République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université 8 Mai 1945 Guelma

Faculté de Mathématique et de l'informatique et des Sciences de Matière Département Science de la Matière Laboratoire de domiciliation. Laboratoire de Chimie Physique

THÈSE

EN VUE DE L'OBTENTION DU DIPLOME DE DOCTORAT EN 3^{ème} CYCLE

Domaine : Science de la matière Filière : Chimie Spécialité : Chimie physique moléculaire et organométallique

Présentée par

M^{me} Fawzia BOURSAS ép. MERCHELA

Intitulée

Synthèse, Etudes Structurale et Théoríque de Nouveaux

Composés à Base de dérivés Azotés

Soutenue le : Devant le Jury composé de :

Mr, M.KADRI Mme, F. BERRAH Mr, N.GHERRAF Mr, A.SERIDI Prof Prof Prof Prof Univ. 8 Mai 1945 Univ. de Oum El Bouaghi Univ. de Oum El Bouaghi Univ. 8 Mai 1945 Président Rapporteur Examinateur Examinateur

Année Universitaire : 2019

REMERCIEMENTS

Avant tout, je dois remercier Dieu le tout puissant qui m'a donné l'envie et la force pour mener à terme ce travail.

Je tiens à exprimer ma gratitude à *Madame* **Berrah Fadila** professeur à l'université *Larbi Ben M'hidi Oum El Bouaghi*, pour m'avoir fait confiance en acceptant de diriger ce mémoire. Qu'elle soit remerciée aussi pour m'avoir fait partager ses connaissances scientifiques. Je n'oublierai jamais tous ses conseils, l'extrême gentillesse et la grande disponibilité qu'elle a toujours fait preuve. Je suis extrêmement fière d'avoir travaillé avec elle.

J'exprime ma plus profonde gratitude à monsieur **Kadrí Mekkí** professeur à l'université 08 Mai 45 -Guelma pour l'honneur qu'il me fait en examinant cette thèse et en présidant le jury.

Je tiens également à remercier très sincèrement monsieur **Ghouraf** *Noureddine*, professeur à l'université Larbi Ben M'hidi Oum El Bouaghi, pour avoir accepté de venir à Guelma et pour juger ce travail.

J'exprime également toute ma gratitude à monsieur Seridi Achour, professeur à l'université 08 Mai 45 -Guelma, pour avoir accepté de juger ce travail.

Je remercie sincèrement le professeur **T. Aouaroun** pour les analyses thermiques, le professeur **M. Zaabat** et Mme **N. Touzari** pour les mesures IR et Raman.

Mercí enfín à toutes les personnes que j'ai rencontrées au laboratoire «**chímíe Physíque**» et à toutes les personnes extérieures du laboratoire qui m'ont aidé directement et indirectement.

Dédicaces

J'ai le grand plaisir de dédier ce modeste travail A mes très chers : Maman et Papa

Affables, honorables, aimables: vous représentez pour moi le symbole de la bonté par excellence, la source de tendresse et l'exemple du dévouement qui n'a pas cessé de m'encourager et de prier pour moi.

Vos prières et votre bénédiction m'ont été d'un grand secours pour mener à bien mes études. Aucune dédicace ne saurait être assez éloquente pour exprimer ce que vous méritez pour tous les sacrifices que vous n'avez cessé de me donner depuis ma naissance, durant mon enfance et même à l'âge adulte.

Maman, tu as fait plus qu'une mère puisse faire pour que ses enfants suivent le bon chemin dans leur vie et leurs études.

Papa, aucune dédicace ne saurait exprimer l'amour, l'estime, le dévouement et le respect que j'ai toujours pour toi. Rien au monde ne vaut les efforts fournis jour et nuit pour mon éducation et mon bien être.

Ce travail est le fruit de vos sacrifices que vous avez consentis pour mon éducation et ma formation.

Je vous dédie ce travail en témoignage de mon profond amour. Puisse Dieu, le tout puissant, vous préserver et vous accorder santé, longue vie et bonheur.

A Mon Cher mari, pour son soutien, ses encouragements, son aide, sa joie de vivre et son amour...

A Ma raison de vivre, à mes enfants Mohamed Wail et Iyed Chiheb Eddine. A Mes chères sœurs et mon cher frère, les mots ne suffisent guère pour exprimer l'attachement, l'amour et l'affection que je porte pour vous. Je vous dédie ce travail avec tous mes vœux de bonheur, de santé et de réussite.

> A mes beaux parents, ma belle sœur, mon beau-frère rt sa femme. Enfin à toute personne qui a aimé FAWZIA de prés ou de loin.

> > BOURSAS Fawzía

Connaître les autres c'est sagesse. Se connaître soi-même, c'est sagesse supérieure. Imposer sa volonté aux autres, c'est force. Se l'imposer à soi-même, c'est force supérieure.

LAOTSE

SOMMAIRE

Résumé	
Liste des figures	
Liste des Tableaux	
Liste des abréviations	
Préambule	
Introduction générale	1

Partie A. Généralités et Concepts Fondamentaux

Chapitre I. Les Dérivés azotés

I.Les 1,2,4-Triazoles	4
I.1. Introduction sur les hétérocycles azoltés	4
I. 2. Les Triazoles	5
I.2.1. Propriétés des triazoles	6
I.2.1.1. Propriétés physico-chimiques	6
I.2.1.2. Stabilité thermique	6
I.2.2. Activités des triazoles	7
I.3. Les 1, 2, 4-Triazoles	7
I.3.1. Propriétés physico-chimiques	7
I.3.2. Complexation avec les ions métalliques	8
I.3.2.1. Inhibition de la corrosion	8
I.3.2.2. Amélioration de l'adhésion	9
I.3.3. Activité biologiques du 1,2,4-triazoles	9
I.4. Acide 5-amino-1, 2,4-triazole-1H-3-carboxylique hydrate	9
II. La Para-phénylènediamines	10
II.1. Introduction sur les diamines aromatiques	10
II.2. Les phénylènediamines	12
II.2.2. Propriétés des phénylènediamines	12
II.2.2.1. Propriétés physico-chimiques	12
II.2.3. Complexation avec les ions métalliques	13
II.2.4. Activité biologique des phénylènediamines	13
II.3. La p-phénylènediamine	13
II.3.1. Propriétés physico-chimiques	13
II.3.1.2. Amélioration d'adhesion	14
II.3.1.3. Oxydation des phénylènediamines	14
II.3.2. Utilisation du p-phénylènediamine	14
II.3.3. Aspects toxicologiques de la p-phénylènediamine	15
II.4. Structure cristallines des p-phénylènediamines	15

Références	17
Chapitre II. La Liaisons Hydrogène	
I. Introduction	22
I.1. La Liaison hydrogène	22
I.2. Propriétès de la liaison hydrogène	23
I.2.1. Liaisons faibles	24
I.2.2. Liaisons modérèes	24
I.2.3. Liaisons fortes	24
I.3. Caractéristiques des liaisons hydrogène	24
I.3.1. Liaison d'hydrogène à quatre centres	24
I.3.2. Liaisons hydrogène à trois centres	25
I.3.3. Liaison hydrogène à deux centres	25
I.3.4. Liaison hydrogène chélate	25
I.3.5. Liaison hydrogène bifurqué	25
I.3.6. Liaison hydrogène Tandem	26
I.4. Description d'un réseau de liaison hydrogène dans une structure cristalline	26
(Théorie des graphes du modèle des liaisons hydrogène)	
I.4.1. Graphe unitaire	27
I.4.2. Graphe binaire	27
Références	28

Partie B. Généralités sur les méthodes de caractérisation

Chapitre I. Les Méthodes de Calcul Théorique

[. Base de la chimie quantique /Méthodes ab-initio	30
I.1. Introduction	30
I. 2. L'équation de Schrödinger	30
I.3. L'approximation Born-Oppenheimer	31
I.4. Méthode Hartree-Fock.	32
I.5. Méthodes post-Hartree-Fock	32
I.6. L'approximation d'Orbitale Moléculaire	33
I.7. Approches de l'analyse de population	33
I.7.1. Approche de Mulliken	34
I.7.2. Approche NPA	34
I.7.3. L'analyse Orbitalaire NBO	34
I.8. Choix de la base d'orbitales atomiques	35
I.8.1. La base 6-311G (d.p)	35
I.8.2. Base polarisée	35
I.9. Définition de quelques paramètres calculés par la modélisation	35
I.10. Logiciels utilisés	37
Références	38

Chapitre II. La Surface Hirshfeld

I. Introduction	41
I.1.2. Propriétés des surfaces <i>di</i> et <i>de</i>	42
I.1. Propriétés des surfaces d _{norm}	42
I.3. Note sur les longeurs de liaison C-H	44
I-2. Les empreintes 2D des surfaces de Hirshfeld	44
Références	47

PARTIE C. Résultats et discussion

Chapitre I : Synthèse, étude cristallographique, graphe des liaisons hydrogène	
et Etude Théorique du Composé Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-	
ium) selenate dihydrate BACTSe	
I. Introduction	3
II. Synthèse)
III. Etude cristallographique)
III.1. Enregistrement des intensités de diffractioin des rayons X 49)
III.2. Résolution et affinement de la structure)
III.3. Propriétés structurale du composé BACTSe	2
III.3.1. Unité asymétrique	2
III.3.2. Protonation	2
III.3.3. Description de la structure	3
III.3.4. Liaisons hydrogène	1
III.3.5. Graphes set des liaisons hydrogène	5
III.3.6. Géométries des différentes entités	5
III.3.6.1. Géométries du cation 5-amino-3-carboxy-1H	5
1,2,4-triazol-4-ium	
III.3.6.2. Géométrie de l'anion du composé BACTSe 57	7
IV. Etude théorique	7
IV.1. Détails du calcul théorique	7
IV.2. Structure optimisée	3
IV.3. Propriétés thermodynamiques	3
IV.4. Distributions des charges atomiques)
IV.5. Analyse des orbitales naturelles de liaisons NBO)
IV.6. Potentiel électrostatique moléculaire MEP	l
IV.7. Analyse des orbitales frontières (HOMO-LUMO)	3
IV.8. Spectre de Densité des états	1
V. Spectroscopie IR et Raman	1
V.1. Vibrations de l'anion SeO_4^{-2}	5
V.2. Vibrations de la molécule d'eau	5
V.3. Vibrations du cation $(C_3H_5N_4O_2)^+$	5
V.3.1. Vibration du groupe amino (-NH ₂)	5
V.3.2. Vibration du cycle (1H-1.2.4 triazole-4-ium)	5
V.3.3. Vibration du groupe carboxyle (-COOH)	5
VI. Conclusion	3

Références	69
	02

Chapitre II: Synthèses, études cristallographique, graphes des liaisons hydrogène, Analyse de la Surface Hirshfeld et Etude Comparative des deux Composés : Étude comparative des deux composés : p-phenylenediammonium dinitrate et p-phenylenediammonium di (trichloroacetate) 1.5hydrate

I.Introduction	72
II. Synthèse	74
III. Etude cristallographique	74
III.1. Enregistrement des intensités de diffraction des rayons X	74
III.2. Résolution et affinement de la structure	74
III.3. Propriétés structurale des composés (I) et (II)	77
III.3.1. Unités asymétriques	77
III.3.2. Protonation	78
III.3.3. Description des structures (I) et (II)	79
III.3.4. Liaisons hydrogène dans les deux composés (I) et (II)	82
III.3.5. Géométries et environnements des entités présentes	85
dans les composés (I) et (I).	
III.3.5.1. Géométries et environnements des cations	85
p-phénylènediammonium	
III.3.5.2. Géométries et environnements des anions	86
III.3.5.3. Géométries et environnements des molécules d'eau	87
IV. Spectroscopie IR et Raman	88
IV.1. Vibrations des cations ($C_6H_{10}N_2$) $_2^+$	88
IV.2. Vibrations des anions NO ₃ ⁻ , ClCCOO ⁻ et les molécules d'eau	89
V. Analyse de la surface Hirshfeld	93
VI. Analyse Thermique	97
VIII. Conclusion	99
Référence	10
Conclusion générale	10

ANNEXES

Annexe A. Techniques de caractérisation	104
Annexe B. Données Expérimentales des Composés étudiés	110

Publication

Résumé

Le travail présenté dans cette thèse porte sur la synthèse de composés hybrides à base de dérivés azotés et de différents acides minéraux.

Au cours de ce travail, nous avons synthétisé en solution aqueuse trois nouveaux composés hybrides à base de l'*acide 5-amino-1,2,4-triazole-1H-3-carboxylique hydrate* et de la *para-phénylènediamine* comme matrice organique et des acides sélénique, nitrique et trichloroacetique.

La caractérisation de ces nouvelles phases a été meneé par diffraction des rayons X sur monocristal et par spectroscopie FT-IR et FT-Raman.

Le premier volet du travail réalisé a été réservé à la comparaison des structures et des propriétés de deux structures originales obtenues à partir de la même entité organique cationique (*p-phénylènediammonium*) mais avec deux anions différents (nitrate et trichloroacétate). L'analyse des surfaces de Hirshfeld a permis d'établir que la substitution cationique peut influencer considérablement les types de contacts interatomiques rencontrés. Aussi, le comportement thermique des deux composés a été élucidé par analyses ATG et DSC.

La théorie de Bernstein a permis de construire les graphes du modèle des liaisons hydrogène de ces trois composés pour mieux comprendre leurs empilements cristallins.

Dans le second volet de ce travail, nous avons entrepris une investigation théorique, en utilisant la méthode UHF ab-initio sous la base 6-311G (d, p) pour spécifier les paramètres structuraux, l'énergie totale, les énergies HOMO et LUMO, les paramètres thermodynamiques et l'analyse de population. En outre, les fréquences en mode normal et les assignations de vibrations correspondantes ont été examinées. Les résultats obtenus sont en accord avec les données expérimentales.

Mots clés : Composés hybrides, DRX, Analyse de la Surface de Hirshfeld, Liaisons hydrogène, Modélisation, Spectroscopie FT-IR/FT-Raman, Analyse thermique ATG/DSC.

Abstract

The work presented in this thesis focuses on the synthesis of hybrid compounds based on nitrogen derivatives and various mineral acids.

During this work, we synthesized in aqueous solution three new hybrid compounds based on 5-amino-1, 2, 4-triazole-1H-3-carboxylic acid hydrate and para-phenylenediamine as organic matrix and selenic, nitric and trichloroacetic acids.

The characterization of these new phases was carried out by single-crystal X-ray diffraction and by FT-IR and FT-Raman spectroscopy.

The first part of the work carried out was reserved for comparing the structures and properties of two original structures obtained from the same cationic organic entity (p-phenylenediammonium) but with two different anions (nitrate and trichloroacetate). Hirshfeld's surface analysis has shown that cationic substitution can significantly influence the types of interatomic contacts encountered. Also, the thermal behavior of the two compounds was elucidated by ATG and DSC analyses.

Bernstein's theory made it possible to construct the hydrogen bonds graph set of these three compounds to better understand their crystalline packings.

In the second part of this work, we undertook a theoretical investigation, using the abinitio UHF method with the 6-311G (d, p) base to specify the structural parameters, the total energy, the HOMO and LUMO energies, thermodynamic parameters and population analysis. In addition, the frequencies in normal mode and the corresponding vibration assignments were examined. The results obtained are in agreement with the experimental data.

Key words: Hybrid compounds, XRD, Hirshfeld surface analysis, Hydrogen bonds, Modeling, FT-IR / FT-Raman spectroscopy, ATG / DSC thermal analysis.

ملخص

يركز العمل المقدم في هذه الأطروحة على تحضير المركبات الهجينة القائمة على مشتقات النيتروجين والأحماض المعدنية المختلفة.

خلال هذا العمل قمنا باصطناع ، في محلول مائي ، ثلاثة مركبات هجينة جديدة تعتمد على حمض هيدر وكسيل 5 أمينو - 1 ، 2 ، 4 - ثلاثي الازول - 1-3-H -كربوكسيليك ، والبارا -فينيلين ثنائي الامين كمصفوفة عضوية و أحماض السيلينيك ، النيتريك وثلاثي كلورو الأسيتيك .

وقد تم توصيف هذه الاطوار الجديدة بواسطة حيود الأشعة السينية على بلورة أحادية ومن خلال التحليل الطيفي FT-IR وFT-Raman .

الجزء الأول من العمل المنجز تم تخصيصه لمقارنة بنيات وخصائص مركبين جديدين والذي تم الحصول عليهما بواسطة نفس الكاتيون العضوي (البارا- فينيلين ثنائي الامونيوم) ولكن مع أيونين مختلفين (النترات وثلاثي كلورو الأسيتات). أظهر تحليل سطح هير شفيلد أن الاستبدال الكاتيوني يمكن أن يؤثر بشكل كبير على أنواع الروابط بين الذرية التي يمكن مصادفتها. أيضا تم توضيح السلوك الحراري للمركبين بواسطة التحاليل ATG و DSC.

مكنتنا نظرية بيرنشتاين من بناء الرسوم البيانية لنموذج الروابط الهيدروجينية لهذه المركبات الثلاثة لفهم تراصها البلوري بشكل أفضل.

في الجزء الثاني من هذا العمل قمنا بإجراء حسابات نظرية ، وذلك باستخدام طريقة (UHF/6-311G(p, d) لتحديد الخواص البنيوية ، الطاقة الإجمالية ، الطاقات HOMO و LUMO والخواص الترموديناميكية. بالإضافة إلى ذلك، تم فحص مختلف الترددات وإسناد الاهتزاز المناسبة لها. النتائج النظرية والتجريبية التي تم الحصول عليها اظهرت توافقا كبيرا.

الكلمات المفتاحية : المركبات الهجينة ، DRX ، تحليل سطح هير شفيلد ، الروابط الهيدروجيني ، النمذجة ، التحليل الطيفي FT-IR / FT- Raman ، التحليل الحراري ATG / DSC .

26

Liste des Figures et des Schémas

1. Liste des Figures

PARTIE A

Chapitre I	
Figure I. 1. Exemples de dérivés hétérocycliques azotés à cinq chainons	5
Figure I. 2. Les trois isomères du triazole	6
Figure I. 3. Structure du NTO (3-nitro-1, 2, 4 triazole-5-one)	6
Figure I. 4. Les deux formes tautomères du 1,2,4-triazoles	7
Figure I. 5. Les deux formes tautomères du benzotriazole	8
Figure I. 6. Structure de 3-amino-1,24- triazole	8
Figure I. 7. Quelques exemples des 1,2,4-triazoles	9
Figure II. 1. Quelques diamines aromatiques à un seul cycle	10
Figure II. 2. Quelques diamines aromatiques à deux cycles	11
Figure II. 3. Les isomères de la phénylènediamine	12
Chapitre II	
Figure II. 1. Représentation schématique de la liaison hydrogène	23
Figure II. 2. Liaison hydrogène à quatre centres	25
Figure II. 3. Liaison hydrogène à trois centres	25
Figure II. 4. Liaison hydrogène à deux centres	25
Figure II. 5. Liaison hydrogène chélate	25
Figure II. 6. Liaison hydrogène bifuriquée	26

PARTIE B

Chapitre II

Figure II. 7. Liaison hydrogène Tandem

Figure II.1. (a) Contours de w (r) entourant une molécule de benzène dans le cristal ;	41
la surface de Hirshfeld pour le benzène est cartographiée avec de tracé	
aux mêmes tailles et orientation que le contour 0.5 (noir) de (a)	
Figure II. 2. Surfaces de Hirshfeld pour le benzène avec de	42
Figure II. 3. Gradient de couleur employé pour couvrir les surfaces Hirshfeld	43
d'un cristal	
Figure II. 4. Surface de Hirshfeld pour la forme d'acide 2-chloro-4-nitrobenzoïque	43
cartographiée avec d_{norm}	
Figure II. 5. Empreintes digitales décomposées des contacts C H	44
dans du paracétamol	
Figure II. 6. Tracé d'empreinte digitale en deux dimensions pour 1,2,5-thiadiazolo	45

[3,4-c][1,2,5]thiadiazole

PARTIE C

Chapitre I

Figure I. 1. Ortep de la structure moléculaire Les déplacements sont tracés au	52
niveau de probabilité de 50%	
Figure I. 2. Le site de protonation de l'acide 3-amino-1, 2,4-triazole-5-carboxylique	53
Figure I. 3. Projection de l'empilement tridimensionnel de BACTSe le long de l'axe b	53
Figure I. 4. Projection des chaînes infinies mixtes parallèles au plan (100)	54
Figure I. 5. Quelques motifs du graphe de modèle de liaisons hydrogène présent	56
dan la structure du BACTSe.	
Figure I. 6. Distances (Å) et angles (°) dans l'entité cationique du composé BACTSe	56
Figure I. 7. Distances (Å) et angles (°) dans l'entité anionique du composé BACTSe	57
Figure I. 8. Structure optimisée de BACTSe calculée à l'aide de la méthode	58
UHF / 6-311G (d, p)	
Figure I. 9. Comparaison des charges atomiques de Mulliken et naturelles de BACTSe	60
Figure I. 10. La densité totale cartographiée avec la surface électrostatique	62
potentielle de BACTSe	-
Figure I. 11. La surface du potentiel électrostatique (ESP) de BACTSe	62
Figure I. 12. La carte de contour du potentiel électrostatique de BACTSe	62
Figure I. 13. L'orbite moléculaire frontière de BACTSe	63
Figure I. 14. Spectre DOS de BACTSe	64
Figure I. 15. Spectre FT-IR de BACTSe	67
Figure I. 16. Spectre FT-Raman de BACTSe	68
	00
Chapitre II	
Figure II. 1. Vue ORTEP des unités asymétriques des composés (I) (haut) et (II)	77
(bas) avec schéma de numérotation atomique.	
Figure II. 2. Les deux sites de protonation du cation para-phenelendiamine	78
Figure II. 3. Projections de la structure de (I) suivant l'axe b, illustrant les quatre	81
configurations observées et réparties aléatoirement dans cette structure	
Figure II. 4. Tassement de molécules de (II) suivant les axes a et b montrant	81
l'alternance entre les couches hydrophiles et hydrophobes	
Figure II. 5. Différentes configurations des liaisons hydrogène observées dans	83
les composés (I) et (II).	
Figure II. 6. Vue partielles des réseaux 3-D des liaisons hydrogène illustrant les modèles	84
de motifs qu'elles forment dans les composés (I) (en haut) et (II) (en bas)	
Figure II. 7. Conformères trans (les atomes d'hydrogène des deux groupes ammonium	85
sont de deux cotés différents par rapport au plan du cycle aromatique)	
et cis (les atomes d'hydrogène des deux groupes ammonium sont du même	
coté par rapport au plan du cycle aromatique) du cation $H_2PPD_2^+$	
Figure II. 8. Environnements des entités cationiques présentes dans les composés	86
(I) et (II)	50

Figure II. 9. Environnements des entités anioniques présentes dans les composés	87
(I) et (II)	
Figure II. 10. Environnement des deux molécules d'eau dans le composé (II)	88
Figure II. 11. Spectres FT-IR de la PPD et de ses sels de nitrates et de trichloroacètates	91
Figure II. 12. Spectres FT-Raman de la PPD et de ses sels de nitrate et de trichloroacétate	92
Figure II. 13. Surface de Hirshfeld des composés (I) (gauche) et (II) (droite)	93
cartographiés avec d _{norm}	
Figure II. 14. Tracés d'empreintes digitales complètes des composés (I) (gauche)	93
et (II) (droite).	
Figure II. 15. Tracés d'empreintes digitales des composés (I) (gauche) et (II) (droite)	94
résolus aux contacts OH / HO (en haut) et HH (en bas).	
Figure II. 16. Tracés d'empreintes digitales des quatre configurations rencontrées	95
dans le composé (I).	
Figure II. 17. Tracés d'empreinte digitale du composé (II) illustrant des contacts	96
impliquant un atome de chlore, à savoir Cl Cl, Cl H / H Cl,	
Cl Cl, Cl C / C Cl et Cl O / O Cl (de gauche à droite).	
Figure II. 18. Contributions relatives à la surface de Hirshfeld pour les différents	97
contacts intermoléculaires proches dans les composés (I) (en haut)	
et (II) (en bas).	
Figure II. 19. Thermo-gramme ATG/DSC du composé (I)	98
Figure II. 20. Thermo-gramme ATG/DSC du composé (II)	98

1. Liste des Schémas

PARTIE C

Chapitre I	
Schéma I. 1. Synthèse du sel BACTSe	49
Chapitre II	
Schéma II. 2. Synthèse de sels (I) et (II)	74

Liste des Tableaux

PARTIE A

Chapitre I				
Tableau I. 1. Quelques propriétés physico-chimiques des triazoles	6			
Tableau I. 2. Groupes d'espaces et paramètres de maille des composés à base				
de l'acide 5-amino-1, 2,4-triazole-1H-3-carboxylique hydrate.				
Tableau II. 1. Quelques propriétés physico-chimiques des phénylènediamines	12			
Tableau II. 2. Groupes d'espaces et paramètres de maille des composés à base de para-phénylènediamine.	16			
Chapitre II				
Tableau II. 1. Caractéristiques géométriques statistiques de quelques types de liaison hydrogène	26			
PARTIE C				
Chapitre I				

Tableau I. 1. Données cristallographiques et conditions d'enregistrement	51
du composé Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenate	
dihydrate	
Tableau I. 2. Liaisons hydrogène formées entre les différentes entités	54
(distances en A° et angles en °) du compose bis (5-amino-	
3-carboxy-1H-1,2,4-triazol -4-ium) selenate dehydrate.	
Tableau I. 3. Graphe des liaisons hydrogène dans le compose composé	55
Tableau I. 4. Paramètres thermodynamiques calculés de BACTSe	59
Chapitre II	
Tableau II. 1. Données cristallographiques et paramètres de raffinement	76
des sels de PPD (I) et (II)	
Tableau II. 2. Angles de liaison endocycliques et longueurs de liaison C-N dans	78
la p-phénylènediamine et dans certains de ses sels de transfert de proton	
Tableau II. 3. Longueurs de liaison sélectionnées (Å) et angles (°) pour	79
les composés (I) et (II).	
Tableau II. 4. Distances (Å) et angles (°) des liaisons hydrogène pour les composés	82
(I) et (II).	
Tableau II. 5. Paramètres géométriques (Å) des contactes C-Cl π dans	84
le composé (II) Cg1 et Cg2 sont les centroïdes des anneaux	
C3A–C5A et C3B-C5B respectivement.	

l

Liste des abréviations

Abréviation	Signification			
ACD	Analyse Calorimétrique Différentielle			
ATG	Analyse Thermogravimétrie			
B3LYP	Beck-3 parameters- Lee, Yang, Parr			
BACTSe	Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenatedihydrate			
DFT	Density Fonctional Theory			
HF	Hartree Fock			
НОМО	Highest Occupied Molecular Orbital			
IR-TF	Infrarouge à Transformer de Fourier			
LUMO	Lowest Unoccupied Molecular Orbital			
NBO	Natural Bond Orbital			
SCF	Self Consist Field			
STO	Slater Type Orbitals			

L

Préambule

Le travail rapporté dans cette thèse, en vue de l'obtention du titre de Docteur à l'université de 08 mai 45-Guelma, a donné lieu à la publication suivante (voir annexe):

Titre: XRD, FT-IR, FT-Raman spectra and ab initio HF vibrational analysis of bis (5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) selenate dihydrate.

Réf: F. Boursas, F. Berrah, N. Kanagathara, G. Anbalagan, S. Bouacida, Journal of Molecular Structure 1180 (2019) 532-541.

INTRODUCTION GENERALE

Introduction générale

Depuis plusieurs années, de nombreux travaux de recherche ont été consacrés à la préparation des matériaux hybrides organique-inorganique. Ces composés sont l'objet d'un intérêt croissant [1-4]. La grande variété des structures qui résultent de l'association de différents types d'entités organiques et minérales a permis de préparer de nombreux matériaux dont la diversité des propriétés (électrique [5, 6], magnétique [7, 8], optique [9,10], électroluminescence [11] et ionique [12-14]) leur offre un très grand potentiel pour différents domaines d'applications.

Les matériaux hybrides sont des systèmes organo-minéraux dans lesquels les interactions entre les phases organiques (molécule, oligomère ou polymère) et inorganiques sont de type liaison hydrogène, van der Waals ou liaison ionique ; ces liaisons bien que faibles individuellement influent ensemble considérablement l'arrangement cristallin [15]. L'objectif de cet association organique-inorganique est de combiner les propriétés complémentaires de chaque constituant en contrôlant la composition et la microstructure de ces matériaux [3, 15, 16].

Les composés azotés dont les acides aminés, les amines et les N-hétérocycles, ont saisi depuis longtemps une grande attention ; ils représentent des composés de choix pour la conception de dérivés chimiques à propriétés biologiques et physiques intéressantes [2]. L'association de ces molécules avec des acides inorganiques [1, 18] offre la possibilité de combiner les propriétés complémentaires de chaque constituant [19].

Dans ce contexte, le travail effectué dans cette thèse comprend deux volets. Le premier volet est consacré à la synthèse d'un nouveau composé hybride à base d'un acide aminé à cycle triazole et de l'acide sélénique. Le second volet est lié à la synthèse de deux composés hybrides à base d'une diamine aromatique et des acides nitriques et trichloracétique.

Afin de caractériser les produits obtenus et de vérifier leurs originalités, ils ont fait l'objet d'une étude structurale par diffraction des RX sur monocristal, cette dernière a permet une bonne description des réseaux cristallins rencontrés et spécialement des liaisons hydrogène formées au sein de chacune de ces nouvelles structures. Une description des réseaux de liaisons hydrogène a été systématiquement réalisée à l'aide de la méthode des graphes. Aussi, les composés obtenus ont été caractérisés par méthodes spectroscopique à savoir l'IR et la Raman.

Pour compléter les résultats expérimentaux obtenus pour le composé à base du triazole, nous avons fait appel à la modélisation moléculaire par la méthode Hartree-Fock.

Une analyse de la surface de Hirshfeld, autour des différentes entités rencontrées au sein des deux composés obtenus avec la diamine, a été élaborée afin de bien élucider l'ensemble des interactions intermoléculaires rencontrées.

Le présent manuscrit est organisé sous forme de trois parties comportant chacune deux chapitres.

 La première partie intitulée généralités et concepts fondamentaux comporte deux chapitres :

1. Dans le premier chapitre, sont données quelques généralités sur les précurseurs organiques utilisés à savoir le 3-amino-1H-1, 2,4-triazole-5-carboxylique acide et la para-phénylènediamine.

2. Dans le deuxième chapitre nous avons présenté quelques notions sur les liaisons hydrogène, leur origine, leurs différentes catégories et la méthode de construction du graphe du modèle de ce type de liaisons.

✤ La deuxième partie comprend deux chapitres :

1. Le chapitre I est consacré à un rappel sur les différentes méthodes quantiques de calcul, ab-initio et plus particulièrement Hartree-Fock.

2. Le chapitre II est une description de la méthode de surface de Hirschfield.

✤ La troisième partie également divisée en deux chapitres, traite la synthèse de trois composés hybrides basés sur les acides sélénique, nitrique et trichloracétique d'une part et le dérivé triazole et la diamine aromatique d'autre part ; et aussi la caractérisation par diffraction des RX sur monocristal et par spectroscopies IR et Raman, ainsi que l'étude des liaisons hydrogène des trois nouvelles structures effectuée par la méthode des graphes. Une étude théorique du composé obtenu avec les anions sélénates et les résultats des calculs obtenus par la modélisation moléculaire sont présentés dans le premier chapitre. La surface Hirshfeld établi pour les deux composés obtenus avec les anions nitrates et trichloroacétates et une étude des propriétés thermiques vient conclure le deuxième chapitre.

En plus de ces deux parties principales, le manuscrit englobe deux annexes : la première annexe A est dédiée à quelques généralités et concepts fondamentaux sur les techniques de caractérisation utilisées au cours de ce travail ; et dans la seconde annexe B sont tabulés les résultats des mesures expérimentales et théoriques liés aux trois composés.

Ce travail a fait l'objet d'une publication internationale intitulée « XRD, FT-IR, FT-Raman spectra and ab initio HF vibrational analysis of bis (5-amino-3-carboxy-1H-1,2,4triazol-4-ium) selenate dihydrate » (Journal of Molecular Structure 1180(2019) 532-541) [20].

Références

- [1] C. Sanchez, F. Ribot. New J. Chell. 18 (1994) 1007-1047.
- [2] J. Wen, G. L. Wilkes. Chem. Mater. 8(1996) 1667-1681.
- [3] A. Mazeaud, Y. Dromzee, R. Thouvenot. Inorg. Chem. 39 (2000) 6152-6158.
- [4] L. J. Baker, G. A. Bowmaker, P. C. Healy, B. W. Skelton, A. H. White. J. Chem. Soc. Dalton tras. (1992) 989-998.
- [5] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos. Science. 286 (1999) 945-947.
- [6] J. L. Knutson, J. D. Martin, D. B. Mitzi. Inorg. Chem. 44(2005)4699-4705.
- [7] S. Taketoshi, O. Tsunehisa, A. Kunio. Sci. Technol. SectA 279(1996) 65-72.
- [8] C. Aruta, F. Licci, A. Zappettini, F. Bolzoni, F. Rastelli, P. Ferro, T. Besagni. Appl. Phys. A. 81(2005) 963-968.
- [9] D. B. Mitzi, C. D. Dimitrakopoulos, L. L. Kosbar. Chem. Mater. 13(2001)3728-3740.
- [10] C. P.Raptopoulou, A. Terzis, G. A. Mousdis, G. C. Papavassiliou. Z. Naturforsch. *Teil B.* 57(2002)645-650.
- [11] K. Chondroudis, D. B. Mitzi. Chem. Mater. 11(1999)645-650. 3028-3030.
- [12] Y. Tominaga, H. Ohno. Electrochimica Acta .45(2000)3081-3086.
- [13] V. Di Noto, M. Fauri, M. Vittadello, S. Lavina, S. Biscazzo. *Electrochimica Acta*. 46(2001)1587-1594.
- [14] S. Haruo, S. Yuka. Electrochemistry (Tokyo, Japan) 72(2004) 111-116.
- [15] S. Amari. Thèse de magistère, Université de Constantine 1, (2014).
- [16] V. Soghomonian, V. Q. Chem, R.C. Haushalter, J. Zubieta. Angew. Chem. 107 (1995) 229-232.
- [17] C. R. Mayer, P. Herson, R. Thouvenot. Inorg. Chem. 38 (1999) 4159-4163.
- [18] R. K. O. Siegel, E. Freisinger, S. Metzger, B. Lippert. J. Am. Chem. Soc. 120 (1998) 12000-12007.
- [19] A. Direm, Thèse de doctorat, Université des frères mentouri, Constantine1, (2016).
- [20] F. Boursas, F. Berrah, N. Kanagathara, G. Anbalagan, S. Bouacida. J. Mol. Struct. 1180 (2019) 532-541.

PARTIE. A

GÉNÉRALITÉS ET CONCEPTS FONDAMENTAUX

Les Dérivés Azotés

I. Les 1.2.4-Les Triazoles

I.1. Introduction sur les hétérocycles azotés

Les hétérocycles sont des composés cycliques dans lesquels un ou plusieurs atomes de carbone d'un carbocycle de référence (cyclohexane, benzène, cyclopentane, cyclopentadiène, par exemple) est remplacé par un hétéroatome, dont les plus communs sont l'azote, l'oxygène et le soufre [1,2]. L'intérêt croissant accordé à cette classe de composés se justifie, aussi bien par la diversité de leurs structures que par l'ampleur et la disparité de leurs domaines d'application [1-3].

Les composés hétérocycliques simples ne se trouvent pas à l'état naturel, nous les rencontrons surtout dans des composés naturels d'origine végétale comme les alcaloïdes [4].

En particulier, ces hétérocycles ont la capacité d'engager des interactions de transfert de charge avec des résidus aromatiques, présents par exemple dans les protéines contenant des aminoacides phénylalanine, tyrosine, histidine, ou tryptophane [5].

Il faut dire que pendant ces dernières années les hétérocycles azotés (N-hétérocycles) ont connu un grand intérêt, à cause de leur utilité dans plusieurs applications comme : les propulseurs, les explosifs, en pyrotechnique et particulièrement en chimiothérapie [6].

En chimie médicinale, les azoles sont largement utilisés et étudiés pour leur profiles de sûreté et leur répertoires thérapeutiques, ils appartiennent à la catégorie des agents antimicrobien [7]. Parmi ces derniers on cite les conazoles qui sont la catégorie majeure des médicaments à base d'azole tels que : itraconazole, fluconazole, voriconazole, ravuconazole etc ... [8-11].

Les conazoles sont également utilisés dans la protection des récoltes [12], ils sont aussi employés comme des produits pharmaceutiques pour traitement local et systémique des infections fongiques [13-15], qui sont des problèmes importants dans la phytopathologie et particulièrement dans la médecine, ces infections sont observées fréquemment sur les patients souffrant du SIDA, ou soumis à une chirurgie envahissante, une thérapie anti-cancéreuse ou sur les récepteurs de greffe [16].

Les oxadiazoles, les imidazoles, les thiadiazoles ou les triazoles sont des composés mono-hétérocycliques azotés à cinq chaînons, dont la stabilité et les innombrables vertus leur permettent d'occuper une place chaque jour plus important en chimie organique [17,18].

Figure I.1. Exemples de dérivés hétérocycliques azotés à cinq chaînons [18]

I.2. Les Triazoles

L'appellation *triazole* fut utilisée la toute première fois par *Bladin* en 1885, pour désigner le système cyclique à base de carbone et d'azote de formule brute $C_2N_3H_3$ et ses dérivés [19, 20]. De nombreux dérivés triazoliques furent ensuite synthétisés et leurs nombreuses propriétés mises en exergue [21-23].

Le triazole, également appelé pyrrodiazole, fait partie des classes de composés organiques hétérocycliques contenant une structure cyclique insaturé à cinq chaînons composée de trois atomes d'azote et de deux atomes de carbone en positions non adjacentes. La forme la plus simple de la famille des triazoles est le triazole lui-même [24].

Le triazole est une matrice associée à de nombreuses activités biologiques, permettant à cet anneau d'occuper une position unique dans la chimie cyclique hétérogène [25-27].

Les triazoles peuvent être dérivés formellement du pyrrole par le remplacement de deux unités isométhine (=CH-) par deux atomes d'azotes. Ils existent principalement dans la littérature en trois isomères, tous d'origine synthetiques et n'existent pas à l'état naturel. On distingue le 1.2.3-triazole , le 1,2.4-triazole et le 1.3,4-triazole [28].

1,2,3-triazole

1,2,4-triazole

Figure I.2. Les deux isomères du triazole

I.2.1. Propriétés des triazoles

I.2.1.1. Propriétés physico-chimiques

Les triazoles sont des composés très stables [29], vis-à-vis d'autres réactifs chimiques de l'oxydation et de la réduction, ils possèdent une structure pseudo aromatique, qui se traduit notamment par interaction entre les liaisons π - π (π - π stacking), ainsi qu'un grand moment dipolaire et une grande capacité à former des liaisons hydrogène [21-23]. Le tableau I.1 résume quelques unes de leurs propriétés physico-chimiques.

Tableau I.1. Quelques propriétés physico-chimiques des triazoles (µ : moment dipolaire) [1,29].

Molécule	N%	$T_{f}(C^{\circ})$	T _{éb} (°C)	$\Delta \mathbf{H}_{\mathbf{f}} \left(\mathbf{K} \mathbf{j} / \mathbf{K} \mathbf{g} \right)$	РКа	μ (10 ⁻³⁰ cm)
1,2,3-triazole	61	23	203	2690	9.4	3.23
1,2,4-triazole	61	121	260	2345	10.1	9.61

I.2.1.2. Stabilité thermique

En général, les composés azoles sont stables à la température ambiante [29]. Cependant, certains dérivés triazoles présentent une certaine instabilité thermique, allant jusqu'à l'explosivité [21-23]. Ainsi les dérivés nitrés des 1,2,4-triazoles sont hautement énergétique et ils sont utilisés pour la synthèse d'explosifs [23]. Comme par exemple le NTO (3-nitro-1,2,4-triazole-5-one) [30,31] (Figure I.3).

Figure I. 3. Structure du NTO (3-nitro-1, 2, 4 triazole-5-one)

I.2.2. Activités des triazoles

Le triazole et ses dérivés ont attiré une attention considérable au cours des dernières décennies en raison de leurs valeurs chimio-thérapeutiques [32,33]. Il ressort de la littérature que les dérivés du triazole possèdent un large éventail d'activités pharmacologiques telles que antimicrobien [34,35], analgésique [36], anti-inflammatoire, anesthésique local [37], anticonvulsivant [38], antinéoplasique [39], antipaludique [40], antivirale [41], antiproliférative [42] et activités anticancéreuses [43]. De nombreux dérivés à base de triazole sont disponibles en tant que médicaments [44].

La chimie des 1, 2, 3- et 1, 2, 4-triazoles connue un essor grandissant, notamment après la découverte de leurs innombrables vertus dont l'effet inhibiteur de certains d'entre eux sur la formation de brouillard dans les émulsions photographiques, leurs applications en tant qu'herbicides, anticorrosion, etc... [45-56].

I.3. les 1, 2, 4-triazoles

La chimie du 1,2,4-triazole et ses dérivés a reçue un développement réussi dans les dernières décennies [57].

Les 1,2,4-triazoles existent sous deux formes tautomères ; la dénomination adoptée dans les « chimical abstracts » reste néanmoins celle de 1,2,4-triazoles en précisant sur quel azote se trouve l'hydrogène [58].

Figure I.4. Les deux formes tautomères du 1,2,4-triazoles

I.3.1. Propriétés physico-chimiques

Les dérivés du 1,2,4-triazole existent généralement sous forme solide. La thermolyse des 1,2,4-triazole-3,4,5-substitués a lieu en tube scellé, au bout de 30 minutes à 316-335°C [59]. Les dérivés 1,2,4-triazoliques sont généralement très solubles dans les solvants polaires et faiblement solubles dans les milieux apolaires, cette faible solubilité dans les solvants

apolaires peut toutefois être améliorée, moyennant un choix adéquat du substituant sur l'atome d'azote [60].

Les 1,2,4-triazoles sont de nature amphotère et forment des sels avec les acides et les bases, ce sont des bases si faibles que les sels avec les acides minéraux sont généralement complètement dissociés en solution aqueuse [61].

I.3.2. Complexation avec les ions métalliques

Les résidus 1,2,4-triazole, présentant un hybride de pyrazole et d'imidazole, représentent une classe de ligands capables de combiner différents groupes substituants, constituant ainsi un bon élément constitutif pour la préparation de complexes métalliques et de matériaux ayant des propriétés structurelles, optiques et magnétiques [62-71].

I.3.2.1. Inhibition de la corrosion

De nombreuses études démontrent l'efficacité des composés du triazole entant qu'inhibiteur de corrosion [72]. En particulier, le benzotriazole (BTAH) (Figure I.5) est l'un des plus utilisés et des plus efficaces [73-77].

Figure I.5. Les deux formes tautomères du benzotriazole

Takenouti et al. utilisent le 3-amino-1,2,4-triazole (ATA) (Figure I.6) pour former des films protecteurs de faible épaisseur, efficace à 99% après un mois d'immersion en solution saline [78]. Ce dernier, composé s'avère le plus efficace contre la corrosion par piqûre, tandis que le benzotriazole demeure le meilleur inhibiteur pour la corrosion uniforme [77].

Figure I.6. Structure de 3-amino-1,24- triazole

8 PARTIE A. Généralités et Concepts fondamentaux

I.3.2.2. Amélioration de l'adhésion

En raison de leur capacité à former des composés avec des minéraux, les composés azoles sont utilisés comme adhésifs [73]. Ainsi, *Song et al* [79] en ont testé plusieurs afin d'optimiser l'adhésion à l'interface cuivre-époxy.

I.3.3. Activité biologique des 1,2,4-triazoles

Il est établi dans la littérature que le noyau 1,2,4-triazolique et ses dérivés sont dotés de vertus pharmaceutiques et médicinales fort intéressantes et qui font l'objet d'un nombre sans cesse grandissant de publications et de mises au point [33-44]. De plus, un tel système d'anneau a été utilisé comme un agent thérapeutique essentiel, dans la préparation de plusieurs médicaments tels que le fluconazol (**a**), le ribavirine (**b**) et le flucotrimazole (**c**) [45].

Figure I.7. Quelques exemples des 1,2,4-triazoles

I.4. L'acide 5-amino-1, 2,4-triazole-1H-3-carboxylique hydrate

Le composé se présente sous forme d'une poudre blanche de formule chimique $C_3H_6N_4O_3$ et d'une masse molaire de 146.106g/mol.

Une étude minutieuse dans la littérature a révélé l'existence de seulement dix structures avec des résidus de l'*acide 5-amino-1, 2,4-triazole-1H-3-carboxylique* répartis entre trois sels de transfert de proton et sept complexes de coordination. Les formules chimiques ainsi que quelques données cristallographiques concernant ces structures sont répertoriées dans le tableau I.2.

	li -	
Composé	Groupe	Paramètres de maille
	d'espace	
5-amino-1H-1,2,4-triazol-4-ium-3-carboxylate		a=6.5440A°, α=93.967°, b=6.9490A°,
hemihydrate [80]	ΡĪ	$\beta = 105.012^{\circ}$, $c = 12.0723 A^{\circ}$, $\gamma = 9.703^{\circ}$
Bis(5-amino-3-carboxy-1H-1 2 4-triazol-4-ium)	··	a-19.4350A° b-5.8467A°
sulfate dihydrate [81]	C	$\beta = 109.981^{\circ} c - 13.2036 \Delta^{\circ}$
$\frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}$	C ₂ /C	$p = 107.761^{\circ}, c = 13.2030 \text{ A}$
(3-amino-1,2,4-triazole-5-carboxylato)-cadmium		a=9.456A°, b=9.492A°
(11) [82]	$P2_1/c$	$\beta = 96.39^{\circ}, c = 6.860 A^{\circ}$
Bis (5-amino-3-carboxy-1H-1,2,4-triazol-4ium)		a=19.2249A°, b=13.2036A°
dihydrogenphosphate nitrate 5-amino-3-carboxy-	Cc	β=101.079°, c=7.7468A°
1H-1,2,4-triazol-4-ium-3-arboxylate[83]		
Bis (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)-	Pbcn	a=9.537A°, b=6.865A°
zinc hydrate [84]		β=90°, c=17.120A°
Bis (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)-	PĪ	a=5.2482A°, b=6.5330A°
manganèse dihydrate dihydrate[84]		β=102.774°, c=10.6128A°
Tetra (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)-	Pnma	a=27.111A°, b=12.697A°
dihvdroxvde fer(III) Hexahvdrate[84]		β=90°, c=7.7352A°
Tetra (3-amino-5-carboxy-1-1 2 4-triazol-4-ium)-	$P2_1/n$	a=8 9893A° b=8 9785A°
and and a second and a second	1 21/11	$P = 109 1179 = 120642 A^{\circ}$
cadmium diammonium [85]		p=108.117*, c=13.9642A*
(5-amino-1,2,4-triazol-4-ium-3-carboxylato-	$P2_1/c$	a=7.0765A°, b=12.676A°
		β=98.70°, c=20.591A°
ainyaroxido-bis[triamminecobalt(III)] nitrate		
hydroxide trihydrate [86]		
	Composé 5-amino-1H-1,2,4-triazol-4-ium-3-carboxylate hemihydrate [80] Bis(5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) sulfate dihydrate [81] (3-amino-1,2,4-triazole-5-carboxylato)-cadmium (II) [82] Bis (5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) dihydrogenphosphate nitrate 5-amino-3-carboxy- 1H-1,2,4-triazol-4-ium-3-arboxylate[83] Bis (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)- zinc hydrate [84] Bis (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)- manganèse dihydrate dihydrate[84] Tetra (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)- dihydroxyde fer(III) Hexahydrate[84] Tetra (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)- cadmium diammonium [85] (5-amino-1,2,4-triazol-4-ium-3-carboxylato- dihydroxido-bis[triamminecobalt(III)] nitrate hydroxide trihydrate [86]	ComposéGroupe d'espace5-amino-1H-1,2,4-triazol-4-ium-3-carboxylate hemihydrate [80]PIBis(5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) sulfate dihydrate [81]C2/c(3-amino-1,2,4-triazole-5-carboxylato)-cadmium (II) [82]P21/cBis (5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) dihydrogenphosphate nitrate 5-amino-3-carboxy- 1H-1,2,4-triazol-4-ium)- zinc hydrate [84]CcBis (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)- zinc hydrate [84]PIBis (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)- dihydroxyde fer(III) Hexahydrate[84]PITetra (3-amino-5-carboxy-1-1,2,4-triazol-4-ium)- dihydroxyde fer(III) Hexahydrate[84]PITetra (5-amino-1,2,4-triazol-4-ium)- cadmium diammonium [85]P21/c(5-amino-1,2,4-triazol-4-ium-3-carboxylato- dihydroxido-bis[triamminecobalt(III)] nitrate hydroxide trihydrate [86]P21/c

 Tableau I.2. Groupes d'espaces et paramètres de maille des composés à base de l'acide 5-amino-1, 2,4-triazole-1H-3-carboxylique hydrate.

II. La para-phénylènediamine

II.1. Introduction sur les diamines aromatiques

Les diamines sont des composés organiques avec deux groupes amino; elles sont utilisées comme monomères pour préparer des polyamides, des polyimides et des polyurées.

Il existe des diamines aromatiques avec un seul cycle (toluenediamine (**a**), N,N'-Di-2butyl-1,4-phenylènediamine (**b**), p- phenylènediamine (**c**)...etc).

Figure II.1. Quelques diamines aromatiques à un seul cycle

et avec plusieurs cycles, par exemple des dérivés du biphenyles ou de naphtalènes [87] :

Figure II.2. Quelques diamines aromatiques à deux cycles

Ces substances chimiques sont très connues dans l'industrie occidentale depuis un demi-siècle sous de nombreux noms : paramine, fouramine D, ursol D, vulpa D, furol S, comme teinture des fourrures, dans la fabrication d'articles domestiques, d'agents cosmétiques, des pneus, et le développement photographique [88].

De nombreux produits naturels aux propriétés biologiques intéressantes contiennent des diamines. Ces dernières années, plusieurs dérivés de diamine de synthèse ont également été utilisés comme agents médicinaux, en particulier en chimiothérapie [89].

Les diamines aromatiques énantiomériquement pures et leurs dérivés sont également de plus en plus utilisés dans la synthèse organique stéréosélective, par exemple comme auxiliaires chiraux, ou comme ligands métalliques dans la synthèse asymétrique catalytique [89].

Les diamines organiques sont largement utilisées dans l'industrie chimique, le génie alimentaire et le génie chimique en tant que matières premières ou intermédiaires importants.

Toutes les diamines aromatiques sont toxiques lorsqu'elles sont ingérées et peuvent provoquer une irritation de la peau et des yeux, chez certaines personnes, l'inhalation peut entraîner des problèmes respiratoires et de l'asthme. Ainsi, en tant que classe, ces diamines doivent être traitées comme des matières très dangereuses et tout contact avec le corps doit être évité en utilisant un équipement de protection approprié [90]. Par exemple, la pphénylènediamine a une forte sensibilisation et peut causer une dermatite de contact, un eczéma et un asthme bronchique [91, 92].

Plusieurs approches telles que la chromatographie, les dispositifs électrochimiques, les électrodes sélectives pour les ions, les capteurs chimiques, les méthodes enzymatiques et les

polymères à empreinte moléculaire ont été développées pour détecter les amines en solution ou à l'état gazeux [93-96].

II.2. Les phénylènediamines

Les phénylènediamines, "amino-anilines", sont étroitement apparentées à l'aniline et peuvent également être oxydées en oligomères et polymères correspondants [97, 98]. Ceux-ci sont facilement préparés par oxydation chimique ou électrochimique [99, 100].

La phénylènediamine est le nom commun du diaminobenzène, qui existe sous trois isomères: 1,2, 1,3 et 1,4-diaminobenzène. L'isomère 1,2 est communément appelé o-phénylènediamine (OPD) [101, 102]; l'isomère 1,3 est la m-phénylènediamine (MPD) [103, 104]; et l'isomère 1,4 est la p-phénylènediamine (PPD) [105-107].

Figure II.3. Les isomères de la phénylènediamine

II.2.1. Propriétés des phénylènediamines II.2.1.1. Propriétés physico-chimiques

Les phénylènediamines ont des propriétés chimiques actives, pouvant avoir une réaction de condensation avec des acides, des aldéhydes, des cétones et d'autres composés, généralement des composés hétérocycliques; ils peuvent également avoir une réaction d'oxydation, de substitution et de diazotation [107]. Le Tableau I.1 résume quelques unes de ces propriétés physico-chimiques.

Tableau II.1. Quelques propriétés physico-chimiques des phénylènediamines (μ : moment dipolaire électrique).

Molécule	Solubilité	T _f (°C)	T _{éb} (°C)	$\Delta \mathbf{E}$ (e.v)	μ (debye)
	(g/l à 25°C)				
p-phénylènediamine	47	140-145	267.05	11.85	2.96
o-phénylènediamine	54	103	257	3.65	0.67
m-phénylènediamine	350	63-64	283-284	3.66	1.75

II.2.2. Complexation avec les ions métalliques

En chimie de coordination, la phénylènediamine est un précurseur de ligand important [108]. Les dérivés de base de Schiff, tels que ceux du salicylaldéhyde, sont d'excellents ligands chélatants. L'oxydation des complexes métal-phénylènediamine donne les dérivés de la diamine qui sont intensément colorés et qui existent souvent dans de multiples états d'oxydation stables [109].

II.2.3. Activité biologique des phénylènediamines

Les dérivés de la phénylènediamine peuvent fonctionner en tant que donneurs d'hydrogène et exercer diverses actions biologiques, notamment des effets cytoprotecteurs contre le stress oxydatif, éventuellement en agissant en tant qu'antioxydant [110].

II.3. La p-phénylènediamine

La paraphénylène-diamine (PPD) ou para-aminobenzène est une amine aromatique dérivée de l'aniline, utilisée depuis 1863 par les femmes dans un but cosmétique comme teinture capillaire noire ou adjuvant de henné dans plusieurs pays d'Afrique et de Moyen Orient [111].

Les groupes amino de la p-phénylènediamine subissent des réactions typiques d'amines aromatiques (par exemple, la diazotation, l'acylation et l'alkylation) [90].

En milieu industriel, plusieurs dénominations commerciales lui sont attribuées : « Ursol D », « Orsin » ou « CI76060 » [112,113].

La forme la plus répandue est la « roche » que l'on trouve chez les herboristes marocains, mais la teneur en PPD varie fortement selon les échantillons [114].

II.3.1. Propriétés physico-chimiques

La PPD est une base de poids moléculaire 108, qui se présente sous la forme de cristaux blancs brunissant à l'air. Sa température de fusion est comprise entre 140 et 145°C, elle est soluble dans l'éthanol, le chloroforme, l'acétone et dans l'eau [115].

La para-phénylènediamine en tant qu'amine aromatique, est une classe importante de molécules présentant un intérêt photochimique. C'est un donneur d'électrons bien connu dans les complexes (transfère de charge) [116].

La p-phénylènediamine est plus toxique que les isomères meta et ortho. Ainsi qu'un grand moment dipolaire et une grande capacité à former des liaisons hydrogène de type N-H...X [117].

II.3.1.1. Amélioration d'adhesion

Les fibres textiles d'aramide sont obtenues à partir de poly (p-phénylène téréphtalamide), qui est produit par la réaction de la p-phénylènediamine avec le chlorure de téréphtaloyle, ces fibres sont utilisées pour renforcer les pneus et les courroies trapézoïdales, en remplacement de l'amiante dans les garnitures de frein, dans les plastiques de renforcement pour les applications aérospatiales et sportives, ainsi que pour de nombreuses autres applications nécessitant une résistance élevée et un module de traction [118].

La réaction de la p-phénylènediamine avec le phosgène (dichlorure de carbonyle) produit du p-phénylène diisocyanate (PPDI), un diisocyanate symétrique qui donne des polyuréthannes hautement cristallins qui auraient de bonnes propriétés à haute température, à la fois comme thermoplastiques et comme élastomères moulés [119].

II.3.1.2. Oxydation des p-phénylènediamines

La p-phénylènediamine s'oxyde plus facilement que les isomères o ou m. Le dioxyde de manganèse ou le dichromate de potassium produisent de la 1,4-benzoquinone, lorsque la p-phénylènediamine est oxydée avec du peroxyde d'hydrogène (H₂O₂), par exemple dans un colorant pour cheveux, le premier produit est la p-benzoquinonediimine, qui peut réagir avec la p-phénylènediamine n'ayant pas réagi pour former un colorant brun connu sous le nom de *Base de Bandrowsky, la* diimine réagit rapidement avec d'autres amines et phénols aromatiques pour former une variété de colorants [90, 120,121].

II.3.2. Utilisation du p-phénylènediamine

La PPD est utilisé dans les pays occidentaux dans l'industrie des fourrures et la fabrication d'articles domestiques et d'agents cosmétiques [122,123].

La p-phénylènediamine (PPD) est largement utilisée dans divers procédés industriels, notamment le développement photographique [124], et en tant qu'intermédiaire dans la fabrication des colorants azoïques [125]. Dans le développement des encres d'impression [124] et plus récemment dans les tatouages au henné [126].

La p-phénylènediamine est également utilisée dans les colorants capillaires et constitue le composant principal des colorants capillaires par oxydation [127]. Les pphénylènediamines N, N O-disubstituées sont largement utilisées en tant qu'additifs pour carburants et dans la composition du caoutchouc [90].

II.3.3. Aspects toxicologiques de la p-phénylènediamine

La large utilisation de la PPD et sa disponibilité en absence de réglementation de son emploi ont conduit à la découverte de ses effets toxiques, d'où son usage fréquent dans un but d'autolyse [128]. En effet, absorbée par voie orale, elle est responsable d'intoxication grave réalisant en premier temps une détresse respiratoire qui met en jeu le pronostic vital, en phase secondaire : une rhabdomyolyse et une insuffisance rénale [129].

Une exposition aiguë à une concentration élevée en PPD peut provoquer une dermatite grave, une irritation des yeux et des larmoiements, de l'asthme, des vertiges, des tremblements, des convulsions et le coma chez l'homme [130,131].

Les données épidémiologiques suggèrent que l'utilisation de colorants capillaires à base de PPD pourrait être liée au risque accru de cancer de la vessie, de lymphome non hodgkinien, de myélome multiple et de cancers hématopoïétiques [132,133]. Lors de la réduction azoïque de ces colorants par des microorganismes environnementaux ou intestinaux, la PPD serait libérée [133-135]. Lorsque la PPD est ingérée, elle sera absorbée et redistribuée aux sites cibles pour exercer son effet [95].

II.4. Structure cristallines du p-phénylènediamine

La structure cristalline du p-phénylènediamine a été déterminée par diffraction des RX. Ce composé cristallise dans le groupe d'espace P21/c avec huit motifs par maille monoclinique [136].

Une recherche bibliographique sur les structures cristallines des composés à base de pphénylènediamine a conduit aux structures indiquées dans le tableau II.2.

N°	Composé	Groupe d'espace	Paramètres de maille
1	P-Phenylendiamine [136]	P2 ₁ /c	a = 8.3020 (2) A °, b = 5.8970 (1) A ° c = 22.7600 (5) A °, β = 93.579 (2)
2	P-Phenylendiamine dihydrate [136]	Pnma	a = 8.8599 (8) A °, b = 15.0248 (14) A°, c = 5.8952 (4)
3	P-Phenylenediammonium diperchlorate [139]	ΡĪ	a = 5.0970(8) α =103.625(9) b= 7.1061(13), β =103.274(9), c= 8.7475(12), γ = 108.086(9)
4	P-phenylenediamine dihydrochloride [137]	PĪ	$a= 8.75, b=5.87; c=4.34 A^{\circ}$ $α= 99.47^{\circ}; β=95.34^{\circ}, γ=11.10^{\circ}$
5	P- Phenylenediammonium dibromide [138]	Pmmn	a = 4.740(1) A °, b = 7.541(1) A ° c = 12.682(1) A.
6	Tri(p-phenylendiammonium) cyclohexaphosphatehexahydrate [140]	P-1	a = 9.269(2) α =65.65(2) b= 9.9219(19), β =74.07(2), c= 11.0609(2), γ = 76.32(2)
7	P- Phenylendiammonium bis(trifluoroacetate)[141]	P2 ₁ /c	a = 5.9661(5) A°,b =16.0.900 (14)A° c=7.2186(5)A, α =90, β =101.075(5), γ = 90°
8	P- Phenylendiammonium Sulfate [141]	P2 ₁ 2 ₁ 2 ₁	a = 6.6270(13) A °,b =7.3642(15) A ° c =18.130(4) A. α=90°, β=90°, γ= 90°
9	1,4-phenylenediammonium dichloride [141]	ΡĮ	a = 4.2850(2) α =71.035(4) b=5.8053(15), β =76.868(5), c= 8.6259(6), γ = 79.631(5)
10	1,4-phenylenediammonium dibromide [141]	PĮ	
11	1,4-Phenylenediammonium hexafluorosilicate [141]	PĮ	a = 5.5834(11) A °,b =9.4219(11) A ° c =9.6386(19) A. α =80.86(7), β =89.959(6), γ = 73.219(6)

Tableau II.2. Groupes d'espaces et paramètres de maille des composés à base de para-phénylènediamine.
Références

- [1] S. Saouli, Thèse de magistere, Universite larbi ben m'hidi, Oum el Bouaghi, (2005).
- [2] T. D. David, Chimie des heterocycles aromatiques, Champin, Belgique, Vol1(1997).
- [3] D. E.Chavez, D.A. Parrish, J. Heterocycl. Chem. 46 (2009)88-90.
- [4] P. Arnaud, B. Jamart, J. Bodiguel, N. Brosse, 17 Ed: Chim. Org. Cours, (2004).
- [5] R. G.Hutchison, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 127 (2005)16866-16881.
- [6] D. E. Chavez, D. A. Parrish, J. Heterocycl. Chem. 46(2009)88-90.
- [7] K. Watt, P. Manzoni, M. Cohen-Wolkowiez, S. Rizzollo, E. Boano, E. Jacqz-Aigrain, D. K. J. Benjamin, *Curr Drug. Metab.* 14(2013)193-202.
- [8] L. T. M. T. Yu, C. Y. Chang, T. K. Yang, Tetrahedron. Asim. 18(2007) 949-962.
- [9] A. Gupta, J. D. Unadkat, Q. Mao, J. Pharm. Sci. 96 (2007) 3226-3235.
- [10] S. D. Schiller, F. H. B. Maraviroc, Clin. Ther. 29 (2008)1862-1886.
- [11] M. Ashok, B. S. Holla, B. Poojary, Eur. J. Med. Chem. 42(2007)1095-1101.
- [12] I. Pibiri, S. Buscemi, Curr. Bioact. Compd. 6 (2010) 208-242.
- [13] M. Goodwin, Antimicrobial susceptibility testing protocols, Schwalve, Crc Press, (2007).
- [14] M. C. S. Lourenco, M.V. N.deSouza, A. C. Pinheiro, L. M. Ferreira, B.R.S. Goncalves, T. C.M. Nogneira M. A. Peralta, *RKIVOC*.15(2007)181-191.
- [15] K. Shalini, N. Kumar, S. Drabu, P.K. Sharma, Beilstein J. Org. Chem. 7(2011) 668-677.
- [16] M. Ghannoum, L.B. Rice, Clin. Microbiol. Rev.12 (1999) 501-517.
- [17] S. Ferfra, N. H. Ahabchane, B. Garrigues, E. M. Essassi, Comptes Rendus de L'Académie des Sciences-Series IIC-Chemistry, Vol 4 (2001) 905-911
- [18] C. Zhou, Y. Wang, Curr. Med. Chem. 19 (2012)239-80.
- [19] A. Bladin, J.Ber. 18 (1885)1544.
- [20] A. Bladin, J. Ber. 19 (1886) 2598.
- [21] J.L. M. Abboud, C. R. F-F. Notario, R. E. Trifonov, A. P. Volovodinco, V. A. Ostrovskii, I. Alkorta. J. Elguero, *Eur. J. org. Chem. (2001) 3013-3024*.
- [22] C. Li, M. G. Finn, J. Polym. Sci. Part A. Polym. Chem. 44(2006) 5513-5518.
- [23] K. Schofield, M. R. Grimmet, B. R. T. Keene. Hetero-aromatic nitrogen compound: The azoles, *473*(1976).
- [24] T. D. David, Chimie des hétérocycles aromatiques, Champin, Belgique, (1997) 1.
- [25] R. Kharb, P. C. Sharma, M. S. Yar, J. Enzyme Inhib. 26 (2011)1-21.
- [26] B. Zech, H. Croetz, J. Indian Chem. Soc. 280(1981) 2923-2926.
- [27] Sudheendra, R. H. Udupi, V. Himabindu, Int. J. Pharm. 2 (2012).
- [28] B. N. Goswami, J. C. Kataky, M. M. Datta, Ind. J. Chem. (Sect.23B) (1984)796-797.
- [29] Y. Zhang, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. 1(2013)585-593.
- [30] T. L. Gilchrist, Heterocyclic Chemistry. Singapore: Pearson Ed: India, (2005)298-307.
- [31] P. Métra, J. Amelin, J. Chem. 60 (1982) 285.
- [32] D. S. Holla, M. Mahalinga, M. S. Karthikeyen, B. Poojary, P. M. Akberali, N. S. Kumari, *Eur J. Med. Chem* .40 (2005)1173-1178.
- [33] Y. S. Sanghvi, B. K. Bhattacharya, G.D. Kini, S. S. Matsumoyo, S. B. Larson, W. B. Jolley, J. Med. Chem. 33(1990)336-344.
- [34] S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. Asian .J. 6(2011) 2696-2718.

- [35] M. D. Chen, S. J. Lu, G. P. Yuag, S. Y. Yang, X. L. Du, *Heterocyclic. Comm.* 6 (2000)421-426.
- [36] E. A. Sherement, R. I. Tomanov, E. V. Trukhin, V. M. Berestovitskaya, *Russ. J. Org. Chem.* 40 (2004)594-595.
- [37] H. N. Hafez, H. A. Abbas, A. R. El-Gazzar, Acta. Pharm. 58 (2008)359-378.
- [38] K. M. Banu, A. Dinaker, C. Ananthnarayan, Indian J. Pharm. Sci. 61(1999)202-205.
- [39] L. P. Guan, Q. H. Jin, G. R. Tian, K. Y. Chai, Z.S. Quan, J. Pharm. Sci.10 (2007)254-262.
- [40] A. Passannanti, P. Diana, P. Barraja, F. Mingooia, A. Lauria, G. Cirrincine, *Heterocycles.* 48 (1998)1229-1235.
- [41] R. Gujjar, A. Marwaha, J. White, L. White, S. Creason, D. M. Shackleford, J. Baldwin, W. N. Charman, F.S. Buckner, S. Charman, P. K. Rathod, M. A. Phillips, *J. Med. Chem.* 52(2009)1864-1872.
- [42] B. A. Johns, J. G. Weatherhead, S. H. Allen, J. B. Thompson, E. P. Garvey, S. A. Foster, *Bioorg. Med. Chem. Lett.* 9 (2009)1802-1806.
- [43] S. Manfredini, C.B. Vicentini, M. Manfrini, N. Bianchi, C. Rustigliano, C. Mischiati, R. Gambari, *Bioorg. Med. Chem.* 8 (2000)2343-2346.
- [44] A. Duran, H. N. Dogan, H. Rollas, Farmaco. 57 (2002)559-564.
- [45] K. Sztanke, T. Tuzimski, J. Rzymowska, Eur. J. Med. Chem. 43(2008) 404-419.
- [46] P. Gupta, R. S. Chaudhary, T. K. G. Namboodhiri, B. Prakash, corros. J. 17 (1982)136.
- [47] T. Notova, G. W. Poling, B. Gijutsu, Corrosion. 30 (1981)381-389.
- [48] A. Laachach, M. Aoulal, A. Srhiri, A. Benbachir, J. Chim. Phys. 89(1992)2011-2027.
- [49] Z. Khiati, A. A. Othman, M. Sancez-Moreno, M. C. Bernard, S. Joiret, E. M. M. Sutter, V. Vivier, *Corrosion Science*. 53 (2011) 3092-3099.
- [50] N. D. Heindel, J. R. Reid, J. Heterocycl. Chem. 17 (1980)1087.
- [51] K. Sancak, Y. Unver, D. Unlue, E. D. Du, I. Cel, E. Birinci, Turk J. Chem. 36(2012) 457-466.
- [52] M. Gomathinavagam, C. A. Jaleel, M. M. Azooz, R. V. Panneersel, *Global J. Pure Appl. Sci.* 4(2009) 23-28.
- [53] A. Leventtuna, Aust. J. Chem. 8(2014) 71-79.
- [54] B. S. Holla, B. Veerendra, M. K. Shivanda, B. Poojary, *Eur. J. Med. Chem.* 38(2003) 759-767.
- [55] B. M. Banachiewicz, J. Banachiewicz, A. Chodkowskae, J. Wojtowicz, L. Maazur, Eur. J. Med. Chem. 39 (2004) 873-877.
- [56] Q. J. Zhao, Y. Song, H. Gang Hu, S. ChongYu, Q. Y. W. Wu, Chin, Chem. Lett. 18 (2007) 670-672.
- [57] M. Bali, S. Sood, P. S. Singh, Int. J. Theor. 1(2009)38-41.
- [58]T. P. Kofman, Russ. J. Org. Chem. 38 (2002)1231-1243.
- [59] Z. Bahnes, Thèse de magistère, Université d'Oran, (2010).
- [60] O. R, Gautun, P. H. J. Carlsen, Acta Chem. Scand. 46 (1992)469-473.
- [61] S. Wang, Q-S. Li, M-G. Su, J. Chem. Eng. 52(2007)856-858.
- [62] G. Aromi, L. A. Barrios, O. Roubeau, P. Gamez, Coord. Chem. Rev. 255(2011)485-546.
- [63] H. V. R. Dias, S. Singh, C.F. Campana, Inorg. Chem. 47(2008) 3943-3945.

- [64] M. F. Fillat, M. C. Gimeno, A. Laguna, E. Latorre, L. Ortego, M. D. Villacampa, Eur. J. Inorg. Chem. (2011)1487-1495.
- [65] J. A. Kitchen, S. Brooker, Coord. Chem. Rev. 252 (2008) 2072-2092.
- [66] J. A. Kitchen, N. G. White, G. N. L. Jameson, J. L. Tallon, S. Brooker, *Inorg. Chem.* 50(2011)4586-4597.
- [67] B. Y. Li, D. Jin, B. H. Ma, D. Liu, G. H. Li, Z. Shi, S. H. Feng, *Eur. J. Inorg. Chem.* 2011(2011) 35-38.
- [68] S. K. U. Riederer, B. Bechlars, W. A. Herrmann, F. E. Kühn, *Eur. J. Inorg. Chem. 2011, (2011) 249-254.*
- [69] S. M. Tekarli, T. R. Cundari, M. A. Omary, J. Am. Chem. Soc. 130 (2008)1669-1675.
- [70] W. T. Wei, Y. Z. Lu, W. Chen, S. W. Chen, J. Am. Chem. Soc. 133(2011)2060-2063.
- [71] T. Yamada, G. Maruta, S. Takeda, Chem. Commun. 47(2011) 653-655.
- [72] O. H. Boumedien, Thèse de doctorat, Université de Tlemcen, (2014).
- [73] V. A. Ostrovskii, M. S. Pevzner, T.P. Kofman, M. B. Shcherbinin, I. V. Tselinskii, Targets in heterocyclic Systems, *Italian Society of Chemistry*. Vol 3(1999) 476-526.
- [74] G. Xue, J. L. Ding, P. Dong, J. Sers, J. phys. Chem. 95(1991) 7380-7384.
- [75] P. Cao, J. L. Yao, J. W. Zheng, R. U. Gu, Z.Q. Tian, Langmuir. 18 (2002) 100-104.
- [76] J. Rubim, G. R. Gutz, O. Sala, W. J. Orville-Thomas, J. Mol. Struct. 100(1983) 571-583.
- [77] R. Youda, H. Nishihara, K. Aramaki, Electrochimica acta. 53 (1990) 1011-1017.
- [78] M. M. El-Naggar, J. Mat. Science. 35(2000).
- [79] B. Trachli, M. Kedamm, H. Takenouti, A. Srhiri, corrosion science. 30 (2002) 997-1008.
- [80] F. Jose'A, B, Liu, P. C. T. Joa^o, C. S. Lui's, A. A. P. Filipe, Acta Crystallogr. (Sect.E 67) (2011) o2073- o207.
- [81] A. Ouakkaf, F. Berrah, S. Bouacida, T. Roisnel, *Acta Crystallogr. (Sect.E67)* (2011)1171-1172.
- [82] J. Wang, W- Z. Li, W. Jia- Guo, Z. Hong-Ping Xiao, Cristallogr. NCS. 226(2011)163-164.
- [83] F. Berrah, R. Bouchene, S. Bouacida, J-C. Daran, Acta Crystallogr. (Sect.E68) (2012) 1333-1334.
- [84] B. Liu, J. A. Fernandes, J. P. C. Tomé, F. A. Almeida Paz, C-S. Luis, *Molecules*. 20 (2015)12341-12363.
- [85] K. A. Siddiqui, G. K. Mehrotra, S. S. Narvi, R. Butcher, J. Inorg. Chem. Commun. 14(2011) 814-817.
- [86] F-Y. Liu, D-M. Zhou, X-L. Zhao, J-F. Kou, Acta Crystallogr. (Sect.C73) (2017) 1010-1016.
- [87] P. Pruszynski, K. T. Leffek, B. Borecka, T. S. Cameron, Acta Crystallogr. (Sect.C48) (1992)1638-1641.
- [88] H. Yagi, A. M. El Hendi, East Afr Med J. 1968 (1991) 404.
- [89] D. Lucet, T. L. Gall, C. Mioskowski, Angew. Chem. Int. Ed. 37 (1998)2580-2627
- [90] R. A. Smiley, Phenylene- and Toluenediamines, Wilmington, Delaware, United States, *Vol 26. 19880-0336*.
- [91] K-T. Chung, C. A. Murdock, S. E. J. Stevens, Y-S. Lib, C-I. Weic, T-S. Huangc, M. W. Choud, *Toxicol. Lett.* 8 1 (1995) 23-32.

- [92] S-C. Chen, C-H. Chen, C-L. Chern, L-S. Hsu, Y-C. Huang, K-T. Chung, S-M. Chye, *Toxicology in Vitro.* 20 (2006) 801-807.
- [93] Y. K. Che, X. M. Yang, S. Loser, L. Zang, Nano Lett. 8 (2008) 2219-2223.
- [94] S.W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 107 (2007) 1339-1386.
- [95] C. Zhang, K. S. Suslick, J. Am. Chem. Soc. 127 (2005) 11548-11549.
- [96] X. Mei, C. Wolf, J. Am. Chem. Soc. 128 (2006) 13326-13327.
- [97] L. XG, M. Huang, W. Duan, Chem Rev. 102(2002)2925-3030.
- [98] A. Janosević, B. Marjanović, A. Rakić, G. Ćirić- Marjanović, J. Serb. Chem. Soc. 78 (2013)1809-1836.
- [99] J. Stejskal, Prog. Polym. Sci.10 (2014) 007.
- [100] X. G. Li, M. R. Huang, W. Duan, Y. L. Yan, Chemical Reviews. 102(2002) 2925-3030.
- [101] E. L. Martin, Org Synth.19 (1939)70.
- [102] A. S. Aljaber, E-M. Nour, Spectrochimi. Acta (Part A 70) (2008) 997-1000.
- [103] R. Betz, P. Klu[°]fers. Acta Crystallogr. (Sect. E64) (2008) o2501.
- [104] B. Portis, K. R. Dey, M. A. Saeed, D. R. Powellb, M. A. Hossaina. Acta Crystallogr. (Sect. E65) (2009) o2601
- [105] A. Czapik, H. Konowalska, M. Gdaniec. Acta Crystallogr. (Sect. C66)(2010) o128-0132.
- [106] E.Akalin, S.Akyu^{*}z, Vib. Spectrosc. 22 (2000) 3-10.
- [107] C. Jenkinson, R. E. Jenkins, M. Aleksic, M. Pirmohamed, D. J. Naisbitt, B. K. Park, J. Invest. Derm. 130 (2010)732-742.
- [108] S. Chatterjee, S. C. Bhattacharya, Chem. Phys. Lett. 407 (2005) 407-413.
- [109] Z. Cibulkova', P. S' imon, P. Lehocky', J. Balko, Polym. Degrad. Stab. 87 (2005) 479-486.
- [110] M. Yanagitai, T. Kitagawa, K. Okawa, H. Koyama, T. Satoh, Biochem. Biophys. Res. Commun. 417 (2012) 294-298.
- [111] S-C. Chen, C-H. Chen, C-L. Chern, L-S. Hsu, Y-C. Huang, K-T. Chung, S-M.Chy, *Toxicology in Vitro.* 20 (2006) 801-807.
- [112] A. Ababou, K. Ababou, A. Mosadik, C. Lazreq, A. Sbihi, *Annales françaises d'Anesthésie et de Réanimation.19 (2000)105-107.*
- [113] K. S. Chugh, G. H. Malik, P.C. Singhal, J Med. 13(1982)131-137.
- [114] Y. Bousliman, J. P. Gay-Montchamp, Y. Cherrah, M. Ollagnier, A-A. Zeggwagh, Annales françaises d'Anesthésie et de Réanimation. B25 (2006) 902-910.
- [115] B. Dessendier, Thèse de doctorat, Université de Limoges, (2009).
- [116] E. Akalin, S. Akyu"z, Vib. Spectrosc. 22(2000)3-10.
- [117] X. Cao, N. Zhao, A. Gao, H. Lv, Y. Jia, R. Wu, Y. Wu, Mater. Sci. Eng. C 70 (2017) 216-222.
- [118] B. R. Akzo, 1 547(1979) 802.
- [119] Du Pont, Paraphenylenediisocyanate, Product Bulletin, E. I. du Pont de Nemours & Co, Inc., (Petrochemicals Dept.), Wilmington, Del, (1990).
- [120] M. Bracheer, C. Faller, W. Grotsch, R. Marshall, J. Spengler, *Mutat on Research*, 241 (1990) 313-323.
- [121] E. Klein, Z. Cibulkova, V. Lukes, Polym. Degrad. Stab. 88 (2005) 548-554.

- [122] C. Mascres, J. Gaeton, Union Méd Canada. 103(1974) 672-7.
- [123] K. S. Chugh, G. H. Malik, P. C. Singhal, J Med. 13 (1982)131-7.
- [124] M. Shapiro, C. Mowad, W. D. James, Am. J. Contact Dermat. 12 (2001)109-12.
- [125] N. S. Lawrence, E. L. Beckett, J. Davis, R. G. Compton, Analyst. 126(2001)1897-1900.
- [126] J. Matulich, J. Sullivan, Contact Dermatitis 53(2005)33-6.
- [127] J. F. Corbett, J. Soc Cosmet. Chem. 24(1973)103-34.
- [128] J. P. McFaddenI. R. White, P. J. Frosch, H. Sosted, J. D. Johansen, T. Menne, Allergy to hair dye, *BM. J*.334 (2007) 220.
- [129] J. García Gavín, J. C. Armario Hita, V. Fernández Redondo, J. M. Fernández -Vozmediano, J. Sánchez - Pérez, J. F. Silvestre, W. Uter, A. M. Giménez - Arnau, Actas Dermosifiliogr. 102 (2011) 98-105.
- [130] P. Tachon, J. Cotovio, K.G. Dossou, M. Prunieras, Int. J. Cosmet. Sci. 8 (1986) 265-273.
- [131] Y. Kawakubo, B. Blomeke, H. F. Merk, T. A. Masaoudi, J. Pharmacol. Exp Ther. 292 (2000)150 - 5.
- [132] M. Bonnard, Coll, Fiche toxicologique paraphénylènediamine, Services Techniques Et médicaux de l'institut de recherche et de sécurité, (2008).
- [133] C. Bavoux, N. Bonnard, D. Jargot, D. Lafon, Fiche Toxicologique Para-phénylène Diamine, Services techniques et médicaux de l'institut de recherche et de sécurité, (2006).
- [134] M. J. Thun, S. F. Altekruse, M. M. Namboodiri, E. E. Calle, D. G. Myers, J. C. W. Heath, J. Natl. Cancer Inst. 86 (1994) 210-215.
- [135] M. Gago-Dominguez, J. E. Castelao, J. M. Yuan, M. C. Yu, R. K. Ross, J. Cancer 91 (2001) 575-579.
- [136] A. Czapik, H. Konowalska, M. Gdaniec. Acta Crystallogr. (Sect. C66) (2010) o128o132.
- [137] R. Chandrasekaran. Acta Crystallogr. (Sect.B25) (1969) 369-374.
- [138] S. Pratibha, P. Inder, S. Kapoor, S. Gurdip, F. Roland. J. Therm. Anal. Calorim.100 (2010) 233-238.
- [139] I. P. S. Kapoo, P. Srivastava, G. Singh, U. P. Singh, R. Frohlich. J. Phys. Chem. A112 (2008) 652-659.
- [140] R. Fezai, A. Mezni, M. Kahlaoui, M. Rzaigui, J. Mol. Struct. 1119 (2016) 54-63.
- [141] K. M. Anderson, A. E. Goeta, K. S. B. Hancock, J. W. Steed, Chem. Commun. 20 (2006) 2138-2140.

Les Liaisons Hydrogène

I. Introduction

La liaison hydrogène est une des interactions les plus étudiées à ce jour. Découverte il y a près d'un siècle, le terme qui la désigne a été inventé à l'origine pour décrire la structure de l'eau [1, 2]. Cette interaction a depuis fait l'objet de nombreuses publications et d'ouvrages [3, 4].

Les liaisons hydrogène (liaisons H) sont des interactions importantes et omniprésentes en chimie et en biologie [5, 6]. Elles sont responsables de la structure et des propriétés de l'eau, un composé essentiel à la vie [7]. De plus, les liaisons H jouent également un rôle clé dans la détermination des formes tridimensionnelles, des propriétés chimiques et physiques ainsi que des fonctions des biomolécules, telles que les protéines [8, 9], et les acides nucléiques [10]. La liaison hydrogène est proposée comme une interaction purement électrostatique et directionnellement entre l'hydrogène déficient en électrons et une région de haute densité électronique de *Pauling* [11].

Bien que toutes les méthodes de la chimie physique, de la spectroscopie et de la diffraction puissent être utilisées pour reconnaître et étudier les liaisons hydrogène, l'existence de liaisons hydrogène n'est déduite a posteriori que de la proximité spatiale et de l'orientation relative du donneur de la liaison hydrogène, de l'hydrogène et l'accepteur de liaison hydrogène une fois que la structure d'une molécule est résolue par cristallographie aux rayons X ou par RMN [12,13].

I.1. La liaison hydrogène

Depuis la description qu'a fait *Linus Pauling* il y a près d'un demi-siècle [11], la notion de liaison hydrogène n'a guère évoluée. Une définition, proposée par *Steiner* [14], peut être énoncée comme suit : une interaction D-H...A est appelée liaison hydrogène si elle constitue une liaison locale (c'est-à-dire si la distance A...H est inférieure à la somme des rayons de Van der Waals), et si D-H agit comme un donneur de proton envers A. Cette interaction est essentiellement de nature électrostatique et implique trois centres: un atome électronégatif **D**, un atome d'hydrogène **H** lié de manière covalente à ce dernier, et une région de forte densité électronique sur un atome électronégatif **A**.

D-H...A

D est appelé atome donneur ; il est en général un oxygène, un azote, un halogène, un soufre, un phosphore ou dans certains cas un carbone riche en électrons (C-H aromatique, éthylènique ou acétylènique). L'atome électronégatif **A**, appelé accepteur, est en général un site riche en densité électronique (atomes portant des doublets électroniques : O, N ou halogène).

La liaison hydrogène est modélisée par une interaction de type dipôle-dipôle [15], (Figure II.1), comme c'est le cas pour les liaisons de Van der Waals [16]. L'atome donneur **D** (**N**, **O** ou **F**) fortement électronégatif et la tendance qu'a l'hydrogène de se polariser positivement, favorise la délocalisation des électrons de la liaison vers l'atome donneur [17]. Le noyau d'hydrogène et l'atome **D** forme alors un moment dipolaire fort, l'atome accepteur **A** porteur d'un doublet non liant (polarisabilité très forte), est polarisé par le champ crée par le dipôle précédent [15, 17].

La liaison hydrogène est une interaction de type électrostatique, elle est énergétiquement faible par rapport aux liaisons covalentes et ioniques mais plus forte que les liaisons de Van der Waals [18].

Figure II.1. Représentation schématique de la liaison hydrogène.

I.2. Propriétés de la liaison hydrogène

Il existe une relation entre l'interaction H...A et l'angle D-H...A, plus l'interaction H...A est forte plus l'angle D-H...A est grand et plus la liaison hydrogène est faible plus l'angle est petit [19]. La force de la liaison hydrogène peut être très différente suivant les valeurs de ces variables, et dépend fortement de la nature de l'atome accepteur A et de l'atome donneur D (charge et électronégativité) ainsi que de l'environnement (contraintes

stériques, environnement chimique...) [20]. Globalement, l'énergie d'une liaison hydrogène formée entre deux fragments chargés peut aller jusqu'à 190KJ/mol [21,22].

I.2.1. Liaisons faibles

Une liaison hydrogène faible est généralement formée quand l'atome d'hydrogène est lié par covalence à un atome légèrement plus électronégatif, tel que l'interaction **C-H...A**, elle peut aussi se former lorsque l'accepteur n'a pas de doublet d'électron libre, mais des électrons π , l'énergie de ce type de liaison est comparable aux interactions de Van der Waals [5,23-27].

I.2.2. Liaisons modérées

Les liaisons hydrogène modérées sont formées entre un donneur et un accepteur généralement neutres, l'atome donneur est relativement plus électronégatif que l'atome d'hydrogène est l'atome donneur possède un doublet libre d'électrons, ce sont les liaisons les plus communes en chimie et dans la nature, on les considère comme des liaisons hydrogène normales [5, 23-27].

I.2.3.Liaisons fortes

Les liaisons hydrogène fortes font partie de la catégorie de liaisons hydrogène la plus intrigante, elles sont formées quand le proton est partagé entre deux fortes bases, ou entre ions et molécules dans le cas ou il y a une déficience dans la densité électronique pour le groupement donneur ou bien un excès de densité électronique pour le groupement accepteur [23-27, 28].

I.3. Caractéristiques des liaisons hydrogène

Dans les structures cristallines, l'empilement des molécules dépend de la forme et des différents types d'interactions présentes y compris les liaisons hydrogène. On peut classer les liaisons hydrogène selon leurs attachements en cinq catégories :

I.3.1.Liaison d'hydrogène à quatre centres : Les liaisons à quatre centres (à trois groupements accepteurs), sont rarement observées dans les structures cristalline (< 5%), les

distances H...A sont généralement plus longues que les liaisons d'hydrogène à trois centres et la somme des angles D-H...A doivent être supérieurs à 90° [28-31] (Figure II.2) :

Figure II.2. Liaison hydrogène à quatre centres

I.3.2.Liaisons hydrogène à trois centres : On dit qu'une liaison hydrogène moyenne est à trois centres, quand l'atome d'hydrogène est lié à trois atomes avec une liaison covalente et deux liaisons hydrogène. Ces trois atomes (D, A1, A2) se trouve dans un plan où la somme des angles est approximativement de 360° ($\theta 1 + \theta 2 + \alpha \approx 360^{\circ}$) [17].

Les liaisons à trois centres sont usuellement non symétriques où r $1 \neq$ r2 (Figure II.3).

Figure II. 3. Liaison hydrogène à trois centres

I.3.3. Liaison hydrogène à deux centres : La liaison hydrogène forte est presque linéaire avec un seul atome accepteur, elle est dite à deux centres [5, 7, 11,18, 27].

Figure II. 4. Liaison hydrogène à deux centres

I.3.4. Liaison hydrogène chélate : L'atome d'hydrogène est lié à trois atomes : une liaison covalente et deux liaisons hydrogène avec deux atomes accepteurs qui sont liés au même atome X [18, 29, 32].

Figure II. 5. Liaison hydrogène chélate

I.3.5. Liaison hydrogène bifurquée : La combinaison de deux configurations à trois centres conduit à une configuration bifurquée, ou ces liaisons à trois centres ne sont pas coplanaires et font un angle de l'ordre de 50° [29, 32, 33] (Figure II.6).

Figure II. 6. Liaison hydrogène bifurquée

I.3.6. Liaison hydrogène Tandem : La liaison hydrogène tandem est surtout observée dans la structure de la molécule d'eau où les atomes d'hydrogène sont désordonnés [5-7,35] (Figure II.7).

Figure II. 7. Liaison hydrogène Tandem

Tableau II.1. Caractéristiques géométriques statistiques de quelques types de liaison hydrogène [21].

D-HA	DA (Å)	HA (Å)	Angle D-H-A (°)
0-НО	2.4-3.3	1.5-2.4	150-180
N-HCl	2.6-3.1	2.1-2.6	130-180
N-HN	2.5-3.3	1.6-2.4	130-180
N-HO	2.6-3.3	1.6-2.4	130-180

I.4. Description d'un réseau de liaison hydrogène dans une structure cristalline (Théorie des graphes du modèle des liaisons hydrogène)

En dérivant l'approche du graphe des modèles des liaisons hydrogène, afin de rationaliser ce type de liaisons, *Etter* (1990) [36-38] définit un réseau comme un sousensemble d'un groupe de molécules dans lequel chaque molécule est reliée à l'autre par au moins une liaison hydrogène. La méthode de la théorie des graphes, utilise pour décrire les réseaux de liaisons hydrogène des lettres majuscules G (G = S, C, R ou D) pour distinguer entre des liaisons inter et intramoléculaires et si ces liaisons forment des chaînes finies ou infinies ou des anneaux (S = intramoléculaire; C = chaînes infinies; R = anneaux; D = dimères non cycliques et chaînes finies). Des nombres en indice (d) ou en exposant (a) de ces lettres, indiquent respectivement le nombre des différents types de donneurs et d'accepteurs, un paramètre entre parenthèses (r) indique le nombre d'atomes dans le cycle ou la longueur de répétition de la chaîne, y compris les liaisons covalentes [7].

Des concepts mathématiques apportés à cette théorie par *J. Grell et al.* (1999) [40], font la distinction entre les graphes quantitatifs et les graphes qualitatifs [40].

I.4.1. Graphe unitaire

Le graphe unitaire est celui mettant en jeu le plus petit nombre d'atome participant dans une liaison hydrogène appelé aussi degré [41].

I.4.2. Graphe binaire

Le graphe binaire est celui mettant en jeu le plus grand degré [41].

Références

- [1] M. C. R. Symons, Acc. Chem. Res. 14(1981)179.
- [2] H. Umeyama, K. Morokuma, J. Am. Chem. Soc. 99(1977)1316-1332.
- [3] S. Bouacida, H. Kechout, R. Belhouas, H. Merazig, T. Roisnel, Acta Crystallogr. (Sect.E67) (2011) m39.
- [4] A. D. Burrows, C. W. Chan., M. M. Chowdhry, J. E. McGrady, D. M.P. Mingos, *Chem. Soc.* 24(1995)329-339.
- [5] G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, (1997).
- [6] G. A. Jeffrey, W. Saenger, Hydorgen Bonding in Biological Stuctures, Springer, Berlin, (1991).
- [7] S. Scheiner, Hydrogen Bonding, Oxford University Press, New York, (1997).
- [8] L. Pauling, R. B. Corey, H. R. Branson, Proc. Natl. Acad. Sci. USA. 37(1951)205
- [9] J. D. Watson, F. H. C. Crick, Nature. (1953)171-737.
- [10] P. Schanda, M. Huber, R. Verel, M. Ernst, B. H. Meier, Angew. Chem. Int. Ed: 48 (2009) 9322-9325.
- [11] L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, (1960).
- [12] M. Goswami, E. Arunan, Phys. Chem. Chem. Phys. 11(2009) 8974-8983.
- [13] E. D. Isaacs, A. Shukla, P. M. Platzman, D. R. Hamann, B. Barbiellini, C. A. Tulk, *Phys. Rev. Lett.* 82 (1999)600-603.
- [14] T. Steiner, Angew. Chem. Int. Ed: 41(2002)48-76.
- [15] B. Pasquiou, Thèse de doctorat, Université paris XIII, (2012).
- [16] I. Gerber, Thèse de doctorat, Université Henri Poincaré, Nancy-I, (2005).
- [17] A. Ouakkaf, Thèse de doctorat, Université Larbi ben m'hidi, Oum elbouaghi, (2017).
- [18] F. Cavillon, Thèse de doctorat, Université des Sciences et Technologies de lille 1, (2004).
- [19] E. Arunan, R. G. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, *Pure Appl. Chem.* 83(2011)1637-1641.
- [20] P. I. Nagy, Int. J. Mol. Sci.15 (2014)19562-19633.
- [21] C. B. Aakeröy, K. R. Seddon, Chem. Soc. Rev. 397 (1993).
- [22] H. M. A. braham, P. P. Duce, D. V. Prior, Hydrogen Bonding. Part 9. Solute Proton Donor and Proton Acceptor Scales for Use in Drug Design, J. Cem. Soc. Perkin Trans. II, (1989).
- [23] W. Boukhemis, Thèse de magister, Université de Constantine 1, (2014).
- [24] M. A. Bensegueni, Thèse de magistère, Université de Mentouri, Constantine, (2007).
- [25] Z. lecheheb, Thèse de magister, Université de Constantine 1, (2014).
- [26] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, OUP: Oxford, (1999)108-113.
- [27] S. Hammerum, J. Am. Chem. Soc. 131(2009)8627-8635.
- [28] L. Brammer, In Crystal design, Structure and Function, J. Wiley and Sons Ltd, 1(2003).
- [29] M. Nishio, M. Hirota, Y. Umezawa, The CH/p interactions: evidence, nature and

consequences, Wiley-VCH, Inc., ISBN (1998) 0-471-25290 -5.

- [30] S. J. Grabowski, Hydrogen Bonding New Insights, Ed: Springer, Dordrecht, The Netherlands, (2006).
- [31] G. R. Desiraju, T. Steiner, Oxford University Press, 13(1997).
- [32] M. Bagieu-Beucher, Acta Crystallogr, (Sect. C46) (1990)238-240.
- [33] A. Messai, Thèse de doctorat, Université de mentouri, Constantine, (2010).
- [34] M. E. Balis, Antagonists and Nucleic acids, New York, American Elsevier, (1968).
- [35] C. N. Pace, B. A. Shirley, M. Mc Nutt, K. Gajiwala, Faseb. J. 10(1996)75-83.
- [36] M. C. Etter, Chem. Res. 23(1990)120-126.
- [37] M. C. Etter, J. C. MacDonald, J. Bernstein, Acta Crystallogr. (Sect. B46) (1990)256-262.
- [38] M. C. Etter, J. Phys. Chem. 95(1991) 4601-4610.
- [39] J. Grell, J. Bernstein, G. Tinhofer, Thèse de Doctorat, Université de munchen, (1999)1-31.
- [40] A. Bouhraoua, Thèse de magistèr, Université larbi ben m'hidi, Oum el bouaghi, (2013).
- [41] S. Farah, Thèse de magistère, Université mentouri, Constantine, (2007).

CHAPITRE I

METHODES DE CALCUL THEORIQUE

Méthodes de calcul théorique

I. Base de la Chimie Quantique / Méthode ab-initio

I.1. Introduction

La modélisation moléculaire est devenue ces dernières années un outil complémentaire des différentes méthodes expérimentales liées àla caractérisation des nouveaux composés chimiques.

La modélisation moléculaire est définit comme l'application des méthodes théoriques de calcul (mécanique moléculaire, dynamique moléculaire, mécanique quantique *ab-initio*ou *semi-empirique...*) pour résoudre des problèmes impliquant la structure moléculaire et la réactivité chimique [1-4]. En plus, ces méthodes utilisent souvent des moyens infographiques très sophistiqués qui facilitent grandement la transformation de quantités impressionnantes de données numériques en quelques représentations graphiques facilement interprétables [5].

Le but de la modélisation moléculaire est en fait double: d'une part c'est la compréhension théorique du matériau modélisé et de tester de nouvelles approches permettant de mieux comprendre le comportement local de ces systèmes ; d'autre part, de prédire le comportement du matériau sous certaines conditions.

Les modélisations moléculaires, décrivant les matériaux à l'échelle atomique grâce aux différents types d'interactions interatomiques, ne remplacent pas certes les méthodes expérimentales mais donnent un outil complémentaire pour comprendre mieux le comportement macroscopique ou microscopique des matériaux et de prédire certaines propriétés physico-chimiques, optiques et thermodynamiques [6].

Les méthodes (*ab-initio*) [7,8]dont l'archétype est le modèle de *Hartree-Fock* [9], sont des modèles quantiques dérivés directement de *l'équation de Schrödinger* [10-13]. Ils permettent en théorie d'avoir accès à toutes les propriétés physico-chimiques du système (structurales, électroniques, vibrationnelles...) [14].

I.2. Equation de Schrödinger

L'équation de Schrödinger [10-13] décrit une particule par sa fonction d'onde $\Psi(r,t)$:

$$\widehat{H}\Psi(r,t) = -i\hbar \frac{\partial\Psi(\vec{r},t)}{\partial t}$$
(1)

 $Où\hat{H}$ est l'opérateur Hamiltonien [15,16] du système défini par :

$$\widehat{H} = -\frac{\hbar^2}{2m}\nabla^2 + \widehat{V}(\overrightarrow{r}, t) \qquad (2)$$

Le premier terme correspond à l'énergie cinétique et le deuxième terme à l'énergiepotentielle. L'équation de Schrödingerindépendante du temps(ou dite stationnaire), pour un ensemble d'atomes (un système à N particules etM noyaux), s'écrit sous la forme :

$$\begin{split} \widehat{H}\Psi_i(\overrightarrow{r}_1,\overrightarrow{r}_2,\overrightarrow{r}_3,\ldots,\overrightarrow{r}_N,\overrightarrow{R}_1,\overrightarrow{R}_2,\overrightarrow{R}_3,\ldots,\overrightarrow{R}_M) \\ &= E_i\Psi_i(\overrightarrow{r}_1,\overrightarrow{r}_2,\overrightarrow{r}_3,\ldots,\overrightarrow{r}_N,\overrightarrow{R}_1,\overrightarrow{R}_2,\overrightarrow{R}_3,\ldots,\overrightarrow{R}_M) (3) \end{split}$$

 \hat{H} est l'opérateur Hamiltonien pour le système formé de *M* noyaux et de *N* électrons. Lescoordonnées \vec{r}_i regroupent les variables d'espace et de spin de l'électron *i*, les coordonnées \vec{R}_j celles du noyau k. La résolution exacte de cette équation (3) n'est possible que dans lecas de l'atome d'hydrogène. Le Hamiltonien du système \hat{H} peut se décomposer ainsi :

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{1}{2} \sum_{k=1}^{M} \nabla_{k}^{2} - \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{Z_{k}}{r_{ij}} + \sum_{i=1}^{N} \sum_{j>1}^{M} \frac{1}{r_{ij}} + \sum_{k=1}^{M} \sum_{1>k}^{M} \frac{Z_{k}Z_{1}}{R_{k1}}$$
$$= \hat{T}_{e} + \hat{T}_{n} + \hat{V}_{n-e} + \hat{V}_{e-e} + \hat{V}_{n-n}(4)$$

Les deux premiers termes désignent respectivement l'énergiecinétique des électrons \widehat{T}_e et celle des noyaux \widehat{T}_n [17]. Les termes restant désignent les énergies potentielles et qui serépartissent en trois sommations : un premier attractif duà l'interaction électrostatique entreles noyaux et les électrons \widehat{V}_{n-e} , deux autres répulsifs résultant des interactions coulombiennes, l'un de type électron-électron \widehat{V}_{e-e} , l'autre attaché aux interactions noyaunoyau \widehat{V}_{n-n} [18]. Devant l'impossibilitéde trouver une solution exacte de l'équation (4) dans le cas dessystèmes poly-électroniques a n corps, il est nécessaire d'utiliser des approchessimplificatrices [19].

I.3. Approximation Born-Oppenheimer

L'approximation de Born Oppenheimer [20] est largement utilisée dans de nombreux calculs en physique de la matière condensée [21]. Sachant que les électrons sont beaucoup moins lourds que les noyaux (1836 fois), ainsi leur mouvement est beaucoup plus rapide, une première approximation prend en compte une évolution des électrons dans un potentiel créé par des atomes fixes [20,22].

Dans l'approximation de Born Oppenheimer on néglige $\Delta_n(R)$ et l'équation de Schrödinger nucléaire devient :

$$\{\mathring{\mathbf{T}}_{\mathbf{N}} + \mathbf{E}_{\mathbf{n}}(\mathbf{R})\}|\Phi\rangle = \mathbf{E}|\Phi\rangle(\mathbf{5})$$

La surface définie par E_n(R) est appelée *surface de Born-Oppenheimer* [20].

I.4. Méthode Hartree-Fock

Malgré l'approximation de Born Oppenheimer, une solution exacte de l'équation de Schrödinger n'est pas possible pour des systèmes contenant deux électrons ou plus [23].

D'autres approximations sont nécessaires. La théorie de Hartree-Fock (HF) [24,25]est basée sur le principe variationnel qui postule que si E_1 est l'énergie de l'état fondamental d'un système, la valeur moyenne de l'énergie est supérieure ou égale à E_1 pour toutes les fonctions d'ondes possibles de ce système [26]. Une solution approximative de l'équation de Schrödinger est alors obtenue en cherchant la fonction d'onde qui minimise la valeur moyenne de l'énergie.Dans le cadre de la théorie de Hartree-Fock, on fait appel à une approximation spécifique aux systèmes multiélectroniques : l'approximation du champ autocohérent (SCF) [27,28].

Cette approximation consiste à considérer que chaque électron se déplace dans le champ moyen des autres, en conséquence, la fonction d'onde peut être écrite telle que le produit de fonctions mono-électroniques appelées orbitales moléculaires (OM) [29].

I.5. Méthodes post-Hartree-Fock

Les méthodes post-HF tentent de corriger ces problèmes en introduisant des fonctions d'onde basées sur la fonction d'onde HF mais en tenant compte de configurations électroniques autres que celles de l'état fondamental (dites « configurations excitées ») [23,30, 31].Or ces méthodes sont très couteuses en temps de calcul et deviennent vite impraticables pour de grosses molécules ayant un intérêt chimique, ne pouvant traiter que des systèmes contenant une centaine d'atomes, une alternative très efficace à ces méthodes consiste à utiliser des méthodes *DFT* (*La théorie fonctionnelle de la densité*)permettent de tenir compte d'une partie des effets de corrélation électronique et avec un coup de calcul moins élevé que celui des méthodes *post-HF*[32,33].

I.6. Approximation d'Orbitale Moléculaire

La fonction d'onde la plus simple qui respecte le principe de *Pauli*[34], peut s'écrire sous la forme d'un déterminant, appelé *déterminant de Slater* [35,36]. Ce déterminant pondéré par un facteur de normalisation est construit à partir d'un ensemble de fonctions monoélectroniques, ou spin-orbitales χ , définies comme le produit d'une fonction spatiale, ou orbitale moléculaire (OM) ψ , par une fonction de spin α ou β [35,36]:

$$\Psi = \frac{1}{\sqrt{n!}} \begin{vmatrix} X_1(1) & \dots & \dots & X_n(1) \\ X_1(2) & \dots & \dots & X_n(2) \\ \vdots & \dots & \dots & \vdots \\ X_1(n) & \dots & \dots & X_n(n) \end{vmatrix}$$
(6)

$$X_i(X) = \Psi_i(X). \, \alpha_i. \, (x) \, (7)$$

$$x_i(X) = \Psi_i(X) \cdot \alpha_i \cdot (x)$$
 (8)

Ce déterminant peut également s'écrire plus simplement :

$$\boldsymbol{\Psi} = \left| X_1 X_2 \dots X_n \right| \tag{9}$$

I.7. Approches de l'analyse de population

Les analyses de population représentent un moyen mathématique d'analyser une fonction d'onde ou une densité électronique au niveau local sous la forme de charges atomiques ou encore d'ordres de liaison, elles interviennent notamment dans les interactions électrostatiques au sein des systèmes moléculaires [37].

La distribution de charge peut êtres traitée à différents niveaux de théorie depuis les approches empiriques basées sur le concept d'électronégativité des atomes aux méthodes issues de la chimie quantiques, telles que l'approche de Mulliken ou l'analyse de la population naturelle (NPA) [38].

I.7.1. Approche de Mulliken

Quand l'OM occupée est unique, le nuage électronique n'est pas trop difficile à visualiser, les choses se compliquent quand il y a plusieurs OM occupées [39]. L'analyse de Mulliken propose une partition simple du nuage électronique, permettant de calculer les populations de recouvrement (qui renseignent sur les forces de liaisons) et les charges atomiques nettes (qui donnent une idée des sites réactifs) [39,40].

I-7.2. Approche NPA

Dans le cadre de l'analyse des populations naturelles (NPA), plutôt que les orbitales moléculaires, ce sont les fonctions propres de la matrice de densité au premier ordre, ou orbitales naturelles, qui sont employées, par définition, ces dernières sont localisées et orthogonales, la procédure de localisation permet aux orbitales moléculaires d'être définies de la même manière que celles centrées sur des atomes ou celles entourant une paire d'atomes [41,42].A partir de ces orbitales, non seulement les charges atomiques peuvent être déterminées mais l'analyse des poids des fonctions d'ondes et des propriétés nodales permet aussi la caractérisation des différentes orbitales (Liantes, non-liantes, de cœur...) ainsi que des liaisons chimiques via l'approche *NBO* (Natural Bond Orbital) [43-45].

I.7.3. Analyse NBO(Naturel Bond Orbital)

L'analyse NBO dont la procédure se déroule en trois étapes, a été proposée par Weinhold et al. [46-48]. La première étape consiste à diagonaliser la matrice densité d'ordre un en blocs mono-centriques atomiques sans diagonaliser la matrice dans son entier (Natural Atomique Orbital NAO) [50-52]. La seconde étape du processus NBO [46-49]consiste à orthogonaliser les orbitales NAO. La dernière étape est une recherche d'orbital naturel hybride, processus qui diagonalise des blocs bi-centriques d'orbitales naturellesorthogonalisées [53,54]. Ce concept d'orbitales naturelles utilise la matrice densité pour distribuer lesélectrons dans des orbitales dans le but de calculer des charges et de caractériser des liaisons [55,56].

La matrice densité r d'un système à plusieurs centres A, B, C..., peut s'écrire:

$$\rho = \begin{pmatrix} \rho^{AA} & \rho^{AB} & \rho^{AC} & \cdots \\ \rho^{AB} & \rho^{BB} & \rho^{BC} & \cdots \\ \rho^{AC} & \rho^{BC} & \rho^{CC} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix} (10)$$

Les orbitales naturelles atomiques NAO pour l'atome A dans le système moléculaire sont celles qui diagonalisent le bloc ρ^{AA} , Les NAO pour l'atome B sont celles qui diagonalisent le bloc ρ^{BB} et ainsi de suite [55,56].

I.8. Choix de la base des orbitales atomiques

I.8.1. La base 6-311G (d.p) :

La précision des résultats dépend évidemment du nombre de fonctions gaussiennes utilisées pour développer chaque OA[57]. Les bases les plus couramment employées sont les bases double-zéta 6-31G [58], (une combinaison de 6 fonctions gaussiennes pour représenter les électrons de cœur et 3+1 fonctions pour les électrons de valence) et triple-zéta 6-311G [59], contenues dans les logiciels de type Gaussian [60]. Dans le but de mieux décrire les systèmes ioniques ou radicalaires, et mieux rendre compte de la dissymétrie du nuage électronique par rapport aux noyaux, on peut inclure des fonctions supplémentaires de diffusion (+)ou de polarisation (*) [59,61].

I.8.2. La base polarisée :

Les bases polarisées contiennent des OA de polarisation qui permettent une description fine des systèmes plus ou moins polarisés, c'est à dire, des fonctions de base de nombre quantique de moment angulaire supérieur, de telles fonctions accroissent la flexibilité de la base en autorisant les charges électroniques à se délocaliser [61,62].

En pratique, des orbitales virtuelles sont ajoutées afin de prendre en compte la déformation des orbitales lorsqu'elles participent à une liaison. Par exemple, des orbitales p sont ajoutés pour l'atome d'hydrogène et des orbitales d sont ajoutés pour les atomes de la deuxième période de la classification périodique [61].

I.9. Définition de quelques paramètres calculés par la modélisation

• *HOMO (HighestOccupiedMolecular Orbital)* traduit le caractère électrodonneur (nucléophile) de la molécule, plus l'énergie de cette OM est élevée, plus la molécule cédera facilement des électrons [63,64].

- *LUMO (LowestUnoccupiedMolecular Orbital)* traduit le caractère électroaccepteur (électrophile) de la molécule, plus l'énergie de cette OM est faible, plus la molécule acceptera facilement des électrons [63,64].
- *L'écart d'énergie* entre HOMO et LUMO, appelé *Gap* est un indice de stabilité importante dont l'ordre de grandeur évolue avec la stabilité de la molécule, un grand écart implique une grande stabilité et un petit écart implique une faible stabilité, en règle générale, un grandécart indique une faible réactivité chimique et un petit écart est le gage d'une bonne réactivité chimique [63-65].
- Le moment dipolaire d'une molécule est une propriété utilisée pour étudier les interactions intermoléculaire électrostatiques.Plus le moment dipolaire d'une molécule est grand, plus elle sera susceptible d'interagir fortement avec ses voisines en induisant à sa proximité un champ électrique [66,67].
- Les cartes de potentiel électrostatique (MEP) également appelées cartes d'énergie de potentiel électrostatique, ou surfaces moléculaires de potentiel électrique, illustrent la distribution de charge des molécules en trois dimensions [68]. Ces cartes nous permettent de visualiser les régions d'une molécule à charge variable, la connaissance des distributions de charge peut être utilisée pour déterminer comment les molécules interagissent les unes avec les autres [68-70].
- Le potentiel électrostatique moléculaire (MEP) en un point de l'espace autour d'une molécule donne des informations sur l'effet électrostatique net produit à ce point par la distribution de charge totale (électron + proton) de la molécule et est en corrélation avec les moments dipolaires, l'électronégativité, les charges partielles et la réactivité chimique, des molécules [71,72]. Il fournit une méthode visuelle pour comprendre la polarité relative de la molécule, une isosurface de densité électronique cartographiée avec une surface de potentiel électrostatique décrit la taille, la forme, la densité de charge et le site de réactivité chimique des molécules [71-73].
- Le potentiel électrostatique à la surface (ESP) mesure l'interaction électrostatique entre une charge ponctuelle placée en r et le système d'intérêt, une valeur positive (négative) implique que la position actuelle est dominée par

les charges nucléaires (électroniques) [68,69]. Dans un système moléculaire, le *ESP* peut s'écrire comme suit [68]:

$$V_{Total}(r) = V_{Nuc}(r) + V_{Elec}(r) = \sum_{A} \frac{Z_{A}}{|r-R_{A}|} - \int \frac{\rho(r')}{|r-r'|} dr'$$
(11)

Où Z et R désignent respectivement la charge nucléaire et la position nucléaire.

Les différentes valeurs du potentiel électrostatique à la surface sont représentées par des couleurs différentes; le rouge représente les régions du potentiel électrostatique le plus électro négatif, le bleu représente les régions du potentiel électrostatique le plus positif et le vert représente la région du potentiel zéro, le potentiel diminue dans l'ordre rouge <orange <jaune </vert
bleu [72-74].

I.10.Logiciels utilisés

Il existe plusieurs logiciels dans le domaine de la chimie théorique. Pour notre travail, nous avons utilisé le logiciel *Gaussian 09* [75] et son interface graphique *Gauss view version* 5.08 [76] pour visualiser les résultats obtenus.

Références

- [1] R. I. Bahoussi, Thèse de doctorat, Université abdelhamid ibn badis, mostaghnem, (2017).
- [2] C. Becquart, M. Perez, Dynamique moléculaire appliqué aux matériaux, Ed: Technique de L'ingénieur RE, *136 (2010)1-9*.
- [3] F. Jansen, "Introduction to Computational Chemistry", John Wiley and sons, Inc., New York, (1999).
- [4] D. J. Griffiths, Introduction to Quantum Mechanics, USA, New Jersey., Prentice-Hall, Inc., (1995).
- [5] D.Liotta, Advances in Molecular Modeling, Ed: JAI Press, 1(1988).
- [6] O. Charles-Nicolas, J. C. Lacroix, P. C. Lacaze, J. Chim. Phys. 95(1998) 1457-1460.
- [7] J. L. Rivail, Eléments de chimie quantique, Inter, Ed : CNRS, Paris, (1994).
- [8] I. N. Levine, Quantum Chemistry, 5th Ed: Prentice-Hall, Inc., USA, New Jersey, (2000).
- [9] D.R. Hartree, Proc. Cambridge Phil. Soc. 24 (1928) 89-110.
- [10] E. Schrödinger, Ann. Phys. Leipzig. 76 (1926) 361-376.
- [11] E. Schrodinger, Ann. Physik .79(1926) 489.
- [12] E. Schrodinger, Ann. Physik. 81(1926)109.
- [13] E. Schrodinger, Phys. Rev. 28(1926)1049.
- [14] N.O.Ventura, M.Kieninger, Pure Appl. Chem. 70(1998) 2301-2307.
- [15] M. Gaudin, J. Phys. France .37(1976) 1087-1098.
- [16] L. Bel, J.Martim, Ann. Lnst. Henri Poincaré.22(1975)173-199.
- [17] I. Shavitt. « Methods of Electronic Structure Theory », H. F. Shaefer, Ed: Plenum Press, New York, 189 (1977).
- [18] V. Minkine, B. Simkine, R. Minaev, Théorie de la structure moléculaire, Ed : Mir, Moscou, (1982).
- [19] N. Dadda, Thèse de doctorat, Université de constantine 1, (2013).
- [20] M. Born, J. R. Oppenheimer. Ann. Phys. 84 (1927) 457-484.
- [21] A. Hinchcliff, 'Modeling Molecular Structure', Wiley & Sons, Chester, (1996).
- [22] H. Dugas, Principes de base en modélisation moléculaire, Aspects Théoriques et Pratique, introduction aux méthodes de minimisationd'énergie ,4ème Ed : Chapitre 3, (1996).
- [23] M. Plazanet, Thèse de Doctorat, Université de Joseph Fourier, (2000).
- [24] V.Z.Fock, Physik, 61 (1930)126-148.
- [25] D. R. Hartree, Proc. Cambridge Phil. Soc. 24(1928) 89-111.
- [26] D. R. Hartree, Proc. Cambridge Phil. Soc.24 (1928) 111-132.
- [27] D.Vito, A. David, Thèse de doctorat. Université de Genève, Suisse, (2003).
- [28] C. C. J. Roothaan, Rev. Mod. Phys. (1951)23, 69-89.
- [29] P-O. Lowdin, J. Math. Phys. 3 (1962)1171.
- [30] M. R. Hoffmann, H. F. Schaefer. Adv. Quantum Chem. 18(1986) 207-279.
- [31] G. G. Hall, Proc. R. Soc. London, Ser. A205 (1951)541-552.
- [32] H. Chermette, Coord. Chem. Rev. (1998)178-180, 699-721.
- [33] W. Kohn, F Bassani, F. Fumi, M. P. Tosi, Density functional theory: Fundamentals and Applications, Pro-ceedings of the International School of Physics "Enrico Fermi", Elsevier Science Ltd, (1985).

- [34] W. Pauli, J. Z. Physik, 31(1925) 765-783.
- [35] J. C. Slater, Phys. Rev, 38 (1931) 1109.
- [36] J. C. Slater, Phys. Rev, 34 (1929) 1293-1322.
- [37] A. Caristan, P. Bothorel, J. Chim. Phys. 66 (1969) 740-750.
- [38] S.M.Bachrach, Computational organic chemistry, 2ndEd : TX John Wiley & Sons, Inc., San Antonio, (2014).
- [39] R. S. Mulliken, J. Chem. Phys. 23(1955) 1833.
- [40] D. Rinaldi, J-L. Rivail, J. Barriol, *Theor. Chem. Acc.* 22(1971)291-298.
- [41] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735.
- [42] A. E. Reed, F. Weinhold, J. Chem. Phys. 83 (1985) 1736.
- [43] P-O. Lowdin, H. Shull, Phys. Rev. 101 (1956) 1730.
- [44] P-O. Lowdin, Phys. Rev. 97(1955)1474.
- [45] J. K. Badenhoop, F. Weinhold, J. Chem. Phys. 107 (1997) 5406.
- [46] F. Weinhold, « Natural bond orbital methods », Ed: Encyclopedia of Computational Chemistry, Chichester, John Wiley & Sons, *3(1998)1792-1811*.
- [47] F. Weinhold, C. R. Landis, "Valency and Bonding, A Natural Bond Orbital Donor-Acceptor Perspective", Cambridge University Press, New York, (2005).
- [48] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, Natural Bond Orbital Analysis Programs .NB0 5.0., Madison, WI, Theoretical Chemistry Institute, (2001).
- [49] J. P. Hagon, Introduction to NBO analysis and visualization, School of chemistry, University of Newcastle ,(2014).
- [50] F. Neese, E. F. Valeev, J. Chem. Theory Comput.7 (2011)33-43.
- [51] The NBO Website URL is *http://www.chem.wisc.edu/*≈*nbo5*.
- [52] E. D. Glendening, C.R. Landis, F. Weinhold, W. Interdiscip, *Rev. Comput. Mol. Sci.* 2(2012)1-42.
- [53] J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211-7218.
- [54] F. Weinhold, C. R. Landis, Natural bond orbitals and extensions of localized bonding Concepts, *Chem. Educ. Res. Pract. Eur.2* (2001)91-104.
- [55] F. Weinhold, Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives, Wiley Periodicals, Inc., *J. Comput. Chem*, (2012).
- [56] G. N. Lewis, "Valence and the structure of atoms and molecules" (The Chemical Catalog Co.), New York, (1923).
- [57] M. J. Frisch, J. A. Pople, J. Chem. Phys. 80 (1984)3265.
- [58] C. Cézard, Thèse de doctorat, Université de Picardie jules verne, (2007).
- [59] S. F. Boys, Proc. Soc. A200 (1950) 542.
- [60] L. K. McKemmish, P. M. W. Gill, J. Chem. Theory. Comput. 8 (2012)4891-4898.
- [61] M. Mohamadi, Thèse de doctorat, Université de 08 mai 45, Guelma, (2017).
- [62] A. J. H. Wachters, J. Chem. Phys. 52(1970)1033.
- [63] K. Fukui, N. Koga, H. Fujimoto, J. Am. Chem. Soc. 103 (1981) 196-197.
- [64] K. Fukui, Science. 218 (1982) 747-754.
- [65] N.T.Anh.Orbitales frontières « Manuel pratique », 2^{ème} Ed : EDPSciences/ CNRS, (2007).

- [66] P. Mauret, Contribution à l'étude des moments dipolaires en chimie organique, 4ème série, tome 18, (1954)5-95.
- [67] P. Pulay, G. Fogarasi, F. Pang, J. E. Boggs, J. Am. Chem. Soc. 101 (1979) 2550-2560.
- [68] K.W.Paul, R. Langridge, J. M. Blaney, R. Schaefer, P. A. Kollman, Proc. Natl. Acad. Sci.USA. 79 (1982) 3754-3758.
- [69] S. R. Cox, D.E. Williams, J. Comput. Chem. 2 (1981)304-323.
- [70] J. S. Murray, K. Sen, Molecular Electrostatic Potentals. Concepts and Applications, Elseivier, New York-Oxford, (1996).
- [71] J. S. Murray, P. Politzer, Comput. Mol. Science. 1 (2011) 153-163.
- [72] T.Lu, F.Chen, J. Mol. Graphics Model. 38 (2012) 314-323.
- [73] P. Politzer, P.R. Laurence, K. Jayasuriya, Environ. Health Perspect.61 (1985) 191-202.
- [74] J. S. Murray, P. Politzer, Electrostatic potentials: chemical applications, Ed: P.v.R. Schleyer, John Wiley & Sons, West Sussex, Encyclopedia. Comput. Chem. 2(1998) 912-920.
- [75] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT, (2009).
- [76] R. Dennington, T. Keith, J. Millam, Gaussview Version5, Semichem. Inc., Shawnee Missions KS, (2009).

La Surface de Hirshfeld

I. Introduction

Au sein d'un cristal, la surface de Hirshfeld d'une molécule (la promolécule) résulte d'une partition de l'espace séparant les atomes constituant cette molécule de ceux composant le reste du cristal (le procristal) suivant la distribution électronique des atomes considérés, cette partition est définie par le rapport entre la somme de la densité électronique moyennée des noyaux atomiques composant la promolécule et la somme de la densité électronique moyennée moyenne des atomes constituant le procristal [1-4].

En définissant $\rho_A(\mathbf{r})$ comme étant la densité électronique moyennée d'un noyau atomique A centré sur ce noyau, la surface de Hirshfeld résulte d'une fonction de distribution W(r) définie par l'équation (1) [4].

$$W(r) = \Sigma \rho_A(r) [A \in molécule] / \Sigma \rho_A(r) [A \in cristal]$$
(1)
= $\rho_{promolécule}(r) / \rho_{procristal}(r)$

La surface de Hirshfeld, entourant une molécule, est définie lorsque $W(r) \ge 0.5$, ce qui correspond à la région où la contribution de la promolécule à la densité électronique du procristal excède celle des autres molécules du cristal (Figure II.1). Afin de tirer un maximum d'informations de façon pratique, il s'avère impératif de transposer les résultats qui en résultent sous forme graphique [4,5].

Figure II.1. (a) : Contours w(r) entourant une molécule de benzène dans le cristal ; (b) : Surface Hirshfeld pour le benzène cartographiée avec d_e et tracée à la même taille et la même orientation que le contour [4].

I.1. Propriétés des surfaces d_e et d_i

Le terme d_e correspond à la distance séparant la surface de Hirshfeld et le noyau atomique le plus près situé à l'extérieur de cette surface (Figure II.2). Quant à lui, le terme d_i correspond à la distance séparant la surface de Hirshfeld du noyau atomique le plus près situé à l'intérieur de la surface. Lorsque le d_e est utilisé pour représenter la surface de la molécule analysée, l'image qui en résulte donne accès à une multitude d'informations quant à la nature de contacts intermoléculaires ayant lieu au sein du cristal [6, 7].

L'observation de la surface qui en découle permet de mettre en évidence les types d'interactions ayant lieu dans la structure [8].

Figure II.2. Surfaces Hirshfeld tracée avec d_e pour le benzène [9]

I.2. Propriétés des surfaces d_{norm}

Une autre façon de figurer les surfaces de Hirshfeld est de générer une représentation qui implique des distances de contact normalisées en tenant compte du rayon de van der Waals des atomes impliqués dans l'analyse, cette façon de dépeindre la surface est nommée *dnorm* [5]. Cette propriété est constituée par sommation de la contribution normalisée des d_e et d_i en rapport au rayon de van der Waals des atomes impliqués dans l'expression, le d_{norm} est donné par l'équation suivante :

$$d_{norm} = \frac{(d_i - r_i^{vdW})}{r_i^{vdW}} + \frac{(d_e - r_e^{vdW})}{r_e^{vdW}}$$
(2)

De façon plus concrète, ce type d'analyse permet d'illustrer de façon graphique le positionnement relatif des atomes voisins appartenant à des molécules interagissant ensemble. Encore une fois, un gradient de couleur est employé afin de quantifier les interactions ayant lieu entre les atomes au sein du cristal étudié [10]. Tel qu'illustré à la figure II.3, ce gradient

varie du bleu au rouge en passant par le blanc, en considérant des interactions intermoléculaires, les domaines bleutés indiquent que la distance séparant des atomes voisins dépasse la somme de leurs rayons de van der Waals respectifs, les zones blanches marquent les endroits où la distance séparant les atomes voisins avoisine la somme du rayon de van der Waals des atomes considérés, la couleur rouge est employée pour représenter les endroits où il y a interpénétration des rayons de van der Waals des atomes voisins [4].

Figure II.3. Gradient de couleur employé pour couvrir les surfaces Hirshfeld d'un cristal.

De ces faits, il est approprié de suspecter la présence d'interactions non covalentes entre les atomes (ou groupe d'atomes) situés à l'interface des zones représentées en rouge qui mettent en évidence un rapprochement significatif entre ces atomes (Figure II.4), la situation est plus délicate lorsque les domaines considérés sont dépeints en blanc, étant donné l'éloignement des atomes voisins qui est à la limite de la somme des rayons de van der Waals, les zones bleutées illustrent les domaines où les atomes voisins sont trop éloignés pour interagir entre eux [8].

Figure II.4. Surface Hirshfeld pour l'acide 2-chloro-4-nitrobenzoïque cartographiée avec d_{norm} . Les molécules voisines associées à des contacts proches sont indiquées, ainsi que les distances entre les atomes impliqués [4].

I.3. Note sur les longueurs de liaisons C-H

Les longueurs des liaisons C-H, obtenues à partir de structures élucidées par la diffraction des rayons X, sont plus petites que les valeurs obtenues par diffraction des neutrons [8]. Le logiciel "Crystal Explorer 3.1" [11], employé pour générer les surfaces de Hirshfeld, normalise les longueurs de liaisons C-H en tenant compte des grandeurs issues de la diffraction des neutrons [12]. Ainsi, ce programme considère une valeur arbitraire de 1.083 Å pour n'importe quelle liaison C-H. Par diffraction des rayons-X, la longueur des liaisons C-H varie de 0.950 à 1.000 Å, il s'agit là d'une différence importante de près de 14 % [8]. Cette normalisation est motivée par le désir de générer des surfaces représentatives quelque soit la méthode employée pour déterminer les structures [12]. Cette façon de procéder fait ressortir des contacts impliquant des atomes d'hydrogène dont la distance séparant les atomes observés est plus grande que la somme des rayons de van der Waals de ces atomes [13] (Figure II.5).

Figure II.5. Empreinte digitale décomposée des contacts C... H dans du paracétamol [5].

En conséquence, les surfaces de Hirshfeld font apparaitre des contacts rapprochés qui ne sont pas observés lorsque le traitement se fait avec un logiciel tel "Mercury" qui illustre les longueurs de liaisons C-H telles que mesurées par diffraction de rayons X [8].

I.4. Les empreintes 2D des surfaces de Hirshfeld

L'empreinte bidimensionnelle (2D) des surfaces de Hirshfeld constitue une autre façon d'analyser les informations complexes contenues dans la structure d'un cristal moléculaire [6,14]. La distribution, sous forme graphique, de tous les couples (d_i, d_e) met en évidence les types d'interactions observés dans le cristal de même que la fréquence des recouvrements.

Les diagrammes qui résultent de ce type d'analyse constituent une empreinte des interactions moléculaires dans le cristal [8]. À chaque point de la surface de Hirshfeld est associée une valeur de d_i et d_e . Un graphique à deux dimensions est obtenu en rapportant tous les points correspondant à une paire unique (d_i , d_e) [3] (Figure II.6). La couleur observée est associée à la densité de points occupant une région spécifique du graphique, par défaut, les points sont de couleur bleue, lorsque la densité de points augmente dans une région particulière du graphique, un gradient de couleur allant du bleu au rouge en passant par le vert illustre la densité de ceux-ci [6,8]. Les points laissés en gris pâle ne contribuent pas à l'analyse. Ce genre de représentation permet de caractériser des interactions intermoléculaires du fait que plusieurs d'entre elles génèrent un patron particulier dans les graphiques obtenus, en plus de répertorier tous les contacts présents dans le cristal, il est possible d'isoler des interactions non covalentes de type C-H... π , halogène...halogène, C-halogène....H et empilement π ayant lieu dans les arrangements étudiés [8].

Figure II.6. Tracé d'empreinte digitale en deux dimensions pour le 1,2,5-thiadiazolo[3,4c][1,2,5]thiadiazole [15].

Lors de l'étude de ce type de graphiques, il est important de porter une attention particulière aux contacts dont les valeurs de d_i et d_e avoisinent la grandeur des rayons de van der Waals des atomes observés. Pour une paire (d_i , d_e), la somme de ces composantes équivaut à la distance séparant les atomes contribuant à ce point [3]. Il y a présence de contacts rapprochés lorsque la somme de ces composantes est plus petite ou égale à la somme des rayons de van der Waals des atomes impliqués [5]. Il est à noter que ces contacts prennent la forme de lames qui pointent vers l'origine du graphique étudié [8]. Ce critère est exprimé par l'équation (3).

$$d_i + d_e \leq r_i^{\nu dW} - r_e^{\nu dW} \qquad (3)$$

Références

- [1] F. L. Hirshfeld, Theoretica Chimica Acta. 44(1977)129-138.
- [2] M. A. Spackman, P. G. Byrom, Chem. Phys. Lett. 267(1997) 215-220.
- [3] J. J. McKinnon, M. A. Spackman, A. S. Mitchell, *Acta Crystallogr. (Sect.B60)* (2004) 627-668.
- [4] M. A. Spackman, D. Jayatilaka, Cryst. Eng. Comm. 11(2009) 19-32.
- [5] J. J. McKinnon, D. Jayatilaka, M. A. Spackman, *Chem. Commun.* (2007) 3814-3816.
- [6] M. A. Spackman, J. J. McKinnon, Cryst. Eng. Comm.4 (2002) 378-392.
- [7] A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. Mckinnon, K. Bart, *Cryst. Growth Des.* 8 (2008)4517-4525.
- [8] F. Raymond, Thèse de doctorat, Université de montréal, (2010).
- [9] G. A. Jeffrey, J. R. Ruble, R. K. McMullan, J. A. Pople, *Proc. R. Soc. London Ser. A.* 414 (1987) 47-57.
- [10] N. Salah, A.Samet, B. Hamadi, A. Ben Salah, Chem. Sci. J. 7(2016) 2150-3497.
- [11] Crystal Explorer 1.5. University of Western Australia, Perth, Australia, (2006).
- [12] J. J. McKinnon, M. A. Spackmana, Frequently Asked Questions, http://hirshfeldsurface.net/wiki/index.php/Frequently_Asked_Questions, 3 juillet 2009.
- [13] J. J. McKinnon, A.S.Mitchell, M.A.Spackman. Chem. Eur. J. 4(1998)2136-2141.
- [14] A. Parkin, G. Barr, W. Dong, C. J. Gilmore, D. Jayatilaka, J. J. McKinnon, M. A. Spackman, C. C. Wilson, *Cryst. Eng. Comm.* 9(2007) 648-652.
- [15] J. Kane, R. Schaeffer, Cryst. Struct. Commun. 10 (1981) 1403.

CHAPITRE I

BIS (5-AMINO-3-CARBOXY-1H-1, 2,4 TRIAZOL-4-IUM) SELENATE DIHYDRATE

I. Introduction

Les dérivés du 1, 2,4-triazole forment une large famille de composés présentant un large éventail de propriétés intéressantes; plusieurs d'entre eux présentent des activités pharmacologiques et biologiques (antidépresseurs [1], anti-inflammatoires [2] et fongicides [3]), tandis que d'autres trouvent une utilisation dans le domaine des matériaux et dans la chimie de coordination (propriétés d'optique non linéaire et magnétique [4, 5], ligands multi-dentés [6]). D'autre part, les sels de l'acide sélénique ont été intensivement étudiés et beaucoup de leurs propriétés sont mises en évidence par des méthodes structurale [7], spectroscopique [8,9], optique [10], thermique [11] et théorique [12]. En outre, il est rapporté dans la littérature que de nombreux composés organo-séléné jouent un rôle important dans les processus biochimiques allant des antioxydants aux agents anticancéreux et antiviraux [13].

Au cours des dernières années, les composés de transfert de protons à base de dérivés azotés et d'acide sélénique ont suscité un intérêt considérable. Les propriétés thermiques et diélectriques du sélénate de bis (2-méthylanilinium) ont été décrites par *Ben Hassen et al.* [14] Les transitions de phase et les propriétés électriques du mono hydrogèno-sélénate du 4-benzylpyridinium ont été étudiées par *Maaleje et al.* [15]. Les comportements thermiques du bis-4-benzylpipéridinium tétraoxosélénate monohydrate, du 1,3-diammonium propylsélénate monohydrate et des cristaux de bis (adéninium) sélénate dihydrate ont été étudiés par *Kessentini et al.* [16], *Thirunarayanan et al.* [17] et *Ben Hassen et al.* [18], respectivement. Des études de chimie quantique du bis (1-hydroxy-2-methylpropan-2-aminium) sélénate et de 1, 2,4-triazolium hydrogéno-sélénate ont été rapportées [19,20].

Le sel sélénique, Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenate dihydrate (BACTSe) que nous rapportons dans le présent travail, présente une structure cristalline isotype avec celle obtenue avec l'acide sulfurique. Le sélénate partiellement et complètement substitué au sulfate a déjà été rapporté, par exemple dans l'ettringite par *D.J. Hassett et al.* [21].

II. Synthèse

L'hydrate de l'acide 3-amino-1, 2,4-triazole-5-carboxylique ($C_3H_4N_4O_2$. xH₂O) et l'acide sélénique (99,95%, plus) ont été utilisés tels quels sans purification supplémentaire. L'acide H₂SeO₄ a été ajouté goutte à goutte à l'acide ($C_3H_4N_4O_2$. xH₂O) dissous dans de l'eau distillée chaude. La solution résultante a été refroidie sous agitation jusqu'à la température ambiante. Après deux semaines d'évaporation spontanée lente, de petits cristaux incolores de BACTSe se sont formés. La réaction chimique de formation du sel étudié est donnée ci-dessous.

T. 25°C Schéma I.1. Synthèse du sel BACTSe

III. Etude cristallographique III.1. Enregistrement des intensités de diffraction des rayons X

Les données de l'enregistrement DRX ont été recueillies avec un diffractomètre Bruker Apex II à détecteur CCD avec la radiation Mo-K_{α} (0,71073 Å) et à monochromateur en graphite à 298 K dans un domaine angulaire en θ allant de 3.19-30.89° (Tableau I.1). Toutes les corrections d'absorption ont été effectuées avec le programme SADABS [22].

III.2. Résolution et affinement de la structure

La structure a été résolue par méthodes directes et affinée à l'aide de la chaine de logiciels implanté sur le programme WinGX [23]. Tous les atomes non-hydrogène ont été localisés grâce au programme SIR2002 [24] et affinés anisotropiquement avec le programme SHELXL97 [25] en utilisant la méthode des moindres carrés avec matrice complète

Tous les atomes d'hydrogène ont été localisés sur une carte de Fourrier différence mais ces atomes, sauf ceux de la molécule d'eau, ont été placés par calcul géométrique et affinés par rapport à leurs atomes parents c'est-à-dire aux atomes aux quels ils sont attachés. Les positions des deux atomes d'hydrogène de la molécule d'eau ont été affinées de manière isotrope avec Uiso (H) = 1,5Uéq (O).

L'affinement final de la structure a conduit aux facteurs de réalisabilité pondéré $R_w = 0,0334$, non pondéré R = 0,0793 et d'estime de la variance (GOF) S=1.106. A ce stade de l'affinement, une Fourier différence finale n'a révèlé aucun pic significatif ($\Delta \rho_{max} = 0.812$ e. Å⁻³). Les détails de l'affinement de cette structure sont répertoriés dans le tableau I.1.

Données cristallographiques				
$2(C_{3}H_{5}N_{4}O_{2})_{2}^{+}SeO_{4}^{-2}$ $2(H_{2}O)$				
Masse molaire (g.mol ⁻¹)	437.21			
Longueur d'onde (Å)	0.71073			
Température (K)	298			
Système cristallin	monoclinique			
Groupe d'espace	C2/c			
a (Å)	19.8690(14)			
b (Å)	5.8789(4)			
c (Å)	13.4826(9)			
$\beta(Å^3)$	108.906(3)			
Dimension du monocristal (mm ³)	$0.2\times0.02\times0.01$			
F(000)	880			
volume(Å ³)	1489.91(18)			
Z	4			
$\mu (mm^{-1})$	2.596			
ρ_{calc} (g/cm ³)	1.949			
Conditions d'en	Conditions d'enregistrement			
Diffractomètre BRUCKER ,APEXII				
R int	0.1551			
Type de radiation	MoK\α			
Limites de θ (°)	3.19- 30.89			
Limites h.k.l	$\text{-28} \leq h \leq \!$			
Reflexions mesurées	9082			
Réflexions indépendentes	2350			
Reflections avec $I > 2\sigma(I)$	2182			
A ###				
coefficient d'extinction	0.0041 (12)			
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$ (e A ^{o-3})	0.812/-2.071			
$R [F^{2} > 2\sigma(F^{2})]$	0.0344			
$wR(F^2)$	0.0793			
Goodness-of-fit on F^2	1.106			

Tableau I.1. Données cristallographiques et conditions d'enregistrement du composé Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenate dihydrate

III.3. Propriétés structurale du composé BACTSe

III.3.1. Unité asymétrique

Le BACTSe cristallise dans une maille monoclinique avec les paramètres a = 19,8690 (14) Å, b = 5,8789 (4) Å, c = 13,4826 (9) Å et = 108,906 (3) ° (Tableau I.1). L'unité asymétrique comprend un cation, la moitié d'un anion sélénate et une molécule d'eau. La structure moléculaire et le schéma de numérotation des atomes sont présentés à la figure I.1.

Figure I.1. Ortep de la structure moléculaire Les déplacements sont tracés au niveau de probabilité de 50%

III.3.2. Protonation

L'atome de sélénium se situe sur l'axe binaire ce qui donne à l'ion sélénate (SeO₄²⁻) une géométrie plutôt régulière par rapport à celle observée dans des composés similaires [26, 27,28] (Tableau B1.3: ANNEXE B1). Les écarts observés entre les longueurs de liaison Se-O dans le présent composé (deux courtes distances de 1,6269(11) Å et deux longues distances de 1,6492(13) Å) et celles observées dans la structure de l'acide sélénique (deux courtes distances de 1,587(3) Å et 1,585(3) Å et deux longues distances de 1,678(3) Å et 1,672(2) Å) [29], confirmer le transfert de deux protons de l'acide sélénique à l'acide 3-amino-1,2,4-triazole-5-carboxylique. La protonation se produit sur l'atome *N3* du noyau triazole.

Figure I.2. Le site de protonation de l'acide 3-amino-1, 2,4-triazole-5-carboxylique

III.3.3. Description de la structure

La structure de ce composé hybridé est formée d'entités cationiques, anioniques et de molécules d'eau. La cohésion dans le cristal est assurée par des liaisons hydrogène intermoléculaires. La présence de ce réseau complexe de liaisons hydrogène permet de développer un empilement tridimensionnel (Figure I.3) qui peut être décrit si on considère des chaînes infinies mixtes se développant le long de l'axe *b* (Figure I.9) et déduites les unes des autres par les différents éléments de symétrie du groupe d'espaces C2/c. Ainsi, des motifs de graphe anneaux centro-symétriques R_4^4 (14) et R_2^2 (8) et R_4^2 (8) sont identifiés (Figure I.9).

Figure I.3. Projection de l'empilement tridimensionnel de BACTSe le long de l'axe **b**. Les liaisons hydrogène sont représentées par des lignes en pointillés.

Figure I.4. Projection des chaînes infinies mixtes parallèles au plan (100)

III.3.4. Liaisons hydrogène

Les entités anioniques et cationiques sont liées par les liaisons hydrogène N-H...O observées entre 1,91 Å et 2,923 (2) Å. L'anion sélénate joue le rôle de l'accepteur via ses quatre atomes d'oxygène alors que le cation agit comme donneur via les atomes d'azote N1 et N3 du noyau triazole et N4 du groupe amino. Les liaisons hydrogène O-H...O et O-H...N, comprises entre 1,76 Å et 2,19 (4) Å, associent les molécules d'eau et les cations. Dans ce cas, les molécules d'eau jouent en même temps le rôle de donneur et d'accepteur de liaison hydrogène (Tableau I.2).

D-HA	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
N1H1O3 ⁱⁱ	0.86	1.91	2.701(2)	153
O1WH1WO1	0.78(4)	2.05(4)	2.816(2)	167(4)
O2H2O1W ⁱ	0.82	1.76	2.553(2)	162
O1WH2WN2 ^{vi}	0.81(4)	2.19(4)	2.992(2)	170(4)
N3H3O3 ⁱⁱⁱ	0.86	1.80	2.650(2)	172
N4H4AO4 ^v	0.86	2.827(2)	2.827(2)	133
N4H4BO4 ^{iv}	0.86	2.923(2)	2.923(2)	173

Tableau I. 2. Liaisons hydrogène formées entre les différentes entités (distances en Å et angles en°) du composéBis (5-amino-3-carboxy-1H-1, 2,4-triazol-4-ium) selenate dehydrate

Codes de symétrie: i) 1/2-x, 1/2+y, 1/2-z; ii) x, 1-y, 1/2+z; iii) x, -1+y, z; iv) -x, -1+y, 1/2-z; v) x, -y, 1/2+z; vi) x, 1-y, -1/2+z.

III.3.5. Graphe set des liaisons hydrogène

Le graphe quantitatif de modèle des liaisons hydrogène de la présente structure a été réalisé à l'aide du programme RPluto [30]. Le graphe unitaire dans cette structure est :

```
N1=D^2_2(5) D^2_2(5) D^2_2(5) D^2_2(5) D^1_1(2) D^1_1(2) D^1_1(2) (Tableau I.3).
```

Les sept liaisons hydrogène indépendantes formées dans ce compose, se combinent deux à deux pour former le graphe binaire dont les motifs sont de formes (D, C et R) et de degrés variés. Les graphes basique et complexe sont $D_2^2(5)$, $R_4^4(16)$, respectivement. Sur la figure I.5, sont illustrés quelques modèles de ces motifs:

	a	b	с	d	e	F	g
a : N3-H3O3 ⁱⁱⁱ	$D_{2}^{2}(5)$						
b : N1-H1O3 ⁱⁱ	$C_{2}^{1}(6)$	$D_{2}^{2}(5)$					
	$R_{4}^{4}(16)$						
c : N4-H4AO4 ^v	$C_{2}^{2}(8)$	$C_{2}^{2}(8)$	$D_{2}^{2}(5)$				
	$R_{4}^{4}(16)$						
d : N4-H4BO4 ^{iv}	$R_{4}^{4}(16)$	$R_{4}^{4}(16)$	$R_{4}^{2}(8)$	$D_{2}^{2}(5)$			
	$R_{2}^{2}(8)$	$C_{2}^{2}(8)$	$C_{2}^{2}(6)$				
e : O2-H2O1W ⁱ	$D_{2}^{2}(8)$	$D_{2}^{2}(9)$	$D_{2}^{2}(10)$	$D_{2}^{2}(10)$	$D_{1}^{1}(2)$		
f: 01W-H1W01	$D_{2}^{2}(7)$	$D_{2}^{2}(8)$	$D_{2}^{2}(9)$	$D_{2}^{2}(9)$	$C_{2}^{2}(6)$	D ¹ ₁ (2)	
g : O1W-H2WN2 ^{vi}	$D_{2}^{2}(6)$	$D_{2}^{2}(5)$	$D_{2}^{2}(7)$	$D_{2}^{2}(7)$	$R_{4}^{4}(14)$	$C_{2}^{2}(7)$	$D_{1}^{1}(2)$

Tableau I. 3. Graphe des liaisons hydrogène dans le compose composé

55 **PARTIE C. Résultats et discussion**

Figure I.5. Quelques motifs du graphe de modèle de liaisons hydrogène présents dan la structure du *BACTSe.*

III.3.6. Géométries des différentes entités

III.3.6.1. Géométries du cation 5-amino-3-carboxy-1H-1, 2,4-triazol-4-ium

La géométrie du cycle triazolinium dans le composé BACTSe est similaire à celle décrite dans des composés analogues [31,32]; il présente une courte distance de 1,299(2) Å révélant le caractère double la liaison C2=N2, deux grandes distances 1,3651(19) Å et 1,3776(19) Å relatives aux liaisons simples C2-N3 et N1-N2 respectivement. Les longueurs des liaisons C3-N1 et C3-N3 sont respectivement 1,341(2) Å et 1,3494(18) Å, ce qui suggère la délocalisation de la double liaison (N1=C3=N3).

Figure I.6. Distances (Å) *et angles* (°) *dans l'entité cationique du composé BACTSe*

III.3.6.2. Géométrie de l'anion du composé BACTSe

La géométrie de l'anion sélénate est représentée sur la figure I.11 ; les distances Se-O appartiennent à l'intervalle 1.6269-1.6492 Å et les angles O-Se-O varient entre 107.95° et 114,20°. L'atome de sélénium, qui occupe une position spéciale sur l'axe binaire, est lié à quatre atomes d'oxygène formant ainsi un tétraèdre régulier en accord avec son hybridation SP³.

Figure I.7. Distances (Å) et angles (°) dans l'entité anionique du composé BACTSe

IV. Etude théorique

IV.1. Détails du calcul théorique

Les calculs ont été effectués par la méthode Hartree-Fock (HF) en utilisant le logiciel gaussien 03W [33]. La géométrie initiale (molécule obtenue à partir de données DRX) a été minimisée sans aucune contrainte au niveau UHF, en adoptant la base 6-311G (d, p). Les fréquences harmoniques, les intensités infrarouge et Raman ont été calculées par la même méthode et la même base utilisées pour l'optimisation c-à-d UHF / 6-311G (d, p) et ont été mises à l'échelle par le facteur 0,9051 [34]. La présence d'une fréquence négative (Tableau I.8 : ANNEXE B1) révèle que le minimum global n'a pas été calculé [35]. Une situation similaire a été observée dans le complexe éthylènediammonium [36] et le complexe mélaminium perchlorate monohydrate [37].

Les calculs des orbitales naturelles de liaison (NBO) [38] ont été effectués à l'aide du programme NBO 3.1, tel que mis en œuvre dans le paquetage Gaussien 03, afin de comprendre les diverses interactions de second ordre entre les orbitales remplies et vacantes des différents sous-systèmes existant dans la molécule étudiée. Le programme GaussView

5.0.8 [39] a été utilisé pour la visualisation des résultats et la réalisation des différentes illustrations.

IV.2. Structure optimisée

La structure optimisée de BACTSe est présentée à la figure I.8. Les longueurs et les angles de liaisons rapportés dans les tableaux 3 et 4 (ANNEXE B1) montrent en général un bon accord entre les paramètres géométriques expérimentaux et théoriques. Les écarts les plus élevés observés entre les longueurs et les angles de liaisons expérimentaux et calculés sont respectivement 0,1171 Å (Se1-O3) et 7,8317° (O4-Se1-O3).

Figure I.8. Structure optimisée du BACTSe calculée par la méthode UHF / 6-311G (d, p).

IV.3. Propriétés thermodynamiques

Les propriétés thermodynamiques et certains paramètres moléculaires du complexe sont répertoriés dans le tableau I.4. L'énergie totale et le moment dipolaire sont respectivement de E= - 3259,3559 a.u et 13,1390 D. Le moment dipolaire élevé révèle la nature ionique du complexe.

Paramètres thermodynamiques (298k)	Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenatedihydrate	
	UHF/6-311G (d.p)	
SCF Énergie (Hartree)	-3259.35598687	
Energie Totale (thermal), E _{total} (kcal mol ⁻¹)	106.152	
Capacité calorifique à volume constant, C_v (cal mol ⁻¹ .k ⁻¹)	55.340	
Entropie, S (cal mol ⁻¹ . K ⁻¹)	137.149	
Energie vibratoire, E _{vib} (Kcal mol ⁻¹)	104.374	
Energie vibratoire à point zéro, E_0 (Kcal mol ⁻¹)	96.07218	
Constantes rotationnelles (GHz)		
Α	0.56470	
В	0.25424	
C	0.18239	
Moment dipolaire (Debye)		
μ _x	11.2497	
μ _y	6.7118	
μ _z	1.0141	
μ_{Total}	13.1390	
Densité électronique totale (TD)	$\pm 5.8e \text{ x}10^{-2}$	
Potentiel électrostatique (ESP)	$\pm 3.56 \text{ x} 10^{-2}$	
ELUMO	-10.93eV	
ЕНОМО	2.09eV	
ELUMO-HOMO	13.02eV	

Tableau I.4. Paramètres thermodynamiques calculés de BACTSe.

IV.4. Distributions des charges atomiques

La répartition de la charge sur les atomes affecte nombreuses propriétés des structures moléculaires, telles que le moment dipolaire, la polarisabilité et la structure électronique [40].

De plus, la charge atomique a été utilisée pour décrire certains processus de réactions chimiques comme l'égalisation de l'électronégativité et le transfert de charge [41,42]. Les charges de Mulliken et les charges naturelles calculées par la méthode NBO au niveau UHF / 6-311G (d, p) sont rassemblées dans le tableau B1.6 (ANNEXE B1) et présentées dans la figure I.9.

Figure 1.9. Comparaison des charges atomiques de Mulliken et naturelles du BACTSe

Parmi les atomes de carbone, l'atome C16 a la plus grande charge positive de Mulliken de 0,819794. La forte charge positive présente sur l'atome C16 est due à l'effet des trois atomes d'azote négatifs qui lui sont attachés : N6, N8 et N13 avec une charge de -0,540747, -0,369597 et -0,612711, respectivement. Les atomes d'oxygène 02 et 04 de l'anion sélénate sont les plus négatifs parmi les atomes d'oxygène avec des charges de -0,781638 et de -0,768436, respectivement. Tous les atomes d'hydrogène ont une charge positive comprise entre 0,260568 (atome H14) et 0,400537 (atome H7). La présence de charges négatives élevées sur les atomes d'oxygène et d'azote et la charge positive sur les atomes d'hydrogène confirment la présence de liaisons hydrogène intermoléculaires (N-H... O, O-H... N et O-H... O) dans la structure cristalline du présent composé.

Les charges NBO élucident plus clairement l'effet de l'environnement du carbone C11 sur sa charge. La diminution de la densité électronique sur cet atome (charge naturelle positive de 0,92559) est due au caractère attracteur d'électrons des atomes d'oxygène liés à ce carbone, à savoir les atomes O10 et O18.

IV.5. Analyse des orbitales naturelles de liaisons (NBO)

L'analyse NBO constitue une méthode efficace d'étude de la liaison et de l'interaction entre liaisons intra et intermoléculaires, et fournit également une base pratique pour l'étude du transfert de charge ou des interactions conjugatives dans le système moléculaire [43]. Plus la valeur E^2 est grande, plus l'interaction entre les donneurs et les accepteurs d'électrons est intense; et plus l'étendue de la conjugaison de l'ensemble du système est grande.

Dans le présent composé, différents types d'interactions donneur-accepteur sont observés, les interactions sélectionnées sont données dans le tableau B1.7 (ANNEXE B1). Au sein de l'anion SeO₄⁻², les interactions les plus fortes sont observées entre les doublets libres d'oxygène n_{O4} et n_{O5} et de l'orbitale σ^*_{Se1-O3} avec des énergies de 15,72 et 20,06 Kcal / mol, respectivement. Dans les cations C₃H₅N₄O₂⁺, des interactions de transfert de charge n $\rightarrow \pi^*$ et n $\rightarrow \sigma^*$ ont été observées ; les énergies des interactions hyperconjuguées no $\rightarrow \pi^*_{C-O}$, n_N $\rightarrow \pi^*_{C-N}$, n_O $\rightarrow \sigma^*_{C-O}$ et n_O $\rightarrow \sigma^*_{C-O}$ varient entre 19,11 et 33,47 kcal / mol. En outre, différents types d'interactions hyperconjugatées $\pi \rightarrow \pi^*$ renforcent la stabilité de tout le cation : ($\pi_{N-C} \rightarrow \pi^*_{O-C}$ et $\pi_{O-C} \rightarrow \pi^*_{N-C}$ avec des énergies de stabilisation comprises entre 2,69 et 6,49 Kcal / mol).

IV.6. Potentiel électrostatique moléculaire MEP

La surface du potentiel électrostatique moléculaire (MEP) fournit une méthode visuelle pour comprendre la polarité relative des composés [44]. Le MEP a été principalement utilisé pour prédire les sites et la réactivité relative face aux attaques électrophiles et nucléophiles, et dans l'étude des interactions de liaison hydrogène [45-47]. La surface MEP est une illustration 3D de la distribution de charge dans une molécule où la zone riche en électrons et partiellement négative est représentée en rouge, la région bleue révèle la charge partiellement positive et déficiente en électrons, la région bleue claire montre une région légèrement déficiente en électrons, la région légèrement riche en électrons est indiquée par le jaune et la couleur verte montre la région neutre (potentiel nul) [48]. La surface du MEP, le potentiel électrostatique (ESP) et le contour du potentiel électrostatique du composé étudié, calculés avec la méthode UHF au niveau 6-311G (d, p) sont illustrés sur les Figures I.11- I.12. On voit que la région autour des atomes d'oxygène (liés à l'atome de sélénium) représente le potentiel le plus négatif. Les atomes d'hydrogène du groupe carboxyle et de la molécule d'eau portent le potentiel le plus positif. La densité électronique totale et le potentiel électrostatique du complexe sont compris entre $\pm 5,8e \times 10^{-2}$ et $\pm 3,56e \times 10^{-2}$, respectivement.

Figure I.10. La densité totale cartographiée avec la surface électrostatique potentielle du BACTSe

Figure I.11.La surface du potentiel électrostatique (ESP) du BACTSe

Figure I.12. La carte de contour du potentiel électrostatique du BACTSe

IV.7. Analyse des orbitales frontières (HOMO-LUMO)

Les orbitales moléculaires frontières jouent un rôle important dans les propriétés électriques et optiques et dans les réactions chimiques [49,50] L'énergie de la HOMO et de la LUMO est liée au caractère nucléophile et électrophile de sorte que le fort nucléophile a une faible énergie HOMO et que le fort électrophile a une haute énergie LUMO [49]. Le gap énergétique entre les orbitales frontières est associé à des propriétés telles que la réactivité moléculaire et la stabilité cinétique [51]. Afin d'évaluer le comportement énergétique du composé étudié, nous avons effectué les calculs par la méthode UHF / 6-311G (d, p). La HOMO et la LUMO sont présentés à la figure I.13. Les énergies des orbitales HOMO, LUMO sont respectivement de -10,93eV et 2,09eV. La LUMO est totalement localisé sur l'entité cationique, alors qu'une petite contribution de l'anion sélénate est observée dans la HOMO. L'écart d'énergie entre LUMO et HOMO est de 13,02 eV, ce qui implique une stabilité cinétique élevée et une faible réactivité chimique car il est énergiquement défavorable d'ajouter des électrons dans la LUMO ou d'extraire des électrons de la HOMO [52].

Figure I.13. Orbitales moléculaires frontières du BACTSe

IV.8. Spectre de densité des états

En plus des niveaux d'énergie HOMO-LUMO, dans la région frontière, les orbitales voisines peuvent montrer des niveaux d'énergie quasi-dégénérés [53,54]. Le spectre de densité d'états total est utilisé pour comprendre le comportement moléculaire en termes d'analyse de population de Mulliken. Le spectre de densité du BACTSe (FigureI.14) a été calculé et créé en combinant les informations orbitales moléculaires avec des courbes gaussiennes utilisant le programme Gauss sum 2.2 [55].

Le spectre DOS donne la représentation imagée de MO (Orbitale Moléculaire) compositions et leurs contributions à la liaison chimique à travers les charges positives et négatives. En général, la valeur positive du DOS indique une interaction liante, la valeur négative signifie qu'il existe une interaction anti-liante et la valeur zéro, une interaction non liante [56]. Dans la présente étude, une valeur négative indique une interaction anti-liante entre les molécules.

Figure I.14.Spectre DOS de BACTSe

V. Spectroscopie IR et Raman

Les spectres FT-IR et FT-Raman enregistrés du BACTSe sont représentés sur les figures I.15 et I.16, respectivement. Les nombres d'ondes observés FT-IR et FT-Raman, les nombres d'onde calculés, les intensités relatives des pics calculés et les attributions des vibrations fondamentales sont présentées dans le tableau B1.8 (ANNEXE B1). Les bandes observées proviennent des vibrations internes du cation 5-amino-3-carboxy-1H-1, 2,4-triazol-4-ium, de l'anion sélénate, de la molécule d'eau, les vibrations des liaisons hydrogène de types N-H...O, O-H...O et O-H...N et également des vibrations du réseau. Les attributions des bandes vibratoires ont été effectuées à l'aide du programme de visualisation moléculaire GaussView [57] et de données bibliographiques.

V.1. Vibrations de l'anion SeO_4^{-2}

Dans la symétrie du groupe T_d , l'analyse vibratoire d'un anion SeO_4^{2-} isolé conduit à quatre modes normaux fondamentaux: le mode non dégénéré $v_1(A_1)$, le mode doublement dégénéré $v_2(E)$ et le triplement dégénéré $v_3(F_2)$ et $v_4(F_2)$ avec nombre d'onde moyen de 835, 345, 873 et 413 cm⁻¹, respectivement. v_2 et v_4 impliquent les modes de déformation symétrique et asymétrique des liaisons O-Se-O, tandis que v_1 et v_3 impliquent principalement des modes d'élongation symétrique et asymétrique de Se-O. Sous l'effet de son interaction avec son environnement cristallin, l'ion sélénate peut perdre sa symétrie et la dégénérescence de ses modes vibratoires devrait alors être déplacée [16,18, 58,59].

Dans le composé étudié, la bande moyenne due au mode d'élongation asymétrique des liaisons Se-O (v_3 (SeO₄)) est observée à 894 cm⁻¹ dans le spectre infrarouge ; son équivalente se manifeste par une bande faible à 861 cm⁻¹ dans le spectre Raman (Figures I.15, I.16). La bande d'épaule ainsi que la bande faible observée dans les spectres IR et Raman à 436 et 413 cm⁻¹, respectivement, sont affectées aux vibrations de flexion asymétriques v₄ (SeO₄). La bande faible observée dans le spectre Raman à 372 cm⁻¹ est attribuée aux vibrations de flexion symétriques v₂ (SeO₄).

V.2. Vibrations de la molécule d'eau

Dans le composé étudié, la molécule d'eau participe à trois liaisons hydrogène différentes (Tableau I.2); par conséquent, la position des bandes infrarouges des molécules d'eau est décalée par rapport à celle de la molécule isolée [18]. En outre, les bandes qui

peuvent résulté des vibrations d'élongation de la molécule d'eau dans cette structure se situent dans la région dans laquelle se produisent les bandes d'élongation du type NH₂. Donc, dans ce cas il est impossible d'extraire les bandes appropriées dans le spectre infrarouge. Leurs homologues dans le spectre Raman ne sont pas observés en raison de la réponse insuffisante du détecteur au-dessus de 3300 cm⁻¹[59]. Dans les spectres IR et Raman calculés, les bandes associées à $v_{asy}(H_2O)$ et $v_{sy}(H_2O)$ sont observées à 3774 et 3692 cm⁻¹ (TableauB1.8: ANNEXE B1). Toutefois, la présence de la molécule d'eau se manifeste par la bande forte observée dans le spectre infrarouge à 1559 cm⁻¹ (vibration de flexion dans le plan $\delta(H_2O)$) et des bandes moyennes à fortes situées à 623 et 460 cm⁻¹ (vibration de flexion hors du plan $\gamma(H_2O)$) [59].

V.3. Vibrations du cation $(C_3H_5N_4O_2)^+$

V.3.1. Vibration du groupe amino (-NH₂)

Les bandes associées aux modes d'élongation asymétrique ($v_{asy}(NH_2)$) et symétrique ($v_{sy}(NH_2)$) du groupe amino sont observés dans le spectre IR sous forme de deux bandes très faibles à environ 3409 et 3303 cm⁻¹, respectivement. Le mode symétrique de flexion dans le plan ($\delta_{sy}(NH_2)$) est identifié par une bande forte située à 1625 cm⁻¹ dans le spectre IR et une bande très faible située à 1636 dans le spectre Raman. Les bandes fortes et moyennes observées à 1047 et 1073 cm⁻¹ dans les spectres infrarouge et Raman, respectivement, peut être affecté au mode asymétrique de flexion dans le plan ($\delta_{asy}(NH_2)$). La forte bande à 688 cm⁻¹ en IR et la faible bande à 733 cm⁻¹ du spectre Raman sont affectés aux modes hors du plan [18, 59, 60,61].

V.3.2. Vibration du cycle (1H-1.2.4 triazole-4-ium)

Les pics IR très faibles et moyens à 3400 et 2980 cm⁻¹ sont attribués aux vibrations d'élongation N-H. Les bandes à 1418 et 1247 cm⁻¹ dans le spectre IR et 1236 cm⁻¹ dans le spectre Raman sont attribuées au mode de flexion en plan N-H. Les bandes à 924 et 688 cm⁻¹ dans le spectre IR et à 912 cm⁻¹ dans le spectre Raman sont attribuées au mode de flexion N-H hors plan [64]. La bande observée en tant que bande moyenne située à 1418 cm⁻¹ dans le spectre IR est attribuée au mode de flexion en plan de la liaison C-C [65]. Les bandes dans le spectre infrarouge et Raman, observées à 819 et 818 cm⁻¹ en tant que bandes moyennes, sont attribuées au mode de flexion C-C hors plan [58, 59,62].

V.3.3. Vibration du groupe carboxyle (-COOH)

La bande faible à 3163 cm⁻¹ dans le spectre IR du présent composé représente la vibration d'élongation symétrique O-H. La bande d'absorption résultant de la vibration d'élongation C=O est observée aux nombres d'ondes 1684 cm⁻¹ en IR et 1689 cm⁻¹ en Raman. La bande résultant de la flexion en plan O-H apparaît à 1356 cm⁻¹ en IR et à 1350 cm⁻¹ en Raman. La bande correspondant à la flexion O-H hors plan est représentée par une bande forte à 777 cm⁻¹ en IR. Les vibrations restantes du groupe carboxylique à savoir les vibrations de flexion du groupe C=O et les vibrations d'élongation et de flexion du groupe C-O sont présentées dans le tableau B1.8 (ANNEXE B1) élongation [63, 62-65].

Figure I.15. Spectre FT-IR du BACTSe

Figure I.16. Spectre FT-Raman du BACTSe

VI. Conclusion

Le présent chapitre est consacré au nouveau composé bis (5-amino-3-carboxy-1*H*-1, 2,4-triazol-4-ium) selenate dihydrate. L'étude par diffraction des rayons X, réalisée sur monocristal développé par évaporation lente, a montré la similitude de la structure actuelle avec celle obtenue avec l'anion sulfate. Les spectres IR et Raman du BACTSe ont été enregistrés et les bandes dérivées des vibrations internes du cation 5-amino-3-carboxy-1H-1, 2,4-triazol-4-ium, l'anion sélénate et la molécule d'eau ont été attribuées sur la base des calculs ab initio UHF/6-311G (d, p) ainsi que par comparaison avec les études rapportées précédemment sur des composés similaires. En outre, les calculs ont révélé la nature ionique de ce complexe ainsi que sa grande stabilité cinétique et sa faible réactivité chimique, comme le montrent respectivement le moment dipolaire et le gap énergétique HOMO-LUMO élevés. La partie réactive de la molécule synthétisée est établie par le potentiel électrostatique moléculaire. Le spectre de densité totale indique la présence d'une interaction anti-liante entre les molécules.

Références

- T. Hirota, K. Sasaki, H. Yamamoto, T. Nakayama, J. Heterocycl. Chem. 28 (1991)257-261.
- [2] K. P. Bhargava, M. Tandon, T. N. Bhalla, J. P. Barthwal, *Indian J. Chem. (Sect.B20)* (1981) 1017-1018.
- [3] W. Li, Q. Wu, Y. Ye, M. Luo, L. Hu, Y. Gu, F. Niu, J. Hu, Spectrochim. Acta (PartA60) (2004) 2343-2354.
- [4] U. Beckmann, S. Brooker, Coord. Chem. Rev. 245 (2003) 17-29.
- [5] T. Fujigaya, J. J. Dong-Lin, T. Aida, J. Am. Chem. Soc. 125 (2003) 14690-14691.
- [6] I. Matulkov_a, I. Nemec, K. Teubner, P. Nemec, Z. Micka, J. Mol. Struct. 873 (2008) 4660.
- [7] J. Baran, T. Lis, Acta Crystallogr. (Sect. C42) (1986) 270-272.
- [8] J. Baran, A. J. Barnes, M. K. Marchewka, A. Pietraszko, H. Ratajczak, J. Mol. Struct.416 (1997) 33-42.
- [9] D. Havlicek, J. Plocek, I. Nemec, R. Gyepes, Z. Micka, J. Solid State Chem. 150(2000) 305-315.
- [10] J. Przesławski, R. Lingard, Z. Czapla, Ferroelectr. Lett. 20 (1996) 131-135.
- [11] I. Nemec, Z. Micka, J. Mol. Struct. 563-564 (2001) 289-294.
- [12] J. Lorenc, I. Bryndal, M. Marchewka, E. Kucharska, T. Lis, J. Hanuza, J. Raman Spectrosc. 39 (2008) 863-872.
- [13] G. Mugesh, W.W. du Mont, H. Sies, Chem. Rev. 101 (2001) 2125-2179.
- [14] C. Ben hassen, M. Boujelbene, M. Bahri, N. Zouari, T. Mhiri, J. Mol. Struct. 1074(2014) 602-608.
- [15] W. Maalej, A. Ben Rached, T. Mhiri, A. Daoud, N. Zouari, Z. Elaoud, J. Phys. Chem. Solid. 96-97 (2016) 92-99.
- [16] Y. Kessentini, A. Ben Ahmed, Z. Elaoud, S.S. Aljuaid, T. Mhiri, *Spectrochim. Acta (Part A 98) (2012) 222-228.*
- [17] S. Thirunarayanan, V. Arjunan, M.K. Marchewka, S. Mohan, Y. Atalay, J. Mol. Struct. 1107 (2016) 220-230.
- [18] C. Ben Hassen, M. Boujelbene, T. Mhiri, J. Mol. Struct. 1079 (2015) 147-154.
- [19] S. Thirunarayanan, V. Arjunan, M.K. Marchewka, S. Mohan, J. Mol. Struct. 1134(2017) 6-16.
- [20] V. Arjunan, S. Thirunarayanan, M.K. Marchewka, S. Mohan, J. Mol. Struct. 1145(2017) 211-221.
- [21] D. J. Hassett, G. J. McCarthy, P. Kumarathasan, D. Pflughoeft Hassett, Mater. Res. Bull. 25 (1990) 1347-1354.
- [22] G. M. Sheldrick, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA), (2002).
- [23] L. J. Farrugia, J. Appl. Crystallogr. 45 (2012) 849-854.
- [24] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crysallogr. 38 (2005) 381-388.
- [25] G.M. Sheldrick, Acta Crystallogr. (Sect. A64) (2008) 112-122.
- [26] C. Ben hassen, M. Boujelbene, M. Bahri, N. Zouari, T. Mhiri, J. Mol. Struct. 1074 (2014) 602-608.

- [27] S. Thirunarayanan, V. Arjunan, M.K. Marchewka, S. Mohan, Y. Atalay, J. Mol.Struct. 1107 (2016) 220-230.
- [28] S. Thirunarayanan, V. Arjunan, M.K. Marchewka, S. Mohan, J. Mol. Struct. 1134 (2017) 6-16.
- [29] H. F. Erfany, H. Fuess, D. Gregson, Acta Crystallogr. (Sect. C43) (1987) 395-397.
- [30] htt:// francais. softpicks/download/RPluto_fr-322752.htm
- [31] A. Ouakkaf, F. Berrah, S. Bouacida, T. Roisnel, Acta Crystallogr. (Sect. E67) (2011) 01171-01172.
- [32] J. A. Fernandes, B. Liu, J. P. C. Tome, L. Cunha-Silva, P. F. A. Almeida, *Acta Crystallogr. (Sect. E 67) (2011) 02073-02074.*
- [33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, CT, (2004).
- [34] H. B. Schlegel, J. Comput. Chem. 3 (1982) 214-218.
- [35] L. Piela, Ideas of Quantum Chemistry, first Ed: Elsevier, (2007).
- [36] M. K. Marchewka, M. Drozd, Spectrochim. Acta (Part A99) (2012) 223-233.
- [37] N. Kanagathara, M. K. Marchewka, M. Drozd, N.G. Renganathan, S. Gunasekaran, G. Anbalagan, *Spectrochim. Acta (Part A112) (2013) 343-350.*
- [38] J. B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, (1996).
- [39] R. D. Dennington, T. A. Keith, J. M. Millam, GaussView 5.0.8, Inc., (2008).
- [40] I. Sidir, Y. G. Sidir, M. Kumalar, E. Tasal, J. Mol. Struct. 964 (2010) 134-151.
- [41] K. Jug, Z. B. Maksic, Ed : Z. B. Maksic, Theoretical Model of Chemical Bonding, Springer, Berlin, *Part 3*, (1991) 29-233.
- [42] S. Fliszar. Charge Distributions and Chemical Effects, Springer-Verlag, New York, (1983).
- [43] M. Snehalatha, C. Ravikumar, I. H. Joe, N. Sekar, V. S. Jayakumar, *Spectrochim. Acta* (*Part A72*) (2009) 654-662.
- [44] J. M. Seminario, Recent Developments and Applications of Modern Density Functional Theory, *4*(1996)3-838.
- [45] E. Scrocco, J. Tomasi, Adv. Quant. Chem. 11 (1978) 115-193.
- [46] F. J. Luque, J. M. Lopez, M. Orozco, Theor. Chem. Acc. 103 (2000) 343-345.

- [47] N. Okulik, A. H. Jubert, Int. Elect, J. Mol. Des 4 (2005) 17-30.
- [48] P. Politzer, J. S. Murray, Theor. Chem. Acc. 108 (2002) 134-142.
- [49] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, (1976)5-27.
- [50] T. Karakurtm, M. Dincer, A. Cetin, M. Sekera, Spectrochim. Acta (Part A 77) (2010)189.
- [51] L. X. Hong, L. X. Ru, Z. X. Zhou, Comput. Theor. Chem. 969 (2011) 27-34.
- [52] R. M. Yosadara, J. Phys. Chem. A106 (2002) 11283-11308.
- [53] R. Hoffmann. Solids and Surfaces: a Chemist's View of Bonding in Extended Structures, VCH Publishers, New York, (1988).
- [54] J. G. Małecki, Polyhedron 29 (2010) 1973-1979.
- [55] N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem. 29 (2008)839-845.
- [56] M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, J. Chem. Phys. 109 (1998)6854.
- [57] R. D. Dennington, T. A. Keith, J. M. Millam, GaussView 5.0.8, Inc., (2008).
- [58] M. Daszkiewicz, M. K. Marchewk, Vib. Spectrosc. 57 (2011) 326-333.
- [59] M. K. Marchewka, J. Janczak, S. Debrus, J. Barana, H. Ratajczak, Solid State Sci. 5 (2003) 643-652.
- [60] B. B. Koleva, T. Kolev, T. Tsanev, S. Kotov, H. M. Figge, R. W. Seidel, W. S. Sheldrick, J. Mol. Struct. 881 (2008) 146-155.
- [61] V. Sangeetha, M. Govindarajan, N. Kanagathara, M. K. Marchewka, S. Gunasekaran, G. Anbalagan, J. Spectrochim. Acta (Part A118) (2014)1025-1037.
- [64] V. Arjunan, M. Kalaivani, M. K. Marchewka, S. Mohan, Spectrochim. Acta (Part A 107) (2013) 90-101.
- [63] A. Direm, A. Altomare, A. Moliterni, N. Benali-Cherif, Acta Crystallogr. (Sect. B71) (2015) 427-436.
- [64] M. K. Marchewka, A. Pietraszko, J. Phys. Chem. Solid. 64 (2003) 2169-2181.
- [65] M. Ilczyszyn, D. Godzisz, M.M. Ilczyszyn, Spectrochim. Acta (Part A59) (2003) 1815-1828.

CHAPITRE II

P-phenylenediammonium dinitrate

\mathbf{Et}

P-phenylenediammonium di (trichloroacetate)

1.5hydrate

I. Introduction

Ces dernières années, un nombre important de matériaux hybrides organiquesinorganiques a été préparé et caractérisé. Bien que de nombreux types de molécules organiques différentes aient été utilisés comme modèles, les amines et les diamines ont été reconnues comme des éléments de base très importants dans la synthèse de matériaux hybrides [1]. La para-phénylènediamine (PPD) est un réactif populaire en chimie organique et en chimie de coordination; avec deux groupes polaires cationiques connectés en position para du cycle benzénique, la PPD pourrait former de fortes liaisons hydrogène et / ou des interactions électrostatiques avec des entités anioniques [2].

Une littérature abondante est consacrée aux structures cristallines et aux propriétés des matériaux hybrides organiques et organiques-inorganiques à base de la PPD ou de ses dérivés [3-8]. Récemment, G. Xing et al. Ont signalé un nouveau sel organique poreux cristallin, à conductivité protonique élevée, formé par interaction entre la PPD et des acides organiques [9]. La p-phénylènediamine et ses isomères ortho et méta ont été utilisés par A. G. Guillen et al. Pour synthétiser une nouvelle famille de matériaux en couches hybrides organiquesinorganiques; cette étude a montré que les trois isomères de la phénylènediamine agissent en tant qu'agents dirigeant de la structure [1]. R. Fezai et al. Ont étudié les propriétés électriques l'activité antioxydante sel hexahydraté (p-phénylendiammonium) du de tri et cyclohexaphosphate [10].

La préparation, la caractérisation et la thermolyse des sels du dinitrate de phénylènediammonium ont été rapportées par *Kapoor et al.* [11] ; cependant, une recherche dans la base de données structurelle de Cambridge (CSD [12]) a révélée qu'il n'y avait pas de structure associée au dinitrate du p-phénylènediammonium. Les seules structures cristallines rapportées concernaient le dinitrate d'o-phénylènediammonium [11], le dinitrate de m-phénylènediammonium et sa forme hydratée [11, 13].

Dans ce chapitre, nous avons étudié la synthèse et la caractérisation structurale par DRX sur monocristal de deux nouveaux composés hybrides obtenus à partir de la même entité cationique c-à-d la p-phénylènediammonium et de deux acides minéraux différents à savoir l'acide nitrique et l'acide trichloroacétique.

✓ La réaction entre la p-phénylènediamine et l'acide nitrique, a donné le composé *p*phenylenediammonium dinitrate de formule (C₃H₅N)⁺, 2(NO₃)⁻ noté (I). ✓ La réaction entre la p-phénylènediamine et l'acide trichloriacetique a donné le composé *p-phenylenediammonium di (trichloroacetate) 1.5 hydrate* (C₆H₁₀N₂)²⁺, 2(C₂Cl₃O₂)⁻, 1.5 (H₂ O) noté (II).

Ce chapitre traite également l'analyse de la surface de Hirshfeld des contacts interatomiques, l'analyse spectrale infrarouge et Raman et l'analyse thermique des deux composés.

II. Synthèse

Le composé (I) a été obtenu par addition goutte à goutte de l'acide nitrique à une solution aqueuse de la p-phénylèndiamine. La solution résultante a été agitée pendant quelques minutes puis laissée s'évaporer lentement à la température ambiante. Après plusieurs jours, des monocristaux transparents incolores de (I) ont été recueillis et séchés à l'air. Un processus similaire a été utilisé pour obtenir des monocristaux du composé (II), en mélangeant de la PPD avec de l'acide trichloroacétique (SchémaII.1).

Schéma II.1. Synthèse des sels (I) et (II)

III. Etude cristallographique

III.1. Enregistrement des intensités de diffraction des rayons X

Les données de l'enregistrement DRX ont été recueillies avec le même diffractomètre et dans les mêmes conditions que la structure du chapitre précédant sauf pour le domaine angulaire en θ qui a été de 1.1-26.37 et 3.13-38.22° pour les composés (*I*) et (*II*), respectivement.

III.2. Résolution et affinement de la structure

La résolution et l'affinement des deux structures (I) et (II) ont été effectués suivant la même procédure adoptée pour la structure du composé BACTSe (Chapitre I). Mais comme

ces deux structures présentent du désordre (quatre atomes de carbone du cycle aromatique dans (I) et une molécule d'eau dans (II)) l'occupation des différents sites désordonnés a été fixée à 0,5. Les détails de l'affinement et les données cristallographiques des deux structures sont répertoriés dans le tableau II.1. Aussi, les coordonnées atomiques, les facteurs d'agitation thermiques et les propriétés géométriques obtenus à l'issue de l'affinement sont consignés dans les tableaux (1, 2, 3,4 et 5) (ANNEXE B2 et B3).

Données cristallographiques					
Composé (I) Composé (II)					
Formule chimique	$(C_3 H_5 N)^{2+}, 2(NO_3)^{-}$	(C ₆ H ₁₀ N ₂), 2(C ₂ Cl ₃ O ₂) ,1.5 (H ₂ O)			
Formula de poids	234	461.92			
Système cristallin	Orthorhombique	Monoclinic			
Paramètres de maille	0.03x0.02x0.01	0.03x 0.02x0.01			
Forme et couleur	colorless	colorless			
Groupe d'espace	Pbcm	$P_1 21/a_1$			
a/A°	5.0288(12)	11.432(5)			
b/A°	10.637(2)	13.014(5)			
c/A°	37.162(8)	12.857(5)			
α/°	90	90			
β/°	90	104.805(5)			
γ/°	90	90			
Volume/A° ³	1988.0(7)	1849.3(13)			
Z	8	4			
$\rho_{calc}(g/cm^3)$	1.565	1.659			
$\mu (\text{mm}^{-1})$	0.14	0.954			
F(000)	976	932			
	Conditions d'enregistreme	nt			
R(int)	0.0553	0.0335			
θ	1.1-26.37	3.13-38.22			
Réflexions mesurées	18713	33669			
Reflections independents	2031	10083			
Reflections with $I > 2\sigma(I)$	1539	5091			
Affinement					
Nombre de Paramètres affinés	183	231			
$\Delta \rho_{max} / \Delta \rho_{min} (e^{\circ 3})$	0.362/-0.332	0.648/-0.517			
Goodness-of-fit on F2	1.171	1.004			
R [$F^2 > 2\sigma(F^2)$]	0.0709	0.0473			
$wR(F^2)$	0.2027	0.1325			

Tableau II.1. Données cristallographiques et paramètres de l'affinement des sels de PPD (I) et (II).

III.3. Propriétés structurale des composés (I) et (II)

L'étude comparative effectuée entre les composés : p-phenylenediammonium dinitrate et p-phenylenediammonium di (trichloroacetate) 1.5 hydrate fait ressortir que les deux composés cristallisent dans des groupes d'espace différents (Tableau II.1).

III.3.1. Unités asymétriques

L'unité asymétrique de la structure du composé (**I**) est constituée de deux demi-cations de p-phénylènediamonium (H_2PPD^{2+}), l'un situé près du centre d'inversion (cation A) et l'autre proche du miroir (cation B), en plus de deux anions nitrates symétriquement indépendants en positions générales (Figure II.1. (a)). La jonction entre ces entités est assurée par des liaisons hydrogène intermoléculaires moyennes et faibles. Pour le composés (**II**), l'unité asymétrique est constituée de deux moitiés de cations (H_2PPD^{2+}) centrosymétriques, deux anions trichloroacétate et d'une molécule et un demi d'eau en position générale (Figure II.1. (b)).

Figure II.1. Vue ORTEP des unités asymétriques des composés (I) (a) et (II) (b) avec schéma de

numérotation atomique.

III.3.2. Protonation

Dans les deux composés, le cation possède deux sites principaux accessibles à la protonation en milieu acide qui sont les deux atomes d'azote (Figure II.2).

Dans la structure p-phénylènediamine et son dihydrate, *Czapiket al.* [14] ont rapporté que les angles de liaison endocycliques sur les atomes de carbone liés aux atomes d'azote sont significativement plus petites que 120° (117.57(10) °-118.17(11) °) ce qui est compatible avec le caractère électro-attracteur du groupe amino et les longueurs de liaison C-N sont dans la gamme de 1.4065(13)-1.4182(14) Å (Tableau II.2).

Dans les composées (I) et (II), les angles et distances apparentés sont visiblement plus grands (Tableaux B2.3, B2.4, B3.3 et B3.4 : ANNEXE B2 et B3) et (Tableaux B4.1 et B4.2 : ANNEXE B4) ce qui reflète la protonation des deux groupes amino liés au cycle aromatique. Cela a été également observé avec d'autres sels de transfert de protons à base de PPD (Tableau II.2) [14-17].

Figure II.2. Les deux sites de protonation du cation para-phénélèndiamine

 Tableau II.2. Angles de liaison endocycliques et longueurs de liaison C-N dans la p-phénylènediamine et dans certains de ses sels de transfert de proton.

Composée	Angle de liaison	Longueur de liaison
	endocyclique (°)	C-N (Å)
P-Phenylendiamine [14]	117.57(10)-118.04(10)	1.4065(13)-1.4151(14)
P-Phenylendiaminedehydrate [14]	118.17(11)	1.4182(14)
Tri(p-phenylendiammonium)	121.1(3)-121.2(3)	1.455(4)-1.463(4)
cyclohexaphosphatehexahydrate [10]		
P-Phenylenediammoniumdiperchlorate [16]	119.0(7)-124.9(6)	1.440(10)-1.478(11)
P- Phenylendiammoniumbis(trifluoroacetate) [17]	122.1(3)	1.472(4)

Tableau II.3. Longueurs de liaison sélectionnées (Å) et angles (°) pour les composés (I) et (II).

	Longueur de liaison		Longueur d'angle	
Composé (I)	N1A-C1A	1.461(3)	C12A-C1A-C14A	121.1(4)
			C13A-C1A-C11A	121.4(4)
	N1B-C1B	1.462(3)	C11B-C1B-C13B	121.4(4)
			C14B-C1B-C12B	121.4(4)
Composé (II)	N1A-C4A	1.4661(18)	C5A-C4A-C3A	121.90(13)
	N1B-C4B	1.4608(18)	C3B-C4B-C5B	121.26(13)

III.3.3. Description des structures (I) et (II)

L'empilement cristallin de la structure (I) est formé par des couches formées à partir de chaines cationiques emprisonnant entre elles des anions.

Les quatre atomes de carbone (C11, C12, C13 et C14) des cycles aromatiques (A et B) du composé (I) sont désordonnés sur deux positions (les configurations (1 et 2) position 1, et les configurations (3 et 4) position 2) avec une demi-occupation. Par conséquent, quatre configurations relatives des cycles aromatiques sont observées et réparties de manière aléatoire dans la structure cristalline de (I), comme indiqué par les projections dans le plan (101) (Figure II.3).

Le réseau tridimensionnel de cette structure peut être décrit comme une succession le long de l'axe *c* de blocs tridimensionnels formés par des chaînes cationiques infinies $H_2PPD_2^+$ empilées parallèlement et maintenues ensemble par des anions NO_3^- , générant des canaux assez importants de diamètres supérieurs à 5Å. Les canaux de deux blocs successifs sont parallèles dans les cas des configurations 3 et 4 et perpendiculaires dans le cas des configurations 1 et 2 (Figure II.3).

Dans la structure cristalline de (II), des couches hydrophiles et hydrophobes sont formées parallèlement au plan (110) et se propagent alternativement le long de l'axe c (Figure II.4). Les groupes carboxyliques des anions trichloroacétate sont orientés vers les couches hydrophiles tandis que ses atomes de chlore sont relativement inclinés dans la direction des couches hydrophobes.

Config. 1. Obtenu avec des atomes (C11A, C13A) et (C11B, C13B)

Config. 2. Obtenu avec des atomes (C12A, C14A) et (C12B, C14B)

Config. 3. Obtenu avec des atomes (C11A, C13A) et (C12B, C14B)

p-pnenyleneaiammonium ai (tricnioroaceiate) 1.5nyarate

Config. 4. Obtenu avec des atomes (C12A, C14A) et (C11B, C13B)

Figure II.3. Projections de la structure de (I) suivant l'axe b, illustrant les quatre configurations observées et réparties aléatoirement dans cette structure.

Figure II.4. Tassement de molécules de (II) suivant les axes a et b montrant l'alternance entre les couches hydrophiles et hydrophobes.
III.3.4. Liaisons hydrogène dans les deux composés (I) et (II)

La cohésion et la stabilité des édifices cristallins des deux composé (I) et (II) sont assurées par des liaisons hydrogène intermoléculaires qui sont, en premier lieu dans (I), de type N-H...O et qui sont établies entre les entités cationiques et anioniques : les atomes hydrogène des groupements ammonium (-NH₃⁺) et les atomes d'oxygènes des anions nitrates. D'autres liaisons hydrogène plus faibles de type C-H...O sont également observées (Tableau II.4).

Dans le réseau du composé (**II**), dix groupes de liaisons hydrogène sont repérés : quatre liaisons fortes de type O-H...O formées entre molécules d'eau et entre anion-eau et cinq liaisons moyennes de type N-H...O formées entre cation-eau et cation-anion (Tableau II.4). Autour des couches hydrophiles, un réseau assez complexe de liaisons hydrogène est généré en raison de différents types d'interactions, à savoir NH...O_{anion} (N...O variant de 2,736 (2) Å à 2,846 (2) Å), NH...O_{eau} (N...O distance de 2,784 (2) Å), OH...O_{anion} (O...O distance dans la plage 2,737 (2)-2,904 (4) Å) et OH...O_{eau} (distances O...O variant entre 2,766 (4) Å et 2,783 (5) Å) (Tableau II.4). Contrairement, à l'intérieur des couches hydrophobes, aucune liaison hydrogène n'est détectée et seules les interactions C-Cl... π , dont les distances Cl...Cg comprises entre 3.5664(17) et 3.5690(17) Å, conservent leur cohérence (Tableau II.5).

La richesse de ces liaisons hydrogène n'est pas uniquement liée à leurs forces mais aussi à la diversité des configurations qu'elles adoptent ; ces dernières sont illustrées sur la figure II.5. D'autres part, une vue partielle des réseaux tridimensionnels que forment ces interactions montre que de leur combinaison résultent des anneaux à arrêtes fusionnées de tailles plus au moins importantes : $R_4^6(14)-R_2^1(4)-R_1^2(4)-R_1^2(6)$ et $R_4^4(10)-R_4^5(17)$ identifiés dans (I) et (II), respectivement (Figure II.6).

Composés	D-HA	D-H	НА	D-A	D-HA	Codes de symétrie
	N1A-H1A1O22	0.89	1.91	2.794(3)	176	
(I)	N1A-H1A2012	0.89	2.59	3.047(3)	113	1+x, y, z
	N1A-H1A2O21	0.89	2.11	2.956(4)	158	2-x,-1/2+y, z
	N1A-H1A3O22	0.89	2.53	2.975(3)	112	2-x,-1/2+y, z
	N1A-H1A3O21	0.89	1.99	2.828(4)	157	1-x, -1/2+y, z
	N1B-H1B1O11	0.89	1.98	2.835(4)	160	

Tableau II.4. Distances (Å) et angles (°) des liaisons hydrogène pour les composés (I) et (II).

Étude comparative des deux composés : p-phenylenediammonium dinitrate et p-phenylenediammonium di (trichloroacetate) 1.5hydrate

CHAPITRE II

	N1N-H1B2011	0.89	2.02	2.886(4)	165	1+x, y, z
	N1B-H1B2O12	0.89	2.44	2.967(3)	119	1+x, y, z
	N1B-H1B3O12	0.89	1.92	2.801(3)	169	1-x, 1/2+y, z
	C13B-H13BO11	0.93	2.51	3.188(7)	130	1+x, y, z
	C14A-H14AO21	0.93	2.46	3.156(7)	132	2-x,-1/2+y, z
	N1A-H11AO2A	0.89	1.96	2.846(2)	178	
	N1B-H11BO1W	0.89	0.91	1.785(2)	168	-1/2+x, 1/2-y, z
(II)	O1W-H11WO2W	0.76(4)	2.03(4)	2.765(4)	163(4)	1/2-x, 1/2+y, 1-z
	O1W-H11WO2W	0.76(4)	2.014(4)	2.783(5)	142(3)	¹⁄₂+x, 1/2-y, z
	N1A-H12AO2B	0.89	1.88	2.759(2)	170	¹⁄₂+x, 1/2-y, z
	N1B-H12BO1A	0.89	1.96	2.820(2)	163	¹ / ₂ +x,-1/2+y, 1-z
	O1W-H12WO1B	0.90(4)	1.86(4)	2.737(2)	162(4)	
	N1A-H13AO1A	0.89	1.94	2.823(2)	172	1⁄2+x, 3/2-y, z
	N1B-H13BO1B	0.89	1.86	2.736(2)	169	
	O2W-H21WO2A	0.99(8)	2.23(7)	2.904(4)	125(6)	¹⁄₂-x,-1/2+y, 1-z

Tableau II.5. Paramètres géométriques (Å) des contactes C-Cl... π dans le composé (II)

C-ClCg	d(C-Cl)	d(ClCg)	d(C-Cg)	C-Cl-Cg	Symétrie
C2B-Cl1BCg1	1.7731(16)	3.6564(18)	4.565(3)	109.49(6)	¹ / ₂ -x,-1/2+y, z
C2B-Cl1BCg1	1.7731(16)	3.6564(18)	4.565(3)	109.49(6)	-1/2+x, 1/2-y, z
C2B-Cl3BCg2	1.7706(17)	3.5690(17)	4.250(2)	99.98(5)	¹ / ₂ -x,-1/2+y, 1-z
C2B-Cl3BCg2	1.7706(17)	3.5690(17)	4.250(2)	99.98(5)	¹⁄₂+x, 1/2-y, z

Cg1 et Cg2 sont les centroïdes des anneaux C3A–C5A et C3B–C5B respectivement.

Figure II.6. Vue partielles des réseaux 3-D des liaisons hydrogène illustrant les modèles de motifs qu'elles forment dans les composés (I) (en haut) et (II) (en bas)

III.3.5. Géométries et environnements des entités présentes dans les composés (I) et (II)

Les distances et les angles observés pour toutes les entités qui forment les deux structures étudiées sont en bon accord avec ceux trouvés dans la littérature pour des composés similaires à tableau II.2.

III.3.5.1. Géométries et environnements des cations p-phénylènediammonium

Dans les deux structures (**I**) et (**II**), les atomes de carbone du cycle aromatique et les atomes d'azote ammoniacal se trouvent approximativement dans le même plan (<u>r.m.s.</u> presque nulle comme le montre dans le tableau B4.3 (ANNEXE B4). Les atomes d'hydrogène des deux groupes ammonium adoptent une conformation trans sauf dans le composé (**I**) où la conformation cis est également observée dans le cation B (celui avec un plan de symétrie) (Figure II.7). Les conformères cis et trans de la p-phénylènediamine ont déjà été rapportés par *Noto et al.* [18].

Figure II.7. Conformères trans (les atomes d'hydrogène des deux groupes ammonium sont de deux cotés différents par rapport au plan du cycle aromatique) et cis (les atomes d'hydrogène des deux groupes ammonium sont du même coté par rapport au plan du cycle aromatique) du cation H₂PPD₂⁺.

Comme on le voit sur la figure II.8 l'environnement de chaque cation ne change pas uniquement d'une structure à l'autre, mais on remarque que dans la même structure l'environnemnt des deux cations symétriquement indépendants est visiblement différent. Toutefois, il est à noter que dans les deux structures les cations ne sont entourés que par des anions sauf dans le cas du cation (**B**) du composé (**II**) qui est entouré également de deux molécules d'eau.

CHAPITRE II

(a) : Environnement des deux cations (A) et (B) dans le composé (I)

(b) : Environnement des deux cations (A) et (B) dans le composé (II)
Figure II.8. Environnements des entités cationiques présentes dans les composés (I) et (II).

III.3.5.2. Géométries et environnements des anions

 \blacktriangleright Les anions nitrates : les distances N-O appartiennent à l'intervalle 1.217-1.256Å pour l'anion (1) et 1.222-1.270Å pour l'anion (2), et les angles O-N-O sont aux alentours de 120° pour les deux anions. Chacun des deux anions nitrate symétriquement indépendant est impliqué dans quatre liaisons hydrogène en tant qu'accepteur via deux atomes d'oxygène, tandis que le troisième atome d'oxygène celui avec la distance de liaison N-O la plus courte (O13 et O23)) reste libre. Chaque anion est entouré de trois cation de même type c-à-d de type (A) pour l'anion (1) et de type (B) pour l'anion (2) (Figure II.9).

 $\succ Les anions trichloroacétates : les deux distances C O et l'angle O-C-O sont respectivement 1,2359(19) Å, 1.235(2) Å et 127.26(14) ° pour l'anion ($ **A**); et sont 1.2365(18) Å, 1.2333(19) Å et 127.45(14) ° pour l'anion (**B**). La distance C-C est de 1.567(2) Å et 1.563(2) Å pour l'anion (**A**) et l'anion (**B**), respectivement. Les distances C-Cl varient entre 1.7543(18) Å et 1.7745(18) Å pour l'anion (A); et sont 1.7668(17) Å et 1.7731(16) Å pour

l'anion (B). L'anion trichloroacétate (A) est entouré de trois cations (deux de type (A) et un de type (B)) et une molécule d'eau (O2W) avec lesquels il forme, en tant qu'accepteur via les oxygènes de son groupement carboxylate, quatre liaisons hydrogène. L'anion trichloroacétate (B), quant à lui, possède dans son entourage trois voisins uniquement (deux cations un de type (A) et un de type (B) et une molécule d'eau (O1W)) et forme ainsi trois liaisons hydrogène seulement (Figure II.9).

(a) : Environnement des deux anions dans le composé (I)

(b) : Environnement des deux anions dans le composé (II)

III.3.5.3. Géométries et environnements des molécules d'eau

Le composé (I) est anhydre ; alors que le composé (II) contient une et une demimolécule d'eau : le site de la molécule (O2W) est désordonné et son occupation a été fixée à 50%. Les distances O-H et les angles H-O-H des deux molécules d'eau sont au alentour de 1 Å et 100°, respectivement. Chacune des deux molécules d'eau est entourée de deux autres

Figure II.9. Environnements des entités anioniques présentes dans les composés (I) et (II).

molécules d'eau et d'un anion trichloroacéte ; cependant, la molécule (O1W) possède un voisin supplémentaire qu'est un cation (B). Chaque molécule est à la fois donneur et accepteur de liaisons hydrogène (quatre liaison pour la molécule (O1W) et trois pour la molécule (O2W)) (Figure II.10).

Figure II.10. Environnement des deux molécules d'eau dans le composé (II).

IV. Spectroscopie IR et Raman

Les spectres FT-IR et FT-Raman des deux sels de PPD étudiés et du composé pphénylènediamine (III) sont présentés sur les figures II.11 et II.12, respectivement. Les positions mesurées des bandes IR et Raman et leurs affectations sont énumérées dans le tableau B4.4 (ANNEXE B4).

Les bandes observées dans la région 4000-400 cm⁻¹ dans FT-IR et 4000-50 cm⁻¹ dans le spectre FT-Raman proviennent des vibrations internes du cation $H_2PPD_2^+$, des anions présents dans chaque molécule et des molécules d'eau. La forme et la position de certaines bandes sont affectées par la présence des liaisons hydrogène dans les composés étudiés. Pour tenter d'attribuer les bandes observées (Tableau B4.4:ANNEXE B4), des données bibliographiques sont utilisées.

IV.1. Vibrations des cations $(C_6H_{10}N_2)^{+2}$

Les vibrations d'élongation des C-H aromatiques et du groupe ammonium sont habituellement attendues dans la région 3120- 3000 cm⁻¹ et 3500-2500 cm⁻¹, respectivement [19,20]. Dans la présente étude, $v_{asy}NH_3$ et vCH se chevauchent et sont observées comme de larges bandes avec deux maxima de transmittance à 2865 et 2988 cm⁻¹ dans le composé (**I**) (à 3081 et 3099 cm⁻¹ dans le spectre Raman) et sous forme de bande large avec un maximum à 2863 cm⁻¹ dans le composé (**II**) (à 3080 cm⁻¹ dans le spectre Raman). Des bandes larges à environ 2600 cm⁻¹ dans les spectres IR des deux sels (2601 et 2626 cm⁻¹ dans (**I**) et (**II**), respectivement) et absentes dans le cas du composé (**III**) pourraient être attribuées à la vibration $v_{sy}NH_3$. L'élargissement des bandes liées aux modes des groupes -NH₃⁺ peut s'expliquer par l'implication de ces groupes dans des liaisons hydrogène de type N-H ... O. En général, l'énergie des bandes vibrationnelles du groupe -NH₂ est supérieure à celle du groupe - NH₃⁺ [21]. Par conséquent, pour le groupe amino les bandes de vibration d'élongations asymétrique ($v_{asy}NH_2$) et symétrique ($v_{sy}NH_2$) sont observées pour le composé (**III**) à des fréquences plus élevées, c'est-à-dire 3372 et 3303 cm⁻¹, respectivement.

Généralement, pour les C-H aromatiques, les bandes de déformation dans le plan (δ CH), apparaissent dans la région 1300-1000 cm⁻¹ et celles hors-plan (γ CH) autour de 1000-600 cm⁻¹ [19, 22, 23]. Les δ CH et γ CH dans les deux sels sont observées par plusieurs bandes couvrant la région attendue et sont en accord avec ceux rapportées par Akalin et Akyuz [24] et Noto et al. Pour le composé PPD [17].

Le mode δNH des groupes $-NH_3^+$ est observé à 1543 et 1610 cm⁻¹ pour (**I**) (son homologue Raman est à 1617 et 1539 cm⁻¹) et 1575 cm⁻¹ pour (**II**) (son homologue Raman est à 1616 cm⁻¹), alors que le mode δNH du groupe $-NH_2$ dans (**III**) est apparu à 1628 cm⁻¹ avec son homologue Raman à 1616 cm⁻¹.

La vibration d'élongation des C-C aromatiques donne naissance aux bandes caractéristiques dans le spectre FT-IR couvrant la gamme spectrale de 1650-1450 cm⁻¹[23] Par conséquent, dans le présent travail, les vibrations d'élongation C-C sont identifiées à 1507 et 1510 cm⁻¹ pour (I) et (II), respectivement. Alors que pour le composé (III), deux bandes sont observées à 1445 et 1511 cm⁻¹. Les pics Raman correspondants sont absents sauf pour (I) où un pic est observé à 1427cm⁻¹. 5/+, la bande à 1100-1000 cm⁻¹ provient des déformations dans le plan des C-C aromatiques [23]. Ainsi, les bandes dans les spectres FT-IR à 1072, 1023 cm⁻¹ pour (I), 1023 cm⁻¹ pour (II) et 1065 cm⁻¹ pour (III) sont affectées aux déformations ôCC. La bande autour de 818 cm⁻¹ dans les spectres FT-IR des trois composés provient de la déformation hors-plan des liaisons C-C. Les différents modes de vibrations des C-C aromatiques observés dans la présente étude sont tout à fait compatibles avec les valeurs trouvées dans la littérature [22, 23,25].

IV.2. Vibrations des anions NO_3^- , $ClCCO_2^-$ et les molécules d'eau

Es anions nitrates dans le composé (**I**) présentent des vibrations d'élongation antisymétrique à environ 1396 cm⁻¹, d'élongation symétrique à 1045 cm⁻¹, de déformation hors-plan à 816 cm⁻¹ et de déformation dans le plan environ à 710 cm⁻¹. Leurs pics Raman correspondants sont observés à 1336, 1047, 822 et 711 cm⁻¹, respectivement [11,26-29].

Les vibrations internes des anions trichloroacétate résultent de :

- Les modes d'élongation et de déformation du groupe carboxylate qui apparaissent dans l'ordre suivant: $v_{asy}COO^-$ à 1652 cm⁻¹ (à 1659 cm⁻¹ dans le spectre Raman), $v_{sy}COO^-$ à 1333 cm⁻¹, δCOO^- à 676 cm⁻¹ (à 685 cm⁻¹ dans le spectre Raman) et γCOO^- à 430 cm⁻¹ (à 433 cm⁻¹ dans le spectre Raman).

- Les modes d'élongation et de déformation du groupe $CCl_3 : v_{asy}CCl_3 à 740 \text{ cm}^{-1}$ et son équivalent à 742 cm⁻¹ sur le spectre Raman, δCCl_3 et $v_{sy}CCl_3$ coïncident avec les vibrations de déformation dans le plan et d'élongation symétriques des groupes COO⁻. Le pic intense à 289 cm⁻¹ sur le spectre Raman, peut être attribué au mode γCCl_3 [22,30-32].

Dans la région à haute fréquence du spectre IR, les faibles larges pics observés à 3489 cm⁻¹, 3411 cm⁻¹ et 3365 cm⁻¹ sont attribués aux vibrations d'élongation asymétrique et symétrique de la molécule d'eau dans le composé (**II**) [33].

Figure II.11. Spectres FT-IR de la PPD(3) et de ses sels de nitrates (1) et de trichloroacètates(2).

CHAPITRE II

Figure II.12. Spectres FT-Raman de la PPD(3) et de ses sels de nitrate (1) et de trichloroacétate (2).

V. Analyse de la surface de Hirshfeld

La surface de Hirshfeld fournit un moyen remarquable d'explorer les interactions intermoléculaires dans les cristaux moléculaires. Les diagrammes d'empreintes digitales associés permettent une évaluation quantitative des types et des contributions relatives des contacts intermoléculaires reliant une molécule à son environnement [34,35].

Les surfaces de Hirshfeld, cartographiées avec d_{norm} (Figure II.13), et les tracés d'empreintes digitales 2-D des sels (I) et (II) (Figures II.14 et II.15) ont été générés en utilisant le programme Crystal Explorer 3.1 [36]. Les contributions relatives des différents contacts intermoléculaires sont illustrées par la figure II.18.

Figure II.13. Surface de Hirshfeld des composés (I) (gauche) et (II) (droite) cartographiés avec d_{norm}.

Figure II.14. Tracés d'empreintes digitales complètes des composés (I) (gauche) et (II) (droite).

Figure II.15. Tracés d'empreintes digitales des composés (**I**) (gauche) et (**II**) (droite) résolus aux contacts O ...H/H ...O (en haut) et H ...H (en bas). L'empreinte complète apparaît sous chaque intrigue décomposée sous la forme d'une ombre grise.

Les tracés d'empreintes digitales des quatre configurations observées dans la structure (I) ont des caractéristiques globales assez similaires (Figures II.14 et II.17) et les contributions des différentes interactions sont dans la même plage que celle montrée sur les figures II.18.

La paire de pointes symétriques pointues en haut à gauche et en bas à droite des empreintes (avec les contacts les plus courts à environ 1,8Å) (Figures II.15 et II.17) résulte des contacts O...H / H...O associés aux liaisons hydrogène N-H...O et C-H...O. Le pic de la diagonale d_e/d_i représente les contacts H...H; les contacts les plus courts (à 1,2 Å dans la configuration 3 et environ 0,8 Å dans les configurations 1, 2 et 4 (Figures II.15 et II.17)) affectés aux interactions C-H...H-C, sont construits entre les atomes d'hydrogène de deux anneaux aromatiques adjacents dans les chaînes cationiques infinies H₂PPD²⁺. Ces contacts se

manifestent par des taches rouges vives autour des atomes H aromatiques dans la surface d_{norm} (Figure II.13).

Figure II.16. Tracés d'empreintes digitales des quatre configurations rencontrées dans le composé (I).

Le tracé des empreintes digitales de la structure (**II**) est immédiatement remarqué différent de celui de la structure (**I**) (Figure II.14).

La contribution des interactions O... H / H...O est nettement plus faible (30,5%) et au lieu de la paire de pics pointus qui caractérise les interactions de type liaisons hydrogène observées dans le cas de (**I**), trois paires de pointes plus ou moins prononcées sont observées; les pointes les plus longues et les plus courtes s'étendent jusqu'à $d_i + d_e = 1.75$ Å et $d_i + d_e = 2.2$ Å, respectivement (Figure II.15). De plus, les contacts H…H sont perçus comme un «brouillard» de points éparpillés au-dessus de 1,8 Å et représentant 13,3% de la surface totale de Hirshfeld (Figure II.18).

Il convient de noter que la présence de l'atome de chlore dans (**II**) affecte de manière significative le type de contacts intermoléculaires et leurs contributions relatives (Figures II.17 et II.18); par conséquent, les contacts impliquant un atome de chlore comprennent environ 54% de la surface totale d'Hirshfel (Figure II.18). Les interactions Cl ... Cl sont vues au-dessus de $d_i = d_e = 1.8$ Å (Figure II.17) ce qui suggère que le cristal étudié contient des interactions de Van der Waals plutôt que des forces d'attractions Cl...Cl spécifiques [37]. Les interactions Cl ... C les plus courtes, observées autour de 3,6Å (Figure II.17), concordent avec les interactions C-Cl... π (Tableau II.4).

Figure II.17. Tracés d'empreinte digitale du composé (II) illustrant des contacts impliquant un atome de chlore, à savoir Cl... Cl, Cl... H/H... Cl, Cl... Cl, Cl... Cl et Cl... O/O... Cl (de gauche à droite).

■ O...H/H...O ■ H...H ■ Cl...Cl ■ C...Cl/Cl...C ■ Cl...H/H...Cl ■ C...H/H...C ■ Cl...O/O...Cl ■ Other

Figure II.18. Contributions relatives à la surface de Hirshfeld pour les différents contacts intermoléculaires proches dans les composés (I) (en haut) et (II) (en bas).

VI. Analyse Thermique

L'analyse thermogravimétrique (ATG) du composé (**I**) montre que ce dernier reste stable jusqu'à 129°C où il commence à fondre et à se dissocier simultanément (Figure II.19). Par conséquent, une perte de masse soudaine de 51% est observée. Probablement cette perte est due à la décomposition du cation p-phénylènediammonium. Dans la courbe DSC, le pic exothermique net à 129.64°C confirme le point de fusion et de décomposition du composé étudié.

Dans le cas du composé (II), le tracé de l'ATG présente des pertes de masse en trois étapes (Figure II.20). La première étape de la décomposition a lieu dans la plage de

température de 85-131°C avec une perte de poids de 10.348%. Dans la deuxième étape, une perte de poids rapide de 55.69% commence à 131°C et continue jusqu'à 174°C. Dans la troisième étape, la perte de poids de 29.16% se produit dans la plage de température de 174-250°C. La courbe DSC montre un pic endothermique net à environ 160.36°C qui correspond au point de fusion du composé accompagné de sa décomposition comme indiqué sur la courbe ATG. De plus, de petits bosses à 100.79°C et 237.88°C sont détectées sur la courbe DSC. La netteté des pics exothermiques et endothermiques dans les courbes DSC des composés (I) et (II) révèle respectivement un bon degré de cristallinité et de pureté des échantillons [38].

Figure II.19. Thermo-gramme ATG/DSC du composé (I).

⁹⁸ PARTIE C. Résultats et discussion

VIII. Conclusion

Dans le présent chapitre, les structures et les propriétés de deux composés originaux obtenus par réactions entre la para-phénylènediamine et les acides nitrique et trichloroacétique ainsi qu'une étude comparative entre ces deux composés sont discutées. Les monocristaux des deux sels ont été obtenus par évaporation lente des solutions aqueuses de la PPD et des deux acides. L'étude par DRX a montré un désordre dans les deux structures: dans quatre atomes de carbone des cycles phényle dans le composé (I) et dans une molécule d'eau dans le composé (II). Les cations H_2PPD^{2+} dans (I) sont disposés en chaînes infinies caractérisées par de courtes distances H/H. Cependant, dans (II), chaque cation est entouré uniquement des anions tichloroacétates et de molécules d'eau. La géométrie des cycles aromatiques, dans les deux structures, reflète le transfert de protons entre les deux acides et les groupes amino de la PPD. Les spectres IR et Raman des deux sels comparés à ceux de la PPD ont clairement montré la présence de groupes $-NH_3^+$, NO_3^- et $Cl_3CCO_2^-$, ce qui confirme la protonation. Les structures cristallines des deux composés sont constituées de réseaux tridimensionnels de liaisons hydrogène établies entre les différentes entités et comportant des motifs tels que les anneaux à arrêtes fusionnées : $R_{4}^{6}(14)-R_{2}^{1}(4)-R_{1}^{2}(6)$ et $R_{4}^{4}(10)-R_{4}^{5}(17)$ (identifiés dans (I) et (II), respectivement). De plus, l'analyse de Hirshfeld a été réalisée afin de donner une évaluation quantitative des interactions intermoléculaires au sein des deux composés. Les contacts O...H/H...O associés aux liaisons hydeogène sont présents dans les tracés d'empreinte digitale des deux structures; leurs contributions à la surface totale vont de 57,6% à 60,5% dans le composé (I) et sont de 30,5% dans le composé (II). L'analyse thermique a montré la stabilité de (I) jusqu'à 129°C et de (II) jusqu'à 160°C. Leurs degrés de cristallinité sont également confirmés par netteté des pics exothermique et endothermique détectés sur les courbes DSC.

Références

[1] A. G. Guillén, M. Oszajca, L. D. Katarzyna, M. Gryl, S. Bartkiewicz, A. Miniewicz, W. Lasocha, *Cryst. Growth Des.* 18 (2018)5029-5037.

- [2] L. Zu, R. Li, Y. Shi, H. Lian, Y. Liu, X. Cui, Z. Bai, J. Colloid Interface Sci. 419 (2014) 107-113.
- [3] X. Lin, L. Mingling, E. Wang, Mater. Lett. 54 (2002)303-308.
- [4] G.E. Wang, M. S. Wang, X.M. Jiang, Z. F. Liu, R. G. Lin, L. Z. Cai, G C. Guo, J. S. Huang, *Inorg. Chem. Commun.* 14 (2011) 1957-1961.
- [5] A. Lemmerer, D. G. Billing, Acta Crystallogr. (Sect. C62) (2006) m597- m601.
- [6] M. K. Ishaat, A. Afaq, Spectrochim. Acta (Part A76) (2010) 315-321.
- [7] E. Klein, Z. Cibulková, V. Lukeš, Polym. Degrad. Stab. 88(2005)548-554.
- [8] C. J. Adams, M. F. Haddow, M. Lusi, A. G. Orpen, Cryst. Eng. 13 (2011) 4324-4331.
- [9] G. Xing, T. Yan, S. Das, T. Ben, S. Qiu, Angew. Chem. Int. Ed. 57 (2018) 5345-5349.
- [10] R. Fezai, A. Mezni, M. Kahlaoui, M. Rzaigui, J. Mol. Struct. 1119 (2016) 54-63.
- [11] I. P. S. Kapoor, P. Srivastava, G. Singh, J. Hazard. Mater. 150(2008) 687-694.
- [12] C. R. Groom, F. H. Allen, Angew. Chem. Int. Ed. 53(2014) 662-671.
- [13] B. Portis, K. R. Dey, M. A. Saeed, D. R. Powell, M .A. Hossain, Acta Crystallogr. (Sect. E 65) (2009) o2601.
- [14] A. Czapik, H. Konowalska, M. Gdaniec, Acta Crystallogr. (Sect. C 66) (2010) o128-0132.
- [15] F. Berrah, A. Ouakkaf, S. Bouacida, T. Roisnel, Acta Crystallogr. (Sect. E 67) (2011) o525- 0526.
- [16] I.P. S. Kapoor, P. Srivastava, G. Singh, U. P. Singh, R. Frohlich, J. Phys. Chem. A 112 (2008) 652-659.
- [17] K. M. Anderson, A. E. Goeta, K. S. B. Hancock, J. W. Steed, Chem. Commun. 20 (2006) 2138-2140.
- [18] R. Noto, M. Leoneb, G. L. Mannac, F. Brugk, S. L. Fomilia, J. Mol. Struct. 422 (1998) 35-48.
- [19] N. B. Colthup, L. H. Daly. S. E. Wiberley, Academic Press, Inc., New York, 261(1990).
- [20] W. B. Tzeng, K. Narayanan, J. L. Lin, C. C. Tung, Spectrochim. Acta (Part A 55) (1998)153-162.
- [21] T. Akutagawa, D. Endo, H. Imai, S. Noro, L. Cronin, T. Nakamura, *Inorg. Chem.* 45(2006) 8628-8637.
- [22] H. Tanak, K. Pawlus, M. K. Marchewka, A. Pietraszko, Spectrochim. Acta (Part A118) (2014) 82-93.
- [23] N. Sudharsana, G. Subramanian, V. Krishnakumar, R. Nagalakshmi, *Spectrochim. Acta* (*Part A 97*) (2012)798-805.
- [24] E. Akalin, S. Akyüz, Vib. Spectrosc. 22 (2000) 3-10.
- [25] A. Direm, A. Altomare, A. Moliterni, N. Benali-Cherif, Acta Crystallogr. (Sect.B71) (2015) 427.
- [26] K. Nakamoto. John Wiley, Sons, Ltd, (2006)1891.
- [27] H. Tanak, M. K. Marchewka, J. Mol. Struct. 1034 (2013) 363-373.

- [28] I. Němec, Z. Mička, J. Mol. Struct. 482-483(1999) 23-28.
- [29] N. Elleuch, Y. Abid, H. Feki, J. Mol. Struct. 1120 (2016) 79.
- [30] V. Arjunan, M. K. Marchewka, A. Pietraszko, M. Kalaivani, *Spectrochim. Acta (Part A 97) (2012) 625-638*.
- [31] M. Gdaniec, B. Brycki, M. Szafran, J. Mol. Struct. 195 (1989) 57.
- [32] N. Kanagathara, N. G. Renganathan, M. K. Marchewka, N. Sivakumar, K. Gayathri, P. Krishnan, S. Gunasekaran, G. Anbalagan, *Spectrochim. Acta (Part A 101) (2013) 112-118*.
- [33] H. M. Albert, A. J. A. Pragasam, G. Bhagavannarayana, C. A. Gonsago, J. Therm. Anal. Calorim. 118 (2014) 333-338.
- [34]M. A. Spackman, D. Jayatilaka, Cryst. Eng. 11 (2009)19-32.
- [35] M. A. Spackman, J. J. McKinnon, Cryst. Eng. 4(2002) 378-392.
- [36] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman. Perth: crystal, University of Western, Australia, (2012).
- [37] F. Berrah, R. Bouchene, S. Bouacida, J.C. Daran, *Acta Crystallogr. (Sect. E 68) (2012) o1333-01334*.
- [38] A. S. H. Hameed, G. Ravi, R. Dhanasekaran, P. Ramasamy, J. Cryst. Growth. 212(2000) 227-232.

CONCLUSION GENERALE

Conclusion générale

L'axe de recherche sur les composés dits hybrides à matrice organique vise l'obtention de composés doués de propriétés physico-chimiques et biologiques intéressantes. Dans cette perspective, nous avons pu synthétiser par voie humide et de caractériser par diffraction de rayons X sur monocristal trois nouveaux composés très riches en interactions intermoléculaires via les ponts hydrogène. Ces dernières assurent la cohésion de l'édifice cristallin et la jonction des différentes entités dans le cristal.

Le premier composé étudié dans ce travail est le *Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenate dihydrate* qui cristallise dans le système monoclinique. Ce nouveau matériau a été caractérisé par des analyses préliminaires en utilisant la spectroscopie de vibration IR et Raman. Ce composé est formé de deux entités cationiques *5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium*, une entité anionique sélénate et deux molécules d'eau. La jonction entre ces entités cationiques, anioniques et molécules d'eau est assurée par des liaisons hydrogène moyennes et faibles de type N-H...O, O-H...O et O-H...N. La description structurale est effectuée en appliquant la méthode des graphes qui a montré que le réseau cristallin est bâti essentiellement à partir de cycles dont les motifs sont notés : $R^4_4(14)$, $R^2_2(8)$ et $R^2_4(8)$. Le calcul NBO a montré que les liaisons hydrogène entre le cation *5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium*, l'anion selenate et la molécule d'eau sont des interactions déterminantes et contribuent à la stabilité globale du composé. Les paramètres géométriques optimisés et les modes de vibrations calculés sont en accord avec leurs équivalents obtenus expérimentalement. L'écart énergétique ou le gap HOMO-LUMO dans ce composé est important ce qui suggère une stabilité cinétique importante.

Une étude comparative des deux structures stabilisées avec le cation pphénylènediammonium, a établi que la substitution de l'anion nitrate par l'anion trichloroacetate a modifié complètement le réseau de liaisons hydrogène; elle a montré que ces composés cristallisent dans deux différents systèmes cristallins et présentent des arrangements moléculaires différents dont la cohésion et la stabilité sont assurées par un réseau tridimensionnel de liaisons hydrogène. Les modèles des graphes des liaisons hydrogène observées dans ces deux structures, sont décrits par des cycles de tailles différentes où le plus remarquable entre eux est le cycle $R_4^6(14)$ dans le composé *p*- phénylènediammonium dinitrate et le cycle $R_4^5(17)$ dans le composé *p*-phénylènediammonium di(trichlmoroacetate) 1.5 hydrate.

De plus, l'analyse de Hirshfeld a été réalisée afin de donner une évaluation quantitative des interactions intermoléculaires au sein des deux composés. Les contacts O... H / H... O associés aux liaisons hydrogène sont présents dans les tracés d'empreinte digitale des deux structures; leurs contributions à la surface totale vont de 57,6% à 60,5% dans le composé avec les nitrates (I) et 30,5% dans le composé avec le tris-chloroacétate (II). Les interactions Cl...Cl suggèrent que le cristal (II) semble contenir des interactions de van der Waals plutôt que des forces d'attraction Cl...Cl spécifiques. Les tracés d'empreintes digitales des quatre configurations observées dans la structure (I) ont des caractéristiques globalement assez similaires, et les contributions des différentes interactions sont dans la même plage. L'analyse thermique a montré la stabilité des deux composés jusqu'à 129 - 160°C pour (I) et (II), respectivement.

Enfin, on espère compléter cette étude par des tests biologiques pour vérifier l'activité éventuelle des composés synthétisés surtout que les composés à base des dérivés triazoles et/ou séléniés sont bien connus pour leurs propriétés biologiques. Aussi, compléter les résultats expérimentaux issus de l'étude des composés (I) et (II) par calcul théorique.

ANNEXE.A TECHNIQUES DE CARACTÉRISATION

Introduction

Plusieurs techniques peuvent être utilisées d'une façon systématiquement dans la caractérisation des matériaux hybrides. On peut citer par exemple la diffraction des rayons X (DRX sur poudre et sur monocristal), les méthodes d'analyses thermiques (ATG, DSC), la spectroscopie de vibration infrarouge (IR) et la spectroscopie Raman.

I. Diffraction des rayons X(DRX)

La diffraction des rayons X est une technique d'analyse non destructive pour l'identification et la détermination quantitative et qualitatives des différentes formes cristallines présentes dans un solide [1]. L'appareil de mesure s'appelle un diffractomètre. Les données collectées forment le diagramme de diffraction ou diffractogramme [1,2].

Les rayons X sont en fait, des ondes électromagnétiques situées au-delà du bleu dans le spectre de la lumière, ils sont situés entre les ultraviolets et les rayons gamma, ces radiations électromagnétiques ont une longueur d'onde de l'ordre de l'Angström [2, 3]. Découverts en 1895 par le physicien allemand Röntgen [4-8], les rayons X sont, aujourd'hui, à la base d'une des méthodes d'analyse les plus utilisée, dans la mesure où elle procure des informations précises sur l'arrangement et la disposition des atomes dans l'espace [3,9].

Les modèles structuraux obtenus par DRX sur monocristal sont validés par les deux principaux facteurs d'accord ou de reliabilité, pondéré (R_1) et non pondéré et (wR_2) donnés par les relations ci-dessous [10,11]. Et d'une estimation de variance S (Good OF Fitness).

 $R_{1} = \Sigma || F_{o} / - /F_{c} || / \Sigma / F_{o} /$ $wR_{2} = \{ \Sigma [w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w (F_{o}^{2})^{2}] \}^{1/2}$ $G.O.F = S = \{ \Sigma [w (F_{o}^{2} - F_{c}^{2})^{2}] / (n-m) \} \frac{1}{2}$

- Fo: Facteurs de structure observés
- F_c : Facteurs de structure calculés
- n: nombre de réflexions dans l'affinement
- m : nombre de paramètres dans l'affinement

Références

- [1] M. M. A. Bensegueni, thèse de doctorat, Université Freres mentouri ; Constantine 1, (2015).
- [2] A. Ouakkaf, Thèse de doctorat, Université de larbi ben m'hidi, Oum el bouaghi, (2017).
- [3] S. Amari, Thèse de magistère, Université de constantine 1, (2014).
- [4] A. B. Aronol, Development of concepts of physics, from the rationalization of mechanics To the first theory of atomic structure, Reading, Massachusetts., Addison- wesley, (1965).
- [5] F. Baker, George. Rontgen Rays. New york: Harper and Brothers, (1899).
- [6] B. Bowers, X-R ays and heir Discovery. London Her Majesty s stationary office, (1969).
- [7] J. G. A. Crowther, Short History of science, London: Methuem E d : ltd, (1969)151-161.
- [8] O. Glasser. "Wilhelm Conrad sntgen", classical Descriptions in radiology, Andre J. Bruwe, Ed: Spring field. Illinois, C. C. Thomas, Shorter vertion of this book, (1964)23-46.
- [9] F. Serna, J. Lagneau, J-M. Carpentier, La diffraction des rayons X : Une Technique Puissante pour résoudre certains problèmes industriels et technologiques, Chimie Nouvelle, (2014)116.
- [10] M. l. Zohir, Thèse de magistère, Université de Constantine 1, (2014).
- [11] P. Ramasami, M. G. Bhowon, S. J. Laulloo, H. L. K. Wah, Crystallizing Ideas-The Role Of Chemistry, 1st Ed: Springer International Publishing Swizerland, (2016).

II. Méthodes d'analyses thermiques

L'analyse thermique constitue un terme général pour désigner un ensemble de techniques ayant en commun le fait de permettre, en fonction de la température, d'évaluer des grandeurs caractéristiques d'une propriété physique quelconque d'un échantillon [1].

II.1. Analyse thermogravimétrique (ATG)

Des phénomènes physiques, chimiques ou physico-chimiques peuvent se caractériser par des variations de masse des échantillons lorsque ces échantillons sont soumis à des conditions d'environnements diverses, tel qu'un changement de température [2].

La thermogravimétrie est ainsi basée sur la mesure de la masse d'un échantillon au cours d'un chauffage à vitesse constante, cette technique est principalement utilisée dans l'étude de la dégradation des matériaux, on utilise une thermo-balance pour réaliser ces mesures [3]. Les échantillons sont placés dans une coupelle elle-même placée sur le portoir de la thermo-balance le tout dans un four, si la vitesse de chauffe est le principal paramètre pouvant être contrôlé, on peut également contrôler l'atmosphère et travailler sous azote pour éviter les dégradations oxydatives [1, 2].

II.2. Analyse calorimétrique différentielle

Cette technique principalement connue sous sa dénomination anglaise DSC (Differential Scanning Calorimetry) consiste à mesurer le flux de chaleur nécessaire pour maintenir un échantillon à la même température qu'une référence au cours d'un chauffage ou d'un refroidissement [2-4].

II. 3. Condition d'enregistrement

Une analyse thermogravimétrique et une analyse calorimétrique différentielle ont été effectuées simultanément en utilisant un instrument NETZSCH STA. Les échantillons (18,75 mg) ont été chauffés dans de l'air statique à l'aide d'un creuset en alumine à une vitesse de chauffage de 5°C / min dans une plage de températures allant de 20 à 400°C.

Références

- [1] H. Akkari, Thèse de doctorat, Université de 20 août 1955, Skikda, (2007).
- [2] A. Loiseau, Thèse de doctorat, Université du Maine, (2006).
- [3] Y. Bentahar, Thèse de doctorat, Université de Abdelmalek Essaadi, Tetouan, (2016).
- [4] F. Mauss, Thèse de doctorat, De l'institut nationale polytechnique de Grenoble et de l'école nationale supérieure des mines de Saint-Etienne, (1994).

III. Analyses spectrométriques

La plupart des méthodes physiques d'analyse des structures des matériaux résultent d'une interaction de la matière avec les radiations électromagnétiques de différentes énergies, selon cette énergie l'effet sur les molécules est différent [1].

III.1. Spectroscopie infrarouge

En ce qui concerne l'infrarouge, l'énergie étant faible, on peut observer uniquement des vibrations moléculaires [1.2]. Rappelons aussi que l'état physique de la substance est accessible par cette méthode puisque le spectre infrarouge tient compte à la fois des vibrations de la molécule elle-même et de celles du réseau cristallin [2]. La détermination de certaines caractéristiques structurales ouvre la voie à une importante application des spectres infrarouges; en effet l'étude des spectres indique la présence ou non des bandes caractéristiques de groupements donnés dans des molécules et conduit à la structure partielle ou totale de l'échantillon analysé [2, 3]. Cette méthode est très utilisée pour contrôler les synthèses chimiques [3].

III.2. Spectrométrie Raman

La Raman est une technique de spectroscopie vibrationnelle qui ne repose pas, contrairement à l'infrarouge moyen et proche, sur l'absorbance d'un échantillon mais sur sa capacité à diffuser de manière inélastique la lumière [4].

Lors de l'excitation par une puissante onde monochromatique (typiquement Laser), le faisceau est dans sa quasi-totalité transmis alors qu'une infime partie de la lumière est diffusée (changement de direction de propagation des photons sans se conformer aux règles classiques de l'optique géométrique) [5].

III.3. Condition d'enregistrement

Les mesures de vibration ont été effectuées à température ambiante. Le spectre FT-IR a été enregistré avec le spectromètre Bruker VERTEX 70 dans la région de 4000 à 400 cm⁻¹. Les poudres polycristallines ont été obtenues par broyage en un mortier d'agate. Le spectre Raman à transformée de Fourier (FT-Raman) a été enregistré avec le module Raman RAM II fixé au spectromètre Brucker VERTEX 70 équipé d'un détecteur Ge refroidi à la température de l'azote liquide.

Références

- [1] N. B. Colthup, L. H. Daly, S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3eme Ed.: Academic Pres, (1990).
- [2] B. Schrader, Ed: Infrared and Raman Spectroscopy, VCH, (1994).
- [3] G. Turrell, Infrared and Raman Spectra of Crystals, Academic Press, London, (1972).
- [4] P. Chalus, Y. Roggo, M. Ulmschneider, Technologie Appliquée, Spectra Analyse 252(2006).
- [5] J. Loader, Basic Laser Raman Spectroscopy, Heyden, Sons, Ltd, Sadtler Research, (1970).

I. Le composé

Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenate dihydrate

Tableau BI.1. Coordonnées atomique et facteurs d'agitation thermique équivalents et isotropes $(Å^2)$

Atome	X	Y	Ζ	U_{ISO} */ U_{EQ}
Se1	0.5	0.85412(3)	0.75	0.01960(10)
O4	0.51289(7)	0.4955(2)	1.0044(2)	0.0304(3)
N3	0.61184(7)	1.4673(2)	0.94763(10)	0.0221(2)
Н3	0.6023	1.5399	0.8893	0.027*
N1	0.62120(8)	1.3695(2)	1.10583(12)	0.0253(3)
H1	0.6181	1.3719	1.168	0.03*
03	0.43005(8)	0.6891(2)	0.73323(11)	0.0345(3)
01	0.66293(8)	1.2108(3)	0.80922(11)	0.0374(3)
C1	0.67284(9)	1.1382(2)	0.89697(14)	0.0245(3)
N2	0.65332(7)	1.1990(2)	1.06719(11)	0.0250(3)
N4	0.56036(9)	1.7163(3)	1.04235(12)	0.0330(3)
H4A	0.5519	1.7432	1.0999	0.04*
H4B	0.546	1.8101	0.9908	0.04*
C3	0.59545(8)	1.5311(2)	1.03319(11)	0.0220(3)
C2	0.64661(8)	1.2643(2)	0.97239(11)	0.0215(3)
O2	0.70628(7)	0.9523(2)	0.93786(11)	0.0357(3)
H2	0.7238	0.894	0.8966	0.054*
O1W	0.75488(9)	1.3092(3)	1.32592(13)	0.0389(3)
H2W	0.7737(16)	1.286(6)	1.284(3)	0.058*
H1W	0.7773(17)	1.412(6)	1.361(3)	0.058*

Tableau BI.2. Facteurs d'agitation thermique anisotropes

	U11	U22	U33	U12	U13	U23
Se1	0.02501(14)	0.01965(13)	0.01556(12)	0	0.00854(8)	0
O4	0.0382(6)	0.0298(6)	0.0229(5)	-0.0091(4)	0.0095(4)	0.0006(5)
N3	0.0286(6)	0.0223(6)	0.0173(5)	0.0023(4)	0.0099(4)	0.0026(5)
N1	0.0344(7)	0.0272(7)	0.0170(6)	0.0014(4)	0.0120(5)	0.0024(5)
O3	0.0435(7)	0.0408(6)	0.0239(6)	-0.0086(5)	0.0175(5)	-0.0189(5)
01	0.0524(8)	0.0389(7)	0.0300(7)	0.0051(6)	0.0256(6)	0.0099(6)
C1	0.0269(7)	0.0251(7)	0.0241(7)	-0.0017(5)	0.0118(6)	-0.0004(5)
N2	0.0311(6)	0.0236(6)	0.0215(6)	0.0016(5)	0.0103(5)	0.0022(5)
N4	0.0481(9)	0.0282(6)	0.0283(7)	-0.0006(6)	0.0201(6)	0.0099(6)
C3	0.0256(6)	0.0234(7)	0.0184(6)	-0.0013(5)	0.0088(5)	-0.0007(5)
C2	0.0238(6)	0.0210(6)	0.0209(6)	-0.0005(5)	0.0086(5)	0.0006(5)
O2	0.0460(7)	0.0326(6)	0.0311(6)	-0.0002(5)	0.0159(5)	0.0142(5)
O1W	0.0493(8)	0.0388(7)	0.0378(8)	-0.0086(6)	0.0269(7)	-0.0156(6)

Atome1-atome2	Distance	
	XRD	UHF/6-311G (d.p)
Se1- O4	1.6269(11)	1.5989
Se1 -O4	1.6269(11)	1.5734
Se1 -O3	1.6492(13)	1.603
Se1 -O3	1.6492(13)	1.7663
N3- C3	1.3494(18)	1.3314
N3- C2	1.3651(19)	1.3735
N3- H3	0.86	1.0347
N1 -C3	1.341(2)	1.3302
N1 -N2	1.3776(19)	1.3534
N1- H1	0.86	0.9966
C1- O1	1.212(2)	1.1731
C1- O2	1.305(2)	1.3124
C1- C2	1.483(2)	1.4953
N2- C2	1.299(2)	1.2677
N4- C3	1.320(2)	1.3097
N4 -H4A	0.86	0.9942
N4- H4B	0.86	1.0173
O2 -H2	0.82	0.9466
O1W-H1W	0.78(4)	0.9432
O1W -H2W	0.80(3)	0.9432

Tableau BI.3. Distances inter atomique (Å)

Tableau B1.4. Angles de liaisons (°)

Atome1-atome2-atome3	Angle	
	XRD	UHF/6-311G (d.p)
O4- Se1- O4	114.20(9)	117.9298
O4- Se1- O3	109.02(6)	109.3591
O4 -Se1- O3	108.24(7)	102.2259
O4 -Se1- O3	108.24(7)	104.3011
O4- Se1- O3	109.02(6)	116.8517
O3- Se1- O3	107.95(11)	104.0.372
C3 -N3- C2	106.09(12)	105.9811
C3 -N3 -H3	127	125.0561
C2- N3- H3	127	128.9603
C3- N1 -N2	110.67(13)	111.7293
C3- N1 -H1	124.7	126.0607
N2- N1- H1	124.7	122.2096
O1 -C1- O2	127.34(16)	126.2521
O1 -C1 -C2	120.75(14)	123.4835
O2- C1- C2	111.91(14)	110.2644
C2- N2- N1	104.17(13)	104.3474
C3- N4- H4A	120	118.1449
C3- N4- H4B	120	120.9002
H4A- N4- H4B	120	120.9458
N4 -C3- N1	127.16(15)	126.5104
N4 -C3- N3	126.18(14)	127.7371
N1 -C3 -N3	106.66(13)	105.7524
N2 -C2- N3	112.41(13)	112.1897
N2- C2- C1	125.46(14)	123.5786
N3- C2 -C1	122.13(13)	124.2317
C1 -O2- H2	109.5	110.3641
H1W- O1W- H2W	104(3)	106.3044

Atome1-atome2-	Angle de t	torsion
atome3-atome4	XRD	UHF/6-311G (d.p)
C3 -N1- N2- C2	0.63(18)	- 0.0273
N2- N1-C3- N4	178.60(16)	179.9649
N2 -N1- C3- N3	- 0.91(18)	0.061
C2 -N3 -C3- N4	- 178.71(16)	- 179.9695
C2 -N3 -C3- N1	0.81(17)	- 0.0671
N1 -N2 -C2-N3	- 0.10(18)	- 0.0174
N1- N2 -C2- C1	179.95(15)	179.9947
C3 -N3 -C2 -N2	- 0.45(18)	0.0549
C3- N3- C2- C1	179.51(14)	- 179.9573
O1 -C1-C2- N2	178.63(17)	- 0.6404
O2 -C1- C2 -N2	- 1.9(2)	179.3475
O1 -C1- C2 -N3	- 1.3(2)	179.3732
O2- C1- C2- N3	178.10(15)	- 0.6389

Tableau BI.5. Angles de torsion (°)

Tableau BI.6. Distribution de la charge calculée par les méthodes de Mulliken et NBO au niveau UHF / 6-311(d.p)

Les atomes	Charge atomique (Mulliken)	Charge naturelle (NBO)
Se1	1.641082	2.90775
O2	- 0.781638	- 1.15749
03	- 0.310121	- 0.45760
O4	- 0.768436	- 1.15261
05	- 0.653709	- 1.06074
O10	- 0.398380	- 0.62333
018	- 0.394299	- 0.72424
O20	- 0.533718	- 0.94193
N6	- 0.540747	- 0.63854
N8	- 0.369597	- 0.43255
N12	- 0.2109971	- 0.24280
N13	- 0.612711	- 0.81997
C11	0.569446	0.92559
C16	0.819794	0.78075
C17	0.357888	0.33005
H7	0.400537	0.51312
H9	0.298524	0.448897
H14	0.260568	0.41497
H15	0.345799	0.47574
H19	0.298689	0.50276
H21	0.290453	0.47604
H22	0.290548	0.47607

Tableau BI.7. Analyse de la théorie de perturbation de second ordre de la matrice de Fock en NBO

Туре	Donneur	Туре	Accepteur	$E^{(2)}$ (Kcal/mol)
LP	02	σ^*	Se1-03	13.66
LP	04	σ^*	Se1-03	15.72
LP	05	σ^*	Se1-02	11.12
LP	05	σ^*	Se1-04	10.81
LP	05	σ^*	Se1-03	20.06
LP	02	σ^*	N6-H7	6.13
LP	02	σ^*	N6-H7	8.11
LP	<i>O</i> 2	σ^*	N6-H7	5.58

Le composé Bis (5-amino-3-carboxy-1H-1, 2,4 triazol-4-ium) selenate ANNEXE B dihydrate

LP	04	σ^*	N13-H15	4.26
LP	04	σ^*	N13-H15	2.24
π	010-C11	π^*	N12-H17	2.69
π	N12-C17	π^*	010-C11	6.49
LP	N6	π^*	N12-C17	32.33
LP	N8	π^*	N12-C17	19.11
LP	018	π^*	C10-C11	33.47
LP	010	σ^*	<i>C11-017</i>	16.14
LP	010	σ^*	<i>C11-018</i>	21.48
LP	020	σ^*	N8-H9	2.00

Tableau BI.8. Fréquences	FT-IR /FT-Raman	expérimentales d	et calculées par	la méthode	UHF / 6-311 ((d.p)
	ainsi que leurs inte	ensités relatives e	et leurs attributio	ons.		

Nombre d'ondes			HF/ 6-3	611G (d.p)		
observé (cm ⁻¹)		N	ombre d'one	le calculé (cm	Affectation	
FT-IR	FT-IR	Unscaled ¹	Scaled ²	Intensité	Activité	
			(0.9051)	IR	Raman	
		4212	3812	120.5492	42.8720	$v_{asy}(H_2O)$
		4121	3730	58.4087	75.7897	$v_{sy}(H_2O)$
		4114	3724	210.1026	75.7727	ν (O-H) _{COH}
3409vwb		3874	3506	384.0157	92.4880	$v_{asy}(NH_2)$
3400vwb		3837	3472	242.4008	64.5983	ν (NH)
3303vwb						$v_{sy}(NH_2)$
3163wb	3115vwb					ν (O-H) _{COH}
		3412	3088	1708.6756	180.5175	$v_{sy}(NH_2)$
2980m		3125	2828	1551.9212	96.1561	ν (NH)
1684s	1689m	2054	1859	446.4886	19.0628	v (C=O)
		1889	1710	798.3022	5.3059	$v(C-N)+\delta(NH_2)$
		1845	1670	17.1799	44.1228	$v(C=N)+\delta(NH_2)$
1625s	1636vw	1809	1637	41.3721	20.7355	$\delta_{sy}(NH_2)$
1559s	1566m	1762	1595	109.2137	7.4025	δ(H ₂ O)
1503s	1530b	1682	1522	81.4168	1.0971	
	1457m	1606	1454	4.5148	25.0263	
1418m		1537	1391	138.6997	3.2723	$\delta(NH) + \delta CC$
1356vs	1350mb	1513	1369	4.2781	4.4612	δ(O-H) _{COH}
1247m	1236vw	1363	1234	22.1296	2.4002	$\delta(NH) + \nu CC$
1110m	1116m	1309	1185	238.1951	3.6616	ν(C-OH)
		1226	1110	71.2747	8.0489	$\delta(HNN) + \delta(NH_2) + \delta(C\text{-}OH)$
	1073m	1212	1097	7.6944	1.7302	$\delta_{asy}(NH_2)$
1047s		1181	1069	13.6641	12.5214	$\delta_{asy}(NH_2)$
1011s	1007w	1097	993	35.8025	13.7444	δ(Ring)
		1060	959	272.1149	4.6145	$\upsilon_3(SeO_4)$
924shw	912w	1021	924	125.9021	0.1489	δ(NH)

113 ANNEXE B. Données Expérimentales et Calculées des Composés étudiés

894m		994	900	156.7378	5.1314	$\mathfrak{V}_2(\mathbf{SeO}_4)$
0, 111	861w	950	860	111 7402	34 3434	$v_3(SeO_4)$
819m	818m	897	812	2 2322	2 0415	v CC
7778	orom	843	763	1 6834	3 9235	γ(0 -H)
7775		834	755	0.0299	0.0771	
	733w	828	749	13 7128	0.1248	$\mathcal{M}(\mathbf{NH})$
6885	755W	773	700	322 2217	0.0761	$\gamma(111_2)$
0003		755	683	97 7731	1 7716	$\gamma(\mathbf{NH}_2) + \gamma \mathbf{CC}$
		155	005	<i>J</i> 1.1151	1.7710	0(00)
		709	642	75 5228	12 9067	v) (5 2 0 .)
623m		701	635	0.8925	2 1371	$v_1(\text{SeO}_4)$
556sh	571 yw	595	539	128 0701	2.1571	γ (H ₂ U)
526shw	571VW	594	538	27 5827	1 7802	0 (OH)
5208lfw		573	510	103 1150	0.5250	
460s		515	519	105.1159	0.5259	γ (H ₂ O)+ γ (NH ₂)
4003 136sh	413w	177	137	08 1151	1 2273	
45081	413 W	477	432	90.4491 85 7101	2 8460	$v_4(SeO_4)$
		428	387	15 0800	4 8055	
		428	384	56 2785	4.0033	$(\mathbf{D}, \mathbf{O}, \mathbf{V}) + \mathbf{S}(\mathbf{D}, \mathbf{O}) + \mathbf{S}(\mathbf{D}, \mathbf{V})$
	372	427	382	63 1777	3 733/	$v_4(\text{SeO}_4) + o(\text{H}_2\text{O}) + o(\text{Ring})$
	372VW	422 385	340	0.0008	2 0501	$\upsilon_2(\text{SeO}_4) + \delta(\text{H}_2\text{O}) + \delta(\text{King})$
	327.000	355	321	203 2261	1 3052	$v_2(\text{SeO}_4)$
	527 V W	347	314	1 8585	0.0440	γ (H ₂ U)
		342	310	1.0505	4 0977	
	25225	280	262	21 7701	0.4451	$v_2(SeO_4)$
	25243	207	184	0 2081	2 2092	$O(H_2O)$
	198shw	227	104	1/ 828/	0.6454	γ (H ₂ U)
	170311	178	161	1 8485	1 0791	S (IL O)
		167	151	23 1649	0.0719	0 (H ₂ U)
		149	135	4 3184	0.0719	··· (ILO) · Letting with setting
	1095	137	124	0.3593	0.0100	γ (H ₂ O) +Lattice vibration
	1075	94	85	1.0154	0.5885	
	69s	64	58	5 2792	0.0800	$O(H_2O)$ +Lattice vibration
	075	50		1 9/95	0.0090	$\gamma(H_2O)$ + Lattice vibration
		30 44	40	3 0060	0.1905	γ (H ₂ U)
		36	33	1 1838	0.3107	$o(H_2O)$ + Lattice vibration
		12	35 12	+.1000 0 1251	0.7320	γ(U=CU)
		13 52	12	0.1231	0.1231	
		-32	-4 /	0.3410	0.2310	
Abbreviations: *s*, *strong*; *w*, *weak*; *v*, *very*; *m*, *medium*; *b*, *broad*; *sh*, *shoulder*; *v*, *stretching*, δ , *in-plan bending*; *y*, *out-of-plan bending*.

^{*} ¹ non mis à l'échelle, ² mis à l'échelle

ANNEXE .B

DONNÉES EXPÉRIMENTALES DES COMPOSÉS ÉTUDIÉS

Atome	Х	Y	Ζ	U _{ISO} */U _{EQ}
N1A	0.9767(5)	0.0102(2)	0.07604(6)	0.0251(6)
H1A1	0.9356	0.0879	0.083	0.038*
H1A2	1.134	- 0.0112	0.0851	0.038*
H1A3	0.8531	- 0.043	0.0839	0.038*
C1A	0.9888(5)	0.0053(3)	0.03679(7)	0.0233(6)
C11A	1.0327(12)	0.1139(5)	0.01754(15)	0.0280(12)
H11A	1.0542	0.1904	0.0293	0.034*
C13A	0.9557(12)	- 0.1076(5)	0.01997(15)	0.0290(12)
H13A	0.9255	0.0334	0.0334	0.035*
N1B	0.9715(5)	0.2785(2)	0.17387(6)	0.0276(6)
H1B1	0.8391	0.2304	0.166	0.041*
H1B2	1.1255	0.2487	0.1657	0.041*
H1B3	0.9489	0.3568	0.166	0.041*
C1B	0.9733(5)	0.2781(3)	0.21322(7)	0.0247(6)
C12B	0.9264(12)	0.1669(6)	0.23163(15)	0.0319(13)
H12B	0.8952	0.0928	0.219	0.038*
H14B	1.0157(12)	0.3889(6)	0.23111(14)	0.0299(13)
N1	1.0441	0.463	0.2184	0.036*
011	0.4024(5)	0.0471(3)	0.16160(6)	0.0315(6)
O12	0.4772(5)	0.1595(2)	0.16024(7)	0.0451(7)
013	0.1640(4)	0.0242(2)	0.15390(6)	0.0364(6)
N2	0.5542(6)	- 0.0359(3)	0.17082(9)	0.0656(9)
O21	0.5908(5)	0.2757(2)	0.08753(6)	0.0292(6)
O22	0.5087(5)	0.3860(2)	0.09063(7)	0.0475(7)
O23	0.8321(4)	0.2545(2)	0.09555(6)	0.0334(6)
	0.4456(5)	0.1909(3)	0.07723(7)	0.0564(8)

II. Le composé p-phenylenediammonium dinitrate

Tableau BII.1. Coordonnées atomiques et facteurs d'agitation thermique équivalents et isotropes ($Å^2$)

Tableau B2.2. Facteurs d'agitation thermique anisotropes

Atome	U11	U22	U33	U12	U13	U23
N1A	0.0269(12)	0.0280(13)	0.0206(12)	- 0.0003(9)	- 0.0014(9)	- 0.0001(10)
C1A	0.0215(14)	0.0264(14)	0.0219(14)	- 0.0004(10)	- 0.0011(10)	- 0.0016(11)
C11A	0.037(3)	0.018(3)	0.030(3)	- 0.003(2)	- 0.001(2)	-0.001(2)
C13A	0.039(3)	0.020(3)	0.029(3)	0.006(2)	0.001(2)	- 0.002(2)
N1B	0.0299(13)	0.0256(13)	0.0272(12)	0.0008(9)	- 0.0008(10)	0.0017(11)
C1B	0.0223(14)	0.0275(15)	0.0244(14)	0.0006(11)	0.0003(11)	0.0019(12)
C12B	0.038(3)	0.021(3)	0.037(3)	- 0.007(2)	0.000(3)	- 0.002(3)
C14B	0.035(3)	0.026(3)	0.029(3)	0.005(2)	- 0.002(2)	- 0.007(3)
N1 0	0.0308(14)	0.0324(15)	0.0314(13)	0.0009(10)	- 0.0017(11)	- 0.0004(11)
011	0.0388(13)	0.0381(14)	0.0584(15)	- 0.0013(11)	0.0026(11)	- 0.0111(11)
O12	0.0273(11)	0.0335(13)	0.0486(13)	- 0.0007(9)	- 0.0015(10)	- 0.0048(9)
013	0.0487(17)	0.0512(18)	0.097(2)	0.0111(15)	- 0.0212(15)	0.0142(13)
N2	0.0288(14))	0.0327(15)	0.0261(12)	- 0.0001(10)	- 0.0003(10)	- 0.0010(11)
O21	0.0420(14)	0.0361(14)	0.0644(16)	0.0029(11)	- 0.0074(12)	0.0126(11)

116 ANNEXE B. Données Expérimentales et Calculées des Composés étudiés

O22	0.0260(11)	0.0313(13)	0.0428(12)	- 0.0009(9)	- 0.0020(9)	0.0032(9)
O23	0.0453(15)	0.0507(17)	0.0732(18)	- 0.0163(14)	- 0.0136(13)	- 0.0156(13)

Liaison	Distance	Liaison	Distance
N1-O13	1.217(4)	N1A- H12A	0.89
N1-011	1.254(3)	C1A -C2A	1.567(2)
N1-O12	1.256(3)	N2- O23	1.222(3)
N1A-C1A	1.461(3)	N2 -O21	1.249(3)
N1A-H1A1	0.89	N2 -O22	1.270(3)
N1A -H1A2	0.89	C1B -C11B	1.351(7)
N1A -H1A3	0.89	C1B- C14B	1.370(6)
C1A- C13A	1.365(6)	C1B- C13B	1.376(7)
C1A -C12A	1.367(7)	C1B- C14B	1.386(7)
C1A- C14A	1.373(7)	N1B-C1B	1.462(3)
C1A- C11A	1.376(6)	C11B-C11B	1.397(13)
C11A- C13A	1.397(7)	N1B -H1B2	0.89
C11A- H11A	0.93	N1B -H1B1	0.89
C13A- C11A	1.397(7)	N1B -H1B3	0.89
C13A- H13A	0.93	C13B- C13B	1.394(12)
C12A- C14A	1.392(8)	C13B- H13B	0.93
C12A- H12A	0.93	C12B- H12B	0.93
C14A- C12A	1.392(8)	C12B- C12B	1.365(11)
C14A -H14A	0.93	C12B- H12B	0.93
N1A -H13A	0.89	C14B- C14B	1.404(11)
N1A -H11A	0.89	C14B- H14B	0.93

Tableau BII.3. Distances inter atomiques (Å)

Tableau	<i>BII.4</i> .	Angles	de	liaisons	(°)
Labicaa	DI1.7.	marcs	uc	ilaisons	()

Atome1-Atom2-Atom3	Angle (°)	Atome1-Atom2-Atom3	Angle (°)
013- N1- 011	121.0(3)	O23- N2- O21	121.6(3)
013- N1 -012	121.5(3)	O23 -N2 -O22	120.9(3)
011- N1 -012	117.5(3)	O21- N2- O22	117.5(2)
C1A- N1A -H1A1	109.5	C1B- N1B -H1B1	109.5
C1A -N1A- H1A2	109.5	C1B- N1B- H1B2	109.5
H1A1- N1A -H1A2	109.5	H1B1- N1B -H1B2	109.5
C1A -N1A- H1A3	109.5	C1B -N1B- H1B3	109.5
H1A1- N1A- H1A3	109.5	H1B1- N1B -H1B3	109.5
H1A2 -N1A- H1A3	109.5	H1B2- N1B- H1B3	109.5
C13A-C1A- C12A	71.8(4)	C11B-C1B-C14B	81.0(5)
C13A- C1A- C14A	80.0(4)	C11B- C1B -C13B	121.2(4)
C12A- C1A -C14A	121.1(4)	C14B -C1B -C13B	70.8(4)
C13A -C1A- C11A	121.4(4)	C11B -C1B- C12B	70.1(5)
C12A- C1A -C11A	80.3(4)	C14B- C1B- C12B	121.4(4)
C14A -C1A -C11A	72.0(4)	C13B -C1B -C12B	82.2(4)
C13A- C1A -N1A	118.9(3)	C11B -C1B -N1B	119.3(3)
C12A -C1A- N1A	119.2(3)	C14B- C1B- N1B	118.9(3)
C14A- C1A -N1A	119.7(3)	C13B -C1B- N1B	119.5(3)

C11A -C1A- N1A	119.7(3)	C12B- C1B -N1B	119.7(3)
C1A -C11A- C13A	119.0(5)	C1B -C11B -C11B	119.7(3)
C1A -C11A -H11A	120.5	C1B -C11B -H11B	120.2
C13A -C11A -H11A	120.5	C11B-C11B- H11B	120.2
C1A- C13A -C11A	119.6(5)	C1B -C13B -C13B	119.2(3)
C1A -C13A -H13A	120.2	C1B -C13B -H13B	120.4
C1A -C12A -C14A	119.2(5)	C13B -C13B-H13B	120.4
C14A -C12A -H12A	120.4	C12B -C12B- C1B	119.6(3)
C14A- C12A- H12A	120.4	C12B -C12B- H12B	120.2
C1A -C14A -C12A	119.7(5)	C1B- C12B- H12B	120.2
C1A- C14A- H14A	120.2	C1B -C14B- C14B	119.0(3)
C12A -C14A- H14A	120.2	C1B -C14B -H14B	120.5
		C14B- C14B -H14B	120.5

Tableau BII.5. Angles de torsion (°)

Atome1-Atom2-Atom3-Atome4	Angle de torsion	Atome1-Atom2-Atom3-Atome4	Angle de torsion
C13A -C1A- C11A- C13A	- 0.2(9)	C14B- C1B- C11B -C11B	- 61.6(4)
C12A- C1A -C11A- C13A	- 61.9(6)	C13B -C1B- C11B- C11B	- 0.6(7)
C14A -C1A- C11A- C13A	65.4(6)	C12B -C1B -C11B -C11B	66.6(3)
N1A -C1A- C11A- C13A	179.8(4)	N1B -C1B -C11B- C11B	- 179.80(16)
C12A- C1A -C13A -C11A	66.2(6)	C11B -C1B- C13B- C13B	0.6(7)
C14A -C1A -C13A -C11A	- 61.3(6)	C14B -C1B- C13B- C13B	66.8(3)
C11A- C1A-C13A- C11A	0.2(9)	C12B -C1B- C13B -C13B	- 60.4(3)
N1A- C1A -C13A- C11A -	- 179.8(4)	N1B- C1B -C13B- C13B	179.80(16)
C13A -C1A- C12A- C14A	- 66.4(7)	C11B -C1B- C12B -C12B	- 66.4(4)
C14A -C1A- C12A- C14A	0.7(11)	C14B -C1B- C12B -C12B	- 1.0(5)
C11A -C1A -C12A-C14A	61.3(7)	C13B -C1B -C12B- C12B	60.8(3)
N1A- C1A -C12A- C14A -	- 180.0(5)	N1B -C1B- C12B- C12B	- 179.56(17)
C13A -C1A -C14A -C12A	62.3(7)	C11B- C1B- C14B- C14B	61.0(4)
C12A -C1A -C14A- C12A	0.7(11)	C13B- C1B- C14B- C14B	- 66.6(3)
C11A -C1A -C14A -C12A	- 65.5(7)	C12B- C1B- C14B- C14B	1.0(5)
N1A -C1A -C14A -C12A	180.0(5)	N1B- C1B -C14B -C14B	179.57(17)

III. Le composé p-phenylenediammonium di (trichloroacetate) 1.5 hydrate

Tableau BIII.1.	Coordonnées atomi	ques et facteurs	s d'agitation thermiqu	e équivalents et	t isotropes (Ų)
		1			

Atome	Х	Y	Ζ	U _{ISO} */U _{Eq}
Cl1B	0.34320(4)	0.72333(4)	0.85665(3)	0.05258(12)
Cl2A	0.37305(5)	0.99135(4)	0.82627(6)	0.06924(16)
Cl2B	0.11526(5)	0.77208(5)	0.70757(4)	0.06198(15)
Cl3B	0.17398(4)	0.56220(4)	0.76475(4)	0.05210(12)
Cl3A	0.51371(4)	1.17460(4)	0.83733(5)	0.05669(13)
Cl1A	0.35957(6)	1.14740(6)	0.98103(4)	0.07616(18)
O1A	0.27532(11)	1.27119(9)	0.75483(10)	0.0452(3)
N1A	0.45147(12)	0.42805(10)	0.78558(9)	0.0352(3)
H13A	0.4017	0.3744	0.7769	0.053*
H11A	0.5201	0.4097	0.7701	0.053*
H12A	0.4167	0.4786	0.7419	0.053*
O1B	0.28424(11)	0.73877(10)	0.57941(10)	0.0486(3)
O1W	0.09676(12)	0.83646(10)	0.43900(11)	0.0463(3)
O2A	0.17277(11)	1.12511(11)	0.73628(12)	0.0561(3)
O2B	0.37000(11)	0.59563(10)	0.65587(10)	0.0472(3)
N1B	0.90930(11)	0.69874(9)	0.43546(10)	0.0330(2)
H12B	0.8534	0.6943	0.3732	0.049*
H11B	0.9694	0.739	0.4276	0.049*
H13B	0.8764	0.7253	0.4852	0.049*
C1A	0.26320(13)	1.17886(12)	0.77200(11)	0.0340(3)
C1B	0.30223(13)	0.67050(11)	0.64857(11)	0.0332(3)
C3A	0.57631(14)	0.52641(12)	0.93566(12)	0.0372(3)
H3A	0.6269	0.5437	0.8921	0.045*
C4A	0.47762(13).	0.46350(11)	0.89740(11)	0.0319(3)
C4B	0.95646(12)	0.59635(10)	0.46910(10)	0.0284(2)
C5A	0.40096(14)	0.43649(12)	0.95982(12)	0.0379(3)
H5A	0.3349	0.394	0.9324	0.046*
C3B	1.06297(13)	0.56458(11)	0.44752(12)	0.0351(3)
H3B	1.105	0.6082	0.4126	0.042*
C5B	0.89323(13)	0.53310(12)	0.52156(13)	0.0366(3)
H5B	0.8219	0.5558	0.536	0.044*
C2B	0.23473(13)	0.68200(12)	0.73940(12)	0.0359(3)
C2A	0.37370(14)	1.12417(12)	0.84975(12)	0.0382(3)
O2W	0.4222(4)	0.5266(3)	0.4708(3)	0.0699(8)
H22W	0.468(6)	0.480(5)	0.429(6)	0.105*
H12W	0.153(3)	0.810(3)	0.496(3)	0.105*
H11W	0.078(3)	0.885(3)	0.464(3)	0.105*
H21W	0.345(7)	0.538(5)	0.416(6)	0.105*

	U11	U22	U33	U12	U13	U23
Cl1B	0.0547(3)	0.0533(3)	0.0436(2)	-0.00907(17)	0.00125(17)	-0.0079(2)
Cl2A	0.0617(3)	0.0347(2)	0.1136(5)	0.0104(2)	0.0265(3)	0.0088(2)
C12B	0.0529(3)	0.0761(4)	0.0592(3)	0.0033(2)	0.0186(2)	0.0297(2)
C13B	0.0531(2)	0.0575(3)	0.0497(2)	-0.00035(18)	0.02030(18)	-0.0209(2)
C13A	0.03131(19)	0.0567(3)	0.0799(3)	0.0123(2)	0.01022(19)	0.00036(17)
C11A	0.0889(4)	0.1052(5)	0.0350(2)	0.0127(2)	0.0171(2)	0.0115(3)
O1A	0.0423(6)	0.0343(6)	0.0508(6)	0.0089(5)	-0.0033(5)	-0.0007(5)
N1A	0.0381(6)	0.0332(6)	0.0322(5)	-0.0023(4)	0.0051(5)	0.0028(5)
O1B	0.0431(6)	0.0510(7)	0.0564(7)	0.0244(6)	0.0213(5)	0.0088(5)
O1W	0.0452(7)	0.0425(7)	0.0496(6)	0.0050(5)	0.0091(5)	0.0016(5)
O2A	0.0375(6)	0.0534(8)	0.0710(8)	0.0101(6)	0.0020(6)	-0.0105(6)
O2B	0.0526(7)	0.0444(6)	0.0506(6)	0.0120(5)	0.0238(5)	0.0155(5)
N1B	0.0351(6)	0.0287(6)	0.0338(5)	0.0022(4)	0.0063(5)	0.0038(5)
C1A	0.0313(6)	0.0380(7)	0.0331(6)	0.0028(5)	0.0086(5)	0.0015(5)
C1B	0.0301(6)	0.0348(7)	0.0350(6)	0.0039(5)	0.0087(5)	-0.0008(5)
C3A	0.0363(7)	0.0394(8)	0.0365(6)	-0.0012(6)	0.0105(6)	-0.0038(6)
C4A	0.0347(7)	0.0276(6)	0.0310(6)	0.0000(5)	0.0037(5)	0.0049(5)
C4B	0.0297(6)	0.0264(6)	0.0274(5)	0.0000(4)	0.0044(5)	0.0021(5)
C5A	0.0356(7)	0.0366(8)	0.0393(7)	-0.0029(6)	0.0055(6)	-0.0071(6)
C3B	0.0354(7)	0.0320(7)	0.0415(7)	0.0051(6)	0.0162(6)	0.0018(6)
C5B	0.0321(7)	0.0352(7)	0.0459(7)	0.0044(6)	0.0159(6)	0.0071(6)
C2B	0.0326(7)	0.0391(8)	0.0357(6)	0.0004(6)	0.0083(5)	0.0001(6)
C2A	0.0360(7)	0.0374(8)	0.0419(7)	0.0087(6)	0.0114(6)	0.0041(6)
O2W	0.088(2)	0.0601(19)	0.0660(18)	0.0117(15)	0.0280(18)	0.0033(17)

Tableau BIII.2. Facteurs d'agitation thermique anisotropes

Tableau BIII.3. Distances inter atomiques (Å).

Liaison	Distance	Liaison	Distance
Cl2A -C2A	1.7543(18)	C5A -H5A	0.93
Cl3A- C2A	1.7745(18)	Cl1B- C2B	1.7731(16)
Cl1A- C2A	1.7624(18)	Cl2B- C2B	1.7668(17)
O1A-C1A	1.2359(19)	Cl3B- C2B	1.7706(17)
02A -C1A	1.235(2)	O1B- C1B	1.2365(18)
C1A- C2A	1.567(2)	O2B- C1B	1.2333(19)
N1A- C4A	1.4661(18)	C1B- C2B	1.563(2)
N1A- H13A	0.89	N1B -C4B	1.4608(18)
N1A -H11A	0.89	N1B- H12B	0.89
N1A -H12A	0.89	N1B -H11B	0.89
C3A- C4A	1.379(2)	N1B- H13B	0.89
C3A -C5A	1.389(2)	C4B- C3B	1.380(2)
СЗА -НЗА	0.93	C4B -C5B	1.380(2)
C4A -C5A	1.377(2)	C3B -C5B	1.387(2)
C5A -C3A	1.389(2)	C3B -H3B	0.93
O2W- H22W	1.03(7)	C5B- C3B	1.387(2)
O2W-H21W	0.99(7)	C5B -H5B	0.93

Atome1-atom2-atom3	Angle (°)	Atome1-atom2-atom3	Angle (°)
02A- C1A- 01A	127.26(14)	O2B -C1B -O1B	127.45(14)
O2A -C1A -C2A	116.20(14)	O2B -C1B -C2B	116.06(13)
01A- C1A -C2A	116.52(13)	O1B -C1B -C2B	116.45(13)
C1A -C2A -Cl2A	111.74(11)	C1B -C2B -Cl2B	112.99(10)
C1A -C2A- Cl1A	106.07(11)	C1B -C2B- Cl3B	110.18(11)
Cl2A -C2A -Cl1A	109.65(9)	Cl2B- C2B -Cl3B	108.09(9)
C1A -C2A -Cl3A	111.92(11)	C1B -C2B- Cl1B	107.02(11)
Cl2A- C2A -Cl3A	108.25(9)	Cl2B- C2B- Cl1B	109.09(9)
Cl1A- C2A- Cl3A	109.17(9)	Cl3B- C2B- Cl1B	109.43(8)
C4A -N1A- H13A	109.5	C4B- N1B- H12B	109.5
C4A- N1A -H11A	109.5	C4B- N1B- H11B	109.5
H13A- N1A- H11A	109.5	H12B -N1B- H11B	109.5
C4A- N1A- H12A	109.5	C4B -N1B- H13B	109.5
H13A- N1A -H12A	109.5	H12B-N1B- H13B	109.5
H11A- N1A- H12A	109.5	H11B -N1B- H13B	109.5
C4A- C3A -C5A	119.04(14)	C3B -C4B-C5B	121.26(13)
C4A- C3A- H3A	120.5	C3B -C4B -N1B	119.46(12)
С5А -С3А- НЗА	120.5	C5B -C4B- N1B	119.28(12)
C5A -C4A -C3A	121.90(13)	C4B -C3B- C5B	119.32(13)
C5A- C4A- N1A	119.39(13)	C4B- C3B- H3B	120.3
C3A- C4A- N1A	118.67(13)	C5B -C3B- H3B	120.3
C4A- C5A- C3A	119.07(14)	C4B -C5B- C3B	119.42(13)
C4A- C5A- H5A	120.5	C4B- C5B -H5B	120.3
C3A- C5A- H5A	120.5	C3B- C5B-H5B	120.3
H22W- O2W- H21W	101(5)		

Tableau BIII.4. Angles de liaisons (°).

Tableau BIII.5. Angles de torsion (').
-------------------------------------	-----

Atome1-Atom2-Atom3-Atome4	Angle de torsion	Atome1-Atom2-Atom3-Atome4	Angle de torsion
C5A- C3A -C4A -C5A	0.0(3)	O2B- C1B- C2B -C13B	- 45.31(16)
C5A -C3A- C4A -N1A	177.56(14)	O1B -C1B- C2B -Cl3B	136.58(13)
C3A- C4A -C5A -C3A	0.0(3)	O2B -C1B- C2B -Cl1B	73.58(16)
N1A -C4A- C5A- C3A	- 177.54(14)	O1B- C1B -C2B- Cl1B	-104.53(14)
C5B -C4B- C3B- C5B	0.5(2)	O2A -C1A -C2A- Cl2A	25.59(18)
N1B -C4B- C3B- C5B	- 179.25(13)	O1A- C1A -C2A- Cl2A	- 155.71(12)
C3B -C4B- C5B- C3B	- 0.5(2)	O2A -C1A -C2A- Cl1A	- 93.86(15)
N1B -C4B- C5B- C3B	179.25(13)	O1A- C1A- C2A -Cl1A	84.84(15)
O2B -C1B- C2B -Cl2B	- 166.33(12)	O2A- C1A -C2A- Cl3A	147.18(13)
O1B -C1B- C2B -C12B	15.56(18)	01A -C1A -C2A -Cl3A	- 34.12(17)

IV. Étude Comparative des deux structures p-phenylenediammonium dinitrate et p-phenylenediammonium di (trichloroacetate) 1.5hydrate

Tableau BIV.1. Comparaison ent	re les distances (Å) des entités organiques des deux structures j	p-
phenylenediammonium dinitrate	(I) et p-phenylenediammonium di (trichloroacetate) 1.5 hydrat	e

(\mathbf{I})	T
(I	1)

Distance (A°)	(I)		(II)	
	А	В	А	В
N1- C1	1.461(3)	1.462(3)	1.4661(18)	1.4608(18)
N1- H1	0.89	0.89	0.89	0.89
N1 -H1	0.89	0.89	0.89	0.89
N1 -H1	0.89	0.89	0.89	0.89
C1-C13	1.365(6)	1.376(7)	1.379(2)	1.380(2)
C1 -C12	1.367(7)	1.351(7)	1.389(2)	1.380(2)
C1- C14	1.373(7)	1.370(6)	1.377(2)	1.387(2)
C1-C11	1.376(6)	1.386(7)	1.389(2)	1.387(2)
C11-C13	1.397(7)	1.397(13)	1.379(2)	1.380(2)
C14- C12	1.392(8)	1.394(12)	1.389(2)	1.387(2)
C14 -H14	0.93	0.93	0.93	0.93
N1 -H13	0.89	0.89	0.89	0.89
N1 -H11	0.89	0.89	0.89	0.89
N1- H12	0.89	0.89	0.89	0.89
C1 - C2	1.567(2)	1.404(11)	1.567(2)	1.563(2)

 Tableau BIV.2. Comparaison entre les angles (°) des entités organiques des deux structures pphenylenediammonium dinitrate (I) et p-phenylenediammonium di (trichloroacetate) 1.5 hydrate (II)

Angles(°)	(I)		(II)		
	А	В	А	В	
C4 -N1- H13	109.5	109 5	109.5	109.5	
C4- N1 -H11	109.5	109.5	109.5	109.5	
H13- N1- H11	109.5	109.5	109.5	109.5	
C4- N1- H12	109.5	109.5	109.5	109.5	
H13- N1 -H12	109.5	109.5	109.5	109.5	
H11- N1- H12	109.5	109.5	109.5	109.5	
C4- C3 -C5	119.0(5)	119.7(3)	119.04(14)	121.26(13)	
C4- C3- H3	120.5	120.2	120.5	119.46(12)	
С5 -С3- Н3	120.5	120.2	120.5	119.28(12)	
C5 -C4 -C3	119.6(5)	119.2(3)	121.90(13)	119.32(13)	
C5- C4- N1	119.7(3)	119.5(3)	119.39(13)	120.3	
C3- C4- N1	119.7(3)	119.7(3)	118.67(13)	120.3	
C4- C5- C3	119.2(5)	119.6(3)	119.07(14)	119.42(13)	
C4- C5- H5	120.4	120.2	120.5	120.3	
C3- C5- H5	120.4	120.2	120.5	120.3	

Composé	Cation	r.m.s (Å)
(I)	А	0.005
	В	0.006
(II)	А	0.002
	В	0.001

 Tableau BIV.3.
 r.m.s. déviations des cations H2PPD2 + dans les composés (I) et (II)
 III

Tableau BIV.4. Assignations des fréquences des bandes IR et Raman (cm ⁻¹) observées pour le composé PPD e
ses sels de nitrate et de trichloroacétate.

Fréquence bandes	ces des (cm ⁻¹)		Fréquence bandes (c	es des m ⁻¹)		Fréquences des bandes (cm ⁻¹)		
H ₂ PPD ²⁺ (I)	, 2NO ₃ -	Affectation	H ₂ PPD ²⁺ , 2Cl ₃ CCO ₂ 1.5H ₂ O(II	2)	Affectation	PPD	(III)	Affectation
IR	Raman		IR	Raman		IR	Raman	
2988vw 2865vw 2601mb 1753vw 1653m 1610m 1543m 1507s 1396s 1284vs 1147m 1122m 1072m 1045m 1023m - 816vs 741m 685m 497vs -	3099vw 3081vw - - 1642m 1617m 1539m 1427m 1346w 1221m 1183m - - 1047vs - 841m 822sh 733m 643m 470m 360vw	$\begin{array}{l} vCH + v_{asy}NH_{3} \\ vCH + v_{asy}NH_{3} \\ v_{sy}NH_{3} \\ v_{sy}NO_{3}^{-} + \gamma NO_{3}^{-} \\ \delta NH_{3} \\ \delta NH_{3} \\ v C=C \\ v_{asy}NO_{3}^{-} \\ \delta CH \\ \delta CH \\ \gamma CH + \delta C=C \\ \gamma CH + \gamma NO_{3}^{-} \\ \gamma CH \\$	3489vwb 3411wb 3365wb 2863mb 2626mb 2051vwb 1652s 1575sh 1510s 1368sh - 1333vs 1164m 1023m 939vw 833m 818m 740vs 676vs 501vs 430m -	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} v_{asy}H_{2}O \\ v_{asy}H_{2}O \\ v_{sy}H_{2}O \\ vCH + v_{asy}NH_{3} \\ v_{sy}NH_{3} \\ v_{asy}COO^{*} \\ \delta NH_{3} \\ v C=C \\ \delta CH + vC-NH_{3} \\ \delta CH + vC-NH_{3} \\ \delta CH + vC-NH_{3} \\ v_{sy}COO^{*} \\ \delta CH \\ \gamma CH + \delta C=C + \gamma NH_{3} \\ \gamma CH \\ \gamma CH + \gamma NH_{3+}vC-CCl_{3} \\ \gamma CH \\ \gamma CH + \gamma NH_{3+}vC-CCl_{3} \\ \delta CCl_{3} + \delta COO^{*} \\ v_{sy}CCl_{3} \\ + \gamma COO^{*} \\ \delta CCl_{3} \\ \gamma CCl_{3} \\ \end{array}$	3372m 3303m 3198m 3008m 1628m 1511s 1445m 1310sm 1258vs 1127m 1065m 932w 822vs 700sb - 512vs 423m -	- - 3059m 3043m 1616s - - 1265s 1175m - 929w 845vs 702w 648s 470s 434w 138vs	$\begin{array}{c} v_{asy}NH_2\\ v_{sy}NH_2\\ vCH\\ vCH\\ \delta NH_2\\ vC=C\\ vC=C\\ \delta CH+vC=C\\ \delta CH+vC-NH_2\\ \delta CH\\ \gamma CH+\delta C=C+\gamma NH_2\\ \gamma CH\\ \gamma CH+\gamma NH_2\\ \gamma ring\\ \delta ring\\ \end{array}$

Abréviations: v-stretching; δ -in plane bending; γ - out plane bending; *s*- strong; *w*-week; sh-shoulder; *v*- very;*m*-medium; *b*-broad; sy-symmetric; asy- asymmetric.

Journal of Molecular Structure 1180 (2019) 532-541

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

XRD, FT-IR, FT-Raman spectra and ab initio HF vibrational analysis of bis (5-amino-3-carboxy-1*H*-1,2,4-triazol-4-ium) selenate dihydrate

F. Boursas ^a, F. Berrah ^{b, *}, N. Kanagathara ^c, G. Anbalagan ^d, S. Bouacida ^{e, f}

^a Laboratoire de Chimie Physique LCP, Université 08 Mai 45, Guelma, 24000, Algeria

^b Laboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000, Oum El Bouaghi, Algeria

^c Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India

ABSTRACT

examined.

^d Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai, 600 025, India

^e Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université des Frères Mentouri, Constantine, 25000, Algeria

^f Département des Sciences de la Matière, Université Larbi Ben M'Hidi, 04000, Oum El Bouaghi, Algeria

A R T I C L E I N F O

Article history: Received 29 October 2018 Received in revised form 6 December 2018 Accepted 10 December 2018 Available online 10 December 2018

Keywords: 1,2,4-triazole Hydrogen bond Single crystal XRD FT-IR/FT-Raman spectroscopy ab initio HF

1. Introduction

The derivatives of 1,2,4-triazole form a broad family of compounds that exhibit wide range of interesting properties; several of them show pharmacological and biological activities (anti-depressants [1], anti-inflammatory [2] and fungicides [3]), while others find use in material field and coordination chemistry (magnetic and non-linear optics properties [4,5], multidentate ligands [6]). On the other hand, salts of selenic acid were intensively studied and numerous of their proprieties are highlighted by structural [7], spectroscopic [8,9], optical [10], thermal [11] and theoretical calculations methods [12]. In addition, it is reported in literature that many organoselenium compounds are playing important role in biochemical processes ranging from antioxidants to anticancer and antiviral agents [13].

In the last few years, proton-transfer compounds based on nitrogen-containing derivatives and selenic acid have attracted considerable attention. Thermal and dielectric properties of the bis(2-methylanilinium) selenate were reported by Ben Hassen et al. [14]. Phase transitions and electrical properties of the 4-benzylpyridinium monohydrogenselenate were studied by Maaleje et al. [15]. Thermal behaviors of the bis-4-benzyl piperidinium tetraoxoselenate monohydrate, the 1, 3-diammonium propylselenate monohydrate and the bis (adeninium) selenate dihydrate crystals have been investigated by Kessentini et al. [16], Thirunarayanan et al. [17] and Ben Hassen et al. [18], respectively. Quantum chemical investigations of the bis(1–hydroxy–2–methylpropan-2aminium) selenate and the 1,2,4-triazolium hydrogenselenate complexes were reported [19,20].

The selenic hydrogen bonded salt Bis(5-amino-3-carboxy-1H-1,2,4-triazol-4-ium) selenate dihydrate

(BACTSe) has been synthesized and characterized by XRD, FT-IR and FT-Raman techniques. It crystallizes

in the C2/c space group and displays a three-dimensional framework stabilized mainly via intermolec-

ular O-H…O, N-H…O and O-H…N hydrogen bonds. The quantum chemical study performed with ab

initio UHF method using 6-311G(d,p) base set, has permitted the determination of the structural pa-

rameters, the total energy, the HOMO and LUMO energies, the thermodynamic parameters and the NBO charges. Moreover, normal mode frequencies and corresponding vibrational assignments have been

Structures of all the above cited compounds are established mainly by hydrogen bonds. Non-covalent interactions such as Hbonds have strong ability to combine with each other, which facilitates the construction of supramolecular crystalline materials. Moreover, they are very useful in devising gas-storage devices, sensors, optical switches and solar cells [21,22].

We have reported in previous works, crystal structures of hydrogen bonded salts prepared by reacting 3-amino-1,2,4 triazol-5-carboxylic acid hydrate and inorganic acids such as sulfuric [23], nitric [24] and phosphoric acids [25]. The selenic salt, we report in the present work, exhibits a crystal structure isostructural with the

© 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail address: fadilaber@yahoo.fr (F. Berrah).

one obtained with sulfuric acid. Selenate partially and completely substituted for sulfate was already reported such as in ettringite by D.J. Hassett et al. [26]. Herein, we investigate the crystal structure and vibrational spectroscopy (IR and Raman spectra) of this novel selenate complex by both experimental and ab initio HF methods.

2. Experimental

2.1. Synthesis of BACTSe

The 3-Amino-1,2,4-triazole-5-carboxylic acid hydrate $(C_3H_4N_4O_2 \cdot xH_2O)$ and selenic acid (99.95%, aldrich) were used as such without further purification. The H_2SeO_4 acid was added drop wise to $(C_3H_4N_4O_2 \cdot xH_2O)$ dissolved in warm distilled water. The resulting solution was cooled, with stirring, to room temperature. After two weeks of slow spontaneous evaporation, small colorless crystals of BACTSe were formed. The chemical reaction of formation of the studied salt is given below.

$$2[C_{3}H_{4}N_{4}O_{2} \cdot xH_{2}O] + H_{2}SeO_{4} \rightarrow 2[C_{3}H_{5}N_{4}O_{2}]^{+} [SeO_{4}]^{-2}, 2H_{2}O_{3}$$

2.2. X-ray diffraction study

The X-ray data were collected with a Bruker Apex II CCD area detector diffractometer with a graphite-monochromated Mo-K α radiation source (0.71073 Å) at 298 K. The reported structure was solved by direct methods with SIR2002 [27] to locate all the non-H atoms which were refined anisotropically with SHELXL97 [28] using full-matrix least-squares on F^2 procedure from within the WinGX [29] suite of software used to prepare the material for publication. All absorption corrections were performed with the SADABS program [30]. All the H atoms were placed in the calculated positions and constrained to ride on their parent atoms, except for H atoms of water molecule which were located in a difference map refined and their positions were isotropically with Uiso(H) = 1.5Ueq(O). Crystal data and structure refinement details are listed in Table 1.

2.3. Spectroscopic measurements

The vibrational measurements were carried out at room temperature. FT-IR spectrum has recorded with Bruker VERTEX 70 spectrometer in the region 4000–400 cm⁻¹. The polycrystalline powders were achieved by grinding in agate mortar. The Fourier transform Raman (FT-Raman) spectrum has been recorded with RAM II Raman module attached to the Brucker VERTEX 70 spectrometer equipped with Ge detector cooled to liquid nitrogen temperature.

2.4. Computational details

The calculations were performed at Hartree-Fock (HF) level using Gaussian 03 W [31] program package, invoking gradient geometry optimization [32]. Initial geometry (molecule obtained from XRD data) was minimized without any constraint at UHF level, adopting the 6-311G(d,p) basis set. The harmonic frequencies, infrared and Raman intensities were calculated and all the frequencies were scaled by 0.9051 [33] for UHF/6-311G(d,p) basis set. Presence of one negative frequency (see Table 7) reveals that global minimum was not calculated [34]. Similar situation was observed in ethylenediammonium complex [35] and melaminium perchlorate monohydrate complex [36]. The natural bonding orbital (NBO) calculations [37] were performed using NBO 3.1 program, as

Table 1

Crystal data and structure refinement parameters for BACTSe.

Crystal data	
Empirical formula ^a	C ₆ H ₁₄ N ₈ O ₁₀ Se
Formula weight (g mol ⁻¹)	437.21
Temperature (K)	298
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions (Å,°)	
a	19.8690(14)
b	5.8789(4)
c	13.4826(9)
β	108.906(3)
Volume (Å ³)	1489.91(18)
Z ^a	4
Calculated density (g/cm ³)	1.949
Absorption coefficient (mm ⁻¹)	2.596
F(000)	880
Crystal size (mm ³)	$0.04 \times 0.02 \text{ x } 0.01$
Color	Colorless
Shape	prism
Cell parameters from	6204 reflections
Wavelength (Mo K α) (A)	0./10/3
$\theta_{max} - \theta_{min} (^{\circ})$	30.89-3.19
Measured reflections	9082
Independent reflections	2350
Reflections with $1 > 2r(1)$	2182
K _{int}	0.1551
	20 20
	$-20 \rightarrow 20$
K 1	$-0 \rightarrow 0$
Refinement method Full-matrix Least-squares on F^2	$-19 \rightarrow 19$
Final R indices $[F^2 > 2\sigma(F^2)]$	
$\frac{1}{2} \frac{1}{2} \frac{1}$	0.0334 0.0703
R indices (all data)	0.0554, 0.0755
R indices (an data)	0.0451 0.0819
F_1, w_2 Coodness-of-fit on F^2	1 106
Data/restraints/parameters	2350/0/121
Extinction coefficient	0.0041(12)
Largest difference peak and hole $(e^{A^{-3}})$	0.0011(12)
Δomax. Δomin	0.8122.071
-r, -r	

^a The asymmetric unit contains half of the chemical formula.

implemented in the Gaussian 03 W package, in order to understand the various second order interactions between the filled and vacant orbital of the different subsystems existing in the studied molecule. GaussView 5.0.8 [38] was used for the structural and spectroscopic illustrations.

3. Results and discussion

3.1. Structure description

The BACTSe crystallize in a monoclinic cell with the parameters a = 19.8690(14) Å, b = 5.8789(4) Å, c = 13.4826(9) Å and $\beta = 108.906(3)^{\circ}$ (Table 1). The asymmetric unit comprises one cation, half of selenate anion and one water molecule. The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1.

The selenium atom lies in the twofold axis which gives to the selenate anion (SeO_4^{-2}) a rather regular geometry compared with that seen in similar compounds [14,17,19] (Table 2). The deviations observed between Se–O bonds lengths in the present compound (two short distances of 1.6269(11) Å and two large one of 1.6492(13) Å) and these in the structure of the selinic acid (two short distances of 1.587(3) Å and 1.585(3) Å and two large one of 1.678(3) Å and 1.672(2) Å) [39], confirm the transfer of two protons from the selenic acid to two 3-Amino-1,2,4-triazole-5-carboxylic acid. Protonation occurs at atom N3 of the triazole ring.

Table 2 (continued)

Fig. 1. Molecular structure with the atomic labeling scheme. Displacements are drawn at the 50% probability level.

Table 2
Experimental (XRD) and optimized geometrical parameters of BACTSe.

Structural parameters	5-amino-3-carboxy-1H-1,2,4 triazol-4-ium selenate hydrate	
	XRD	UHF/6-311G (d.p)
Bond distance (Å)		
Se1-04	1.6269(11)	1.5989
Se1 04	1.6269(11)	1.5734
Se1 03	1.6492(13)	1.603
Se1 03	1.6492(13)	1.7663
N3- C3	1.3494(18)	1.3314
N3- C2	1.3651(19)	1.3735
N3- H3	0.86	1.0347
N1 –C3	1.341(2)	1.3302
N1 –N2	1.3651(19)	1.3534
N1- H1	0.86	0.9966
C1 –O1	1.212(2)	1.1731
C1- O2	1.305(2)	1.3124
C1- C2	1.483(2)	1.4953
N2- C2	1.299(2)	1.2677
N4- C3	1.320(2)	1.3097
N4 –H4A	0.86	0.9942
N4- H4B	0.86	1.0173
02 –H2	0.82	0.9466
01W- H1W	0.78(4)	0.9432
01W –H2W	0.80(3)	0.9432
Bond angle (°)		
04- Se1- 04	114.20(9)	117.9298
04- Se1- 03	109.02(6)	109.3591
04 -Se1- 03	108.24(7)	102.2259
04 -Se1- 03	108.24(7)	104.3011
04- Se1- 03	109.02(6)	116.8517
03- Se1- 03	107.95(11)	104.0372
C3 –N3– C2	106.09(12)	105.9811
C3 –N3 –H3	127	125.0561
C2- N3- H3	127	128.9603
C3-N1-N2	110.67(13)	111.7293
C3- N1 -H1	124.7	126.0607
N2- N1- H1	124.7	122.2096
01 -C1- 02	127.34(16)	126.2521
01 –C1 –C2	120.75(14)	123.4835
02- C1- C2	111.91(14)	110.2644
C2-N2-N1	104.17(13)	104.3474
C3- N4- H4A	120	118.1449
C3- N4- H4B	120	120.9002
H4A- N4- H4B	120	120.9458
N4 -C3- N1	127.16(15)	126.5104
N4 -C3- N3	126.18(14)	127.7371
N1 -C3 -N3	106.66(13)	105.7524
N2 -C2- N3	112.41(13)	112.1897

Structural parameters	5-amino-3-carboxy-1H-1,2,4 triazol-4-ium selenate hydrate	
	XRD	UHF/6-311G (d.p)
N2- C2- C1	125.46(14)	123.5786
N3-C2-C1	122.13(13)	124.2317
C1 - O2 - H2	109.5	110.3641
H1W- O1W- H2W	104(3)	106.3044
Dihedral bond angle (°)		
C3 -N1- N2- C2	0.63(18)	-0.0273
N2-N1-C3-N4	178.60(16)	179.9649
N2 -N1- C3- N3	-0.91(18)	0.061
C2 - N3 - C3 - N4	-178.71(16)	-179.9695
C2 - N3 - C3 - N1	0.81(17)	-0.0671
N1 - N2 - C2 - N3	-0.10(18)	-0.0174
N1-N2-C2-C1	179.95(15)	179.9947
C3 -N3 -C2 -N2	-0.45(18)	0.0549
C3- N3- C2- C1	179.51(14)	-179.9573
01 -C1-C2- N2	178.63(17)	-0.6404
02 -C1- C2 -N2	-1.9(2)	179.3475
01 -C1- C2 -N3	-1.3(2)	179.3732
02- C1- C2- N3	178.10(15)	-0.6389

The geometry of the triazole planar ring in BACTSe is similar to these reported in analogous compounds [23,40]; it exhibits a short distance of 1.299(2) Å revealing the double-bond character of the C2=N2 bond, two long distances 1.3651(19) and 1.3651(19) Å related to the single bonds C2–N3 and N1–N2 respectively. The C3–N1 and C3–N3 bonds lengths are respectively 1.341(2) and 1.3494(18) Å which suggests the delocalization of the double bond (N1C3N3).

The anionic and cationic entities are linked via N–H–O hydrogen bonds observed between 1.91 Å and 2.923(2) Å. The selenate anion acts as acceptor via its four oxygen atoms, while the cation acts as donor through the nitrogen atoms N1 and N3 of the triazole ring and N4 of the amino group. O–H–O and O–H–N hydrogen bonds (ranging from 1.76 Å to 2.19(4) Å) associate the water molecules and the cations. In this case, the water molecules play at the same time the role of hydrogen-bond donor and acceptor (see Table 3). The presence of this rather extensive complex H-bonding network allows the development of a three dimensional framework (Fig. 2.) that can be described if we consider mixed infinite chains developing along the b axis (Fig. 3.) and deduced one from the other by the different symmetry elements of the C2/c space group. As a result, $R^4_4(14)$ and $R^2_2(8)$ centro-symmetric rings and $R^2_4(8)$ graph-set pattern are identified (Fig. 3.) [41,42].

The optimized structure of BACTSe is presented in Fig. 4. Bond lengths and angles reported in Table 2, show in general good agreement between the experimental and theoretical geometric parameters. The largest difference between the experimental and calculated bond lengths and bond angles are 0.1171 Å (Se1–O3) and 7.8317° (O4–Se1–O3), respectively.

Table 3Hydrogen bonds geometries of BACTSe.

D-H A	D-H (Å)	H A (Å)	D A (Å)	D-H A (°)
N1 -H1…O3 ⁱⁱ⁾	0.86	1.91	2.701(2)	153
01W-H1W01	0.78(4)	2.05(4)	2.816(2)	167(4)
02−H2…01W ⁱ⁾	0.82	1.76	2.553(2)	162
01W−H2W…N2 ^{vi)}	0.81(4)	2.19(4)	2.992(2)	170(4)
N3−H3…O3 ⁱⁱⁱ⁾	0.86	2.650(2)	2.650(2)	172
N4–H4A O4 ^{v)}	0.86	2.827(2)	2.827(2)	133
N4−H4B…O4 ^{iv)}	0.86	2.923(2)	2.923(2)	173

Symmetry codes: i) 1/2-x,1/2 + y,1/2-z; ii) x,1-y,1/2 + z; iii) x,-1+y,z; iv) -x,-1+y,1/2-z; v) x,-y,1/2 + z; vi) x,1-y,-1/2 + z.

Fig. 2. Projection of the three-dimensional packing of BACTSe along the b axis. Hydrogen bonds are shown as dashed lines.

Fig. 3. Projection of the mixed infinite chains parallel to the (100) plan.

Fig. 4. Optimized structure of BACTSe calculated using UHF/6-311G(d,p) method.

The thermodynamic proprieties and some molecular parameters of the complex are listed in Table 4. The total energy and dipole moment are E = -3259.3559 a.u and $\mu = 13.1390$ D, respectively. The high dipole moment reveals the ionic nature of the complex.

3.2. Atomic charges distribution

The charge distribution over the atoms affects a lot of properties of molecular systems such as dipole moment, molecular polarizability and electronic structure [43]. Moreover, atomic charge has been used to describe some processes in chemical reactions like electronegativity equalization and charge transfer [44,45].

The Mulliken atomic charges and natural charges calculated by NBO method at the UHF/6-311G(d,p) level are collected in Table 5 and are presented in Fig. 5.

The C16 atom has the largest Mulliken positive charge of 0.819794 among carbon atoms. The high positive charge at C16 is due to the effect of the three negative nitrogen atoms attached with it: N6, N8 and N13 with electron density of -0.540747, -0.369597 and -0.612711, respectively. The oxygen atoms O2 and O4 of the selenate anion are the more negative among oxygen atoms with charges of -0.781638 and -0.768436, respectively. All H atoms have a positive charge ranged from 0.260568 (atom H14) to 0.400537 (atom H7). The presence of large negative charges on O and N atoms and net positive charge on H atoms confirm the presence of intermolecular H-bonds (N–H…O, O–H…N and O–H…O) in the crystal structure of the present compound.

The NBO charges elucidate more clearly the effect of the environment of C11 carbon on its charge. The decrease of electron density on this atom (positive natural charge of 0.92559) is due to the electron withdrawing character of the oxygen atoms linked to this carbon, viz. O10 and O18 atoms.

3.3. Natural bond orbital analysis

NBO analysis provides an efficient method for studying intra and intermolecular bonding and interaction among bonds; furthermore, it offers a convenient basis for the investigation of charge transfer or conjugative interactions in molecular system [46]. The larger the E^2 value, the more intensive is the interaction between electron donors and acceptors; and the greater the extent of

Table 4

Calculated thermodynamic parameters of BACTSe.

Thermodynamic parameters (298 k)	BACTSe UHF/6-311G (d.p)
SCF Energy (Hartree)	-3259.35598687
Total Energy (thermal), E _{total} (Kcal mol ⁻¹)	106.152
Heat Capacity at const.volume, C_v (cal mol ⁻¹ .k ⁻¹)	55.340
Entropy, S (cal mol ^{-1} . K ^{-1})	137.149
Vibrational Energy, E _{vib} (Kcal mol ⁻¹)	104.374
Zero-point vibrational Energy, E ₀ (Kcal mol ⁻¹)	96.07218
Rotational Constants (GHz)	
A	0.56470
В	0.25424
С	0.18239
Dipole moment (Debye)	
$\mu_{\mathbf{x}}$	11.2497
μ_y	6.7118
μ_z	1.0141
μ _{Total}	13.1390
Total electron density (TD)	$\pm 5.8e \times 10^{-2}$
Electrostatic potential (ESP)	$\pm 3.56e \times 10^{-2}$
E _{LUMO}	-10.93eV
Е _{НОМО}	2.09eV
E _{LUMO-HOMO}	13.02eV

Table 5	
The charge distribution calculated by Mulliken and NBO methods at the HE/6-311C (d n) lev	<i>i</i> el

Atoms	Atomic charges (Mulliken)	Natural charges (NBO)	Atoms	Atomic charges (Mulliken)	Natural charges (NBO)
Se1	1.641082	2.90775	C11	0.569446	0.92559
02	-0.781638	-1.15749	C16	0.819794	0.78075
03	-0.310121	-0.45760	C17	0.357888	0.33005
04	-0.768436	-1.15261	H7	0.400537	0.51312
05	-0.653709	-1.06074	H9	0.298524	0.448897
010	-0.398380	-0.62333	H14	0.260568	0.41497
018	-0.394299	-0.72424	H15	0.345799	0.47574
020	-0.533718	-0.94193	H19	0.298689	0.50276
N6	-0.540747	-0.63854	H21	0.290453	0.47604
N8	-0.369597	-0.43255	H22	0.290548	0.47607
N12	-0.2109971	-0.24280			
N13	-0.612711	-0.81997			

Fig. 5. Comparison of Mulliken and natural atomic charges of BACTSe.

conjugation of the whole system.

In the present compound different types of donor-acceptor interactions are observed, selected interactions are listed in Table 6. Within the SeO₄⁻² anion the strongest interactions are observed between lone pairs of oxygen n₀₄ and n₀₅ and $\sigma^*_{\text{Se1}-\text{O3}}$ antibonding orbital with stabilizing energy of 15.72 and 20.06 kcal/mol, respectively. In the C₃H₅N₄O₂⁺ cations, n $\rightarrow \pi^*$ and n $\rightarrow \sigma^*$ charge transfer interactions have been observed; the energies of the

Table 6

Second order perturbation theory analysis of the Fock matrix in NBO basis for the title molecule.

Туре	Donor	Туре	Acceptor	E ⁽²⁾ (kcal/mol)
LP(3)	02	σ*	Se1-03	13.66
LP(3)	04	σ^*	Se1-03	15.72
LP (2)	05	σ^*	Se1-02	11.12
LP (2)	05	σ^*	Se1-04	10.81
LP (3)	05	σ^*	Se1-03	20.06
LP (1)	02	σ^*	N6-H7	6.13
LP (2)	02	σ^*	N6-H7	8.11
LP (3)	02	σ^*	N6-H7	5.58
LP (1)	04	σ^*	N13-H15	4.26
LP (3)	04	σ^*	N13-H15	2.24
π	O10-C11	π^*	N12-C17	2.69
π	N12-C17	π^*	010-C11	6.49
LP (1)	N6	π^*	N12-C17	32.33
LP (1)	N8	π^*	N12-C17	19.11
LP(2)	018	π^*	C10-C11	33.47
LP(2)	010	σ^*	C11-C17	16.14
LP(2)	010	σ^*	C11-018	21.48
LP(2)	020	σ^*	N8-H9	2.00

hyperconjugative $n_0 \rightarrow \pi^*_{C-0}$, $n_N \rightarrow \pi^*_{C-N}$, $n_0 \rightarrow \sigma^*_{C-C}$ and $n_0 \rightarrow \sigma^*_{C-0}$ interactions vary between 19.11 and 33.47 kcal/mol. In addition, different types of $\pi \rightarrow \pi^*$ hyperconjugative interactions reinforce the stability of the entire cation ($\pi_{N-C} \rightarrow \pi^*_{0-C}$ and $\pi_{0-C} \rightarrow \pi^*_{N-C}$ with stabilization energies vary between 2.69 and 6.49 kcal/mol).

The intermolecular interactions $n_O \rightarrow \sigma^*_{N-H}$ (oxygene atoms of the selenate anion and N–H bond of the triazole cycle and of the amino group), with a rather strong total stabilization energy (see Table 6), reveal the presence of N–H···O hydrogen bonds between cation and anion as observed in the crystal structure.

3.4. Molecular electrostatic potential

The molecular electrostatic potential surface (MEP) provides a visual method to understand the relative polarity of the compounds [47]. MEP has been used primarily for predicting sites and their relative reactivity towards electrophilic and nucleophilic attacks, along with investigating hydrogen bonding interactions [48-50]. MEP is a 3D illustration of the charge distribution in a molecule where the electron rich and partially negative charge is shown in red color, the blue region reveals the electron deficient and partially positive charge, light blue region shows slightly electron deficient region, the slightly electron rich region is indicated by yellow and the green color shows neutral (zero potential) region [51]. The MEP surface, the electrostatic potential (ESP) and the contour of the electrostatic potential of the present compound, calculated with the UHF method at the 6-311G(d,p) level are shown in Figs. 6–8. It is seen that the region around oxygen atoms (linked to selenium atom) represents the most negative potential. The hydrogen atoms of the carboxyl group and of the water molecule

Fig. 6. The total density mapped with electrostatic potential surface of BACTSe.

 $E_{LUMO} = 2.09 \text{ eV}$

 $\Delta E = 13.02 \text{ eV}$

 $E_{HOMO} = -10.93 \text{ eV}$

Fig. 8. The contour map of electrostatic potential of BACTSe.

carry the most positive potential. The total electron density and the electrostatic potential of the complex lie in the range $\pm 5.8e \times 10^{-2}$ and $\pm 3.56e \times 10^{-2}$, respectively.

3.5. Frontier molecular orbital analysis

Frontier molecular orbitals play an important role in the electric and optical properties and chemical reactions [52,53]. Energy of HOMO and LUMO is related to the nucleophile and electrophile character in such a way that hard nucleophile has a low energy HOMO and hard electrophile has a high energy LUMO [52]. Frontier orbital energy gap is associated with properties such as molecular reactivity and kinetic stability [54]. In-order to evaluate the energetic behaviour of the studied compound, we have carried out the calculations by UHF/6-311G(d,p) method. The HOMO and LUMO are presented in Fig. 9. The energies of HOMO, LUMO are -10.93eV, and 2.09eV, respectively. LUMO is totally localized on the cationic entity, while a small contribution of the selenate anion is observed in HOMO. The LUMO-HOMO energy gap is 13.02eV which implies

high kinetic stability and low chemical reactivity because it is energetically unfavorable to add electrons into LUMO or to extract

In addition to the HOMO-LUMO energy levels, in the boundary region, neighbouring orbitals may show quasi degenerate energy levels [56,57]. The total density of state spectrum is used to understand the molecular behaviour interms of Mulliken population analysis. The density spectrum of BACTSe (Fig. 10) was calculated and created by convoluting the molecular orbital information with Gaussian curves of unit height and full width at half maximum of 0.3eV by using the Gauss sum 2.2 program [58]. The TDOS spectrum gives the pictorial representation of MO (molecule orbital) compositions and their contributions to chemical bonding through the positive and negative charges. In general, positive value of DOS indicates a bonding interaction, negative value reveals an antibonding interaction and zero value shows nonbonding interactions [59]. In the present study, negative value indicates antibonding interaction between the molecules.

3.7. Vibrational spectral analysis

The recorded FT-IR and FT-Raman spectra of BACTSe are depicted in Figs. 11 and 12, respectively. The observed FT-IR and FT-Raman wavenumbers, the calculated wavenumbers, the relative intensities of the calculated peaks and the assignments of the fundamental vibrations are presented in Table 7. The bands observed arise from the skeletal internal vibrations of 5-amino-3-

Wavenumber (cm⁻¹)

Fig. 11. FT-IR spectrum of BACTSe.

carboxy-1H-1,2,4-triazol-4-ium cation, selenate anion, water molecule, the vibrations of N-H···O, O-H···O and O-H···N types of hydrogen bonds and also from the lattice vibrations. The vibrational band assignments were made using the GaussView molecular visualization program [38] and bibliographic data.

3.7.1. Vibrations of the SeO_4^{-2} anion

In the Td point group symmetry, the vibrational analysis of an isolated SeO_4^{-2} anion leads to four fundamentals normal modes: the nondegenerate $v_1(A1)$, the doubly degenerate mode $v_2(E)$ and the triply degenerate $v_3(F2)$ and $v_4(F2)$ with average wave numbers 835, 345, 873, and 413 cm⁻¹, respectively. v_2 and v_4 involve the symmetric and the asymmetric bending mode of the O–Se–O bonds, whereas v_1 and v_3 involve mainly Se–O symmetric and asymmetric stretching modes. Under the effect of its interaction

Fig. 12. FT-Raman spectrum of BACTSe. (Single column fitting image).

with its crystalline environment, the selenate ion can lose its symmetry and the degeneracy of its vibrational modes is then expected to be moved [16.18, 60.61]. In the studied compound, the medium band due to the asymmetric stretching mode of the Se–O bonds (v_3 (SeO₄)) is observed at 894 cm⁻¹ in infrared spectrum; its counterpart is manifested as a weak band at 861 cm⁻¹ in Raman spectrum (Figs. 11 and 12 and Table 7). The shoulder band as well as the weak band observed in IR and Raman spectra at 436 and 413 cm⁻¹, respectively, are assigned to the asymmetric bending vibrations v_4 (SeO₄). The weak band observed in Raman spectrum at 372 cm⁻¹ is assigned to the symmetric bending vibrations v_2 (SeO₄).

3.7.2. Vibrations of the water molecule

In the current compound, water molecule participates in three different hydrogen bonds (Table 3); as a result, the positions of the infrared bands of the water molecules are displaced relative to the one of the isolated molecule [18]. In addition, the bands which can arise from the stretching vibrations of water molecule in this structure fall into the region in which the bands of NH₂ stretching type of vibrations occur. Therefore, it is impossible to extract the appropriate band in infrared spectrum of studied crystal. Their counterparts in the Raman spectrum are not observed due to the insufficient detector response above 3300 cm^{-1} [61]. In the calculated IR and Raman spectra, the bands associated with $v_{asv}(H_2O)$ and $v_{sv}(H_2O)$ are observed at 3774 and 3692 cm⁻¹ (Table 7). However, the presence of water molecule is manifested by the strong band observed in infrared spectrum at 1559 cm⁻¹ (in-plan bending vibration $\delta(H_2O)$) and medium to strong bands located at 623 and 460 cm⁻¹ (out-of-plan bending vibration γ (H₂O)) [61].

3.7.3. Vibrations of the $(C_3H_5N_4O_2)^+$ cation

3.7.3.1. Vibration of the amino $(-NH_2)$ group. The bands associated with the asymmetric $(v_{asy}(NH_2))$ and the symmetric $(v_{sy}(NH_2))$ stretching modes of the amino group are observed in the IR spectrum as two very weak bands at *ca* 3409 and 3303 cm⁻¹, respectively. The symmetric in-plan bending mode $(\delta_{sy}(NH_2))$ is identified by a strong band located at 1625 cm⁻¹ in the IR spectrum and a very weak band located at 1636 in Raman spectrum. The strong and medium bands observed at 1047 and 1073 cm⁻¹ in infrared and Raman spectra, respectively, can be assigned to the asymmetric in-plan bending mode $(\delta_{asy}(NH_2))$. Strong band at 688 cm⁻¹ in IR and

Table 7
FT-IR. FT-Raman experimental and calculated frequencies using UHF/6-311(d,p) method along with their relative intensities and probable assignments of BACTSe

Observed Wavenumber (cm ⁻¹)		HF/6-311G (d.p) Calculated Wavenumber (cm ⁻¹)			AAssignment	
FT-IR	FT-IR	Unscaled	Scaled	IR intensity	Raman Activity	
		4212	3812	120.5492	42.8720	v_{asy} (H ₂ O)
		4121	3730	58.4087	75.7897	v_{sy} (H ₂ O)
		4114	3724	210.1026	75.7727	ν (O-H) _{COH}
3409vwb		3874	3506	384.0157	92.4880	v_{asy} (NH ₂)
3400vwb		3837	3472	242.4008	64.5983	v (NH)
3303vwb						v_{sy} (NH ₂)
3163wb	3115vwb					ν (O-H) _{COH}
		3412	3088	1708.6756	180.5175	v_{sy} (NH ₂)
2980 m		3125	2828	1551.9212	96.1561	v (NH)
1684s	1689 m	2054	1859	446.4886	19.0628	ν (C==0)
		1889	1710	798.3022	5.3059	$v(C-N) + \delta(NH_2)$
		1845	1670	17.1799	44.1228	$v(C=N)+\delta(NH_2)$
1625s	1636vw	1809	1637	41.3721	20.7355	δ_{sy} (NH ₂)
1559s	1566 m	1762	1595	109.2137	7.4025	δ(H ₂ O)
1503s	1530b	1682	1522	81.4168	1.0971	
	1457 m	1606	1454	4.5148	25.0263	
1418 m		1537	1391	138.6997	3.2723	$\delta(NH) + \delta CC$
1356vs	1350 mb	1513	1369	4.2781	4.4612	δ(O-H) _{COH}
1247 m	1236vw	1363	1234	22.1296	2.4002	$\delta(NH) + \nu CC$
1110 m	1116 m	1309	1185	238.1951	3.6616	ν (C-OH)
		1226	1110	71.2747	8.0489	$\delta(HNN) + \delta(NH_2) + \delta(C-OH)$
	1073 m	1212	1097	7.6944	1.7302	$\delta_{asy}(NH_2)$
1047s		1181	1069	13.6641	12.5214	δ_{asy} (NH ₂)
1011s	1007w	1097	993	35.8025	13.7444	δ(Ring)
		1060	959	272.1149	4.6145	$v_3(SeO_4)$
924shw	912w	1021	924	125.9021	0.1489	δ(NH)
894 m		994	900	156.7378	5.1314	$v_3(SeO_4)$
	861w	950	860	111.7402	34.3434	$v_3(SeO_4)$
819 m	818 m	897	812	2.2322	2.0415	γ CC
777s		843	763	1.6834	3.9235	γ(O—H)
		834	755	0.0299	0.0771	
	733w	828	749	13.7128	0.1248	$\gamma(NH_2)$
688s		773	700	322.2217	0.0761	$\gamma(NH_2) + \gamma CC$
		755	683	97.7731	1.7716	δ(CO)
		709	642	75.5228	12.9067	$v_1(SeO_4)$
623 m		701	635	0.8925	2.1371	γ (H ₂ O)
556sh	571vw	595	539	128.0701	2.1570	δ (OH)
526shw		594	538	27.5827	1.7802	
		573	519	103.1159	0.5259	γ (H ₂ O) + γ (NH ₂)
460s						
436sh	413w	477	432	98.4451	1.2273	$v_4(SeO_4)$
		454	411	85.7101	2.8460	
		428	387	15.0890	4.8055	
		424	384	56.2785	4.4098	$\upsilon_4(SeO_4) + \delta (H_2O) + \delta(Ring)$
	372vw	422	382	63.1777	3.7334	$\upsilon_2(\text{SeO}_4) + \delta (H_2O) + \delta(\text{Ring})$
		385	349	0.9098	2.9501	$v_2(SeO_4)$
	327vw	355	321	293.2261	1.3052	γ (H ₂ O)
		347	314	1.8585	0.0440	
		342	310	1.1587	4.0977	$v_2(SeO_4)$
	252vs	289	262	21.7791	0.4451	δ(H ₂ O)
		227	184	0.2081	2.2092	γ (H ₂ O)
	198shw	211	191	14.8284	0.6454	
		178	161	1.8485	1.0791	δ (H ₂ O)
		167	151	23.1649	0.0719	
		149	135	4.3184	0.0168	γ (H ₂ O) +Lattice vibration
	109s	137	124	0.3593	0.1020	Lattice vibration
		94	85	1.0154	0.5885	$\delta(H_2O) + Lattice vibration$
	69s	64	58	5.2792	0.0890	$\gamma(H_2O) + Lattice vibration$
		50	45	1.9495	0.1965	γ (H ₂ O)
		44	40	3.0069	0.5167	δ (H ₂ O) + Lattice vibration
		36	33	4.1838	0.7320	γ(O =CO)
		13	12	0.1251	0.1251	
		-52	-47	0.3416	0.2516	

 $\label{eq:abstrations: s, strong; w, weak; v, very; m, medium; b, broad; sh, shoulder; v, stretching, \delta, in-plan bending; \gamma, out-of-plan bending.$

weak band at 733 cm^{-1} in Raman spectra, respectively, are assigned to the out-of-plan modes [18,61–63].

3.7.3.2. Vibration of the (1H-1.2.4 triazol-4-ium) ring. The very

weak and medium IR peaks at 3400 and 2980 cm⁻¹ are assigned to

N–H stretching vibration. The bands at 1418 and 1247 cm⁻¹in IR spectrum and 1236 cm⁻¹ in Raman spectrum are assigned to N–H in-plan bending mode. The bands at 924 and 688 cm⁻¹ in IR spectrum and at 912 cm⁻¹ in Raman spectrum are assigned to N–H out-of-plan bending mode [64]. The band observed as medium

band located at 1418 cm^{-1} in IR spectrum is assigned to the in-plan bending mode of the C–C bond [65].The bands in infrared and Raman spectra, observed at 819 and 818 cm⁻¹ as medium bands are assigned to C–C out-of-plan bending mode [60,61,64].

3.7.3.3. Vibration of the carboxyl (–COOH) group. The weak band at 3163 cm⁻¹ in the IR spectrum of the present compound represents the O–H symmetric stretching vibration. The absorption band arising from the C=O stretching vibration is observed at the wavenumbers 1684 cm⁻¹ in IR and 1689 cm⁻¹ in Raman spectra. The band arising from O–H in-plan bending appears at 1356 cm⁻¹ in IR and at 1350 cm⁻¹ in Raman. The band corresponding to the O–H out-of-plan bending is depicted as a strong band at 777 cm⁻¹ in IR. The remaining vibrations of the carboxylic group i.e. bending vibrations of C=O group and C–O stretching and bending vibrations are presented in Table 7 [22,64–66].

4. Conclusion

The present work is devoted to the new compound Bis(5-amino-3-carboxy-1*H*-1,2,4-triazol-4-ium) selenate dihydrate. X-ray diffraction study, performed on single crystal grown by slow evaporation method, has showed the similarity of the present structure with the one obtained with sulfate anion. IR and Raman spectra of BACTSe have been recorded and bands derived from internal vibrations of 5-amino-3-carboxy-1H-1.2.4-triazol-4-ium cation, selenate anion and water molecule have been assigned on the basis of ab intio UHF/6-311G(d,p) calculations as well as by comparison with the previously reported studies of similar compounds. Furthermore, calculations have revealed the ionic nature of this complex and its high kinetic stability and low chemical reactivity as showed by the high dipole moment and the high HOMO-LUMO energy gap, respectively. The reactive part of the synthesized molecule is established by the molecular electrostatic potential. The total density spectrum indicates the presence of antibonding interaction between the molecules.

Supplementary material

CCDC 1578274 contains the supplementary crystallographic data (excluding structure factors) for the structure reported in this article. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif by e-mailing data_request@ccdc. cam.ac.uk or by contacting the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: b44-1223-336033.

Acknowledgements

The authors are grateful to the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique) for the Financial support. FB gratefully acknowledges Professor M. Zaabat and Mrs. N. Touzari for IR and Raman measurements.

References

- T. Hirota, K. Sasaki, H. Yamamoto, T. Nakayama, J. Heterocycl. Chem. 28 (1991) 257–261, https://doi.org/10.1002/jhet.5570280209.
- [2] K.P. Bhargava, M. Tandon, T.N. Bhalla, J.P. Barthwal, Indian J. Chem. (Sect B20) (1981) 1017–1018.
- [3] W. Li, Q. Wu, Y. Ye, M. Luo, L. Hu, Y. Gu, F. Niu, J. Hu, Spectrochim. Acta (Part A60) (2004) 2343–2354, https://doi.org/10.1016/j.saa.2003.12.008.
- [4] U. Beckmann, S. Brooker, Coord. Chem. Rev. 245 (2003) 17–29, https:// doi.org/10.1016/S0010-8545 (03)00030-4.
- [5] T. Fujigaya, J.J. Dong-Lin, T. Aida, J. Am. Chem. Soc. 125 (2003) 14690–14691, https://doi.org/10.1021/ja038088e.
- [6] I. Matulková, I. Nemec, K. Teubner, P. Nemec, Z. Micka, J. Mol. Struct. 873

(2008) 4660.

- [7] J. Baran, T. Lis, Acta Crystallogr. (Sect. C42) (1986) 270–272, https://doi.org/ 10.1107/S010827018609652X.
- [8] J. Baran, A.J. Barnes, M.K. Marchewka, A. Pietraszko, H. Ratajczak, J. Mol. Struct. 416 (1997) 33–42, https://doi.org/10.1016/S0022-2860(97) 00073-2.
- [9] D. Havlicek, J. Plocek, I. Nemec, R. Gyepes, Z. Micka, J. Solid State Chem. 150 (2000) 305–315, https://doi.org/10.1006/jssc.1999.8595.
 [10] J. Przesławski, R. Lingard, Z. Czapla, Ferroelectr. Lett. 20 (1996) 131–135,
- https://doi.org/10.1080/07315179608204730. [11] I. Nemec, Z. Micka, J. Mol. Struct. 563–564 (2001) 289–294, https://doi.org/
- 111] I. Wentet, Z. Micka, J. Mol. Struct. 565–564 (2001) 269–254, https://doi.org/ 10.1016/S0022-2860(00)00844-9.
- [12] J. Lorenc, I. Bryndal, M. Marchewka, E. Kucharska, T. Lis, J. Hanuza, J. Raman Spectrosc. 39 (2008) 863–872, https://doi.org/10.1002/jrs.1925.
- [13] G. Mugesh, W.W. du Mont, H. Sies, Chem. Rev. 101 (2001) 2125–2179, https://doi.org/10.1021/cr000426w.
- [14] C. Ben hassen, M. Boujelbene, M. Bahri, N. Zouari, T. Mhiri, J. Mol. Struct. 1074 (2014) 602–608, https://doi.org/10.1016/j.molstruc.2014.06.052.
- [15] W. Maalej, A. Ben Rached, T. Mhiri, A. Daoud, N. Zouari, Z. Elaoud, J. Phys. Chem. Solid. 96–97 (2016) 92–99. https://doi.org/10.1016/j.jpcs.2016.05.010.
- [16] Y. Kessentini, A. Ben Ahmed, Z. Elaoud, S.S. Aljuaid, T. Mhiri, Spectrochim. Acta, Part A 98 (2012) 222–228, https://doi.org/10.1016/j.saa.2012.07.133.
- [17] S. Thirunarayanan, V. Arjunan, M.K. Marchewka, S. Mohan, Y. Atalay, J. Mol. Struct. 1107 (2016) 220–230, https://doi.org/10.1016/j.molstruc.2015.11.052.
- [18] C. Ben Hassen, M. Boujelbene, T. Mhiri, J. Mol. Struct. 1079 (2015) 147–154, https://doi.org/10.1016/j.molstruc.2014.09.036.
- [19] S. Thirunarayanan, V. Arjunan, M.K. Marchewka, S. Mohan, J. Mol. Struct. 1134 (2017) 6–16, https://doi.org/10.1016/j.molstruc.2016.12.065.
- [20] V. Arjunan, S. Thirunarayanan, M.K. Marchewka, S. Mohan, J. Mol. Struct. 1145 (2017) 211–221, https://doi.org/10.1016/j.molstruc.2017.05.107.
- [21] J.M. Lehn, Angew. Chem., Int. Ed. Engl. 29 (1990) 1304–1319, https://doi.org/ 10.1002/anie.199013041.
- [22] A. Direm, A. Altomare, A. Moliterni, N. Benali-Cherif, Acta Crystallogr. (Sect. B71) (2015) 427–436, https://doi.org/10.1107/S2052520615011300.
- [23] A. Ouakkaf, F. Berrah, S. Bouacida, T. Roisnel, Acta Crystallogr. (Sect. E67) (2011) 01171–01172, https://doi.org/10.1107/S1600536811013882.
- [24] F. Berrah, R. Bouchene, S. Bouacida, T. Roisnel, Acta Crystallogr. (Sect. E68) (2012) 1116, https://doi.org/10.1107/S1600536812011154.
- [25] F. Berrah, R. Bouchene, S. Bouacida, J.C. Daranc, Acta Crystallogr. (Sect. E 68) (2012) 1333–1334, https://doi.org/10.1107/S1600536812014481.
- [26] D.J. Hassett, G.J. McCarthy, P. Kumarathasan, D. Pflughoeft-Hassett, Mater. Res. Bull. 25 (1990) 1347–1354.
- [27] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crysallogr. 38 (2005) 381–388, https://doi.org/10.1107/S002188980403225X.
- [28] G.M. Sheldrick, Acta Crystallogr. (Sect. A64) (2008) 112–122, https://doi.org/ 10.1107/S0108767307043930.
- [29] L.J. Farrugia, J. Appl. Crystallogr. 45 (2012) 849–854, https://doi.org/10.1107/ S0021889812029111.
- [30] G.M. Sheldrick, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA), 2002.
- [31] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, CT, 2004.
- [32] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214–218, https://doi.org/10.1002/ jcc.540030212.
- [33] J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. 111 (2007) 11683–11700, https://doi.org/10.1021/jp073974n.
- [34] L. Piela, Ideas of Quantum Chemistry, first ed., Elsevier, 2007.
- [35] M.K. Marchewka, M. Drozd, Spectrochim. Acta (Part A99) (2012) 223–233, https://doi.org/10.1016/j.saa.2012.09.026.
- [36] N. Kanagathara, M.K. Marchewka, M. Drozd, N.G. Renganathan, S. Gunasekaran, G. Anbalagan, Spectrochim. Acta (Part A112) (2013) 343–350, https://doi.org/10.1016/j.saa.2013.04.001.
- [37] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, 1996.
- [38] R.D. Dennington, T.A. Keith, J.M. Millam, GaussView 5.0.8, Inc., 2008.
- [39] H.F. Erfany, H. Fuess, D. Gregson, Acta Crystallogr. (Sect. C43) (1987) 395–397, https://doi.org/10.1107/S0108270187095623.
- [40] J.A. Fernandes, B. Liu, J.P.C. Tomé, L. Cunha-Silva, P.F.A. Almeida, Acta Crystallogr. (Sect. E 67) (2011) 02073–02074, https://doi.org/10.1107/ S160053681102811X.
- [41] M.C. Etter, J.C. MacDonald, J. Bernstein, Acta Crystallogr. (Sect. B46) (1990) 256–262, https://doi.org/10.1107/S0108768189012929.
- [42] J. Bernstein, R.E. Davis, L. Shimoni, N.L. Chang, Angew. Chem., Int. Ed. Engl. 34

(1995) 1555-1573, https://doi.org/10.1002/anie.199515551.

- [43] I. Sidir, Y.G. Sidir, M. Kumalar, E. Tasal, J. Mol. Struct. 964 (2010) 134–151, https://doi.org/10.1016/j.molstruc.2009.11.023.
 [44] K. Jug, Z.B. Maksic, in: Z.B. Maksic (Ed.), Theoretical Model of Chemical
- Bonding, Springer, Berlin, 1991, pp. 29–233. Part 3. [45] S. Fliszar, Charge Distributions and Chemical Effects, Springer-Verlag, New
- York, 1983, https://doi.org/10.1007/978-1-4612-5575-8. [46] M. Snehalatha, C. Ravikumar, I.H. Joe, N. Sekar, V.S. Jayakumar, Spectrochim.
- Acta (Part A72) (2009) 654–662, https://doi.org/10.1016/j.saa.2008.11.017. [47] J.M. Seminario, Recent Developments and Applications of Modern Density
- Functional Theory, vol. 4, 1996, pp. 3–838. [48] E. Scrocco, J. Tomasi, Adv. Quant. Chem. 11 (1978) 115–193, https://doi.org/
- [48] E. SCIOCCO, J. TOITASI, Adv. Quant. Chem. 11 (1978) 115–193, https://doi.org 10.1016/S0065-3276 (08)60236-1.
- [49] F.J. Luque, J.M. Lopez, M. Orozco, Theor. Chem. Acc. 103 (2000) 343–345, https://doi.org/10.1007/s002149900013.
- [50] N. Okulik, A.H. Jubert, Int. Elect. J. Mol. Des 4 (2005) 17-30.
- [51] P. Politzer, J.S. Murray, Theor. Chem. Acc. 108 (2002) 134–142.
- [52] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976, pp. 5–27.
- [53] T. Karakurtm, M. Dincer, A. Cetin, M. Sekera, Spectrochim. Acta (Part A 77) (2010) 189.
- [54] L.X. Hong, L.X. Ru, Z.X. Zhou, Comput. Theor. Chem. 969 (2011) 27–34, https:// doi.org/10.1016/j.comptc.2011.05.010.
- [55] R.M. Yosadara, J. Phys. Chem. A106 (2002) 11283-11308, https://doi.org/

10.1021/jp021152e.

- [56] R. Hoffmann, Solids and Surfaces: a Chemist's View of Bonding in Extended Structures, VCH Publishers, New York, 1988.
- [57] J.G. Małecki, Polyhedron 29 (2010) 1973–1979, https://doi.org/10.1016/ j.poly.2010.03.015.
- [58] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29 (2008) 839–845, https://doi.org/10.1002/jcc.20823.
- [59] M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, J. Chem. Phys. 109 (1998) 6854, https://doi.org/10.1063/1.477252.
- [60] M. Daszkiewicz, M.K. Marchewk, Vib. Spectrosc. 57 (2011) 326–333, https:// doi.org/10.1016/j.vibspec.2011.09.008.
- [61] M.K. Marchewka, J. Janczak, S. Debrus, J. Barana, H. Ratajczak, Solid State Sci. 5 (2003) 643–652, https://doi.org/10.1016/S1293-2558 (03)00034-7.
- [62] B.B. Koleva, T. Kolev, T. Tsanev, S. Kotov, H.M. Figge, R.W. Seidel, W.S. Sheldrick, J. Mol. Struct. 881 (2008) 146–155.
- [63] V. Sangeetha, M. Govindarajan, N. Kanagathara, M.K. Marchewka, S. Gunasekaran, G. Anbalagan, J. Spectrochim. Acta (Part A118) (2014) 1025–1037, https://doi.org/10.1016/j.saa.2013.09.097.
- [64] V. Arjunan, M. Kalaivani, M.K. Marchewka, S. Mohan, Spectrochim. Acta (Part A 107) (2013) 90–101, https://doi.org/10.1016/j.saa.2013.01.040.
- [65] M.K. Marchewka, A. Pietraszko, J. Phys. Chem. Solid. 64 (2003) 2169–2181, https://doi.org/10.1016/S0022-3697 (03)00218-X.
- [66] M. Ilczyszyn, D. Godzisz, M.M. Ilczyszyn, Spectrochim. Acta (Part A59) (2003) 1815–1828.