République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur Université de Guelma

Faculté des Mathématiques et de l'Informatique et des Sciences de la Matière Département des Sciences de la Matière

> Mémoire de fin d'études Deuxième Année Master

Spécialité : Physique de la Matière Condensée

Présenté par : Guerziz Meriem

EFFET DE LA DEFORMATION SUR LES PROPRIETES DES SEMI-CONDUCTEURS

Sous la Direction de : Dr. Kalarasse Fateh

Juin 2016

_____ DÉDICACE

Je dédier ce travai

A ma mère et mon père A ma soeur et mes frères A toute ma famille A tous ceus qui me sont chers

REMERCIEMENTS

Avant tout, El hamdou li "Allah" qui m'a aidé à réaliser ce travail.

Je remercie ALLAH qui est toujours présent avec moi dans le meilleur et dans le pire.

Je tiens à exprimer, mes respectueux remerciements à mon promoteur Mr. Kalarasse F. qui m'a inspiré le sujet de ce modeste mémoire, orienté et conseillé tout au long de ce travail.

Je remercie également les membres de Jury pour avoir accepter d'examiner ce travail.

Je souhaite également présenter mes remerciements à tous mes enseignants de département de physique.

Je tiens à remercier très sincèrement tous les membres de laboratoire de physique de l'université 8 Mai 1945 surtout Pr.Bennacer,Dr. Kalarasse Lamia et la doctorante Guechi Nassima.

RÉSUMÉ

Dans ce travail nous avons étudié les propriétés structurales et électronique des composés GaN, AlN, BN et InN dans le cadre de la théorie de la fonctionnelle de la densité (DFT). Nous avons utilisé la méthode des ondes planes augmentées et linéarisées avec un potentiel total (FP-LAPW). Les résultats obtenus pour les propriétés structurales sont en bon accord avec les valeurs expérimentales. Les bandes d'énergie montrent que les composés BN, AlN et GaN sont des semi-conducteurs avec un large gap d'énergie, tandis que InN à un petit gap. Nous avons calculé les potentiels de déformation pour la déformation tétragonale. Ces résultats sont en bon accord avec les autres calculs.

ABSTRACT

In this work we have studied the structural and electronic properties of the GaN, AIN, BN and InN compounds within the Density Functional Theory (DFT). We have used the plane wave method increased and linearized (FP-LAPW) basis set. The results for the structural properties are in good agreement with experimental values. The energy bands show that BN, AlN and GaN are semiconductors with a wide–gap, while InN has a narrow gap. We have also calculated the deformation potentiels for the tetragonal distortion. Our results are in good agreement with other calculations.

TABLE DES MATIÈRES

- 1		Introduction	1
2	2	Méthodes de calcul	
		2.1 Introduction	3
	-	2.2. Équation de Schrädig	3
	-	23 Les approvimention 1	3
	-	2.3 Les approximations de bases	4
		2.3.1 L'approximation de Born- Oppenheimer	4
		2.3.3 L'approximation de Hartree	5
	2	2.6.6 El approximation de Hartree - Fock	6
		2.41 L'approche de <i>Theme R</i>	6
		2.4.2 Théorème de Helender K	7
		2.4.3 Les équations de K la gu	7
		2.4.4 Le potential d'él	9
		L'approximation IDA	10
		L'approximation de multiple (())	10
		2.4.5 La résolution des égustion de Kalonier de Kalonier de La résolution des égustions de Kalonier de	11
	2.	5 La méthode des ondes planes aure d'étaille des condes planes aure d'étaille des ondes planes aure d'étaille des condes planes aure	11
		2.5.1 Approximation muffin tin	12
		2.5.2 Méthode des ondes planes	12
		2.5.3 La méthode des ondes planes	13
		2.5.4 La méthode LAPW	.3
		La linéarisation	.4
			.5
3	R	ésultats et discussion	0
	3.1	l Détail de calcul	6
	3.2	2 Test de convergence en fonction du nombre de points spécieur	6
		3.2.1 Test de convergence du nombre de points speciaux 1	6
	3.3	B Propriétés structurales	b
	3.4	Propriétés électroniques	8
		3.4.1 structure de bandes d'énergie	1
		3.4.2 Le potentiel de déformation	L
)

 \square

TABLE DES MATIÈRES

Π

-

-

		Résultats des potentiels de déformation	25
4	conclusion		29

_____ TABLE DES FIGURES

2.1	Cycle des calculs SCF pour la résolution des équations de Kohn-Sham	12
2.2	Potentiel "Muffin-Tin"	14
3.1	Convergence de l'énergie totale en fonction du nombre de points	17
3.2	Structure zinc blende.	18
3.3	Variation de l'énergie totale en fonction du volume de la maille primitive.	20
3.4	La première zone de brillouin d'un CFC	21
3.5	La structure des bandes de l'énergie pour les composés BN et AlN .	23
3.6	La structure des bandes de l'énergie pour les composés GaN et InN .	24
3.7	Bandes d'énergie des composés BN et AlN sous l'effet d'une déformation	
	tétragonale.	26
3.8	Bandes d'énergie des composés GaN et InN sous l'effet d'une déformation	n
	tétragonale	27

CHAPITRE 1

INTRODUCTION

Les semi conducteurs forment la base de l'industrie électronique. Ils ont un impact majeur sur le développement de la société technologique moderne. En outre, la modification des propriétés électroniques des matériaux présente un enjeu très important pour améliorer les performances des dispositifs électroniques.

La compréhension des propriétés électroniques et structurales des semi-conducteurs repose sur des interprétations cohérentes d'expériences variées. La cohérence de ces interprétations se fonde en dernier ressort sur une représentation correcte de la structure électronique de ces matériaux, dont le cadre général est fourni par la théorie des bandes [1].

Le minimum d'énergie de la bande de conduction CBM et le maximum d'énergie de la bande de valence VBM des semi-conducteurs de type zinc-blende peut être modifiée par l'intermédiaire de la pression hydrostatique, la tension biaxiale induite par épitaxie, ou alliage. Ces changements d'énergie sont des paramètres importants nécessaires à la conception quantique de nanostructures électroniques. Le taux de changement des énergies CBM et VBM avec la pression hydrostatique est connu pour de nombreux semi-conducteurs binaires. Cependant, des valeurs fiables des potentiels de déformation biaxiale sont moins fréquentes.

Les techniques de calcul de la structure électroniques mises au point au cours des dernières décennies sont nombreuses, et en particulier, les méthodes ab-initio qui sont devenues aujourd'hui un outil de base pour le calcul des propriétés structurales et électroniques des systèmes les plus complexes.

Parmi ces méthodes ab-initio, la méthode des ondes planes augmentées(FP-LAPW)est l'une des plus précises, actuellement, pour le calcul de la structure électronique des solides dans le cadre de la théorie de la fonctionnelle de la densité (DFT) [2], Le terme d'échange et de corrélation est évalué par l'approximation de la densité locale (LDA).

Ce mémoire porte sur l'étude des propriétés structurales et électroniques des

semi conducteurs de groupe III-V tels que GaN, AlN et BN et InN.

Le reste de ce mémoire comprend deux chapitres : Le deuxième chapitre est destiné au fondement de la théorie de la fonctionnelle de la densité(DFT) et la méthode des ondes planes augmentées et linéarisées.

Le troisième chapitre résume nos résultats, leurs interprétations ainsi qu'une comparaison avec certains travaux expérimentaux disponibles en littérature. Cette partie est composée de quatre sections. La première est un test de convergence sur le nombre de points. La deuxième est destinée à l'étude des propriétés structurales des composés GaN, AlN, BN et InN. La troisième section est consacrée pour les calculs des propriétés électroniques de ces matériaux. La quatrième est consacrée pour la détermination des potentiels de déformation.

Finalement, on terminera par une conclusion générale.

CHAPITRE 2.

MÉTHODES DE CALCUL

2.1 Introduction

Le principal problème qu'on retrouve dans le calcul de la structure de bandes d'un cristal est l'absence d'une expression analytique du potentiel cristallin, ce qui rend difficile la recherche d'une solution générale à l'équation de Schrödinger qui décrit l'état stationnaire de toutes les particules en interaction, constituant un cristal :les électrons et les noyaux atomiques, la résolution d'une telle équation dans sa forme générale ne peut être menée à terme sans l'introduction d'un certains nombre d'approximation.

2.2 Équation de Schrödinger

les solides sont constitués par une association de particules élémentaires : les ions(noyaux) lourd de charge positive et les électrons légers de charge négative. Le problème général est d'essayer de calculer toutes les propriétés de ces particules (ions+électrons) à partir des lois de la mécanique quantique, à l'aide de l'équation de Schrödinger [3,4] :

$$H\psi = E\psi \tag{2.1}$$

où E: est l'énergie totale du système et $\psi(\overrightarrow{r_i}, \overrightarrow{R_k})$ est la fonction d'onde, et H est l'Hamiltonien de ce système. Pour un système ayant N noyaux et n électrons. L'hamiltonien s'écrit :

$$H = -\frac{\hbar^2}{2m} \sum_{i} \Delta_i^2 + \frac{1}{2} \sum_{i}^n \sum_{i \neq j}^n \frac{e^2}{4\pi\varepsilon_0 r_{ij}} - \sum_{i}^n \sum_{k}^N \frac{Z_k e^2}{4\pi\varepsilon_0 r_{ik}} - \frac{\hbar^2}{2M} \sum_{k}^N \Delta_i^2 + \frac{1}{2} \sum_{k}^N \sum_{l}^N \frac{e^2 Z_k Z_l}{4\pi\varepsilon_0 R_{kl}}$$
(2.2)

où :

m : est La masse de l'électron.

 \mathbf{r}_{ij} : est la distance entre l'électron i, et l'électron j.

 $\mathbf{M}_{\mathbf{k}}$: est la masse du noyau.

 \mathbf{R}_{kl} : est la distance entre les centres des noyaux k et l.

 $\mathbf{Z}_{\mathbf{k}}, \mathbf{Z}_{\mathbf{l}}$: les nombres atomiques des noyaux k et l.

D'une façon condensée. H s'écrit.

$$H = T_e + T_N + V_{ee} + V_{NN} + V_{eN}$$
(2.3)

Où :

$$\begin{split} \mathbf{T_e} &: \mathrm{est} \ l'énergie\ \mathrm{cinétique}\ \mathrm{des}\ \acute{\mathrm{electrons}}.\\ \mathbf{T_N} &: \mathrm{est} \ l'énergie\ \mathrm{cinétique}\ \mathrm{des}\ \mathrm{noyaux}.\\ \mathbf{V_{ee}} &: \mathrm{est} \ l'énergie\ \mathrm{d'interaction}\ \acute{\mathrm{electron}}.\\ \mathbf{V_{eN}} &: \mathrm{est}\ l'énergie\ \mathrm{d'interaction}\ \mathrm{noyau}.\\ \mathbf{V_{NN}} &: \mathrm{est}\ l'énergie\ \mathrm{d'interaction}\ \mathrm{noyau}.\\ \mathrm{Par}\ \mathrm{la}\ \mathrm{suite}.\\ \mathrm{Les}\ \mathrm{unit\acute{e}}\ \mathrm{seront}\ \mathrm{les}\ \mathrm{unit\acute{e}}\ \mathrm{stomiques},\ \mathrm{et}\ \mathrm{l'unit\acute{e}}\ \mathrm{de}\ \mathrm{longueur}\ \mathrm{est}\ \mathrm{le}\ \mathrm{Bohr}: \end{split}$$

 $a_0=0.5292$ Å. $m_e=1$. e=1. $\hbar=1$ et $4\pi\varepsilon_0=1$

Il est évident qu'on ne peut pas obtenir une solution générale à cette équation. Cela revient non seulement à des difficultés de calcul d'ordre technique, mais également à une impossibilité de faire, car la mécanique quantique ne dispose aucune méthode pour résoudre des problèmes concernant un grand nombre de particules. Pour trouver une solution de l'équation de Schrödinger d'un système de particules se trouvant en interaction, on doit faire des approximations.

2.3 Les approximations de bases

2.3.1 L'approximation de Born- Oppenheimer

L'approche de Born- Oppenheimer [5] est fondée sur le fait que les électrons dont la masse est beaucoup plus faible que celles des noyaux déplacent plus rapidement que ces dernières. En d'autres termes, ils s'adaptent presque instantanément aux positions des noyaux, leur comportement n'est pas pratiquement modifié par le faible déplacement. Donc, nous pouvons éliminer le terme T_N , et nous considérons que V_{NN} est constante. Ce qui permet de mettre :

$$H_e = T_e + V_{Ne} + V_{ee} \tag{2.4}$$

alors

$$H_e = -\frac{1}{2} \sum_{i}^{n} \Delta_i^2 - \sum_{i}^{n} \sum_{k}^{N} \frac{Z_k}{r_{ik}} + \frac{1}{2} \sum_{i}^{n} \sum_{i \neq j}^{n} \frac{1}{r_{ij}}$$
(2.5)

4

On a donc réduit la complexité du problème. Mais la solution de l'équation (2.5) reste toujours difficile. Il faut faire d'autres approximations pour résoudre ce problème.

2.3.2 L'approximation de Hartree

L'approximation de Hartree [6] consiste à remplacer l'interaction de chaque électron de l'atome avec tous les autres par l'interaction avec un champ moyen crée par les noyaux et la totalité des autres électrons, c'est-à-dire que l'électron se déplace indépendamment dans un champ moyen crée par les autres électrons et noyaux.

Cela permet de remplacer le potentiel du type $\frac{1}{r_{ij}}$ qui dépend des coordonnées de deux électrons par une expression définissant l'interaction électronique qui dépend des coordonnées de chaque électron isolé. Alors on peut écrire [7] :

$$H = \sum_{i} H_i \tag{2.6}$$

avec

$$H_i = \frac{-\hbar^2}{2m} \Delta_i + u_i(r_i) + \mu_i(r_i)$$
(2.7)

On a

$$u_i(r_i) = -\sum_k \frac{Z_k}{|\overrightarrow{r_i} - \overrightarrow{R_k^0}|}$$
(2.8)

est l'énergie potentielle de l'électron (i) dans le champ de tous les noyaux (K). $\overrightarrow{R_k^0}$ est la position fixe des noyaux (K).

$$V_i(r_i) = \frac{1}{2} \sum_j \frac{1}{|\overrightarrow{r_i} - \overrightarrow{r_j}|}$$
(2.9)

est le potentiel de Hartree. l'équation(2.7)s'écrit :

$$H_i = \frac{-\hbar^2}{2m} \Delta_i + V(r) \tag{2.10}$$

Avec $V(\mathbf{r})$ est le potentiel moyen du cristal possédant la périodicité du réseau, il contient le potentiel périodique dus aux ions et les effets dus aux interactions de l'électron avec tous les autres électrons [7].

La fonction d'onde du système électronique a la forme d'un produit de fonction d'onde de chacun des électrons, et l'énergie de ce système électronique est égale à la somme des énergies de tous les électrons [8].

$$\psi\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, \dots, \overrightarrow{r_{n}}\right) = \psi_{1}\left(\overrightarrow{r_{1}}\right)\psi_{2}\left(\overrightarrow{r_{2}}\right), \dots \psi_{n}\left(\overrightarrow{r_{n}}\right).$$
(2.11)

$$E = E_e = E_1 + E_2 + E_3 + \dots + E_n \tag{2.12}$$

Le champ de Hartree permet de ramener l'équation multiple à un système d'équation d'un seul électron.

$$\left[\frac{-\hbar^2}{2m}\Delta_i + U_i(r_i) + V_i(r_i)\right]\psi_i(r) = \psi_i(r)$$
(2.13)

La méthode de Hartree ne fournit en général pas de bons résultats car elle ne tient pas compte du principe de Pauli. Ce défaut est corrigé dans la méthode de Hartree-Fock.

2.3.3 L'approximation de Hartree - Fock

Le système électronique dans l'approximation de Hartree est incomplètement décrit. Tant que l'électron est un fermion donc la fonction d'onde totale doit être antisymétrique par rapport à l'échange de deux particules quelconques qui est négligé par Hartree. Pour corriger ce défaut, Fock, a proposé d'appliquer le principe d'exclusion de Pauli, donc la fonction d'onde électronique s'écrit sous la forme d'un déterminant de Slater [7–9].

$$\psi(\overrightarrow{r_i}) = \frac{1}{\sqrt{N!}} \begin{pmatrix} \psi_1(\overrightarrow{r_1}) & \psi_1(\overrightarrow{r_2}) & \cdots & \psi_1(\overrightarrow{r_N}) \\ \psi_2(\overrightarrow{r_1}) & \psi_2(\overrightarrow{r_2}) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \psi_N(\overrightarrow{r_1}) & \cdots & \cdots & \psi_N(\overrightarrow{r_N}) \end{pmatrix}$$
(2.14)

où $\frac{1}{\sqrt{N!}}$ est la constante de normalisation.

Le système d'équations (2.13) se résout de manière auto-cohérente dans la mesure où le potentiel dépend des fonctions d'onde. Cette approximation conduit à des bons résultats notamment en physique moléculaire, mais dans le cas des systèmes étendus comme les solides reste difficile [7].

2.4 La théorie de la fonctionnelle de la densité (DFT)

L'idée fondamentale de cette théorie est de prendre la densité électronique de l'état fondamental $\rho(r)$ comme la variable principale, et d'écrire toute autre grandeur en fonction d'elle. Cette théorie est basée sur un principe variationnel, qui impose à l'énergie totale d'être une seule et unique fonctionnelle de la densité, et que cette énergie est minimale pour la densité de l'état fondamental. La meilleure procédure de réalisation de la DFT est celle de Kohn-Sham [10], ils ont traité le problème à N corps à l'aide des équations de Schrödinger à une seule particule nommées les équations de Kohn-Sham [10], la résolution de ces équations conduit normalement à l'énergie, $E(\rho)$, et la densité, $\rho(r)$, de l'état fondamental. La fonctionnelle $E(\rho)$ contient une contribution non classique, nommée l'énergie d'échange et corrélation $E_{xc}(\rho)$ et sa dérivée par rapport à (ρ) qui représente le potentiel d'échange et corrélation $V_{xc}(\rho)$.

2.4.1 L'approche de Thomas-Fermi

La théorie de la fonctionnelle de la densité considère l'énergie d'un système d'électrons en interaction dans un potentiel dépendante de la distribution de densité $\rho(\vec{r})$ de ces électrons. Cette idée forme la base de la méthode de Thomas-Fermi. La théorie de Thomas-Fermi considère un système d'électrons en interaction dans un champ de coulomb $V_e(\vec{r})$ crée par l'ensemble des noyaux fixes. L'énergie totale du système se constitue de :

- 1. L'énergie cinétique des électrons.
- 2. Leur interaction coulombienne.
- 3. Leur interaction avec noyaux.
- 4. L'énergie d'échange et corrélation.

Pour simplifier l'écriture de cette énergie totale, la théorie a fait une approximation très draconienne, et représente l'énergie cinétique par l'énergie cinétique d'un gaz d'électron uniforme.

2.4.2 Théorème de Hohenberg-Kohn

La DFT est basée sur les théorèmes de Hohenberg-Kohn [11]. Considérons un système de N électrons enfermés dans une boite, ces électrons sont en mouvement sous l'influence d'un potentiel extérieur v(r), de plus ce système est non dégénéré.

Le premier théorème de Hohenberg-Kohn [11, 12] constate que si on connait la densité (ρ) le potentiel v(r) sera déterminé à une constante additive prés. La démonstration de ce théorème s'effectue avec l'absurde (*redictio-absurdum*). Supposons qu'il existe un autre potentiel $V'(r) \neq V(r) + const$ qui conduit à la même densité (ρ) . Cela veut dire qu'on a deux fonctions d'état fondamentaux ψ et ψ' qui correspondent aux potentiels v(r) et v'(r), par conséquent on aura deux hamiltoniens H et H' avec deux énergies d'états fondamentaux E_0 et E'_0 . En utilisant les unités atomiques l'hamiltonien s'écrit :

$$H = T + V_{ee} + \sum_{i=1}^{N} v(r_i)$$
(2.15)

où : T est l'énergie cinétique, V_{ee} est le potentiel de répulsion électron-électron.

$$\begin{pmatrix} T = \sum_{i=1}^{N} (-\frac{1}{2} \nabla_i^2) \\ V = \sum_{i=1}^{N} v(r_i) \end{cases}$$
(2.16)

A partir du principe variationel de Rayleigh-Ritz [12] on a :

$$E_{0} = \langle \psi | H | \psi \rangle \langle \psi' | H | \psi' \rangle = \langle \psi' | H | \psi' \rangle + \langle \psi' | H - H' | \psi' \rangle$$

= $E'_{0} + \int \rho(r) \left[v(r) - v'(r) \right] dr$ (2.17)

de la même façon on a :

$$E_{0} = \langle \psi' | H' | \psi' \rangle < \langle \psi | H' | \psi \rangle = \langle \psi | H | \psi \rangle + \langle \psi | H' - H | \psi \rangle$$

= $E_{0} + \int \rho(r) \left[v'(r) - v(r) \right] dr$ (2.18)

l'addition de (2.17 et 2.18) conduit à la contradiction : $E_0 + E_0 < E_0 + E_0$.

On conclure que la densité détermine le potentiel extérieur, et par conséquent l'hamiltonien et toute autre propriété du système. Si on écrit l'énergie totale sous la forme :

$$E_v[\rho] = \int \rho(r)v(r) + F_{HK}[\rho] \qquad (2.19)$$

La fonctionnelle $F_{HK}[\rho]$ est la somme de l'énergie cinétique et les énergies de répulsion entre les électrons.

Le deuxième théorème de *Hohenberg-Kohn* constate que pour toute autre densité arbitraire $\tilde{\rho}$], si $\tilde{\rho} \ge 0$ et $N = \int \tilde{\rho} dr$ on a :

$$E_0 \leqslant E[\tilde{\rho}] \tag{2.20}$$

La preuve est basée sur le principe variationnel, pour toute fonction arbitraire $\tilde{\rho}$:

$$\langle \tilde{\rho} | H | \tilde{\rho} \rangle = \int \tilde{\rho} v(r) dr + F[\tilde{\rho}]$$

= $E_v[\tilde{\rho}] \ge E_v[\rho]$ (2.21)

L'égalité (c'est-à-dire =) est vérifiée seulement pour le vrai état fondamental. La variation de l'énergie totale pour un nombre constant d'électrons N:

$$\delta\{E_v[\rho] - \mu[\rho(r)dr - N]\} = 0$$
(2.22)

Conduit à l'équation d'Euler :

$$\mu = \frac{\delta E_v[\rho]}{\delta \rho} = v(r) + \frac{\delta F_{HK}[\rho]}{\delta \rho}$$
(2.23)

où : μ est le potentiel chimique.

La fonctionnelle F_{HK} ainsi introduite, dépend d'une densité associée à l'état fondamental d'un hamiltonien qui contient un potentiel extérieur local, cela veut dire que F_{HK} dépend du potentiel. Pour éliminer cette dépendance et trouver une fonctionnelle $F[\rho]$ universelle (indépendante du potentiel), Levy et Lieb [12] ont proposé la méthode de la recherche restreinte (constrained search). Une fonctionnelle universelle est définie comme étant la somme des énergies cinétique et l'énergie de répulsion. 2.4. LA THÉORIE DE LA FONCTIONNELLE DE LA DENSITÉ (DFT)

$$F[\rho] = \min_{\varphi \to \rho} \left\langle \varphi \left| T + V_e \right| \varphi \right\rangle \tag{2.24}$$

L'énergie de l'état fondamental peut être obtenue en suivant les deux étapes.

$$E_{0} = \min_{\psi} \left\langle \psi \left| T + V + \sum_{i=1}^{N} v(r_{i}) \right| \psi \right\rangle$$

$$= \min_{\rho} \left\{ \min \left\langle \psi \left| T + V_{ee} + \sum_{i=1}^{N} v(r_{i}) \right| \psi \right\rangle \right\}$$

$$= \min_{\rho} \left\{ \min \left[\left\langle \psi \left| T + V_{ee} \right| \psi \right\rangle + \int v(r)\rho(r)dr \right] \right\}$$
(2.25)

En utilisant la définition de $F[\rho]$, l'équation (2.25) peut être écrite aussi comme suit :

$$E_0 = \min\left\{F[\rho] + \int v(r)\rho(r)dr\right\}$$

= min E[\rho] (2.26)

$$E[\rho] = F[\rho] + \int v(r)\rho(r)dr \qquad (2.27)$$

La fonctionnelle $F[\rho]$ est universelle puisqu'elle ne dépend pas du potentiel extérieur, la méthode de recherche restreinte peut traiter aussi les systèmes dégénérés, si on a une dégénérescence, seulement l'ensemble des fonctions correspondant à ρ est sélectionné. Dans le cas où $\rho(r)$ dépend de v_{ext} on a :

$$F[\rho] = F_{HK}[\rho] \tag{2.28}$$

2.4.3 Les équations de Kohn-Sham

En principe l'énergie de l'état fondamental peut être trouvée à partir de l'équation d' $Euler\,$:

$$\frac{\delta F[\rho]}{\delta \rho} + v(r) = \mu \tag{2.29}$$

Mais on ne connait pas la forme exacte de la fonctionnelle $F[\rho]$.

$$F[\rho] = T[\rho] + V_{ee}[\rho] \tag{2.30}$$

Kohn et Sham [10] ont écrit la densité électronique comme une somme des densités à une particule, et ils ont utilisé un principe variationnel pour déterminer l'état fondamental du système. Ils ont montré que la vraie densité est donnée par la résolution auto-compatible (self consistent) de l'ensemble des équations à une particule de type Schrödinger, encore appelées équations de Kohn-Sham qui sont données par :

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{ion}(r) + V_H(r) + V_{xc}(r)\right]\psi_i(r) = \varepsilon_i\psi_i(r)$$
(2.31)

où :

 $V_H(r)$: est le potentiel de Hartree-Fock.

 $V_{xc}(r)$: est le potentiel d'échange et de corrélation.

 $V_{ion}(r)$: est le potentiel ionique qui est une fonction locale réelle de r.

L'énergie s'écrit en fonction des orbitales de Kohn-Sham ψ_i sous la forme :

$$E[\psi_i] = 2\sum_i \int \psi_i(-\frac{\hbar^2}{2m})\psi_i d^3r + \int V_{ion}(r)\rho(r)d^3r + \frac{e^2}{2} \int \frac{\rho(r_1)\rho(r_2)}{|r_1 - r_2|} d^3r + E_{xc}[\rho(r)] + E_{ion}[R_I]$$

$$\rho = \sum_{i=1}^N |\psi_i^2(r)|$$
(2.32)

avec :

Les équations de Kohn-Sham sont probablement les plus importantes de la DFT à travers lesquelles le traitement du problème à plusieurs électrons en interaction, se réduit à l'étude d'un système d'électrons indépendants baignant dans un potentiel effectif, qui contient toutes les interactions possibles entre les électrons [12].

Le potentiel d'échange et de corrélation 2.4.4

Si le potentiel d'échange et de corrélation est connu la DFT donne des résultats exacts, mais l'expression exacte de ce potentiel reste toujours inconnue, et on utilise seulement des expressions approchées. Beaucoup d'efforts ont été déployés dans la recherche de l'expression de ce terme, et plusieurs formes approchées ont été proposées. Les approximations les plus commodes sont LDA [10, 13] (Local Density Approximation) ou LSDA (Local Spin Density Approximation), et le gradient généralisé de la densité GGA [14] (Generalized Gradient Approximation).

L'approximation LDA

Le mot « locale » peut être utilisé dans plusieurs sens, dans ce cas le mot « locale » indique que la fonctionnelle $F[\rho]$ dépend seulement de r à travers la densité ρ c'est-à-dire que cette fonctionnelle s'écrit encore $F[\rho(r)]$ [10]. Dans cette approximation l'énergie d'échange et de corrélation s'écrit sous la forme :

$$E_{xc}[\rho] = \int dr^3 \rho(r) \varepsilon_{xc}[\rho(r)]$$
(2.33)

Ou : $\varepsilon_{xc}[\rho(r)]$ est une fonction locale de la densité, cette énergie est celle d'un gaz électronique homogène et uniforme.

Pour les systèmes de spin polarisé, la densité se décompose en deux parties ρ_{\uparrow} et ρ_{\downarrow} , et par conséquent l'énergie E_{xc} sera écrite sous la forme :

$$E_{xc}[\rho_{\uparrow},\rho_{\downarrow}] = \int dr^{3}\rho(r)\varepsilon_{xc}[\rho_{\uparrow},\rho_{\downarrow}]$$
(2.34)

donc le potentiel d'échange et de corrélation prend la forme :

$$v_{xc}^{LDA}(r) = \frac{\delta E_{xc}[\rho]}{\delta \rho} = \varepsilon_{xc}(\rho) + \frac{\partial \varepsilon_{xc}[\rho(r)]}{\partial \rho(r)}\rho(r)$$
(2.35)

Il existe plusieurs paramétrisations pour l'énergie et les plus utilisées sont celles de : *Perdew et al* [13] et *Perdew-Burke-Ernzerhof* [14]. De plus cette énergie peut être décomposée en deux termes, le terme d'échange et le terme de corrélation.

$$\varepsilon_{xc}(\rho) = \varepsilon_x(\rho) + \varepsilon_c(\rho) \tag{2.36}$$

L'approximation du gradient généralisé GGA

L'approximation LDA donne des résultats acceptables dans de nombreux cas (pas dans tous les cas). Les difficultés rencontrées avec LDA, nécessitent la recherche d'autres approximations. La nouvelle approximation existante est celle du gradient généralisé GGA [14]. Dans cette approximation l'énergie d'échange et de corrélation dépend à la fois de la densité et de son gradient et elle s'écrit :

$$E_{xc}^{GGA}[\rho_{\uparrow},\rho_{\downarrow}] = \int dr^{3} f\left(\left[\rho_{\uparrow},\rho_{\downarrow},\nabla\rho_{\uparrow},\nabla\rho_{\downarrow}\right]\right)$$
(2.37)

Il existe plusieurs formes pour l'énergie et le potentiel d'échange et de corrélation, les plus utilisées sont celles de *Perdew-Burke-Ernzerhof* [14] et *Perdew et al* [13].

2.4.5 La résolution des équations de Kohn-Sham

La résolution des équations de *Kohn-Sham* se fait d'une manière auto-compatible (self consistent), c'est-à-dire on commence par construire une densité de charge de départ, trouver le potentiel, résoudre les équations de *Kohn-Sham*, mixer la charge obtenue et la charge de départ pour construire une nouvelle charge du départ. Le cycle du calcul se répète jusqu'à la vérification d'un certain critère de convergence. Le cycle de calcul est illustré dans la figure (2.1).

2.5. LA MÉTHODE DES ONDES PLANES AUGMENTÉES ET LINÉARISÉES(FP-LAPW)

FIGURE 2.1: Cycle des calculs SCF pour la résolution des équations de Kohn-Sham

2.5 La méthode des ondes planes augmentées et linéarisées(FP-LAPW)

Il existe différentes méthodes de calculs de structures électroniques pour la résolution des équations de la DFT. Ces méthodes diffèrent par la forme utilisée du potentiel et par les fonctions d'onde prises comme base. La méthode des ondes planes augmentées linéarisées (FP-LAPW) est l'une des méthodes les plus précises [15]. Dans cette méthode aucune hypothèse de forme particulière n'est faite au niveau du potentiel [16].

La méthode des ondes planes augmentées et linéarisées (LAPW : linearized augmented plane wave), développée par Andersen [17], est fondamentalement une modification de la méthode des ondes planes augmentées (APW) développée par *Slater* [18, 19], donc avant d'exposer le principe de LAPW, nous allons revoir les différents aspects de la méthode APW.

2.5.1 Approximation muffin-tin

Dans cette approximation le cristal est devisé en deux régions, dans chaque région le potentiel est représenté d'une façon différente. Une région sphérique où le potentiel possède la symétrie sphérique, et une région interstitielle où le potentiel est pris comme constant. Cette approximation donne un outil efficace et simple au même temps, car la résolution de l'équation de Schrödinger se fait dans la région sphérique en coordonnées sphériques, et dans la région interstitielle l'équation admet des ondes planes comme solution, avec une condition aux limites pour assurer la continuité des fonctions d'ondes en traversant la surface sphérique.

2.5.2 Méthode des ondes planes

Cette méthode constitue la base d'un ensemble de méthodes dites ondes planes telles que la méthode des ondes planes orthogonalisées et celle des ondes planes augmentées. Pour résoudre l'équation de Schrödinger, en tenant compte de la périodicité du réseau cristallin, on choisit une forme particulière de la fonction d'onde établie par *Bloch*.

$$\psi_k(r) = U_k(r)exp(iKr) \tag{2.38}$$

Le choix d'utilisation d'une base d'ondes planes pour les fonctions d'ondes présente de nombreux avantages :

-L'utilisation dans le calcul des éléments de matrice de l'Hamiltonien.

-L'utilisation des transformées de Fourier rapide permettent de passer rapidement de l'espace réel à l'espace réciproque et vice-versa.

-Les ondes planes forment un ensemble complet et orthonormal indépendantes des positions atomiques [20].

Pour le calcul de la relation de la dispersion $E_n(K)$ on fait appel à l'équation séculaire où la connaissance de l'expression décrivant le potentiel cristallin est nécessaire. Ce calcul exige que le nombre d'ondes planes utilisées soit suffisamment grand ce qui rend la tache difficile, d'où on obtient une faible convergence [21]

2.5.3 La méthode des ondes planes augmentées (APW)

La méthode APW (Augmented plane wave method), a été proposée par Slater en 1937 [22, 23], en utilisant le potentiel muffin-tin.

$$V(\vec{r}) = \begin{cases} V(r) & \text{pour } r < r_s \\ 0 & \text{pour } r > r_s \end{cases}$$
(2.39)

Elle est issue du constat suivant : la solution de l'équation de Schrödinger pour un potentiel constant est une onde plane, tandis que pour un potentiel sphérique c'est une fonction radiale.Une façon de décrire un potentiel cristallin de type Muffin-Tin(MT) (figure 2.2) [24] est donc de diviser l'espace en deux régions :

1-une première région (S) constituée de sphères centrées sur chaque site atomique dans lesquelles les fonctions d'ondes seront basées sur des fonctions radiales.

2-une seconde région (I), dite interstitielle, se situant entre les atomes et pour laquelle les fonctions de bases sont des ondes planes.

2.5. LA MÉTHODE DES ONDES PLANES AUGMENTÉES ET LINÉARISÉES(FP-LAPW)

FIGURE 2.2: Potentiel "Muffin-Tin".

Les deux régions sphériques sont définies par les fonctions d'ondes :

$$\phi(r) = \begin{cases} \frac{1}{\Omega^{\frac{1}{2}}} \sum_{G} C_{G} \exp i(G+K)r, r \rangle R_{a} \\ \sum_{lm} A_{lm} U_{l}(r) Y_{lm}(r), r < R_{a} \end{cases}$$
(2.40)

Où : Ω est le volume de la maille unitaire. C_G et A_{lm} sont les coefficients de développement.

r est la position en coordonnées polaires à l'intérieur de la sphère.

K est le vecteur d'onde dans la zone de Brillouin irréductible.

G est le vecteur de l'espace réciproque.

 $U_l(r)$ est la solution numérique de la partie radiale de l'équation de Schrödinger :

$$\left\{-\frac{d^2}{dr^2} + \frac{l(l+1)}{dr^2} + V(r) - E_l\right\} U_l(r) = 0$$
(2.41)

avec V : la composante sphérique du potentiel dans la sphère. Les fonctions radiales définies par cette équation sont automatiquement orthogonales à chaque état du même hamiltonien qui disparait à la frontière des sphères.

2.5.4 La méthode LAPW

Cette méthode consiste à exprimer les fonctions de base à l'intérieur des sphères comme des combinaisons linéaire des fonctions radiales $U_l(r)$ et de leurs dérivées \dot{U}_l par rapport à l'énergie

 \square

$$\varphi(r) = \begin{cases} \frac{1}{\sqrt{\Omega}} \sum_{G} C_{G} \exp\left[i\left(K+G\right)\right] r &\in I\\ \sum_{\ell m} [A_{\ell m} U_{\ell}\left(r\right) + B_{\ell m} U_{\ell}\left(r\right)] Y_{\ell m}\left(r\right) &\in S \end{cases}$$
(2.42)

Les fonctions radiales satisfont l'équation :

$$\frac{1}{r^2}\frac{d}{dr}\left[r^2\frac{dU_\ell}{dr}\right] + \left[\varepsilon - \frac{\ell\left(\ell+1\right)}{r^2} - V\left(r\right)\right]U_\ell\left(\varepsilon, r\right) = 0$$
(2.43)

Tandis que leurs dérivées satisfont l'équation suivante :

$$\left\{\frac{1}{r^2}\frac{d}{dr} + \frac{\ell(\ell+1)}{r^2} + V(r) - E_\ell\right\}r\dot{U}_\ell(r) = rU_\ell(r)$$
(2.44)

Les coefficients $B_{\ell m}$ sont déterminés de la même manière que celle utilisée pour obtenir les coefficients $A_{\ell m}$. A l'intérieur des sphères les fonctions LAPW décrivent l'état du système mieux que les fonctions APW. Dans le cas où E_{ℓ} diffère un petit peu de l'énergie de bande E, une combinaison linéaire peut représenter mieux la fonction radiale, et on peut écrire :

$$U(r) = U_l(\varepsilon_l, r) + (\varepsilon - E_l) r \dot{U}_l(r) + O\left((\varepsilon - E_l)^2\right)$$
(2.45)

Mais avec cette procédure on perd un peu la précision des calculs, par rapport à la méthode APW les erreurs commises sur les fonctions d'onde et l'énergie de bande sont de l'ordre de $(\varepsilon - E_l)^2$ et $(\varepsilon - E_l)^4$ et respectivement.

La linéarisation

Les énergies de linéarisation E_{ℓ} jouent un rôle très important dans la méthode LAPW, lorsque E_{ℓ} est égale à l'énergie de la bande considérée LAPW se réduit à APW, le choix de ce paramètre n'est pas toujours facile, dans certains cas la présence des états du cœur étendus appelés les états semi-cœur pose un problème, et les calculs vont échouer. Pour les états du cœur complètement confinés dans les sphères, les fonctions $U_{\ell}(r) Y_{lm}(r)$ et $\dot{U}_{\ell}(r) Y_{\ell m}(r)$ sont orthogonales s'il n'existe pas des états du cœur avec le même moment angulaire ℓ .

Si cette condition n'est pas satisfaite il y aura un composant des états de cœur étendus et contenus dans les fonctions d'ondes des états de valence, donc ces états ne sont pas orthogonaux. Dans certains cas il y aura un chevauchement entre les fonctions de la base LAPW et les états du cœur, et il apparaît ce qu'on appelle la bande fantôme (Ghost-band) dans le spectre de l'énergie. La meilleure solution à ce problème est d'utiliser un développement en orbitales locales, mais cette solution n'est pas disponible dans tous les codes. Une autre solution consiste à augmenter les rayons des sphères muffin-tin.

CHAPITRE 3_

RÉSULTATS ET DISCUSSION

3.1 Détail de calcul

Dans ce travail, les calculs sont effectués par la méthode des ondes planes augmentées et linéarisées à potentiel total (FP-LAPW) [26] dans le cadre de la théorie de la fonctionnelle de la densité (DFT) implémenté dans le code Elk [27].

Pour un calcul ab-initio, il est important de mentionner que le choix du nombre de point utilisé pour l'intégration dans la zone de Brillouin est critique pour l'obtention des bons résultats, alors il y a un test à effectuer :

- Un échantillonnage de la première zone de Brillouin par des points \vec{k} suffisamment nombreux et bien placés. Pour l'échantillonnage de la zone de Brillouin on a utilisés la méthode de Monkhorst et Pack [28]. Les configurations électroniques de valence, sans couplage spin-orbite, des atomes constituant les composés étudiés sont :

 $\begin{array}{l} - N: (2s^22p^3) \\ - Al: (3s^23p^1) \\ - B: (2s^22p^1) \\ - Ga: (3d^{10}4s^24p^1) \\ - In: (4d^{10}5s^25p^1) \end{array}$

3.2 Test de convergence en fonction du nombre de points spéciaux

3.2.1 Test de convergence du nombre de points

La rapidité de convergence et la précision des résultats repose en grande partie sur le choix de la base utilisée pour le développement des fonctions d'ondes et sa dimension, elle est liée aussi au nombre de points spéciaux utilisée dans l'intégration de la première zone de Brillouin c-à-d nous avons optimisé le nombre de points K pour augmenter la précision de calcul.

3.2. TEST DE CONVERGENCE EN FONCTION DU NOMBRE DE POINTS SPÉCIAUX

On utilisant des paramètres du réseau expérimentaux, et on change le nombre de points ngridk. Les résultats sont représentés dans la figure.

Π

A partir de cette étude on trouve qu'une maille de $(8 \times 8 \times 8)$ pour le Si et le InN, une maille de $(6 \times 6 \times 6)$ pour le GaN et le AlN, et une maille de $(4 \times 4 \times 4)$ pour le BN.

3.3 Propriétés structurales

La première étape importante dans un calcul ab-initio est la détermination des propriétés structurales à l'équilibre (l'état fondamental). La connaissance de ces informations nous permet d'accéder par la suite à d'autres propriétés physiques (électroniques,...).

Les semi-conducteurs III-V tels que GaN, AIN BN et InN sont de type zinc blende. Cette structure est constituée de deux sous réseaux cubiques à faces centrées décalés l'un par rapport à l'autre le long de la direction [111] d'un quart de diagonale. Chaque sous-réseau étant occupé par les éléments d'un groupe donné est entouré de quatre atomes de l'autre type et forme avec ceux-ci des liaisons covalentes partiellement ioniques

FIGURE 3.2: Structure zinc blende.

Pour en conclure sur la structure blende, elle est invariante par 24 opérations de symétrie, à cause de l'absence de centre de symétrie.

Pour déterminer les propriétés structurales à l'équilibre statique tel que le paramètre du réseau a_0 , le module de compressibilité B_0 (Bulk moduls) et sa dérivée par rapport à la pression B', on calcule l'énergie totale E_{tot} pour différentes valeurs du volume de la maille primitive, puis on ajuste les points $E_{tot}(V)$ calculés par l'équation d'état universelle de Vinet [29] donnée par :

$$P = -\frac{\partial E}{\partial V} = \left[\frac{3B_0(1-x)}{x^2}\right] \exp[\eta(1-x)]$$
(3.1)

$$x = \left(\frac{V}{V_0}\right)^{1/3} \tag{3.2}$$

avec :

$$\eta = \frac{3}{2} \left(B_0' - 1 \right) \tag{3.3}$$

$$B_0' = \left(\frac{\partial B}{\partial P}\right)_{T,P=0} \tag{3.4}$$

avec E: l'énergie totale, B_0 : la dérivée première du module de compressibilité, V: le volume de la maille et V_0 : le volume de la maille à l'équilibre. Le paramètre du réseau à l'équilibre statique est donné par le minimum de la courbe $E_{tot}(V)$, tandis que B: le module de compressibilité, est déterminé à partir de la relation :

$$B = V \frac{\partial^2 E}{\partial V^2} \tag{3.5}$$

Le volume est lié à la pression, P, par la relation suivante :

$$V = V_0 \left[1 + \frac{B'P}{B_0}\right]^{\frac{1}{B'}}$$
(3.6)

La figure 3.3 représente l'ajustement des points $E_{tot}(V)$ à l'aide de l'équation d'état de Vinet pour les composés GaN, AlN, BN et InN, respectivement. La ligne continue représente le meilleur ajustement des points $E_{tot}(V)$ avec l'équation d'état de Vinet.

Les résultats des paramètres structuraux de l'état fondamental des matériaux GaN, AlN, BN et InN sont listés dans le tableau 3.1.

TABLE 3.1: Paramètres structurales, paramètre de réseau a_0 en Å, le module de compression B(GPa) et sa dérivé B'.

	Paramétres		Autropal	D. ()
DAT		0.44	Autres calcules	Expérimental
DIV	a_0	3.58	$3.56 - 3.77^{9}$	3.615 m ⁶
	B	403.07	$353 - 412^{10}$	369 - 382 ¹¹
	B'	4.05	$3.1 - 3.6^{10}$	$4.0 - 4.5_{exp}$
AlN	a_0	4.34	$4.33 - 4.42^{5}$	4 37 6
	B	211.05	$195 - 228^{7}$	-
-	B'	4.19	$3.9, 4.0^{8}$	_
GaN	a_0	4.46	$4.30 - 4.50^{2}$	4 50 3
	B	200.02	$173 - 200^{4}$	
	B'	4.67	$2.66 - 4.6^{4}$	_
InN	a_0	4.95	$4.93 - 4.98^{12}$	4 98 13
	В	143.48	$137 - 161^{7}$	
	B'	4.22	$3.9 - 4.3^{7}$	_
[20] 2D	6 [01] 25 11			

¹Ref. [30]. ²Ref. [31]. ³Ref. [32]. ⁴Ref. [33]. ⁵Ref. [34]. ⁶Ref. [35]. ⁷Ref. [36]. ⁸Ref. [37]. ⁹Ref. [38]. ¹⁰Ref. [39]. ¹

D'après les résultats présentés dans le tableau 3.1, on constate qu'ils sont en bon accord avec les données disponibles pour les quatre composés.

3.3. PROPRIÉTÉS STRUCTURALES

70

FIGURE 3.3: Variation de l'énergie totale en fonction du volume de la maille primi-

Pour le composé GaN, le paramètre du réseau a été trouvé égal à 4.46Å. En comparent avec l'expérimental, on trouve que a_{cal} sous-estime le a_{exp} de 0.9%. Pour le composé AlN, le paramètre du réseau a été trouvé égal à 4.34Å. En comparent avec l'expérimental, on trouve que a_{cal} sous-estime le a_{exp} de 0.7%. Pour le composé BN, le paramètre du réseau a été trouvé égal à 3.58Å. En comparent avec l'expérimental, on trouve que a_{cal} sous-estime le a_{exp} de 1%.

Nous avons obtenue sur le module de compressibilité $B_{cal} > B_{exp}$.

Pour le composé InN, le paramètre du réseau a été trouvé égal à 4.95Å. En comparent avec l'expérimental, on trouve que a_{cal} sousestime le a_{exp} de 0.6%.

TABLE 3.2: L'erreur relative de pa	ramètre	e de ré	seau pour l	es quatre	motóriana
GaN	AlN	BN	InN	uatre	materiaux.

$0.9\% \quad 0.7\% \quad 1\% \quad 0.6\%$

3.4 Propriétés électroniques

3.4.1 structure de bandes d'énergie

Les bandes d'énergie donnent les énergies possibles d'un électron en fonction du vecteur d'onde. Ces bandes sont donc représentées dans l'espace réciproque, et pour simplifier seules les lignes de plus hauts symétrie dans la première zone de Brillouin sont traitées. $W: \frac{2\pi}{a}(1, \frac{1}{2}, 0); L: \frac{2\pi}{a}(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}); \Gamma: \frac{2\pi}{a}(0, 0, 0); X: \frac{2\pi}{a}(1, 0, 0); K: \frac{2\pi}{a}(\frac{3}{4}, \frac{3}{4}, 0).$ Ces lignes sont illustrées sur la figure 3.4.

FIGURE 3.4: La première zone de brillouin d'un CFC.

Pour les semi-conducteurs le spectre est caractérisé par la présence de la bande de valence et de la bande de conduction dont la plus haute et la plus basse de cellesci respectivement sont séparées par une bande interdite ou gap.

Dans les semi-conducteurs, l'énergie de gap décrit l'énergie nécessaire pour permettre à un électron de sauter de la bande de valence vers celle de conduction. En outre, c'est la largeur de cette bande d'énergie qui sépare entre les semi-conducteurs et les isolants.

Si le maximum de la bande de valence et le minimum de la bande de conduction se situent au même endroit de la zone de Brillouin la bande est dite directe (gap direct).

Si le minimum et le maximum se trouvent en deux points différents la bande interdite est dite indirecte (gap indirecte).

La nature de gap joue un rôle fondamental dans l'interaction du semi-conducteur avec le rayonnement électromagnétique, ainsi sa valeur constitue un paramètre essentiel pour la fabrication des dispositifs électroniques et photoniques [43].

Nous avons étudié la structure de bande des matériaux GaN, AlN, BN et InN. Ces bandes représentent l'énergie le long des lignes de haute symétrie dans la première zone de Brillouin.

Les structures de bandes calculées sont données dans les figures Fig.3.5-Fig.3.6. On remarque que l'allure des bandes est presque identique au schéma de bandes obtenu théoriquement.

FIGURE 3.6: La structure des bandes de l'énergie pour les composés GaN et InN.

3.4. PROPRIÉTÉS ÉLECTRONIQUES

Pour les composés GaN et InN, on constate que le maximum de bande de valence et le minimum de la bande de conduction se trouvent au point Γ , donc ce matériau est un semi-conducteur direct avec un gap de 1.8 eV pour GaN et 0.01 eV pour InN.

Pour les autres composés (BN, AlN,), on constate que le maximum de la bande de valence se trouve au point Γ tandis que le minimum de bande de conduction se trouve au point X donc ces composés sont des semi-conducteurs indirects. Notre calcul donne 4.41 eV pour le gap de BN et 3.26 eV pour celui de AlN.

3.4.2 Le potentiel de déformation

La séparation des bandes à cause d'une tension uni-axiale pure peut être exprimé en termes des potentiels de déformation linéaires pour de petites tensions.

Une tension uni-axiale à volume conservé (tétragonale) [44, 45] le long de la direction [001] par :

$$\left(\frac{-\eta_3}{\sqrt{6}}, \frac{-\eta_3}{\sqrt{6}}, \frac{2\eta_3}{\sqrt{6}}, 0, 0, 0\right)$$
 (3.7)

La variation des états d'énergie aux points Γ , L et X est une fonction de η et d, (d est le potentiel de déformation), les différentes formules utilisés dans ce travail sont résumés dans le tableau 3.3.

TABLE 3.3: Séparation des états d'énergie en fonction des potentiels de déformation <u>et éléments du tenseu</u>r de déformation.

1 15	$+\sqrt{2a_3\eta_3}$
L_3	$d_3^3\eta_3$
X_1	$+d_1^3\eta_3$
X_5	$+d_1^3\eta_3$

Résultats des potentiels de déformation

Les figures (3.7–3.8) montrent les bandes d'énergies des composés BN, AlN, GaN et InN sous l'effet d'une déformation tétragonale.

Les résultats des potentiels de déformation pour ces composés sont données dans les tableaux (3.6–3.7). À notre connaissance aucure le connaissance aucure de la connai

À notre connaissance, aucune donnée expérimentale pour les potentiels de déformation uni-axiale sont actuellement disponibles pour ces nitrures. Notons que nos résultats sont en bon accord avec ceux calculés par K. Kim et al. [44].

3.4. PROPRIÉTÉS ÉLECTRONIQUES

InN

Г

		. Le potentie	a de deformation po
	d (eV)	Nos calcul	Autres calculs ¹
Γ_{15}^v	d_3	-5.94	-5.90
Γ_{15}^c	d_3	4.53	4.10
L_3^v	d_{3}^{3}	10.06	9.60
X_5^v	d_{1}^{3}	11.67	11.30
X_1^c	d_1^3	15.30	14.60
		¹ Re	f. [44].

TABLE 3.4: Le potentiel de déformation	Dour	RM
	pour	LIX
	-	

TABLE 3.5: Le potentiel de déformation pour AlN.

	d (eV)	Nos calcul	Autres calculs ¹
Γ^v_{15}	d_3	-2.37	-2.50
Γ^c_{15}	d_3	0.1	0.50
L_3^v	d_{3}^{3}	5.45	5.30
X_5^v	d_1^3	7.04	7.00
X_1^c	d_1^3	4.44	4.00
		$^{1}\mathrm{Re}$	f. [44].

3.4. PROPRIÉTÉS ÉLECTRONIQUES

Π

TABLE 3.6: Le	potentiel	de déformation	pour	GaN.

	$d~(\mathrm{eV})$	Nos calcul	Autres calculs ¹
Γ_{15}^v	d_3	-2.31	-2.80
Γ_{15}^c	d_3	1.75	1.50
L_3^v	d_3^3	4.78	4.80
X_5^v	d_1^3	6.4	6.40
X_1^c	d_{1}^{3}	5.74	5.60
		$^{1}\mathrm{Re}$	ef. [44].

TABLE 3.7: Le potentiel de déformation pour InN.

	d (eV)	Nos calcul	Autres calcules ¹
Γ^v_{15}	d_3	-2.26	-2.30
Γ^c_{15}	d_3	-1.6	1.30
L_3^v	d_{3}^{3}	3.48	3.40
X_5^v	d_{1}^{3}	4.79	4.80
X_1^c	d_1^3	3.76	3.70
		$^{1}\mathrm{Re}$	ef. [44].

CHAPITRE 4.

Dans ce mémoire, nous avons appliqué la théorie de la fonctionnelle de densité afin d'étudier les propriétés structurales et électroniques des semi-conducteurs III-V cristallisants dans la structure zinc blende.

CONCLUSION

L'étude a été réalisée par la méthode des ondes planes augmentées et linéarisées avec un potentiel total (FP-LAPW) dans le cadre de la théorie de la fonctionnelle de la densité (DFT), avec le code Elk.

La variation de l'énergie totale avec le volume nous a permis d'évaluer plusieurs grandeurs physiques. En particulier, la géométrie de l'état fondamentale ainsi que les paramètres de l'équation d'état sont obtenus avec succès pour tout les matériaux considérés dans ce travail. Les résultats obtenus sont en bon accord avec les valeurs expérimentales.

Si on applique une force extérieure sur le matériau, la zone de Brillouin change, ce qui cause un changement dans les bandes d'énergie. A partir du changement des états énergétiques aux points de haute symétrie et les composantes du tenseur de déformation on a déterminé les potentiels de déformation pour les bandes d'énergie.

BIBLIOGRAPHIE

- [1] L.Kalarasse, Étude des propriétés élastiques, électroniques et optiques des composés à base des éléments des groupes I, III et V, Thèse de doctorat, Université
- [2] W.Kohn, Nobel lecture, Rev. Mod. Phys. 71, (1999) 1253.
- [3] M.S.Dresslhaus, Solid state physics "Transport Properties of solids", 2001.
- [4] E.Schrödinger, Ann. Physik 84, (1927) 361.
- [5] M.Born, J.R.Oppenheimer, Ann. Phys. 87, (1927) 457.
- [6] D.R.Hartree, Proc.Combridge Philos.soc.24, (1928) 89.
- [7] F.Zerarga, Contribution à l'étude des propriétés structurales, électroniques et élastiques de quelques spinelle, Thèsz de magister, Université de M'sila (2008).
- [8] Bernard Silvi, Méthode Hartrée-Fock, Laboratoire de Chimie Théorique, Université Pièrre et Marie Curie(FRANCE).
- [9] V.Fock, Z.Phys. 61, 126(1930); 62,(1930) 795.
- [10] W.Kohn and L. J. Sham, Phys. Rev. 140, A. 1133, (1965).
- [11] P.Hohenberg and W.Kohn, Phys. Rev. 136, B 864, (1964).
- [12] A.Nagy, Density functional theory and application to atoms and molecules.PHYSICS REPORTS, ELSEVIER 1998).
- [13] J.P.Perdew.and Y.Wang, Phys. Rev. 45, B 13244, (1992).
- [14] J.P.Perdew, S.Burke. and M.Ernzerhof, Phys. Rev. Let. 77. (1996) 3865.
- [15] K.Hacini. Etude des propriétés structurales et électroniques des alliages quaternaires par la méthode FP-LAPW, Thèse de doctorat, Université Annaba
- [16] A.Meziani. Etude des propriétés structurales, électroniques, élastiques et optiques des composés fluoro-pérovskites $CsCdF_3$ et $KZnF_3$, Thèse de doctorat, Université Annaba(2012).
- [17] O.K. Andersen, Phys. Rev B 12,(1975) 3060.
- [18] J.C.Slater, Advences in Quantum Chemisty 1,35(1964).

- [19] J.C.Slater, Quantum theory of molecules and solids-Volume 2-Symmetry and energy bands in crystal, McGraw-Hill(1965).
- [20] M.Souadkia, Semi-conducteurs polaires : Etude des propriétés structurales, vibrationnelles et thermodynamiques, Thèse de doctorat, Université
- [21] Pys. Rev. 51,(1937) 846.
- [22] J. M. Ziman, F.R.S, Principles of the theory of solids. 2ieme edition, Cambridge, (Cambridge University Press 1972).
- [23] G. C. Fletcher, The Electron Band Theory of Solids. (NORTH-HOLAND PU-BLISHING COMPANY, AMSTERDAM. LONDON),1971.
- [24] S.Ouendadji. Thèse de doctorat :Étude des propriétés électroniques, optiques et thermodynamiques des composés binaires semi conducteurs CdS, CdSe et CdTe et leurs alliages ternaires par la méthode des ondes planes linéarisées (FP-LAPW). Université de Annaba (2010).
- [25] J.S. Slater, Phys. Rev, B 12, (1937) 3060.
- [26] Singh D., Planes waves, pseudo-potentiels and the LAPW method, (Kluwer Academic Publishers 1994).
- [27] http://elk.sourceforge.net/

- [28] H.J.Monkhorst and J.D.Pack. Special points for Brillouin zone integration. Phys. Rev. B 13 5188 (1976).
- [29] Vinet P. et al., J. Phys. : Condens. Matter 1,(1989) 1921.
- [30] J-I.Tani and H.Kido,Lattice dynamics of Mg2Si and Mg2Ge Compounds from rstprinciples calculations, Comp. Mater. Sci.in press.
- [31] M.Palummo, C.M.Bertoni, L.Reining, and F.Finocchi, in Wide-band-gap Semiconductors, Ref.2, p.404.
- [32] T. Lei, T. D. Moustakas, R. J. Graham, Y. He, and S. J. Berkowitz, J. Appl. Phys. 71,(992) 4933.
- [33] P. E. Van Camp, V.E. VAn Doren, and J.T. Devreese, Solid state Com-
- [34] N. E. Christensen and I. Gorczyca, Phys. Rev. B 50,(1994) 4397.
- [35] Properties of Group III Nitrides, edited by J.H.Edgar, Electronic Materials Information Service (EMIS) Datareviews Series (Instituation of Electronic Engineers, London, 1994).
- [36] N.E.Christensen and I.Gorczyca, Phys. Rev.B 50,(1993) 4307.
- [37] W.R.L.Lambrecht and B.Segall, Phys.Rev.B 43, (1991) 7070.
- [38] B.N.Onwuagda, Solid State Commun. 89, (1994) 289.
- [39] W.R.L.Lambrecht and B.Segall, Phys.Rev.B 40, (1989) 9909.
- [40] A.D.Alvarenga, M.Grimsditch, and A.Plian, J.Appl. Phys. 72, (1992) 1955.
- [41] A.F.Wright and J.S.Nelson, Phys. Rev. B 50, (1995) 7866.

- [42] S.Strite, J.Ruan, D.J.Smith, J.Sarial, N.Manning, H.Chen, W.J.Choyke, and H.Morkoç, Bull.am. Phys. Soc. 37, (1992) 346.
- [43] Pockels.Fibid.(1890),(4),39,440.

- [44] kwiseon Kim ,walter R.L. Lambrecht, and Benjmin Segall, Phys.Rev.B 53,(1996) 16310-16321.
- [45] kwiseon Kim ,walter R.L. Lambrecht, and Benjmin Segall, Phys.Rev.B 50,(1994) 1503-1504.

1