botnet, Internet des objects industriel (IIoT)en_US
dc.titleLa détection des attaques Botnet dans l'Industrie Internet des objets (IIoT)en_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
NOUAR_IKRAME_F5.pdf2,68 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.