Please use this identifier to cite or link to this item: http://dspace.univ-guelma.dz/jspui/handle/123456789/11539
Title: Classification des signaux électrocardiographique ECG par les réseaux de neurones artificiels
Authors: LATRECHE, Mokhtar
Keywords: Classification des signaux. ECG
Issue Date: Jul-2021
Publisher: Université 8Mai 1945 – Guelma
Abstract: En examinant l'électrocardiogramme (ECG), il est possible de détecter tous les problèmes cardiaques. C'est l'un des tests les plus importants en médecine, pour voir les résultats de ce test, nous avons appliqué un réseau de neurones artificiels, un réseau perceptron multicouche pour prédire la classification des signaux ECG. Un réseau de neurones artificiels perceptron multicouche est constitué d'un groupe de neurones de traitement installés de différentes manières. Chaque neurone reçoit le traitement d'un nombre quelconque d'entrées ou de variables et fournit un signal sortant. Les neurones de traitement sont regroupés en trois couches (couche d'entrée, couche cachée et couche de sortie) pour former l'architecture de ce réseau. Le but de notre travail est d'obtenir une évaluation ECG pour chaque signal avec un taux d'erreur très faible et avec une grande précision
URI: http://dspace.univ-guelma.dz/jspui/handle/123456789/11539
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
LATRECHE_MOKHTAR_F1_Electronique et Télécommunications_Instrumentation.pdf1,67 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.