الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التعليم العالي والبحث العلمي

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Mémoire de Master

Présenté à l'Université 08 Mai 1945 de Guelma Faculté des Sciences et de la Technologie Département de : Génie Civil & Hydraulique Spécialité : Génie Civil Option : VOIES ET OUVRAGES D'ART

Présenté par : TADJINE TARIQ ET HANANI RAMZI

Thème :

MODÉLISATION PAR ÉLÉMENTS FINIS D'UNE DALLE BIAISE ET VALIDATION DU MODÈLE

Sous la direction de : HIMEUR MOHAMMED

Juin 2017

REMERCIEMENTS

Louange à ALLAH (que son Nom soit glorifié) qui nous a guidé, et sans lui nous n'aurions jamais été sur la bonne voie.

Nous remercions nos très chers parents pour leurs soutiens et leurs patiences.

Nous exprimons toute notre gratitude à Dr HIMEUR MOHAMMED pour son encadrement exceptionnel, à sa confiance, à son soutien incessant et à son encouragement permanent.

L'aboutissement de ce travail doit beaucoup à sa confiance, à son soutien incessant et à son encouragement permanent.

Nous tenons également à remercier l'ensemble des enseignants de l'université 8 Mai 1945 pour tous les enseignements qu'ils nous ont prodigués durant les cinq ans de notre formation.

Nous remercions les membres de jury qui nous font l'honneur de présider et d'examiner ce modeste travail.

A tous ceux qui nous ont aidé de près ou de loin dans la réalisation de ce projet de fin d'étude.

DÉDICACES

Je dédie ce travail A mon père, à ma mère, pour leur affection, leur soutien et pour tous les sacrifices qu'ils ont consenti à mes côtés afin d'assurer notre éducation. Trouvez en ce mémoire l'expression de ma haute reconnaissance.

A mon frère et mes sœurs, à mon oncle, à mes proches qui j'aime, pour avoir toujours été à mes côtés. Je vous porte tous dans mon cœur.

A mes amis

A mon ami : Hanani Ramzi

A tous mes enseignants qui ont contribué à ma formation.

Tadjine Tariq

DÉDICACES

Au nom d'Allah, le Tout Miséricordieux, tout d'abord je tiens à remercier le Tout Puissant de m'avoir donné le courage et la patience pour arriver à ce stade afin de réaliser ce travail que je dédie à:

A mes très chers parents.

A mes frères

A toute la famille

A mon ami : Tadjine Tariq

A tous mes camarades de promotion. Et toute personne que je connais.

Hanani Ramzi

Résumé

Les dalles biaises sont des structures qui sont souvent rencontrées dans les infrastructures techniques (Ouvrages d'art, Pont, Construction, etc...).

La particularité de ce type de structure, liée surtout à la distorsion géométrique de sa forme (généralement de forme biaise) pose une problématique traduite en terme d'analyse et de dimensionnement.

Ce travail a pour objectif une contribution pour apporter quelques réponses à cette problématique.

Pour ce faire, Ce travail consiste en la modélisation par éléments finis d'une dalle biaise et sa validation avec d'autres méthodes analytiques.

Pour cela nous avons analysé, dans ce travail, une structure en dalle biaise par deux principales méthodes : La méthode de Guyon-Massonnet et celle des éléments finis. Comme nous avons comparé les résultats obtenus avec la solution exacte donnée par [RAZ.73].

Les résultats obtenus sont concluants et montrent que la méthode des éléments finis est plus appropriée pour l'analyse des dalles biaises.

Abstract

Biased slabs are structures that are often encountered in technical infrastructures (Structures, Bridge, Construction, etc. ...).

The particularity of this type of structure, linked above all to the geometrical distortion of its shape (generally of biased form) poses a problematic translated in terms of analysis and dimensioning.

The aim of this work is to provide some answers to this problem.

This work consists in the finite element modeling of a biased slab and its validation with other analytical methods.

In this work, we have analyzed a biased slab structure using two main methods: the Guyon-Massonnet method and the finite element method. As we have compared the results obtained with the exact solution given by [RAZ.73].

The results obtained are conclusive and show that the finite element method is more suitable for the analysis of biased slabs.

خلاصة

ألواح المتحيزة هي الهياكل التي كثيرا ما نواجه في البنية التحتية التقنية (الهياكل، جسر، بناء، الخ ...).

خصوصية هذا النوع من الهيكل، وخاصة فيما يتعلق التشويه الهندسي من شكله (عادة يشوه شكل) تشكل مشكلة مترجمة من حيث التحليل والتصميم.

ويهدف هذا العمل إلى المساهمة في تقديم بعض الإجابات لهذه المشكلة.

للقيام بذلك البحث هو النمذجة عنصر محدود من لوح الانحر اف والتحقق مع الأساليب التحليلية الأخرى.

لهذا قمنا بتحليل في هذا العمل، بنية لوح مائل بواسطة طريقتين رئيسيتين: طريقة والعناصر المحدودة. ونحن مقارنة النتائج مع الحل الدقيق الذي قدمه[RAZ.73] .

النتائج قاطعة وتشير إلى أن طريقة العناصر المحدودة هو أكثر ملاءمة لتحليل ألواح متحيزة.

SOMMAIRE

- LISTE DES FIGURES.

- LISTE DES TABLEAUX.

- NOTATION.

CHAPITRE I : INTRODUCTION GENERALE

I.1 – Cadre de la recherche:	1
I.2 – Problématique et objectifs :	1
I.3 – Plan de la thèse :	2

CHAPITRE II : NOTIONS GENERALES SUR LES OUVRAGES D'ART

II.1– GÉNÉRALITÉ SUR LES OUVRAGES D'ART :
II.1.1 – introduction :
II.1.2 – Buses et Dalots :
II.1.3 – Tunnels :
II.1.3.1 – Tunnels montagneux :
II.1.3.2 – Tunnels sous les eaux (rivière ou mer) :
II.1.3.3 – Tunnels sous les routes :
II .1.4 – les Ponts :
II.1.4.1 –Définition :
II.1.4.2 – Elément principaux d'un pont :
II.1.4.3 – Quelque exemples de ponts :
II.2 – CLASSIFICATION DES PONTS :
II.2.1 – Selon le matériau principal :10
II.2.2 – Selon la nature de la voie portée :
II.2.3 – Selon leur fonctionnement mécanique :12

II.2.3.1 – Les ponts à poutres :
II.2.3.2 – Les ponts en arc :
II.2.3.3 – Les ponts à câbles :14
II .3 – LES PONTS :
II.3.1 – Les ponts caissons :
II.3.1.1 – Conception générale des ouvrages mixtes en caisson :
II.3.1.1.1 – Généralités :
II.3.1.1.2 – Morphologie transversale :
II.3.2 – Ponts – dalle :
II.3.2.1 – Présentation de la structure :
II.3.2.1.1 – Morphologie:
II.3.2.1.2 – Domaine d'emploi :
II.3.2.1.3 – Avantages ponts-dalles dans le cadre de leur domaine d'emploi :24
II.3.2.2 – Conception :
II.3.2.2.1 – Profil longitudinal-élévation-coupe longitudinale :
II.3.2.2.2 – Coupe transversale :
II.3.2.2.3 – Biais et courbure en plan :
II.3.2.2.4 – appuis-appareils d'appui :
<u>CHAPITRE III : QUELQUES METHODES DE CALCUL DES DALLES</u>
III.1– MÉTHODE DE GUYON-MASSONNET :
III.1.1 – introduction :

III.1.2 – paramètres fondamentaux:	
III.1.3 – les deux paramètres fondamentaux (paramètres sans dimension) :	
III.1.3.1 – paramètre d'entretoisement θ :	

III.1.3.2 – paramètre de torsion α:
III .1.4 – Méthode des coefficients de répartition :
III.1.5 – le coefficient de répartition transversale :
III.1.6 – Calcul des efforts :
III.1.7 – Calcul des moments fléchissant longitudinaux (dans les poutres):
III.1.8 – Calcul des moments fléchissant transversaux (dans les entretoises) :
III.1.9 – Calcul du moment de torsion dans le grillage :
III.1.10 – Utilisation pratique de la méthode de Guyon- Massonnet :
III.2– Application de la Méthode de Guyon – Massonnet pour une dalle biaise :
III.2.1 – Principes :
III.2.1.1 – Méthode directe des flèches :
III.2.1.2 – Méthode indirecte des flèches à partir des moments :
III.2.1.3 – Méthode des moments pour des structures d'inertie variable :
III.2.2 – Introduction simplifiée du biais :
III.2.2.1 – Flexion longitudinale :
III.2.2.2 – Flexion transversale :
III.3– METHODE DES LIGNES DE RUPTURE :
III.3.1 – Principes :
III.3.2 – Hypothèses concernant les lignes de rupture :
III.3.3 – Notations concernant les conditions d'appuis :
III.3.4 – Détermination des moments :
III.3.4.1 – Travail des forces intérieures :
III.3.4.2 – Travail des forces extérieures :
III.3.4.3 – Détermination du schéma rupture privilégié :
III.3.5 – Méthode pratique de résolution du problème :

III.3.5.1 – Méthode pour les lignes de rupture biaises :	45
III.3.6 – Application au cas d'une dalle sur deux appuis uniformément chargée :	47
<u>CHAPITRE IV : MODDELISATION DES DALLES BIAISES PAR ELEM</u> <u>FINIS</u>	<u>ENTS</u>
IV.1– THEORIE DES PLAQUES :	49
IV.1.1 – Définition d'une plaque :	49
IV.1.2 – Définitions et notations générales:	49
IV.1.3 – Domaine d'utilisation :	50
IV.1.4 – Flexion des plaques :	51
IV.1.4.1 – Définitions:	51
IV.1.4.2 – Champ de déplacements : modèle de Reissner /Mindlin :	51
IV.1.4.3 – Déformations et contraintes :	52
IV.1.4.4 – Forces et moments résultants :	53
IV.1.4.5 – Energie de déformation et énergie cinétique :	54
IV.1.4.6 – Equations d'équilibre :	54
IV.1.4.7– Flexion des plaques minces : Modèle de Kirchhoff :	55
IV.2 – MODÉLISATION PAR ÉLÉMENTS FINIS :	57
IV.2.1 – Construction de l'approximation nodale sur un élément :	57
IV.2.1.1 – Définition du type d'Elément :	57
IV.2.1.2 – Formulation mathématique :	58
IV.2.2 – Calcul de la matrice de rigidité élémentaire et du vecteur des charges noda équivalentes :	les 61
IV.2.3 – Assemblage:	62
IV.2.4 – Prise en compte des conditions aux limites et résolution :	62
IV.2.5 – Évaluation des grandeurs élémentaires :	63

IV.3 – APPLICATION A UN ÉLÉMENTS FLEXIONNEL DE PLAQUE MINCE: 63
IV.3.1– Caractéristique:
IV.3.2 – Cinématique:
IV.3.3 – Condition de compatibilité cinématique :
IV.3.4 – Loi de comportement :
IV.3.5 – Equation d'équilibre :
IV.3.6 – Fonction d'interpolation :
IV.3.7 – Matrrice de rigidité élémentaire :
CHAPITRE V : VALIDATION NUMERIQUE
V.1- APPLICATION DE LA MÉTHODE DE GUYON-MASSONNET : 69
V.1.1 – Exemple de calcul des CRT pour la dalle avec un biais de 60°:

CONCLUSION GENERALE

REFERENCES BIBLIOGRAPHIQUES

ANNEXES

LISTE DES FIGURES :

CHAPITRE II : NOTIONS GÉNÉRALES SUR LES OUVRAGES D'ART

Figure II.1 : exemple d'une buse circulaire	3
Figure II.2 : Buse rigide en béton armé	3
Figure II.3 : buse métallique	4
Figure II.4 : exemple d'une buse ovoïde et forme des tôles	4
Figure II.5 : schéma d'un dalot	4
Figure II.6 : dalot préfabriqué prés pour être installés	4
Figure II.7 : schéma d'un dalot triple	4
Figure II.8 : entré du tunnel au cours de construction	5
Figure II.9 : vu à l'intérieur du tunnel	5
Figure II.10 : tunnel ferroviaire	5
Figure II.11 : Tunnel sous les eaux	6
Figure II.12 : Tunnel échangeur	6
Figure II.13 : Vue longitudinale d'un pont type	6
Figure II.14 : pont sur l'autoroute	6
Figure II.15 : Tête des pieux en cours de recépage et Fondations superficielles du pont	7
Figure II.16 : appuis du pont	7
Figure II.17 : Tablier d'un pont a poutre	7
Figure II.18 : Appareil d'appui en élastomère fretté et Appareil d'appui sous une	
poutre	8
Figure II.19 : vue longitudinale d'un pont à trois travées	8
Figure II.20 : Section transversale d'un pont à poutre	9
Figure II.21 : vue dessous d'un tablier D'un pont à poutres et section transversale	
D'un pont à poutres	9
Figure II.22 : section transversale d'un pont dalle et vue de dessous d'un pont dalle	9
Figure II.23 : Les ponts en bois du plus simple arbre	10
Figure II.24 : Pont à béquilles	10
Figure II.25 : Les ponts en dalle	10
Figure II.26 : Les ponts en voûte	10
Figure II.27 : Les ponts en arc	11
Figure II.28 : Les ponts en treillis	11
Figure II.29 : Les en dalle Erreur ! Signet non d	défini.
Figure II.30 : Les ponts en poutre à voussoir	11
Figure II.31 : Quelques exemples des ponts.	12
Figure II.32 : pont en poutre-caisson	13
Figure II.33 : Pont poutre en treillis Erreur ! Signet non e	léfini.
Figure II.34 : Pont poutre à âme plein	13
Figure II.35 : Représentation schématique d'un arc à tablier supérieur	13
Figure II.36 : Pont grande-duchesse charlotte (luxembourg1965)	14

<u>CHAPITRE III :</u> QUELQUES MÉTHODES DE CALCUL DES DALLES

Figure III.1 : Modèle du tablier de pont d'après Guyon-Massonnet	
Figure III.2 : La charge sinusoïdale.	
Figure III.3 : Ensemble des charges sinusoïdal	
Figure III.4 : chargement d'entretoise	
Figure III.5 : Dalle biaise : biais géométrique et mécanique	
Figure III.6 : Flexion longitudinale : portée isostatique équivalente	
Figure III.7 : Dalle mécanique équivalente	
Figure III.8 : dalle redressée	
Figure III.9 : Représentation schématique d'un bord libre	
Figure III.10: Représentation schématique d'un appui articulé	
Figure III.11: Représentation schématique d'un appui encastré	
Figure III.12: Représentation schématique d'un appui ponctuel	
Figure III.13: Schéma du cas étudié	47
-	

<u>CHAPITRE IV:</u> MODDELISATION DES DALLES BIAISES PAR ÉLÉMENTS FINIS

Figure IV.1 : Géométrie d'une plaque	49
Figure IV.2 : Conventions générales	50
Figure IV.3 : plaque	51
Figure IV.4 : Flexion des plaques : champ de déplacement	52
Figure IV.5 : Efforts résultants	53
Figure IV.6 : Flexion de la surface neutre de la plaque	56
Figure IV.7 : Elément triangulaire de plaque avec trois degrés de liberté par nœud	63
Figure IV.8 : Déformation d'une plaque en flexion (théorie de Kirchhoff)	64

<u>CHAPITRE V</u> : VALIDATION NUMERIQUE

Figure V.1 : Dalle biaise : biais géométrique et mécanique	69
Figure V.2 : Dalle biaise 60°	69
Figure V.3 : Dalle équivalente	70
Figure V.4 : Ligne d'influence de K pour la poutre N°1	75
Figure V.5 : Courbe de K en fonction de e pour la poutre centrale N°3	77
Figure V.6 : Dalle biaise 40°	78
Figure V.7 : Dalle équivalente	79
Figure V.8 : Ligne d'influence de K pour la poutre N°2	
Figure V.9 : Courbe de K en fonction de e pour la poutre centrale N°4	86
Figure V.10 : modèle « élément fini » 60°	
Figure V.11 : modèle « élément fini » 40°	90

LISTE DES TABLEAUX

Tableau .1 : K pour $\theta = 0.40$ après 2 interpolations (sur y puis sur α)	74
Tableau . 2 : K pour $\theta = 0.45$ après 2 interpolations (sur y puis sur α)	74
Tableau . 3 : K=K(e), après les 3 interpolations	75
Tableau . 4 : Valeurs arrondis de $K = K(e)$	75
Tableau . 5 : K en fonction de e pour $\theta = 0.40$ après une interpolation (sur α) pour la p	outre
centrale N°3	76
Tableau . 6 : K en fonction de e pour $\theta = 0.45$ après une interpolation (sur α) pour la p	outre
centrale N°3	76
Tableau . 7 : K en fonction de e après tous les interpolations	76
Tableau . 8 : Valeurs arrondies de K en fonction de e	77
Tableau . 9 : les flèches et les moments moyens par le coefficient K_{α}	78
Tableau . 10: K pour $\theta = 0.30$ après 2 interpolations (sur y puis sur α)	83
Tableau . 11: K pour $\theta = 0.35$ après 2 interpolations (sur y puis sur α)	83
Tableau . 12: K=K(e), après les 3 interpolations	84
Tableau . 13: Valeurs arrondis de $K = K(e)$	84
Tableau . 14: K en fonction de e pour $\theta = 0.30$ après une interpolation (sur α) pour la p	outre
centrale N°4	85
Tableau . 15: K en fonction de e pour $\theta = 0.35$ après une interpolation (sur α) pour la p	outre
centrale N°4	85
Tableau . 16: K en fonction de e après tous les interpolations	85
Tableau . 17: Valeurs arrondies de K en fonction de e	86
Tableau . 18: les flèches et les moments moyens par le coefficient K_{α}	87
Tableau . 19: Flèches au milieu de la dalle pour les différentes méthodes	92

NOTATIONS

Les notations suivantes sont utilisées dans le présent mémoire.

- \int : Intégrale.
- $\frac{\delta}{\delta x}$: Dérivée partielle par rapport à x.
- { } : Vecteur colonne.
- []: Matrice.
- []^T: Matrice transposé.
- $[]^{-1}$: Matrice inverse.
- x, y, z : Coordonnées cartésiennes.
- U, V, W : Déplacements suivant les directions x, y et z respectivement.
- θ_z : Rotation autour de Oz.
- $\varepsilon_x, \varepsilon_y$ et ε_z : Déformations axiales suivant x et y et z respectivement.
- γ_{xv} , γ_{vz} et γ_{xz} : Déformations tangentielles.
- σ_x, σ_y et σ_z : Contraintes normales suivant les directions x et y et z respectivement.
- τ_{xy} , τ_{zy} et τ_{xz} : Contraintes tangentielles (cisaillements).
- λ et μ (G) : Les constantes de Lamé.
- a _i : Paramètres généraux de l'approximation.
- [A] : Matrice des coordonnées nodales.
- [B] : Matrice de déformation.
- [D] : Matrice d'élasticité.
- $\{\chi\}$: Courbures.
- [N] : Matrice des fonctions de forme.
- [Ke] : Matrice de rigidité élémentaire.
- {F}: Vecteur des forces nodales.
- {u} : Vecteur de déplacement en tout point de l'élément.
- {qe} Vecteur de déplacements nodaux.
- L : La portée du pont.
- 2b : La largeur du pont.
- b : demi-largeur de la dalle.
- α: Paramètre de torsion.
- θ: Paramètre d'entretoisement.
- p(x) : Charge appliquée sous forme sinusoïdale.
- k_{α} : Coefficient de répartition transversal.
- K_0 et K_1 : Représentent les valeurs que prendrait K pour $\alpha = 0$ et $\alpha = 1$ respectivement.
- e/b : L'excentricité relative de la charge linéaire p (x).
- y/b : L'ordonnée relative du point du pont considéré.
- M_x, M_y : les moments fléchissant.
- M_{yx} , M_{yx} : les moments de torsion.

- p(x, y) : est le chargement de la dalle.
- W : la surface de déplacement.
- υ : Coefficient de Poisson.
- E : Module de Young.
- I : L'inertie.
- m_i : moment résistant des aciers traversant la ligne de rupture j.
- ω_j: Rotation des plaques de part et d'autre de la ligne de rupture Par rapport à leur position initiale.
- F_i : résultante des charges extérieures appliquées sur la plaque i.
- d_i: Déplacement vertical de la résultante des charges sous l'effet De la rotation de la plaque i.
- *m* : moment de rupture.
- *p* : charge extérieure appliquée sur le panneau de dalle.
- LdR : force par unité de largeur.
- CRT : Le Coefficient de Répartition Transversale
- M.E.F. : Méthode des éléments finis.

CHAPITRE I : INTRODUCTION GÉNÉRALE

I. INTRODUCTION GÉNÉRALE

- I.1 Cadre de la recherche
- I.2 Problématique et objectifs
- I.3 Plan du mémoire

CHAPITRE I : INTRODUCTION GÉNÉRALE

I.1- Cadre de la recherche :

Ce travail constitue une initiation à la recherche dans le cadre des études en vue de l'obtention du diplôme de master en génie civil.

Notre travail consiste en la modélisation par éléments finis d'une dalle biaise et validation.

I.2- Problématique et objectifs :

Les dalles biaises sont des structures qui sont souvent rencontrées dans les infrastructures techniques (Ouvrages d'art, Pont, Construction, etc...).

La particularité de ce type de structure, liée surtout à la distorsion géométrique de sa forme (généralement de forme biaise) pose une problématique traduite en terme d'analyse et de dimensionnement.

Ce travail a pour objectif une contribution pour apporter quelques réponses à cette problématique.

Pour ce faire, ce travail consiste en la modélisation par éléments finis d'une dalle biaise et sa validation avec d'autres méthodes analytiques.

Pour cela nous avons analysé, dans ce travail, une structure en dalle biaise par deux principales méthodes : La méthode de Guyon-Massonnet et celle des éléments finis. Comme nous avons comparé les résultats obtenus avec la solution exacte donnée par élément fini.

I.3- Plan du mémoire :

Ce mémoire est constitué d'une introduction, de quatre chapitres et d'une conclusion générale.

La réalisation de nos objectifs, nous a amené à articuler notre travail autour des axes de recherche suivants :

- la présente introduction,
- Quatre chapitres,
- Et une conclusion générale

* Au niveau de cette introduction, nous avons positionné le problème sujet de notre recherche, en précisant la problématique d'analyse et de dimensionnement des dalles biaises.

* Le chapitre deux traite, à travers une synthèse bibliographique, des notions générales relatives aux voies et aux ouvrages d'art. L'objectif recherché, est de mettre en premier plan le domaine d'utilisation des dalles biaises, puis de montrer la nécessité de ce type de structure dans la conception des ponts.

* Le chapitre trois constitue un prolongement du chapitre II, en présentant quelques méthodes théoriques d'analyse et de calcul des dalles en générales et de leur application aux dalles

biaises en particulier. Nous avons traité la méthode de Guyon-Massonnet et la méthode des lignes de rupture.

* Le quatrième chapitre traite de la modélisation des dalles biaises par éléments finis. On y a développé les aspects liés à la théorie de plaques, à la démarche de modélisation par éléments finis en générales et à son application dans un modèle d'élément fini de plaque mince ayant un comportement purement flexionnel.

*Le dernier chapitre traite de la validation des modèles (analytique et numérique). Cette validation a concerné une dalle biaise avec deux valeurs du biais : 60° et 40° ; pour ensuite comparer les résultats obtenus et leur vérification par rapport aux solutions théoriques.

CHAPITRE II : NOTIONS GÉNÉRALES SUR LES OUVRAGES D'ART

II.1- GÉNÉRALITÉ SUR LES OUVRAGES D'ART

II.1.1 – introduction

II.1.2 – Buses et Dalots

II.1.3 – Tunnels

- II.1.3.1 Tunnels montagneux
- II.1.3.2 Tunnels sous les eaux (rivière ou mer)

II .1.4 - les Ponts

- II.1.4.1 Définition
- II.1.4.2 Elément principaux d'un pont
- II.1.4.3 Quelque exemples de ponts

II.2 – CLASSIFICATION DES PONTS

- II.2.1 Selon le matériau principal
- II.2.2 Selon la nature de la voie portée

II.2.3 – Selon leur fonctionnement mécanique

- II.2.3.1 Les ponts à poutres
- II.2.3.2 Les ponts en arc
- II.2.3.3 Les ponts à câbles

II.3 – LES PONTS

II.3.1 – Les ponts caissons

II.3.1.1 - Conception générale des ouvrages mixtes en caisson

II.3.1.1.1 – Généralités :

II.3.1.1.2 – Morphologie transversale

II.3.2 - Ponts - dalle

II.3.2.1 – Présentation de la structure

II.3.2.1.1 – Morphologie

II.3.2.1.2 – Domaine d'emploi

II.3.2.1.3 – Avantages ponts-dalles dans le cadre de leur domaine d'emploi

II.3.2.2 - Conception

II.3.2.2.1 – Profil longitudinal-élévation-coupe longitudinale

II.3.2.2.2 – Coupe transversale

II.3.2.2.3 – Biais et courbure en plan

II.3.2.2.4 - appuis-appareils d'appui

CHAPITRE II : NOTIONS GÉNÉRALES SUR LES OUVRAGES D'ART

II.1- GÉNÉRALITÉ SUR LES OUVRAGES D'ART :

II .1.1- Introduction :

Pour élaborer des routes, on rencontre différents obstacles tels que les oueds ou rivières, les montagnes, les chemins de fer et les autres routes. Pour les franchir, on construit des ouvrages artificiels, qui portent le nom : Ouvrage d'Art .Ce terme est composé de deux mots :

- « ouvrage » indiquant les constructions,

- « Art » indiquant l'importance de l'aspect esthétique et architectural dans ces constructions.

Exemple : ponts, tunnels, buses, dalots.

II .1.2- Buses et Dalots :

Ce sont des ouvrages, surtout hydrauliques et parfois routiers, en béton armé (préfabriqué ou non) ou en acier de forme cylindrique, ovale ou rectangulaire. Ces ouvrages sont en générale en tubes de section normalisée noyés dans le remblai à la surface du sol naturel. Ces ouvrages sont assez employés en zone rurale, notamment pour le franchissement des petits oueds. On distingue trois catégories :

 Les buses rigides, de forme circulaire, en béton armé préfabriqué en usine, Ils sont considérés comme des tuyaux. Ces ouvrages sont rarement employés comme franchissement d'oueds.

Figure II.1: exemple d'une buse circulaire.

Figure II.2 : Buse rigide en béton armé.

2) Les buses souples, métalliques, circulaires ou ovoïdes, construit par assemblage de plaques ondulées.

Figure II.3 : buse métallique. P + D + D + Remblaisélectionné 0,38 à 2,0 m EOndulation de la tôle

Figure II.4 : exemple d'une buse ovoïde et forme des tôles.

3) Les dalots, cadres a section rectangulaire(ou carrée) en béton armé, Ces ouvrages sont soit coulés sur place soit préfabriqués. Dans ce dernier cas l'ouvrage est composé par plusieurs éléments qui s'emboitent en males-femelles. Les sections sont normalisées mais elles peuvent aussi être préfabriquées sur commande. Les buses et les dalots peuvent être simples ou multiples.

Figure II.5 : schéma d'un dalot.

Figure II.6 : dalot préfabriqué prés pour être installés.

Figure II.7 : schéma d'un dalot triple.

<u>II .1.3 - Tunnels :</u>

Selon la destination du tunnel, on distingue principalement les tunnels routiers, les tunnels ferroviaires, les tunnels canaux et les tunnels hydrauliques. Ce sont généralement des ouvrages couteux, en raison de la nécessité de leur ventilation, de leur éclairage et de leur surveillance. Leur construction n'est justifiée que dans des cas exceptionnels.

Figure II.8 : entré du tunnel au cours de construction.

Figure II.9 : vu à l'intérieur du tunnel.

Les tunnels sont construits pour faire passer une route à travers une montagne ou sous les canaux et dans la ville pour réaliser des passages ou des routes souterraines. Ainsi, selon leur emplacement des tunnels, on distingue :

II .1.3.1 - Tunnels montagneux :

Ce type de tunnels est construit quand la nécessité du profil en long rendent impossible toute autre solution et éventuellement pour la protection de la route à l'endroit du couloir d'avalanches ou des terrains d'éboulis.

Figure II.10 : tunnel ferroviaire.

II .1.3.2 - Tunnels sous les eaux (rivière ou mer) :

Ce type de tunnel est construit sous les vois navigables à grand trafic, à la place des ponts qui gênent la navigation.

Figure II. 11 : Tunnel sous les eaux.

II .1.3.3 - Tunnels sous les routes :

Ces tunnels sont construits surtout dans les villes ou sous les autoroutes.

Figure II.12 : Tunnel échangeur.

II .1.4 - les ponts :

II .1.4.1- Définition :

Un pont est un ouvrage d'art pour lequel une voie de circulation franchit un obstacle naturel ou autre voie de circulation terrestre, fluviale ou maritime. C'est le type d'ouvrage le plus employés en Algérie.

II .1.4.2 - Elément principaux d'un pont :

Un pont comporte généralement trois catégories d'éléments : les fondations, les appuis et le tablier avec les appareils d'appui.

Figure II.13: Vue longitudinale d'un pont type.

Figure II.14 : pont sur l'autoroute.

• Fondation :

C'est un système au moyen duquel l'ouvrage repose sur les sols et lui transmet les charges qu'il reçoit. Suivant la nature du sol, les fondations sont superficielles (semelle isolées ou filantes) ou profond (pieux ou barrettes). Dans ce deuxième cas, les fondations sur surmontées par une semelle de liaison.

Figure II.15 : Tête des pieux en cours de recépage et Fondations superficielles du pont.

• <u>Appuis :</u>

Ils supportent l'ouvrage jusqu'au niveau des fondations. On distingue deux types d'appuis : les culées, qui sont les appuis extrêmes, et les piles, qui sont les appuis intermédiaires .Un appui peut être composé par un ou plusieurs voiles ou par des colonnes surmontées par chevêtre.

Figure II.16 : appuis du pont.

• <u>Tablier :</u>

C'est un élément sur lequel repose la voie de circulation. Il comprend la couverture (revêtement) et la partie de l'ossature sensiblement horizontale situé sous la voie portée. Le tablier comporte essentiellement des dalles. En plus, il peut comporter des poutres principales et des éléments secondaires (des entretoises ou pour les plus anciens ponts des longerons).

Figure II.17 : Tablier d'un pont a poutre.

Le tablier comporte aussi tous les équipements indispensables à l'utilisation, au fonctionnement et à la durabilité du pont. Ces équipements comportent les dispositifs de retenue, les joints de chaussée, les systèmes d'étanchéité, la couche de roulement, les trottoirs, les corniches, les systèmes d'évacuation des eaux, la dalle de transition, etc.

• Les appareils d'appuis :

Le tablier repose sur les appuis à l'aide des appareils d'appui qui permettent le déplacement horizontale et vertical du tablier sous l'effet de charges. Les appareils d'appui les plus employés de nos jours sont en élastomère fretté.

Figure II.18 : Appareil d'appui en élastomère fretté et Appareil d'appui sous une poutre.

Un pont est souvent lié à la route par sa rampe d'accès. Si cette rampe est en remblai, elle comporte une dalle de transition .Si la rampe estain déblai, la dalle de transition n'est pas nécessaire.

II .1.4.3 – Quelque exemples de ponts :

• Un pont à travées indépendantes sur un cours d'eau.

Ci-dessous une vue longitudinale d'un pont isostatique à trois travées indépendantes sur un oued ou sur un cours d'eau navigable. La partie du pont entre deux appuis s'appelle travée. Les travées peuvent être indépendantes ou continues.

Figure II.19 : vue longitudinale d'un pont à trois travées.

Les principales dimensions du pont sont :

- L : longueur totale du pont, c'est la distance entre les plans verticaux du fond des culées.
- *l* : longueur d'une travée du pont. C'est la distance entre les axes des appuis voisins.
- *l_c*: longueur de travée de calcul. C'est la distance entre les appareils d'appui. On l'appelle aussi portée de la travée.
- l_0 : l'ouverture du pont (débouchée). C'est la distance entre les parements des appuis extrêmes en considérant le fait que les largeurs des piles sont non comprises.

Dans l'étude de la conception des ponts sur les cours d'eau tel que les oueds ou les canaux navigables, on doit disposer de certaines données hydrauliques :

- **PHEC :** ou plus couramment connu comme le PHE : Plus Haute Eau Connue, pour les ponts sur les oueds.
- **PHEN :** Plus Haute Eau Navigable pour les eaux navigables.
- **PBE** : Plus Basse Eau. Ce niveau nous permet de connaitre la période pour laquelle il est recommandé d'exécuter les travaux de fondation.

Transversalement, on distingue le plus couramment en Algérie, les ponts à poutre et les pontsdalles. Dans le premier cas, ce sont les poutres qui sont les structures porteuses. Dans le deuxième cas, c'est la dalle qui constitue la structure porteuse.

- **L**_r : largeur roulable.
- L_{tr} : largeur du trottoir.
- LT : largeur totale (transversale).

 1^{er} cas : Les ponts à poutres :

Figure II.20 : Section transversale d'un pont à poutre.

Figure II.21 : vue dessous d'un tablier et section transversale D'un pont à poutres. **2éme cas : Les ponts-dalles :**

Figure II.22 : section transversale d'un pont dalle et vue de dessous d'un pont dalle.

CHAPITRE II

II.2 - CLASSIFICATION DES PONTS :

La classification détaillée des ponts est établie tenant compte de divers éléments.

- 1) Selon le matériau principal dont ils sont constitués :
 - En bois, en maçonnerie, en fonte, en fer, en acier, en alliage d'aluminium, en béton armé, en béton précontraint....
- Suivant la nature de la voie portée : Ponts routes, ponts rails, pont pour canaux, passerelles pour piétons...
- 3) Suivant leur fonctionnement mécanique : Ponts à poutres, ponts en arc, ponts à câble (suspendus, haubans), ponts mobiles....

II .2.1 – Selon le matériau principal :

• Les ponts en bois du plus simple arbre aux plus complexes, en poutre, à béquilles en arc ou suspendus.

> Quelques exemples de ponts en bois :

Figure II.23 : Les ponts en bois du plus simple arbre.

Figure II.24 : Pont à béquilles.

- Les ponts en pierre, en dalle et en voûte ou arche.
 - > Quelques exemples de ponts en pierre :

Figure II.25 : Les ponts en dalle.

Figure II.26: Les ponts en voûte.

• Les ponts métalliques, suspendus, en arc, en treillis.

> Quelques exemples de ponts métalliques :

Figure II.27 : Les ponts en arc.

Figure II.28 : Les ponts en treillis.

- Les ponts en béton armé ou en béton précontraint, en arc, en poutre à voussoir, en dalle.
 - Quelques exemples de ponts en en béton armé et en béton précontraint:

Figure II.29 : Les en dalle.

Figure II.30 : Les ponts en poutre à voussoir.

Il est possible de dater les ponts en les observant, Les ponts ont été réalisés d'abord en bois, puis en pierre, puis en fer et en acier au 19^{ème} siècle et depuis le 20ème siècle en béton armé puis en béton précontraint.

II .2.2 - Selon la nature de la voie portée :

Les ponts Permettent le franchissement d'un obstacle (vallée, cours d'eau, voie routière, gorge, ...)

- Pour les piétons ou les vélos
- Pour les véhicules routiers
- Pour les bateaux
- Pour l'eau
- Pour les animaux
- Pour les trains

Chaque pont est adapté aux moyens de transport, aux êtres vivants, aux marchandises qui doivent emprunter la voie de communication.

La fonction principale d'un pont est de permettre le franchissement d'un obstacle pour assurer la continuité d'une voie de communication.

Figure II.31 : Quelques exemples des ponts.

II .2.3 - Selon leur fonctionnement mécanique :

Il y a trois modes de fonctionnement mécanique des structures : flexion, compression et traction. Ce qui donne 3 types de ponts :

◆ Les ponts à poutres : caractérisés par leur simplicité et facilité de réalisation Fonctionnement mécanique en flexion.

Les ponts en arc : associe la compression et en flexion.

* Les ponts à câbles : de type haubané et suspendu, combinent la traction, la compression et la flexion (fonctionnement complexe).

II .2.3.1- Les ponts à poutres :

C'est la technique la plus développée en raison de leur coût (très économique) et de la simplicité de leur réalisation. On distingue trois types :

1. Pont en poutre-caisson :

Type d'ouvrage dont la rigidité à la torsion est assurée par un tablier constitué d'un ou plusieurs caissons creux. Sa section droite est rectangulaire ou trapézoïdale. Le raidisseur en caisson est une structure en béton précontraint, en acier, ou une structure composite d'acier et de béton armé.

Figure II.32 : Pont en poutre-caisson.

2. Pont poutre en treillis :

C'est un pont dont les poutres latérales sont composées de barres métalliques triangulées, assemblées en treillis. Les treillis peuvent être assemblés par boulonnage, par rivetage ou bien soudés. Méthode de construction rapide et peu coûteuse.

Figure II.33 : Pont poutre en treillis.

3. <u>Pont poutre à âme plein :</u>

Les poutres à âme pleine sont essentiellement constituées d'une ou plusieurs parties verticales formant l'âme et de parties horizontales appelées semelles (ou ailes) disposées de part et d'autre de l'âme. Les matériaux utilisés sont : le bois, le métal, le béton armé ou le béton précontraint.

Figure II.34 : Pont poutre à âme plein.

II .2.3.2- Les ponts en arc :

Pour franchir des brèches encaissées, larges, profondes avec des accès de chantier difficiles sur ses franchies. Les piles du tablier reposent sur une structure en arc.

Figure II.35 : Représentation schématique d'un arc à tablier supérieur.

Les ponts en arc peuvent avoir plusieurs formes : Ο

Pont en arc en béton à tablier intermédiaire

pont à tablier supérieur

Exemples de ponts à béquilles :

Ces types de ponts offre une vision dégagée de la voie franchie pour avoir une bonne visibilité ; surtout sur autoroute. Il existe deux types de béquilles : simples et doubles

Figure II.36 : Pont grande-duchesse charlotte (luxembourg1965) langueur 335m, houteur47m, portée principale234m.

Figure II.37 : virucide Martigues (france1972) longueur 300m, portée principale 130m.

II .2.3.3 - Les ponts à câbles :

Intérêt et domaine d'application :

- Une libération totale de l'espace inférieur,
- Des franchissements de très grandes portées,
- Des tabliers élancés
- Un montage facilité par la suspension elle-même

Il existe deux principaux types :

- ponts haubanés : le tablier est supporté par un système de câbles obliques • (haubans).
- ponts suspendus : le tablier est tenu par à un système de câbles porteurs.

1. ponts suspendus :

Les éléments porteurs principaux de ces ouvrages sont des câbles auxquels les réactions du tablier sont transmises par des suspentes. Ces câbles porteurs métalliques passent au sommet des pylônes et sont ancrés dans des culées de dimensions importantes.

Figure II.38 : Ponts suspendus du tablier sur un câble porteur.

La partie de tablier suspendue est :

- soit totale et concerne à la fois la travée centrale et les deux travées latérales,
- soit partielle et limitée à la travée centrale, les travées latérales étant indépendantes.

Figure II.39 : Pont de sidi m'cid Constantine(1908).

Suspension totale Figure II.40 : Forme de suspension Les ponts suspendus

2. Ponts haubanés :

Un pont haubané est constitué d'un un tablier soutenu par une multitude de paires de câbles inclinés (appelés haubans) travaillant à la traction et qui sont fixés à un ou plusieurs pilonnes porteurs travaillant en compression. Les haubans ont des longueurs différentes, selon leurs points d'attachement sur le tablier, mais ils ont la même tension et ils s'équilibrent de chaque côté des pylônes.

Figure II.41 : Pont à haubans.

4 Forme de la nappe :

On distingue trois types de nappes :

- en éventail : les haubans sont ancrés en un seul point d'ancrage en tête de pylône, •
- en semi-éventail : les haubans sont ancrés sur une hauteur donnée en tête d'ancrage et se • déploient ensuite en éventail,
- en harpe : les haubans sont parallèles entre eux.

Haubanage en semi-harpe

Haubanage en éventail

Haubanage en harpe

Ils supportent toutes les charges affectant le tablier et les conduisent aux fondations. Plusieurs formes se combinent avec le schéma du haubanage et le type de tablier :

- \blacktriangleright mât central unique (1),
- double mât latéral indépendant (2) ou entretoisé(3), \geq
- pylône en V renversé (5) ou en Y renversé(4). \geq

Figure II.42 : Différents types de pylônes pour un pont.
II .3 - LES PONTS :

Un pont est un OUVRAGE D'ART. Mis à part les ponts types autoroutiers, la plupart sont des œuvres uniques : Uniques par leur architecture, par leur mode de construction et par leur typologie.

Nous parlant dans cette partie que de deux types de ponts : pont dalle et pont caisson.

II .3 .1 - Les ponts caissons :

La particularité du pont caisson est de **pouvoir s'adapter à des profils d'ouvrages de franchissement très surbaissés**, y compris avec des formes courbes très accentuées. La pose peut se faire soit par lançage, soit par grutage.

Figure II.43 : forme de ponts caisson.

II .3.1.1 - Conception générale des ouvrages mixtes en caisson :

II .3.1.1.1 – Généralités :

Les ouvrages mixtes de type caisson sont beaucoup plus rares que les ouvrages à poutres. En effet, en l'absence de contraintes particulières, ils sont plus complexes et donc plus coûteux à construire et à entretenir. Ils sont ainsi bien adaptés aux cas où au moins l'une des conditions suivantes est satisfaite :

-la portée maximale dépasse 90 m.

-la largeur du tablier dépasse une vingtaine de mètres.

-la hauteur disponible pour inscrire le tablier est trop faible pour une structure à poutres.

-la courbure en plan est importante (portée angulaire P/R>0,2).

-formes de piles plus compactes (appareils d'appui du caisson sont rapprochés par rapport un pont à poutres).

-résistance aux chocs de véhicules ou de corps flottants plus élevés que le pont à poutres

Figure II.44 : Les ponts caisson.

II .3.1.1.2 - Morphologie transversale :

1) caisson simple ouvert :

- Les tabliers en caisson les plus simples sont composés d'une dalle en béton et d'une charpente métallique en U et largeur du tablier <15m.

- Dalle en béton+ une charpente en U (deux semelles + deux âmes + une tôle de fond).

- La tôle de fond est une tôle d'épaisseur constante par tronçons. Elle est raidie le plus souvent par des augets, c'est-à-dire des tôles pliées en U, ou par des tés T, plat I.

- Les âmes sont des tôles d'épaisseur constante par tronçons. Elles sont en général inclinées par rapport à un axe perpendiculaire au fond du caisson. Elles sont le plus souvent raidies par des plats I ou des tés T.

- Elément transversaux :

• Diaphragmes au droit des appuis (reprendre les efforts de torsion, réactions d'appuis).

• Cadres en travées (empêcher une déformation transversale excessive de caisson entraxe entre 4 et 6 m).

- Les caissons métalliques ouverts doivent présenter une hauteur minimale de 1,50m (indispensable à la construction de dalle en béton+ inspection).

Figure II.45 : Caisson simple ouvert.

2) <u>Caisson simple fermé :</u>

Les ouvrages de type caisson fermé sont identiques aux caissons ouverts à la différence que les semelles supérieures sont remplacées par une tôle générale. Celle-ci peut être utilisée comme coffrage perdu lors du bétonnage de la dalle et elle est adaptée aux ouvrages courbes (la tôle permet de s'affranchir de contreventement provisoire).

Figure II.46 : Caisson simple fermé.

3) Caisson à pièces de pont avec console :

Plus difficile à exécuter que les caissons simples, ils sont généralement utilisés comme suit :

- ✓ la largeur du tablier >13-14 m.
- ✓ la portée dépasse environ 90 m.
- ✓ les semelles, les âmes et la tôle du fond ont des caractéristiques similaires à celles des caissons simples.
- \checkmark les pièces de pont supportant la dalle sont disposées selon un entraxe constant de 4m.
- ✓ Elles sont couplées avec les cadres et sont souvent prolongées sous les parties en encorbellement de la dalle par des consoles de hauteur linéairement variable.

Figure II.47: Caisson à pièces de pont avec console.

4) Caisson à pièces de pont sans console :

Ce type d'ouvrage s'apparente aux ouvrages avec diaphragmes. En effet, la partie située audessus du trou d'homme fait office de pièce de pont. L'entraxe des diaphragmes étant en général de 4 m, il est possible de réduire l'épaisseur de la dalle.

Figure II.48 : Caisson à pièces de pont sans console.

5) Caisson à pièces de pont et bracons :

Cet ouvrage représente un caisson fermé avec pièces de pont, mais en ajoutant des bracons de part et d'autre du caisson.

Figure II.49 : Caisson à pièces de pont et bracons.

6) <u>Ouvrages à deux caissons</u> :

Il est également possible de mettre en place deux caissons. Ce type de pont est essentiellement utilisé pour des ouvrages de grandes largeurs et de petites longueurs.

Figure II.50 : Ouvrages à deux caissons.

II .3.2 - Ponts – dalle :

II. 3.2.1-Présentation de la structure :

<u>II. 3.2.1.1 – Morphologie :</u>

Profil en long :

Les ponts-dalles sont constitués dans le sens longitudinal par une dalle pleine de béton armé coulé en place, à inertie constante, à travée unique ou à plusieurs travées continues sur appuis simples. L'épaisseur optimale de la dalle qui dépend de la répartition des travées varie entre 0.45 m et 1m. Il existe deux types de tablier :

- Le tablier de type PSI.DA (Passage Supérieur ou Inférieur en Dalle Armée) est armé longitudinalement et transversalement.
- Le tablier PSI.DP (Passage Supérieur ou Inférieur en Dalle Précontrainte) est armé transversalement et précontraint longitudinalement par des câbles.

Dans la plupart des cas, Les appuis d'extrémité sont appuyés sur des piles-culées enterrées dans les talus, les travées de rive ayant pour seule fonction d'équilibrer le fonctionnement des travées principales et de franchir l'emprise du talus.

Figure II.51 : Structure générale d'un pont.

Profil en travers :

La section transversale de la dalle peut être rectangulaire ou comporter des encorbellements. La portée maximale des travées dépend de l'importance des encorbellements, qui augmentent le rendement de la section.

Cas d'un passage inférieur

Figure II.52 : comportant deux chaussées séparées par un vide central.

Les tabliers-dalles sont dans leur majorité peu biais (biais moyen supérieur à 80 grades) et à faible courbure en plan. Il faut cependant noter que l'exécution en place peut confier une

grande liberté dans la conception des formes ainsi que la possibilité de s'adapter à toute difficulté d'implantation.

Figure II.53 : Vue en plan.

II .3.2.1.2 – Domaine d'emploi :

Les ponts-dalles constituent une solution viable pour le franchissement des brèches de longueur variant de 15 m à 60 m avec des portées unitaires maximales de 25 mètres environ. Il s'agit donc d'un type d'ouvrage très fréquemment utilisé pour les passages supérieurs ou inférieurs autoroutiers et, à un moindre degré, pour les ouvrages hydrauliques, certains pontrail, tranchées couvertes et passerelles pour piétons. Les tabliers du type PSI.DA ou PSI.DP ont presque entièrement supplanté les tabliers à poutres sous-chaussée en béton armé coulés en place compte tenu des conditions économiques.

Élancement :

Le domaine d'emploi des dalles est surtout limité par leur faible rendement géométrique, qui les rend peu adaptées dès que les portées unitaires deviennent importantes. A titre indicatif, les élancements (rapports de l'épaisseur sur la portée la plus longue) courants sont les suivants :

	Travée unique	Deux travées	Trois travées ou plus
PSI.DA			
	1/20	1/26	1/28
PSI.DP	1/22 à 1/25	1/28 (1) 1/25 (2)	1/33 (1) 1/28 (2)

(1) pour dalles rectangulaires (2) pour dalles à larges encorbellements

Ces valeurs donnent une idée générale sur l'élancement des tabliers-dalles routiers.

Portées unitaires :

Dans le cas de la dalle en béton armé, le domaine des portées économiques se situe entre 7 et 15 mètres pour les ouvrages à 1 ou 2 travées et entre 6 et 18 mètres pour les ouvrages comprenant 3 travées ou plus.

Les portées comprises entre 14 m et 25 m, voire 30 m, relèvent du domaine d'emploi de la dalle en béton précontraint avec ou sans encorbellements latéraux.

En voici quelques exemples montrant l'étendue des utilisations possibles des ponts-dalles avec leurs divers types de travures :

a. <u>Tabliers à 1 travée :</u>

Les ponts-dalles à travée indépendante ne sont à envisager que dans le cas d'ouvertures modérées et lorsqu'un grand élancement est indispensable. Les culées sont de préférence à placer en tête des talus ou à mi-hauteur de ces derniers.

Figure II.54 : Travée unique sur culées massives.

b. <u>Tabliers à 2 travées :</u>

Deux travées donnent des résultantes différentes suivant que les culées sont perchées surperchées, l'ouverture est alors très simple, ou sur culées droites ou la perspective est limitée.

Figure II.55 : Tabliers à deux travées.

c. <u>. Tabliers à 3 travées :</u>

Pour un pont à 3 travées on dégage largement l'espace central circulé et l'ensemble gagne en élégance. Il convient évidemment d'équilibrer le rapport entre la travée centrale et les travées de rives.

Figure II.56 : Tabliers à trois travées.

d. <u>.Tabliers à 4 travées et plus :</u>

Un pont à 4 travées, solution classique, présente une silhouette généralement satisfaisante mais le paysage est très fragmenté par les piles.

Figure II.57 : Tabliers à quatre travées

* En voici également les déférents cas d'emploi des ponts-dalles en passage :

Remblai ou petit déblai Biais faible ($\varphi \ge 75$ grades) Largeur terre-plein central suffisante (> 3 m)

Remblai ou déblai modéré Biais modéré ($\varphi \ge 50$ grades) Plate-forme réduite

II .3.2.1.3 – Avantages des ponts-dalles dans le cadre de leur domaine d'emploi :

1- Minceur et légèreté relatives :

- ✓ Poids propre de 1,2 à 2 t/ m^2 selon les portées.
- ✓ Réactions d'appui de l'ordre de 20 t (pile-culée) à 70 t (pile intermédiaire) par mètre de largeur droite de tablier.
- ✓ Possibilité fréquente d'accepter dans ces conditions une fondation superficielle (semelles filantes de largeur comprise entre 1,5 et 4 mètres avec un taux de travail du sol inférieur à 200 ou 300 kpa).
- ✓ Lorsque la fondation sur pieux est inévitable, cette légèreté peut permettre une limitation du nombre ou de la longueur des pieux.
- 2- Construction rustique :

En raison de l'absence de retombées dans les ponts-dalles, leurs coffrages et cintres sont plus simples que pour les structures à poutres coulées en place. Ce gain est d'autant plus significatif que la main d'œuvre est moins importante et pas nécessairement spécialisée dans la mise en œuvre du ferraillage et de la précontrainte à l'exception de la mise en tension et l'injection.

3- Grande réserve de sécurité :

- ✓ Ces avantages qu'on trouve les poutres à âmes larges ont pour effet de rendre les dalles insensibles aux tassements différentiels d'appuis inférieurs à 2 ou 3 cm.
- ✓ C'est avantage qui fait de la dalle continue l'instrument des franchissements légers sur terrains médiocres. le tassement différentiel de 6 ou 7 cm correspond à des tassements absolus de l'ordre de 20 cm ou plus.

4- Liberté dans la conception des formes :

Enfin, les ponts-dalles, du fait qu'ils sont construits par coulage en place, s'adaptent à toute difficulté d'implantation. Le projeteur est ainsi libre dans sa conception des formes (ponts courbes, ponts en Y, tabliers comportant des élargissements).

II .3.2.2 – Conception :

La conception (technique et esthétique) d'un pont-dalle comme celle de tout ouvrage d'art se fait normalement en allant du général vers le détail, par étapes et par affinements successifs.

La conception générale (type d'ouvrage, nombre, répartition et longueur des travées, longueur totale de l'ouvrage et silhouette...) doit précéder la conception de détail (équipements, corniches, parements, peinture...). Il importe de le souligner, car des démarches inverses à cette règle de bon sens ne sont pas inexistantes, particulièrement en matière de recherche d'aspect. En somme, concevoir est une tâche complexe et on ne peut l'accomplir de façon adéquate sans un minimum d'organisation.

II .3.2.2.1 – Profil longitudinal-élévation-coupe longitudinale :

Le profil longitudinal fait partie des premiers éléments à définir dans la conception d'un ouvrage par un travail commun entre projeteurs de tracé et concepteurs d'ouvrages d'art. Le profil soit en arc de cercle soit en alignement droit, mais jamais des profils mixtes comportant à la fois des droites et des cercles.

Dans le cas où la voie portée est en pente, on adopte

- > Un profil rectiligne de préférence à un profil circulaire.
- Un profil circulaire, on évite l'effet de "dos d'âne" en optant pour la courbure la plus faible tout en facilitant l'évacuation des eaux de ruissellement sur l'ouvrage.

Profil rectiligne avec pente

Profil circulaire symétrique

Choix d'une travure :

La définition de la travure qui en résulte, c'est-à-dire du nombre et de la longueur des travées ainsi que la répartition de ces dernières constituent une étape importante dans la conception d'un ouvrage, puisque le choix du type d'ouvrage en dépend pour une large part. La distribution de travées la plus harmonieuse dans la plupart des cas :

Le fait particulier que les passages supérieurs autoroutiers à trois travées sont la plupart du temps mieux appréciés en aspect que ceux à quatre travées est significatif à cet égard.

Dans le cas d'un nombre pair de travées, l'aspect de l'ouvrage peut être amélioré par un :

- équilibrage des deux travées centrales.
- une répartition décroissante en longueur des travées depuis le milieu du pont vers chacune des culées.

Figure II.58 : Cas d'un ouvrage à quatre travées bien équilibrées.

Longueur du tablier :

Cette longueur d'ouvrage contribue, à son tour, à la définition du découpage de l'ouvrage en une ou plusieurs longueurs comprises entre joints de dilatation.

Ce découpage doit être conçu de façon à limiter le nombre de joints intermédiaires sur l'ouvrage, pour les raisons suivantes :

✓ ces joints, malgré leur coût relativement élevé, nuisent au confort des usagers et renchérissent l'entretien de l'ouvrage.

- ✓ le dédoublement des appareils d'appui (de part et d'autre du joint) au niveau d'un appui intermédiaire entraîne un sur épaississement soit du sommier, soit de l'appui luimême.
- ✓ **sur le plan** du comportement de la structure, on préfère, dans la mesure du possible, la continuité à l'isostatique.

C'est pour ces raisons que, même dans le cas particulier des terrains comportant des risques de tassements ou d'affaissements miniers, 1'hyperstatique n'est pas à proscrire d'avance.

Les dalles en béton armé :

- il n'existe pas de limite particulière à la longueur du tablier.
- L'expansion linéaire nécessite un équipement lourd au niveau des appareils d'appui et des joints de chaussée complexes, peu adaptés à un ouvrage aussi rustique.

Les dalles de béton précontraint :

- la longueur totale du tablier ne doit pas excéder 80 mètres.
- Cette limite peut être étendue à 100 mètres, mais le précontraint risque de se trouver alors mal utilisée compte tenu des pertes élevées de tension par frottements.

On aura intérêt à recourir à une précontrainte soit avec câbles arrêtés et comportant des recouvrements soit avec câbles couplés au moyen de "coupleurs".

Pente longitudinale :

Leur conception n'est pas très différente de celle des tabliers ordinaires. Mais on peut néanmoins faire les remarques de détail suivantes :

- les tabliers-dalles présentent un meilleur aspect que les tabliers à inertie variable.

-Les appareils d'appui sont disposés horizontalement grâce à des bossages ménagés à leur niveau dans la sous-dalle.

Toute déformation longitudinale du tablier crée un décrochement vertical au niveau des joints de chaussée, si les abouts du tablier sont libres dans leurs mouvements. Lorsqu'ils sont importants (cas des pentes supérieures à 5% et des longueurs dilatables importantes).

II .3.2.2.2 – Coupe transversale :

Forme générale :

La forme transversale d'un tablier-dalle est fonction de la largeur de la voie portée et de ses dévers transversaux nécessités par l'écoulement des eaux et par la courbure en plan éventuelle. Les valeurs minimales en présence d'une pente longitudinale :

-Le dévers transversal minimal est de 2,5% (en double pente) pour les ouvrages rectilignes.

-Le dévers transversal minimal est de 2,5% à 6% (en simple pente) suivant le rayon de courbure en plan dans le cas d'ouvrages courbes.

La face inférieure de la dalle :

Soit horizontale dans le cas d'ouvrages rectilignes et peu larges (profil bombé).

Profil bombé (tabliers de largeur réduite)

soit inclinée et parallèle à la face supérieure dans le cas d'ouvrages rectilignes et de grande largeur (profil en "toit")

Profil en toit (tabliers de grande largeur)

dans le cas d'ouvrages courbes (profil "déversé").

Profil déversé (tabliers courbes en plan)

La face supérieure de la dalle porteuse:

- La chape et le revêtement de chaussée étant ensuite réalisés en épaisseur constante.
- Encorbellements :

La section transversale avec encorbellements latéraux se présente sous les formes illustrées cidessous.

- la forme (a), qui comporte des décrochements au niveau de la face inférieure de la partie centrale de la dalle, est de préférence réservée à des portées importantes,

	Encorbellements
--	-----------------

-alors que la forme (b), d'un coffrage plus simple et plus lisse (vue par dessous), convient à des portées plus modestes.

-En dehors de la forme (c) due à l'architecte VICARIOT, forme qui est assez originale et plutôt réservée à des ouvrages urbains ou périurbains.

(c)encorbellements courbes [ouvrages urbains]

Dans tous les cas, ces formes de section transversale s'imposent pour les portées supérieures à 20 m.

- Largeur du tablier :
- La largeur droite de la dalle est ; entre 5,50 et 16 mètres, encorbellements compris.
- les tabliers-dalles de largeur dépassant 15m, afin de les rendre peu vulnérables aux effets de déformations imposées (tassements du cintre ou des appuis, gradient de température).

Mécaniquement :

-peut être considéré un ouvrage est de grande largeur lorsque la largeur de la dalle est supérieure à la portée dans l'une des travées.

- Les efforts transversaux sont bornés et légèrement supérieurs (de l'ordre de 20%) à ceux d'une travée équivalente de forme carrée.

- Il y a lieu de porter une attention particulière aux effets du gradient thermique, qui a tendance à modifier considérablement la répartition des réactions entre les différents appareils d'une même ligne d'appuis, les appareils d'appui de rive étant alors les plus chargés.

Figure II.59 : Déformation et modification des réactions d'appuis consécutives à un ensoleillement.

II .3.2.2.3 – Biais et courbure en plan :

Les ponts-dalles s'adaptent parfaitement au biais et à la courbure en plan du tracé, ce qui est un avantage indéniable. Les franchissements biais ou courbes en plan nécessitent une longueur d'ouvrage plus longue que pour un franchissement droit et rectiligne.

Figure II.60 : Pont – biais.

Cette longueur détermine bien entendu le choix du type d'ouvrage dans les mêmes conditions que les caractéristiques de la brèche.

II .3.2.2.4 – appuis-appareils d'appui :

- ✓ les appuis et donc les appareils d'appui sont souvent disposés suivant le biais.
- ✓ pour les ouvrages peu larges, il est possible de supprimer l'effet du biais sur les piles intermédiaires en adoptant des appuis "ponctuels" à fût unique supportant chacun un seul appareil d'appui.

Pour les biais importants, c'est-à-dire d'une vingtaine à une trentaine de grades, cette solution peut être plus avantageuse, tant sur le plan technique que sur le plan de l'aspect, qu'une solution de type couverture présentée sur le croquis ci-après :

- Dans les ouvrages courbes en plan :
- ✓ les appuis peuvent selon le cas être disposés suivant le biais (le tablier est alors courbe et biais à la fois) ou perpendiculairement à l'axe longitudinal du pont.
- ✓ Dans le cas d'ouvrages biais sur appuis intermédiaires ponctuels, les fûts de piles doivent être de dimension suffisante (pour la résistance aux chocs de véhicules, pour l'implantation des appareils d'appui et des niches à vérins), et les appuis d'extrémité.
- ✓ ainsi que leurs appareils d'appui, doivent être conçus en vue d'un encastrement vis-àvis de la torsion due au biais ou à la courbure.

En ce qui concerne l'implantation des culées et l'aspect qui en résulte pour les têtes de l'ouvrage dans le cas d'un franchissement biais, elles peuvent être placées soit en retrait par rapport à la voie franchie (cas de la vue en plan ci-dessus), soit aux abords de la voie franchie, (croquis ci-après).

CHAPITRE III :

QUELQUES METHODES DE CALCUL DES DALLES

III.1-MÉTHODE DE GUYON-MASSONNET

- III.1.1 introduction
- III.1.2 paramètres fondamentaux
- III.1.3 les deux paramètres fondamentaux (paramètres sans dimension)
 - III.1.3.1 paramètre d'entretoisement θ
 - III.1.3.2 paramètre de torsion α
- III .1.4 Méthode des coefficients de répartition
- III.1.5 le coefficient de répartition transversale
- III.1.6 Calcul des efforts
- III.1.7 Calcul des moments fléchissant longitudinaux (dans les poutres)
- III.1.8 Calcul des moments fléchissant transversaux (dans les entretoises)
- III.1.9 Calcul du moment de torsion dans le grillage
- III.1.10 Utilisation pratique de la méthode de Guyon- Massonnet

III.2– APPLICATION DE LA METHODE DE GUYON – MASSONNET POUR UNE DALLE BIAISE

III.2.1 – Principes

- III.2.1.1 Méthode directe des flèches
- III.2.1.2 Méthode indirecte des flèches à partir des moments
- III.2.1.3 Méthode des moments pour des structures d'inertie variable

III.2.2 – Introduction simplifiée du biais

- III.2.2.1 Flexion longitudinale
- III.2.2.2 Flexion transversale

III.3 – METHODE DES LIGNES DE RUPTURE

- III.3.1 Principes
- III.3.2 Hypothèses concernant les lignes de rupture
- III.3.3 Notations concernant les conditions d'appuis

III.3.4 – Détermination des moments

- III.3.4.1 Travail des forces intérieures
- III.3.4.2 Travail des forces extérieures
- III.3.4.3 Détermination du schéma rupture privilégié

III.3.5 – Méthode pratique de résolution du problème

III.3.5.1 – Méthode pour les lignes de rupture biaises

III.3.6 - Application au cas d'une dalle sur deux appuis uniformément chargée

CHAPITRE III : QUELQUES MÉTHODES DE CALCUL DES DALLES

III.1- MÉTHODE DE GUYON-MASSONNET :

III .1.1- Introduction :

La méthode de GUYON-MASSONNET repose sur la théorie des plaques orthotropes. Elle fut développée par Guyon [GUY.46] dans le cas d'une dalle orthotrope à rigidité torsionnelle négligeable. Massonnet en 1950 généralisa les relations trouvées par Guyon en introduisant l'effet de la torsion dans les calculs [MAS.50]. En 1966, Massonnet et Bareš publièrent un recueil de ces méthodes illustré par un nombre d'exemples [MAS.66].Cette méthode est simple et utilisée pour le calcul des ponts à poutres multiples en tenant compte de la résistance à la torsion du pont, elle donne des résultats satisfaisants par rapport aux autres méthodes, car la rigidité transversale du tablier n'est pas négligeable.

III .1.2- paramètres fondamentaux :

On considère **une travée indépendante**, de portée L, de largeur 2b, dont l'ossature est constituée par une poutraison croisée de **n** poutres longitudinales (portée L, espacement b1) et de **m** entretoises (portées 2b, et espacement L1) intermédiaires, disposées transversalement (figure III.1).

Figure III.1: Modèle du tablier de pont d'après Guyon-Massonnet.

Toutes les poutres sont identiques et caractérisées par :

- leur rigidité à la flexion : $B_P = E$. I_P
- leur rigidité à la torsion : $C_P = G$. K_P

De même, toutes les entretoises sont identiques, et également caractérisées par:

- leur rigidité à la flexion : $B_E = E$. I_E
- leur rigidité à la torsion : $C_E = G$. K_E
- *I_P*: Moment d'inertie de flexion des poutres,
- *I_E*: Moment d'inertie de flexion des entretoises,

- *K_P*: Moment d'inertie de torsion des poutres,
- K_E : Moment d'inertie de torsion des entretoises,
- *E* : Module de Young,
- G: Module de torsion. Avec : $G = \frac{E}{2(1+\nu)}$

Par unité de longueur, ces rigidités deviennent :

Rigidité de flexion :

$$\begin{cases}
\rho_p = \frac{B_P}{b_1} = \frac{E.I_P}{b_1} \\
\rho_E = \frac{B_E}{L_1} = \frac{E.I_E}{L_1}
\end{cases}$$
(3.1)
$$\gamma_P = \frac{C_P}{b_1} = \frac{G.K_P}{b_1} \\
\gamma_E = \frac{C_E}{L_1} = \frac{G.K_E}{L_1}
\end{cases}$$
(3.2)

On suppose que le coefficient de Poisson du matériau constitutif est nul ($\underline{\nu=0}$) : $G = \frac{E}{2}$

c.à.d. :
$$\begin{cases} \gamma_P = \frac{E}{2} \cdot \frac{K_P}{b_1} \\ \gamma_E = \frac{E}{2} \cdot \frac{K_E}{L_1} \end{cases}$$

- γ_P : Rigidité flexionnel des poutres,
- γ_E : Rigidité flexionnel des entretoises,
- *ρ_p* : Rigidité à la torsion des poutres,
- ρ_E : Rigidité à la torsion des entretoises.

Pour un déplacement vertical (la déformée de la dalle) de la construction selon la surface W = w (x,y) dont les courbures ont pour valeurs $\frac{\partial^2 w}{\partial x^2}$ et $\frac{\partial^2 w}{\partial y^2}$, il naît des moments fléchissant par unité de longueur :

$$M_x = -\rho_p \cdot \frac{\partial^2 w}{\partial x^2}$$
; $M_y = -\rho_E \cdot \frac{\partial^2 w}{\partial y^2}$ (3.3)

La géométrie montre que la torsion de la surface de déplacement W est donnée par l'expression $\frac{\partial^2 w}{\partial x \partial y}$ et dans la construction naîtront donc les moments de torsion unitaires :

$$M_{xy} = \gamma_p \cdot \frac{\partial^2 w}{\partial x \partial y}$$
; $M_{yx} = -\gamma_E \cdot \frac{\partial^2 w}{\partial x \partial y}$ (3.4)

De la condition d'équilibre de l'élément dans le sens vertical on trouve après remplacement de M_x , M_y , M_{xy} , M_{yx} Par leurs valeurs, l'équation différentielle d'un grillage simple dont les rigidités sont réparties continument :

$$\rho_p \frac{\partial^4 w}{\partial x^4} + \left(\gamma_p + \gamma_E\right) \frac{\partial^4 w}{\partial x^{2\partial} y^2} + \rho_E \frac{\partial^4 w}{\partial y^4} = p(x, y)$$
(3.5)

• p(x, y) : est le chargement de la dalle.

Si le pont est formé de poutres dont la résistance à la torsion est négligeable, le coefficient $(\gamma_p + \gamma_E)$ du terme en $\frac{\partial^2 w}{\partial x^2 \partial_{y^2}}$ est pratiquement nul.

Si, au contraire, le pont est formé d'une dalle isotrope, son équation est l'équation bien connue de Lagrange :

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial_{y^2}} + \frac{\partial^4 w}{\partial y^4} = \frac{p(x,y)}{D}$$
(3.6)

- *w* : est la flèche de la plaque ;
- $D = \frac{E \cdot h^3}{12(1-v^2)}$: est la rigidité à la flexion de la plaque ;
- **h** : l'épaisseur de la plaque ;
- *v* : est le coefficient de poisson ;
- *E* : est le module d'élasticité.

III .1.3- les deux paramètres fondamentaux (paramètres sans dimension) :

III .1.3.1- paramètre d'entretoisement θ :

A été déduit par Guyon en calculant les grillages sans tenir compte de la torsion :

$$\theta = \frac{b}{L} \cdot \sqrt[4]{\frac{\rho_p}{\rho_E}}$$
(3.7)

Avec :

- **b** : demi-largeur de la dalle ;
- L : portée de la travée.

Le paramètre θ détermine la souplesse de l'entretoisement, plus grand est θ , plus souple est L'entretoisement.

III .1.3.2- paramètre de torsion α :

Dans la pratique, le coefficient de rigidité torsionnelle $(\gamma_P + \gamma_E)$ est toujours compris entre les valeurs correspondant aux deux cas particuliers, celui de la dalle et celui du grillage simple.

Si l'on pose $(\gamma_P + \gamma_E) = 2\alpha \sqrt{\rho_p \cdot \rho_E}$ l'effet de torsion est caractérisé par le paramètre α dont la valeur, pour couvrir le domaine entier entre les deux cas particuliers précités, variera de 0 à 1.

$$\alpha = \frac{\gamma_{P_+} \gamma_E}{2 \sqrt{\rho_p \rho_E}} \qquad \text{avec: } 0 \le \alpha \le 1$$
(3.8)

Le paramètre de torsion α prend en compte en plus des rigidités de flexion ρ_P et ρ_E celles de la torsion γ_P et γ_E . Il caractérise donc l'influence de la torsion et varie entre 0 et 1.

• $\alpha = 0$: $(\gamma_P + \gamma_E) = 0$ \longrightarrow La résistance à la torsion est négligeable. • $\alpha = 1$: $\rho_p = \rho_E = \rho$ *et* $(\gamma_P + \gamma_E) = 0$ \longrightarrow Le pont est une dalle isotrope.

Dans le cas général, nous pouvons calculer, par cette formule, le paramètre de torsion α mais L'évaluation des rigidités à la torsion γ_P et γ_E étant, ordinairement, très difficile, il faut introduire souvent des hypothèses simplificatrices pour obtenir une valeur approchée de α .

Le paramètre de torsion prend une expression particulièrement simple dans le cas d'une construction mixte. En effet, nous pouvons admettre que la rigidité propre de torsion des poutrelles métalliques est négligeable et assimiler par conséquence le pont à une plaque dont Les rigidités à la flexion dans les deux sens $\rho_p et \rho_E$ sont celle de la dalle isotrope en béton majorées dans les rapports : $\pi = \frac{\rho_p}{D}$ et $\varepsilon = \frac{\rho_E}{D}$.

La rigidité de la plaque se réduit à : $D = \frac{Eh^3}{12} = E \cdot I = \rho$ avec : v=0, (3.9)

Dès lors, **l'équation de Lagrange** valable pour une plaque isotrope, doit se transformer Comme suit :

$$\pi D \frac{\partial^4 w}{\partial x^4} + 2D \frac{\partial^2 w}{\partial x^2 \partial_{y^2}} + \varepsilon D \frac{\partial^4 w}{\partial y^4} = P$$
(3.10)

Le coefficient de $\frac{\partial^2 w}{\partial x^2 \partial_{y^2}}$ dans cette équation vaut 2D; mais par définition de α , il vaut aussi

$$2\alpha \sqrt{\rho_p \cdot \rho_E} = 2\alpha D \sqrt{\rho_p \cdot \rho_E} \tag{3.11}$$

Tout calcul fait, on obtient pour un pont mixte :

$$\alpha = \frac{1}{\sqrt{\pi\varepsilon}} \tag{3.12}$$

Par ces deux paramètres θ et α , le comportement de la construction est complètement défini.

La résolution analytique directe de l'équation différentielle de la plaque orthotrope conduit à des calculs compliqués et peu pratiques à mettre en œuvre. La méthode de Massonnet permet de s'affranchir de cette difficulté en utilisant une méthode approximative basée sur les Coefficients de répartitions.

III .1.4 - Méthode des coefficients de répartition:

Deux hypothèses servent de base à la configuration de la méthode :

- la construction réelle est remplacée par une dalle orthotrope présentant les mêmes rigidités moyennes de flexion et de torsion et qui est au sens technique exactement soluble par le calcul différentiel.
- la répartition transversale réelle du chargement est remplacée par celle qui naît sous une charge répartie le long de l'axe X de la construction et d'excentricité e suivant la

loi sinusoïdale de la forme :

$$P(x) = p_1 \cdot sin(\frac{\pi x}{L}) \tag{3.13}$$

- *p*₁: la valeur constante du chargement ;
- L : portée du pont.

Figure III.2 : La charge sinusoïdale.

Les calculs peuvent être affinés en développant la charge en série de Fourier, en fonction de l'abscisse longitudinale.

III .1.5- le coefficient de répartition transversale :

La construction prend une déformée en demi-onde de sinusoïde selon l'équation :

$$w(x,y) = W(y)sin\frac{\pi x}{L}$$
(3.14)

Si la charge p(x), au lieu d'être répartie sur une droite, est répartie uniformément sur la largeur 2b de la construction (tout en restant sinusoïdale dans le sens longitudinal), la construction prend une déformée en surface cylindrique d'équation :

$$w_0(x) = W_0 \sin \frac{\pi x}{L}$$
(3.15)

Le moment par unité de largeur pour un chargement de cette nature est :

$$M_0(x) = \frac{P_1}{2b} \cdot \frac{L^2}{\pi^2} \sin \frac{\pi x}{L}$$
(3.16)

Désignons le rapport du déplacement vertical w(x, y) d'un point de la construction sous l'effet d'une charge linéaire p(x) à celui $w_0(x)$ du même point mais sous l'effet de la charge $p_0(x)$ uniformément répartie sur la largeur du pont, **par le coefficient de répartition transversale** K(y):

$$k(y) = \frac{w(x,y)}{w_0(x)} = \frac{w(y)}{w_0}$$
(3.17)

Le coefficient K dépend :

- \checkmark de la valeur du paramètre d'entretoisement θ ;
- \checkmark de la valeur de paramètre de torsion α ;
- ✓ de l'excentricité relative e/b de la charge linéaire p(x);
- ✓ de l'ordonnée relative y/b du point du pont considéré ;

La flèche moyenne selon l'équation de la déformée est :

$$w_0 = \frac{P_1}{2b \cdot \rho_p} \cdot \frac{L^4}{\pi^4} \sin \frac{\pi x}{L}$$
(3.18)

Le calcul de K à partir des relations complexes d'intégral est en général difficile c'est pourquoi on divise la construction dans le sens de la largeur en 8 bandes de même largeur pour simplifier l'intégral.

On trouve que le coefficient K dépend, entre autre, de la valeur du paramètre α , pour éviter de calculer séparément K α pour chaque valeur de α on utilise les formules d'interpolation dans lesquelles on emploie les coefficients K₀ et K₁ pour les valeurs extrêmes $\alpha = 0$ et $\alpha = 1$ qui sont définis dans des tableaux pour des valeurs de θ données dans les abaques de Bareš et Massonnet.

Sur la base de calculs d'un grand nombre de cas, Massonnet a déterminé dans ces tableaux les valeurs des coefficients K_0 et K_1 pour θ compris entre 0.05 et 5.00 et selon les différentes excentricités de charges ($\mathbf{e} = \pm \mathbf{b}; \pm 3\mathbf{b}/4; \pm \mathbf{b}/2; \pm \mathbf{b}/4; \mathbf{0}$) et pour les sections de la largeur de la dalle ($\mathbf{y} = \mathbf{0}; \mathbf{y} = \mathbf{b}/4; \mathbf{y} = \mathbf{b}/2; \mathbf{y} = 3\mathbf{b}/4; \mathbf{y} = \mathbf{b}$). Pour un calcul rigoureux de K α , il est nécessaire d'appliquer les formules d'interpolation établies par Sattler et qui dépendent aussi de la valeur de θ :

Dans le cas où θ calculée ne figure pas dans le tableau on doit faire une interpolation, et si la poutre en question se trouve entre deux sections dont les lignes d'influence sont connues on peut aussi faire une interpolation.

III.1.6- calcul des efforts :

Chaque type d'effort (moments, efforts tranchants, etc.) fait intervenir un coefficient de répartition transversale des charges différent. Ce dernier est alors multiplié par le moment moyen pour obtenir le moment fléchissant existant dans une poutre déterminée. Le moment moyen correspond au moment de flexion de la poutre seule sous la charge et appuyée à ses extrémités.

On déplacera les charges de façon à obtenir les plus grandes ordonnées et on retiendra pour le calcul des efforts l'excentricité qui donne les plus grandes valeurs des coefficients. Dans le cas des ponts à poutres multiples la section d'étude sera imposée par la position de la poutre, ce qui nous amène à tracer les lignes d'influences pour les différentes excentricités de charge et on retiendra la section qui donne les plus grandes valeurs des coefficients.

III.1.7- Calcul des moments fléchissant longitudinaux (dans les poutres) :

Le rapport du moment fléchissant réel M(x, y) au moment moyen $M_0(x)$ dans le sens Transversal est égal au **coefficient de répartition transversale :**

$$K(y) = \frac{M_{(x,y)}}{M_{0(x)}}$$
(3.20)

Le moment fléchissant dans le sens X par unité de largeur pour une charge sinusoïdale est :

$$M(x, y) = \frac{\pi^2}{L^2} E. I_P \sum_{i=1}^{n} P_i \cdot W_i(y) \cdot \sin \frac{\pi x}{L}$$
(3.21)

Pour les charges:

 $P_1 \sin \frac{\pi x}{L}$, $P_2 \sin \frac{\pi x}{L}$,, $P_n \sin \frac{\pi x}{L}$

Figure III.3 : Ensemble des charges sinusoïdal.

Le moment fléchissant moyen à la distance x est : $M_0(x) = M_0 \sum_{i=1}^n P_i$ (3.22)

Et M_0 représente le moment fléchissant moyen produit par une charge linéaire sinusoïdale unitaire, uniformément répartie sur la largeur de la construction :

$$K(y) = \frac{\sum P.K}{\sum P} = \frac{\sum p_i k_i(y)}{\sum p_i}$$
(3.23)

Pour obtenir en un point quelconque de la construction le moment fléchissant réel il suffit de calculer en ce point le moment moyen $M_0(x)$ et de le multiplier ensuite par le rapport :

$$\sum p_i k_i(y) / \sum p_i$$

Pour une charge linéaire sinusoïdale l'expression du moment longitudinal est:

$$M(x, y) = k(y) \cdot \frac{P_{1}}{2b} \cdot \frac{L^{2}}{\pi^{2}} \cdot \sin \frac{\pi x}{L} \quad ; \quad M_{0}(x) = \frac{P_{1}}{2b} \cdot \frac{L^{2}}{\pi^{2}} \cdot \sin \frac{\pi x}{L}$$
$$\frac{M(x, y)}{M_{0}(x)} = \frac{\sum p_{i}k_{i}(y)}{\sum p_{i}} \tag{3.24}$$

III .1.8- calcul des moments fléchissant transversaux (dans les entretoises) :

Le moment fléchissant par unité de largeur d'entretoise c'est-à-dire par unité de longueur dans le grillage est exprimé, pour une charge sinusoïdale, par la relation :

(3.25)

$$M_{y} = \mu \rho b \sin \frac{\pi x}{L}$$

Figure III.4 : Chargement d'entretoise.

Le coefficient μ (θ , α , e, y) dépend des valeurs du paramètre d'entretoisement θ , du paramètre de torsion α , de l'excentricité e de la charge et de l'ordonnée y de la section faite dans l'entretoise dans laquelle on cherche l'effet.

Comme pour le coefficient K on détermine μ_{α} pour α quelconque par les formules interpolation :

$$\checkmark Si: 0 < \theta \le 0.1 \qquad \rightarrow \qquad \mu_{\alpha} = \mu_{0} + (\mu_{1} - \mu_{0}). \ \alpha^{0.05} \\
\checkmark Si: 0.1 < \theta \le 1 \qquad \rightarrow \qquad \mu_{\alpha} = \mu_{0} + (\mu_{1} - \mu_{0}). \ \alpha^{\beta} \\
\checkmark Si: \qquad \theta > 1 \qquad \rightarrow \qquad \mu_{\alpha} = \mu_{0} + (\mu_{1} - \mu_{0}). \ \alpha^{0.5}$$
(3.26)

Où : $\beta = 1 - e^{(0.065 - \theta)/0.663}$

• μ_0 : Correspondent à $\alpha = 0$.

• μ_1 : Correspondant à $\alpha = 1$ (les valeurs de μ_0 et μ_1 sont donnée dans les tableaux). Si la construction est soumise à un système de *n* charges linéaires sinusoïdales: $p_1 \sin \frac{\pi x}{L}$, $p_2 \sin \frac{\pi x}{L}$,...., $p_n \sin \frac{\pi x}{L}$; le moment existant dans la section y de l'entretoise S'obtient par superposition des effets individuels :

$$M_{y(x,y)} = b.\sin\frac{\pi x}{L} \sum_{i=1}^{n} p_i \mu_i$$
 (3.27)

III .1.9- calcul du moment de torsion dans le grillage :

On sait que : $M_{xy} = \gamma_p \frac{\partial^2 w}{\partial x \partial y}$ et $M_{yx} = -\gamma_E \frac{\partial^2 w}{\partial x \partial y}$

La différence de ces moments vaut : $M_{xy} - M_{yx} = (\gamma_p + \gamma_E) \frac{\partial^2 w}{\partial x \partial_y}$ (3.28)

En introduisant les relations suivantes :

$$\gamma_p + \gamma_E = 2\alpha \sqrt{\rho_p \rho_E}$$
 et $w(x, y) = w(y) \sin \frac{\pi x}{L}$ (3.29)

Dans l'équation précédente, nous trouvons :

$$M_{xy} - M_{yx} = 2\alpha \sqrt{\rho_p \rho_E} \cdot \frac{\pi}{L} \cdot \frac{dw(y)}{dy} \cos \frac{\pi x}{L} = 2\tau(\alpha) bp \cos \frac{\pi x}{L}$$
(3.30)

Dans cette formule, p représente l'intensité maximale de la charge repartie suivant la loi sinusoïdale :

$$P' = p \cdot \sin(\frac{\pi x}{L}) \tag{3.31}$$

Sur la parallèle à l'axe du pont d'excentricité e; $\tau(\alpha)$ est un coefficient sans dimensions qui dépend du paramètre de torsion α , de **e**, de **y** et de **θ**. Connaissant la différence des moments de torsion dans les poutres et les entretoises, on peut calculer chacun de ces moments par les formules:

$$M_{xy} = \frac{\gamma_p}{\gamma_p + \gamma_E} (M_{xy} - M_{yx})$$
 et $M_{yx} = -\frac{\gamma_E}{\gamma_p + \gamma_E} (M_{xy} - M_{yx})$ (3.32)

En remplaçant dans ces relations ($M_{xy} - M_{yx}$) par son expression (3.32), on obtient :

$$M_{xy} = \frac{2\gamma_p}{\gamma_p + \gamma_E} \cdot \pi bp \cos \frac{\pi x}{L} \quad \text{et} \quad M_{xy} = -\frac{2\gamma_E}{\gamma_p + \gamma_E} \cdot \pi bp \cos \frac{\pi x}{L} \quad (3.33)$$

Massonnet a trouvé, en calculant ces coefficients pour différentes valeurs de α entre 0 et 1, que pour déterminer l'expression générale de τ (α) on pouvait employer la relation simple τ (α) = $\tau_1 \sqrt{\alpha}$ La valeur de τ_1 peut être lue directement dans les tables et comme précédemment.

III.1.10- Utilisation pratique de la méthode de Guyon- Massonnet :

On peut appliquer cette méthode dans les cas suivants :

- Un tablier de pont à poutres sans entretoises intermédiaires c'est alors le hourdis qui joue le rôle des entretoises. Dans ce cas, pour calculer la rigidité de torsion d'une poutre comprenant une certain de largeur de hourdis, on doit :
- ✓ Décomposer la section de la poutre en éléments rectangulaires.
- ✓ Faire la somme des inerties de torsion de ces éléments.
- \checkmark Attribuant à la fraction de table de compression appartenant au hourdis un moment

d'inertie de torsion égale à la moitié des moments d'inertie calcule comme si c'était une poutre.

- Ossatures mixtes comportant un membre de poutrelles supérieures à 2, dans ce cas, on doit admettre que l'inertie de torsion des poutrelles (et des entretoises éventuelles) est nulle.
- Les ponts à biais.

III .2- Application de la Méthode de Guyon – Massonnet pour une dalle biaise :

III .2.1 – Principes :

Le principe consiste à associer à chaque travée hyperstatique une travée droite isostatique dite « équivalente ».

Le calcul d'un ouvrage continu de biais constant φ consiste essentiellement à construire un modèle longitudinal **2D** du tablier selon l'axe géométrique de l'ouvrage avec des travées de longueurs biaises L_{bj} et de largeur droite $2b_d$ puis, pour chaque travée, à combiner les résultats du modèle 2D avec ceux issus de l'étude de deux dalles isostatiques « équivalentes », l'une pour la flexion longitudinale et l'autre pour la flexion transversale.

Plusieurs « recettes » sont utilisables pour évaluer les portées isostatiques L_{0j} « équivalentes » de chaque travée, qui vont servir de base à la modélisation. Dans toutes les méthodes, on applique sur le modèle 2D une charge uniforme p sur toute la longueur de chaque travée considérée.

III.2.1.1 - Méthode directe des flèches :

La méthode ne s'applique qu'aux ouvrages d'inertie constante et consiste à considérer la flèche f_h maximum de la travée obtenue sur le modèle 2D (cette flèche se trouve aux environs de **0,4 L**_b et **0,6 L**_b pour les travées de rive et aux environs de **0,5 L**_b pour les travées intermédiaires) et à l'assimiler à la flèche d'une travée isostatique de longueur L₀ et de même rigidité EI.

La flèche f_0 d'une travée isostatique de longueur L_0 soumise à la même charge p vaut :

$$f_0 = \frac{5}{384} \cdot \frac{P \cdot L_0^4}{EI} \tag{3.34}$$

D'où l'on déduit, avec $f_h = f_0$:

$$L_0 = \sqrt[4]{\frac{384}{5} \cdot \frac{f_h \cdot EI}{P}}$$
(3.35)

Par exemple, pour une travée encastrée à ses deux extrémités, on a :

III .2.1.2 - Méthode indirecte des flèches à partir des moments :

Une variante de la méthode des flèches est basée sur les moments hyperstatiques M1 et M2 obtenus sur le modèle 2D aux extrémités de la travée. La flèche au milieu de la travée hyperstatique s'exprime par :

$$f_h = \frac{5}{384} \frac{P.L_b^4}{EI} - \frac{(M_1 + M_2)}{16} \cdot \frac{L_b^2}{EI}$$
(3.37)

D'où l'on déduit à partir de (3.37), avec $f_h = f_0$:

$$L_0 = L_b \sqrt[4]{1 - \frac{24}{5} \frac{M_1 + M_2}{P.L_b^2}}$$
(3.38)

En reprenant l'exemple d'une travée encastrée à ses deux extrémités, on a :

$$M_1 = M_2 = P.L_b^2/12$$
 $\Box = L_b/\sqrt[4]{5} \approx 0.669 \cdot L_b$

Cette méthode présente l'avantage de ne pas avoir à définir la rigidité EI de la section. Elle ne s'applique toutefois qu'aux ouvrages d'inertie constante.

Il s'agit de la méthode utilisée par les programmes actuels. On notera qu'elle n'est pas exactement équivalente à la précédente dans la mesure où on calcule systématiquement la flèche à mi- portée, sans distinction entre travées de rive et travées intermédiaires.

III .2.1.3 - Méthode des moments pour des structures d'inertie variable :

La méthode consiste à dire que la portée isostatique équivalente L_0 est la longueur délimitée par les points de moments nuls le long de la travée hyperstatique L_b .

Pour une travée de longueur L_b soumise à une charge uniforme p et à des moments M1 et M2 aux extrémités, la courbe des moments, parabolique, est connue, et l'on peut en déduire la distance entre zéros :

$$L_0 = \frac{2}{P} \sqrt{\left(\frac{P.L_b}{2}\right)^2 + \left(\frac{M_1 - M_2}{L_b}\right)^2 - P(M_1 + M_2)}$$
 (Convention : M > 0 sur appui)

En reprenant l'exemple d'une travée encastrée à ses deux extrémités, et en introduisant les valeurs des moments trouvés, on obtient :

$$L_0 = L_b / \sqrt{3} \approx 0.577 \cdot L_b \tag{3.39}$$

Contrairement aux deux autres, ce calcul permet de déterminer la longueur isostatique indépendamment de la variation d'inertie le long de l'ouvrage. De ce fait, il nécessite également de définir l'inertie à retenir pour la dalle isostatique équivalente :

- Si l'inertie est constante, elle est conservée pour la dalle isostatique.
- Si l'inertie est variable, on calcule l'inertie équivalente par égalité de la flèche f_h de la travée hyperstatique de longueur L_b et d'inertie variable et de la flèche de la travée isostatique de longueur L_0 d'inertie équivalente I_e et de même module E. La relation (3.34) donne alors immédiatement :

$$I_e = \frac{5}{384} \cdot \frac{P.L_o^4}{E \cdot f_h} \tag{3.40}$$

III .2.2 - Introduction simplifiée du biais :

Soit une travée de longueur biaise L_b , de largeur droite $2b_d$ et de biais géométrique φ . Les méthodes du paragraphe précédent permettent de calculer sa portée biaise isostatique équivalente L_{0b} . La portée droite isostatique équivalente L_{0d} est alors donnée par :

$$L_{0d} = L_{0b} \cdot \sin \varphi \tag{3.41}$$

Figure III.5 : Dalle biaise : biais géométrique et mécanique.

III .2.2.1 - Flexion longitudinale :

Les moments de flexion longitudinale sont calculés à partir des moments issus du modèle longitudinal 2D de l'ouvrage par la méthode des coefficients de répartition transversale. Ces coefficients sont issus de l'étude d'une dalle rectangulaire « équivalente » de largeur $2b_d$ et de longueur L_{0b} . (Figure *III.*6).

Figure III.6 : Flexion longitudinale : portée isostatique équivalente.

III .2.2.2 - Flexion transversale :

Les moments de flexion transversale sont calculés sans tenir compte de la continuité sur une « dalle mécanique équivalente » obtenue à partir de la modélisation de la (Figure *III.5*) et de dimensions :

$$\int_{a}^{b_{m}} L_{0m} = L_{0b} \cdot \sin \psi \qquad (Figure III.7)$$
$$b_{m} = b_{d} / \sin \psi$$

Donc plus large et moins longue que la dalle servant à l'étude de la flexion longitudinale (Figure *III.6*).

Figure III.7 : Dalle mécanique équivalente.

Cette dalle est ensuite « redressée » dans l'axe de l'ouvrage et la différence de largeur avec la dalle réelle est prise en compte en effectuant une homothétie de rapport $1/\sin \psi$ sur l'ordonnée des points d'étude et des charges (Figure *III.8*).

III .3 – METHODE DES LIGNES DE RUPTURE :

III .3.1 – Principe :

Cette méthode consiste à déterminer un ou plusieurs mécanismes de rupture d'un panneau de dalle qui soient cinématiquement admissibles.

La création des mécanismes de rupture se produit par plastification des aciers c'est-à-dire dès que :

$$\varepsilon_{\rm s} \ge \frac{f_{\rm yd}}{E_{\rm s}}$$
 (3.42)

L'allongement de l'acier entraine alors une fissuration du béton et donc une articulation (appelée rotule).

Le panneau de dalle est ainsi transformé en un ensemble de plaques supposées indéformables. Ces plaques vont pivoter autour des lignes d'appui sous l'effet de leur chargement.

Il existe a priori plusieurs mécanismes de rupture pour un même schéma de dalle. On doit rechercher parmi tous les mécanismes possibles, celui qui, pour une charge extérieure donnée p, donne le moment fléchissant le plus fort.

A partir de ce mécanisme de rupture, on peut calculer les armatures de la dalle en utilisant le principe de la conservation de l'énergie.

III .3.2 – Hypothèses concernant les lignes de rupture :

Les lignes de rupture, fixées par le calculateur, répondent aux règles suivantes :

- Les lignes de rupture délimitent des surfaces planes. Ces surfaces restent planes après rupture.
- 4 Les intersections des plaques sont donc droites \rightarrow les lignes de rupture sont des droites.
- 4 Les plaques pivotent autour des lignes d'appui et des lignes de rupture.
- 4 Les lignes de rupture passent par les intersections de 2 lignes d'appui.
- Lorsque 2 lignes d'appui sont parallèles, la ligne de rupture leur est parallèle (on se ramène à la règle précédente étant donné que des lignes parallèles ont leur intersection à l'infini).

III .3.3 – Notations concernant les conditions d'appuis :

On trouve essentiellement 4 types de conditions d'appui dont la schématisation est représentée ci-après :

Bord libre ou appui libre :

Figure III.9 : Représentation schématique d'un bord libre.

Appui articulé :

Figure III.10 : Représentation schématique d'un appui articulé.

Appui encastré :

Figure III.11 : Représentation schématique d'un appui encastré.

Il se produit des lignes de rupture le long des appuis encastrés. Ces lignes de rupture sont dites « négatives » car la fissure se produit en fibre supérieure et car elles s'accompagnent d'un moment négatif.

Appui ponctuel :

Figure III.12 : Représentation schématique d'un appui ponctuel.

III .3.4 – Détermination des moments :

La détermination des moments en fonction des charges appliquées se fait en égalisant le travail des forces intérieures (travail résistant, W_i) et le travail des forces extérieures (travail agissant, W_e) le long des lignes de rupture.

$$W_i = W_e$$

CHAPITRE III

III .3.4.1 - Travail des forces intérieures :

Le travail des forces intérieures ou travail résistant est uniquement apporté par le moment résistant des armatures traversant la ligne de rupture.

Pour les lignes de rupture n°1 à n du panneau de dalle :

$$W_i = \sum_{j=1}^n m_j \cdot \omega_j \tag{3.43}$$

Avec :

- m_i : moment résistant des aciers traversant la ligne de rupture j.
- ω_i : Rotation des plaques de part et d'autre de la ligne de rupture

Par rapport à leur position initiale.

III .3.4.2 - Travail des forces extérieures :

Le travail des forces extérieures ou travail agissant est apporté par les charges appliquées sur les plaques qui entrainent leur mouvement.

Pour les plaques $n^{\circ}1$ à n du panneau de dalle :

$$W_e = \sum_{j=1}^n F_i \cdot d_j \tag{3.44}$$

Avec :

- F_i : résultante des charges extérieures appliquées sur la plaque i.
- d_i : Déplacement vertical de la résultante des charges sous l'effet

De la rotation de la plaque i.

III .3.4.3 - Détermination du schéma rupture privilégié :

Les schémas de rupture et donc les positions des lignes de rupture ne sont a priori pas uniques et peuvent s'exprimer en fonction de paramètres géométriques ($\lambda 1$, $\lambda 2$, ..., λi)

L'équation Wi = We, peut donc s'exprimer également sous la forme d'une fonction :

$$m = f(p, \lambda I, \lambda 2, ..., \lambda i)$$
(3.45)

Avec :

- *m* : moment de rupture.
- *p* : charge extérieure appliquée sur le panneau de dalle.

Le schéma de rupture le plus défavorable étant celui qui, pour une charge extérieure donnée, donne le moment de rupture maximum, on écrira :

$$\frac{\partial m}{\partial \lambda_1} = 0 \quad ; \quad \frac{\partial m}{\partial \lambda_2} = 0 \quad ; \quad \dots \quad ; \frac{\partial m}{\partial \lambda_i} = 0$$

La résolution de ces équations permet de déterminer les paramètres et ainsi la position des lignes de rupture.

Règle pratique induite : le schéma de rupture dimensionnant est obtenu en minimisant les longueurs des lignes de ruptures.

III .3.5 - Méthode pratique de résolution du problème :

III .3.5.1- Méthode pour les lignes de rupture biaises :

La méthode la plus rapide consiste à utiliser le tableau précédent en projetant l'ensemble des paramètres sur les axes Ox et Oy du panneau de dalle.

Ligne de rupture inclinée de θ sur l'horizontale :

Pour un quadrillage orthogonal d'armatures de section a par mètre de largeur parallèle à Ox et Oy.

Considérons un rectangle de dalle de largeur unité.

Pour les armatures // Ox				
- section par unité de largeur \perp à Ox	a. (cm ² /m)			
- section totale \perp à Ox	a.tan $ heta$			
- force // Ox	$a.\sigma_s.\tan\theta$			
- force⊥à la LdR	$a.\sigma_s.\tan heta$. $\sin heta$			
- force par unité de largeur //LdR	$\frac{a.\sigma_s.\tan\theta.\sin\theta}{1/\cos\theta} = a.\sigma_s.sin^2\theta$			

Pour les armatures // Oy				
- section par unité de largeur \perp à Oy	μ . a (cm ² /m)			
- section totale \perp à Oy	μ. a. 1			
- force // Oy	$\mu.a.\sigma_s$			
- force⊥à la LdR	μ . a. σ_s . cos θ			
- force par unité de largeur //LdR	$\frac{\mu.a.\sigma_s.\cos\theta}{1/\cos\theta} = \mu.a.\sigma_s.\cos^2\theta$			

Force perpendiculaire à la Ligne de Rupture :

a. σ_s . $(sin^2 \theta + \mu. cos^2 \theta)$

Remarque :

Pour une section d'armature identique dans les deux directions ($\mu = 1$), le moment résistant est le même dans toutes les directions (à la différence des hauteurs utiles près) : $\mathbf{m.}a_s.\mathbf{Z}$

III .3.6 - Application au cas d'une dalle sur deux appuis uniformément chargée :

On considère un panneau de dalle rectangulaire (longueur b, portée L) avec des appuis articulés sur 2 côtés parallèles. Son épaisseur est notée \mathbf{h} .

La dalle est uniformément chargée sur toute sa surface par une charge notée p.

Tracé du schéma de rupture :

Le système est constitué de deux lignes d'appuis articulées parallèles. Il peut y avoir 1 ou plusieurs lignes de rupture parallèles à ces lignes d'appuis.

En considérant que le schéma de rupture le plus défavorable est obtenu en minimisant la longueur des lignes de rupture, on ne dessinera qu'une seule ligne parallèle aux lignes d'appuis. Sa position est en revanche à priori inconnue et donnée par le paramètre λ .

Figure III.13 : Schéma du cas étudié.

Travail interne : Wi

Numéro de la Ligne de Rupture	Nombre de Lignes de Rupture	Longueur de la Ligne de Rupture projetée suivant : - l'axe Ox - l'axe Oy	Rotation de l'armature // à: - l'axe Oy - l'axe Ox	Moment relatif	Wi
1	1	b	$\frac{\delta}{l-\lambda} + \frac{\delta}{\lambda}$	m	m.b. $\left(\frac{\delta}{l-\lambda} + \frac{\delta}{\lambda}\right)$
	1	0	0	0	0

$$Wi = m. b. \left(\frac{\delta}{l-\lambda} + \frac{\delta}{\lambda}\right)$$
(3.46)

4 <u>Travail externe</u> : We

Numéro de la plaque	Nombre de plaques	Aire de chargement	Charge	Déplacement du centre de gravité de la charge en fonction de δ	We
	1	(L-λ).b	р	δ/2	(L-λ).b .p .δ/2
1					
2	1	λ.b	р	δ/2	λ.b .p .δ/2

$$We = (L - \lambda)b \cdot p \cdot \delta/2 + \lambda b \cdot p \cdot \delta/2 = b \cdot q \cdot \delta/2 \cdot L$$
(3.47)

$\begin{array}{ll} & \underline{\text{Moment de calcul :}} & m = \frac{we}{wi/m} \\ \text{On écrit ensuite l'égalité :} & W_i = W_e \\ \text{Soit :} & m \cdot \left(\frac{\delta}{l-\lambda} + \frac{\delta}{\lambda}\right) = \frac{p}{2} \cdot L & \text{ou encore :} & m = \frac{p}{2} \cdot \lambda \cdot (L - \lambda) \\ \text{Pour déterminer le schéma le plus défavorable, on écrit ensuite :} & \frac{\partial m}{\partial \lambda} = 0 \\ & \frac{\partial m}{\partial \lambda} = \frac{p}{2} \cdot L - p \cdot \lambda = 0 & \longrightarrow & \lambda = \frac{L}{2} \\ \text{D'où :} & m = \frac{p}{2} \cdot \frac{L}{2} \cdot \left(L - \frac{L}{2}\right) = p \cdot \frac{L^2}{8}. \end{array}$

CHAPITRE IV :

MODDELISATION DES DALLES BIAISES PAR ELEMENTS FINIS

IV.1– THEORIE DES PLAQUES

- IV.1.1 Définition d'une plaque
- IV.1.2 Définitions et notations générales
- IV.1.3 Domaine d'utilisation

IV.1.4 - Flexion des plaques

- IV.1.4.1 Définitions
- IV.1.4.2 Champ de déplacements : modèle de Reissner /Mindlin
- IV.1.4.3 Déformations et contraintes
- IV.1.4.4 Forces et moments résultants
- IV.1.4.5 Energie de déformation et énergie cinétique
- IV.1.4.6 Equations d'équilibre
- IV.1.4.7- Flexion des plaques minces : Modèle de Kirchhoff

IV.2 – MODÉLISATION PAR ÉLÉMENTS FINIS

- IV.2.1 Construction de l'approximation nodale sur un élément
 - IV.2.1.1 Définition du type d'Elément
 - IV.2.1.2 Formulation mathématique

IV.2.2 - Calcul de la matrice de rigidité élémentaire et du vecteur des charges nodales équivalentes

- IV.2.3 Assemblage
- IV.2.4 Prise en compte des conditions aux limites et résolution
- IV.2.5 Évaluation des grandeurs élémentaires

IV.3 – APPLICATION A UN ÉLÉMENTS FLEXIONNEL DE PLAQUE MINCE

- **IV.3.1–** Caractéristique
- IV.3.2 Cinématique
- IV.3.3 Condition de compatibilité cinématique
- IV.3.4 Loi de comportement
- IV.3.5 Equation d'équilibre
- IV.3.6 Fonction d'interpolation
- IV.3.7 Matrrice de rigidité élémentaire

CHAPITRE IV : MODDELISATION DES DALLES BIAISES PAR ÉLÉMENTS FINIS

IV.1-THEORIE DES PLAQUES :

IV.1.1- Définition d'une plaque :

Une plaque est un solide défini par une surface de référence plane (plan x,y) et par une petite épaisseur (notée h(x,y)), par rapport aux autres dimensions, à savoir la longueur et la largeur [MDP55]. Suivant l'ordre de grandeur de h par rapport aux autres dimensions, on introduit l'adjectif mince au épaisse aux plaques. Cependant, ce qualificatif n'implique pas seulement une caractéristique géométrique, mais définit aussi un rôle particulier des déformations dites de cisaillement transversal (*CT*). Cette influence est d'autant plus importante que les structures sont épaisses.

Figure IV.1: Géométrie d'une plaque.

Ces plaques sont souvent suivies de l'adjectif mince ou épais selon l'épaisseur h, nous admettons généralement.

• pour les plaques épaisses : • Pour les plaques minces : $\frac{1}{20} < \frac{h}{L} < \frac{1}{4}$ $\frac{h}{L} < \frac{1}{20}$

La théorie des plaques repose sur les hypothèses suivantes :

- H.1 : Les contraintes normales σ_{zz} sont négligeables par rapport aux autres Composantes de contraintes : $\sigma_{zz} = 0$.
- **H.2** : Les pentes de la surface moyenne après déformation, sont supposées petites par Rapport à l'unité (Petite déflexion du plan moyen).
- **H.3** : Les points situés sur une normale à la surface moyenne avant déformation, Restent sur cette normale au cours de la déformation.

IV.1.2 - Définitions et notations générales:

Conventions de signe pour déplacements et rotations.

Les notations adoptées ci-après pour les déplacements sont définies à la Figure (IV -2)

Figure IV.2: Conventions générales.

L'équation d'équilibre des moments est :

$$\frac{\partial^2 M_x}{\partial x^2} + 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} = -p_z(x, y)$$
(4.1)

L'intégration des équations des moments fléchissant donne l'équation de la plaque soumise aux charges distribuées $p_z(x, y)$:

$$\frac{\partial^4 w}{\partial x^2} + 2 \frac{\partial^4 w}{\partial x^2 \partial_{y^2}} + \frac{\partial^4 w}{\partial y^2} = \frac{p_z(x, y)}{D}$$
(4.2)

IV.1.3 - Domaine d'utilisation :

Le domaine de l'utilisation de plaque est très répandue dans tous les domaines, en particulier dans le domaine du génie civil où, on les utilise dans les constructions simples (habitation) où les ouvrages d'art et elle existe sous formes différentes, y compris les circulaires et rectangulaires et d'autre formes selon la qualité de l'ouvrage, Comme celle-est représenté dans les photos ci-dessous.

Ouvrages d'arts ponts

Ouvrages d'arts (plaques circulaire)

Ouvrages d'arts ponts (tabliers)

Ouvrages souterrains
IV.1.4 - Flexion des plaques :

IV.1.4.1-Définitions :

Une plaque est un corps solide limité par deux faces planes (figure IV.3). L'épaisseur h de plaque est la distance entre les deux faces. Le plan équidistant des deux faces est le plan médiante ou surface moyenne.

Figure IV.3: plaque.

Soit $\{0; x, y, z\}$ un repère orthonormé tel que le plan $\{0; x, y\}$ soit le plan moyen.

- Le plan situé à z = h/2 est la peau supérieure de la plaque.
- Le plan situé à z = -h/2 est la peau inférieure de la plaque.

Une fibre normale est l'ensemble des points du solide situés sur une normale au plan médiante. Une plaque est dite mince si son épaisseur est petite par rapport aux autres dimensions.

On adoptera les hypothèses suivantes :

- ✓ la plaque est sollicitée par des forces de composantes $(0,0,f_z)$ et des couples de composantes $(m_x, m_y, 0)$.
- ✓ la contrainte normale σ_{zz} est négligeable par rapport aux autres composantes du tenseur des contraintes.
- \checkmark les phénomènes de membrane et de flexion sont découplés.

Compte-tenu des conditions de chargement :

- ✓ les phénomènes de membrane sont nuls.
- ✓ $\sigma_{zx}(x, y, \pm h/2) = \sigma_{zy}(x, y, \pm h/2) = 0$.

IV.1.4.2-Champ de déplacements : modèle de Reissner /Mindlin :

Le modèle de Reissner /Mindlin est basé sur l'hypothèse cinématique suivante : au cours de la mise en charge, les fibres normales restent droites d'où l'expression du champ de déplacement (Figure IV .4)

$$\begin{cases} u(x,y,z;t) = z \,\theta_y(x,y;t) = z \,\beta_x(x,y;t) \\ v(x,y,z;t) = -z \,\theta_x(x,y;t) = z \,\beta_y(x,y;t) \\ w(x,y,z;t) = w(x,y;t) \end{cases}$$
(4.3)

Ou :

- *w* : est le déplacement transverse de la surface moyenne.
- $\boldsymbol{\theta}_x = -\boldsymbol{\beta}_y$ est la rotation de la fibre normale suivant x.
- $\boldsymbol{\theta}_{y} = \boldsymbol{\beta}_{x}$ est la rotation de la fibre normale suivant y.

Figure IV. 4 : Flexion des plaques : champ de déplacement.

<u>Remarque :</u>

Les déplacements u et v sont linéaires en z.

IV.1.4.3-Déformations et contraintes :

le champ de déplacements dans le solide est donc défini par la connaissance de w, β_x et β_y en tout point (x,y) du plan moyen. De l'expression de champ de déplacements, on déduit les déformations :

$$\varepsilon_{xx} = z \frac{\partial \beta_x}{\partial x}$$

$$\varepsilon_{yy} = z \frac{\partial \beta_y}{\partial y}$$

$$\varepsilon_{zz} = 0$$
(4.4)
$$2\varepsilon_{xy} = \gamma_{xy} = z \left(\frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_y}{\partial x}\right)$$

$$2\varepsilon_{xz} = \gamma_{xz} = \beta_x + \frac{\partial w}{\partial x}$$

$$2\varepsilon_{yz} = \gamma_{yz} = \beta_y + \frac{\partial w}{\partial y}$$

La loi de comportement s'écrit :

$$\{\sigma_f\} = [D_m] \{\varepsilon_f\} = z [D_m] \{\chi\}$$
(4.5 a)

Ou :

$$\sigma_{f} = \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases}, \ \varepsilon_{f} = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases} = z \{\chi\} \quad , \{\chi\} = \begin{cases} \frac{\partial \beta_{x}}{\partial x} \\ \frac{\partial \beta_{y}}{\partial y} \\ \frac{\partial \beta_{y}}{\partial y} \\ \frac{\partial \beta_{x}}{\partial y} + \frac{\partial \beta_{y}}{\partial x} \end{cases}$$
(4.5 b)
$$[D_{m}] = \frac{E}{1-v^{2}} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix}$$
(4.5 c)

Pour la flexion est :

$$\{\sigma_c\} = Gk_c [I] \{\varepsilon_c\}$$
(4.5 d)

Ou :

$$\{\sigma_c\} = \begin{cases} \sigma_{xz} \\ \sigma_{yz} \end{cases} , \{\varepsilon_c\} = \begin{cases} \gamma_{xz} \\ \gamma_{yz} \end{cases} , [I] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , G = \frac{E}{2(1+\nu)}$$
(4.5 e)

Pour le cisaillement transverse.

- $\{\chi\}$: Est le vecteur de courbure.
- { ε_c } et { σ_c }: Sont constants le long d'une fibre normale : le modèle de Reissner /Mindlin ne respecte pas la condition $\sigma_{zx}(x, y, \pm h/2) = \sigma_{zy}(x, y, \pm h/2) = 0$.
- k_c : est un facteur de correction calculé par identification statique ou dynamique entre un grandeur évaluée avec le modèle Reissner /Mindlin et cette même grandeur évaluée avec un modèle plus « riche » du point de vue de la théorie de l'élasticité.

On adopte souvent :

$$k_c = \frac{5}{6} \tag{4.6}$$

IV.1.4.4-Forces et moments résultants :

Considérons un élément de plaque infiniment petit, limité par un cylindre perpendiculaire au plan moyen, de section droite rectangulaire et dont les forces sont parallèles à x ou y (figure IV.5).

Figure IV.5: Efforts résultants.

Les forces et moments résultants (effort par unité de longueur) sont définis par :

$$\{q\} = \begin{cases} q_{xz} \\ q_{yz} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_{xz} \\ \sigma_{yz} \end{cases} dz$$

$$\tag{4.7}$$

$$\{m\} = \begin{cases} m_{xx} \\ m_{yy} \\ m_{zz} \end{cases} = \int_{-h/2}^{h/2} z \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{cases} dz$$

$$(4.8)$$

• { *q*} et {*m*} s'expriment respectivement en N/m et N.m/m = N.

En portant dans ces expressions les relations de comportement (4.5), il vient :

$$\{m\} = [D_f]\{\chi\} \text{ Avec}: [D_f] = \int_{-h/2}^{h/2} [D_m] z^2 \cdot dz = \frac{E \cdot h^3}{12(1-\nu^2)} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$$
(4.9a)

$$\{q\} = [D_c]\{\varepsilon_c\}$$
 Avec: $[D_c] = \int_{-h/2}^{h/2} G K_c[I] dz = \frac{E \cdot h^3}{2(1+\nu)} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ (4.9b)

Remarque :

On a les relations :

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{cases} = \frac{12z}{h^3} \begin{cases} m_{xx} \\ m_{yy} \\ m_{zz} \end{cases} , \qquad \begin{cases} \sigma_{xz} \\ \sigma_{yz} \end{cases} = \frac{1}{h} \begin{cases} q_{xz} \\ q_{yz} \end{cases}$$
(4.10)

IV.1.4.5-Energie de déformation et énergie cinétique :

L'énergie de déformation est égale à :

$$E_{def} = \frac{1}{2} \int_{V} \left(\{\varepsilon_{f}\}^{T} \{\sigma_{f}\} + \{\varepsilon_{f}\}^{T} \{\sigma_{c}\} \right) dV$$

$$= \frac{1}{2} \int_{A} \left(\{\chi\}^{T} \{m\} + \{\varepsilon_{c}\}^{T} \{q\} \right) dA \qquad (4.11)$$

$$= \frac{1}{2} \int_{A} \left(\{\chi\}^{T} \{D_{f}\} \{\chi\} + \{\varepsilon_{c}\}^{T} \{D_{c}\} \{\varepsilon_{c}\} \right) dA \qquad \text{Avec} \quad dA = dx \, dy$$

L'énergie de cinétique est égale à :

$$E_{cin} = \frac{1}{2} \int_{V} \rho(\dot{u}^{2} + \dot{v}^{2} + \dot{w}^{2}) dV$$

$$= \frac{1}{2} \int_{V} \rho(z^{2} \dot{\beta}_{x}^{2} + z^{2} \dot{\beta}_{y}^{2} + \dot{w}^{2}) dV$$

$$= \frac{1}{2} \int_{A} \rho h \dot{w}^{2} dA + \frac{1}{2} \int_{A} \frac{\rho h^{3}}{12} (\dot{\beta}_{x}^{2} + \dot{\beta}_{y}^{2}) dA$$
 (4.12)

IV.1.4.6-Equations d'équilibre :

Les équations d'équilibre se réduisent à :

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} = \rho \ \ddot{u}$$
(4.13a)

$$\frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} = \rho \ \ddot{\nu}$$
(4.13b)

$$\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + f_z = \rho \ddot{w}$$
(4.13c)

Intégrons suivant l'épaisseur l'équation (4.13c) :

$$\frac{\partial q_{xz}}{\partial x} + \frac{\partial q_{yz}}{\partial y} + P_z = \rho h \ddot{w}$$

Avec: $P_z = \int_{-h/2}^{h/2} f_z dz + \sigma_{zz} (x, y, h/2) - \sigma_{zz} (x, y, -h/2)$ (4.14)

Multiplions par z l'équation (4.13a), puis intégrons suivant l'épaisseur :

$$\frac{\partial m_{xx}}{\partial x} + \frac{\partial m_{xy}}{\partial y} + \int_{-h/2}^{h/2} z \, \frac{\partial \sigma_{xz}}{\partial z} \, dz = \int_{-h/2}^{h/2} z^2 \, \rho \, \ddot{\beta}_x \, dz = \frac{1}{12} \, \rho \, h^3 \, \ddot{\beta}_x \tag{4.15}$$

Intégrons par parties l'intégrale du premier membre :

$$\int_{-h/2}^{h/2} z \, \frac{\partial \sigma_{xz}}{\partial z} \, dz = \int_{-h/2}^{h/2} \frac{\partial (z \, \sigma_{xz})}{\partial z} \, dz - \int_{-h/2}^{h/2} \sigma_{xz} \, dz = [z \sigma_{xz}]_{-h/2}^{-h/2} - q_{xz} \quad (4.16)$$

En utilisant la condition $\sigma_{xz}(x, y, \pm h/2) = 0$, il vient :

$$\frac{\partial m_{xx}}{\partial x} + \frac{\partial m_{xy}}{\partial y} - q_{xz} = \frac{1}{12} \rho h^3 \ddot{\beta}_x$$
(4.17)

Les équations d'équilibre exprimées à l'aide des efforts résultants s'écrivent :

$$-\begin{bmatrix} \frac{\partial q_{xz}}{\partial x} + \frac{\partial q_{yz}}{\partial y} + P_z = \rho \ h \ \ddot{w} \\ \frac{\partial m_{xx}}{\partial x} + \frac{\partial m_{xy}}{\partial y} - q_{xz} = \frac{1}{12} \ \rho \ h^3 \ \ddot{\beta}_x \\ \frac{\partial m_{xy}}{\partial x} + \frac{\partial m_{yy}}{\partial y} - q_{yz} = \frac{1}{12} \ \rho \ h^3 \ \ddot{\beta}_y \end{bmatrix}$$
(4.18)

IV.1.4.7-Flexion des plaques minces : Modèle de Kirchhoff

Un corps élastique dont l'épaisseur est très petite par rapport aux autres dimensions est appelé plaque mince. Le plan moyen de la plaque est défini comme étant le plan parallèle aux faces de la plaque partageant l'épaisseur en deux.

Les axes des coordonnées sont choisis de telle sorte que le plan \mathbf{x} , \mathbf{y} coïncide avec le plan moyen et l'axe z sera perpendiculaire à ce dernier.

On dit qu'une plaque travaille à la flexion quand les charges dont les quels elle soumise sont parallèles à l'axe z (perpendiculaire au plan moyen)

Si les déplacements sont très petits par rapport à l'épaisseur de la plaque on peut faire les suppositions suivantes :

1) les plans perpendiculaires au plan moyen avant la déformation restent perpendiculaires à ce plan après la déformation.

2) la contrainte normale σ_z est petite par rapport aux autres composantes de contraintes et peut être négligée.

3) le plan moyen ne subit pas de déformation après la flexion. Considérons une section de la plaque parallèle au plan $\mathbf{x} \mathbf{z}$.

Figure IV.6 : Flexion de la surface neutre de la plaque.

Dans la théorie de Kirchhoff, on néglige l'effet de cisaillement transverse.

Si la plaque est mince (h est petit par rapport aux dimensions de la plaque), on adopte l'hypothèse de Kirchhoff : au cours de la mise en charge, les fibres normales restent perpendiculaires à la déformée de la surface moyenne d'où les relations cinématiques :

$$\beta_x = \theta_y = -\frac{\partial w}{\partial x}$$
, $\beta_y = -\theta_x = -\frac{\partial w}{\partial y}$ (4.19)

Le champ de déplacements se réduit à :

$$\begin{bmatrix}
u(x,y,z;t) = -z & \frac{\partial w(x,y;t)}{\partial x} \\
v(x,y,z;t) = -z & \frac{\partial w(x,y;t)}{\partial y} \\
w(x,y,z;t) = w(x,y;t)
\end{bmatrix}$$
(4.20)

D'où les déformations :

$$\begin{cases} \varepsilon_{xx} = -z \frac{\partial \beta_x}{\partial x} \\ \varepsilon_{yy} = -z \frac{\partial \beta_y}{\partial y} \\ 2\varepsilon_{xy} = \gamma_{xy} = 2 z \left(\frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_y}{\partial x} \right) \\ 2\varepsilon_{xz} = 2\varepsilon_{yz} = \gamma_{xz} = \gamma_{yz} = 0 \end{cases}$$

$$\{\chi\} = - \begin{cases} \frac{\partial^2 w}{\partial x^2} \\ \frac{\partial^2 w}{\partial y^2} \\ 2 \frac{\partial^2 w}{\partial x \, \partial y} \end{cases}$$

Et les contraintes :

$$\sigma_{xz} = \sigma_{yz} = 0 \tag{4.22}$$

(4.21)

<u>Remarque :</u>

Le cisaillement transversal est négligé.

IV.2- MODÉLISATION PAR ÉLÉMENTS FINIS :

Dans le domaine du génie civil on a souvent besoin de calculer des structures complexes pour lesquelles il est très rare que l'on puisse obtenir une solution analytique du problème en utilisant les théories classiques. De ce fait, on est la plupart du temps obligé de recourir à des méthodes numériques comme celle des éléments finis. La démarche de modélisation par éléments finis est schématisée comme suit :

IV.2. 1- Construction de l'approximation nodale sur un élément :

IV.2. 1. 1- Définition du type d'Elément :

4 Eléments à une dimension :

Type d'Elément		barre		poutre
Elément	2	3	/4	2
	ī	2	2 3	ī
Nbre de Nœuds	02	03	04	02
Nbre de DDL	01x02=02	01x03=03	01x04=04	02x02=04
Forme	Linéaire	Quadratique	Cubique	Cubique
d'approximation				
Туре		Lagrange		Hermite
d'approximation				

4 Eléments à deux dimensions :

4 Eléments à trois dimensions :

IV. 2. 1. 2- Formulation mathématique :

> Définition de la cinématique (Degrés de liberté et déformations)

Déplacements :
$$\vec{q} = \langle \vec{e_1} \quad \vec{e_2} \quad \vec{e_3} \rangle \begin{cases} u \\ v \\ w \end{cases}$$
 (4.23)

Rotations et Déformations infinitésimales : $\overline{grad}(\vec{q}) = \vec{q} \otimes \vec{V}$ (4.24)

$$=== \Rightarrow \quad \varepsilon_{xx} = \frac{\partial u}{\partial x} \quad ; \quad \varepsilon_{yy} = \frac{\partial v}{\partial y} \quad ; \quad \varepsilon_{zz} = \frac{\partial w}{\partial z}$$

$$\gamma_{xy} = 2\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

$$\gamma_{xz} = 2\varepsilon_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}$$

$$\gamma_{yz} = 2\varepsilon_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$$

$$=== \Rightarrow \quad \theta_x = \frac{1}{2} \left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y} \right) \quad ; \quad \theta_y = \frac{1}{2} \left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y} \right) \quad ; \quad \theta_z = \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right)$$

$$(4.25)$$

> Approximation nodale à l'intérieur d'un élément

Il s'agit de donner une fonction d'interpolation des champs (de déplacements, de déformation et des contraintes) à l'intérieur d'un élément simple (élément fini) en fonction de la valeur des variables aux nœuds. Cette fonction est de forme polynomiale :

Champs des déplacements :	$\{q\} = [N_i]\{q_i\}$	(4.26)
champs des deplacements :	$(\mathbf{q}) [\mathbf{r}_{\mathbf{l}}](\mathbf{q}_{\mathbf{l}})$	(1.20)

Variations de champs des déplacements :
$$\{\delta q\} = [N_i] \{\delta q_i\}$$
 (4.27)

Champs des Déformations : $\{\boldsymbol{\varepsilon}\} = [N_i]'\{\boldsymbol{q}_i\} = [\boldsymbol{B}]\{\boldsymbol{q}_i\}$ (4.28)

Champs des Contraintes : $\{\sigma\} = [D]\{\varepsilon\} = [D][N_i]'\{q_i\} = [D][B]\{q_i\}$

(4.29)

- $\{q\}$; $\{\sigma\}$; $\{\varepsilon\}$: Champs respectivement des déplacements; des déformations et des Contraintes
- $[N_i]$; $([N_i]' = [B])$: Matrices respectivement des fonctions de formes (poids nodaux) et des Déformations

$$[D] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} (1-\nu) & \nu & \nu & 0 & 0 & 0 \\ \nu & (1-\nu) & \nu & 0 & 0 & 0 \\ \nu & \nu & (1-\nu) & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(1-2\nu)}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(1-2\nu)}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(1-2\nu)}{2} \end{bmatrix}$$
(4.30)

Avec :

- $\{q_i\}$: Valeurs des déplacements nodaux
- $\{\varepsilon\} = \langle \varepsilon_{xx} \quad \varepsilon_{yy} \quad \varepsilon_{zz} \quad \gamma_{xy} \quad \gamma_{xz} \quad \gamma_{yz} \rangle^T$
- $\{\sigma\} = \langle \sigma_{xx} \quad \sigma_{yy} \quad \sigma_{zz} \quad \tau_{xy} \quad \tau_{xz} \quad \tau_{yz} \rangle^T$
- *E* : Module de Young
- *v* : Coefficient de Poisson

Approches d'approximation

• Modèle en déplacement :

Dans cette approche, l'approximation est faite sur **le champ de déplacement** en considérant l'élément cinématiquement admissible ; c'est-à-dire l'intégrabilité du champ de déformation à l'intérieur de l'élément.

• Modèle en équilibre :

Il s'agit, dans ce modèle, de choisir une forme paramétrique simple du champ de contraintes à l'intérieur des éléments.

• Modèle hybride :

La terminologie utilisée consiste à désigner par « *hybrides* » les approches éléments finis pour lesquels plusieurs champs sont discrétisés indépendamment à l'intérieur de l'élément et sur sa frontière.

Les éléments finis hybrides peuvent être développés selon deux approches conventionnelles : éléments finis hybrides en déplacement et en contraintes.

• Modèle mixte :

Dans cette approche, l'approximation est faite, indépendamment, sur divers champs d'inconnues (déplacements, déformation, contraintes).

• Modèle en déformation :

La démarche à ce niveau consiste à choisir, en premier lieu, une forme paramétrique simple du **champ de déformations** à l'intérieur des éléments. Le champ des déplacements, continu et différentiable, est déduit par intégration du champ des déformations.

> Conditions de compatibilité cinématique

Physiquement, ces conditions expriment la continuité de la matière avant et après déformation d'un corps solide, d'où l'appellation de *conditions de compatibilité cinématique*. Mathématiquement, elles expriment des restrictions sur la forme des fonctions des déformations pour permettre l'intégration des équations aux dérivées partielles. Leur **satisfaction est obligatoire pour garantir l'unicité des déplacements**. En état tridimensionnel, les six équations de compatibilité sont sous forme développée comme suit :

$$\frac{\partial^{2}\varepsilon_{xx}}{\partial y^{2}} + \frac{\partial^{2}\varepsilon_{yy}}{\partial x^{2}} - 2 \frac{\partial^{2}\varepsilon_{xy}}{\partial x \partial y} = 0 \quad , \quad -\frac{\partial^{2}\varepsilon_{xx}}{\partial y \partial z} + \frac{\partial}{\partial x} \left(\frac{\partial \varepsilon_{xy}}{\partial z} - \frac{\partial \varepsilon_{yz}}{\partial x} + \frac{\partial \varepsilon_{zx}}{\partial y} \right) = 0$$

$$\frac{\partial^{2}\varepsilon_{yy}}{\partial z^{2}} + \frac{\partial^{2}\varepsilon_{zz}}{\partial y^{2}} - 2 \frac{\partial^{2}\varepsilon_{yz}}{\partial y \partial z} = 0 \quad , \quad -\frac{\partial^{2}\varepsilon_{yy}}{\partial z \partial x} + \frac{\partial}{\partial y} \left(\frac{\partial \varepsilon_{yz}}{\partial x} - \frac{\partial \varepsilon_{zx}}{\partial y} + \frac{\partial \varepsilon_{xy}}{\partial z} \right) = 0 \quad (4.31)$$

$$\frac{\partial^{2}\varepsilon_{zz}}{\partial x^{2}} + \frac{\partial^{2}\varepsilon_{xx}}{\partial z^{2}} - 2 \frac{\partial^{2}\varepsilon_{zx}}{\partial z \partial x} = 0 \quad , \quad -\frac{\partial^{2}\varepsilon_{zz}}{\partial x \partial y} + \frac{\partial}{\partial z} \left(\frac{\partial \varepsilon_{zx}}{\partial y} - \frac{\partial \varepsilon_{xy}}{\partial z} + \frac{\partial \varepsilon_{yz}}{\partial x} \right) = 0$$

IV.2. 2- Calcul de la matrice de rigidité élémentaire et du vecteur des charges nodales équivalentes :

Formulation variationnelle – Application du principe des travaux virtuels

Un solide déformable est en équilibre statique, lorsque pour tout champ de déplacements virtuels cinématiquement compatibles, le travail virtuel des forces extérieures est égal au travail virtuel intérieur. Cet équilibre s'exprime par la relation :

$$\delta W_{int} = \delta W_{ext} \tag{4.32}$$

Avec : $\delta W_{int} = \int_{V} \bar{\sigma}^{T} : \delta \bar{\varepsilon} dV = \int_{V} \{\delta \varepsilon\}^{T} \{\sigma\} dV$ (4.32 a) Qui représente la variation de l'énergie de déformation.

$$\delta W_{ext} = \int_{V} \{F\}^{T} \{\delta q\} dV + \int_{S} \{f\}^{T} \{\delta q\} dS$$
(4.32 b)

Qui représente la variation de l'énergie des forces extérieures, dans laquelle \mathbf{F} est le vecteur des forces de volume et \mathbf{f} est le vecteur des forces de surface.

• <u>Pour les efforts intérieurs</u> : $\delta W_{int} = \int_{V} {\{\delta \varepsilon\}}^{T} {\{\sigma\}} dV$

Nous avons :

$$\{q\} = [N_i]\{q_i\}$$

$$\{\delta q\} = [N_i]\{\delta q_i\}$$

$$\{\varepsilon\} = [N_i]'\{q_i\} = [B]\{q_i\}$$

$$\{\sigma\} = [D]\{\varepsilon\} = [D][N_i]'\{q_i\} = [D][B]\{q_i\}$$

=== $\Rightarrow \quad \delta W_{int} = \int_V [B]^T \{\delta q_i\}^T [D][B]\{q_i\} dV = \{\delta q_i\}^T \left(\int_V [B]^T [D][B] dV\right) \{q_i\}$

L'expression : $[K^e] = \int_V [B]^T [D] [B] dV$ représente la matrice de rigidité élémentaire de l'élément fini.

• <u>Pour les efforts externes</u> : $\delta W_{ext} = \int_{V} \{F\}^{T} \{\delta q\} dV + \int_{S} \{f\}^{T} \{\delta q\} dS$

Nous avons :

$$\{q\} = [N_i]\{q_i\}$$

$$\{\delta q\} = [N_i]\{\delta q_i\}$$

=== $\Rightarrow \delta W_{ext} = \int_V \{F\}^T [N_i]\{\delta q_i\}dV + \int_S \{f\}^T [N_i]\{\delta q_i\}dS$
$$\delta W_{ext} = \{\delta q_i\} \left(\int_V \{F\}^T [N_i]dV + \int_S \{f\}^T [N_i]dS\right)$$

L'expression : $\{F^e\} = \int_V \{F\}^T [N_i] dV + \int_S \{f\}^T [N_i] dS$ représente le vecteur des forces nodales équivalentes appliquées aux nœuds de l'élément fini.

Intégration

L'évaluation de la matrice de rigidité est établie par intégration sur l'élément fini de l'expression :

$$\int_{V} [B]^{T}[D][B]dV \tag{4.33}$$

Pour cela deux méthodes sont utilisables :

- Intégration numérique
- Intégration analytique

IV.2. 3- Assemblage:

Mise en équation de l'équilibre statique de la structure :

- Assemblage : $\delta W_{int} = \delta W_{ext}$

La structure (domaine **D**) est constituée de l'ensemble des sous domaines D_e qui sont représentés par les éléments finis.

(4.36)

$$=== D = \cup D_e$$
Par conséquent :
$$W = \Sigma W_e$$
(4.35)

$$=== \Rightarrow \qquad [K]_S = \sum_e [K^e] \quad ; \quad \{F\}_S = \sum_e \{F^e\} \quad ; \quad \{Q\} = \sum_e \{q_i\}$$
$$=== \Rightarrow \qquad [K]_S \cdot \{Q\} = \{F\}_S$$

IV.2. 4- Prise en compte des conditions aux limites et résolution :

- 4 <u>du système d'équations</u>: $[K]_{S} \cdot \{Q\} = \{F\}_{S}$
- > Prise en compte des conditions aux limites :

=== → Blocages des déplacements (appuis)

Sollicitations (Charges équivalentes aux nœuds)

> Résolution :

=== \rightarrow Déterminations du vecteur de déplacement {*Q*}

Déterminations des réactions au niveau des appuis

IV.2. 5- Évaluation des grandeurs élémentaires :

Déterminations du vecteur de déplacement $\{Q\}$ étant connu, il s'agit de déterminer à l'intérieur de l'élément fini :

- Le champ des déplacements : $\{q\} = [N_i]\{q_i\}$
- Le champ des Déformations : $\{\varepsilon\} = [N_i]'\{q_i\} = [B]\{q_i\}$
- Le champ des Contraintes : $\{\sigma\} = [D]\{\varepsilon\} = [D][N_i]'\{q_i\} = [D][B]\{q_i\}$

IV.3- APPLICATION A UN ÉLÉMENTS FLEXIONNEL DE PLAQUE MINCE:

IV.3.1- Caractéristique :

Nous avons choisi un élément fini développé par [HIMR.14] dans ses travaux de recherche pour l'obtention du diplôme de doctorat. Cet élément est un élément fini de plaque mince triangulaire d'élasticité plane auquel il y a été rajouté un quatrième nœud fictif positionné à l'extérieur et loin du triangle (voir figure IV.7). Cette position, à l'extérieur, est choisie pour éviter l'assouplissement de la matrice de rigidité qui entrainerait une surestimation des déplacements nodaux.

Chaque nœud possède trois degrés de liberté : les flèches w_i et les rotations θ_{xi} et θ_{yi} .

Figure IV.7: Elément triangulaire de plaque avec trois degrés de liberté par nœud.

Les degrés de liberté correspondant à ce quatrième nœud sont par la suite éliminés par condensation statique de la matrice de rigidité au niveau élémentaire. Donc l'intérêt majeur de ce nœud fictif réside en l'enrichissement des champs de déplacements, et vise, par conséquent, une plus grande précision dans l'approximation de la solution. Sa formulation se base sur l'approche en déformation.

Les fonctions d'interpolation des champs de déformation, par conséquent des déplacements et des contraintes sont développées en utilisant le triangle de pascal.

Le critère vibrationnel correspondant est celui de l'énergie potentielle totale.

L'intégration analytique dans l'évaluation de la matrice de rigidité, est fortement intéressante pour éviter la perte de convergence ; phénomène observé chez les éléments iso paramétrique (utilisant l'intégration numérique) qui sont très sensibles (leur convergence est conditionnée par un maillage régulier – non distordu).

Les hypothèses de cette formulation sont celles de la théorie des plaques minces (**théorie de Kirchhoff**) en négligeant le cisaillement transversal.

IV.3.2- Cinématique :

Dans (la figure IV.8), les rotations autour des deux axes x et y sont notées θ_x et θ_y et les pentes dans les deux directions sont définies par les variables β_x et β_y avec :

$$\beta_x = \theta_y \qquad \qquad \beta_y = -\theta_x \tag{4.37}$$

L'hypothèse de la section droite implique une variation linéaire de déplacement sur l'épaisseur de la plaque. Ce qui se traduit par :

$$\begin{cases} u(x, y, z) = z\beta_{x}(x, y) = z\theta_{y}(x, y), \\ v(x, y, z) = z\beta_{y}(x, y) = -z\theta_{x}(x, y), \\ w(x, y, z) = w(x, y) \end{cases}$$
(4.38)

Les expressions (4.38) permettent de découpler les champs des déplacements (u, v) de celui de la flèche (w) qui constitue, en référence aux hypothèses de Kirchhoff, l'unique champ permettant de définir le comportement de la plaque.

Figure IV.8: Déformation d'une plaque en flexion (théorie de Kirchhoff)

Ainsi, les déplacements sont donnés par :

$$w(x, y, z) = w(x, y) \qquad u(x, y, z) = -z \frac{\partial w}{\partial x} \qquad v(x, y, z) = -z \frac{\partial w}{\partial y}$$
(4.39)

Et les rotations sont données par :

$$-\theta_x = \beta_y = -\frac{\partial w}{\partial y} \qquad \qquad \theta_y = \beta_x = -\frac{\partial w}{\partial x} \qquad (4.40)$$

Le tenseur de Green est alors :

$$\begin{cases}
\varepsilon_{x} = \frac{\partial u}{\partial x} = z \frac{\partial \beta_{x}}{\partial x} = z \frac{\partial^{2} w}{\partial x^{2}} \\
\varepsilon_{y} = \frac{\partial v}{\partial y} = z \frac{\partial \beta_{y}}{\partial y} = -z \frac{\partial^{2} w}{\partial y^{2}} \\
\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = z \left(\frac{\partial \beta_{x}}{\partial y} + \frac{\partial \beta_{y}}{\partial x}\right) = -2z \frac{\partial^{2} w}{\partial_{x} \partial y} \\
\gamma_{xz} = \gamma_{yz} = 0
\end{cases}$$
(4.41)

Les courbes liées aux moments sont données par :

$$k_x = \frac{\partial \beta_x}{\partial x} = -\frac{\partial^2 y}{\partial x^2} , \quad k_y = \frac{\partial \beta_y}{\partial y} = -\frac{\partial^2 w}{\partial y^2} , \quad k_{xy} = \left(\frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_y}{\partial x}\right) = -2\frac{\partial^2 w}{\partial x \partial y}$$
(4.42)

IV.3.3- Condition de compatibilité cinématique :

Ces conditions [FRV.84] ont été établies par Saint Venant (1854). Leur satisfaction est obligatoire pour garantir l'unicité des déplacements. Les équations de compatibilité sont sous forme développée comme suit :

$$- \begin{bmatrix} \frac{\partial^2 k_x}{\partial y^2} + \frac{\partial^2 k_y}{\partial x^2} = \frac{\partial^2 k_{xy}}{\partial x \partial y} \\ \frac{\partial^2 \gamma_{xz}}{\partial x \partial y} - \frac{\partial^2 \gamma_{yz}}{\partial x^2} + \frac{\partial k_{xy}}{\partial x} = 2 \frac{\partial k_x}{\partial y} \\ \frac{\partial^2 \gamma_{yz}}{\partial x \partial y} - \frac{\partial^2 \gamma_{xz}}{\partial y^2} + \frac{\partial k_{xy}}{\partial y} = 2 \frac{\partial k_y}{\partial x} \end{bmatrix}$$
(4.43)

IV.3.4- Loi de comportement :

En état plan de contraintes et pour des matériaux isotropes, hypothèses généralement admise pour le calcul des structures minces (poutres, plaques, et coques), la loi de comportement s'écrit :

$$\begin{cases} \sigma_x \\ \sigma_y \\ \gamma_{xy} \end{cases} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases}$$
(4.44)

Ce qui se traduit en termes de relations *Moments – Courbures* par le système d'équation suivant :

$$\begin{pmatrix} M_x \\ M_y \\ M_{xy} \end{pmatrix} = \frac{Eh^3}{12(1-v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix} \begin{pmatrix} k_x \\ k_y \\ k_{xy} \end{pmatrix} = \frac{Eh^3}{12(1-v^2)} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix} \begin{pmatrix} -\frac{\partial^2 w}{\partial x^2} \\ -\frac{\partial^2 y}{\partial y^2} \\ -\frac{\partial^2 w}{\partial x \partial y} \end{pmatrix}$$
(4.45)

IV.3.5- Equation d'équilibre :

L'équilibre d'un élément géométrique de dimensions $dx \ x \ dy$ est obtenu par le bilan des forces extérieures et des actions internes et externes.

$$q.dxdy + (Q_x + \frac{\partial Q_x}{\partial x})dy + \left(Q_y + \frac{\partial Q_y}{\partial y}\right)dx - Q_xdy - Q_ydx = 0$$
(4.46)

Où Q_x et Q_y sont respectivement les efforts tranchants dans les sections perpendiculaires aux axes x et y. L'expression (4.46) est simplifiée pour donner :

$$q + \frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} = 0 \tag{4.47}$$

L'équilibre des moments autour des axes x et y donne :

$$Q_x = \frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} , \qquad Q_x = \frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x}$$
(4.48)

En remplaçant les valeurs des équations (4.47) et (4.48) dans la relation établie par les équations (4.45), la condition d'équilibre se traduirait en fonction du déplacement w par l'expression suivante :

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} - \frac{q}{D} = 0$$
(4.49)

Avec: $D = \frac{Eh^3}{12(1-v^2)}$

IV.3.6- Fonction d'interpolation :

Cet élément possède quatre nœuds (les trois sommets du triangle auquel on a rajouté un quatrième nœud fictif). Chacun de ses nœuds possède trois degrés de liberté. Donc les champs des déplacements, formulés par l'utilisation du modèle en déformation, possèdent 12 constantes indépendantes $(a_1 \dots a_{12})$.

Les trois premières (a_1, a_2, a_3) sont pour représenter les mouvements de corps rigide. Les neuf autres (a_4, \dots, a_{12}) sont utilisés dans le modèle de déformation de l'élément.

Ils sont répartis dans les fonctions d'interpolation des déformations de manière à satisfaire les équations (4.43) de compatibilité cinématique pour l'élasticité plane. Le champ final des déplacements est obtenu en additionnant la relation (4.40) et (4.50).

$$\begin{aligned} & \Psi = a_1 - a_2 \cdot x - a_3 \cdot y - a_4 \cdot \frac{x^2}{2} - a_5 \cdot \frac{x^3}{6} - a_6 \cdot \frac{x^2 \cdot y}{2} - a_7 \cdot \frac{x^3 \cdot y}{6} - a_8 \cdot \frac{y^2}{2} - a_9 \cdot \frac{xy^2}{2} - a_9 \cdot \frac{xy^$$

Sous forme matricielle le champ des déplacements donné par les équations (4.50) s'écrit comme suit :

$$\begin{cases}
w(x,y) \\
\beta_x(x,y) \\
\beta_y(x,y)
\end{cases} = [f(x,y)].\{a_i\}$$
(4.51)

Avec: $\{a_i\}^T = < a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12} >$

$$[f(x,y)] = \begin{bmatrix} 1 & -x & -y & -\frac{x^2}{2} & -\frac{x^3}{6} & -\frac{x^2 \cdot y}{2} & -\frac{x^3 \cdot y}{6} & -\frac{y^2}{2} & -\frac{x \cdot y^2}{2} & -\frac{y^3}{6} & -\frac{x \cdot y^3}{6} & -\frac{x \cdot y}{2} \\ 0 & 1 & 0 & x & \frac{x^2}{2} & x \cdot y & \frac{x^2 \cdot y}{2} & 0 & \frac{y^2}{2} & 0 & \frac{y^3}{6} & \frac{y}{2} \\ 0 & 0 & 1 & 0 & 0 & \frac{x^2}{2} & \frac{x^3}{6} & y & x \cdot y & \frac{y^2}{2} & \frac{x \cdot y^2}{2} & 2 \end{bmatrix}$$

$$(4.52)$$

Connaissant les coordonnées nodales (x_i, y_i) coorespondant au nœud j (j=1,...,4), le vecteur des déplacements nodaux, au niveau élémentaire, est donné comme suit :

$$\begin{cases} w(x,y) \\ \beta_x(x,y) \\ \beta_y(x,y) \end{cases} = [f(x,y)]. [A]^{-1}. \{q^e\}$$
(4.53)

Dans laquelle,

- [A]⁻¹ Représente la matrice des coordonnées nodales,
- [N] = [f(x, y)]. $[A]^{-1}$ représente la matrice des fonctions d'interpolation N_i

Les courbures liées aux moments prendront la forme développée suivante :

Avec : $\{a_i\}^T = < a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12} >$

Ainsi, la matrice de déformation est donnée comme suit :

IV.3.7-Matrrice de rigidité élémentaire :

Le travail virtuel intérieur, élémentaire discrétisé est donné par l'expression :

$$(\delta W_{int})^e = \int_{V^e} \delta \left\{ \varepsilon \right\}^T . \left[\sigma \right] . dV^e$$
(4.56)

Sachant que : $\{\varepsilon\} = [N']. \{q^e\} = [Q(x, y)]. [A]^{-1} \{q^e\}$ (4.57)

Et que : $\{\sigma\} = [D]. \{\varepsilon\}$ (4.58)

Et en remplaçant dans l'expression (4.56) $\{\varepsilon\}$ et $\{\sigma\}$ par leurs valeurs données, respectivement dans les équations (4.57) et (4.58), on obtient :

$$(\delta W_{int})^e = \delta \{q^e\}^T \int_{V^e} [Q(x,y)]^T [A^{-1}]^T [D] [Q(x,y)] [A]^{-1} \{q^e\} dV^e$$
(4.59)

Ainsi, la matrice de rigidité élémentaire tirée de l'expression (4.59) est la suivant :

$$[K^e] = \int_{V^e} [Q(x, y)]^T . [A^{-1}]^T . [D] . [Q(x, y)] . [A]^{-1} . dV^e$$
(4.60)

L'expression (4.60) peut, s'écrire :

$$[K^{e}] = [A^{-1}]^{T} \int_{V^{e}} [Q(x, y)]^{T} \cdot [D] \cdot [Q(x, y)] dV^{e} \cdot [A]^{-1} = [A^{-1}]^{T} [K_{0}] \cdot [A]^{-1}$$
(4.61)

L'évaluation de l'expression $[K_0]$ est établie par intégration analytique des différentes composantes résultant du produit matriciel $[Q(x,y)]^T$. [D]. [Q(x,y)]. dont les expressions prennent la forme " $H_{\alpha\beta} = C.x^{\alpha}.y^{\beta}$ ". La matrice $[K_0]$ relative à l'élément "HIMEUR" est donnée en annexe.

Enfin la matrice de rigidité élémentaire à prendre en considération au niveau de l'assemblage et de la construction de la matrice de rigidité globale de la structure, est celle obtenue après condensation de la matrice $[K^e]$. Cette condensation statique concerne les degrés de liberté relatifs au quatrième nœud fictif.

CHAPITRE V : VALIDATION NUMERIQUE

V.1- APPLICATION DE LA MÉTHODE DE GUYON-MASSONNET

V.1.1 – Exemple de calcul des CRT pour la dalle avec un biais de 60°

V.1.2 – Exemple de calcul des CRT pour la dalle avec un biais de 40°

V.2 – APPLICATION DE LA MÉTHODE DES ÉLÉMENTS FINIS

V.2.1 – Exemple de la dalle avec un biais de 60°

V.2.2 – Exemple de la dalle avec un biais de 40°

V.2.3 – Analyse et discutions des résultats

CHAPITRE V : VALIDATION NUMERIQUE

V.1. APPLICATION DE LA MÉTHODE DE GUYON-MASSONNET:

V.1.1- Exemple de calcul des CRT pour la dalle avec un biais de 60°:

Soit une travée :

- 4 longueur biaise L_b
- 4 largeur droite $2b_d$
- \downarrow La portée droite isostatique équivalente L_{0d}
- \clubsuit biais géométrique φ
- 1. Les méthodes du paragraphe précédent permettent de calculer sa portée biaise isostatique équivalente $L_{0b:}$

Figure V.1 : Dalle biaise : biais géométrique et mécanique.

Figure V.2 : Dalle biaise 60°

$$\begin{split} L_{0b} &= \frac{L_b}{\sqrt[4]{5}} \approx 0.669 \cdot L_b = 0.669 \cdot 20 & L_{0b} = 13.38 \text{ m} \\ L_{0d} &= L_{0b} \cdot \sin \phi = 0.669 \cdot L_b \sin \phi \\ L_{0d} &= 13.38 \cdot \sin 60^\circ & L_{0d} = 11.58 \text{ m} \end{split}$$

Dalle équivalente :

Figure V.3 : Dalle équivalente

2. Calcul des paramètres fondamentaux :

Exemple de calcul du CRT par la metnode de Guyon-Massonnet. (Toutes les dimensions sont en m)

-Les caractéristiques de l'ouvrage:

- ➢ h : Hauteur des dalles : 01.00 mètre
- > n : nombre de poutres : 11.00
- \blacktriangleright b₁ : entre axe des poutres : 01.053 mètre

- ➢ b : demi-largeur de la dalle : 05.80 mètre
- 2b : Largeur des dalles : 11.58 mètre
- > L_1 : Longueur d'entretoises : 13.38 mètre
- L : Longueur des dalles : 13.38 mètre
- Module de Young : 21000 MPA
- $\blacktriangleright \quad \text{Coefficient de poisson}: \qquad 0.2$

2.1 - Calcul des paramètres fondamentaux ρ_p ; ρ_E ; γ_P ; γ_E :

► Largeur active :

La largeur active du tablier est donnée par la formule : $2b = n \cdot b_0$

 $2b = 11 \cdot 1.053 = 11.58 \text{ m} \longrightarrow b = 5.79$

> Calcul du moment d'inertie de flexion I_P :

$$I_{P} = \frac{b_{1} \cdot h^{3}}{12} = \frac{1.053 \cdot 1^{3}}{12}$$

$$I_{P} = 8.775 \cdot 10^{-2} \text{ m}^{4}$$

> Rigidité flexionnelle des poutres par unité de largeur :

$$E = 21\ 000\ MPA = 21\ 000\ N/mm^2 = 21\ 000\ 000\ KN/m^2$$

$$\rho_{p} = \frac{B_{P}}{b_{1}} = \frac{E \cdot I_{P}}{b_{1}} = \frac{21 \cdot 10^{6} \cdot 8.775 \cdot 10^{-2}}{1.053}$$
$$\rho_{P} = 1.75 \cdot 10^{6} \text{ KN} \cdot \text{m}$$

> Calcul du moment d'inertie de flexion I_E :

Rigidité flexionnelle des entretoises par unité de longueur :

$$\rho_E = \frac{B_E}{L_1} = \frac{E \cdot I_E}{L_1} = \frac{21 \cdot 10^6 \cdot 1.115}{13.38}$$

$$\rho_E = 1.75 \cdot 10^6 \text{ KN} \cdot \text{m}$$

> Calcul du moment d'inertie de torsion K_P :

Module de torsion G :

$$G = \frac{E}{2(1+\nu)} = \frac{21\ 000\ 000}{2(1+0.2)}$$

$$G = 8.75 \cdot 10^6 \text{ KN/m}^2$$

$$K_{\rm P} = \frac{b_1 \cdot h^3}{3} = \frac{1.053 \cdot 1^3}{3}$$

 $K_{P} = 0.35 m^{4}$

> Rigidité torsionnelle des poutres par unité de largeur :

$$\gamma_{\rm P} = \frac{C_{\rm P}}{b_1} = \frac{G.K_{\rm p}}{b_1} = \frac{8.75 \cdot 10^6 \cdot 0.35}{1.053}$$
$$\gamma_{\rm P} = 2.90 \cdot 10^6 \text{ KN. m}$$

> Calcul du moment d'inertie de torsion K_E :

$$K_{\rm P} = \frac{L_1 \cdot h^3}{3} = \frac{13.38 \cdot 1^3}{3}$$

Rigidité torsionnelle des entretoises par unité de longueur :

 $K_P = 4.46 m^4$

$$\gamma_{\rm E} = \frac{C_{\rm E}}{L_1} = \frac{G.\,K_{\rm E}}{L_1} = \frac{8.75 \cdot 10^6 \cdot 4.46}{13.38}$$

 $\gamma_E = 2.91 \cdot 10^6 \text{ KN. m}$

2.2 - Calcul des paramètres fondamentaux α ; θ :

4 Paramètre de torsion α :

$$\alpha = \frac{\gamma_{P_+} \gamma_E}{2 \cdot \sqrt{\rho_{P_-} \rho_E}} \qquad \text{Avec} : 0 \le \alpha \le 1$$

$$\alpha = \frac{2.91 \cdot 10^6 + 2.90 \cdot 10^6}{2 \cdot \sqrt{1.75 \cdot 10^6 \cdot 1.75 \cdot 10^6}} = 1.66 > 1$$

donc: $\alpha = 1$

<u>Remarque :</u>

Pour le calcul d'un tablier des **ponts dalles**, on suppose que la dalle est isotrope et par conséquent on prend $\alpha = 1$.

 $\alpha = 1 : \rho_p = \rho_E = \rho \text{ et } (\gamma_P + \gamma_E) = 2\rho$ Le per

 \rightarrow Le pont est une dalle isotrope.

 \blacksquare Le paramètre d'entretoisement θ :

$$\theta = \frac{b}{L} \cdot \sqrt[4]{\frac{\rho_{\rm p}}{\rho_{\rm E}}} = \frac{5.8}{13.38} \cdot \sqrt[4]{\frac{1.75 \cdot 10^6}{1.75 \cdot 10^6}}$$
$$\theta = 0.43$$

3. <u>Calcul des CRT pour la poutre de rive N°1:</u>

3-1 Courbe de K :

• Interpolation sur α :

 $0,1 \le \theta \le 1$: D'après Massonnet ou Sattler.

$$k_{\alpha} = k_{0} + (k_{1} - k_{0}) \cdot \alpha^{\beta}$$

$$O\tilde{u} : \beta = 1 - e^{(0.065 - \theta)/0.663} \longrightarrow \beta = 0.42$$

$$k_{\alpha} = k_{0} + (k_{1} - k_{0}) \cdot 1^{0.42}$$

$$k_{\alpha} = k_{1}$$

$$k = 1 k_{1}$$

Avec: K_0 : valeur de K correspondant à $\alpha = 0$ K_1 : valeur de K correspondant à $\alpha = 1$

• Interpolation sur y (la position de la poutre) :

Y= 1.053 · 5 = 5.265 m et b = 5.8m donc, $y = \frac{5.265}{5.8} \cdot b = 0.9 b$

Les tableaux de Massonnet donnent les valeurs de K pour :

- $k_{0.75b} = k|_{y=3b/4}$ et $k_b = k|_{y=b}$
- $k_{0.9b} = k_{0.75b} + (k_b k_{0.75b}) \cdot \frac{0.9 0.75}{1 0.75}$
- $k_{0.9b} = 0.4k_{0.75b} + 0.6k_b$
- $k|_{y=0.9b} = 0.4k|_{y=3b/4} + 0.6k|_{y=b}$

En résumé, on a trois interpolations à faire. On choisit par ordre:

- $\circ \quad k|_{y=0.9b} = 0.4k|_{y=3b/4} + 0.6k|_{y=b}$
- $\circ k|_{\alpha=1} = 1k_1$
- $\circ \quad k|_{\theta=0.43} = 0.5k|_{\theta=0.40} + 0.5k|_{\theta=0.45}$

> Interpolation sur θ :

 $\theta = 0.43$ interpolation entre $\theta_1 = 0.40$ et $\theta_1 = 0.45$

Dans ce cas,

$$k_{\theta} = \frac{k_{\theta 1} + k_{\theta 2}}{2}$$

✓ Tableau pour $\theta = 0.40$

θ =	= 0.40									
	e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
	k _{3b/4}	0.5903	0.6613	0.7429	0.8420	0.9613	1.0994	1.2489	1.3940	1.5188
k_1	k _b	0.5148	0.5903	0.6778	0.7862	0.9220	1.0893	1.2893	1.5188	1.7680
	k _{0.9b}	0.545	0.6187	0.7038	0.8085	0.9377	1.0963	1.2731	1.4688	1.6683
k_{α}	k	0.545	0.6187	0.7038	0.8085	0.9377	1.0963	1.2731	1.4688	1.6683

Tableau N°1: K pour $\theta = 0.40$ après 2 interpolations (sur y puis sur α)

Les valeurs de K_0 et de K_1 pour K3b/4 et Kb sont recopiées directement à partir des tableaux de Massonnet (les 2 premières lignes pour K); Ensuite, on effectue une première interpolation sur y pour obtenir K0.9b, à savoir:

- $k_0|_{y=0.9b} = 0.4k_0|_{y=3b/4} + 0.6k_0|_{y=b}$
- $k_1|_{y=0.9b} = 0.4k_1|_{y=3b/4} + 0.6k_1|_{y=b}$

En utilisant les tableaux numériques de Massonnet, on a :

- $\circ \quad k_1|_{y=0.9b} = 0.4 \cdot 1.3940 + 0.6 \cdot 1.5188 = 1.4688$
- $\circ k_0|_{v=0.9b} = 0$
- \circ k = 1 k₁ = 1.4688
- ✓ Tableau pour $\theta = 0.45$

θ =	= 0.45									
	е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
	$k_{3b/4}$	0.5202	0.5969	0.6881	0.8029	0.9458	1.1152	1.3013	1.4809	1.6291
<i>k</i> ₁	k _b	0.4418	0.5202	0.6142	0.7355	0.8933	1.0938	1.3400	1.6291	1.9476
	k _{0.9b}	0.4731	0.5508	0.6437	0.7624	0.9143	1.1023	1.3245	1.5698	1.8202
k _α	К	0.4731	0.5508	0.6437	0.7624	0.9143	1.1023	1.3245	1.5698	1.8202

Tableau N°2: K pour $\theta = 0.45$ après 2 interpolations (sur y puis sur α)

De même que pour le tableau N°1, ici, on a utilisé les 2 interpolations sur y puis sur α , c.à.d.

- $k_0|_{y=0.9b} = 0.4k_0|_{y=3b/4} + 0.6k_0|_{y=b}$
- $k_1|_{y=0.9b} = 0.4k_1|_{y=3b/4} + 0.6k_1|_{y=b}$

En utilisant les tableaux numériques de Massonnet, on a :

- $\circ k_1|_{v=0.9b} = 0.4 \cdot 1.4809 + 0.6 \cdot 1.6291 = 1.5698$
- $\circ k_0|_{v=0.9b} = 0$
- \circ k = 1 k₁ = 1.5698

Dans notre cas: $\theta = 0.43$; On effectue alors la troisième interpolation sur θ en utilisant la dernière ligne de chaque tableau à savoir:

 $k|_{\theta=0.43} = 0.5k|_{\theta=0.40} + 0.5k|_{\theta=0.45}$

Ainsi, on obtient:

θ	=	0.	43

0 = 0.15									
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k	0.5090	0.5847	0.6737	0.7854	0.9260	1.0993	1.2988	1.5193	1.7442

Tableau N°3: K = K(e), après les 3 interpolations

Les valeurs trouvées de K sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de K

е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k	0.51	0.59	0.67	0.79	0.93	1.10	1.30	1.52	1.75

Tableau N°4: Valeurs arrondis de K = K(e)

On choisit une échelle pour tracer la courbe K=K(e), qui représente la ligne d'influence (Li) de K pour la poutre N°1 (figure *V.4*).On trace la courbe de K de préférence sur un papier millimétrique.

Figure V.4 : Ligne d'influence de K pour la poutre N°1.

4. <u>Calcul des CRT pour la poutre centrale N°3 :</u>

4.1 - Courbe de K :

 α et θ conservent les mêmes valeurs que pour la poutre de rive, c.à.d. $\theta = 0.43$ et = 1, par conséquent, les interpolations sur α et sur θ restent les mêmes que pour la poutre de rive N°1, c.à.d.

- $k = k_1$
- $k|_{\theta=0.43} = 0.5k|_{\theta=0.40} + 0.5k|_{\theta=0.45}$

Seule la position de la poutre change, elle devient: y = 0.Les tables de Massonnet donnent directement des lignes correspondant pour y = 0, c.à.d. on n'a pas besoin d'interpoler sur y.

✓ Tableau pour $\theta = 0.40$

$\theta = 0.40$									
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k ₀	0.8273	0.9225	1.0129	1.0851	1.1160	1.0851	1.0129	0.9255	0.8273
<i>k</i> ₁	0.9220	0.9613	1.0031	1.0414	1.0601	1.0414	1.0031	0.9613	0.9220
k _α	0.9220	0.9613	1.0031	1.0414	1.0601	1.0414	1.0031	0.9613	0.9220

Tableau N°5: K en fonction de e pour $\theta = 0.40$ après une interpolation (sur α) pour la poutre centrale N°3.

On remarque bien que les k_i sont symétriques par rapport à e=0. Les deux premières lignes sont recopiées directement des tables de Massonnet. Ensuite la dernière ligne est obtenue après interpolation sur α .

✓ Tableau pour $\theta = 0.45$

$\theta = 0.45$									
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k ₀	0.7355	0.8811	1.0194	1.1304	1.1783	1.1304	1.0194	0.8811	0.7355
<i>k</i> ₁	0.8933	0.9458	1.0032	1.0577	1.0850	1.0577	1.0032	0.9458	0.8933
k _α	0.8933	0.9458	1.0032	1.0577	1.0850	1.0577	1.0032	0.9458	0.8933

Tableau N°6: K en fonction de e pour $\theta = 0.45$ après une interpolation (sur α) pour la poutre centrale N°3.

Notre cas est pour $\theta = 0.43$. On utilise la dernière ligne de chaque tableau et on interpole par rapport à θ , à savoir:

• $k|_{\theta=0.43} = 0.5k|_{\theta=0.40} + 0.5k|_{\theta=0.45}$

$\theta = 0.43$									
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k	0.9076	0.9535	1.0031	1.0495	1.0725	1.0495	1.0031	0.9535	0.9076

Tableau N°7: K en fonction de e après tous les interpolations.

Les valeurs trouvées sont arrondis à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de K.

е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k	0.91	0.95	1	1.05	1.07	1.05	1	0.95	0.91

Tableau N°8: Valeurs arrondies de K en fonction de e.

On remarque bien qu'il existe une symétrie par rapport à e = 0. On trace la courbe de K=K(e), qui est ainsi symétrique par rapport à l'axe longitudinale du pont (figure *V.5*).

Figure V.5 : Courbe de K en fonction de e pour la poutre centrale (N°3).

5. La flèche moyenne selon l'équation de la déformée est:

6. Le moment fléchissant longitudinal moyen est:

$$M_0(\mathbf{x}) = \frac{P}{2b} \cdot \frac{L^2}{\pi^2} \sin \frac{\pi x}{L}$$
$$M_0(\mathbf{x}) = \frac{11.60}{11.60} \cdot \frac{13.38^2}{3.14^2} \sin \frac{\pi x}{L} = 18.1573 \sin \frac{\pi x}{L} (\text{Kn. m})$$

Par interpolation linéaire dans les tableaux de Massonnet pour $\theta=0,40$ et $\theta=0,45$ on trouve les valeurs des coefficients K₀ et K₁ pour $\theta=0,43$.

Dans la colonne y=3b/4 n lit pour e = -b; -3b/4; -b/2; -b/4; 0; b/4; b/2; 3b/4; b:

Les flèches et les moments moyens sont:

- En <u>x = L/2</u> w₀ = 0.00018839 m et M₀ = 18.1573 Kn.m
- En x = L/4 $w_0 = 0.00013321$ m et $M_0 = 12.8391$ Kn.m

Donc on obtient les flèches et les moments longitudinaux en multipliant les flèches et les moments moyens par le coefficient K_{α} calculé:

е		-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
X=1/2	W(mm)	0.1714	0.1789	0.1883	0.1978	0.2015	0.1978	0.1883	0.1789	0.1714
	M _x (kn.m)	16.523	17.249	18.157	19.065	19.428	19.065	18.157	17.249	16.523
X-1 /4	W(mm)	0.1212	0.1265	0.1332	0.1398	0.1425	0.1398	0.1332	0.1265	0.1212
<i>N</i> -1/1	M _x (kn.m)	11.683	12.197	12.839	13.481	13.737	13.481	12.839	12.197	11.683

Tableau N°9: les flèches et les moments moyens par le coefficient Ka.

V.1.2-Exemple de calcul des CRT pour la dalle avec un biais de 40°:

<u>7 .Les méthodes du paragraphe précédent permettent de calculer sa portée biaise isostatique</u> équivalente L_{0b} :

Figure V.6 : Dalle biaise 40°

 $L_{0b} = \frac{L_b}{\frac{4}{5}} \approx 0.669 \cdot L_b = 0.669 \cdot 20$

 $L_{0b} = 13.38 \text{ m}$

 $L_{0d} = L_{0b}.\sin\phi = 0.669 \cdot L_b \cdot \sin\phi$

 $L_{0d} = 13.38 \ \cdot \ \sin 40^\circ$

Dalle équivalente :

Figure *V.7* : Dalle équivalente

8.Calcul des paramètres fondamentaux :

Exemple de calcul du CRT par la méthode de Guyon-Massonnet. (Toutes les dimensions sont en m)

-0

Les caractéristiques de l'ouvrage:

۶	h : Hauteur des dalles :	01.00 mètre
\triangleright	n : nombre de poutres :	11.00
\triangleright	b ₁ : entre axe des poutres :	01.075 mètre
\triangleright	b : demi-largeur de la dalle :	04.30 mètre
\triangleright	2b : Largeur des dalles :	08.60 mètre
\triangleright	L ₁ : Longueur d'entretoises :	13.38 mètre
\triangleright	L : Longueur des dalles :	13.38 mètre
\triangleright	Module de Young :	21000 MPA
\triangleright	Coefficient de poisson :	0.2

8.1-Calcul des paramètres fondamentaux ρ_p ; ρ_E ; γ_P ; γ_E :

► Largeur active :

La largeur active du tablier est donnée par la formule : $2b = n \cdot b_0$

$$2b = 8 \cdot 1.075 = 8.60 \text{ m} \qquad \longrightarrow \qquad b = 4.3 \text{m}$$

 \blacktriangleright Calcul du moment d'inertie de flexion I_P :

$$I_{P} = \frac{b_{1} \cdot h^{3}}{12} = \frac{1.075 \cdot 1^{3}}{12}$$

$$I_{P} = 8.958 \cdot 10^{-2} \text{ m}^{4}$$

$$I \longrightarrow Poutres$$

$$I \longrightarrow I.075$$

> Rigidité flexionnelle des poutres par unité de largeur :

$$E = 21\ 000\ MPA = 21\ 000\ N/mm^2 = 21\ 000\ 000\ KN/m^2$$

$$\rho_{p} = \frac{B_{P}}{b_{1}} = \frac{E \cdot I_{P}}{b_{1}} = \frac{21 \cdot 10^{6} \cdot 8.958 \cdot 10^{-2}}{1.075}$$
$$\rho_{P} = 1.75 \cdot 10^{6} \text{ KN} \cdot \text{m}$$

> Calcul du moment d'inertie de flexion I_E :

$$I_{E} = \frac{L_{1} \cdot h^{3}}{12} = \frac{13.38 \cdot 1^{3}}{12}$$
$$I_{E} = 1.115 \text{ m}^{4}$$

Rigidité flexionnelle des entretoises par unité de longueur :

$$\rho_{E} = \frac{B_{E}}{L_{1}} = \frac{E \cdot I_{E}}{L_{1}} = \frac{21 \cdot 10^{6} \cdot 1.115}{13.38}$$

$$\rho_{E} = 1.75 \cdot 10^{6} \text{ KN} \cdot \text{m}$$

Calcul du moment d'inertie de torsion K_P :

Module de torsion G :

$$G = \frac{E}{2(1+\nu)} = \frac{21\,000\,000}{2(1+0.2)}$$

$$G = 8.75 \cdot 10^6 \text{ KN}/\text{m}^2$$

$$K_{\rm P} = \frac{b_1 \cdot h^3}{3} = \frac{1.075 \cdot 1^3}{3}$$

 $K_P=0.36\ m^4$

> Rigidité torsionnelle des poutres par unité de largeur :

$$\gamma_{\rm P} = \frac{C_{\rm P}}{b_1} = \frac{G.K_{\rm p}}{b_1} = \frac{8.75 \cdot 10^6 \cdot 0.36}{1.075}$$
$$\gamma_{\rm P} = 2.93 \cdot 10^6 \text{ KN. m}$$

 \succ Calcul du moment d'inertie de torsion K_E :

$$K_{\rm P} = \frac{L_1 \cdot h^3}{3} = \frac{13.38 \cdot 1^3}{3}$$

> Rigidité torsionnelle des entretoises par unité de longueur :

 $K_E = 4.46 \ m^4$

$$\gamma_{\rm E} = \frac{C_{\rm E}}{L_1} = \frac{G.\,K_{\rm E}}{L_1} = \frac{8.75 \cdot 10^6 \cdot 4.46}{13.38}$$
$$\gamma_{\rm E} = 2.91 \cdot 10^6 \,\,\text{KN.\,m}$$

9.Calcul des paramètres fondamentaux α ; θ :

4 Paramètre de torsion α :

$$\alpha = \frac{\gamma_{P_+} \gamma_E}{2 \cdot \sqrt{\rho_{p_-} \rho_E}} \qquad \text{avec} : 0 \le \alpha \le 1$$

$$\alpha = \frac{2.91 \cdot 10^6 + 2.93 \cdot 10^6}{2 \cdot \sqrt{1.75 \cdot 10^6 \cdot 1.75 \cdot 10^6}} = 1.66 > 1$$

donc:

α = 1

<u>Remarque :</u>

Pour le calcul d'un tablier des **ponts dalles**, on suppose que la dalle est isotrope et par conséquent on prend $\alpha = 1$.

 $\alpha = 1 : \rho_p = \rho_E = \rho$ et $(\gamma_P + \gamma_E) = 2\rho$ Le pont est une dalle isotrope.

 \blacksquare Le paramètre d'entretoisement θ :

$$\theta = \frac{b}{L} \cdot \sqrt[4]{\frac{\rho_{\rm p}}{\rho_{\rm E}}} = \frac{4.3}{13.38} \cdot \sqrt[4]{\frac{1.75 \cdot 10^6}{1.75 \cdot 10^6}}$$
$$\theta = 0.32$$

 $\theta = 0.32 > 0.3$ — — — On utilise donc la méthode de Guyon-Massonnet.

10. Calcul des CRT pour la poutre de rive N°2:

10.1- Courbe de K :

• Interpolation sur α :

 $0,1 \le \theta \le 1$: D'après Massonnet ou Sattler.

$$k_{\alpha} = k_{0} + (k_{1} - k_{0}) \cdot \alpha^{\beta}$$

$$O\hat{u} : \beta = 1 - e^{(0.065 - \theta)/0.663} \longrightarrow \beta = 0.32$$

$$k_{\alpha} = k_{0} + (k_{1} - k_{0}) \cdot 1^{0.32}$$

$$k_{\alpha} = k_{1}$$

$$k = 1 k_{1}$$

Avec: K_0 : valeur de K correspondant à $\alpha = 0$ K_1 : valeur de K correspondant à $\alpha = 1$

• Interpolation sur y (la position de la poutre) :

Y=1.075 · 3+0.537 = 3.762 m et b = 4.3m donc, $y = \frac{3.762}{4.3} \cdot b = 0.87 b$

Les tableaux de Massonnet donnent les valeurs de K pour :

• $k_{0.75b} = k|_{y=3b/4}$ et $k_b = k|_{y=b}$

•
$$k_{0.87b} = k_{0.75b} + (k_b - k_{0.75b}) \cdot \frac{0.87 - 0.75}{1 - 0.75}$$

- $k_{0.9b} = 0.52k_{0.75b} + 0.48k_b$
- $k|_{y=0.9b} = 0.52k|_{y=3b/4} + 0.48k|_{y=b}$

En résumé, on a trois interpolations à faire. On choisit par ordre:

- $\circ \quad k|_{y=0.9b} = 0.52k|_{y=3b/4} + 0.48k|_{y=b}$
- $\circ k|_{\alpha=1} = 1k_1$
- $\circ \quad k|_{\theta=0.32} = 0.5 k|_{\theta=0.30} + 0.5 k|_{\theta=0.35}$

> Interpolation sur θ :

 $\theta = 0.43$ interpolation entre $\theta_1 = 0.30$ et $\theta_1 = 0.35$ Dans ce cas ,

$$k_{\theta} = \frac{k_{\theta 1} + k_{\theta 2}}{2}$$

✓ Tableau pour $\theta = 0.30$

θ =	= 0.30									
е		-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
	$k_{3b/4}$	0.7345	0.7876	0.8453	0.9104	0.9840	1.0652	1.1508	1.2351	1.3126
k.	k _b	0.6733	0.7345	0.8012	0.8776	0.9664	1.0689	1.1849	1.3126	1.4474
~1	$k_{0.87b}$	0.7051	0.7621	0.8241	0.8946	0.9755	1.0669	1.1671	1.2723	1.3773
k_{α}	k	0.7051	0.7621	0.8241	0.8946	0.9755	1.0669	1.1671	1.2723	1.3773

Tableau N°10 : K pour $\theta = 0.30$ après 2 interpolations (sur y puis sur α)

Les valeurs de K_0 et de K_1 pour K3b/4 et Kb sont recopiées directement à partir des tableaux de Massonnet (les 2 premières lignes pour K); Ensuite, on effectue une première interpolation sur y pour obtenir K0.87b, à savoir:

- $k_0|_{y=0.87b} = 0.52k_0|_{y=3b/4} + 0.48k_0|_{y=b}$
- $k_1|_{y=0.87b} = 0.52|_{y=3b/4} + 0.48k_1|_{y=b}$

En utilisant les tableaux numériques de Massonnet, on a :

- $\circ \quad k_1|_{y=0.87b} = 0.52 \cdot 1.2351 + 0.48 \cdot 1.3126 = 1.2723$
- $\circ k_0|_{v=0.87b} = 0$
- \circ k = 1 k₁ = 1.2723
- ✓ Tableau pour $\theta = 0.35$

θ =	= 0.35									
е		-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
	$k_{3b/4}$	0.6624	0.7255	0.7958	0.8781	0.9741	1.0824	1.1983	1.3115	1.4123
k.	k _b	0.5926	0.6624	0.7408	0.8340	0.9466	1.0808	1.2369	1.4123	1.6001
~1	$k_{0.87b}$	0.6288	0.6952	0.7694	0.8569	0.9609	1.0816	1.2168	1.3598	1.5024
k_{α}	k	0.6288	0.6952	0.7694	0.8569	0.9609	1.0816	1.2168	1.3598	1.5024

Tableau N°11: K pour $\theta = 0.35$ après 2 interpolations (sur y puis sur α)

De même que pour le tableau N°1, ici, on a utilisé les 2 interpolations sur y puis sur α , c.à.d.

- $k_0|_{y=0.87b} = 0.52k_0|_{y=3b/4} + 0.48k_0|_{y=b}$
- $k_1|_{y=0.87b} = 0.52k_1|_{y=3b/4} + 0.48k_1|_{y=b}$

En utilisant les tableaux numériques de Massonnet, on a :

 $\circ \quad k_1|_{y=0.9b} = 0.52 \cdot 1.3115 + 0.48 \cdot 1.4123 = 1.3598$

- \circ k = 1 k₁ = 1.3598

Dans notre cas: $\theta = 0.32$; On effectue alors la troisième interpolation sur θ en utilisant la dernière ligne de chaque tableau à savoir:

• $k|_{\theta=0.32} = 0.5k|_{\theta=0.30} + 0.5k|_{\theta=0.35}$

Ainsi, on obtient:

$\theta = 0.32$											
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b		
k	0.6669	0.7286	0.7967	0.8757	0.9682	1.0742	1.1919	1.3160	1.4398		

Les valeurs trouvées de K sont arrondies à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de K

е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k	0.67	0.73	0.80	0.88	0.97	1.07	1.19	1.32	1.44
Tableau $N^{0}12$, Valoung amon dia da $V - V(a)$									

Tableau N°13: Valeurs arrondis de K = K(e)

On choisit une échelle pour tracer la courbe K=K(e), qui représente la ligne d'influence (Li) de K pour la poutre N°2 (figure *V.8*).On trace la courbe de K de préférence sur un papier millimétrique.

Figure V.8 : Ligne d'influence de K pour la poutre N°2.

11. Calcul des CRT pour la poutre centrale N°4 :

11.1- Courbe de K :

D et T conservent les mêmes valeurs que pour la poutre de rive, c.à.d. $\theta = 0.32$ et = 1, par conséquent, les interpolations sur α et sur θ restent les mêmes que pour la poutre de rive N°2, c.à.d.

- $k = k_1$
- $k|_{\theta=0.32} = 0.5k|_{\theta=0.30} + 0.5k|_{\theta=0.35}$

Seule la position de la poutre change, elle devient: y = 0.Les tables de Massonnet donnent directement des lignes correspondant pour y = 0, c.à.d. on n'a pas besoin d'interpoler sur y.

✓ Tableau pour $\theta = 0.30$

$\theta = 0.30$									
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k ₀	0.9423	0.9742	1.0044	1.0283	1.0385	1.0283	1.0044	0.9742	0.9423
<i>k</i> ₁	0.9664	0.9840	1.0018	1.0173	1.0244	1.0173	1.0018	0.9840	0.9664
k _α	0.9664	0.9840	1.0018	1.0173	1.0244	1.0173	1.0018	0.9840	0.9664

Tableau N°14: K en fonction de e pour $\theta = 0.30$ après une interpolation (sur α) pour la poutre centrale N°4.

On remarque bien que les k_i sont symétriques par rapport à e=0. Les deux premières lignes sont recopiées directement des tables de Massonnet. Ensuite la dernière ligne est obtenue après interpolation sur α .

✓ Tableau pour $\theta = 0.35$

$\theta = 0.35$									
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k ₀	0.8954	0.9532	1.0079	1.0514	1.0700	1.0514	1.0079	0.9532	0.8954
<i>k</i> ₁	0.9466	0.9741	1.0025	1.0279	1.0399	1.0279	1.0025	0.9741	0.9466
k _α	0.9466	0.9741	1.0025	1.0279	1.0399	1.0279	1.0025	0.9741	0.9466

Tableau N°15: K en fonction de e pour $\theta = 0.35$ après une interpolation (sur α) pour la poutre centrale N°4.

Notre cas est pour $\theta = 0.32$. On utilise la dernière ligne de chaque tableau et on interpole par rapport à θ , à savoir:

• $k|_{\theta=0.32} = 0.5k|_{\theta=0.30} + 0.5k|_{\theta=0.35}$

$\theta = 0.32$									
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k	0.9565	0.9790	1.0021	1.0226	1.0321	1.0226	1.0021	0.9790	0.9565
	— 11					•			

Tableau N°16: K en fonction de e après tous les interpolations.

Les valeurs trouvées sont arrondis à 2 chiffres après la virgule pour qu'on puisse tracer la courbe de K.
е	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
k	0.96	0.98	1	1.02	1.03	1.02	1	0.98	0.96

Tableau N°17: Valeurs arrondies de K en fonction de e.

On remarque bien qu'il existe une symétrie par rapport à e = 0. On trace la courbe de K=K(e), qui est ainsi symétrique par rapport à l'axe longitudinale du pont (figure *V.9*).

Figure V.9 : Courbe de K en fonction de e pour la poutre centrale (N°4).

12. La flèche moyenne selon l'équation de la déformée est:

 $P = b_1 \cdot n \cdot q = 1.075 \cdot 8 \cdot 1$

$$\begin{split} P &= 8.6 \text{ kn /m} \\ w_0 &= \frac{P}{2b \cdot \rho_p} \cdot \frac{L^4}{\pi^4} \sin \frac{\pi x}{L} \end{split}$$

 $w_0 = \frac{8.6}{8.6 \cdot 1.75 \cdot 10^6} \cdot \frac{13.38^4}{3.14^4} \cdot \sin \frac{\pi x}{L} = 0.00018839 \sin \frac{\pi x}{L} (m)$ Le moment fléchissant longitudinal moyen est:

$$M_0(\mathbf{x}) = \frac{P}{2b} \cdot \frac{L^2}{\pi^2} \sin \frac{\pi x}{L}$$
$$M_0(\mathbf{x}) = \frac{8.6}{8.6} \cdot \frac{13.38^2}{3.14^2} \sin \frac{\pi x}{L} = 18.1573 \sin \frac{\pi x}{L} (\text{Kn. m})$$

Par interpolation linéaire dans les tableaux de Massonnet pour $\theta=0,30$ et $\theta=0,35$ on trouve les valeurs des coefficients K₀ et K₁ pour $\theta=0,32$.

Dans la colonne y=3b/4 n lit pour e = -b; -3b/4; -b/2; -b/4; 0; b/4; b/2; 3b/4; b :

Les flèches et les moments moyens sont:

•	En <u>x =L/2</u>	$w_0 = 0.00018839 \text{ m}$	et	$M_0 = 18.1573 \text{ Kn.m}$
•	En <u>$x = L/4$</u>	$w_0 = 0.00013321 \text{ m}$	et	$M_0 = 12.8391 \text{ Kn.m}$

Donc on obtient les flèches et les moments longitudinaux en multipliant les flèches et les moments moyens par le coefficient K_{α} calculé:

е		-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
X=1/2	W(mm)	0.1808	0.1846	0.1883	0.1921	0.1940	0.1921	0.1883	0.1846	0.1808
	M _x (kn.m)	17.431	17.794	18.157	18.520	18.702	18.520	18.157	17.794	17.431
X=1/4	W(mm)	0.1278	0.1305	0.1332	0.1358	0.1372	0.1358	0.1332	0.1305	0.1278
	M _x (kn.m)	12.325	12.582	12.839	13.095	13.224	13.095	12.839	12.582	12.325

Tableau N°18: les flèches et les moments moyens par le coefficient Ka.

V.2. APPLICATION DE LA MÉTHODE DES ÉLÉMENTS FINIS :

V.2.1-Exemple de la dalle avec un biais de 60°:

Nous avons considéré dans cet exemple la dalle avec le biais de 60° illustrée dans le schéma de la figure *V*.2. Les données géométriques et mécaniques utilisées sont les suivantes :

 60°

- Portée : 20.00 mètres
- Largeur : 10.00 mètres
- Epaisseur de la dalle : 01.00 mètre
- Angle du biais :
- ➢ Module de Young : 21000000 Kn/m²
- Coefficient de Poisson : 0.2
- Charge uniformément répartie : q=1.00 Kn/m²
- Dalle simplement appuyée :

Comme l'illustre le schéma suivant ; le modèle « élément fini » est discrétisé en 09 nœuds et 08 éléments. Comme il ressort du test de convergence réalisé par [HIM.14] pour les dalles biaises, nous avons considéré cette densité du maillage ; carelle correspond à un niveau de convergence optimal vers la solution exacte.

Figure V.10 : modèle « élément fini » 60°

Il s'agit de calculer la flèche au milieu de la dalle (Nœud 07) pour la comparer avec les solutions données par la mèthode de Guyon-Massonnet et avec la solution exacte données par [RAZ.73] :

$$w_{R\acute{e}f} = 0.07945 \cdot \frac{p \cdot L^2}{D}$$
(5.1)
$$D = \frac{E \cdot h^3}{12(1 - v^2)}$$

Avec :

$$D = \frac{21000000 \cdot 1^3}{12(1 - 0.2^2)} = 1.8229 \cdot 10^6$$
$$w_{R\acute{e}f} = 0.07945 \cdot \frac{11.6 \cdot 20^2}{1.8229 \cdot 10^6} = 2.0223 \cdot 10^{-4}m = 0.20223 \ mm$$

En utilisant le programme « Elément fini » développé par [HIM.14] conçu pour la modélisation des structures planes minces ;nous avons obtenu les résultats suivants.

Fichier des données

```
C plaque biaise 60° 8 éléments
C Données générales : NNO, NTE, NBC, NLN, NTY, NCLI, INTER
                    9 8 14
                                3
                                      4
                                          0
                                                 0
C coordonnées des nœuds: X Y (Z)
 00.0000 0.0000
 05.7735
        0.0000
        0.0000
 20.0000
 05.7735
        10.0000
 20.0000
        10.0000
 25.7735
        10.0000
 12.8868
         5.0000
         5.0000
 02.8868
        5.0000
 22.8868
C Connexions des éléments
 1 2 8
 2 4 8
 2 7 4
 2 3 7
 754
 3 5 7
 3 9 5
 9 6 5
C Charges des plaques
C Charges nodales : nœud direction intensité
C Charges nodales
  2 1 33.333
  5 1 33.333
  7 1 33.333
C Conditions aux limites : nœud direction bloquée
 1 1
 3 1
 4 1
 6 1
 8 1
 9 1
 1 3
 3 3
 4 3
 63
 8 3
 93
 2 3
 53
C Module d'élasticité, Poisson,
                                épaisseur
                    0.20000E+00
     2.1E+07
                                1.00000
```

Résultats

DEPLACEMENTS AUX	NOEUDS		
NOEUD	*1*	*2*	*3*
1	0.00000E+00	-0.17217E-04	0.00000E+00
2	0.13770E-03	-0.28182E-04	0.00000E+00
3	0.00000E+00	0.28898E-04	0.00000E+00
4	0.00000E+00	-0.28898E-04	0.00000E+00
5	0.13771E-03	0.28182E-04	0.00000E+00
6	0.00000E+00	0.17218E-04	0.00000E+00
7	0.20274E-03	0.14414E-10	-0.59037E-09
8	0.00000E+00	-0.23385E-04	0.00000E+00
****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *

V.2.2-Exemple de la dalle avec un biais de 40°:

Nous avons considéré dans cet exemple la dalle avec le biais de 40° illustrée dans le schéma de la figure V.6. Les données géométriques et mécaniques utilisées sont les suivantes :

۶	Portée :	20.00 mètres
۶	Largeur :	10.00 mètres
۶	Epaisseur de la dalle :	01.00 mètre
۶	Angle du biais :	40°
۶	Module de Young :	21000000 Kn/m ²
۶	Coefficient de Poisson :	0.2
\triangleright	Charge uniformément répartie :	q=1.00Kn/m ²

- <u>Dalle simplement appuyée :</u>

Comme l'illustre le schéma suivant ; le modèle « élément fini » est discrétisé en 09 nœuds et 08 éléments. Comme il ressort du test de convergence réalisé par [HIM.14] pour les dalles biaises, nous avons considéré cette densité du maillage ; carelle correspond à un niveau de convergence optimal vers la solution exacte.

Figure V.11 : modèle « élément fini » 40°

Il s'agit de calculer la flèche au milieu de la dalle (Nœud 07) pour la comparer avec les solutions données par la mèthode de Guyon-Massonnet.

En utilisant le programme « Elément fini » développé par [HIM.14] conçu pour la modélisation des structures planes minces ;nous avons obtenu les résultats suivants.

Fichier des données

```
C plaque biaise 40° 8 éléments
   C donnés générales : NNO, NTE, NBC, NLN, NTY, NCLI, INTER
                       9 8
                               10
                                   3
                                        4
                                              0
                                                   0
C Coordonnes des nœuds: X Y (Z)
  00.00
          0.00
 11.9175
          0.00
          0.00
  20.00
 11.9175 10.00
 20.00
         10.00
 31.9175 10.00
 15.9588
          5.00
 05.9588
          5.00
  25.9588
          5.00
C Connexions des éléments
  1 2 8
  2 4 8
  2 7 4
  2 3 7
  754
  3 5 7
  3 9 5
  965
C Charges des plaques
C Charges nodales: nœud direction intensité
C Charges nodales
  2 1 33.33333333
  5 1 33.33333333
  7 1 26.94153333
C Conditions aux limites : nœud direction bloque
 1 1
  3 1
  4 1
  6 1
  8 1
  91
 1 3
  33
  4 3
  63
 8 3
  93
   C Module d'élasticité,
                          Poisson,
                                       épaisseur
                                        1.00000
     2.1E+07
                           0.20000E+00
```

Résultats

NOEUD	*1*	*2*	*3*
1	0.00000E+00	0.10055E-04	0.00000E+00
2	0.24727E-03	-0.13956E-04	0.19826E-04
3	0.00000E+00	0.31945E-04	-0.37368E-04
4	0.00000E+00	-0.31945E-04	0.37367E-04
5	0.24728E-03	0.13955E-04	-0.19826E-04
6	0.00000E+00	-0.10054E-04	0.00000E+00
7	0.19324E-03	-0.13001E-09	-0.70493E-09
8	0.00000E+00	-0.23897E-04	0.00000E+00
9	0.00000E+00	0.23898E-04	0.00000E+00
*****	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *

....DEPLACEMENTS AUX NOEUDS

V.2.3-Analyse et discutions des résultats :

Les résultats de calcul donnés par les différentes méthodes sont résumés dans le tableau suivant. Celui-ci reprend les flèches calculées au milieu de la dalle biaise.

	Dalle avec biais de 60°	Dalle avec biais de 40°
MéthodeGuyon-Massonnet	0.2015 E-03m	0. 1940 E-03m
Méthode Elément Fini	0. 20274E-03m	0. 19324E-03m
Solution exacte	0.20223E-03m	-

Tableau N°19: Flèches au milieu de la dalle pour les différentes méthodes

De ces résultats nous constatons ce qui suit :

- La méthode des éléments finis est une méthode appropriée pour l'analyse des structure planes (dalles) biaises, puisque les solutions données par cette méthode sont très proches de la solution exacte.
- L'élément fini considéré [HIM.14] est très performant, puisque l'erreur relative entre la solution exacte et celle donnée par ce modèle représente 0,25 %.
- La méthode de Guyon-Massonnet donne également des résultats performants (erreur relative égale à 0,36%); Seulement celle-ci nécessite de passer par la transformation de la dalle biaise en une dalle rectangulaire équivalente.
- Cette transformation, établie par la méthode directe des flèches, développée dans le guide technique CHAMOA (Chaine algorithmique modulaire ouvrages d'art) par CEREMA [CHA .16], à donner une cohérence de l'analyse.
- La méthode de Guyon-Massonnet ne peut pas s'appliquer des biais inférieurs à 40°, puisque le paramètre d'entretoisement dans ces cas est inférieur à 0,30.

CONCLUSION GENERALE

CONCLUSION GENERALE

Ce mémoire de master porte sur l'étude de modélisation d'une dalle biaise avec la méthode des éléments finis et validation du modèle, ce travail est articulé autour de deux principaux axes :

Le premier concerne l'analyse des dalles biaises par une méthode analytique : celle de Guyon-Massonnet.

Le second se base sur la modélisation de la dalle biaise par éléments finis.

Les deux méthodes sont appliquées sur deux exemples : une dalle avec un biais de 60° et une dalle avec un biais de 40° .

Des résultats obtenus on peut tirer les conclusions suivantes :

- La méthode des éléments finis est une méthode appropriée pour l'analyse des structure planes (dalles) biaises, puisque les solutions données par cette méthode sont très proches de la solution exacte.
- L'élément fini considéré [HIM.14] est très performant, puisque l'erreur relative entre la solution exacte et celle donnée par ce modèle représente 0,25%.
- La méthode de Guyon-Massonnet donne également des résultats performants (erreur relative égale à 0,36%) ; Seulement celle-ci nécessite de passer par la transformation de la dalle biaise en une dalle rectangulaire équivalente.
- Cette transformation, établie par la méthode directe des flèches, développée dans le guide technique CHAMOA (Chaine algorithmique modulaire ouvrages d'art) par CEREMA [CHA .16], à donner une cohérence de l'analyse.
- La méthode de Guyon-Massonnet ne peut pas s'appliquer des biais inférieurs à 40°, puisque le paramètre d'entretoisement dans ces cas est inférieur à 0,30%.

REFERENCES BIBLIOGRAPHIQUES

REFERENCES BIBLIOGRAPHIEQUE

- [AHM.13] Ben Ahmed. Z Etude de la jonction poutre plaque /membrane dans la modélisation des structures complexes, thèse Magister Université Mohamed Khider Biskra,(2013).
- [BOU.15] Dr. Bouteldja .F, cours les ponts 1^{er} Master VOA Université 8 Mai 1945-guelma, 2015-2016.
- [BEN.09] *M. Ben Ouézdou., Etude de la répartition Transversale des charges sur les ponts à poutres par la méthode de Guyon-Massonnet, Annexe au chapitre 3.*
- [CON.10] guide de conception ponts mixtes acier-béton (sétra 2010).
- [COD.10] ponts mixtes acier-béton, guide de conception durable.(sétra2010).
- [CHA.16] guide technique CHAMOA P-Annexes (Chaine algorithmique modulaire ouvrages d'art) par CEREMA(Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement), paris ; avril 2016.
- [CHR.66] MASSONNET CHARLES ET BAREŠ RICHARD « Le calcul des grillages de poutres et dalle orthotropes selon la méthode Guyon-Massonnet-Bareš », DUNOD Paris, 1966.424P.
- [COU.80] Courbons jean, Plaques Minces Elastiques. Eyrolles Editions. 1980.
- [CDP.94] Conception des ponts : LCPC(1994).
- [DMC.01] Diverses méthode calcul des dalle– p. 25/25.
- [EES.99] University of Illinois Engineering Experiment Station, Bulletins No. 336, 363, ET 375.
- [FRV.84] B.fraeijs de veubeke :displacements and equilibrium models in the finite elements méthod.in O.C.Zienkiewicz et G.S.Holister, editeur : stress analysis ,chapiter 9.John Wiley et Sons,London,1965.
- [GUY.46] *GUYON Y*, *Calcul des ponts larges a poutres multiples solidarisées par des entretoises. Annales des ponts et chaussées de France, 1946, PP.553-612.*
- [GUI.99] *Guide du projeteur ouvrages d'art : ponts courants.SETRA(1999).*
- [HIM.14] *Mr himeur M., Contribution à la formulation de quelques éléments de coques basée sur la formulation en déformation, thèse de doctorat, université 08 Mai 1945(Guelma)*,2014.
- [INF.07] *information sur les tunnels, site internet (www.bridgesite.com), en anglais.*
- [MAS.66] En 1966, Massonnet et Bareš publièrent un recueil de ces méthodes illustré par un nombre d'exemples.
- [MAS.50] *en 1950 généralisation des relations trouvées par Guyon en introduisant l'effet de la torsion dans les calculs.*

- [MDP.55] *La modélisation des plaques de formes géométriques irrégulières par la méthode des éléments finis, chapitre 1Théorie des plaques.*
- [MAS.03] MASSONNET C. Contribution à calcul des ponts a poutre multiples, annales des travaux publics Belgique, 1950, PP.377-422.
- [MAS.62] *M.MASSONNET, professeur à l'université de liège, compléments à la méthode de calcul des ponts à poutres multiples, Annales de l'institut technique du bâtiment et des travaux publics, janvier 1962.*
- [MAU.58] Mauries.E, Conception général des ouvrages d'art,page 47-58.
- [ROC.79] Rocket lenneth, roy evans, william grifiths et david netherocot, Introduction à la méthode des éléments finis. Eyrolles Paris 1979.
- [RAZ.73] Razake A,(program of triangular bending elements with derivative smoothing), IJNME,VOL.6,pag 333-34.
- [STR.89] Site internet : structurae.info
- [TAN.04] *Yannick SIEFFERT « l'entretoisement des ponts mixtes multi poutres ferroviaires »* INSA de Lyon 2004.
- [OLI.05] Olivier .P, Mécanique des Structures par Eléments Finis, Volume 2 Plaques ; Ecole Nationale d'Ingénieurs de Tarbes(2005-2006).
- [WIK.11] Site internet :wikipedia.Org /woki/pont.

ANNEXES

Annexe 1 : la méthode de guyon-massonnent

Tables donnant le coefficient de répartition transversale pour θ variant de 0,05 en 0,05 de 0 à 1, et de 0,1 en 0,1 de 1 à 2 et pour $\alpha = 0$ et $\alpha = 1$.

Les valeurs de K_0 ont été calculées à l'aide de la formule suivante établie dans un de nos mémoires antérieur (réf. [2], p. 762).

$$\mathbf{K}_0 = 2 \ \lambda b \ \frac{1}{\mathrm{sh}^2 \ 2 \ \lambda b - \mathrm{sin}^2 \ 2 \ \lambda b}$$

 $(2 \operatorname{ch} \lambda (y + b) \cos \lambda (y + b) [\operatorname{sh} 2 \lambda b \cos \lambda (b + e) \operatorname{ch} \lambda (b - e) - \sin 2 \lambda b \operatorname{ch} \lambda (b + e) \cos \lambda (b - e)] + \\ + [(\operatorname{ch} \lambda (y + b) \sin \lambda (y + b) + \operatorname{sh} \lambda (y + b) \cos \lambda (y + b)] \{ \operatorname{sh} 2 \lambda b [\sin \lambda (b + e) \operatorname{ch} \lambda (b - e) - \cos \lambda (b + e) \operatorname{sh} \lambda (b - e) \\ + \operatorname{sh} 2 \lambda b [\operatorname{sh} \lambda (b + e) \cos \lambda (b - e) - \operatorname{ch} \lambda (b + e) \sin \lambda (b - e)] \}).$

Dans cette formule, la notation λ a la signification suivante :

$$\lambda = \frac{\pi}{l\sqrt{2}} \sqrt[4]{\frac{\rho_{\rm P}}{\rho_{\rm E}}} \cdot$$

Les valeurs de K1 ont été calculées à l'aide de la formule suivante, établie par Guyon (réf. [3], p. 567) :

$$K_{1} = \frac{\sigma}{2 \ sh^{2} \sigma} \left[(\sigma \ ch \ \sigma + sh \ \sigma) \ ch \ \theta \chi - \theta \chi \ sh \ \sigma \ sh \ \theta \chi + \frac{P_{\beta} P_{\psi}}{3 \ sh \ \sigma \ ch \ \sigma - \sigma} + \frac{Q_{\beta} Q_{\psi}}{3 \ sh \ \sigma \ ch \ \sigma + \sigma} \right]$$

en posant :

$$P_{u} = (\sigma \operatorname{ch} \sigma - \operatorname{sh} \sigma) \operatorname{ch} \theta u - \operatorname{sh} \sigma \theta u \operatorname{sh} \theta u$$
$$Q_{u} = (2 \operatorname{sh} \sigma + \sigma \operatorname{ch} \sigma) \operatorname{sh} \theta u - \operatorname{sh} \sigma 0 u \operatorname{ch} \theta u,$$

avec

$$\theta = \frac{b}{l} \sqrt[4]{\frac{\rho_p}{\rho_E}}, \psi = \frac{\pi e}{b}, \beta = \frac{\pi y}{b}, \sigma = \theta \pi, \chi = \pi - |\beta - \psi|$$

$\theta = 0.05$. α ·	= 0							
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 4	b 	$\frac{3b}{4}$	· b
0	+1,0000	+1,0000	+1,0000	+1,0000	+1,0000	+1,0000	+1,0000	+1,0000	+1,0000
b/4	+0,2500	+0,4375	+0,6249	+0,8125	+1,0001	+1,1876	+1.3750	+1,5626	+1,7501
b/2	0,5001	-0,1250	+0,2499	+0,6249	+1,0000	+1,3751	+1,7502	+2,1251	+2,5001
3 b/4	-1,2501	-0,6876	0,1251	+0,4374	+1,0000	+1,5626	+2,1252	+2,6877	+3,2503
b	-2,0001	-1,2501	-0,5001	+0,2499	+1,0000	+1,7501	+2,5002	+3,2502	+4,0003
) = 0,05	a =	= 1							
0	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
b/4	0,9969	0,9978	0,9985	0,9992	1,0000	1,0008	1,0015	1,0023	1,0030
b/2	0,9938	0,9954	0,9969	0,9985	1,0000	1,0015	1,0031	1,0046	1,0061
3 b/4	0,9908	0,9931	0,9954	0,9978	1,0000	1,0023	1,0046	1,0069	1,0092
b	0,9878	0,9908	0,9938	0,9969	1,0000	1,0030	1,0061	1,0092	1,0124
= 0,10	α =	= 0							
0	+0,9993	+0,9997	+1,0001	+1,0003	+1,0005	+1,0003	+1,0001	+0,9997	+0,9993
b/4	+0,2495	+0,4373	+0,6250	+0,8127	+1,0004	+1,1879	+1,3751	+1,5622	+1,7493
b/2	0,5000	0,1250	+0,2500	+0,6250	+1,0001	+1,3751	+1,7501	+2,1249	+2,4997
3 b/4	-1,2494	-0,6872	0,1250	+0,4373	+0,9997	+1,5622	+2,1249	+2,6877	+3,2505
b	-1,9988	-1,2494	-0,5000	+0,2495	+0,9993	+1,7493	+2,4997	+3,2505	+4,0014

$\theta = 0,10$	a =	= 1							
		. 3b	Ь	Ь		ь	ь	3b	
	— b		2	4	. 0	4	2	4	Ь
0	0,9993	0,9997	1,0001	1,0003	1,0005	1,0003	1,0001	0,9997	- 0,9993
B/4	0,9873	0,9906	0,9938	0,9971	1,0003	1,0034	1,0063	1,0090	1,0116
b/2	0,9756	0,9816	0,9877	0,9938	1,0001	1,0063	1,0124	1,0183	1,0241
3 b/4	0,9641	0,9728	0,9816	0,9906	0,9997	1,0090	1,0183	1,0276	1,0369
b	0,9527	0,9641	0,9756	0,9873	0,9993	1,0116	1,0241	1,0369	1,0498
$\theta = 0,15$	α =	= 0							
0	+0,9963	+0,9983	+1,0003	+1,0018	+1,0025	+1,0018	+1,0003	+0,9983	+0,9963
b/4	+0,2475	+0,4362	+0,6250	+0,8136	+1,0018	+1,1892	+1,3755	+1,5612	+1,7466
b/2	0,5003	0,1252	+0,2499	+0,6250	+1,0003	+1,3755	+1,7504	+2,1247	+2,4988
3 b/4	1,2474	0,6864	-0,1252	+0,4363	+0,9984	+1,5612	+2,1247	+2,6887	+3,2526
Ь	-1,9944	-1,2474	0,5003	+0,2475	+0,9963	+1,7466	+2,4988	+3,2526	+4,0075
$\theta = 0,15$	α =	= 1	+						
0	0,9969	0,9986	1,0002	1,0016	1,0021	1,0016	1,9002	0,9986	0,9969
b/4	0,9708	0,9784	0,9862	0,9940	1,0016	1,0084	1,9143	1,0194	1,0243
b/2	0,9459	0,9590	0,9724	0,9862	1,0002	1,0143	1,0279	1,0406	1,0529
3 b/4	0,9219	0,9403	0,9590	0,9784	0,9986	1,0194	1,9406	1,0617	1,0825
Ь	0,8985	0,9219	0,9459	0,9708	0,9969	1,0243	1,0529	1,0825	1,1126
$\theta = 0,20$	α =	= 0							
		3b	b	b		b	b	36	
	1.					1	-	0.0	1 . /
	- o	4	2		0	4	2	4	b
	b	4	2	+1.0057	0	4	2 +1,0009	4	b +0.9884
0 b/4	+0,9884 +0.2421	4 +0,9948 +0.4337	2 +1,0009 +0.6251	4 +1,0057 +0.8160	0 +1,0078 +1.0057	4 +1,0057 +1,1929	2 +1,0009 +1.3767	4 +0.9948 +1.5584	b +0,9884 +1,7394
0 b/4 b/2	+0,9884 +0,2421	4 +0,9948 +0,4337 -0,1257	2 +1,0009 +0,6251 +0,2496	4 +1,0057 +0,8160 +0.6251	0 +1,0078 +1,0057 +1,0009	4 +1,0057 +1,1929 +1,3767	2 +1,0009 +1,3767 +1,7514	4 +0.9948 +1.5584 +2.1212	b +0,9884 +1,7394 +2,4961
0 b/4 b/2	+0,9884 +0,2421 -0,5008	4 +0,9948 +0,4337 -0,1257	2 +1,0009 +0,6251 +0,2496	4 +1,0057 +0,8160 +0,6251 +0,4336	0 +1,0078 +1,0057 +1,0009 +0.9948	4 +1,0057 +1,1929 +1,3767 +1 5583	2 +1,0009 +1,3767 +1,7514 +2,1242	$\frac{33}{4}$ +0.9948 +1.5584 +2,1212	b +0,9884 +1,7394 +2,4961 +3,2581
0 b/4 b/2 3 b/4		4 +0,9948 +0,4337 -0,1257 -0,6839	2 +1,0009 +0,6251 +0,2496 -0,1257	4 +1,0057 +0,8160 +0,6251 +0,4336	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,0984	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394	2 +1,0009 +1,3767 +1,7514 +2,1242	4 +0.9948 +1.5584 +2,1242 +2,6912 +3.2581	b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236
$ \begin{array}{c} 0 \\ \underline{b/4} \\ \underline{b/2} \\ \underline{3 b/4} \\ \underline{b} \\ \overline{A = 0.20} \end{array} $		4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008	4 +1,0057 +0, £160 +0,6251 +0,4336 +0,2421	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884		2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961		b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236
$\frac{0}{b/4}$ $\frac{b/2}{3b/4}$ $\frac{b}{\theta = 0,20}$	$\begin{array}{c} b \\ +0,9884 \\ +0,2421 \\ -0,5008 \\1,2418 \\1,9823 \\ \alpha = \\ 1 \\ 0.9912 \end{array}$	4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008	$ \begin{array}{c} - & - \\ $	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884	$ \frac{-4}{+1,0057} + 1,1929 + 1,3767 + 1,5583 + 1,7394 $	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961	4 +0,9948 +1,5584 +2,1242 +2,6912 +3,2581	b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236
$ \begin{array}{r} 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \hline \theta = 0,20 \\ \hline 0 \\ \hline b/4 \\ \hline \end{array} $	$\begin{array}{c c} - & - & - & - \\ - & - & 0,9884 \\ + & 0,2421 \\ - & 0,5008 \\ - & -1,2418 \\ - & 1,9823 \\ \hline & - & 1,9823 \\ \hline & \alpha = \\ 0,9912 \\ 0.0468 \end{array}$	4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1 0,9960 0,9610	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006	$ \begin{array}{c} - 4 \\ + 1,0057 \\ + 0,8160 \\ + 0,6251 \\ + 0,4336 \\ + 0,2421 \\ \hline 1,0044 \\ 0,0002 \end{array} $	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006		b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0.9912
$ \begin{array}{r} 0\\ \hline b/4\\ \hline b/2\\ \hline 3 b/4\\ \hline b\\ \theta = 0,20\\ \hline 0\\ \hline b/4\\ \hline b/4\\ \hline c) p = 0,20 \end{array} $	$\begin{array}{c c} - & \mathbf{b} \\ + & 0,9884 \\ + & 0,2421 \\ \hline & - & 0,5008 \\ - & -1,2418 \\ \hline & - & 1,9823 \\ \hline & \alpha = \\ \hline & 0,9912 \\ \hline & 0,9468 \\ \hline & 0.9952 \\ \hline \end{array}$	4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1 0,9960 0,9610	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1.0257	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257		b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0.9912 1,0392
$ \begin{array}{r} 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \hline \theta = 0,20 \\ \hline 0 \\ \hline b/4 \\ \hline b/2 \\ \hline \end{array} $	$\begin{array}{c c}$	4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1 0,9960 0,9610 0,9281	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755 0,9513	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1,0257	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496		b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0.9912 1,0392 1,0392
$ \begin{array}{r} 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \theta = 0,20 \\ \hline \theta \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \end{array} $	$\begin{array}{c c}$	4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1 0,9960 0,9610 0,9281 0,8972	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755 0,9513 0,9281	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755 0,9510	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006 0,9960	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1,0257 1,0328	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496 1,0708		b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0.9912 1,0392 1,0906 1,1449
$ \begin{array}{r} 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \hline \theta = 0,20 \\ \hline 0 \\ \hline 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \end{array} $	$\begin{array}{c c} & \mathbf{b} \\ +0,9884 \\ +0,2421 \\ -0,5008 \\1,2418 \\1,9823 \\ \hline \alpha = \\ 0,9912 \\ 0,9468 \\ 0,9058 \\ 0,9058 \\ 0,8674 \\ 0.8305 \\ \end{array}$	4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1 0,9960 0,9610 0,9281 0,8972 0,8674	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755 0,9513 0,9281 0,9058	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755 0,9510 0,9468	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006 0,9960 0,9912	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1,0257 1,0328 1,0392	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496 1,0708 1,0906	3.3 4 +0,9948 +1,5584 +2,1242 +2,6912 +3,2581 0,9960 1,0328 1,0708 1,1086 1,1449	b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0,9912 1,0392 1,0392 1,0906 1,1449 1.2009
$ \begin{array}{r} 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \theta = 0,20 \\ \hline 0 \\ \hline 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \theta = 0,25 \\ \end{array} $	$\begin{array}{c c}$	4 +0,9948 +0,4337 0,1257 0,6839 1,2418 = 1 0,9960 0,9610 0,9281 0,8972 0,8674 = 0	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755 0,9513 0,9281 0,9058	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755 0,9610 0,9468	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006 0,9960 0,9912	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1,0257 1,0328 1,0392	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496 1,0708 1,0906		b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0.9912 1,0392 1,0392 1,0906 1,1449 1.2009
$ \begin{array}{r} 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \hline \theta = 0,20 \\ \hline 0 \\ \hline 0 \\ \hline b/4 \\ \hline b/2 \\ \hline 3 b/4 \\ \hline b \\ \theta = 0,25 \\ \hline 0 \\ \end{array} $	$\begin{array}{c c} - & b \\ + & 0,9884 \\ + & 0,2421 \\ - & 0,5008 \\ - & 1,2418 \\ - & 1,9823 \\ \hline & \alpha = \\ 0,9912 \\ 0,9468 \\ 0,9058 \\ 0,9058 \\ 0,8674 \\ 0.8305 \\ \hline & \alpha = \\ + & 0,9718 \\ \end{array}$	4 +0,9948 +0,4337 -0,1257 -0,6839 -1,2418 = 1 0,9960 0,9610 0,9281 0,8972 0,8674 = 0 +0,9874	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755 0,9513 0,9281 0,9058 +1,0021	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755 0,9510 0,9468 +1,0138	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006 0,9960 0,9912 +1,0188	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1,0257 1,0328 1,0392 +1,0138	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496 1,0708 1,0906 +1,0021	3.3 4 +0,9948 +1,5584 +2,1242 +2,6912 +3,2581 0,9960 1,0328 1,0708 1,1086 1,1449	b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0,9912 1,0392 1,0392 1,0906 1,1449 1.2009 +0,9718
$ \begin{bmatrix} 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0,20 \\ \hline 0 \\ b/4 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0,25 \\ \hline 0 \\ b/4 \end{bmatrix} $	$\begin{array}{c c}$	4 +0,9948 +0,4337 0,1257 0,6839 1,2418 = 1 0,9960 0,9960 0,9610 0,9281 0,8972 0,8674 = 0 +0,9874 +0,4281	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755 0,9513 0,9281 0,9058 +1,0021 +0,6251	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755 0,9610 0,9468 +1,0138 +0,8210	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006 0,9960 0,9912 +1,0188 +1,0138	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1,0257 1,0328 1,0392 +1,0138 +1,2007	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496 1,0708 1,0906 +1,0021 +1,3791	332 4 +0,9948 +1,5584 +2,1212 +2,6912 +3,2581 0,9960 1,0328 1,0708 1,1086 1,1449 +0,9874 +1,5524	b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0.9912 1,0392 1,0392 1,0906 1,1449 1.2009 +0,9718 +1,7244
$ \begin{array}{r} 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0,20 \\ \hline \theta \\ \theta = 0,20 \\ \hline 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0,25 \\ 0 \\ b/4 \\ b/2 \\ \hline 0 \\ b/4 \\ b/2 \\ \\ $	$\begin{array}{c c}$	$\begin{array}{c c} & & & \\ & & +0,9948 \\ & +0,4337 \\ & & -0,1257 \\ & & -0,6839 \\ & & -1,2418 \\ = & 1 \\ \hline & & 0,9960 \\ & & 0,9610 \\ & & 0,9610 \\ & & 0,9281 \\ \hline & & 0,9960 \\ & & 0,9610 \\ \hline & & 0,9281 \\ \hline & & 0,9960 \\ \hline & 0$	2 +1,0009 +0,6251 +0,2496 0,1257 0,5008 1,0006 0,9755 0,9513 0,9281 0,9058 +1,0021 +0,6251 +0,2489	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755 0,9510 0,9468 +1,0138 +0,8210 +0,6251	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006 0,9960 0,9912 +1,0188 +1,0138 +1,0021	4 +1,0057 +1,1929 +1,3767 +1,5583 +1,7394 1,0044 1,0167 1,0257 1,0328 1,0392 +1,0138 +1,2007 +1,3791	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496 1,0708 1,0906 +1,0021 +1,3791 +1,7535	3.7 4 +0,9948 +1,5584 +2,1242 +2,6912 +3,2581 0,9960 1,0328 1,0708 1,1086 1,1449 +0,9874 +1,5524 +2,1230	b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0,9912 1,0392 1,0392 1,0906 1,1449 1.2009 +0,9718 +1,7244 +2,4905
$ \begin{bmatrix} 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0,20 \\ \hline 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0,25 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ d = 0,25 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ b \\ d = 0,25 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b/2 \\ 3 b/4 \\ b \\ d = 0,25 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ d = 0,25 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ d = 0,25 \\ 0 \\ b/4 \\ b/2 \\ c \\ 3 b/4 \\ b \\ d = 0,25 \\ 0 \\ b/4 \\ b/2 \\ c \\ 3 b/4 \\ b \\ c \\ $	$\begin{array}{c c}$	4 +0,9948 +0,4337 0,1257 0,6839 1,2418 = 1 0,9960 0,9960 0,9960 0,9960 0,9960 0,99610 0,9281 0,8972 0,8674 = 0 +0,9874 +0,9874 -0,1267 0,6789	2 +1,0009 +0,6251 +0,2496 -0,1257 -0,5008 1,0006 0,9755 0,9513 0,9281 0,9058 +1,0021 +0,6251 +0,2489 -0,1267	4 +1,0057 +0,8160 +0,6251 +0,4336 +0,2421 1,0044 0,9902 0,9755 0,9610 0,9468 +1,0138 +0,8210 +0,6251 +0,6251 +0,4281	0 +1,0078 +1,0057 +1,0009 +0,9948 +0,9884 1,0061 1,0044 1,0006 0,9960 0,9912 +1,0188 +1,0138 +1,0021 +0,9874	$\begin{array}{r} - \\ + \\ + \\ + \\ 1,0057 \\ + \\ 1,1929 \\ + \\ 1,3767 \\ + \\ 1,5583 \\ + \\ 1,7394 \\ \hline \\ 1,0044 \\ 1,0167 \\ 1,0257 \\ 1,0328 \\ 1,0392 \\ \hline \\ + \\ 1,0328 \\ 1,0392 \\ \hline \\ + \\ 1,0138 \\ + \\ 1,2007 \\ + \\ 1,3791 \\ + \\ 1,5524 \\ \hline \end{array}$	2 +1,0009 +1,3767 +1,7514 +2,1242 +2,4961 1,0006 1,0257 1,0496 1,0708 1,0906 +1,0021 +1,3791 +1,7535 +2,1230	333 4 +0,9948 +1,5584 +2,1242 +2,6912 +3,2581 0,9960 1,0328 1,0328 1,0708 1,1086 1,1449 +0,9874 +1,5524 +2,1230 +2,6966	b +0,9884 +1,7394 +2,4961 +3,2581 +4,0236 0.9912 1,0392 1,0392 1,0392 1,0906 1,1449 1,2009 +0,9718 +1,7244 +2,4905 +3,2696

$\theta = 0.25$	α =	= 1							
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	<u>b</u> 4	$\frac{b}{2}$	3b 	b
0	0,9812	0,9912	1,0012	1,0095	1,0133	1,0095	1,0012	0,9912	0,9812
b/4	0,9156	0,9382	0,9619	0,9862	1,0095	1,0287	1,0407	1,0484	1,0546
b/2	0,8569	0,8899	0,9246	0,9619	1,0012	1,0407	1,0773	1,1079	1,1354
3 b/4	0,8038	0,8456	0,8899	0,9382	0,9912	1,0484	1,1079	1,1669	1,2225
Ь	0,7539	0,8038	0,8569	0,9156	0,9812	1,0546	1,1354	1,2225	1,3133
$\theta = 0,30$	α =	= 0							
0	+0,9423	+0,9742	+1,0044	+1,0283	+1,0385	+1,0283	+1,0044	+0,9742	+0,9423
b/4	+0,2109	+0,4183	+0,6252	+0,8298	+1,0283	+1,2146	+1,3833	+1,5419	+1,6975
b/2	0,5038	0,1284	+0,2477	+0,6252	+1,0044	+1,3833	+1,7572	+2,1209	+2,4805
3 b/4	-1,2094	-0,6698	-0,1284	+0,4183	+0,9742	+1,5419	+2,1209	+2,7062	+3,2901
Ь	1,9123	1,2095	0,5038	+0,2109	+0,9423	+1,6974	+2,4805	+3,2901	+4,1177
9 = 0,30	α =	= 1							
. 0	0,9664	0,9840	1,0018	1,0173	1,0244	1,0173	1,0018	0,9840	0,9664
b/4	0,8776	0,9104	0,9453	0,9820	1,0173	1,0451	1,0591	1,0652	1,0689
b/2	0,8012	0,8453	0,8929	0,9453	1,0018	1,0591	1,1108	1,1508	1,1849
3 b/4	0,7345	0,7876	0,8453	0,9104	0,9840	1,0652	1,1508	1,2351	1,3126
b	0,6733	0,7345	0,8012	0,8776	0,9664	1,0689	1,1849	1,3126	1.4474

$\theta = 0.35$	x	= 0							
		3Ь	b	b		b	b	3b	
	b	4	2	4	0	4	2	4	·b
0	+0,8954	+0,9532	+1,0079	+1,0514	+1,0700	+1,0514	+1,0079	+0,9532	+0.8954
b/4	+0,1793	+0,4027	+0,6252	+0,8437	+1,0514	1,2369	+1,3903	+1,5250	+1,6515
b/2	0,5067	-0,1311	+0,2457	+0 6252	+1,0079	1,3903	+1,7633	+2,1176	+2.4642
3 b/4		0,6554	0,1311	+0,4027	+0,9532	+1,5250	+2,1176	+2,7215	+3,3228
h	1,8411		0,5067	+0,1793	+-0,8954	+1,6545	+2,4642	+3,3228	+4,2142
$\theta = 0.35$	$\alpha = 1$								
0	+0,9466	+0,9741	+1,0025	+1,0279	+1,0399	+1,0279	+1,0025	+0,9741	+0.9466
b/4	+0,8340	+0,8781	+0,9261	+0,9777	+1,0279	+1,0659	+1,0807	+1,0824	+1.0808
b/2	+0,7408	+0,7958	+0,8568	+0,9261	+1,0025	+1,0807	+1,1496	+1,1983	+1,2369
3 h/4	+0,6624	+ 0,7255	+0,7958	+0,8781	+0,9741	+1,0824	+1,1983	+1,3115	+1,4123
b	+0,5926	+0,6624	+0,7408	+0,8340	+0,9466	+1,0808	+1,2369	+1.4123	+1,6001
$\theta = 0,40$	α =	= 0							
0	+0,8273	+0,9225	+1,0129	+1,0851	+1,1160	+1,0851	+1,0129	+0,9225	+0,8273
b/4	+0,1337	+0,3801	+0,6250	+0,8637	+1,0851	+1,2696	+1,4005	+1,5005	+1,5916
b/2	0,5106	0,1350	+0,2426	+0,6250	+1,0129	+1,4005	+1,7725	+2,1128	+2,4400
3 b/4	1,1286	0,6344	-0,1350	+0,3801	+0,9225	+1,5005	+2,1128	+2,7438	+3,3702
b	1 _: 7381	-1,1286	0,5106	+0,1337	+0,8273	+1,5916	+2,4400	+3,3702	+4,3560

$\theta = 0,40$	x =	= 1							
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{\mathbf{b}}{4}$	0	<u>ь</u> 4	$\frac{b}{2}$	3b 	b
0	+0,9220	+0,9613	+1,0031	+1,0414	+1,0601	+1,0414	+1,0031	+0,9613	+0,9220
b/4	+0,7862	0,8420	+0,9043	+0,9733	+1,0414	+1,0914	+1,1051	+1,0994	+1,0893
b/2	+0,6778	+0,7429	+0,8171	+0,9043	+1,0031	+1,1051	+1,1931	+1,2489	1,2893
3 b/4	+0,5903	+0,6613	+0,7429	+0,8420	+0,9613	+1,0994	+1,2489	+1,3940	+1,5188
ь	+0,5148	+0,5903	+0,6778	+0,7862	+0,9220	+1,0893	1,2893	+1,5188	+1,7680
$\theta = 0.45$	$\alpha = 0$								
0	+0,7355	+0,8811	+1,0194	+1,1304	+1,1783	+1,1304	+1,0194	+0,8811	+0,7355
b/4	+0,0730	+0,3495	+0,6242	+0,8902	+1,1305	+1,3144	+1,4148	+1,4671	+1,5059
b/2	0,5152	0,1402	+0,2360	+0,6242	+1,0194	+1,4148	+1,7857	+2,1063	+2,4061
3 b/4	-1,0640		0,1402	+0,3495	+0,8811	+1,4671	+2,1063	+2,7708	+3,4340
b	1,6003	1,0640	0,5152	+0,0730	+0,7355	+1,5059	+2,4061	+3,4340	+4,5496
$\theta = 0.45$	α =	: 1							
0	0,8933	0,9458	1,0032	1,0577	1,0850	1,0577	1,0032	0,9458	0,8933
b/4	0,7355	0,8029	0,8804	0,9688	1,0577	1,1214	1,1318	1,1152	1,0938
b/2	0,6142	0,6881	0,7748	0,8804	1,0032	1,1318	1,2405	1,3013	1,3400
3 b/4	0,5202	0,5969	0,6881	0,8029	0,9458	1,1152	1,3013	1,4809	1,6291
b	0,4418	0,5202	0,6142	0,7355	0,8933	1,0938	1,3400	1,6291	1,9476

$\theta = 0,50$	α c	= 0					1		ann fa aird chaile a su
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	$\frac{b}{4}$	b 2	$\frac{3b}{4}$	Ъ
0	+0,6203	+0,8288	+1,0273	+1,1877	+1,2575	+1,1877	+1,0273	+0,8288	-0,6203
b/4	0,0021	+0,3111	+0,6223	+0,9226	+1,1877	+1,3721	+1,4336	+1,4250	-1,3968
b/2	-0,5198	0,1466	+0,2317	+0,6223	+1,0273	+1,4336	+1,8038	+ 2,0981	2,3613
3 b/4	0,9828	-0,5703	0,1466	+0,3111	+0,8283	+1,4250	+2,0981	+2,8125	+3,5140
b	1,4286	0,9828	0,5198	0,0021	+0,6203	+1,3968	+2,3613	+3,5140	+4,7981
$\theta = 0,50$	α =	= 1							
0	0,8609	0,9276	1,0028	1,0767	1,1146	1,0767	1,0028	0,9276	0,8609
b/4	0,6834	0,7617	0,8547	0,9642	1,0767	1,1557	1,1603	1.1293	1,0937
b/2	0,5516	0,6326	0,7308	0,8547	1,0028	1,1603	1,2911	1,3544	1,3876
3 b/4	0,4538	0,5340	0,6326	0,7617	0,9276	1,1293	1,3544	1,5704	1,7409
b	0,3751	0,4538	0,5516	0,6834	0,8609	1,0937	1,3876	1,7409	2,1362
$\theta = 0,55$	α =	= 0					1		1
0	+0,4848	+0,7666	+1,0360	+1,2556	+1,3521	+1,2556	+1,0360	+0,7666	+0,4848
b/4	0,0883	+0,2657	+0,6185	+0,9592	+1,2556	+1,4423	+1,4571	+1,3746	+1.2654
b/2	0,5233	0,1538	+0,2230	+0,6185	+1,0360	+1,4571	+1,8274	+2,0885	+2,3046
3 b/4	0,8871	0,5279	0,1538	+0,2657	+0,7666	+1,3746	+2,0885	+2,8585	+3,6081
· b	1,2289	0,8871	0,5233	0,0883	+0,4848	+1,2654	+2,3046	+3,6081	+5,0997

$\theta = 0,55$	α :	= 1							
	Ι.,.	3b	b	b	1	b	b	3b	Ι.
	- 5	4	2	4	0	4	2	4	Ь
0	0,8255	0,9069	1,0016	1,0981	1,1489	1,0981	1,0016	0,9069	0,8255
b/4	0,6309	0,7192	0,8275	0,9595	1,0981	1,1940	1,1902	1,1411	1,0889
b/2	0,4916	0,5777	0,6859	0,8275	1,0016	1,1902	1,3443	1,4071	1,4308
3 b/4	0,3922	0,4737	0,5777	0,7192	0,9069	1,1411	1,4071	1,6611	1,8520
b .	0,3153	0,3922	0,4916	0,6309	0,8255	1,0889	1,4308	1,8520	2,3314
$\theta = 0,60$	α =	= 0							
0	+0,3347	+0,6968	+1,0447	+1,3316	+1,4594	+1,3316	+1,0447	+0,6968	+0,3347
b/4	-0,1808	+0,2154	+0,6119	+0,9977	+1,3316	+1,5237	+1,4853	+1,3177	+1,1155
b/2	0,5241	-0,1615	+0,2117	+0,6119	+1,0447	+1,4853	-+-1,8575	+2,0778	+2,2358
3 b/4	0,7808	-0,4806	-0,1615	+0,2154	+0,6968	+1,3177	+2,0778	+2,9106	+3,7122
b	1,0112	0,7808	0,5241	0,1808	+0,3347	+1,1155	+2,2358	+3,7122	+5,4480
$\theta = 0,60$	a =	= 1							
0	0,7878	0,8839	0,9996	1,1215	1,1878	1,1215	0,9996	0,8839	0,7878
b/4	0,5792	0,6761	0,7992	0,9545	1,1215	1,2361	1,2207	1,1510	1,0792
b/2	0,4349	0,5243	0,6410	0,7992	0,9996	1,2207	1,3994	1,4582	1,4686
3 b/4	0,3362	0,4171	0,5243	0,6761	0,8839	1,1510	1,4582	1,7518	1,9607
Ь	0,2627	0,3362	0,4349	0,5792	0,7878	1,0792	1,4686	1,9607	2,5312
$\theta = 0.65$	α =	= U 2b	h	h	1	h		21	<u> </u>
	— b	3b	b	b	0	b	<u>ь</u>	3b	ь
		4	2	4		4	2	4	
0	+0,1776	+0,6223	+1,0524	+1,4121	+1,5752	+1,4121	+1,0524	+0,6223	+0,1776
b/4	-0,2731	+0,1624	+0,6014	+1,0347	+1,4121	+1,6143	+1,5180	+1,2565	+0,9520
b/2	0,5207	0,1690	+0,1974	+0,6014	+1,0524	+1,5180	+1,8946	+2,0666	+2,1547
3 b/4	0,6691	0,4303	0,1690	+0,1624	+0,6223	+1,2565	+2,0666	+2,9669	+3,8208
b	0,7883	0,6691	0,5207	0.2731	+0,1776	+0,9520	+2,1547	+3,8208	+5,8338
$\theta = 0,65$	α =	= 1							
0	0,7485	0,8588	0,9965	1,1468	1,2310	1,1468	0,9965	0,8588	0,7485
b/4	0,5289	0,6330	0,7702	0,9493	1,1468	1,2818	1,2516	1,1561	1,0648
b/2	0 3823			Advertised and					1 5005
	0:0000	0,4734	0,5966	0,7702	0,9965	1,2516	1,4559	1,5073	1,5005
3 b/4	0,2860	0,4734 0,3648	0,5966 0,4734	0,7702 0,6330	0,9965 0,8588	1,2516	1,4559 1,5073	1,5073 1,8418	2,0659
3 b/4 b	0,2860	0,4734 0,3648 0,2860	0,5966 0,4734 0,3823	0,7702 0,6330 0,5289	0,9965 0,8588 0,7485	1,2516 1,1561 1,0648	1,4559 1,5073 1,5005	1,5073 1,8418 2,0659	2,0659 2,7342
$\frac{3 \text{ b}/4}{\text{b}}$ $\frac{\theta}{\theta} = 0.70$	0,2860 0,2171 α =	0,4734 0,3648 0,2860 = 0	0,5966 0,4734 0,3823	0,7702 0,6330 0,5289	0,9965 0,8588 0,7485	1,2516 1,1561 1,0648	1,4559 1,5073 1,5005	1,5073 1,8418 2,0659	2,0659
$\frac{3 \text{ b/4}}{\text{b}}$ $\frac{\theta = 0,70}{0}$	0,2860 0,2171 α = +0,0216	0,4734 0,3648 0,2860 = 0 +0,5464	0,5966 0,4734 0,3823 +1,0580	0,7702 0,6330 0,5289 +1,4938	0,9965 0,8588 0,7485 +1,6955	1,2516 1,1561 1,0648 +1,4938	1,4559 1,5073 1,5005 +1,0580	1,5073 1,8418 2,0659 +0,5464	2,0659 2,7342 +0,0216
$\frac{3 \text{ b/4}}{6}$ $\frac{1}{\theta} = 0,70$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$	$\begin{array}{c} 0,3333 \\ 0,2860 \\ \hline 0,2171 \\ \hline \alpha = \\ +0,0216 \\ -0,3589 \end{array}$	0,4734 0,3648 0,2860 = 0 +0,5464 +0,1095	0,5966 0,4734 0,3823 +1,0580 +0,5862	0,7702 0,6330 0,5289 +1,4938 +1,0670	0,9965 0,8588 0,7485 +1,6955 +1,4938	1,2516 1,1561 1,0648 +1,4938 +1,7118	1,4559 1,5073 1,5005 +1,0580 +1,5548	1,5073 1,8418 2,0659 +0,5464 +1,1934	1,5005 2,0659 2,7342 +0,0216 +0,7809
$\frac{3 \text{ b/4}}{\text{b}}$ $\frac{\theta = 0,70}{0}$ $\frac{\theta}{0}$ $\frac{\theta}{0}$ $\frac{\theta}{0}$ $\frac{\theta}{0}$	$\begin{array}{c} 0,3523\\ 0,2860\\ \hline 0,2171\\ \hline \\ +0,0216\\ \hline \\ -0,3589\\ \hline \\ -0,5114 \end{array}$	0,4734 0,3648 0,2860 = 0 +0,5464 +0,1095 0,1756	0,5966 0,4734 0,3823 +1,0580 +0,5862 +0,1798	0,7702 0,6330 0,5289 +1,4938 +1,0670 +0,5862	0,9965 0,8588 0,7485 +1,6955 +1,4938 +1,0580	1,2516 1,1561 1,0648 +1,4938 +1,7118 +1,5548	1,4559 1,5073 1,5005 +1,0580 +1,5548 +1,9393	1,5073 1,8418 2,0659 +0,5464 +1,1934 +2,0554	1,5005 2,0659 2,7342 +0,0216 +0,7809 +2,0618
$ \frac{3 b/4}{b} $ $ \frac{\theta}{\theta} = 0,70$ $ \frac{0}{b/4} $ $ \frac{b/2}{3 b/4} $	$\begin{array}{c} 0,3333 \\ 0,2860 \\ \hline 0,2171 \\ \hline \alpha = \\ +0,0216 \\ -0,3589 \\ -0,5114 \\ -0,5575 \end{array}$	0,4734 0,3648 0,2860 = 0 +0,5464 +0,1095 -0,1756 -0,3794	0,5966 0,4734 0,3823 +1,0580 +0,5862 +0,1798 0,1756	0,7702 0,6330 0,5289 +1,4938 +1,0670 +0,5862 +0,1095	0,9965 0,8588 0,7485 +1,6955 +1,4938 +1,0580 +0,5464	$\begin{array}{r} 1,2516 \\ \hline 1,1561 \\ \hline 1,0648 \\ \hline \\ +1,4938 \\ +1,7118 \\ +1,5548 \\ +1,1934 \end{array}$	1,4559 1,5073 1,5005 +1,0580 +1,5548 +1,9393 +2,0554	1,5073 1,8418 2,0659 +0,5464 +1,1934 +2,0554 +3,0254	1,5005 2,0659 2,7342 +0,0216 +0,7809 +2,0618 +3,9282

$\theta = 0,70$	α =	= 1							and a get of the state of the s
	1	· 3b	b	Ь		ь	b	3b	
	— b	4	2	4	0	4	2	4	Ь
0.	0,7080	0,8319	0,9923	1,1737	1,2783	1,1737	0,9923	0,8319	- 0,7080
b/4	0,4808	0,5905	0,7407	0,9437	1,1737	1,3307	1,2824	1,1589	1,0461
b/2	0,3342	0,4253	0,5535	0,7407	0,9923	1,2824	1,5134	1,5539	1,5262
3 b/4	0,2417	0,3171	0,4253	0,5905	0,8319	1,1589	1,5539	1,9305	2,1668
Ъ	0,1782	0,2417	0,3342	0,4808	0,7080	1,0461	1,5262	2,1668	2,9395
$\theta = 0,75$	α =	= 0							
0	0,1260	+0,4719	+1,0606	+1,5732	+1,8138	+1,5732	+1,0606	+0,4719	:0,1260
b/4	0,4324	+0,0588	+0,5657	+1,0920	+1,5732	+1,8140	+1,5951	+1,1305	+0,6074
h./2	0,4953	0,1809	+0,1589	+0,5657	+1,0606	+1,5951	+1,9919	+2,0449	+1,9577
3 b/4	0,4508	0,3299	0,1809	+0,0588	+0,4719	+1,1305	+2,0449	+3,0841	+4,0292
b	0,3776	0,4508	0,4953	0,4324	0,1260	0,6074	+1,9577	+ 1,0292	+6,6762
$\theta = 0,75$	α =	= 3							
0	0,6670	0,8035	0,9869	1,2018	1,3294	1,2018	0,9869	0,8035	0,6670
b/4	0,4351	0,5490	0,7110	0,9377	1,2018	1,3825	1,3128	1,1584	1,0233
b/2	0,2906	0,3804	0,5118	0,7110	0,9869	1,3128	1,5717	1,5976	1,5456
3 b/4	0,2030	0,2741	0,3804	0,5490	0,8035	1,1584	1,5976	2,0174	2,2628
b	0,1452	0,2030	0,2906	0,4351	0,6670	1,0233	1,5456	2,2628	3,1462
	And the state of t			Contractory of Contractory of Contractory	Concession in the second second	and the second s	and the state of t		
[
$\theta = 0.80$	α	= 0				in the second			
$\theta = 0.80$	α - b	= 0	b	b		b		3b	
$\theta = 0.80$	α — b	$= 0$ $-\frac{3b}{4}$	<u>b</u> 2	b 4	0	b 4	<u>b</u> 2	3b 4	b
$\theta = 0.80$	α — b —0,2595	$= 0$ $-\frac{3b}{4}$ $+0,4010$	b 2 +1,0595	b 4 +1,6478	0 +1,9348	b 4 +1.6478	b 2 +1,0595	$\frac{3b}{4}$ +0,4010	b 0.2595
$\frac{\theta = 0.80}{0}$	α b 0,2595 0,4898	$= 0 \\ -\frac{3b}{4} \\ +0,4010 \\ +0,0123$	b 2 +1,0595 +0,5394	b 4 +1,6478 +1,1076	0 +1,9348 +1,6478	b 4 +1.6478 +1,9191	b 2 +1,0595 +1,6383	$ \frac{3b}{4} +0,4010 +1,0694 $	b 0.2595 +0,4362
$\frac{\theta = 0.30}{0}$	α b 0,2595 0,4898 0,4719	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$	b 2 +1,0595 +0,5394 +0,1348	$ \frac{b}{4} +1,6478 +1,1076 +0,5394 $	0 +1,9348 +1,6478 +1,0595	b 4 +1.6478 +1,9191 +1,6383	b 2 +1,0595 +1,6383 +2,0526	$ \begin{array}{r} 3b \\ \overline{4} \\ +0,4010 \\ +1,0694 \\ +2.0353 \end{array} $	b 0.2595 +0,4362 +1,8428
$\frac{\theta = 0.80}{0}$ $\frac{0}{b/4}$ $\frac{b/2}{3 b/4}$	α b 0,2595 0,4898 0,4719 0,3530	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$	b 2 +1,0595 +0,5394 +0,1348 0,1844	b 4 +1,6478 +1,1076 +0,5394 +0,0123	0 +1,9348 +1,6478 +1,0595 +0,4010	b 4 +1.6478 +1,9191 +1,6383 +1,0694	b 2 +1,0595 +1,6383 +2,0526 +2,0353	$ \frac{3b}{4} +0,4010 +1,0694 +2,0353 +3,1419 $	b 0.2595 +0.4362 +1.8428 +4.1195
$\theta = 0.80$ 0 $b/4$ $b/2$ $3 b/4$ b	α b 0,2595 0,4898 0,4719 0,3530 0, 2094	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$	$ \frac{b}{2} +1,0595 +0,5394 +0,1348 -0,1844 0,4719 $	$ \frac{b}{4} +1,6478 +1,1076 +0,5394 +0,0123 -0,4898 $	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595	$ \frac{b}{4} \\ +1,6478 \\ +1,9191 \\ +1,6383 \\ +1,0694 \\ +0,4362 $	$ \frac{b}{2} + 1,0595 + 1,6383 + 2,0526 + 2,0353 + 1,8428 $	$ \frac{3b}{4} \\ +0,4010 \\ +1,0694 \\ +2,0353 \\ +3,1419 \\ +4,1195 $	b 0.2595 +0,4362 +1.8428 +4,1195 +7,1154
$\theta = 0.80$ 0 $b/4$ $b/2$ $3 b/4$ $\theta = 0.80$	α b 0,2595 0,4898 0,4719 0,3530 0,2094 α	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$	b 2 +1,0595 +0,5394 +0,1348 -0,1844 0,4719	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595	b 4 +1.6478 +1,9191 +1,6383 +1,0694 +0,4362	b 2 +1,0595 +1,6383 +2,0526 +2,0353 +1,8428	$ \frac{3b}{4} \\ +0,4010 \\ +1,0694 \\ +2.0353 \\ +3,1419 \\ +4.1195 $	b 0.2595 +0,4362 +1.8428 +4,1195 +7,1154
$\frac{\theta = 0.80}{0}$ $\frac{\theta}{b/4}$ $\frac{b/2}{3 b/4}$ $\frac{1}{b}$ $\frac{\theta}{\theta} = 0.80$ 0	α b 0,2595 0,4898 0,4719 0,3530 -0,2094 α ± 0,6259	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841	$ \frac{b}{4} +1.6478 +1,9191 +1,6383 +1,0694 +0,4362 1,2308 $	b 2 +1,0595 +1,6383 +2,0526 +2,0353 +1,8428 0,9802	$ 3b \\ \overline{4} \\ +0,4010 \\ +1,0694 \\ +2,0353 \\ +3,1419 \\ +4.1195 \\ 0,7738 $	b 0.2595 +0.4362 +1.8428 +4.1195 +7,1154 0,6259
$\theta = 0.80$ 0 $b/4$ $b/2$ $3 b/4$ $\theta = 0.80$ 0 $b/4$	α 	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$	b 2 +1,0595 +0,5394 +0,1348 -0,1844 -0,4719 0,9802 0,6812	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308 0,9313	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308	b 4 +1.6478 +1,9191 +1,6383 +1,0694 +0,4362 1,2308 1,4371	b 2 +1,0595 +1,6383 +2,0526 +2,0353 +1,8428 0,9802 1,3426	3b 4 +0,4010 +1,0694 +2.0353 +3,1419 +4.1195 0,7738 1,1547	b 0.2595 +0,4362 +1.8428 +4.1195 +7,1154 0,6259 0,9971
$ \frac{\theta = 0.80}{0} $ $ \frac{\theta}{b/4} $ $ \frac{b/2}{3 b/4} $ $ \frac{\theta}{b} = 0.80 $ $ \frac{\theta}{b/4} $ $ \frac{b}{b/2} $ $ \frac{0}{b/4} $ $ \frac{b}{b/2} $ $ \frac{0}{b/4} $	α b 0,2595 0,4898 0,4719 0,3530 -0,2094 α 0,6259 0,3923 0,2516	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,4720	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308 0,9313 0,6812	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802	$ \frac{b}{4} +1.6478 +1,9191 +1,6383 +1,0694 +0,4362 1,2308 1,4371 1,3426 $	b 2 +1,0595 +1,6383 +2,0526 +2,0353 +1,8428 0,9802 1,3426 1,6305	$ 3b \\ \overline{4} \\ +0,4010 \\ +1,0694 \\ +2,0353 \\ +3,1419 \\ +4.1195 \\ 0,7738 \\ 1,1547 \\ 1,6381 \\ $	b 0.2595 +0.4362 +1.8428 +4.1195 +7,1154 0,6259 0,9971 1,5588
$ \frac{\theta = 0.30}{0} $ $ \frac{0}{b/4} $ $ \frac{b/2}{3 b/4} $ $ \frac{\theta = 0.30}{0} $ $ \frac{0}{b/4} $ $ \frac{b/2}{3 b/4} $ $ \frac{1}{3 b/4} $	α 	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$ $0,2358$ $-0,2358$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,6812 0,4720 0,3389	b 	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802 0,7738	$ \frac{b}{4} + 1.6478 + 1.9191 + 1.6383 + 1.0694 + 0.4362 $ 1.2308 1.4371 1.3426 1.1547	$ \frac{b}{2} \\ +1,0595 \\ +1,6383 \\ +2,0526 \\ +2,0353 \\ +1,8428 \\ 0,9802 \\ 1,3426 \\ 1,6305 \\ 1,6381 \\ 0,9802 \\ 0,9$	$ 3b \\ 4 \\ +0,4010 \\ +1,0694 \\ +2.0353 \\ +3,1419 \\ +4.1195 \\ 0,7738 \\ 1,1547 \\ 1,6381 \\ 2,1023 \\ $	b 0.2595 +0,4362 +1.8428 +4.1195 +7,1154 0,6259 0,9971 1,5588 2,3534
	α	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$ $0,2358$ $0,1695$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,4720 0,3389 0,2516	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308 0,9313 0,6812 0,5089 0,3923	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802 0,7738 0,6259	b 4 +1.6478 +1,9191 +1,6383 +1,0694 +0,4362 1,2308 1,4371 1,3426 1,1547 0,9971 0,9971 1	$ \frac{b}{2} +1,0595 +1,6383 +2,0526 +2,0353 +1,8428 0,9802 1,3426 1,6381 1,5588 $	$ 3b \\ 4 \\ +0,4010 \\ +1,0694 \\ +2.0353 \\ +3,1419 \\ +4.1195 \\ 0,7738 \\ 1,1547 \\ 1,6381 \\ 2,1023 \\ 2,3534 \\ $	b 0.2595 +0,4362 +1,8428 +4,1195 +7,1154 0,6259 0,6259 0,9971 1,5588 2,3534 3,3539
$ \begin{bmatrix} \theta = 0.30 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0.30 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0.85 $	α	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$ $0,2358$ $0,1695$ $= 0$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,4720 0,3389 0,2516	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308 0,9313 0,6812 0,5089 0,3923	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802 0,7738 0,6259	b 4 +1.6478 +1,9191 +1,6383 +1,0694 +0,4362 1,2308 1,4371 1,3426 1,1547 0,9971 0,9971	$ \frac{b}{2} + 1,0595 + 1,6383 + 2,0526 + 2,0353 + 1,8428 0,9802 1,3426 1,6305 1,6381 1,5588 $	$ 3b \\ \overline{4} \\ +0,4010 \\ +1,0694 \\ +2,0353 \\ +3,1419 \\ +4,1195 \\ 0,7738 \\ 1,1547 \\ 1,6381 \\ 2,1023 \\ 2,3534 \\ $	b 0.2595 +0,4362 +1.8428 +4,1195 +7,1154 0,6259 0,9971 1,5588 2,3534 3,3539
$ \begin{array}{r} \theta = 0.80 \\ \hline 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0.80 \\ \hline 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0.85 \\ 0 \\ \hline 0 \\ b/4 \\ b \\ \theta = 0.85 \\ 0 \\ b/4 \\ b \\ d = 0.85 \\ 0 \\ b/4 \\ b \\ d = 0.85 \\ 0 \\ b/4 \\ b \\ d = 0.85 \\ 0 \\ b/4 \\ b \\ d = 0.85 \\ 0 \\ b/4 \\ b \\ d = 0.85 \\ 0 \\ d = 0.85 \\ b \\ d = 0.85 \\ d = 0.85 \\ b \\ d = 0.85 \\$	α	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$ $0,2358$ $0,1695$ $= 0$ $+0,3351$ $0,0000$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,6812 0,4720 0,3389 0,2516 +1,0539	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308 0,9313 0,6812 0,5089 0,3923 +1,7161	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802 0,7738 0,6259 +2,0493	b 4 + 1.6478 + 1,9191 + 1,6383 + 1,0694 + 0,4362 1,2308 1,4371 1,3426 1,1547 0,9971 + 1,7161 + 0,0000	$ \frac{b}{2} + 1,0595 + 1,6383 + 2,0526 + 2,0353 + 1,8428 - 0,9802 - 1,3426 - 1,6305 - 1,6381 - 1,5588 - 1,5588 - 1,0539 + 1,0539 $	$ \frac{3b}{4} \\ +0,4010 \\ +1,0694 \\ +2.0353 \\ +3,1419 \\ +4.1195 \\ 0.7738 \\ 1,1547 \\ 1,6381 \\ 2,1023 \\ 2,3534 \\ +0,3351 \\ +0.3351 \\ +0.015 $	b 0.2595 +0.4362 +1.8428 +4.1195 +7,1154 0,6259 0,9971 1,5588 2,3534 3,3539 0,3753
$ \frac{\theta = 0.30}{0} $ $ \frac{0}{b/4} $ $ \frac{b/2}{3} $ $ \frac{3}{b/4} $ $ \frac{\theta = 0.30}{0} $ $ \frac{0}{b/4} $ $ \frac{b}{2} $ $ \frac{1}{3} $ $ \frac{0}{b/4} $ $ \frac{1}{b} $ $ \frac{\theta = 0.85}{0} $ $ \frac{0}{b/4} $ $ \frac{1}{b} $	α	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$ $0,2358$ $0,1695$ $= 0$ $+0,3351$ -0.0290 $0,1655$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,4720 0,3389 0,2516 +1,0539 +0,5074	b 4 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308 0,9313 0,6812 0,5089 0,3923 +1,7161 +1,1126	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802 0,7738 0,6259 +2,0493 +1,7161	b 4 +1.6478 +1,9191 +1,6383 +1,0694 +0,4362 1,2308 1,4371 1,3426 1,1547 0,9971 +1,7161 +2,0259 +1,6320 +1,6383 +1,0694 +0,4362	$ \frac{b}{2} + 1,0595 + 1,6383 + 2,0526 + 2,0526 + 2,0353 + 1,8428 0,9802 1,3426 1,6305 1,6381 1,5588 +1,0539 +1,6839 +1,0539 +1,6839 $	$3b \\ \hline 4 \\ +0,4010 \\ +1,0694 \\ +2,0353 \\ +3,1419 \\ +4.1195 \\ \hline 0,7738 \\ 1,1547 \\ 1,6381 \\ 2,1023 \\ 2,3534 \\ \hline +0,3351 \\ +1,0113 \\ +2,0251 \\ \hline $	b 0.2595 +0.4362 +1.8428 +4.1195 +7,1154 0,6259 0,9971 1,5588 2,3534 3,3539 0,3753 +0,2705 +1,2102
$ \begin{array}{r} \theta = 0.80 \\ \hline 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0.30 \\ 0 \\ b/4 \\ b/2 \\ 3 b/4 \\ b \\ \theta = 0.85 \\ 0 \\ b/4 \\ b/2 \\ 2 1 /4 \\ \end{array} $	α	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$ $0,2358$ $0,1695$ $= 0$ $+0,3351$ -0.0290 $-0,1858$ $0,2405$	b 2 +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,6812 0,4720 0,3389 0,2516 +1,0539 +0,5074 +0,1081 b 1950	b 4 +1,6478 +1,6478 +1,1076 +0,5394 +0,0123 0,4898 1,2308 0,9313 0,6812 0,5089 0,3923 +1,7161 +1,1126 +0,5074 0 6200	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802 0,7738 0,6259 +2,0493 +1,7161 +1,0539 +0,2551	b 4 +1.6478 +1,9191 +1,6383 +1,0694 +0,4362 1,2308 1,4371 1,3426 1,1547 0,9971 +1,7161 +2,0259 +1,6839 +1,0112	$ \frac{b}{2} \\ +1,0595 \\ +1,6383 \\ +2,0526 \\ +2,0353 \\ +1,8428 \\ 0,9802 \\ 1,3426 \\ 1,6381 \\ 1,5588 \\ +1,0539 \\ +1,6839 \\ +2,1214 \\ +2,0221 \\ $	3b - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	b 0.2595 +0.4362 +1.8428 +4.1195 +7,1154 0,6259 0,9971 1,5588 2,3534 3,3539 0,3753 +0,2705 +1,7181 +4.1052
$ \frac{\theta = 0.30}{0} $ $ \frac{0}{b/4} $ $ \frac{b/2}{3} $ $ \frac{3}{b/4} $ $ \frac{\theta = 0.30}{0} $ $ \frac{0}{b/4} $ $ \frac{b}{2} $ $ \frac{3}{b/4} $ $ \frac{1}{b} $ $ \frac{\theta = 0.85}{0} $ $ \frac{0}{b/4} $ $ \frac{b/2}{3} $ $ \frac{1}{b} $	α	$= 0$ $-\frac{3b}{4}$ $+0,4010$ $+0,0123$ $-0,1844$ $-0,2834$ $-0,3530$ $= 1$ $0,7738$ $0,5089$ $0,3389$ $0,2358$ $0,1695$ $= 0$ $+0,3351$ -0.0290 $-0,1858$ $-0,2409$ $0,2463$	$\frac{b}{2}$ +1,0595 +0,5394 +0,1348 0,1844 0,4719 0,9802 0,6812 0,4720 0,3389 0,2516 +1,0539 +0,5074 +0,1081 0,1858 0,4412	$ \frac{b}{4} \\ +1,6478 \\ +1,1076 \\ +0,5394 \\ +0,0123 \\ -0,4898 \\ 1,2308 \\ 0,9313 \\ 0,6812 \\ 0,5089 \\ 0,3923 \\ +1,7161 \\ +1,1126 \\ +0,5074 \\ -0.0290 \\ 0,520 \\ 0,520 \\ 0,520 \\ 0,520 \\ 0,520 \\ 0,520 \\ 0,520$	0 +1,9348 +1,6478 +1,0595 +0,4010 0,2595 1,3841 1,2308 0,9802 0,7738 0,6259 +2,0493 +1,7161 +1,0539 +0,3351 0,2552	$\frac{b}{4}$ +1.6478 +1.9191 +1.6383 +1.0694 +0.4362 1.2308 1.4371 1.3426 1.1547 0.9971 +1.7161 +2.0259 +1.6839 +1.0113 +0.2205	b 	3b - 4 + 0,4010 + 1,0694 + 2,0353 + 3,1419 + 4,1195 - 0,7738 - 1,1547 - 1,6381 - 2,1023 - 2,3534 - 0,3351 + 1,0113 + 2,0271 + 3,1979 + 4,1052 - 0,000 - 0,00	b 0.2595 +0.4362 +1.8428 +4.1195 +7,1154 0,6259 0,9971 1,5588 2,3534 3,3539 0,3753 +0,2705 +1,7181 +4,1963

$\theta = 0,85$	α =	= 1						1	3
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	<u>ь</u> 4	$\frac{b}{2}$	3b 4	ь
0	0,5852	0,7432	0,9723	1,2604	1,4420	1,2604	0,9723	0,7432	0,5852
b/4	0,3524	0,4703	0,6517	0,9242	1,2604	1,4941	1,3716	1,1478	0,9678
b/2	0,2170	0,3009	0,4343	0,6517	0,9723	1,3716	1,6897	1,6753	1,5660
3 b/4	0,1409	0,2019	0,3009	0,4703	0,7432	1,1478	1,6753	2,1851	2,4385
ь	0,0949	0,1409	0,2170	0,3524	0,5852	0,9678	1,5660	2,4385	3,5623
$\theta = 0,90$	α =	= 0							
0 -		+0,2749	+1,0436	+1,7771	+2,1592	+1,7771	+1,0436	+0,2749	0,4715
b/4	0,5493	0,0646	+0,4700	+1,1070	+1,7771	+2,1334	+1,7309	+0,9565	+0,1129
b/2	0,4042	0,1851	+0,0792	+0,4700	+1,0436	+1,7309	+2,1980	+2,0203	+1.5843
3 b/4	0,1919	0,2028	0,1851	0,0646	+0,2749	+0,9565	+2,0203	+3,2519	+4,2579
Ь	+0,0299	0,1919	0,4042	0,5493	0,4715	+0,1129	+1,5843	+4,2579	+8,0034
$\theta = 0.90$	α=	- 1							
0	0,5452	0,7119	0,9631	1,2903	1,5028	1,2903	0,9631	0,7119	0,5452
b/4	0,3155	0,4335	0,6224	0,9164	1,2903	1,5534	1,3996	1,1380	0,9359
b/2	0,1864	0,2663	0,3987	0,6224	0,9631	1,3996	1,7493	1,7094	1,5677
3 b/4	0,1166	0,1722	0,2663	0,4335	0,7119	1,1380	1,7094	2,2658	2,5180
Ь	0,0762	0,1166	0,1864	0,3155	0,5452	0,9359	1,5677	2,5180	3,7710

$\theta = 0.95$	α =	= 0							
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	$\frac{b}{4}$	$\frac{b}{2}$	$\frac{3b}{4}$	Ь
0	-0,5476	+0,2205	+1,0283	+1,8308	+2,2647	+1,8308	+1,0283	+0,2205	0,5476
b: 4	0,5520	0.0942	+0,4281	+1,0911	+1,8308	+2,2413	+1,7788	+0,9051	0,0352
b/2	0,3619	0,1823	+0,0490	+0,4281	+1,0283	+1,7788	+2,2821	+2.0152	+1,4425
3 b/4	0,1299	0,1694	-0,1823	0,0942	+0,2205	+0,9051	+2,0152	+3,3040	+4.3036
b	+0,1017	0,1299	0,3619	0,5520	0,5476	0,0352	+1,4425	+4,3036	+8,4478
$\theta = 0,95$	α =	= 1							
0	0,5064	0,6801	0,9526	1,3202	1,5662	1,3202	0,9526	0,6801	0,5064
b/4	0,2816	0,3985	0,5936	0,9079	1,3202	1,6148	1,4265	1,1255	0,9021
b/2	0,1596	0,2351	0,3654	0;5936	0,9526	1,4265	1,8092	1,7402	1.5641
3 b/4	0,0961	0,1463	0,2351	0,3985	0,6801	1,1255	1,7402	2,3445	2,5920
h	0,0608	0,0961	0,1596	0,2816	0,5064	0,9021	1,5641	2,5920	3,9800
$\theta = 1$	α =	= 0							
0	0,6044	+0,1715	+1,0080	+1,8775	+2,3663	+1,8775	+1,0080	+0,1715	0.6044
b/4	-0,5391	-0,1183	+0,3824	+1,0658	+1,8775	+2,3492	+1,8265	+ 0,8567	0,1726
b/2	0,3161	-0,1774	+0,0184	+0,3824	+1,0080	+1,8265	+2,3729	+2.0116	-1,2940
3 b/4	0,0796	0,1402	0,1774	0,1183	+0,1715	+0,8567	+2,0116	+3,3546	+1,3335
Ь	+0.1460	0,0796	0,3161	0,5391	-0,6044	0,1726	+1,2940	+4,3335	+8,8915

						مر بال القرار بالقرار بين القرار بين المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا المراجع المراجع			
$\theta = 1$	α =	= 1							
	— b	3b	. b	b	0	b	b	35	Ь
		4	2	4		4	2	4	
0	0,4688	0,6482	0,9410	1,3499	1,6320	1,3499	0,9410	0,6482	0,4688
b/4	0,2506	0,3656	0,5652	0,8985	1,3499	1,6781	1,4523	1,1105	0,8667
b/2	0,1363	0,2070	0,3342	0,5652	0,9410	1,4523	1,8696	1,7679	1,5557
3 b/4	0,0789	0,1239	0,2070	0,3656	0,6482	1,1105	1,7679	2,4213	2,6605
b	0,0484	0,0789	0,1363	0,2506	0,4688	0,8667	1,5557	2.6605	4,1892
$\theta = 1,1$	α =	: 0				1			
0	0,6652	+0,0880	+0,9531	+1,9518	+ 2,5621	+1,9518	+0,9531	+0.0880	0.6652
b/4	0,4770	-0,1515	+0,2842	+0,9925	+1,9518	+2,5643	+1,9180		-0.4129
b/2	0,2209	-0,1626	0,0403	-1-0,2812	+0,9531	+1,9180	+2,5717	+2.0089	+0.9824
3 b/4	0,0097	0,0936	0,1626	0,1515	+0,0880	+0,7675	+2,0089	+3,4539	+4.3474
b	+0,1709	0.9097	-0,2209	-0,4770	0,6652	0,4129	+0,9824	+4,3474	+9,7780
$\theta = 1,1$	α =	1							
<i>0</i>	0,3985	0,5848	0,9142	1,4075	1,7691	1,4075	0,9142	0,5848	0,3985
, b/4	0,1969	0,3055	0,5103	0,8771	1,4075	1,8095	1,5003	1,0740	0,7931
b/2	0,0985	0,1593	0,2783	0,5103	0,9142	1,5003	1,9915	1,8145	1,5263
3 b/4 ·	0,0527	0,0882	0,1593	0,3055	0,5848	1,0740	1,8145	2,5695	2,7813
b	0,0303	0,0527	0,0985	0,1969	0,3985	0,7931	1,5263	2,7813	4,6078

$\theta = 1.2$	1 2:	= 0		•					
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$		0	b 	<u>ь</u> 2	3b 	ь
0	0,6677	0,0199	0,8805	2,0050	2,7541	2,0050	0,8805	0,0199	0,6677
b/4	0,3856	0,1685	0,1841	0,8978	2,0050	2,7777	1,9987	0,6851	0,6038
b/2	0,1317	0,1421	0,0900	0,1841	0,8805	1,9987	2,7876	2,0114	0,6620
3b 4	0,0279	0,0594	0,1424	0,1685	0,0199	0,6851	2,0114	3,5547	4,3049
Ŀ	0,1439	0,0279	0,1317	0,3856	0,6677	0,6038	0,6620	4,3049	10,6635
$\theta = 1.2$	α =	= 1							
. 0	0,3352	0,5233	0,8834	1,4614	1,9124	1,4614	0,8834	0,5233	0,3352
b/4	0,1533	0,2534	0,4582	0,8520	1,4614	1,9466	1,5432	1,0306	0,7182
b/2	0,0706	0,1217	0,2304	0,4582	0,8834	1,5432	2,1156	1,8501	1,4827
3 b/4	0,0348	0,0621	0,1217	0,2534	0,5233	1,0306	1,8501	2,7114	2,8817
b	0,0188	0,0348	0,0706	0,1533	0,3352	0,7182	1,4827	2,8817	5,0266
$\theta = 1.3$	α =	= 0							
0	0,6266	0,0365	0,7931	2,0413	2,9483	2,0413	0,7931	0,0365	0,6266
b/4	0,2848	0,1733	0,0898	0,7914	2,0413	2,9888	2,0633	0,6061	-0,7438
b/2	0,0585	-0,1191	0,1259	0,0898	0,7931	2,0633	3,0138	2,0173	0,3448
3 b/4	0,0432	0,0348	-0,1191	0,1733	0,0365	0,6061	2,0173	3,6614	4,2119
Ь	0,0975	0,0432	0,0585	0,2848	0,6266	-0,7438	0,3148	4,2119	11,5520

$\theta = 1,3$	α			1948 - Britis & Ball, Josef British		and an annual for any order to be a set of the set of t	0.0		
	1 .	3b	b	b b		Ь	b	3b	
	b	4	2	4	0	4	2	4	Ь
0	0,2793	0,4648	0,8491	1,5105	2,0601	1,5105	0,8491	0,4618	0,2793
b, '‡	0,1182	0,2086	0,4093	0,8233	1,5101	2,0883	1.5808	0.9823	0,6446
b, 2	0,0501	0,0923	0,1898	0,4093	0,8491	1,5808	2,2421	1.8761	1.4282
3 b 4	0,0228	0,0434	0,0923	0,2086	0,4648	0,9823	1,8761	2,8483	2.9631
b	0,0115	0,0228	0,0501	0,1182	0,2793	0.6116	· 1,1282	2.9631	5,4455
6 = 1.4	x =	= 0							
0	0,5558	- 0,0833	0,6947	2,0637	3,1479	2,0637	0,6947	0,0833	0,5558
b 4	0,1892	0,1691	0,0067	0,6806	2,0637	3,1979	2,1085	0.5281	
h-3	0.0058	0,0948	0,1461	0,0067	0,6947	2,1085	3,2447	2.0248	0,0415
3 h. 4	0,0445	0,0173	0,0948	-0,1691	0,0833	0,5281	2,0248	3,7775	4.0743
þ	0,0525	0,0445	0,0058	-0,1892	-0,5558	-0,8337	0,0415	4,0743	12,4402
$\theta = 1.5$) z -	= 1							
0	0,2309	0,4101	0,8126	1,5538	2,2108	1,5538	0,8126	0,4101	0,2309
b. 1	0,0905	0,1706	0,3642	0,7913	1,5538	2,2334	1.6136	0,9305	0.5739
b, 2	0,0299	0.0698	0,1572	0,3642	0,8126	1,6136	2,3728	1.8945	1,3600
3 h. 4	0.0148	0,0301	0,0698	0,1706	0,4101	0,9305	1,8935	2,9810	3,0266
Ь	0,0070	0,0148	0,0299	0,0905	0,2309	0,5739	1,5600	3,0266	5,8643
r									
$\theta = 1,$	α	= 0							
	'— b	- 3b.	$-\frac{b}{2}$	$\left -\frac{\mathbf{b}}{4} \right $	0	b 	$\frac{b}{2}$	3b 4	ь

1	′—ь	50			0	-	<u> </u>	50	ь
	_	4	2	4		4	2	4	-
0	0,4676	0,1217	0,5893	2,0738	3,3538	2,0738	0,5893	-0,121	0,4676
b /4	0,1076	0,1583	0,0620	0,5700	2,0738	3,4055	2,1332	0,4499	0,8768
b/::	0,0265	-0,0711	-0,1516	0,0620	0,5893	2,1332	3,4761	2,0315	0,2397
3 b./	0,0381	-0,0053	0,0711	0,1583	0,1217	0,4499	2,0315	3,9049	3,8974
Ь	0,0189	0,0381	0,0265	-0,1076	-0,4676	-0,8768	0,2397	3,8974	13,3286
$\theta = 1.5$	α	= 1							
0	0,1895	0,3597	0,7729	1,5909	2,3637	1,5909	0,7729	0,3597	0,1895
b /4	0,0688	0,1388	0,3215	0,7566	1,5909	2,3815	1,6400	0,8769	0,5074
b/:	0,0248	0,0523	0,1270	0,3215	0,7729	1,6400	2,5032	1,9028	1,2971
3 b/-	0,0095	0,0208	0,0523	0,1388	0,3597	0,8769	1,9028	3,1105	3,0738
b	0,0042	0,0095	0,0248	0,0688	0,1895	0,5074	1,2971	3.0738	6,2832
$\theta = 1.6$	α =	= 0							
0	-0,3723	-0,1521	0,4812	2,0727	3,5656	2,0727	0,4812	-0,1521	0,3723
b/4	0,0437	0,1429	0,1152	+0,4624	2,0727	3,6130	2,1381	0.3712	0.8790
b/2	0,0416	0,0495	0,1451	0,1152	0,4812	2,1381	3,7055	2,0350	0,4927
3 b/4	0,0286	0,0025	0,0495	0,1429	0,1521	0,3712	2,0350	4,0450	3,6864
Ь	0,0013	0,0286	0,0416	-0,0437	0,3723	0,8790	0,4927	3,6864	14,2173

= 1,6	α =	= 1							
	— b	3b	b	b	0	<u>b</u>	b 	3b	ь
		4	2	4		4	2	4	
0	0,1545	0,3139	0,7323	1,6215	2,5180	1,6215	0,7323	0,3139	0,1545
b/4	0,0519	0,1123	0,2829	0,7197	1,6215	2,5318	1,6616	0,8225	0,4458
b/2	0,0173	0,0390	0,1032	0,2829	0,7323	1,6616	2,6378	1,9056	1,2251
3 b/4	0,0061	0,0142	0,0390	0,1123	0,3139	0,8225	1,9056	3,2374	3,1060
Ь	0,0025	0,0061	0,0173	0,0519	0,1545	0,4458	1,2251	3,1060	6,7021
9 = 1,7	α =	= 0							
0	-0,2784	0,1745	0,3742	2,0605	3,7817	2,0605	0,3742	-0,1745	0,2784
b/4	0,0020	0,1245	0,1533	0,3594	2,0605	3,8212	2,1251	0,2923	0,8472
b/2	0,0444	0.0310	-0,1301	0,1533	0,3742	2,1251	3,9312	2,0329	0,7136
3 b/4	0,0188	0,0069	0,0310	0,1245	0,1745	0,2923	2,0329	4,1981	3,4463
Ь	0,0104	0,0188	0,0444	0,0020	0,2784	0,8472	0,7136	3,4463	15,1058
= 1.7	α=	= 1							
0	0,1253	0,2726	0,6909	1,6456	2,6733	1,6456	0,6909	0,2726	0,1253
b/4	0,0390	0,0904	0,2478	0,6813	1,6456	2,6838	1,6779	0,7683	0,3895
b/2	0,0120	0,0290	0,0836	0,2478	0,6909	1,6779	2,7753	1,9023	1,1512
3 b/4	0,0039	0,0097	0,0290	0,0904	0,2726	0,7683	1,9023	3,3627	3,1244
· b	0,0015	0,0039	0,0120	0,0390	0,1253	0,3895	1,1512	3,1244	7,1209

$\theta = 1.8$	x =	= 0							
	, — ь	$\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 	b 2	3b 	Ь
0	-0,1920	0,1889	0,2714	2,0376	4,0009	2,0376	0,2714	0,1889	0.1920
b/4	0.0310	-0.1044	-0,1775	0,2623	2,0376	4,0311	2,0963	0.2149	0,7891
b/2	0,0394	-0.0161	0,1101	0,1775	0,2714	2,0963	4,1527	2,0233	-0.9001
3 b/4	0,0104	0,0088	0,0161	0,1044	0,1889	0,2140	2,0233	4,3641	3.1820
b	0,0122	0,0104	0,0394	0,0310	0,1920	0,7891	0,9001	3,1820	15,9944
$\theta = 1.8$	x =	= 1							
0	0.1010	0.2358	0,6492	1,6633	2,8293	1,6633	0,6492	0.2358	0,1010
b/4	0,0291	0.0725	0,2161	0,6420	1,6633	2,8372	1,6889	0.7150	0.3386
b/2	0,0083	0,0215	0,0674	0,2161	0,6492	1,6889	2,9154	1.8938	1,0767
3_b/4	0,0025	0,0066	0,0215	0,0725	0,2358	0,7150	1,8938	3,4868	3,1303
b	0,0009	0,0025	0,0083	0,0291	0,1010	0,3386	1,0767	3,1303	7,5398
$\theta = 1.9$	x =	: 0							
0	-0,1170	0,1957	0,1754	2,0042	4,2218	2,0042	0,1754	-0,1957	-0.1170
b/4	0,0465	0.0839	-0,1896	0,1716	2,0042	4,2432	2,0540	0,1377	-0,7121
b/2	0,0308	-0,0050	0,0882	0,1896	0,1754	2,0540	4,3701	2.0047	
3 b/4	0,0042	0,0090	0,0050	0,0839	0,1957	6,1377	2,0047	4,5422	2,8980
b	0,0101	0,0042	0,0308	0,0465	0,1170	0,7121	1,0512	2,8980	16,8829

$\theta = 1.9$	α =	= 1							
	b	$-\frac{3b}{4}$	$\frac{b}{2}$		0	b 	b 	3b 	Ь
0	0,0811	0,2032	0,6077	1,6748	2,9857	1.6748	0,6077	0,2032	0.0811
b/4	0,0217	0,0579	0,1877	0,6024	1,6748	2,9916	1,6950	0,6632	0,2931
b/2	0,0057	0,0159	0,0541	0,1877	0,6077	1,6950	3,0578	1,8806	1,0034
3 b/4	0,0016	0,0045	0,0159	0,0579	0,2032	0,6632	1,8806	3,6103	3,1250
b b	0,0006	0,0016	0,0057	0,0217	0,0811	0,2931	1,0034	3,1250	7,9587
$\theta = 2$	α =	= 0			·				
0	-0,0557	0,1954	0,0878	1,9607	4,4436	1,9607	0,0878	0,1954	-0,0557
b/4	0,0515	0,0641	0,1 917	0,0884	1,9607	4,4575	2,0003	0,0647	0,6232
b/2	0,0215	0,0027	0,0665	-0,1917	0,0878	2,0003	4,5839	1,9758	-1,1674
3 b/4	0,0003	0,0080	0,0027	0,0641	0,1954	0,9647	1,9758	4,7313	2,5986
b	0,0067	0,0003	0,0215	0,0515	0,0557	0,6232	-1,1674	2,5986	17,7715
$\theta = 2$	α =	= 1							
0	0,0648	0,1745	0,5668	1,6803	3,1423	1,6803	0,5668	0,1745	0,0648
b/4	0,0160	0,0461	0,1624	0,5629	1,6803	3,1466	1,6962	0,6133	0,2526
b/2	0,0039	0,0117	0,0433	0,1624	0,5668	1,6962	3,2023	1,8631	0,9307
3 b/4	0,0010	0,0030	0,0117	0,0461	0,1745	0,6133	1,8631	3,7334	3,1093
Ь	0,0003	0.0010	0.0039	0,0160	0,0648	0,2526	0,9307	3,1093	8,3776

Annexe 2 : la méthode de guyon-massonnent

Tables donnant les valeurs du paramètre $10^4 \mu$ intervenant dans l'expression du moment fléchissant transversal, pour θ variant de 0,10 en 0,10 de 0 à 1 et de 0,20 en 0,20 de 1 à 2

et pour $\alpha = 0$ et $\alpha = 1$.

$$\mu_{\alpha} = \mu_0 + (\mu_1 - \mu_0) \sqrt{\alpha}$$

Les valeurs de μ_0 ont été calculées à l'aide de la formule suivante établie dans un de nos mémoires antérieurs (¹) (réf. [2], p. 768).

$$\mu_0 = \frac{1}{2 \lambda b (\sinh^2 2 \lambda b - \sin^2 2 \lambda b)} (2 \sinh \lambda (b - y) \sin \lambda (b - y) \times \\ \times \sinh 2 \lambda b \cos \lambda (b - e) \cosh \lambda (b + e) - \sin 2 \lambda b \cosh \lambda (b - e) \cos \lambda (b + c)] +$$

 $+ [\operatorname{ch} \lambda (b-y) \sin \lambda (b-y) - \operatorname{sh} \lambda (b-y) \cos \lambda (b-y)] \times \{ \operatorname{sh} 2\lambda b [\sin \lambda (b-e) \operatorname{ch} \lambda (b+e) - \cos \lambda (b-e) \operatorname{sh} \lambda (b+e)] \\ + \sin 2\lambda b [\operatorname{sh} \lambda (b-e) \cos \lambda (b+e) - \operatorname{ch} \lambda (b-e) \sin \lambda (b+e)] \}).$

Dans cette formule, la notation λ a la même signification qu'à l'annexe I, à savoir :

$$\lambda = \frac{\pi}{l\sqrt{2}} \sqrt[4]{\frac{\rho_{\rm P}}{\rho_{\rm E}}} \cdot$$

Les valeurs de μ_1 ont été calculées à l'aide de la formule suivante déduite d'une formule de Guyon (réf. [3], p. 714 — formule (48).

$$\mu_{1} = \frac{-1}{4 \epsilon^{5h^{2}} \sigma} \left\{ \frac{\left[(\sigma \operatorname{ch} \sigma - 3 \operatorname{sh} \sigma) \operatorname{ch} \theta\beta - \operatorname{sh} \sigma\theta\beta \operatorname{sh} \theta\beta \right] \left[(\sigma \operatorname{ch} \sigma - \operatorname{sh} \sigma) \operatorname{ch} \theta\psi - \operatorname{sh} \sigma\theta\psi \operatorname{sh} \theta\psi \right]}{3 \operatorname{sh} \sigma \operatorname{ch} \sigma - \sigma} \right. \\ \left. + \frac{(\sigma \operatorname{ch} \sigma \operatorname{sh} \theta\beta - \operatorname{sh} \sigma \theta\beta \operatorname{ch} \theta\beta) \left[(2 \operatorname{sh} \sigma + \sigma \operatorname{ch} \sigma) \operatorname{sh} \theta\psi - \operatorname{sh} \sigma\theta\psi \operatorname{ch} \theta\psi \right]}{3 \operatorname{sh} \sigma \operatorname{ch} \sigma + \sigma} \\ \left. + \sigma \operatorname{ch} \sigma \operatorname{ch} \theta\chi - \operatorname{sh} \sigma \operatorname{ch} \theta\chi - \theta\chi \operatorname{sh} \sigma \operatorname{sh} \theta\chi \right\}.$$

Dans cette formule, les lettres β , ψ , σ , χ , représentent les quantités suivantes :

$$\beta = \frac{\pi y}{b}; \quad \psi = \frac{\pi e}{b}; \quad \sigma = \pi 0; \quad \chi = \pi - |\beta - \psi|.$$

(1) Le mémoire en question ne donne pas µo, mais le moment par unité de longueur dans les entretoise, qui vaut

$$\mu_0$$
 p b sin $\frac{\pi^x}{l}$.

De plus, nous devons signaler que la formule (63) du mémoire cité contient plusieurs erreurs, qui ont été corrigées dans les formules ci-dessus donnant μ_0 .

$\theta = 0,10$	ho	. 104			*				
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	$\frac{b}{4}$	<u>ь</u> 2	$\frac{3b}{4}$	ь
0	2498,97	1249,55	0,02	1249,57	2499,46	1249,57	0,02	1249,55	2498.97
b/4	1757,08	966,50	175,85	614,85	1405,78	2196,90	488,16	1220,43	2928,88
b. 2	936,71	546,42	156,11	234,24	624,71	1015,30	1406,00	:02,86	2811,78
3 b/4	273,60	166,18	58,75	48,68	156,16	263.67	371,22	478,81	1913,46
ь	0	· 0	0	0	0	0	0	0	0
$\theta = 0,10$	μ1	. 104							
. 0	2362,43	1171,09	19,13	1161,26	2384,75	1161,26	19,13	1171.09	2362,43
b/4	2157,68	1318,66	469,24	401,15	1303,37	2248,70	743,60	725,25	21:6.30
b/2	1724,14	1172,64	614,29	42,08	551,07	. 1172,61	1830,26	27,16	1753,89
3 b/4	1006,72	733,96	457,94	147,97	118,39	425,83	751,11	1098,58	1032,85
Ъ	0	0	0	0	0	0	0	0	0

Le trait horizontal placé au-dessus de certaines valeurs signifie que celles-ci sont à affecter du signe - (moins).

$\theta = 0,20$	μ.	104							
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	<u>ь</u> 	b 2	3b 	Ь
0	2486,03	1244,01	1,36	1243,36	2491,39	1243,36	1,36	1244,01	2486,03
b/4	1746,08	961,62	176,69	6 09,75	1398,79	2191,16	486,79	1215,41	2916,92
b/2	930,42	543,69	156,71	231,12	620,41	1011,69	1405,10	699,81	2804,13
3 b/4	271,13	164,95	58,69	47,82	154,77	262,35	370,63	479,53	<u>1911</u> ,22
Ь	0	0	0	0	0	0	0	0	0
$\theta = 0,20$	μ1.	104							
.0	1868.48	987,31	61,13	956,23	2116,23	956,23	61,13	987,31	1868,48
b/4	1726,92	1109,45	460,83	252,12	1066,17	2022,84	649,53	601,57	1793,15
b/2	1372,93	984,93	577,26	128,78	384,04	988,01	1714,20	78,49	1479,72
3 b/4	802,68	617,93	423,76	209,98	34,91	323,94	672,46	1098,43	897,28
Ь	0	0	0	0	0	. 0	0	0	0

$\theta = 0.30$	μ.	. 104								
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	<u>ь</u> . <u>-</u> 4	<u>b</u> 2	3b 	ь	
0	2430.54	1220,32	6,68	1216,98	2457,24	1216,98	6,68	1220.32	2430,54	
b/4	1699,59	941,16	180,27	588,04	1369,22	2166,98	480,78	1194,73	2866,38	
b/2	902,29	531,03	158,44	218,23	602,21	996,04	1400,41	686,99	2771,04	
3 b. 4	262,19	160,87	59,16	43,76	148,90	257,13	368,85	483,68	1899,85	
Ь	0	0	0	0	0	0	0	0	0	
$\theta = 0.30$	μ1	. 104	·						-	
0	1401,34	787,36	102,49	734,11	1820,56	734,11	102,49	787,36	1401,34	
Ь.4	1265,04	871,88	432,67	106,17	810,66	1764,98	532,20	480,50	1389,52	
b/2	1008,36	771,37	511,06	194,52	219,10	782,01	1562,42	103,93	1210,92	
3 b/4	580,08	480,69	369,20	230,77	46,46	208,53	567,03	1072,77	762,33	
ь	. 0	0	0	0	0	0	0	0	0	

$\theta = 0.40$	μ., .	104					-		
	— b	$\left -\frac{3b}{4} \right $		- <mark>b</mark> 4	0	b 	b 2	3b 4	ь
0	2291,58	1160,92	19,98	1150,91	2371,62	1150,91	19,98	1160,92	2291,58
b/4	1583,43	889,88	189,03	533,81	1295,13	2106,14	465,59	1142,73	2739,37
b/2	832,21	499,36	162,60	186,18	556,65	956,62	1388,43	654,74	2687,59
3 b, 4	239,86	150,62	60,23	33,72	134,24	243,97	364,25	494,92	1871,14
b	. 0	0	0	0	0	0	. 0	0	0
$\theta = 0,40$	μ1	104							
0	1016,48	616,52	131,42	546,21	1563,32	546,21	131,42	616,52	1016,48
b /4	884,18	660,13	386,57	1,68	596,47	1530,71	416,12	390,74	1059,01
b/2	678,83	568,19	431,71	233,31	79,65	584,96	1397,86	106,19	967,14
3 b/4	393,82	353,78	303,53	227,65	102,61	107,15	455,09	1021,07	658,96
Ь	D	. 0	0	0	0	0	0	0	0

$\theta = 0,50$	μ.	104							
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 	b 2	3b 	· b
0	2040,37	1053,37	43,93	1031,30	2216,49	1031,30	43,93	1053,37	2040,37
b/4	1374,64	797,16	204,05	436,52	1161,01	1995,20	437,29	1048,52	2503,21
b/2	706,83	442,18	169,29	129,15	474,37	884,38	1365,60	596,33	2534,62
3 b/4	200,06	132,12	61,80	15,99	107,81	219,77	355,34	512,67	1818,14
Ь	0	0	. 0	0	0	0	0	0	0
$\theta = 0,50$	μ ₁ .	104							
. 0	730,46	482,42	147,00	400,82	1355,96	400,82	147,00	482,42	730,46
b/4	603,93	489,95	332,01	61,65	432,79	1334,49	313,28	329,20	810.67
b/2	448,19	407,32	347,45	234,38	9,13	428,22	1244,07	82,57	795,12
3 b/4	256,51	249,96	237,73	206,78	132,44	28,59	349,92	954,51	584,70
ь	0	0	0	0	0	0	0	0	0
$\theta = 0,60$	<u>م</u> ا	. 104			6	10 1.91 1.01 100			
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	<u>b</u> 4	b . 2	$\frac{3b}{4}$	b
0	1689,63	902,76	76,96	863,93	1998,94	863,93	76,96	902,76	1689,63
b/4	1086,58	667,68	222,69	302,76	973,34	1837,59	395,50	916,41	2181,16
b/2	535,55	362,57	176,30	52,08	359,80	780,81	1330,43	514,59	2315,19
3 b/4	146,09	106,43	63,05	7,62	71,19	184,92	341,30	538,58	1741,12
b	0	0	0	0	0	0	0	0	0
$\theta = 0,60$	μ1.	104							
0	525,16	379,21	152,18	290,92	1190,61	290,92	152,18	379,21	525,16
b/4	408,08	359,73	277,57	95,74	310,88	1173,99	227,79	285,27	626,21
, b/2	289,55	285,32	270,58	216,67	63,35	305,67	1107,50	51,26	664,29
3 b/4	162,23	171,19	179,34	177,42	142,43	27,35	258,39	883,95	529,16
ь.	0	0	0	0	0	0	0	0	0

$\theta = 0.70$	μ.	. 104		,					
	— b	- 3b - 4	$\left -\frac{\mathbf{b}}{2} \right $	$-\frac{b}{4}$	0	b 	$\frac{b}{2}$	3b 	ь
0	1296,31	732,85	113,13	675,33	1752,80	675,33	113,13	732,85	1296,31
b/4	770,61	522,39	238,74	157,08	761,92	1655,12	343,88	767,02	1805,37
b/2	351,17	273,76	179,38	29,01	231,94	659,10	1284,03	422,52	2056,73
3 b/4	88,84	77,91	62,49	31,72	30,73	143,63	322,16	567,35	1648,27
ь	0	. 0	0	0	0	0	0	0	0
$\theta = 0,70$	μ1	. 104							
0	378,84	299,42	150,19	207,76	1057,16	207,76	150,19	299,42	378,84
b/4	274,47	262,62	228,19	111,50	220,05	1042,95	159,49	250,89	488,45
b/2	184,44	196,68	206,11	190,75	93,41	212,21	990,50	20,84	561,01
3 b/4	100,41	114,49	131,60	146,41	139,55	64,11	182,70	816,07	484,37
ь	0	0	0	U	0	0	0	0	0
(
θ = 0,80	μ.	. 104							
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	<u>ь</u> 4	b 	$\frac{3b}{4}$	Ь
0	926,82	571,43	145 54	496,56	1517,67	496,56	145,54	571,43	926,82
b/4	485,19	385,68	245,90	27,23	561,62	1474,16	287,63	624,50	1437,49
b/2	190,26	191,09	174,58	96,49	. 112,98	535,32	1228,84	335,40	1793,25
3 b/4	40,26	51,62	58,87	50,49	6,18	101,29	298,48	593,82	1550,08
ь	0	0	9	0	0	0	0	0	0
$\theta = 0,80$	μ μ1	104							
0	274,28	237,14	143,64	144,37	947,62	144,37	143,64	237,14	274,28
b/4	184,33	191,20	185,76	116,35	151,86	935,22	106,26	221,67	382.95
b /2	116,42	134,10	154,75	162,98	107,53	141,94	891,97	4,97	476,68
3 b/4	61,13	75,19	94,64	117,59	129,21	85,93	122,20	753,86	445,87
ь	0	0	0	0	0	0	C	0	0

$\theta = 0,90$	μ.	. 104							
	— b	$-\frac{3b}{4}$	b 2	$-\frac{b}{4}$	0	b 4	b 2	3b 	b
0	622,31	435,63	169,83	346,79	1317,88	346,79	169,83	435,63	622,31
b/4	264,93	272,56	241,08	70,41	393,92	1311,73	230,84	503,78	1113,99
b/2	73,57	123,99	160,53	140,45	16,72	420,82	1167,25	262,75	1547,25
3 b/4	6,89	30,64	51,90	60,77	34,93	61,71	270,98	614,66	1453,58
ь	0	0	0	0	0	0	0	0	0
$\theta = 0,90$	μ1.	104							
0	199,16	188,10	134,39	95,74	856,34	95,74	134,39	188,10	199,16
b/4	123,81	139,05	150,39	114,83	100,28	845,74	65,38	195,66	301,29
b/2	72,96	90,79	115,15	136,64	111,53	89,53	809,39	25,24	406,28
3 b/4	36,76	48,71	67,09	92,61	115,24	96,79	74,96	698,13	411,46
Ь	0	0	0	0	0	0	0	0	0
$\theta = 1$	μ _ο .	104							
	b		- <mark>b</mark> 2	$\frac{b}{4}$	0	$\frac{b}{4}$	$\frac{b}{2}$	3b 	ь
0	392,86	329,52	184,79	230,59	1159,04	230,59	184,79	329,52	392,86
b/4	115,59	186,55	225,03	133,25	274,70	1176,29	176,00	408,50	846,34
b/2	2,94	74,59	138,97	160,16	53,35	319,93	1101,38	207,09	1326,88
3 b/4	11,13	15,65	42,36	62,61	54,31	26,67	240,52	628,86	1361,41
ь	0	0	0	0	0	0 [°]	0	0	0
$\theta = 1$	μ ₁ .	104							
0	144,91	149,27	123,77	58,35	779,35	58,35	123,77	149,27	144,91
b/4	83,21	101,07	121,37	109,67	61,08	770,61	34,28	172.14	237,51
b./2	45,69	61,19	85,23	113,13	109,33	50,61	739,94	40,37	346,79
3 b/4	21,89	31,23	47,06	71,89	100,07	100,02	38,69	648,68	380,11
								the second se	and the second state of th

$\theta = 1,2$	ļ μ _o	. 104	M						
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 	b 2	3b 	b
0	119,89	189,82	190,43	80,52	940,01	80,52	190,43	189,82	119,89
b/4	21,28	80,72	172,41	179,66	96,73	960,60	78,61	280,24	461,36
b/2	40,82	18,87	85,65	148,11	127,72	160,11	965,72	138,63	960,81
3 b/4	16,61	0,18	21,32	49,41	69,23	27,67	175,03	639,28	1190,69
ь	0	0	0	0	0	0,	0	0	0
$\theta = 1,2$	μ,	104							
0	77,01	93,94	101,57	7,65	657,52	7,65	101,57	93,94	77,01
b/4	37,70	53,49	78,68	94,33	8,61	652,14	6,97	131,72	148,00
b/2	17,77	27,62	46,34	75,76	95,86	0,50	630,70	58,59	253,10
3 b/4	7,62	12,56	22,67	41,99	71,50	93,28	9,28	545,45	324,74
Ь	0	0	0	U	0	0	0	U	0
1									
$\theta = 1,4$	µ₀.	104	4	9	2				
$\theta = 1,4$	μ _ο .	$\frac{10^4}{-\frac{3b}{4}}$	- <mark>b</mark> 2		0 -	b 	b 	3b 	ь
$\theta = 1,4$	μ _ο . 	104 - 3b - 4 - 110,66	- b 2 173,96		0 800,87	b 4 0,48	b 2 173,96	3b 	b 4,52
$\theta = 1,4$	μ _o . b 	104 - 3b - 4 - 110,66 - 29,94	<u>b</u> 2 173,96 115,04		0 800,87 7,22	b 4 0,48 811,41	b 2 173,96 18,40	3b 4 110,66 203,83	b 4,52 225,72
$\theta = 1,4$ 0 $h/4$ $b/2$	μ _o . b 	104 - 3b - 4 - 110,66 - 29,94 - 1,79	- b - 2 - 173,96 - 115,04 - 40,02		0 800,87 7,22 	b 4 0,48 811,41 50,30	b 2 173,96 18,40 838,62	3b 4 110,66 203,83 107,84	ь 4,52 225,72 678,90
$\theta = 1,4$ 0 $h/4$ $b/2$ $3 b/4$	μ _o . b 	104 <u>3b</u> <u>4</u> <u>110,66</u> <u>29,94</u> <u>1,79</u> <u>3,82</u>	<u>b</u> <u>2</u> <u>173,96</u> <u>115,04</u> <u>40,02</u> <u>5,60</u>		0 800,87 7,22 	b 4 0,48 811,41 50,30 60,73	b 2 173,96 18,40 838,62 110,98	3b 4 110,66 203,83 107,84 631,45	ь <u>4,52</u> <u>225,72</u> <u>678,90</u> <u>1036,55</u>
$\theta = 1,4$ 0 $b/4$ $b/2$ $3 b/4$ b	μ _o . 	104 <u>3b</u> <u>4</u> <u>110,66</u> <u>29,94</u> <u>1,79</u> <u>3,82</u> 0	<u>b</u> 2 <u>173,96</u> <u>115,04</u> <u>40,02</u> <u>5,60</u> 0		0 800,87 7,22 	b 4 0,48 811,41 50,30 60,73 0	b 2 173,96 18,40 838,62 110,98 0	3b 4 110,66 203,83 107,84 631,45 0	ь <u>4,52</u> <u>225,72</u> <u>678,90</u> <u>1036,55</u> 0
$\theta = 1,4$ 0 $b/4$ $b/2$ $3 b/4$ b $\theta = 1,4$	μ ₀ . 	104 <u>3b</u> <u>4</u> <u>110,66</u> <u>29,94</u> <u>1,79</u> <u>3,82</u> 0 104	- b 2 173,96 115,04 40,02 5,60 0		0 800,87 7,22 	b 4 0,48 811,41 50,30 60,73 0	b 2 173,96 18,40 838,62 110,98 0	3b 4 110,66 203,83 107,84 631,45 0	ь <u>4,52</u> <u>225,72</u> <u>678,90</u> <u>1036,55</u> <u>0</u>
$\theta = 1,4$ 0 $b/4$ $b/2$ $3 b/4$ $\theta = 1,4$ 0	μ_0 . 	104 <u>3b</u> <u>4</u> <u>110,66</u> <u>29,94</u> <u>1,79</u> <u>3,82</u> 0 104 <u>59,01</u>	<u>b</u> 2 173,96 115,04 40,02 5,60 0		0 800,87 7,22 145,02 63,40 0 566,53	b 4 0,48 811,41 50,30 60,73 0 21,50	b 2 173,96 18,40 838,62 110,98 0 80,99	3b 4 110,66 203,83 107,84 631,45 0	b 4,52 225,72 678,90 1036,55 0 41,03
$\theta = 1,4$ 0 $b/4$ $b/2$ $3 b/4$ $\theta = 1,4$ 0 $b/4$	μ_0 . - b - 4,52 44,25 28,73 7,92 0 μ_1 . $\overline{41,03}$ $\overline{17,12}$	104 <u>3b</u> <u>4</u> <u>110,66</u> <u>29,94</u> <u>1,79</u> <u>3,82</u> <u>0</u> 104 <u>59,01</u> <u>28,35</u>	- b 2 173,96 115,04 40,02 5,60 0 80,99 50,82		0 800,87 7,22 	b 4 0,48 811,41 50,30 60,73 0 21,50 563,55	b 2 173,96 18,40 838,62 110,98 0 80,99 29,97	3b 4 110,66 203,83 107,84 631,45 0 59,01 99,51	b 4,52 225,72 678,90 1036,55 0 41,03 92,34
$\theta = 1,4$ 0 $h/4$ $b/2$ $3 b/4$ $\theta = 1,4$ 0 $b/4$ $b/2$	μ_0 . 	104 <u>3b</u> <u>4</u> <u>110,66</u> <u>29,94</u> <u>1,79</u> <u>3,82</u> <u>0</u> 104 <u>59,01</u> <u>28,35</u> <u>12,49</u>	b 2 173,96 115,04 40,02 5,60 0 80,99 50,82 25,19	b	0 800,87 7,22 	b 4 0,48 811,41 50,30 60,73 0 21,50 563,55 26,68	b 2 173,96 18,40 838,62 110,98 0 80,99 29,97 549,01	3b 4 110,66 203,83 107,84 631,45 0 59,01 99,51 66,05	b <u>4,52</u> <u>225,72</u> <u>678,90</u> <u>1036,55</u> <u>0</u> <u>41,03</u> <u>92,34</u> <u>183,42</u>
$\theta = 1,4$ 0 $b/4$ $b/2$ $3 b/4$ $\theta = 1,4$ 0 $b/4$ $b/2$ $3 b/4$	μ_0 - b b b b b b b b b b c -	$ \begin{array}{c} 10^{4} \\ \hline \hline \hline \hline \hline \hline $	b - 2 173,96 115,04 40,02 5,60 0 55,60 0 80,99 50,82 25,19 9,83 9,83		0 800,87 7,22 	b 4 0,48 811,41 50,30 60,73 0 21,50 563,55 26,68 79,01	b 2 173,96 18,40 838,62 110,98 0 80,99 29,97 549,01 34,32	3b 4 110,66 203,83 107,84 631,45 0 59,01 99,51 66,05 500,77	b 4,52 225,72 678,90 1036,55 0 41,03 92,34 183,42 277,52

$\theta = 1,6$	μ.	104							
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 	b 	$\frac{3b}{4}$	b
0	32,21	53,21	146,43	45,44	701,75	45,44	146,43	63,21	32,21
b/4	31,85	6,88	92,77	142,43	41,83	704,20	44,68	153,63	89,66
b/2	11,33	6,52	12,04	66,37	133,51	19,12	729,89	96,98	465,72
3 b/4	1,37	3,21	1,86	12,28	48,15	74,93	54,88	611,31	898,05
ь	0	0	0	0	0	0	0	0	0
9 = 1,6	μ ₁ .	104				-			
0	21,88	37,00	63,27	37,30	496,74	37,30	63,27	37,00	21,88
b/4	7,79	15,05	32,68	61,54	37,19	495,22	41,97	74,54	57,64
b/2	2,68	5,61	13,58	32,33	62,39	40,41	485,82	67,14	135,01
3 b/4	0,88	1,94	5,02	13,28	32,34	63,61	47,92	448,41	237,18
ь	0	0	0	0	0	0	0	0	0

$\theta = 1,8$	μ _ο .	μ, 104											
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 	b 2	3b 	b				
0	34,64	33,60	115,98	70,78	624,86	70,78	115,98	33,60	34,64				
b/4	16,17	2,45	36,18	112,56	69,12	624,20	73,39	116,88	17,73				
b/2	1,92	5,43	0,79	35,91	110,44	59,23	641,39	95,20	308,07				
3 b/4	0,78	1,62	3,46	2,19	31,21	75,17	9,66	583,39	774,27				
Ь	0	0	0	0	0	0	0	0	0				
$\theta = 1,8$	μ ₁ .	104											
0	11,67	23,18	48,79	41,84	441,89	44,84	48,79	23,18	11,67				
b/4	3,55	8,00	20,95	47,99	44,80	441,15	47,34	55,53	35,98				
b/2	1,04	2,53	7,35	20,83	48,45	46,64	435,21	64,81	98,61				
3 b/4	0,29	0,76	2,33	7,31	21,06	49,70	52,81	405,74	202,70				
ь	0	0	0	0	0	Ģ	0	0	0				

$\theta = 2$	μ.	104				<u>,</u>			_
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	<u>h</u> <u>4</u>	b 2	3b 4	ь
0	25,51	15,28	87,57	84,35	562,74	84,35	87,57	15,28	25,51
b/4	5,80	5,06	16,07	85,47	83,60	561,77	87,83	88,17	15.23
b/2	1,03	3,14	4,67	16,23	85,32	80,03	570,84	96,23	194,23
3 b/4	0,75	0,47	2,57	23,20	16,92	66,85	24,21	551,10	664,16
ь	0	0	0	0	0	0	0	0	0
$\theta = 2$	μ ₁ .	104							
0	6,23	14,52	37,25	47,34	397,82	47,34	37,25	14,52	6,23
b./4	1,62	4,26	13,39	36,88	47,33	397,47	48,65	41.23	22.46
b/2	0,41	1,15	3,97	13,35	37,11	48,33	393,81	60,67	72,02
3 b/4	0,10	0,30	1,08	3,99	13,55	38,12	53,19	370.41	173.23
b	0	0	0	0	0	0	0	0	n

[(

1

Annexe 3 : la méthode de guyon-massonnent

Tables donnant les valeurs du paramètre τ_1 intervenant dans l'expression des moments de torsion dans le pont pour θ variant de 0,10 en 0,10 de 0 à 1, et de 0,20 en 0,20 de 1 à 2.

$$\tau_a = au_1 \ \sqrt{lpha}$$

Les valeurs ci-après de τ_1 ont été calculées à l'aide de la formule suivante, déduite d'une formule de Guyon (réf. [3], p. 712 — formule (45).

$$\tau_{1} = \frac{-1}{4\sigma \operatorname{sh}^{2} \sigma} \left\{ \frac{\left[(\sigma \operatorname{ch} \sigma - 2 \operatorname{sh} \sigma) \operatorname{sh} \theta\beta - \operatorname{sh} \sigma\theta\beta \operatorname{ch} \theta\beta \right] \left[(\sigma \operatorname{ch} \sigma - \operatorname{sh} \sigma) \operatorname{ch} \sigma\theta\psi - \operatorname{sh} \sigma\theta\psi + \theta\psi \right]}{3 \operatorname{sh} \sigma \operatorname{ch} \sigma - \sigma} \\ \frac{\left[\operatorname{sh} \sigma + \sigma \operatorname{ch} \sigma \right] \operatorname{ch} \theta\beta - \operatorname{sh} \sigma\theta\beta \operatorname{sh} \theta\beta \right] \left[(2 \operatorname{sh} \sigma + \sigma \operatorname{ch} \sigma) \operatorname{sh} \theta\psi - \operatorname{sh} \sigma\theta\psi + \theta\psi \right]}{3 \operatorname{sh} \sigma \operatorname{ch} \sigma + \sigma} \\ \pm \left[\sigma \operatorname{ch} \sigma \operatorname{sh} \theta\chi - \theta\chi \operatorname{sh} \sigma \operatorname{ch} \theta\chi \right]}$$

Dans cette formule, les lettres 3, ψ , σ et χ représentent les mêmes quantités qu'à l'annexe II, à savoir :

$$\beta = \frac{\pi y}{b}; \quad \psi = \frac{\pi e}{b}; \quad \sigma = \pi \theta; \quad \chi = \pi - |\beta - \psi|.$$

Le double signe correspond respectivement aux cas $\psi > \beta$ (+) ou $\psi < \beta$ (-).

Les valeurs de $\tau_1/4$, $\tau_1/2$, $\tau_3/4$ et τ_1 correspondant à $\theta = 0.66874$ figurant dans la table du paragraphe 5 ont été calculées par les formules développées dans notre mémoire antérieur sur les ponts à poutres multiples résistant à la torsion (réf. [4]).

Le bon accord des valeurs de τ_1 ainsi obtenues avec celles obtenues par interpolation linéaire entre les tables de τ_1 relatives à $\theta = 0.6$ et $\theta = 0.7$ respectivement, est une vérification très utile des calculs.

1	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	$\frac{b}{4}$	<u>ь</u> 2	$\frac{3b}{4}$	Ь
0	0,782269	0,592665	0,400704	0,203974	0	0,203974	0,400704	0,592665	0,782269
b/4	0,764554	0,582700	0,398588	0,209898	0,014256	0,190809	0,398065	0,600302	0,800060
b/2	0,749137	0,572731	0,394137	0,211105	0,021325	0,177600	0,388180	0,603244	0,815674
3 b/4	0,738237	0,565060	0,389733	0,210052	0,023748	0,171537	0,378267	0,599039	0,826808
Ь	0,734093	0,561986	0,387739	0,209163	0,024007	0,170072	0,375528	0,594942	0,831070
= 0,20	τ ₁	1							
0	0,372301	0,290201	0,203919	0,108883	0	0,108883	0,203919	0,290201	0,372301
b/4	0,343778	0,273403	0,199429	0,117934	0,024483	0,085993	0,199724	0,303048	0,401362
b/2	0,319149	0,256636	0,190917	0,118494	0,035423	0,062859	0,181658	0,307562	0,427400
3 b/4	0,301776	0,243722	0,182705	0,115450	0,038289	0,053011	0,163421	0,298800	0,446442
ь	0,295152	0 ,2 38535	0,179012	0,113419	0,038157	0,050903	0,158596	0,290667	0,453939

Le trait horizontal placé au-dessus de certaines valeurs signifie que celles-ci sont à affecter du signe - (moins).

$\theta = 0,30$	τ1								
	b	$-\frac{3b}{4}$		$-\frac{b}{4}$	0	<u>ь</u> 4	<u>ь</u> 2	3b 	ь
0	0,221892	0,185578	0,137782	0,0 78575	0	0,078575	0,137782	0,185578	0,221892
b/4	0,196531	0,165635	0,130944	0,087776	0,030094	0,050029	0,133392	0,201000	0,261410
b/2	0,169659	0,145975	0,119347	0,086094	0,041422	0,021003	0,109623	0,206014	0,292273
3 b/4	0,150827	0,130919	0,108522	0,080500	0,042754	0,010152	0,085476	0,192948	0,315890
Ь	0,143628	0,124846	0,103712	0,077264	0,041620	0,008365	0,079566	0,181199	0,325626
$\theta = 0,40$	τ ₁								
0	0,152268	0,130349	0,103208	0,063414	0	0,963414	0,103208	0,130349	0,152268
b/4	0,127292	0,111344	0,09373 8	0,069252	0,030365	0,033995	0,100354	0,145295	0,180065
b/2	0,108795	• 0,093504	0,079543	0,062682	0,037330	0,001420	0,074104	0,148857	0,206087
3 b/4	0,100457	6,081183	0,066350	0,051724	0,032455	0,002257	0,047654	0,130007	0,223595
Ь	0,106909	0,078908	0,059301	0,042902	0,024576	0,001616	0,043428	0.111701	0,222116

$\theta = 0,50$	71								
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 4	<u>b</u> 2	3b 	b
0	0,105172	0,095299	0,080866	0,053775	0	0,053775	0,080866	0,095299	0,105172
b//4	0,078864	0,075848	0,070776	0,059255	0,033153	0,021666	0,078756	0,111855	0,135642
b/2	0,058113	0,057982	0,056985	0,052687	0,040231	0,010927	0,050161	0,117808	0,167610
3 b/4	0,044124	0,044821	0,045108	0,043441	0,036564	0,018536	0,020961	0,099406	0,195574
Ь	0,038803	0,039547	0,039970	0,038766	0,033142	0,017981	0,015623	0,082777	0,208688
$\theta = 0,60$	τ ₁								
0	0,073775	0,070988	0,064756	0,046750	0	0,045750	0,064756	0,070988	0,073775
b/4	0,051771	0,053285	0,053937	0,049965	0,032755	0,014855	0,064342	0,087279	0,101037
b/2	0,035326	0,037925	0,040638	0,041838	0,037132	0,017318	0,035546	0,094126	0,131860
3 b/4	0,024610	0,027001	0,029732	0,032019	0,031268	0,022248	0,006194	0,074765	0,160987
Ь	0,020572	0,022670	0,025095	0,027251	0,027134	0,020318	0,002042	0,056864	0,175646

$\theta = 0,70$	τ1								
	- b	$\left -\frac{3b}{4} \right $	$-\frac{b}{2}$	$-\frac{b}{4}$	0	$\frac{b}{4}$	$\frac{b}{2}$	$\frac{3b}{4}$	Ь
0	0,052152	0,053401	0,052503	0,041256	0	0,041256	0,052503	0,053401	0,052152
b/4	0,034256	0,037735	0,041434	0,042347	0,031764	0,010221	0,053794	0,069142	0,076027
b/2	0,021699	0,025033	0,029197	0,033303	0,033616	0,020857	0,024125	0,076991	0,105220
3 b/4	0,013858	0,016390	0,019701	0,023583	0,026291	0,023085	0,003037	0,057444	0,135063
Ь	0,010946	0,013017	0,015745	0,019029	0,021601	0,019921	0,005740	0,038855	0,151179
9 = 0,80	τ1								
0	0,037038	0,040419	0,042939	0,036801	0	0,036801	0,042939	0,040419	0,037038
b/4	0,022754	0,026827	0,031975	0,035989	0,030416	0,007011	0,045799	0,055398	0,057632
b/2	0,013405	0,016600	0,021068	0,026538	0,027048	0,022623	0,018637	0,064191	0,081897
3 b/4	0,007854	0,009998	0,013106	0,017370	0,021744	0,022382	0,008770	0,044957	0,115042
b	0,005835	0,007475	0,009870	0,013223	0,016877	0,018221	0,009950	0,026118	0,132501
$\theta = 0.90$	τ ₁								
-------------------------	----------------	-----------------	----------	----------	----------	-----------------	----------	----------	----------
	b	$-\frac{3b}{4}$			0	<u>b</u> . 4	b 2	3b 	ь
0	0,028673	0,030736	0,035366	0,033105	0	0,033105	0,035366	0,030736	0,028673
b/4	0,015144	0,019112	0,024757	0,030640	0,028860	0,004781	0,039589	0,044793	0,043947
b/2	0,008306	0,011034	0,015246	0,021156	0,026611	0,023249	0,013695	0,054374	0,069109
3 b/4	0,004472	0,006119	0,008748	0,012799	0,017819	0,020894	0,012252	0,035752	0,099184
ь	0,003112	0,004290	0,006183	0,009154	0,013012	0,016007	0,011960	0,016983	0,117851
$\theta = 1$ τ_1									
0	0,018831	0,023428	0,029265	0,029937	0	0,029937	0,029265	0,023428	0,018831
b/4	0,010076	0,013616	0,019192	0,026077	0,027152	0,003234	0,034612	0,036439	0,033626
b/2	0,005146	0,007333	0,011038	0,016836	0,023362	0,023101	0,010120	0,046595	0,056576
3 b/4	0,002551	0,003750	0,005849	0,009421	0,014484	0,019024	0,014242	0,028783	0,086217
b	0,001658	0,002457	0,003867	0,006309	0,009917	0,013680	0,012605	0,010345	0,105925

	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	$\frac{b}{4}$	$\frac{b}{2}$	$\frac{3b}{4}$	Ь
0	0,009700	0,013818	0,020451	0,024967	0	0,024967	0,020451	0,013818	0,009700
b/4	0,004494	0,006973	0,011676	0,019020	0,023803	0,001460	0,027411	0,024674	0.02001
h 2	0 001990	0.003261	0,005840	0,010694	Q,017800	0,021669	0,005641	0,035455	0,038726
3 b/4	0,000840	0,001424	0,002648	0,005132	0,009485	0,015203	0,015716	0,019384	0,06692
Ь	0.000472	0,000809	0,001520	0,002990	0,005667	0,009569	0,011885	0,001980	0,08841
= 1.4	1 71	1							
0	0,005028	0,008233	0,014503	0,021058	0	0,021058	0,014503	0,008233	0,00502
h 4	0,002008	0,003586	0,007507	0,013875	0,020590	0,900645	0,022332	0,016994	0,01203
b/2	0,001054	0,001598	0,003160	0,006782	0,013336	0,019447	0,003250	0.027911	0.02717
3 h. 4	0,000278	0.000544	0,001249	0,002790	0,006127	0,011756	0,015444	0,013485	0,05299
Ь	0,000135	0,000266	0,000883	0,001405	0,003171	0,006435	0,010365	0,002513	0.07578

$\theta = 1.6$	τ ₁								
	b	$-\frac{3b}{4}$	$-\frac{b}{2}$		0	$\frac{b}{4}$	<u>b</u> 2	3b 	ь
0	0,002622	0,004953	0,010401	0,017883	0	0,017883	0,010401	0,004953	0,002622
b/4	0.000900	0.001855	0,004410	0,010129	0,017700	0,000281	0,018536	0 <u>,</u> 011864	0,007292
Ъ/2	0,000297	0,000647	0,001647	0,004256	0,009894	0,017118	0,001809	0,022211	0,018872
3 b/4	0,000092	0,000209	0,000552	0,001514	0,003926	0,008933	0,014325	0,009613	0,042591
b .	0.000038	0,000087	0,000235	0,000656	0,001753	0,004235	0,008129	0,004844	0,066315
$\theta = 1.8$ z_1									
0	0,001373	0,003002	0,007513	0,015238	0	0,015238	0,007513	0,003002	0,001373
b/4	0,000405	0,000965	0,002731	0,007397	0,015169	0,000121	0,015571	0,008366	0,004446
b, 2	0,000115	0,000290	0,000877	0,002672	0,007295	0,014869	0,001031	0.018046	0,013348
3 b/4	0,000031	0,000080	0,000253	0,000820	0,002501	0,006717	0,012959	0,006973	0,034608
ь	0,000011	0,000029	0,000092	0,000305	0,000961	0,002749	0,006373	0,005932	0,058946
$\theta = 2$	1 •				the second second				

0 = 2	τ1	71									
	— b	$-\frac{3b}{4}$	$-\frac{b}{2}$	$-\frac{b}{4}$	0	b 	b 2	3b 	Ь		
0.	0,000721	0,001831	0,005451	0,013006	0	0,013006	0,005451	0,001831	0,000721		
b/4	0,000182	0,000504	0,001696	0,005402	0,012980	0,000052	0,013173	0,005945	0,003308		
b/2	0,000044	0,000130	0,000467	0,001674	0,005359	0,012827	0,000588	0,014832	0,009495		
3 b/4	0,000010	0,000030	0,000116	0,000443	0,001586	0,005014	0,011527	0,005121	0,028351		
b	0,000004	0,000010	0,000036	0,000141	0,000523	0,001769	0,004910	0,006295	0,053052		