M1530,045

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur Université de Guelma

Faculté des Mathématiques et de l'Informatique et des Sciences de la Matière Département des Sciences de la Matière

> Mémoire de fin d'études Deuxième Année Master

 $\left[\right]$

Spécialité : Physique de la Matière Condensée

Présenté par :

ABDELLI Zineb

Méthodes isoconversionnelles intégrales

Sous la Direction de :

Dr. Daoudi Mourad Ibrahim

Juin 2015

Remerciement

 \square

 $\left[\right]$

Π

Π

 \square

-

Par ce modeste travail qui restera toujours notre compensation pour nos longues années

d'études, je remercie :

« Dieu » pour son aide et sa bénédiction.

Je tiens à remercier vivement mon encadreur

Dr. Daoudi Mourad Ibrahim,

^pour ses conseⁱls précieux et pour tous les commodités et aisances qu'il m'apportées durant mon étude et pour la réalisation de ce projet.

Je désire aussi remercier les membres du laboratoire LM2S d'Annaba pour m'avoir accueilli, et m'avoir fourni les outils nécessaires à la réussite de ma recherche.

J'exprime également ma gratitude à tous les professeurs et enseignants qu'ont collaboré à ma formation de puis mon premier cycle d'étude.

Sans oublier bien sûr de **remercier** l'ensemble des membres de jury d'avoir accepté

de juger du présent travail réalisée par :

Abdelli Zinek

Dédicace

 \square

 \square

 $\left[\right]$

 \square

 \square

 \square

 $\left[\right]$

 \bigcap

 $\left[\right]$

En termes d'amour et de fidélité, je dédie ce présent mémoire :

A l'homme de ma vie, mon exemple éternel, mon soutien moral et source de joie et de bonheur, celui qui s'est toujours sacrifié pour me voir réussir, à toi mon père.

A la lumière de mes jours, la source de mes efforts, la flamme de mon cœur, ma vie et mon bonheur ; maman que j'adore.

A ceux qui m'ont entouré et soutenu mes Frères, mon Fiancé et ma Belle-sœur « wafaa »

Aux deux familles : Abdelli et Lahouassa

A mes plus chères Catre el Nada, Soraya, Imene, Mouna et Hana

Résumé :

L'étude de la cinétique des transformations de phase mettent en jeu plusieurs processus comme la germination et la croissance.

Aucure étude physique complète n'a pu être développée dans ce sens ; cependant certaines lois approximatives dans la mesure où elle ne tient compte que de l'énergie d'activation apparente, sont couramment utilisées dans l'étude de la cinétique de transformation parce qu'elles sont plus ou moins en accord avec des mesures expérimentales.

Dans notre travail, on décrit le modèle numérique de genre cinétique (analyse isoconversionnelle) à l'aide des techniques expérimentales qui sont l'analyse différentielle à balayage (DSC) et l'analyse dilatométrique, L'intérêt de ce modèle numérique est justifié par l'existence d'un nombre important de méthodes d'analyse isoconversionnelle, plus ou moins sophistiquées comme celle de Kissinger-Akahira-Sunose (KAS), Friedman ...etc.

L'affirmation de la cinétique est faite par l'analyse à diffraction des rayons X (DRX) tel que les résultats obtenus sont bien en accords avec les résultats trouvé par l'analyse dilatométrique

 \square

 \prod

 $\left[\right]$

 \square

 \square

Π

Table de matières

Kemercie	ment	
Dédicace		
Liste des	tableaux	
Liste des	figures	
Introduct	ion	i
Chapit	re I : Etude bibliographique	1
I.1	Cinétiques de transformations de phases	1
]	.1.1 La théorie de JMAK pour la cinétique de transformation	1
	I.1.1.1 Méthode de Kissinger	3
I.2	. Analyse isoconversionnelle	4
	II.2.1. Méthodes d'analyses isoconversionnelles	4
	I.2.1.1 Méthodes isoconversionnelles différentielles	5
	I.2.1.2 Méthodes isoconversionnelles intégrale	6
	a) Les méthodes FWO	6
	b) La méthode de KAS	6
	C) Calcul de l'erreur	8
I.3	Les paramètres cinétiques	9
	I.3.1 L'énergie d'activation	9
	I.3.2 L'exposant d'avrami n(T)	9
Chapi	tre II : Matériau et Techniques expérimentales	11
II.1	Techniques expérimentales	11
	II.1.1 Analyse dilatométrique	11
	II.1.2.Analyse calorimétrique différentielle à balayage (DSC)	13
	II.1.3. Diffraction des rayons X	14
	II.1.3.1 Principe	14
	II.1.3.3 Protocole	15
II.2	Matériau utilisé	17
II.3	Préparation des échantillons	17
	II.3.1 Prélèvement de l'échantillon	17
	II.3.2 Polissage	18
	II .3.3 Traitements thermiques	19

Liste des figures

-

 \square

1

 \square

 $\left[\right]$

 $\left[\right]$

 \square

 \square

 \square

 \bigcap

 \bigcap

 \square

 $\bigcap_{i=1}^{n}$

_

N°	Légende				
Figue.I.1	Chaque équation de vitesse en une seule transformation est associée à une seule valeur de α et une région étroite de température ΔT qui lui est liée.	5			
Figure.II.	Schéma du principe d'un dilatomètre	11			
Figure.II.2	<i>Dilatomètre de type DIL 402C NETTZCH4 [L75HS1550]</i>	13			
Figure II.3	Schéma de principe d'un appareil de calorimétrie différentielle à balayage couplé à une analyse thermogravimétrie	13			
Figure II.4	L'appareil d'analyse calorimétrique différentielle à balayage DSC type LABSYS evo	14			
Figure II.5	Schéma de diffraction de rayons X par une famille de plan (hkl), θ angle de Bragg.	15			
Figure II.6	Principe d'une diffraction de Bragg-Brentano.	16			
rigure 11./	<i>Le diffractomètre utilisé de type : PANalytical</i> <i>EMPYREAN</i>	16			
Figure.II.8	Micro tronçonneuse	17			
Figure.II.	9 La forme de l'échantillon utilisé pour le dilatomètre	17			
Figure II.1	0 La forme de l'échantillon utilisé pour le DSC	18			
Figure II.1	<i>1</i> la forme de l'échantillon utilisé pour la DRX	18			
Figure II.1	2 Polisseuse métallographique	18			
FigureII.13	Four (tubulaire) qui a servi au traitement thermique	19			
Figure III.	<i>1</i> Cycle du traitement thermique d'homogénéisation.	20			
Figure III.2	Thermogramme DSC à une vitesse de 5°C/mn	21			
Figure III.3	Les thermogrammes de DSC pour les vitesses de 8 et 10°C/mn	21			
Figure III.4	Les courbes de dilatation $\Delta L/L_0 = f(T)$ des échantillons chauffés par différentes vitesses.	22			
Figure III.5	Fitting linéaire de la courbes de dilatation $\Delta L/L0 = f(T)$ d'un échantillon chauffé à 5°/mn.	23			
Figure III. <mark>6</mark>	La dérivée de la courbes de dilatation $\Delta L/L0 = f(T)$ des	24			

	échantillons chauffés 5°/mn.	
Figure III.7	Traitement thermique de vieillissement.	25
Figure III.8	Un diffractogramme de l'alliage Al-Si-Mo	25
	a) Homogène, b) à 240°C	23
Figure III.9	Un diffractogramme de l'alliage Al-Si-Mg	27
Figure II <mark>I</mark> .10	Pic exothermique de la phase β''	28
Figure II <mark>I</mark> .11	Fraction transformée de la phase β '' obtenue pour la	20
	vitesse de chauffage 10°C/mn.	20
Figure III.12	Fraction transformée de la phase β '' obtenue pour les	29
	différentes vitesses de chauffage 5,8 et10°C/mn.	
Figure III.13	Courbe de $ln(\phi/(T_p^2))$ en fonction de $1/(R T_p)$ pour le pic	30
	due à la formation da la phase β ".	
Figure III.14	L'énergie d'activation en fonction de la fraction	21
	transformée évaluée par la méthode d'intégrale KAS	31
Figure III.15	Courbe relatif à la transformation de phase B'' obtenue	37
5	pour la vitesse de chauffage 10°C/mn sur laquelle on peut	52
	voir les différente quantités physique.	
Figure III.16	Fraction transformée de la phase β '' obtenue pour la	33
	vitesse de chauffage 5°C/mn.	00
Figure III.17	Evaluation de la fraction transformée de la phase β '' en	33
	fonction de la température pour les vitesses 5,8 et	
F ¹ F ¹ F ¹	10°C/mn.	
Figure III.18	Courbe de $\ln(\frac{\phi}{T_{c}^{2}})$ en fonction de $\frac{1}{BT}$ pour le pic due à la	34
	formation da la phase ß"	
Figure III.19	L'énergie d'activation en fonction de la fraction	35
0	transformée évaluée par la méthode d'intégrale KAS	55

Π

N°	Légende	Page
I.1	Les mécanismes de transformation de phase	1 age
I.2	Exposant d'Avrami n pour différentes géométries et modes de croissance	10
II.1	Composition de l'alliage (wt%)	17
III.1	Les températures de début, de pic et de fin de la formation de la phase métastable β'' par DSC	22
III.2	Les coefficients de dilatation pour les différentes vitesses de chauffage	23
III.3	Les températures de début, de pic et de fin de la formation de la phase métastable β'' par dilatométrie	24
III.4	Paramètre de maille de l'aluminium pour l'alliage homogénéisé	26
III.5	Paramètre de maille de l'aluminium après un traitement de vieillissement de l'alliage Al-Si-Mg.	26
III.6	Les coefficients de dilatation de la matrice pour les différentes vitesses de chauffage	31

 $V_{\rm u}$ les exigences de l'industrie moderne, de nombreux programmes de recherche sont en route pour le développement des matériaux plus performants et moins coûteux tels que les composites, les céramiques, les polymères etc..., mais les alliages métalliques occupent toujours une place importante, car les caractéristiques de ces derniers s'améliorent de jour en jour grâce aux recherches.

Les propriétés d'emploi des métaux et alliages sont déterminées en grande partie par La quantité et le degré de dispersion des phases qui les constituent, c'est-à-dire par la microstructure. Aujourd'hui maîtriser les microstructures en vue d'optimiser telle ou telle propriété est réalisable par des traitements thermiques ou thermomécaniques appropriés, qui sont fondés sur les possibilités de transformations structurales.

Néanmoins, ces propriétés mécaniques résultent de transformations de phase à l'état solide qui jouent un rôle très important dans la production d'un grand nombre de matériaux; par conséquent, un grand intérêt existe pour une description générale de la cinétique des transformations de phases.

-

Π

Π

_

Π

1

1

1

1

1

1

1

1

Théoriquement l'étude de la cinétique des transformations de phase mettent en jeu plusieurs processus comme la germination (homogène et hétérogène) et la croissance.

En effet, aucune étude physique complète n'a pu être développée dans ce sens ; cependant les méthodes isoconversionnelles qui sont des lois approximatives dans la ne tient compte que de l'énergie d'activation apparente, sont couramment utilisées dans l'étude de la cinétique de transformation parce qu'elles sont plus ou moins en accord avec des mesures expérimentales.

La faible densité des alliages d'aluminium associé à leurs bonnes caractéristiques nécaniques intéressent l'industrie de transport. Ainsi actuellement les alliages Al-Si-Mg (série 6000) sont fortement utilisés pour réduire le poids des véhicules dont le degré de se curité et de confort est très élevé pour une consommation en carburant, et par conséquent faire des économies d'énergie.

Et puisque leurs propriétés physico-chimiques en relation avec leurs microstructures sont de plus en plus améliorées. Ces propriétés sont intimement liées aux différentes plases métastables et stables qui précipitent dans ces alliages.

La cinétique de précipitation a été largement étudié par la calorimétrie différentielle à ba ayage DSC par contre, une technique comme la dilatométrie est très peu utilisée. C'est dans cet esprit que nous avons essayé de voire l'évaluation de l'énergie d'activation par les méthodes isoconversionnelles pour ces deux techniques expérimentales. Surtout que la dilatométrie a apporté un plus dans l'étude des alliages métallique.

Nous avons utilisé différentes méthodes expérimentales assez rigoureuses et complémentaires : l'analyse calorimétrique différentielle (DSC), la dilatométrie, et la diffraction de rayons X.

vitesse de la transformation dans laquelle figurent les différents facteurs intervenant dans les équations décrivant la germination et la croissance. Usuellement définie comme fonction variable avec la température et suit généralement une équation de type d'Arrhenius :

$$K = A \exp\left(-\frac{E}{RT}\right) \tag{2}$$

Ou E est l'énergie d'activation du processus de transformation, A est un facteur préexponentiel et R est la constante des gaz parfaits.

La réaction des transformations de phases dans les solides à une vitesse de chauffage linéaire est le produit de deux fonctions, une dépendant seulement de la température T et l'autre dépendant seulement de la fraction transformée α :

$$\frac{d\alpha}{dt} = f(\alpha).k(T)$$
(3)

Pour analyser une réaction thermiquement activée en utilisant l'approche décrite par les équations (2) et (3) :

$$\frac{d\alpha}{dt} = Aexp\left(\frac{-E}{RT}\right)f(\alpha) \tag{4}$$

Le programme peut être isotherme, T = const ou non-isotherme, T = T (t). Le programme non-isotherme est le plus courant, la température y varie linéairement linéairement avec le temps de sorte que Φ , la vitesse de chauffage, peut s'exprimer comme suit :

$$\phi = \frac{dT}{dt} = \text{ const}$$
 (5)

Pour des conditions non isothermes ou la vitesse de chauffage constante, Eq. (4) est souvent réarrangée comme:

$$\phi \frac{d\alpha}{dT} = Aexp\left(\frac{-E}{RT}\right)f(\alpha) \tag{6}$$

Afin de décrire l'évolution de la transformation dans les états solides au cours de la température, il est nécessaire de connaitre, la fonction f(a), la constante A et E. La dépendance de la fraction transformée peut être exprimée par la fonction f(a) décrivant le modèle mathématique du type de réaction qui varie d'une fraction transformée à un autre et pour connaitre la cinétique de précipitation passe donc obligatoirement par la connaissance de ce triplet.

Beaucoup de variantes se basant sur le modèle de JMAK, ont été proposées pour suivre la cinétique de précipitation des phases. Parmi celles-ci, on peut citer le modèle de Kissinger [5], le modèle d'Augis-Bennett [6] et le modèle de Matusita-Sakka [7] qui permettent la détermination de l'énergie d'activation.

Π

Π

I.1.1.1 Méthode de Kissinger

La méthode proposée par Kissinger est utilisée dans des conditions nonisothermes pour déduire l'énergie d'activation (E) du processus de transformation.

L'équation de base de la méthode est dérivée à partir de l'équation (4) sous la condition de la vitesse de réaction maximale. À ce stade $\frac{d^2\alpha}{dt^2}$ est nul:

$$\frac{d^2\alpha}{dt^2} = \left[\left[\frac{E\phi}{RT_m^2} + Af'(\alpha_m) exp\left(\frac{-E}{RT_m}\right) \right] \left(\frac{d\alpha}{dt}\right) = 0$$
(7)

Où $f'(\alpha) = df(\alpha) / d\alpha$ et l'indice m représente les valeurs liée à la vitesse maximale. Après réarrangements simples l'Eq. (7) se transforme et devient :

$$ln\left(\frac{\phi}{T_m^2}\right) = ln\left(-\frac{AR}{E}f'(\alpha_m)\right) - \frac{E}{RT_m}$$
(8)

Cette équation souvent appelée équation de Kissinger, et où la pente de $\ln(\frac{\phi}{RT_m^2})$ par rapport à $\frac{1}{RT_m}$ est seulement l'énergie d'activation.

Mais ces modèles ont leurs limites, du fait qu'ils ne permettent de déterminer qu'une seul valeur de l'énergie d'activation pour tout processus, et ne donnent pas d'informations quand il s'agit d'un processus multi-étapes, comme la germination et la croissance par exemple. De plus, ils s'articulent sur la quantité de la phase constituée à la température maximale du pic de transformation, or cette quantité dépend de la vitesse de transformation [8].

Les paramètres cinétiques d'une transformation non-isotherme peuvent aussi être déterminés pour une seule vitesse ; mais ceci exige le fit de la seule courbe $\alpha = f(\alpha)$ pour en déduire l'expression générale. Il a été prouvé [9, 10] que cette dernière méthode comporte des erreurs fondamentales dans la détermination de $f(\alpha)$.

L'équation de JMAK (7) s'est avérée non efficace pour décrire correctement la fraction transformée dans certains cas [11]. Car les différents modèles, dits de JMAK donnent donc des valeurs approximatives qui ne peuvent pas expliquer les processus impliquant plus d'une transformation. De plus, ils nécessitent la connaissance au préalable de la fonction de la fraction transformée f(a) pour la compréhension complète de la transformation.

D'autres méthodes d'étude sont donc nécessaires pour déterminer la cinétique de la transformation.

Pour les transformations, sous des conditions non-isothermes et à une vitesse de chauffage linéaire, qui mettent en jeu plusieurs processus en même temps, comme par exemple la germination et la croissance, les méthodes isoconversionnelles sont la plus

 \bigcap

Figue I.1 : Chaque équation de vitesse en une seule transformation est associée à une seule valeur de α et une région étroite de température ΔT qui lui est liée.

L'équation de vitesse (Eq. (6) et / ou (11)) décrire la cinétique de processus de transformation sur toute la gamme de conversions pour chaque températures. On notera que l'apparition de multi transformation n'invalide pas immédiatement l'application du principe isoconversionnelle, bien que ce dernier s'en tienne strictement pour une seule transformation. Le principe continu à travailler comme un rapprochement raisonnable parce que les méthodes isoconversionnelle décrivent le processus cinétique en utilisant plusieurs équations cinétiques d'une seule transformation, chaqu'une est associé à un certain degré de conversion et une étroite plage de température (Δ T) liée à cette conversion (Fig I.1). Le principe isoconversionnelle jette les bases pour un grand nombre de méthodes de calcul isoconversionnelle. Ils peuvent généralement être divisés en deux catégories: différentiel et intégral.

I.2.1.1 Méthodes isoconversionnelles différentielles

La méthode isoconversionnelle différentielle: méthode de Friedman [15] basée sur l'équation (11) tel que l'intégrale de cette équation donnera:

$$\ln\left(\phi\frac{d\alpha}{dT}\right)_{\alpha,i} = const - \frac{E_{\alpha}}{RT_{\alpha,i}}$$
(12)

A chaque α donné, la valeur de E est déterminée de la pente d'une parcelle de ln($\phi d\alpha/dT$)_{α i} en fonction de $1/T_{\alpha,i}$. L'indice i est introduit pour désigner divers vitesse de chauffage. T_{α,i} est la température à laquelle le degré de conversion est atteint sous i ème vitesse de chauffage.

Cette méthode permet d'estimer l'énergie d'activation sans introduire des erreurs systématiques, mais elle nécessite l'emploi des valeurs de vitesses instantanées. Elle est

très sensible aux bruits de fond car le bruit s'améliore avec la dérivée de themogramme et tend à être numériquement instable [16,17]. On peut éviter ce désagrément en utilisant la méthode isoconversionnelle intégrale.

I.2.1.2 Méthodes isoconversionnelles intégrale

Méthodes isoconversionelles intégrales proviennent de l'application du principe isoconversionelle de l'intégrale de l'équation (9). Cette équation a permet l'apparition de plusieurs méthodes : la méthode de Flynn-Wall-Ozawa (FWO) [18,19], la méthode de Kissinger-Akahira-Sunose (KAS) [5,20], et la méthode non-linéaire de Vyazovkin [21]. Ces méthodes utilisent l'intégration respectivement dans le domaine (0, α) et (0, T).

$$g(0,\alpha) = \int_0^\alpha \frac{d\alpha}{f(\alpha)} = A\phi^{-1} \int_0^T \exp(-\frac{E}{RT}) dT$$
(13)
Ou x = E/RT .

Ou x - /RT

On obtient

.

 \square

.

$$g(0,\alpha) = \frac{AE}{\phi R} \left\{ \frac{e^{-x}}{x} + \int_x^\infty \frac{e^{-x}}{x} dx \right\} = \frac{AE}{\phi R} p(x)$$
(14)

La fonction p(x) n'a pas de solution analytique exacte. Plusieurs approximations ont été utilisées. Les plus populaires sont ceux proposés par Coats et Redfen [22], et Doyle [23].

a) La méthode FWO est basée sur l'approximation de Doyle, pour (20 < x < 60)Doyle a été le premier à signaler la proximité de la linéarité du logarithme de p (x) tracée en fonction de x. Il a proposé la relation approximative suivante :

$$p(x) = e^{-5.331 + 1.052x} \tag{15}$$

En utilisant les équations précédentes, et la série des courbes non-isothermes donnant la fraction transformée en fonction de la température pours les différentes vitesses de chauffages, pour un taux de conversion donnée on remplace p(x) dans le logarithme de l'Eq (14) on obtient :

$$ln\phi_i = ln\frac{E_{\alpha}A_{\alpha}}{Rg(\alpha)} - 5.331 + 1.052\frac{E_{\alpha}}{RT_{\alpha,i}}$$
(16)

La valeur de E_α est déterminée à partir de la pente de la droite obtenue de $\,\ln\,\varphi_i$ en fonction de 1/ $T_{\alpha,i}.$

b) La méthode de KAS est basée sur le principe de Kissinger et l'approximation de Coats et Redfen, pour (20 < x < 50) ou la température de transformation dans les solides

$$p(x) = \frac{e^{-x}}{x^2} \tag{17}$$

Ce qui conduit à l'équation suivante :

$$ln\left(\frac{\phi_i}{T_{\alpha,i}^2}\right) = ln\left(\frac{RA_{\alpha}}{E_{\alpha}g(\alpha)}\right) - \frac{E_{\alpha}}{RT_{\alpha,i}}$$
(18)

Pour un taux de conversion le tracé de $ln\left(\frac{\phi_i}{r_{\alpha,i}^2}\right)$ en fonction de $(T_{\alpha,i})^{-1}$ est une droite dont la mesure de la pente détermine la valeur de l'énergie d'activation E_{α} .

Plusieurs auteurs [24, 25] ont comparé les valeurs de p (x) à compter des approximations couramment utilisées dans la littérature avec celles calculées numériquement avec une précision supérieure $à10^{-5}$ % au moyen de la procédure de Simpson.

La conclusion a été établi que l'erreur impliquée dans la fonction p (E / RT) calculée à partir de la fonction d'approximation ci-dessus est très grand (de l'ordre de plusieurs centaines de pour cent) tel que :

$$p(x) = \frac{\exp(-x)}{x^2}h(x)$$
 (19)

Ou

 \square

 \square

$$h(x) = \frac{x^4 + 18x^3 + 88x^2 + 96x}{x^4 + 20x^3 + 120x^2 + 240x + 120}$$
(20)

Appelons p (x_a), le rapprochement de la fonction p (x) donnée par Coats et Redfern

$$p(x_{\alpha}) = \frac{e^{-x_{\alpha}}}{x_{\alpha}^{2}} \left(1 - \frac{2}{x_{\alpha}}\right)$$
(21)

Où l'indice a correspond à la valeur approchée de x. Toutefois, l'expression couramment utilisé dans la littérature est la forme la plus simple et la plus populaire qui conduit à une corrélation linéaire.

$$p(x_{\alpha}) = \frac{e^{-x_a}}{x_a^2} \tag{22}$$

Les considérations ci-dessus suggèrent, que les calculs de l'erreur impliquées dans la détermination de l'énergie d'activation en utilisant les approximations de la fonction p(x) développés par Coats et Redfern sont nécessaire pour tirer une conclusion en ce qui concerne l'applicabilité de cette approximation à l'analyse cinétique des réactions en vertu d'une vitesse de chauffage linéaire.

П

C) Calcul de l'erreur

Appelons $x_a = E_a / RT$ la valeur apparente de x obtenue du rapprochement de la fonction p (x). L'erreur \mathcal{E} de x_a par rapport à la vraie valeur de x peut être définie par les relations suivantes.

$$\mathcal{E}\% = \frac{E_a/RT - E/RT}{E/RT} 100 = \frac{E_a - E}{E} 100$$
(23)

En introduisant l'expression exacte de p (x), l'équation (19), dans le logarithme de l'éq. (14), il devient

$$lng(\alpha) = ln \frac{AR}{E\phi} - x - 2lnx + ln h(x)$$
(24)

En différenciant la forme logarithmique par rapport 1 / T, nous obtenons

$$\frac{\partial \ln g(\alpha)}{\partial 1/T} = -\frac{E}{R} - 2T + \frac{\partial \ln h(x)}{\partial 1/T}$$
(25)

En utilisant la procédure ci-dessus avec Coats-Redfern rapprochement p(x), on obtient, après l'introduction de l'eq.(8) dans l'eq (3)

$$lng(\alpha) = ln\frac{A_aR}{E_a\phi} + 2\ln T - \frac{E_a}{RT}$$
(26)

En différenciant l'eq (12), nous obtenons

$$\frac{\partial lng(\alpha)}{\partial 1/T} = \frac{E_a}{R} - 2T \tag{27}$$

La combinaison des équations (11) et (13) donne

$$E_a/R - E/R = -\frac{\partial \ln h(x)}{\partial 1/T}$$
(28)

Eq (14) peut être réécrite comme

$$\mathcal{E}\% = \frac{E_a - E}{E} 100 = -\frac{\partial lnh(x)}{\partial x} 100$$
(29)

Nous pouvons voir que l'erreur attribuée à l'énergie d'activation par l'approximation de Coatss-Redfern dépend uniquement du paramètre E / RT Alors qu'elle est indépendante de la loi cinétique de la réaction.

L'énergie d'activation peut être déterminée à partir de la méthode Coats-Redfern avec une précision meilleure que 5%, même pour des valeurs de x inférieures à 5. Cela

semble indiquer que cette méthode peut être utilisée pour effectuer l'analyse cinétique dans une gamme de x plus grande que celle proposée par les auteurs [26].

Parmi les méthodes de calcul simples, la méthode différentielle de Friedman est la plus universelle [27, 28]. Cela provient probablement du fait que cette méthode ne repose sur aucune approximation mathématique. La méthode d'Ozawa, Flynn et Wall [29, 30] est également bien adaptée, sauf aux valeurs extrêmes de conversion. La méthode de Kissinger, Akahira et Sunose [31, 32] donne des résultats plus précis que FWO. L'approche classique consiste à utiliser les méthodes intégrales pour détecter une éventuelle influence du bruit de mesure sur la méthode de Friedman.

I.3 Les paramètres cinétiques :

Pour analyser une réaction thermiquement activée en utilisant l'approche décrite par les équations (5) et (6), nous devons obtenir le triplet cinétique : E, A, et la fonction $f(\alpha)$. Généralement $f(\alpha)$ n'est pas connue au départ de l'analyse et A est un facteur préexponentiel qui peut être ajusté facilement après que les deux autres éléments du triplet soient déterminés ; l'analyse est habituellement commencée après la détermination de E, la combinaison de la valeur de E et d'une courbe simple de transformation fournit essentiellement la solution à la détermination du triplet cinétique, et détermine ainsi la cinétique de la réaction dans le cadre simplifié fourni par les équations (5) et (6). De là, il est clair que la détermination de l'énergie d'activation, soit l'étape cruciale dans l'analyse.

I.3.1 L'énergie d'activation

La raison de l'importance de la détermination de l'énergie d'activation de la réaction se situe dans le fait que l'énergie d'activation pour la réaction globale sera généralement liée à une énergie d'activation pour le processus physique qui détermine le taux de la réaction. Par exemple, si le taux déterminant l'étape est la diffusion, l'énergie d'activation du processus global sera déterminée dans la plupart des cas par l'énergie d'activation pour la diffusion de cet élément. Par conséquent l'objectif de l'analyse d'énergie d'activation n'est pas seulement comme la première étape de la caractérisation du triplet cinétique, mais peut être également un objectif en soi même, menant ainsi à une meilleure compréhension des mécanismes de la réaction.

Pour l'analyse d'énergie d'activation, on a proposé les méthodes d'analyse soconversionelles.

1. L'exposant d'Avrami n(T) :

Si la réaction correspond à la cinétique de JMAK l'exposant n de la réaction sera obtenu au cours de ce procédé. Cependant, au lieu d'obtenir l'expression totale pour $f(\alpha)$, clans certains cas l'analyse peut être limitée juste à l'obtention de n sans considérer l'expression générale $f(\alpha)$. Une telle analyse très limitée peut être imposée si les dernières parties de la réaction ne peuvent pas être analysées à cause du recouvrement excessif avec la réaction suivante, ou si aucune description satisfaisante des dernières étapes de la réaction ne peut être trouvée lorsqu'on utilise les expressions standards de $f(\alpha)$. Plusieurs

-

 $\left[\right]$

~

 \square

 \square

 \square

 \bigcap

 \square

 \square

 $\left[\right]$

Techniques expérimentales

et

Matériau utilisé

Toutes les expériences ont été effectuées au laboratoire d'Annaba LM2S.

II.1 Techniques expérimentales

II.1.1 Analyse dilatométrique :

L'analyse dilatométrique est une méthode physique largement utilisée pour caractériser le comportement thermique des matériaux. Elle consiste à détecter et suivre les transformations de phases par mesure des variations dimensionnelles relatives $\Delta L/L_0$ en fonction de la température.

•Si on chauffe un échantillon, la température varie, une augmentation régulière de sa longueur est détectée si on n'a pas de transformation.

•Par contre si une transformation se produit à température T, il en résulte une augmentation irrégulière de sa longueur, une anomalie apparait sur la courbe ($\Delta L/L_0$, T).

Le fait de chauffer un matériau accroît son énergie interne: les atomes possèdent une énergie thermique et vibrent autour de leur position moyenne. Cette vibration dépend de la température mais aussi du potentiel créé par les atomes voisins.

Les amplitudes d'oscillations des atomes augmentent et de ce fait leur inter-distance moyenne devient plus notable. Cet accroissement de leur écartement moyen est relié à la température par un facteur de proportionnalité qui est le coefficient de dilatation. Par suite, le comportement thermique d'un matériau quelconque peut être caractérisé par les valeurs que prennent les grandeurs mécaniques.

Techniques expérimentales

La dilatométrie [38] permet de déterminer les températures de transformations de phase en fonction du changement de volume du matériau considéré. Si une transformation se produit à une certaine température, on constate un changement de dimensions au niveau de l'échantillon, ainsi qu'une variation du coefficient de dilatation qui se traduit par une anomalie (expansion ou contraction) sur la courbe dilatométrique.

Le coefficient de dilatation thermique α qui exprime le degré de la variation de la longueur en fonction de la température présente une propriété thermique propre à chaque matériau qui peut être exprimée en tant que:

Pour un corps pur on a :

$$\frac{\Delta l}{l_0} = \alpha \,\Delta T \tag{II. 1}$$

Où

Π

$$\Delta l = l_T - l_0 \tag{II.2}$$

 ΔL : est la longueur de changement

 ΔT : est l'augmentation de la température

 l_T : est la longueur de l'échantillon à la température T

10 : est la longueur initiale de l'échantillon

 α : est le coefficient de dilatation du matériau.

Par conséquent, $\Delta L / L_0$ varies linéairement avec température T pour un matériau monophasé. Pour une relation de matériau multiphasé (. Équation (II.1)) devient:

$$\frac{\Delta L}{L_0} = (\alpha_1 + \alpha_2 + \dots + \alpha_n) \Delta T \tag{II.3}$$

où α_1 , α_2 ,..., α_n sont les coefficients linéaires de l'expansion thermique de la décomposition de n phases. Procédé de décomposition de solution solide sursaturée lors d'un chauffage continu subit précipitation d'une ou plusieurs phases. Donc, $\Delta L / L0$ présentera les déviations de la linéarité, liées à les phases de transformation qui se produit pendant le chauffage.

En dilatométrie, on mesure la variation de la longueur ΔL en fonction de la température de chauffage ΔT et du temps Δt . Ces deux dernières quantités sont liées à la vitesse Φ ;

$$\Delta T = \Phi \Delta t \qquad (II.4)$$

Le dilatomètre utilisé dans ce travail est de type L75HS1550 (fig.II.2), dont une gamme de température allant de : 25°C à 1600°C. Les vitesses de chauffage et de

Techniques expérimentales

Les rayons diffractés sont transformés par l'électronique en signaux mesurables. Sur un diffractogramme X, l'information est donnée par des raies caractéristiques du composé recherché ; leur position en angle 2θ et leur intensité figurent également sur le diagramme en nombre de photons.

Le diffractomètre automatisé utilisé dans ce travail est de type PANalytical EMPYREAN opérant en géométrie Bragg-Brantano (figure II.7) suivant les conditions suivantes :

Figure II.7: Le diffractomètre utilisé de type : PANalytical EMPYREAN.

La source des rayons X est produite par une anticathode cuivre avec deux longueurs d'ondes ($\lambda_{k\alpha 1} = 1.5405980$ Å et $\lambda_{k\alpha 2} = 1.5444260$ Å) bien déterminé, alimentée par une génératrice tension – courant; Les diffractogrammes de DRX des échantillons ont été enregistrés pour 20 compris entre 10° à 120°.

II.2 Matériau utilisé

Le matériau étudié est un alliage à base d'aluminium type Al-Si-Mg. On a obtenu ce matériau d'un industriel, sous forme de pièces aptes à l'utilisation. Sa composition chimique est donnée au tableau II.1

Tableau II.1	•	composition	de	21	alliage (wt%	6)
--------------	---	-------------	----	----	--------------	----

					1		
	Si	Mg	Mn	Fe	Cr	Cu	Al
Wt%	1.195	0.587	0.480	0.231	0.112	0.030	97.365

II.3 Préparation des échantillons :

II.3.1 Prélèvement de l'échantillon :

La découpe des échantillons se faite, à l'aide d'une micro tronçonneuse ; on obtient généralement

On commence par découper pour chaque technique expérimentale un morceau adéquat.

> un parallélépipédique ,8 x 4 x 4 mm³ pour le dilatomètre (fig II.9).

Figure II.9 : la forme de l'échantillon utilisé pour le dilatomètre

un cylindre de 2 mm de diamètre et de 3 à 4 mm de hauteur pour le DSC

Figure II.10 : la forme de l'échantillon utilisé pour le DSC

Un parallélépipède de 10x10x2 mm³et de 1 mm de hauteur pour les observations à la diffraction des rayons X (fig II.11).

Chapitre II Techniques expérimentales Figure II.11. la forme de l'échantillon utilisé pour la DRX

II.3.2 Polissage:

Le polissage consiste à rendre la surface plane et brillante de façon à ce qu'elle ne présente aucune rayure susceptible de gêner l'examen ultérieur, en utilisant du papier émeris. Après chaque polissage les échantillons sont nettoyés de tout résidu à l'aide d'un solvant approprié tel que le méthanol, et séchés. En utilisant pâte diamantée Le polissage de finition se fait à l'aide d'une répartie à l'aide d'un diluant sur le disque ; les granulométries utilisées sont 9, 3 et 1µm.

Figure II.12.Polisseuse métallographique

II .3.4 Traitements thermiques :

Les traitements thermiques ont pour but de modifier la nature et la répartition des constituants d'un matériau. Selon le domaine d'application du matériau les traitements peuvent améliorer ou détériorer les propriétés mécaniques de ce dernier. En général, les traitements thermiques utilisés en métallurgie sont : la trempe, le revenu, le recuit, le vieillissement et l'homogénéisation [41].

Tous les échantillons utilisés subissent un premier traitement d'homogénéisation. On applique ce traitement pour avoir un matériau homogène d'un point de vu structurale.

Pour réaliser l'homogénéisation, on chauffe l'échantillon à une température T inférieure à la température de fusion du matériau pendant un temps déterminé. Le maintien à cette température permet la mise en solution des éléments d'alliage par leur diffusion d'une manière homogène dans tout l'échantillon. Ce traitement conduira aussi à augmenter la concentration des lacunes et d'homogénéiser la composition des éléments.

Après l'homogénéisation, l'échantillon est trempé à l'eau, pour figer la microstructure et obtenir une solution solide sursaturée.

Notre étude consiste à étudier la phase métastable β " présente dans notre matériau. Il faudrait en premier commencer par déterminer par DSC son domaine d'existence en température. Ce qui permettra par la suite de définir le traitement adéquat : vitesse de chauffage V_c, température de maintien T_m et temps de maintien t_m. L'échantillon ainsi

Techniques expérimentales

traité servira à une analyse de DRX pour voir si on peut attribuer un diffractogramme à cette phase métastable β ". Le traitement sera un chauffage de l'ambiante jusqu'à T_m avec une vitesse de V_c pour un maintien de t_m.

Ce traitement a été réalisé dans un four tubulaire (fig.II.13)

Figure II.13 : Four (tubulaire) qui a servi au traitement

 \square

 \square

 \square

 $\left[\right]$

 $\left[\right]$

III.1 Cinétique de précipitation de l'alliage Al-Si-Mg :

La décomposition de la solution solide sursaturée obtenue par traitement de mise en solution, a été effectuée au cours d'un chauffage continue. Afin de viser la précipitation de telle ou telle phase, il est nécessaire de choisir les paramètres du traitement thermique correspondant. Dans ce contexte, l'analyse dilatométrique et la calorimétrie différentielle (DSC) se sont imposées comme des haltes nécessaires.

III.1.1Traitement thermique d'homogénéisation :

Pour réaliser l'homogénéisation, on a chauffée nos échantillons à une température T, inférieure à la température de fusion du matériau, autour de 540°C pour nos alliages d'aluminium pendant une heure. Après ce traitement thermique, l'échantillon est trempé à l'eau (fig III.1).

III.1.2 L'analyse des mesures obtenues par DSC:

L'analyse par cette technique, permet l'obtention d'un thermogramme constitué de plusieurs pics exothermique et endothermique correspondant respectivement à la précipitation et à la dissolution des différentes phases.

Les vitesses de chauffage choisies par la DSC sont 5,8 et 10°C/mn.

Π

 $\left[\right]$

 \bigcap

 \square

 $\left[\right]$

résultats et discussions

Les courbes de DSC, qu'on appelle communément ; thermogrammes; permettent de déterminer directement les températures ; du début de transformation T_D , du pic T_P et de fin de transformation T_F (tableau.III.1), et même les mesures des valeurs des énergies de transformation pour chaque vitesse de chauffage (fig.III.2).

Figure III.3 : Les thermogrammes de DSC pour les vitesses de 8 et 10°C/mn

L'analyse des thermogrammes précédents (figure III.2, 3) permettent de déterminer le pic relatif à la formation de la phase β'' (tableau III.1).

Tableau III.1 : les températures de début, de pic et de fin de la formation de la phase métastable β'' par DSC

Vitesse de chauffage (°C/mn)		T- [9C]	T LOCI
E			$I_F [°C]$
3	208.05	239.97	265.89
8	216	245.3605	272
10	222	248.20512	276

III.1.3 L'analyse des mesures obtenues par dilatomètrie :

Des mesures dilatométriques ont été effectuées pour les mêmes vitesses de chauffage, que ceux utilisées pour la DSC : 5,8 et 10°C/mn présenté dans figure III.4.

Figure III. 4: Les courbes de dilatation $\Delta L/L_0 = f(T)$ des échantillons chauffés par différentes vitesses.

L'analyse des résultats obtenus, montre que la variation de $\Delta L/L_0$ en fonction de T est pratiquement linéaire (figure III.4)

On peut déterminée le coefficient de dilatation de cet alliage pour chaque vitesse de chauffage par le fit linéaire de chaque courbe (figure III.5). Celui-ci peut être obtenu aisément en utilisant le logiciel Origin.

Les résultats obtenue (tableau III.2) après le fit linéaire montrent que le coefficient de dilatation varie en fonction de la vitesse de chauffage. On peut retrouver cette dépendance entre la vitesse et le coefficient de dilatation en combinant les deux relations suivantes :

Coefficient de dilatation : $\alpha = \frac{dL}{dT} \frac{1}{L_0}$

Vitesse de chauffage : $\phi = \frac{dT}{dt}$

On aura : $\alpha = \frac{dL}{dT} \frac{1}{L_0} = \frac{dt}{dT} \frac{1}{L_0} \frac{dL}{dt} = \frac{1}{\phi} \frac{1}{L_0} \frac{dL}{dt}$

Cette dernière équation montre que si la vitesse ϕ augmente le coefficient de dilatation α diminue.

Tableau III.2 : Le coefficient de dilatation pour les différentes vitesses de chauffage

e (°C/mn)	α	
5	2.49376*10 ⁻⁵	
8	2.17569*10 ⁻⁵	
10	2.2493*10 ⁻⁵	
	e (°C/mn) 5 8 10	$\begin{array}{c c} e (^{\circ}C/mn) & \alpha \\ \hline 5 & 2.49376^{*}10^{-5} \\ \hline 8 & 2.17569^{*}10^{-5} \\ \hline 10 & 2.2493^{*}10^{-5} \end{array}$

L'observation minutieuse de la figure III.5 montre que les courbes ($\Delta L / L_0$, T) pour différentes vitesse de chauffage ne sont pas vraiment linéaire, mais présentent quelques anomalies liées à la formation ou la dissolution des phases métastables. Chaque anomalie est un point d'inflexion, qui correspond à un maximum dans la courbe dérivée (figure III.6).

résultats et discussions

Ces diffractogramme sont constitués de pics qui ont des paramètres de maille très proche à celui de l'aluminium, en plus on peut observer d'autres pics moins intenses traduisant la présence d'autres phases stables et présente en petite quantité. Par contre aucun nouveau pic n'est apparu après le traitement de vieillissement. De là on peut dire que la quantité formée de la phase β'' n'est pas suffisante pour que le diffractomètre puisse la détecter.

Mais la comparaison des paramètres de maille calculées pour les deux échantillons, l état homogénéisé (figure III.8) et celle recuit à 240°C. Montre la diminution du paramètre de maille associé à la matrice d'aluminium. Ceci, peut être interprété comme étant le fait de la diffusion des composés chimiques, le Si et le Mg, présents dans la solution solide de l'alliage, former la nouvelle phase métastable β'' . Rappelant que la composition stœchiométrique de la phase β'' est Mg₅Si₆. Les deux techniques thermiques DSC et la d latométrie confirment l'apparition de cette phase métastable.

III.2 Paramètres cinétique :

Pour déterminer les paramètres cinétiques comme l'énergie d'activation, on fait ressortir la quantité transformée en fonction de la température pour la phase β'' à chaque vitesse.

III.2.1. La fraction transformée de la phase β" traitée par DSC

La fraction transformée est obtenu à partir des courbes DSC par l'intégration de la zone de surface sous les pics exothermiques de la phase formée β " figure III.10

résultats et discussions

Tel que La fraction α transformée à n'importe qu'elle température T est donnée comme suit

$$a = \frac{S_T}{S_{tot}}$$

Ou S_{tot} est la surface totale des pics exothermiques (ou endothermiques) entre la température T_D où le pic commence et la température T_F où le pic se termine ; le S_T est la surface partiel des pics exothermiques (ou endothermiques) entre la température T_D et T.

La fraction transformée pour les vitesses 5, 8 et 10°C/mn sont regroupées dans la figureIII.12

III.2.1.1 Détermination de l'énergie d'activation

a) Méthode de kissinger

Pour la détermination de l'énergie d'activation du processus globale de la transformation, nous avons utilisé la méthode de kissinger [5]. Cette méthode repose sur l'hypothèse selon laquelle, au cours de la montée en température, la réaction passe par un maximum avant de décroitre.

Pour chaque vitesse de montée en température, nous avons déterminé la température T_p pour laquelle la transformation est maximale dans la première étape, l'évaluation de $\ln\left(\frac{\phi}{T_p^2}\right)$ en fonction de $\frac{1}{R T_p}$ et donc linéaire avec une pente de E

L'énergie d'activation globale de la formation de la phase β'' déterminer par la méthode de kissinger est égale à 178.437KJ/mol.

b) Méthode de kissinger-Akahira-Sunose (KAS)

Π

Π

En appliquant les méthodes isoconversionnelles de kissinger-Akahira-Sunose (KAS), on peut déterminer la variation de l'énergie d'activation en fonction de la fraction formée à chaque température. Qui est donnée par l'équation suivante :

$$ln\left(\frac{\phi_i}{T_{\alpha,i}^2}\right) = ln\left(\frac{RA_{\alpha}}{E_{\alpha}g(\alpha)}\right) - \frac{E_{\alpha}}{RT_{\alpha,i}}$$

Tel que dans notre cas pour chaque fraction transformée on peut tirer 3 températures $(T_{\alpha,i})$ chaque une est correspondante à une vitesse de chauffage, et la pente de la variation de $ln\left(\frac{\phi_i}{T_{\alpha,i}^2}\right)$ en fonction de $\frac{-1}{RT_{\alpha,i}}$ donne l'énergie d'activation pour une fraction transformée.

 $\left[\right]$

Π

 $\left[\right]$

Ces résultats montrent bien que le coefficient de dilatation α diminue quand la vitesse augmente. Ce comportement montre bien que ces valeurs sont probablement proches des valeurs réelles du matériau.

Les deux courbes permettent la diduction des courbes exclusives des phases formées dans le matériau. La soustraction de la courbe de la matrice de celle obtenue expérimentalement permet l'obtention de ces courbes relatives aux phases, en tenant compte du domaine de formation de la phase β'' d'après le tableau III.3

Tel que :
$$\frac{\Delta L_{mes}}{L_0} = \frac{\Delta L_{mat}}{L_0} + \frac{\Delta L_{pré}}{L_0}$$

Ou : $\frac{\Delta L_{exp}}{L_0} = \alpha_{mat}\Delta T + \alpha_{pré}\Delta T$
Donc : $\alpha_{pré}\Delta T = \frac{\Delta L_{mes}}{L_0} - \alpha_{mat}\Delta T$

Tel que α_{mat} , $\alpha_{pré}$ sont les coefficients de dilatations de la matrice et des phases précipités.

Et : ΔL_{mes} , ΔL_{mat} , $\Delta L_{pré}$ sont respectivement la variation de longueur mesuré, de la matrice et précipités.

Figure III.15: Courbe relatif à la transformation de phase β '' obtenue pour la vitesse de chauffage 10°C/mn sur laquelle on peut voir les différente quantités physique.

La fraction transformée de la phase β ' peut être déterminée de la figure III.15.

 \bigcap

 $\left[\right]$

Π

 \square

D'une manière générale la quantité de phase formée pour chaque température T est proportionnelle à $\Delta L_T/L_0$. Tel que la fraction de la phase formée à une température T, est donc donnée par la relation suivante:

$$\alpha = \frac{\Delta L_T / L_0}{\Delta L_{max} / L_0}$$

Où ΔL_T / L_0 et ΔL_{max} / L_0 sont le changement de longueur relative correspondant à la précipitation de phase.

Cette dernière équation permet d'avoir la fraction transformée en fonction du temps (figure III.16)

La fraction transformée pour les vitesses 5, 8 et 10°C/mn sont regroupées dans la (figure III.17)

Figure III.17: Evaluation de la fraction transformée de la phase β '' en fonction de la température pour les vitesses 5,8 et 10°C/mn.

Remarque :

Pour la gamme de température donnée (de transformation de phase), la réponse dilatométrique est une combinaison de la matrice et de la phase. Cependant, des plages de température de deux phases successives peuvent se chevaucher partiellement. Qui est, deux phases peuvent coexister quelque part dans une plage de température. Par conséquent, la réponse dilatométrique pour la gamme de température donnée, pourrait être la somme de la matrice et les deux effets phases. Il est évident que, dans ce cas, il ya quelques difficultés pour analyser le dilatogramme:

• La détermination de la température de transformation de début et de fin pour chaque phase.

• Tenant compte du fait que la réponse globale enregistrée est une combinaison d'au moins deux signaux.

• Phases réponse dilatométrique est généralement beaucoup plus faible que la matrice.

III.2.2.1 Détermination de l'énergie d'activation E

a) Méthode de kissinger

L'énergie d'activation globale de la formation de la phase β'' déterminer par la méthode de kissinger est égale à 85.646 KJ/mol cette valeur et proche de celle déduite par Daoudi et al [37], pour le même matériau. Ces derniers autres ont déterminé cette valeur grâce à la technique de DSC.

Π

Références bibliographiques

- [1] Johnson WA, Mehi RF Reaction kinectics in processes of nucleation and Growth trans aminst min metal pet eng 1939;135:416-58.
- [2] Avrami M. kinetics of phase change I General theory. J Chem phys 1939;7:1103-12
- [3] Avrami M. Kinetics of phase change III Granulation phase change an microstructures J Chem phys 1941;9:177-84.
- Kolmogorov AN. A statistical theory for the recrystallization of metals Akad Nauk SSSR.Izv Ser Matem 1937;1:355-59.
- [5] Kissinger HE Reaction Kinetics in Differential Thermal Analysis Anal Chem. 1957;29:1702-6.
- [6] Augis JA and Bennrtt JE. Calculation of the Avramie Parametrs for heterogeneous Solid State Reactions Using a Modification of the Kissinger Method. J Therm Anal.1978;13:283-92.
- [7] Matusita K and Sakka S. Kinetics Study of Crystallization of Glass by Differential Scanning Calorimetry. Phys Chem Glasses.1979;20:18-4
- [8] Ta n g T B and Ch a u d h r i M M. Analysis of Dynamic Kinetic Data From Solid-State Reaction. J therm Anal. 1980;18:247-61.
- [9] Vyazovkin S, and Wight CA. Model-Free and Model Fitting Approaches to kinetinc analysis of Isothermal and Nonisothermal Data, Thermochim Acta. 1999;53:340-41
- [10] Budrugeac P and Segal E. Some Problems Concerning the Evaluation of the Activation Energy from Non-Isothermal Data for Reactions with Activation Parameters Decendent on the Degree of the Conversion. ICTAC News 2000;33(1):39.
- [11] Todinov MT. on some Limitations of the JMAK Equation. Acta mater 2000; 37:1321-32
- P. Krüger; J. Phys. Chem. Solids, 54 (11) (1993) 1549-1555. reactions at increased temperature, Thermochim. Acta 3 (1971) 1–12.
- [13] K. Matusita, S. Sakka ; J. Non-Crystalline Solids, 38- 39 (1980) 741-746.
- [14] N. Sbirrazzuoli, Y. Girault, L. Elégant ; Thermochimica Acta, 293 (1997) 25-37.
- [15] Friedman HL, Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic. J Polym Sci, Part C.

1964;6:183-95

-

 \bigcap

- [16] Starink MJ. The Determination of Activation Energy From Linear Heating Rate Experiments: A Comparison of the Accuracy of Isoconversion Method. Thermochim Acta. 2003.404/163-76.
- [17] Ortega A. A Simple and Precise Linear Integral Method for Isoconversional Data. Thermochim Acta. 2008;474:81-6
- [18] Ozawa T. A New Method Of Analyzing Thermogravimetric Data. Bull Chem Soc Jpn, 1965; 38:1881-86.
- [19] Flynn JH, Wall LA. General Treatment of the Thermogravimetry of polymers. J Res Natl Bur Stand 1966,70A:487-523
- [20] Akahira T, Sunose T. T. Trans. Joint Convention of Four Electrical Institutes, Paper No. 246, 1969 Research report Chiba Institute of Technology Sci.Technol. 1971,16;22-31
- [21] Vyazovkin S. Modification of the Integral Isoconversional Method to Account for Variation In the Activation Energy. J Comput Chem 2001;22:178-83.
- [22] Coats AW, Redfem JP. Kinetic Parameters from Thermogravimetric Data Nature.1964;201:8-69.
- [23] Doyle C.D. Estimating Isothermal life from Themogravimetric Data J Appl Polym Sci 1962,6,639-42.
- [24] G.1. Senum and R.T. Yang, J. Therm. Anal., 11 (1977) 445.
- [25] N. Hajduk and J. Norwisz, J. Therm. Anal., 13 (1964) 68.
- [26] A.W. Coats and J.P. Redfern, Nature 201 (1964) 68.
- [27] N. Sbirrazzuoli, Y. Girault et L. Elegant, Thermochim. Acta, 293, 25-37(1997).
- [28] E. Leroy, Thèse deDoctorat, INSALyon, France (2000).
- [29] T.Ozawa, Chem. Soc. Japan, 57, 639(1984).
- [30] T.Ozawa, Thermochim, Anal., 203,159(1992). [16] E. Leroy, Thèse deDoctorat, INSALyon,France(2000).
- [31] H.E. Kissinger, J. Res. Nat. Bur. Stand, 57, 217(1956).
- [32] T. Akahira and T. Sunose, Trans. Joint Convention of FourElectricalInstitutes, 246, (1969).
- [33] E.Woldt; J. Phys.Chem. Solids, 53, 521(1992).

- [34] M. J. Starink, A. J. Hobson, I.SinclairandP. J. Gregson: Mater.Sci. Eng. A, 289,130– 142(2000).
- [35] Ozawa T. Kinetics of non-isothermal crystallization. Polymer.971;12: 150–8.
- [36] Liu F, Sommer F, Mittemeijer EJ. Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters. J Mater Sci. 2007; 42: 573–87.
- [37] Daoudi M I, Etude des Propriétés Microstructurales d'un Alliage Al-Si-Mg extrudé: influence des traitements thermiques, 2012.
- [38] EXPERT SYSTEM/MODERNA, "The heating microscope "Misura 3" : a completely updating instrument with a dilatometric resolution.," <u>International Ceramics Journal</u>, Octobre 1999, pp 161 162.
- [39] MOTHE C. G. et AZEVEDO A. D. Análise Térmica de Materiais. São Paulo (Brazil) : iEditora, 2002. 300 p. (ISBN 85-87916-20-3).
- [40] Lucien Elégant, Jean Rouquerol, "Technique de l'ingénieur", R.3010. "Applications des microcalorimètres aux mesures thermiques" (2001).
- [41] Y.Aouabdia. Mémoire de magister. Université de Constantine (2005).
- [42] Dutta I and Allen SM. A Calorimetric Study of Precipitation in Commercial Aluminium Alloy 6061. J Mater Sci Let. 1991;10: 323-26.
- [43] Matsuda K, Ikeno S, Matsui H, Sato T, Terayama K and Uetani Y. Comparison of Precipitates Between Excess Si-Type and Balanced-Type Al-Mg-Si Alloys During Continuous Heating. Met Mater Trans A.
- [44] Moreau G, Cornet JA, Calais D. Accélération de la Diffusion Chimique sous Irradiation dans le Système Al-Mg. J Nucl Mater. 1971 ;38 :197-202.
- [45] Nishizawa T. Thermodynamics of Microstructures. ASM Int. 2008.
- [46] Starink MJ, Zahra AM. β" and β Precipitation in an Al-Mg Alloy Studied by DSC and TEM. Acta Mater. 1998;46:3381-97.
- [47] Kempen ATW, Sommer F, Mittemeijer EJ. Determination and Interpretation of Isothermal and Non-Isothermal Transformation kinetics; the Effective Activation Energies in Terms of Nucleation Growth. J Mater Sci.2002;37:1321-32.
- [48] Y.Aouabdia. Mémoire de magister. Université de Constantine (2005).