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General Introduction

The objective of this course is to provide a transition between the knowledge of
analysis acquired in high school and the foundational concepts that will form one of
the pillars of mathematical training in undergraduate and engineering studies.

This document presents the Analysis 1 course that I teach during the first semes-
ter of the first year in the Computer Science Engineering program.

It contains the main mathematical analysis tools that students must understand
and master. The document can be used as a reference text for first-year computer
science students who will face mathematical problems and wish to learn techniques
to solve them.

The course is divided into six chapters covering the fundamental topics of Analysis

First chapter covers Field of real numbers, absolute value, the greatest integer
function, upper and lower bounds, the completeness axioms, the Archimedean pro-
perty, the density of rational numbers, extend real line, and includes related exercises.

Chapter Two presents different forms of complex numbers, Euler’s identity, the

" roots of complex numbers, and includes exercises.

nt

Chapter Three covers bounded and monotonic sequences, lower and upper limits,
subsequences, limits and their properties, convergence and divergence, adjacent, re-
currence and Cauchy sequences, and the Bolzano-Weierstrass theorem. .

Chapter Four introduces special classes of functions, explores limits, continuity
and discontinuity, covers fundamental theorems of continuous functions, the recipro-
cal function, the order of a variable, and includes exercises..



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

Chapter Five presents the definitions and properties of differentiable functions,
discusses Theorems on differentiable functions, Taylor’s formula, convexity and asymp-
totes of a curve, and includes exercises.

The last chapter covers elementary functions, including logarithmic and exponen-
tial functions, hyperbolic functions and their inverses, and includes exercises."



Chapter 1

Real numbers

1.1 Number Sets

In mathematics, we often study sets whose elements are real numbers. Some spe-
cial sets of numbers that are frequently encountered are defined as follows :

— N is the set of Natural numbers : N ={0,1,2,3, ...}

— 7 is the set of Integers : The set of integers Z includes all positive and negative
whole numbers, as well as zero, like this

Z={i—3,-2,-1,0,1,2,3,..}
— D is the set of Decimal numbers : D = {15 [p € Z,n € N}.

Example 1.1. 1.234 = 1120334 is a decimal number.

— Q is the set of Rational numbers : Q ={%|p € Z,q € Z"}.
Rational numbers are numbers that can be expressed as the quotient of two in-
tegers, i.e., a fraction, with a non-zero denominator. Note that all terminating
or repeating decimals (also known as periodic decimal expansions) are rational
numbers.
3

Example 1.2. £ =0.6 (terminating decimals).

1
3= 0.33333...and 1.179325325325... (repeating decimals)
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— R is the set of Real numbers, that can be represented by any decimal expan-
sion, limited or not.

Example 1.3. 123.10100010000100001.........

— R\Q is the set of Irrational numbers, which are real numbers that cannot be
expressed as the quotient of two integers. In other words, an Irrational num-
ber is a real number that cannot be written in the form §, where p and ¢ are

integers, and ¢ # 0.

Example 1.4. —v/2, 7, and e.
These numbers have decimal expansions that are non-terminating and non-
repeating.

— C is the set of Complex numbers is defined as :
C={a+1bi|abeR}

Where i is the imaginary unit satisfying i = —1.

Recall that a complex number is formed by adding a real number a to a real
b multiple of ¢, where i> = —1. The real number a is called the real part, and
the real number b is called the imaginary part of the complex number.

Remark 1.1. We have
NCcZcDcQcRcC.

Lemma 1.1. A number is rational if and only if it admits a periodic or finite decimal

writing.

Proof. The direct implication (=) is based on Euclid’s Division. For the converse
(<) let’s examine an example to illustrate how it works :

Let us show that x = 12,34202120212021... is rational number.
Here, the repeating decimal starts two digits after the decimal point ; therefore, we
multiply by 100 :

100.x = 1234, 202120212021..... (1)

Now, we will shift everything to the left by the length of one period. Therefore, we
multiply by 10000 to shift the decimal point four digits to the left.

10000.100.x = 12342021, 20212021..... (2)

8
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The fractional parts after the decimal point in lines (1) and (2) are identical. There-
fore, when we subtract equation (1) from equation (2), we obtain

10000.100.z — 100.z = 12342021 — 1234

SO
999900.x = 12340787
therefore
12340787
999900

So of course = € Q.
Example 1.5. Prove that /2 is not rational number.

Proof by Contradiction. Assume that /2 is a rational number. By definition, a
rational number can be expressed as

\/5—]5, pEZL, qeL’,

where p and ¢ have no common factors other than 1.
Squaring both sides of the equation

(V2)* = Z—z = p' =2
p? is even, then p is even. Thus, we can express p as :
p=2p
where p’ is an integer. Substituting p = 2p’ into the equation p? = 2¢* :
4p"? = 2¢° = ¢* = 2p”.

The equation ¢? = 2p™ implies that ¢? is even, By the same reasoning as before, ¢
must also be even. Thus, we can express ¢ as :

qg=2m, meZL

We have both p and ¢ are even, and have 2 as a common factor. However, this
contradicts our initial assumption that p and ¢ have no common factors other than
1. We conclude that v/2 is not a rational number. Therefore, V2 is irrational.
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1.2 Operations with Real numbers

There are several fundamental properties concerning the operations of addition
and multiplication on real numbers that are essential in algebra.
The set of real numbers, denoted R, is equipped with two internal operations : addi-
tion (4) and multiplication (), satisfying the following axioms :

— Commutative property of addition : V(z,y) e RE x+y=y+=x
— Associative property of addition : V(z,y, z) € R3,

(x+y)+z=a+(y+2)
— Identity property of addition : Ve R,z +0=0+x==x

— Additive inverse property : Vo € R,z + (—z) = (—x)+ 2 =0
— Commutative property of multiplication : V(z,y) € R?,
TXY=yXxz
— Associative property of multiplication :V(z,y, z) € R3,
(xxy)xz=xx(yx2)
— Identity property of multiplication : Vx e Rix x1=1xx==x
1

— Multiplicative inverse property : Vx € R*, z x % =-xx=1

— Distributive property : V(z,y,2) E R  x X (y+2) =z xy+x X 2.

1.3 The field of real numbers

1.3.1 Commutative Field

The set of real numbers R, equipped with the usual addition and multiplication
operations, forms a commutative field.

Remark.1.2. Generally, any set, such as R, whose elements satisfy the above pro-
perties is known as a field.

10
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For example, the set of integers Z is not a field because it does not satisfy the pro-
perty of multiplicative inverses. However, in Z, only 1 and —1 have multiplicative
inverses. But, there is no integer n such that 2 x n = 1, because % is not an integer.

1.3.2 Totally Ordered Field
Proposition 1.1. (R, +, x, <) is a totally order field.

Proposition 1.1. means that < is a total order relation in R ; that satisfies the follo-
wing properties for all elements x,y, and z in R :

1. Reflexivity : Vx e R, z < .
2. Antisymmetry : If (z <y and y<z)=—= z=y.
3. Transitivity : If (z <y and y <z) = x < z.

4. < is total relation : Vz,y € R, (z < y) or (y < z).

Remark 1.3. A relation R on a set A is called a total order if, for every pair of
elements z,y € A, is comparable.

This property is known as comparability or the trichotomy property, ensuring that
every pair of elements in A is comparable under R.

1.3.3 Commutative Archimedean Field

A field F is said to be a commutative Archimedean field if :
— F'is a commutative field,
— F satisfies the Archimedean property :

Vx € F, dn € N such that = < n.

Proposition 1.2. (R, +,-) is commutative Archimedean field.
From these axioms, many properties of R can be derived. Some examples are given
in the next :

- Ve,y,zeR, e <y=—z+2<y+z

—Vr,yeR, (r<yandz>0) =z xz<yxz

11
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—Vr,y,2,t eR, (r<yandz<t)=zx+2<y+t
—rSYy= —r=>-Y
—z>0=1>0

(@ <0)A(Y=20) =1y <0

O<zr<y=0<li<l
Y T

- VmeNO<z<y=0<2™ <y™

1.4 Principle of Mathematical Induction
Mathematical induction is a method of proof used to show that a property holds
for all natural numbers from a certain starting point. It involves three main steps :

1. For n =0 or n = 1, prove that the property is true.
2. Assume that the property is true for n.
3. Use the induction hypothesis to prove that the property is true for n + 1.

Example 1.6. Prove that for all integers n > 1 :

1
1+2+3+~--+n:”(”T+).
Forn=1:
1(1+1 2
1:%2521 is true
Assume the formula holds for n, i.e.,
1
1+2+...+n_@

We must show that :

1+2++n+(n+1)=

Using the induction hypothesis :

12
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W) +(n+1)

n(n+1)+2(n+1)

1+2+---—|—n—|—(n+1):(

So the formula also holds for n + 1.
By the principle of mathematical induction, the formula

n(n+1)

L+24- fn=——

is true for all integers n > 1.

1.5 Absolute value

Definition 1.1. The absolute value of a real number x, denoted as |x|, represents
the distance of x from zero on the real number line, it is always positive.
Mathematical definition : Absolute value for a real number x is defined as

| = z x>0
=Y =2 ifz<0

Example 1.7.

2 2

1.5.1 R-Valued Field

The set of real numbers R is a valued field, i.e., a field equipped with an absolute

value function :
|-]:R— R*

Satisfying the following properties for all x,y € R :
— (Positivity) : || > 0 and |z] =0 <= =0

— (Multiplicatives) : |zy| = |z|]y|

13
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— (Triangle inequality) : |z + y| < |z| + |y|.

Properties 1.1. For all z,y, and » € R, where r > 0. The following properties are
satisfied

L jz| >0, |—z|=]z|, x<|z|,and |z|=0<=2=0
2. V2= |z|, and |z|* = 2?
3. Jog] = [aldyl, and ¥ o £0, 1= b

4. |z|<r<= —r<z<rand |z|>r<=x>r or < —r

(@)

. Triangle inequality : Va,y € R, |z +y| <|z|+ |y

Indeed. Vz,y € R, we have
|z +y|* = (v +y)* =2 +y* + 22y

and
(lzl + [y])? = |2” + |yl + 2[x[ly| = 2* + »* + 2|z[]yl.

Apply the inequality xy < |zy|. Since |zy| = |z||y|, we have :
2z.y < 2|z|.|y|.

So
2 +yl* < (J2| + |y])*

Take the square root of both sides, therefore
[z +y| < [z + Jyl.

Remark 1.4. Inequality becomes equality if z and y have the same sign.
6. Second triangle inequality : ||z| — |y|| < |z — y|.
Indeed. Vzx,y € R, we have
[ = |z —y +y[ <[z -yl + |yl

14
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— |z = |y| < |z -y (1)

we have also
yl=ly —z+z[ < |y — 2| +|z]

then
ly| = |z| < |y — x| = |z — |

= —le—yl <lfz] =y (2)
From (1), (2), and properties 4, we obtain

| = lyll < |z —yl.

Training exercise 1.1.
1. Let the function f(z) = |x—3|+|x+3|, by writing f without the absolute value :

v — 3| = r—3, if >3
|l 33—z, if z<3
furthermore
x4+ 3, if > -3
|“”+3|_{—3—x, if oz <—3

So
—2z, if r< -3

flx)=<¢ 6, if xel[-3,3]
2z, if x> 3.

2. Solve the following equation
|4z + 8| — |z — 3| = 3.
Using definition of absolute value, then

dr+8, if @3> -2
|4:E+8|_{—4x—8, if 2 < -2

o — 3 = r—3, if >3
| —2+3, if z<3

Solve in each interval :

15
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— x < —2. In this interval, both 4x + 8 and x — 3 are negative. Substitute these
into the original equation :

—14
—4x—8+x—3:3:>x:T.

Since ‘714 ~ —4.67, which is less than —2, this solution is valid in this interval.
— —2 <z < 3. In this interval 4x+8 is positive and x — 3 is negative. substitute
these into the original equation, then

4x+8+x—3:3:>x:?.

Since _?2 ~ —0.4, which is between —2 and 3, this solution is valid in this

interval.

— x > 3. In this interval, both 4z + 8 and x — 3 are positive, substitute these
into the original equation

dr+8—v+3=3=—ax=—.

3
Since %8 ~ —2.67, which is less than 3, this solution is not valid in this
interval.
Therefore the solutions to the equation are : x = 77147 and x = %2

3. Solve the following inequality :
|z + 2| > |3z + 5]

Using definition of absolute value, then

Jx+2, i x>-2
|x+2|_{—x—2, if o< -2

and

3r+5, if xZ%E‘

’3”7*5‘:{ 3z -5, if z< 2

We will analyze the inequality in each of these intervals.

16
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— x < —2. In this interval, both x4+ 2 and 3x + 5 are negative. Substitute these
into the inequality, then

-3
—1:—2>—3:c—5:>:c>7

Since x < —2 in this interval, there is no solution because _73 is greater than

—2.

- 2<zx< %5 In this interval, 2 +2 > 0 and 3z + 5 < 0. Substitute these
into the inequality, then

x—|—2>—3x—5:x>%

Since‘T7 ~ —1.75, which is greater than —2, the solution in this interval is

- x> %5 In this interval, both x 4+ 2 and 3z + 5 are positive. Substitute these
into the inequality, then

-3
(L’+2>3I+5:>ZE<7

Since x > _?5 ~ —1.67, which is less than _73, the solution in this interval is

]
3 ='S 7

Combining the solutions from all intervals, the solution to the inequality is :

1.6 The greatest integer function

Definition 1.2. The greatest integer function of a real number z, denoted by [z] is
the largest integer value less than or equal to x. This is written as :

f: R—2Z

17
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Example 1.8. [1.65] =1, [0.016] =0, [-3.14]=—4, [-1.96] = —2.
Properties 1.2. Vx,y € R, the following properties are satisfied :

1.V eR, [z]€Z

2. [z]<z<z]+1, and z—1<[z] <z

3. [z]| =k =z €[k k+1]

4. Ve eR,andm € Z, [x+m|=[z]+m

5. Vo,y e Rjif o <y=[z] <[y]

Proof.
4- For any x € R, we have
[z] <x <[z]+1

which implies
[z]+m <x4+m<[z]+m+1,

for all m € Z. On the other hand
[z+m|<z+m<[z+m]+ 1.
Since [z + m] is the largest integer less than or equal to = + m, then
Wl 4m<fo+m (1)
Similarly, [x + m] + 1 is the smallest integer greater than or equal to x + m, so
[z+m]+1<[z]+m+1.
After simplifying, we obtain
prml<fl+m (2

From (1) and (2), we conclude [z +m] = [z] +m.

18
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5- Let z,y € R, and assume z < y. Let m = [z] and n = [y], then
m<x<m+1l, and n<y<n-+1,

SO
m<x<y<n+l.

Thus, we have
m<n+1l—m<n

because m and n are integers numbers. Therefore [z] < [y].

Training exercise 1.2. Solve the following equation with greatest integer function :
a) [P +[z+1]-3=0
b) [55) = —2

Solution.

a)

22+ [z +1]—-3=0
Using property 4, we obtain

(2] +[2] +1-3=0

Noted [z] = y, then the equation becomes

Y+y—2=0
this equation admits two solutions y =1 or y = —2.
Which implies [#] = 1 or [xr] = —2. Therefore the solutions to the equation

are : x € [—2,—1[U[L, 2].

b) According to property 3, we have

r—1 r—1
=-2 = 2< —— < -1
2 ) - 2

[

which implies
4 <zr-1<-2=— -3<zx< -1

Therefore the solutions to the equation are : x € [—3, —1].

19
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1.7 Intervals

Definition 1.3. A subset I of R is called an interval if :

Vaecl, Vbel, VxeR, (a<z<b)=zxecl.

Let a and b be two real numbers such that a <b.

The table below summarizes the types of bounded or unbounded intervals

Notation Type Included Endpoints Set Definition
Ja, b Open interval None {reR|a<z<b}
[a, b] Closed interval a and b {reR|a<z<b}
[a, b Half-open (right) a only {reR|a<z<b}
la, b] Half-open (left) b only {reR|a<z<b}

la, +o00] Infinite (open) None {xeR|z>a}
[a,+o0o[ | Infinite (closed left) a only {reR|z>a}
] — 00, b Infinite (open) None {r eR |z <b}
| — 00,b] | Infinite (closed right) b only {reR|x<b}

1.8 Upper and Lower Bounds. Completeness Axioms

Definition 1.4. Let A be a subset of R, a real number M is called an upper bound

of A if

forall z € A we have

x < M,

If A has an upper bound, then we say that A is bounded above.

Example 1.9.

a) Let A=[-1,3[, Vx € A, < 3, then M = 3 is an upper bound of A.
Any real number M’ > 3 is also an upper bound of A. So A is bounded above.

b) Let A = {22, -2 < x < 1}, M = 4 is an upper bound of A. Any real number
M’ > 4 is also an upper bound of A. So A is bounded above.

20




UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

c) Let A =N ={1,2,3,...}. A has no upper bound. Therefore A is not bounded
above.

Definition 1.5. Let A be a subset of R, a real number m is called lower bound
of A if
for all x € A, we have = > m.

If A has a lower bound, then we say that A is bounded below.

Example 1.10.

a) Let A=[-1,3[, forall z € A, x > —1, then m = —1 is a lower bound of A. Any
real number m’ < —1 is also a lower bound of A. Therefore A is bounded below.

b) Let A = {2?, -2 <z < 1}, forall x € A, x > 0, then m = 0 is a lower bound
of A. Any real number m’ < 0 is a lower bound of A. Therefore A is bounded
below.

Definition 1.6. A subset A of R is said to be bounded, if it is both bounded above
and bounded below.

Example 1.11.
a) A =[—1,3], it has un upper bound and a lower bound, then is bounded.

b) A = {x? —2 <z < 1}, it has un upper bound and a lower bound, then is boun-
ded.

c) A=N={1,2,3,...}, it has no upper bound, then A is not bounded.

Definition 1.7. If M is an upper bound of A and M € A, then M is called the
maximum of A, denoted by max A.

Definition 1.8. If m is a lower bound of A and m € A, then m is called the mini-
mum of A, denoted by min A.

Example 1.12.

a) Let A =[—1,3[. The maximum of A does not exist, and min A = —1.
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b) Let A= {z? —2 <z <1}, then max A = 4, min A = 0.

c) Let A=N=1{1,2,3,...}, then min A = 0, the maximum of A does not exist.

Definition 1.9. Let A be a nonempty subset of R that is bounded above, we say
that « is the supremum of A if « is the smallest upper bound of A, and we denote
it by sup A.

Definition 1.10. Let A be a nonempty subset of R that is bounded above. Then
a = sup A if and only if :

i) z<aforallze A

ii) If M is an upper bound of A, then oo < M.

Remark 1.5. That means « is the smallest of all upper bounds of A.

Proposition 1.3. Let A be a nonempty subset of R that is bounded above. Then
a = sup A, if and only if the following conditions are satisfied :

i) z<aforallze A
ii) For every € > 0, there exists a € A such that o — e < a.

Remark 1.6.
— If A is nonempty and bounded above, then exists a« = sup A € R

— If A is nonempty and not bounded above, then sup A = oo
— If A= 10, then sup A = —oco. Any real number is an upper bound of .

Example 1.13

a) Let A =] — 00,2[, then sup A = 2

b) Let A= {2? —2 <z < 1}, then sup A = 4.

c) Let A =N, then sup A does not exist.

Definition 1.11. Let A be a nonempty subset of R that is bounded below. We say

that § is the infimum of A if 3 is the largest lower bound of A, and we denote it by
inf A.

Definition 1.12. Let A be a nonempty subset of R that is bounded below. Then
B =inf A if and only if :
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a) f<zforallz e A
b) If m is a lower bound of A, then m < .

Proposition 1.4. Let A be a nonempty subset of R that is bounded below. Then
£ = inf A if and only if the following conditions satisfied :

i) f<zforallze A
ii) For every € > 0, there exists b € A such that b < § +¢.
Remark 1.7.

— When the supremum (respectively, the infimum) exists, it is unique.

— The supremum of A (respectively, the infimum) does not necessarily belong to
the set A.

— If the maximum of A (respectively, the minimum of A) exists, then sup A =
max A (respectively inf A = min A).

— If the supremum of A (respectively , the infimum of A) belongs to A, then
max A = sup A (respectively, min A = inf A).

— If the supremum of A (respectively, the infimum of A) does not belong to A,
then max A (respectively, min A) does not exist.

Properties 1.3.
1. Let A and B be two nonempty bounded subsets of R such that A C B. Then :

inf B <inf A <supA <supB.

Indeed :
We know that for all x € A, we have :

inf A<z <supA=inf A <supA.
Also, since every element x € A also belongs to B, it follows that inf B < x
for all x € A. This means that inf B is a lower bound of A. But inf A is the
greatest lower bound of A, so :

inf B < inf A.
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Similarly, since every = € A is in B, we have x < sup B for all z € A. Thus,
sup B is an upper bound of A. But sup A is the least upper bound of A, so :
sup A < sup B.

2. Let A and B be two nonempty bounded subsets of R, so
sup(A U B) = max(sup A, sup B)

and
inf(A U B) = min(inf A, inf B).

Example 1.14.
Let A=10,1], B =[—1,2], it is clear that A C B.

supA=1 supB=2, infA=0, inf B=—1.
Note that
sup A <sup B, infB <infA.

Example 1.15. Find sup, inf, max, and min of the following subsets
1. A=]-1,3[U]4,8]

sup A = max(sup(] — 1, 3[),sup(]4, 8[)) = max(3,8) =8,
inf A = min(inf(] — 1, 3[), inf(]4, 8[)) = min(—1,4) = —1,
max A and min A does not exists.
2. B={"l neN}={14+1 neN}
it is clear that 1
Vn>0 1<14+—<2
n

Therefore
sup B =max B = 2

inf B=1, and min B does not exists.

3. C={(sinz +cosz)?, 0<z<m}
Assume that

y = (sinz + cosz)? = sin®x + cos® r + 2sin . cosx
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S0
y =1+ sin(2z)

we have 0 < x < 7, then
—1 <sin(2z) < +1

0 <1+sin(2z) < 2.

Therefore
supC = max(C = 2

and
infC' =minC = 0.

Training exercise 1.3. Suppose that A and B are subset of R nonempty and
bounded from above. Define

A+B={a+0b, a€ A and be B.}

Prove that A + B is bounded from above and sup(A + B) = sup A + sup B.
Answer :

Let o = sup A and = sup B.

Take any x € A+ B, then there exist a € A and b € B such that x = a + b.
Since a = sup A, = sup B then

a<a and b<f

It follows that = =a+b < a+ 3, then a + 3 is an upper bound of A + B, and so
A+ B is bounded from above.
sup(A+ B) =a+ g if

—r<a+fforallz € A+ B

— For any ¢ > 0, then exist u € A+ B such that a + 3 — ¢ < u.

Take any €, since o = sup A, there exist a € A such that a — 5 < a.
Similarly, since 8 = sup B, there exist b € B such that § — 5 <.
Then

(a+B)—e<a+b,

Letu=a+beA+Band (a+8)—ec<u

sup(A+ B) =a+  =sup A+ sup B.
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1.9 Archimedean property

The completeness axiom implies the Archimedean property, which states that
every real number is strictly less than some natural number.

Theorem 1.1. (Archimedean property for R). For each z € R, there exists n € N
such that x < n.

Proof. Assume, for contradiction, that there exists a real number x € R such that,
xz >n for all n € N.

Thus, N C R is bounded above. Hence, by the completeness axiom, sup(N) = «
exists. Now because o« — 1 < « there is an m € N such that a — 1 < m. Therefore,
a < m+1=mn € N; contradicting the fact that « is an upper bound for N. This
contradiction completes the proof.

In the next theorem, we show that the Archimedean property implies two useful
results.

Theorem 1.2. Each of the following statements holds :
a) For all z € R and y € R, if x > 0, then there exists n € N such that

y < nx

b) For all z € R, if z > 0, then there exists n € N such that 0 < % <.

Proof. We begin by proving statement (a).
Let z,y € R where z > 0. Consider the real number £. By Theorem 1.1, there is an
n € N such that

Y

—<n

x

Multiplying both sides of this inequality by x, we obtain
y < nx.

Thus, we have shown that for x > 0, there exists an n € N such that y < nx. The
proof of (a) is complete.
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Now, to prove statement (b), let z > 0. From (a) where we take y = 1, we conclude
that there exists n € N such that

0<1<nx.

Thus, we have

S|
AN
8

0<

This completes the proof of (b).

1.10 The Density of the Rational Numbers

Definition 1.13. Let A C R. We say that A is dense in R if, for all z,y € R with
x <y, there exists a € A such that z < a < y.

Theorem 1.3. (Density of Q in R).
For all z,y € R, if x < y, then there exists a ¢ € Q such that z < ¢ < y.

Proof. Let z,y € R with x < y. Then y —x > 0.
By the Archimedean Property (Theorem 1.2(a)), there exists n € N such that

1
- <y—u
n

Multiplying both sides by n, we get :
l<n(ly—z) = nzr<ny-—L

Since nx < ny — 1, and the set of integers Z is dense in R, there exists an integer
m € Z such that :
nr <m < ny.

Dividing the inequality by n, we obtain :
m
r< —<y.
n

Let ¢ =" € Q. Then x < g < y, as desired.
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1.11 Extend Real Line

Definition 1.14. The extended real line, denoted by R, is the set :
R=RU{-00,+00}
Properties 1.4.

1. Vz € R, —00 < z < 400.

2. Vz € R,z + (+00) = (+00) + & = 400, and z 4 (—00) = (—00) + . = —00
(+00) + (+00) = (+00), (—00) + (=00) = (=0)

3. Vo > 0,2(+00) = +00, and z(—00) = —00

4. Vo < 0,2(4+00) = —o0, and x(—00) = +00

6. Vo € R, & = £ =0,

—0o0

Corollary 1.1. Every nonempty subset of the extended real line R = RU{—o00, +00}
has a supremum and an infimum in R.

Example 1.16. Let A= {r € R: 2 > 100} C R.
Then :
inf A =100, supA = +o0

Thus, A has both a supremum and an infimum in R, even though it is not bounded
above in R.

Properties 1.5.
~ Ris not a field because arithmetic operations like co—oo or co/co are undefined.
— The total order on R can be extended to R. This set can be equipped with a
total order defined by :

—00 <z < +4oo forall zeR.

Thus, R is a totally ordered set, but not a field.
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~ R is compact. Every sequence in R that diverges has a limit in R (possibly
+o0).

1.12 Topological Properties of Real numbers

Definition 1.15. Neighborhood in R
Let V C R be a nonempty set and let a € R. We say that V' is a neighborhood of
a if there exists an open interval [ such that :

ael and [ICV.

In other words, a set V' is a neighborhood of a point a if it contains an open
interval around a.

Example 1.17. The interval [—1, 3], and | —2, 1] are two neighborhoods of 0, because
0€]—1,3[c[-1,3]

and
0€]—21[c]—2,1]

but [0, 1] is not a neighborhood of a point 0.

Definition 1.15. Open Subsets of R
A subset A C R is said to be open if it is a neighborhood of each of its points. That
is, for every a € A, there exists an open interval I C R such that :

acl CA.
Example 1.18. Open interval |a, b is open set of R. Indeed
Vx €la,b): = €]a,b[C|a,b].
Remark 1.8. An arbitrary union of open subsets of R is an open subset of R.

Definition 1.16. Closed Subsets of R
A subset A C R is said to be closed if its complement R\ A is open.

Equivalently, A is closed if it contains all its limit points. That is, if (z,,) C A
and lim z, = ¢ € R, then ¢ € A.

n—oo
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Example 1.19. Closed interval |a, b[ is closed set of R. Indeed
[CL, b]c = [—OO, a[U]b7 —|—OO[

Definition 1.17. Compact subset A C R is a set that is
— closed
— bounded.

This result follows from the Heine-Borel Theorem :
Theorem 1.4. A subset of R is compact if and only if it is closed and bounded.

Example 1.20.
— The closed interval [a, b] with a < b is compact.
— A finite set such as {1,v/2, 7} is compact.
— The set {1 | n € N*} U {0} is compact.
— The open interval ]a, b[ : not closed, then not compact
— The set [a,+00) : not bounded, then not compact
— R : not bounded, then not compact.
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1.13 Exercises

Exercise 1.1. Prove that

1. /454 29v/2 + /45 — 29v/2 is integers number.

2. IfreQand z ¢ Q then r +x ¢ Q, and if r # 0 then ra ¢ Q.
3. V/2 is irrational number, and deduce that v7 + v/2 ¢Q.

4 In3

5)

B is not rational number.

. Deduce that v/18 ¢ Q.

Exercise 1.2.

1. Let (a,b) € Q@ x Q7 such that vab ¢ Q. Prove that \/a + 3vb ¢ Q.

2. Knowing that if m is prime then y/m is irrational, show that V5 + V2 is
irrational.

Exercise 1.3.

1. Prove the following relations
a) |z +y|l=lz[+ |yl <=2y =0.
b) a? +y? < x|+ |yl
c) vet+y<+vr+.y, VYa,yeRT
d) [Vr =yl <z -yl

2. Solve the following equations in R
a) [|z+2[ - [z —4]| =2

b) |2 =1

z+1

Exercise 1.4.
1. Let [z] be the integer part of x; to show that Yz € R

a) v <y=[z] <[y

31



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

b) [z]+ [y < [z +y] < [2] + [y] +1
2. Solve the following equations :
a) z? — 4z = [z] in the interval [0, 2]
b) [z]+ ]z —1] ==
3. Calculate lim i([x] + [22] + [3z] + ... + [nz]).

n—--+4o0o n2

Exercise 1.5.
Determine the sup, inf, max, and min of the following parts of R.

A=]-55], B=][-1,1]U]2,4], O:{%;neN*}

1 1
D={-"T2 neN}, E={1'+ . neN}}, F={zcR/3 83 <0},
n n
20 — 1
G={=—file—5l<2)

Exercise 1.6. :

1. Let A be a nonempty subset of R. define —A = {—z, x € R}.
a) Prove that if A is bounded below then —A is bounded above.

b) Prove that if A is bounded below then inf A = —sup(—A).
2. Prove that if B = {ex,x € A} then sup B = esup A.

3. Prove that sup(A U B) = max(sup A, sup B).

Exercise 1.7.
Determine the sup, inf, max, and min of the following parts of R.

n 3 . o m+n N
A=[-1,V/2]nQ, B={(-1)"+ 5, neN},  C={—" mneN}
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Chapter 2

The Field of Complex Numbers

This section presents the fundamental concepts of complex numbers, such as
operations on complex numbers, their representation in various forms, and an intro-
duction to solving equations of the form 2" = c.

2.1 Algebraic expression of a Complex Number

A complex number is represented by z = a + ib, where a € R is the real part,
b € R is the imaginary part, and 7 is the imaginary unit defined by 2 = —1.
We can write
z = Re(z) +ilm(z)

This form is called the algebraic (or Cartesian) expression of the complex number z.
The set of all complex numbers is denoted by C.

Notes :
— If b= 0, then z is a real number.

— If a =0, then z is a purely imaginary number.

Properties 2.1. Let z be a complex number. We have the following properties :
1. If 2z=0,thena=b=0
2. If 21 = a1 + by and z9 = ag + iby then z; = 29 <= a1 = ay and by = bs.
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2.2 Operations on Complex numbers

In this section, we present the basic operations on complex numbers, including
addition, subtraction, multiplication, and division.

1. The complex conjugate of a complex number z = a + ib is given by Z = a — ib.

Example 2.1.
z1 = —9413, then zZ; = -9 — i3,
1 2 hen 1 2
z2—5—z§, then 22—5—1—25.
2. Addition, subtraction, and multiplication follow the same rules as for polyno-
mials, except that after multiplication, one must simplify by using 2 = —1.
Example 2.2.

(6+i3)+(—2—1)=(6—-2)+i3—1)=4+i2.
(—2+5)—(3—i)=(-2-3)+i(5+1) = —5+1i6
(24 50)(1 —3i) =2 —i — 15i* = 17 — 4.

To divide z by w, multiply = by % so that the denominator becomes a real

number.
Example 2.3.
2+ % 2+3ixl+5z’ —13+ 13 1 1
—= et —_ — — 1—
1—5: 1—5 1454 26
Remark 2.1.

— The arithmetic operations on complex numbers satisfy the same properties as
those on real numbers, such as commutativity and associativity. For example :

zw=w-z, z+w=w+z (z24+w)+u=z+(w+u), etc

— For any complex number z and any integer n, the power 2" is defined as follows :
— If n > 0, then 2" is the product of z multiplied by itself n times :

=zz. 2.
—_—

n factors
— If n =0, then 2" = 1, provided z # 0.
— If n < 0, then 2" is defined as the reciprocal of 27", provided z # 0 :
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2.2.1 Modulus of complex number

The modulus |z| of a complex number z = a + b is defined as
|z| = Va? + b2

Example 2.4.
Calculate the modulus of complex number z = 4 — 2.

2] = V/(4)2 + (—2)2 = V20 = 2V/5.

Properties 2.2. For all z, 21, 29 € C, the following properties hold :
L 2| =0<=2=0

z2=%

2.

3. [zl =zl =] -2 =]-7

4. |21 + 22| < |z1] + | 22| (Triangle inequality)
5. |zze| = [21] - |22

6. 2 :%, for zo # 0

7.2z =z

8. zis purely real <= 2 =72

9. z is purely imaginary <= 2z = —%
10. Re(z) = 2%, Im(z) = 557

2.3 Geometric representation of Complex numbers

The complex plane is the plane formed by all complex numbers, equipped with
a Cartesian coordinate system. The horizontal axis, called the real axis, represents
the real part of the complex number, while the vertical axis, called the imaginary
axis, represents the imaginary part.
A complex number z = a+ib can be represented in the complex plane as the ordered
pair (a,b).
Alternatively, z can be viewed as a vector O_P, where the initial point O is the origin
and the terminal point P is the point (a,b) in the plane.
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— The modulus of z is the length of the vector OP :
2| = OP = Va2 + b2,

Example 2.5. If z = 3 + 2¢, then
|z| = V32 +22 = /13.

— The argument of z, denoted arg(z), is the angle (measured in radians or degrees)
between the positive real axis and the vector O P, taken in the counterclockwise
direction.

2.4 Trigonometric Form of a Complex Number

Given a nonzero complex number z = a + ib, we can express the point (a,b)
in polar coordinates using r and 6, where r = |z| = OP is the modulus of z, and
0 = arg(z) is the argument (angle) :

a=rcosf, b=rsinf.
Substituting into the expression for z, we obtain :
z=a+1ib=rcosl+irsinf = r(cosf +isinf),

which is called the polar form or trigonometric form of the complex number.

Example 2.6. We want to express z in polar form : z = r(cos + isin6).

1. Let 2 = V6 + iv/2.

— First, compute the modulus :

r=ld = (VB2 + (V2P = V62 = VB = 2V2

— Next, compute the argument :

=

cos(f) =
sin(f) =

oK

N |
ol
w

3

— Therefore, the polar form of z is :

2 = 2v2 (cos (%) +isin (%)) .
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2. Let 2z = -3+ 31.
— First, compute the modulus :

r=|z| = )24+32=+/9+9 =118 = 3V2.

— Next, compute the argument 6 :

cos(f) = -3 = —¥2 37

sin(6) = 3= = 2 4

— Therefore, the polar form of z is :

= o () 0 ().

2.5 Exponential of Complex numbers

Definition 2.1. The complex exponential function is defined as e*, where z € C.
The number e is the base of the natural logarithm and is defined as the value of e*
at z = 1.

Properties 2.3. The complex exponential function e, where z € C, has the follo-
wing properties :

1. For any complex numbers z1, 2z € C,

z1+2z2 21 22

€ = €€

This property is similar to the exponential law for real numbers.

2. For any complex number z € C and any integer n,

3. The complex exponential function is periodic with a period of 27i. Specifically,
for any z € C,
ez+271'i — 62
This property reflects the fact that the complex exponential function repeats
itself after every multiple of 2.
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4. The derivative of e* with respect to z is the same as the function itself :

d
—e® = ¢e°.

dz

This is a fundamental property of the complex exponential function, analogous
to the derivative of the exponential function in the real case.

5. For any non-zero complex number z,

e =2z and In(e?) = 2.

Note that the complex logarithm is multivalued, meaning that Inz can have
multiple values, differing by integer multiples of 27i.

2.5.1 Euler’s Formula
For any real number 6, Euler’s formula states that

e = cosf + isin#.

This formula connects the complex exponential function with trigonometric func-
tions, and it is fundamental in the study of complex numbers and their geometric
interpretation.

More generally
"t = e% e = ¢"(cosy +isiny) for all real numbers x and y.

Example 2.7. Let’s compute an example to illustrate the concept. If z = 1 + i,

then :
e = el(cosm + isin )

e = e(cos T + isin )
e = e(—1 + 04)
€1+i7r = _¢

Thus, e!*™ = —e.
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2.6 Exponential form of Complex numbers

The exponential form of a complex number is a way of representing the complex
number using Euler’s formula. Given a nonzero complex number z = a + ib, we can
express z in polar form :

z = (rcosf) +i(rsin)
z =r(cosf +isinb)
using Euler’s formula
z=re'.

Where r = |z] is the modulus of the complex number, and § = arg(z) is the argument.

Example 2.8.
z = —3+ 3i Algebraic form

3 3
2 = 3v/2(cos Zﬂ + ¢ sin Iﬂ) Polar form

2 =32 Exponential form.

Properties 2.4. Here are the main properties of complex numbers in exponential
form :
— Two complex numbers z; = r1e?" and 2z, = rye'® are equal if and only if :

ry =1y and 0y = 6y + 2k, for some integer k.

— For z = eif, then
Z=re %

Based on formula of Euler and that

e = cos(—0) + isin(—0) = cos @ — isin(h).

Since , , , '
629 + 6—10 619 _ 6—19
COSQZT, sin = ———

— le?| =1, for every real number 6.

If 2y = e and 25 = rye'®, then :

2129 = T1T2€Z(61+92)
and . ,
1 1 i(0,—
Z= 20 for 2, £ 0
Z2 ]
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— Powers (De Moivre’s Theorem)

SN — (reia)n — Tneim9

2.7 Nth roots of Complex numbers

To solve the equation z" = ¢ for complex numbers, you can follow a structured
approach using polar (or exponential) form of complex numbers.
— Express ¢ in polar form, as follows ¢ = re®.
— We assume 2z has polar form
z=r'e!®
Raising both sides to the power n
oM — (r/eﬁb)n — T/neinqb

Setting this equal to ¢

r/neznzi) — 7”610

which implies that

2
v’ = /r, and ¢:—9+ kﬂ, keZ.
n

SO . 0+2k
z = WeZ(T)
Since complex arguments repeat every 2w, only n values of k (usually 0 < k < n)

yield distinct solutions.
Thus, the general form of the n'” roots of c is :

0+2mk )

zk:{L/F~ei( n ), fork=0,1,...,n— 1.

Example 2.9. Consider the equation 2% = 4i.
In other words, we are trying to find the "square root of 47".
The number 47 can be written in polar form

4¢'7 .

Now, we need to find the square roots of 4e*z. The formula for the square roots of a
complex number re? is
0427k )

zk:\/?-ei( 2 ) fork=0,1.
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So

2 =2- ei(%?ﬂk) for k=0, 1.

Y

Thus, the two possible values for z are :
T 57
21 =2€'%, zp=2e"4,
We can now convert these polar forms back into rectangular form

2 = 2(cos(%) —i—isin(%)), 2y = 2(008(%) —i—isin(%)).

41



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

2.8 Exercises.

Exercise 2.1.

i—4
21—3

2. Compute the absolute value and the conjugate of

1. Compute real and imaginary part of z =

= (1+4)°% w=i".
3. Write in the "algebraic" form the following complex numbers
= 4+i+1, w=(3+3i)°

4. Write the given complex number in the algebraic form

- 4T 3 3
26T, V/2(cos Zﬂ + isin ZW)

5. Write in the "trigonometric" form the following complex numbers
™ T

2 =6i, w=(cos— —isin=)"

(cos 5)

6. Compute the cube roots of z = —8.

Exercise 2.2.
1. Prove that (1 +4)% = —8i

2. Deduce solution of equation (E) :22 = —8i

3. Write the two solutions of (E) in algebralc form, and in exponential form.
4. Find all z € C such that (:7)* =

Exercise 2.3.
Establish the following equalities :

1. (cos( )+ 25111(7))(1 z‘/)(1 +1i) = \/§(cos( T) + zsm(g—f;))
2. (1 —i)(cos(E) +isin(Z))(V3 — i) = 2v/2(cos(13T) — isin(13r))

3. ﬂ(cos(%)—f—zsln(ﬁ)) 3

7.

144 2

N
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Chapter 3

Sequences of Real Numbers

Suppose for each positive integer n, we are given a real number a,,. Then, the list
of numbers ay,as,...,a,,... is called a sequence, and this ordered list is usually
written as (a,) or {a,}. We define a sequence as follows :

Definition 3.1. A sequence of real numbers is a function defined on the set N, of
natural numbers whose range is contained in the set R of real numbers.

u: N—R
n — Up,.

— The value w, is called the general term of the sequence (uy,)nen-
— The value ug is called the first term of the sequence.

— We also consider sequences (u,),en that are defined only from a certain index
no.
For example, the sequence with general term u,, = v/n — 2 is only defined for n > 2.

Remark 3.1. A sequence can be defined explicitly by a formula or implicitly by a
recurrence relation :
— By an explicit formula, for the general term of the sequence (u,); that is, ex-
pressing u,, directly in terms of n.

— By a recurrence relation, which defines each term of the sequence in terms of
one or more of the preceding terms.
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Example 3.1.
1. Let (un)nen be a sequence defined by :

VneN

n:2_ )
“ n+1

then ug =1, uy =

N
wlot

, U2 = 3, ...

2. Let (uy)nen be a sequence defined by :

1
Unp, )
+1 T

1

\/?,...

3.1 Bounded sequence

and ug = 1,Vn € N*

then u; = \%, Uy =

— A sequence (u,)nen is bounded above if and only if :
IMeRVneN; u, <M.
— A sequence (uy,)nen is bounded below if and only if :
dmeR,VneN; u, >m.

— A sequence is said to be bounded if it is both bounded above and bounded
below, or if there exists P € RT such that

lu,| < P, ¥Yn €N.

Example 3.2.

1. For all n € N, u,, = sin(n). Then the sequence (u,)nen is bounded. Indeed,
lun| <1 for all n € N.

2. The sequence (uy,)nen; Where u, = n?® is bounded below by 0 but it is not
bounded above. Therefore it is not bounded.
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3. The sequence (uy,)nen ; Where u,, = (_\/17);7:;1" is bounded. Indeed,

(—1)" x 4n
vn?Z4+1

Since |(—1)"| =1 for all n, this simplifies to :

jun| = |

4n
] =~
n®+1
We now bound |u,| from above
4
| < L = 4.

Vn?

Therefore wu,, is bounded.

3.2 Monotony of a Real Sequence
Let (un)nen be a sequence of real numbers.
— We say that w, is increasing if Vn € N, w11 > uy,(i.e : w1 —u, > 0)
— We say that w, is decreasing if Vn € N u,q < uy,, (i€ @ tpyg — up, <0)
— We say that wu, is monotone if it is either increasing or decreasing.
Remark 3.2.
— If (up)nen is a sequence with strictly positive terms, then it is increasing (res-

pectively, decreasing) if and only if Vn € N| uzzl > 1 (respectively, Vn € N,

0 < 1),

— We say that the sequence is strictly increasing, strictly decreasing, or strictly
monotonic if the corresponding inequalities are strict.

Example 3.3.
1. For u, = =% + 3, ¥n € N, the sequence (u, )ney is increasing. Indeed,

2n+1
n n—1 3

Ut Tl = o 3 1l (2n+3)2nt+ 1)

>0, Vn € N.
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2. For v, = %, Vn € N*, the sequence (v,)nen+ is decreasing. Indeed, since
v, > 0, Vn € N*, we compute
2n+1 | 2

v (D20 T gl
for all n € N*, which shows that the sequence is increasing.
3. Let the sequence (u,) be defined by :

1
uy = 3,

.2 3
unH—un—i-E

— Prove that Vn > 1, i <u, < %.
— Determine whether the sequence u,, is decreasing .

Proof.
— For n =1, we have
1 1 3 .
Z<u1:§<17 1s true
Assume that i < Uy < %, for same n > 1. We will show that this implies
Lopc 2 oty 3 39,3
16 " 16 16 16 " 16 16 16

w

1
<:>Z<Un+1<1.

By mathematical induction

Vn > 1, i<un<§1.
— Monotonicity
2 2 3
un+1—un:un+ﬁ—un:un—un+ﬁ.
Define the function f(z) = 2% — z + &, and compute the discriminant
, 3.1
A=(-1)- 4(1)(1—6) =1
The roots are
1 3
TL= g, T2=

Since f(x) < 0 between its roots, so

Upi1 < U, =— (u,) is strictly decreasing.
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3.3 Lower limit and upper limit of a sequence

Definition 3.2. For each sequence (u,), we define its upper limit limu,, and lower
limit limwu,, as follows. We set

Gn = supug, and p, = inf uy,
k>n k>n

We define

limu, = infg,, and limu, = supp,.

Theorem 3.1. Let (u,)nen be a real sequence

lim w, =¢, ifandonlyif limu, = limu, = .
n—r-+00

Example 3.4. Let u, = % Calculate upper limit and lower limit of u,,

0 1 1 I 1 1
= su — == = — n= —.
q1 P 727 ,TL’ y g2 27 g n
Hence 1 1
limu,, = inf ¢, = inf{l, =, ..., =, ..} =0
imuy, = inf inf{ 5 }
and 1 11 1
P = ;llegE = inf{1, 30 =0, p2= ]lfr_>lf2‘E =0,....,p, =0.
Hence
limu,, = sup p, = 0.
we have L
limu,, = limu,, = 0
Therefore

lim wu, =0.
n—-+o0o

3.4 Extracted Sequence (Subsequence)

Definition 3.3. We say that a sequence (v,) is an extracted sequence or a subse-
quence of a sequence (u,) if there is an application ¢ : N — N strictly increasing
such that

VneN, v, = ugym)
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Example 3.5. Let (u,),ens be a real sequence such that

—1)»
un:( )7
n

we can extract two subsequences (uon )nens and (U i1)nen, we have

d —1
n — S n n -
Yon =g NG Mone =5 7

Remark 3.3. If ¢ is a strictly increasing application of N to N, we have
VneN, ¢(n)>n.

Theorem 3.2. (Monotone Subsequence Theorem )
Every sequence of real numbers has a monotonic subsequence.

3.5 Convergence and Divergence of Sequence

Definition 3.4. A sequence of real numbers (u,),en is said to converge to a real

number ¢ if
Ve > 0,dN. e N\Vn > N, |u, — ] < e.

We denote this by :

lim u, =/¢.
n—-+00

We also say that £ is the limit of the sequence (u,,).

Example 3.6. We consider the sequence (u,,)nen defined by :
on —1\"
Uy = '+ ()" .
2n
Prove that the sequence (u,) converges to 1, i.e.,

Ve>0,IN. € N,Vn > N. = |u, — 1| < e.

We compute :

up — 1| =
2n

1.
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Let’s simplify this

—1)" 1
I (VOIS
2n 2n
So .
|un—1]<5<:>2—n<g.
then
1 In(1)
2" > —=n>_—=
£ In(2)
1
Thus, choosing N. = [%] + 1 ensures convergence.

Theorem 3.3. If a sequence (u,),en converges, then its limit is unique.

Proof. Let’s assume by contradiction that (u,),en converges to two different limits
¢y and /5 such that ¢ # /5. Then we have
limu, =, <= Ve > 0, AN, € N,Vn > Ngl, |un — £1| < g
and .
limu, = ly <= Ve > 0,3IN5 € N,Vn > N, |u, — lo| < 5
Let’s note N. = max(/N.1, Ne2), then for all n > N., we have
10— Lo| = [(6r — un) + (un — o] < |(un — G)| + [(un — | <€

This leads to [¢; — ¢5| < €. must hold. This implies that |¢; — f5| = 0, which contra-
dicts the assumption that ¢; # {5. Therefore, we conclude that ¢; = /5, and the limit
is unique.

Definition 3.5. A sequence is said to be divergent if it does not converge to a finite
real number.

Example 3.7. There are two types of divergence :

1. Divergence of infinite type : In this case, the sequence tends to +oo or
—00.
For example, the sequence with general term u,, = 2n + 4 diverges to +oo.

2. Divergence of undefined-limit type : In this case, the sequence has no
finite or infinite limit.
That is, the limit does not exist in the extended real line. For example, the
sequence with general term u,, = (—1)".
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Example 3.8. Study the convergence of the following sequence u,, = (—1)".
This sequence alternates between two values :

Uy = ]_, Uy = —]_, Uy = ]_, Uz = —]_,

So we observe that
g, = 1, and ug,y; = —1.

Hence, the sequence does not approach a single value as n — co. More precisely, the

sequence does not converge.

Definition 3.6. Let a real sequence (uy,)nen.
— The sequence (uy)nen tends to +oo if

VA >0,dN e NNVn > N = u, > A.
— The sequence (uy)nen tends to —oo if
VA>0,3N € N,¥n > N = u, < —A.

Theorem 3.4. If a sequence (uy,),en converges to £; then the sequence (|uy|)nen
converges to |/|.

Proof. Let the sequence (u,),en tends to £. For all € > 0, there exists N € N, such
that :
YneNn>N, |u, — ¢ <e,

but we have, ||u,| — |¢|| < |u, — €|, we deduce that
VneNn >N, [lu,| —[{]] <e.
Therefore
lim  |u,| = ||
n—-+o0o
Remark 3.4. The converse is not true. Indeed, consider the following example :

un = (=1)"%

we have |u,| = [(=1)"| = 1, ¥n € N, then |u,| converges to 1, but w, is not
convergent.

Theorem 3.5. Every convergent sequence is bounded.
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Proof. Let (u,)nen be a sequence that converges to a limit ¢ € R. Then by virtue
of the Theorem 3.4. (|uy|)nen converges to |l|, in other words

Ve > 0,dN e N;Vn € Nyn > N, ||u,| — [¢]] < e.
that’s to say [¢| — e < |u,| < e+ |£]. Let’s choose € = 1, then
for n > N, |u,| <1+

By then posing
M = max{|ui], |ug], ..., |lun|, 1 + €]}

we obtain

lun| < M, ¥n € N.

Therefore (uy,)nen is bounded.

Remark 3.5. The converse is clearly false, as illustrated by the sequence u, =
(—=1)", ¥n € N, which is bounded since |(—1)"| = 1, ¥n € N, yet it does not converge.

Property 3.1. Let (a,) be a bounded sequence and (b,) a sequence such that

lim b, = 0.
n—oo
Then,
lim (a,b,) = 0.
n—oo
Proof.

Since (ay,) is bounded, there exists a constant M > 0 such that
la,| < M for all n € N.

Since lim b, = 0, for any € > 0, there exists a number N € N such that for all

n—oo
n> N,
g
by < —.
[bal < 57
Thus, for all n > N,
|anbn| = |an| - [ba] < M - % — e

Therefore, lim a,b, = 0.
n—o0
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Example 3.9. We consider the sequence u,, = (—1)", Recall that this sequence
does not converge, but it is bounded. We also consider the sequence v, = %, which
converges to 0. According to the previous property 3.1, the product of these two
sequences converges to 0. That is :

lim (=1

n—-+4+oo n

= 0.

3.6 Limits and inequalities

Theorem 3.6. (Gendarmes’ Theorem)
Let (un)nen, (Un)nen, and (wy)nen be real sequences. If (uy,)nen and (wy,)neny both
converge to the same limit ¢, and if there exists ng such that Vn > ny,

then the sequence v,, also converges to /.

Proof.
Let € > 0. Since lim wu, = ¢, In; € N such that Vn > ng,

n—-+00
lu, =l <e=l—c<u, <l+e.

Similarly, since lim w, = ¢, dny € N such that Vn > na,
n——+00

lw, =l <e=l—c<w, <l+e.
Let’s choose Vn > N = max(nj, ny), then for all n > N, we have
(—e<u, <v,<w,<l+e¢

Hence, for all n > N,
lop, — €] < €.

This shows that (v,) converges to /.

Example 3.10. Calculate the following limits using Gendarmes’ Theorem :

n n

nsinn n 1
Du,=—=, 2)v,= — Jw, = — kx|, z € R.
) u (n+1)2 Jv kz:;nQ—i—k Jw nzkz:;[ 7l

Solution :
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1. We know that )
—n nsinn

n

(n+1)? 7 (n+1)> = (n+1)*

both sequences have the same limit

—n . n

lim —= =

nhteo (n+ 12 noteo (1 + 1)2

we conclude lim wu, = 0.
n—-+00

2. For every integer k of {1,2,3,...,n}, we have

n n n

=0,

< .
n2+n " n2+k " n2+1

Now apply this to the entire sum
n? n?

<
n:+n —

both sequences have the same limit

‘ n2 2
lim =

2 im 2 o
n—+oon?+n notoon?+1

we conclude by the Gendarmes’ Theorem

lim v, = 1.
n——+00

3. For all z € R, we have kx — 1 < [kz] < kz.
Summing over k£ = 1 to n, we obtain :

n n

> (kx—1) <) [ka] <

n

kx.

k=1 k=1 k=1

This simplifies to

xik—n< i[/m] <z
k=1 k=1 k

n(n+1)

e get :
9 , We g

Using the identity Z k=
k=1

x-M—n<i[kx]§x-

2
k=1
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Now divide the entire inequality by n? to get bounds on w,, :

1 n(n+1) 1 n(n+1)
ﬁ(wT—n) <wngﬁ-x-T.
Simplify each bound :
zn+1) 1 <w, < z(n+1)'
2n n 2n

As n — oo, both bounds converge to 7, so by the Gendarmes’ Theorem :

I Sy

fim =5

Corollary 3.1. If (u,)nen converges to ¢, and u, > 0 for all n € N, then ¢ > 0.

(Similarly, if u,, <0, then ¢ < 0).

Proof. We will prove by contradiction. Suppose that u,, > 0 and ¢ < 0. Let

4] 4]
€ 5 = t+e + 5 <0

Since
U, —> = In. eNVn>n.—/l(—ec<u, <l+e<O.

contradicting the assumption that u, > 0Vn € N.

Therefore, our assumption that ¢ < 0 must be false, so ¢ > 0.

Corollary 3.2.. If (uy)neny and (vy,)nen are two convergent sequences such that
Uy > v, for all n € N, then

lim wu, > lim wv,.
n—>-+oo n—>-+oo

Proof. Consider the sequence (w,)nen defined by
w, = u, — v, > 0, because u, > v,.

We have

lim w, =( lim wu,)—( lim v,)
n— —+o0o n— —+0o00 n—+00

which according to the previous corollary 3.1, implies that

lim w, > 0.
n—-+o0o
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Therefore

lim w, > lim wv,.
n—>-+oo n—>-+oo

Theorem 3.7. If the sequence (u,),en converges to ¢, then every subsequence ex-
tracted from (u,)nen also converges to /.

Proof. Let ¢ : N — N be a strictly increasing function that defines a subsequence
vy, of u, that is v, = uy@.
Since u,, —» ¢, then Ve > 0, there exists N € N such that

Vn >N, |u, — ¢ <e (1).

Now, since p(n) > n, it follows that ¢(n) > N whenever n > N. Therefore, inequality
(1) remains valid if we replace n by ¢(n), and we get

|uw(n) —l] <e.

Consequently ug ) = v, converges to /.

3.7 Convergence of monotone sequences

We now state the fundamental theorem of convergence of monotone sequences.

Theorem 3.8.
a) If a sequence of real numbers is increasing and bounded from above, then it
converges.

b) If a sequence of real numbers is decreasing and bounded from below, then it
converges.

Training exercise 3.1. Study the nature of the sequence (u,),en+ defined by

uy =1, Up1 =V2+u,, n>1

— Prove that u,, < 2 for all n € N*
— Prove that u,, is increasing sequence
— Deduce that u,, is convergent, and compute its limit.
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Solution.
— Forn =1,
up =1<2.

Assume u,, < 2 for some n > 1. Then
Up+2 <4 = VU, +2<2= up <2.

Therefore u, < 2,Vn € N.

— Fornzl,wehaveulzlgmzx/g.
Suppose that u, — u,_1 > 0 then :

Uy — Uy
Up41 — Up = un+2_\/un71+2_ : >0

Vi F 24+ Vup o +2

Therefore u,, is increasing.

— (Un)nen+ is increasing, and bounded above then it is convergent. Also

lim w, = lim wu,.1 =/
n—oo n—:oo

then
lim u,11 = lim Vu,+2<=VI{+2=1/
—00 n—oo

n

we obtain the equation 2 — ¢ —2 =0, so £ = 2 or —1.
But since u,, > 1 and increasing, the only possible limit is ¢ = 2.

3.8 Limits and properties

It is natural to wonder how the limits of sequences behave with respect to opera-
tions. In this sense, the limit behaves as simply as possible when the sequences are
convergent.

Proposition 3.1. Let (u,) and (v,) be two sequences converging to the limit ¢,
and /5 respectively. Then
lim (u, +v,) = {1 + {5

n—oo

lim (u, X v,) = {1 X {y
n—o0

m A X u, = My, A€ R

n—o0
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Up gl

Hm — = 2, if 0y #£ 0
n—oo 'Un 62
lim  |u,| = ||
n—-+00

These properties allow us to calculate the limits using already well-known limits.
Remark 3.6. It is possible for the sum of two divergent sequences to be convergent.

Example 3.11. Let two sequences be defined by w,, = 2n and v,, = —2n+e~". Both
(Un)nen and (v,)nen are divergent. However, their sum (u,, + v,)nen is convergent

because

—n
Uy +Vy =€ 7,

and since lim e " =0, we have
n—-+o0o

lim (u, +v,) =0.

n—-+00

3.9 Adjacent Sequences

Definition 3.7. Two real sequences (u,)neny and (v, )nen are said to be adjacent if :

(Un)nen is increasing,
(Un)nen is decreasing,

and lim (u, —v,) = 0.
n—oo

Example 3.12. Let (uy,)nen and (vy,)nen be two sequences defined by

—~ 1 1
U"ZZH’ Un:un—l—m.
k=0
Show that (u,) and (v,) are adjacent.

Solution. For all n € N, we have

n+1 1 n 1 1
’u,n+1_un:E E_E E:m>0
k=0 k=0

57



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

Therefore (u,) is increasing.

1 1
— U
n+1).(n+1)

Unt+1 — Up = Up41 + (

1 (n+1?—n -1 <0
S (n+ 1) n(n+ D)+ an+DmED T
Therefore (v,,) is decreasing.
Moreover, for all n € N,

Uy — Uy = — = lim —— =0.
n.n! n—s+oo n.n!
All three criteria are satisfied. Therefore (u,)nen and (vy,)nen are adjacent.

Theorem 3.9. If the sequences (u,)nen and (v, )nen are adjacent then they converge
to the same limit.

3.10 Recurrence Sequences

Definition 3.8. A Recurrence sequence is a sequence defined by their first term(s)
and a recurrence relation which can be of the form wu, 1 = f(u,) where f is a function.

Example 3.13. Let’s consider

2
Uo » o Un+41 w2 11
This generates
5 50
Uy = Uy = =, U3 = —,...
1 ) 2 57 3 29a

3.10.1 Monotonicity of a Recurrence Sequence

Let f be a function defined on an interval I, and suppose the sequence (uy,)

defined
Upt1 = f (un)

— If f is decreasing on I, then the sequence (u,,) is not guaranteed to be mono-
tonic.
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— If f is increasing, then the sequence (u,) is monotonic, and its direction can
be determined by comparing f(ug) to ug
— If f(ug) — up > 0, then the sequence (uy,),ey is increasing.
— If f(ug) — up < 0, then the sequence (u,) ey is decreasing.

Example 3.14. Define the recurrence sequence

Uy = 0, Un+1 = §Un +1

Let’s define

r)=—-x+1 (increasing function
2

Compute f(ug) — ug
f(uO>—U0:f<O)—O:]. >0

So the sequence is increasing.

Theorem 3.10. Let f : I — [ be a continuous function defined on an interval
I C R, and let (u,) be a sequence defined by

Upt1 = f(u,), withug € I.

If the sequence (u,,) converges to a limit £ € I, then f(¢) = /.

Example 3.15. Calculate the limit of the recurrence sequence given in the example
3.14.

The sequence u,, is increasing and bounded above then u,, converges to ¢, such that

1
E:f(€)<:>€:§€+1:>£:2.

Therefore limu,, = 2.

3.11 Cauchy’s Convergence Criterion
Definition 3.9. A sequence (u,) is called a Cauchy sequence, if
Ve > 0,3ng € N, Vp,q > no, |u, —uy| <e.

Theorem 3.11. A real sequence (u,) converges if and only if it is a Cauchy sequence.
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Proof. Suppose limu,, = . Then by definition for convergence, for all € > 0, there

exists ng € N such that
€
Vn > ng = |u, — ¢ <3

then
€
2

[up — ug| = [(up =€) — (ug — O)| < |(up — O] + [(ug — )] < %—i— =c.

for all p,q > ny.

Example 3.17. Using Cauchy criterion of convergence, examine the convergence of

sequence (u,) where
— 1
k=1

A sequence (u,,) is convergent if and only if it is a Cauchy sequence, i.e,
For every ¢ > 0, there exists ny € N such that for all n,m > ny,

[ty — um| < €.

1 1
m+1)!+(m+2)

1

1
< om ot t g

B 1
un—um|—|( !+”'+E|

1
i(l—m>

Tom -1

1 1 1
- 2m—1 (1 - 2n—m—1) < 2m—1

< E.

Ve > 0, Vm>[1—ﬁ(§)]+1:>|un—um|<6.

Therefore (u,) is Cauchy sequence, then the sequence (u,,) converges.

3.12 Bolzano-Weierstrass Property

Theorem 3.12. Every bounded sequence in R has a convergent subsequence.
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Proof. Let (u,)nen be a bounded sequence of real numbers. That is, there exists a
constant M > 0 such that for all n € N, we have

lun| < M.

By the Monotone Subsequence Theorem, every sequence of real numbers has
a monotonic subsequence. Therefore, there exists a subsequence (ty(n))nen of (uy)
that is either increasing or decreasing.

Since (u,) is bounded, every subsequence of (u,) is also bounded. In particular,

the monotonic subsequence (uy(,)) is bounded.

A bounded monotonic sequence of real numbers converges by the Theorem 3.8.
Hence, the subsequence (uy,)) converges.
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3.13 Exercise.

Exercise 3.1.
Calculate the limit of the following sequences with the general term

S
n2+1 n2+4+2 n24+3 n?+n’

wn:\/ﬁ(\/n_ _\/ﬁ)

1
Uy = vn:—l(ll—{—Q!—{—---—l—n!),
n.

Exercise 3.2.
Let the sequence (u,,) defined by the general term :
SIS

,neN

Show that limu, = 1. For what values of n, |u, — 1| less then ¢ and less then 10~%.

Exercise 3.3.
Determine which of the following sequences are bounded

_1yn n 1
un:n( Y y Un = =l

Study the monotony of the following sequences and deduce possibly their nature :

k> 1 1x3x5x---(2n—1)

n n

Un = Shk=ty U T ke T S I X 6 % - x (20)

Exercise 3.4.
Let the sequence (u,,) be defined by :

T S BN ) S
n=2757T37] n e

1. Show that the sequences ug;, and ug,,1 are adjacent.

2. Deduce the nature of (uy,).

Exercise 3.5.
We consider the sequence (u,),en of real numbers whose general term is defined by

recurrence
Uy =2, Upt1 = V2u, — 1.
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1. Show that, for all n € N, u,, > 1
2. Show that the sequence (uy,)nen is decreasing
3. Deduce that the sequence (u,),en is convergent and determine its limit.

We consider the sequences (v,,) and (w,,) of real numbers defined for all n > 1 by

1 1
U”:ZH’ wnzvn+a.
k=0
Show that these two sequences are convergent and have the same limit.

Exercise 3.6.
Let the sequence (u,,) be defined by :

<
—_

|
N |

u?’L:
.2 3
Up+1 = Uy, + 76

1. Prove that Vn > 1, i <u, < %.
2. Study the nature of the sequence u,, and calculate its limit if it is convergent.

3. Let E = {u,,n > 1}. Determine sup £ and inf E.

Exercise 3.7. Find inf u,, sup u,, liminf u, and limsupu,, if :

(=)™ 14+ (=1)" n nm
n — ) n — 1 .
“ n T 9 =L 08
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Chapter 4

Real Functions of a Real Variable

This chapter is devoted to the study of functions of a real variable, which are
commonly used to model various problems in mathematics, mechanics, and other

fields.

4.1 Preliminaries

Definition 4.1. Let £ C R. A function f of a real variable x defined on the set E is
any mapping from FE into R ; that is, each element of E is associated with a unique
element of R. This is denoted as :

f:E—=R, z~ f(z).
The domain of definition of f is the set defined by
D(f) :={x € E| f(x) exists}.
Aset f(E) ={y = f(x) | x € D(f)} is called the range of f and is denoted by Im(f).

Definition 4.2. The graph of the function f is the set of ordered pairs of real
numbers (z, f(z)), where z € D(f). We write :

L(f) = A{(x, f(x)) [ = € D(f)}-

Example 4.1. Give the largest possible domain of the following functions :

L flo) =5
2. g(z) =In(zx+1)
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3. h(z) =2—+9—2?

Solution.

2
L fz) =5
For this function, we must ensure that the denominator is not equal to zero.
Therefore, the domain is all real numbers except x = 3.

D(f) ={x e R |z #3}.

2. g(z) =In(x+1)
The natural logarithm function is defined only for positive arguments. There-
fore, we need :
r+1>0 = z>-1

Thus, the largest domain of g(z) is :
D(g)={reR|z>—-1}.

3. h(z) =2—+9—2a?
For this function, we must ensure that the expression inside the square root is
non-negative, we need :

9—22>0 = -—-3<x<3.

Thus, the largest domain of h(z) is :
Dh)={reR|-3<x <3}
Definition 4.3.
— A function f is called injective if each element in the codomain has at most
one preimage.

— It is called surjective if each element in the codomain has at least one preimage.

— It is called bijective if it is both injective and surjective, i.e., if each element in
the codomain has exactly one preimage.

Remark 4.1. Also recall that a function has an inverse if and only if it is bijective.

65



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

4.1.1 Even, odd and periodic functions

Definition 4.4. A function f, defined on a symmetric interval I (that is to say,
Ve € I,—x € 1), is said to be :

— Even if and only if Vz € I, f(—x) = f(z),

— Odd if and only if Vx € I, f(—z) = —f(z).
Geometrically :

— If f is even, then its graph is symmetrical with respect to the y-axis.

— If f is odd, then its graph is symmetrical with respect to the origin.

Example 4.2.

— Let f(x) = x4e+ T
Compute f(—x) :

6(—J1)2 e:c2

fon) = g = pigg = 1)
Thus, f is an even function on R. Its graph is symmetric with respect to the
y-axis.
— We want to determine whether the function
2

(2) x?cosw
) = —5—
g sin?(z) + 1
is even. Compute g(—z) :
—x)%cos(—x 2% cosx
(o) = C o) — 4(a)

sin?(—x)+1  sinz4+1

g is an even function on R.
— Consider the function h(x) = x*. This function is odd because :

h(—z) = (—z)* = —2® = —h(z), VreR.

Therefore, h(z) = x? is an odd function. Its graph is symmetric with respect
to the origin.
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Definition 4.5. A function f is called periodic if there exists T" > 0 such that
flx+T)= f(z) forallzeR.

The smallest such positive number 7" is called the period of the function f.

Remark 4.2. If T is a period of a function f, then for any integer k£ # 0, kT is also
a period of f, because :

fla+kT)=f((x+k-1)T)+T)=flz+(k—-1T)="---= f(x).

Example 4.3.

1. The function f(z) = x — [x], where [z] denotes the integer part of z, is periodic
with period 1. Indeed

VieR, flz+1)=z+1—-|z+1]=z+1—-[z] - 1=a+ 2] = f(2).
2. The function f(x) = sin(z) is periodic with period 27, since

sin(x 4 27) = sin(z), Vz e R.

4.1.2 Bounded and monotonic functions
Definition 4.6. Let f: E — R be a real-valued function, we say that :
— f is bounded above on F if
dM € R such that Vo € E, f(z) < M.
— f is bounded below on F if
dm € R such that Vo € E, m < f(x).
— f is bounded on F if it is both bounded above and bounded below, that is :
dm, M € Rsuch that Ve € E, m < f(z) < M

or equivalently,
3C > 0 such that Yz € E, |f(x)] < C.
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Example 4.4.
1. f(z) = cosz is bounded on R. Indeed

—1 < cos(z) < 1.

The infimum and supremum of f on R are :

inf f(z) =—1, supf(z)=1.

z€R z€R

2. f(z) = e« is bounded on ]0, +oo[. The image of f over this interval is :
£(10, +00[) =0, 1
Therefore,

sup f(z) =1, inf f(z)=0.
z2€]0,+00| 2€]0,+o0|

3. The function x — Inz is not bounded, because as x — 0T, we have :
Inz — —o0,

and as x — +o00, we have :
Inx — 4o00.

This implies that the logarithmic function is neither bounded above nor boun-

ded below.

Definition 4.7. A function f defined on E C R is said to be :
— Increasing on F if
Vay, 9 € B, 1 < 29 = f(x1) < f(x9).
— Decreasing on F if
Vay, o9 € B, 1 < 19 = f(x1) > f(x2).

— If f is either increasing or decreasing on F, we say that f is monotone on E.
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Remark 4.3.
If the inequalities in the definitions above are strict, we obtain the notions of strictly
increasing and strictly decreasing functions.

Example 4.5.
1. Let f(x) = 2z + 3. We show that f is an increasing function on R.

Let x1, 25 € R such that x; < x,.
flz1) =221+ 3, f(xg) =229+ 3.
Since 2z1 + 3 < 2x9 + 3, we get :

f(z1) < f(x2).

Therefore, f is increasing on R.
Alternatively, we can observe that the derivative of f(x) =2z + 3 is :

f'(x)=2>0 forall z€R,

which confirms that f is strictly increasing on R.

1
2. Let f(z) = —. We analyze the monotonicity of f on the interval |0, +o00].
x

Let x1,x9 €]0, 400] with 27 < xs.

Then, . )
f(l“l):gg—1 > x—QZf(f@)-
Thus,
ry < 19 = f(11) > f(72),

which shows that f is strictly decreasing on |0, 4+o00].

Proposition 4.1. The sum of two increasing (respectively, decreasing) functions is
an increasing (respectively, decreasing) function.

Corollary 4.1. Let f be strictly monotone on set £ C R. Then f is injective on FE.
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4.1.3 Maximum and Minimum local of function

Definition 4.8.
— A function f is said to have a local maximum at a point z if there exists an
interval I around zg such that

flzo) > f(x), Voxel

— A function f is said to have a local minimum at a point zq if there exists an
interval I around zg such that

flzo) < f(x), Voxel

El |
p glokal maximum
lacal rnaximum

2 ™

il
-2 L -~ _

oCal miIrnimum
—4 e,
alaal minimiaem
_E, I
0 0.z 3.4 05 0.8 1 1.2

4.2 Limit of function

Definition 4.9. (Neighborhood of a Point)
Let xg € R. A neighborhood of z( is any open interval of the form

lxg — 0,20 + 6], with § > 0.
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Definition 4.10. Let f be a function defined on a neighborhood of a point zy. We
say that f has a limit £ € R at the point z if :

Ve >0, 3§ > 0 such that |z — x| <= |f(z) — (| <e.

2—1
Example 4.6. Let f(z) = .
x R—

We simplify the expression :

for x # 1. We want to find lirr% f(z).
z—

f(x):x2_1:($_1)($+1>=x+1 for x # 1.

z—1 r—1

So,
lim f(z) = lelg%(x +1)=2.

rz—1

Even though f is not defined at x = 1, it has a limit at that point.

Example 4.7. Let f(z) = 5z — 3. Show that
lim f(x) =2,

r—1

using the epsilon-delta definition.

We want to show that :
Ve >0, 36 >0such that 0 < |z — 1| <0 = |f(z) — 2| < e.
Now compute :
|f(x) — 2| = |5z —3 —2| = |be — 5| = 5|z — 1].
So to ensure that |f(z) — 2| < &, we need :

5|x—1]<€:>|x—1|<§.

Thus, we can choose § = £. Then :
O<|z—1l<d=|f(z) -2 <e.

Therefore
lim f(x) = 2.

r—1
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Theorem 4.1. If f has a limit at point xg, then this limit is unique.

Proof. (by contradiction). Let

lim f(z) =¢; and lim f(z) = {y,

T—TQ T—T0

Assume, that 1 # (.
Let ¢ = @, which is strictly positive. Since lim,_,,, f(x) = {1, there exists §; > 0

such that for all = satisfying 0 < |z — x| < 1, we have
[f(z) = b] <e.

Similarly, since lim,_,,, f(x) = ls, there exists d; > 0 such that for all x satisfying
0 < |z — zo| < o, we have

[f(x) = bo] <e.

Let 0 = min(dy,d2). For any = such that 0 < |z — x¢| < 0, both of the following
inequalities hold :
|f(x) — 6] <e and |f(z)—4ta] <e.

Now consider the difference [¢; — ¢5|. Using the triangle inequality, we get

216, — ¢
6~ < 1F@) — 6] + (@) — o] < e+ e = 200

This is a contradiction, because we assumed that ¢; # /{5, so the inequality
|6, — 6] < M cannot hold. Therefore, ¢; = {5, proving the uniqueness of the
limit.

Definition 4.11.
— The right limit of a function f at a point xq is the limit of f(z) as z approaches
xo from values greater than x,. It is denoted as :

lim+ flz) =14,

I‘—)l‘o

which means :

Ve > 0,35 > 0 such that for all z, if 0 < x —xg < 9, then |f(z) — | <e.
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— The left limit of a function f at a point xq is the limit of f(z) as x approaches
xo from values less than xg. It is denoted as :

lim f(z) =¢,

=T
which means :
Ve > 0,39 > 0 such that for all z, if 0 < zp — 2z <4, then |f(z) — (| <e.

Remark 4.4.
— If the limit of f exists at the point x(, then both the right and left limits also
exist, and we have :

lim f(z) = lim f(z) = lim f(z).

T—To Tz T,

— If
lim f(z) # lim_f(x),

$4)£EO x%xo

then f does not have a limit at the point xg.

Example 4.8. Evaluate the limit :

limx2—|—2|ac|
2—0 x
D; = R*. We have
x, ifz >0
=1 = —x, ifz <0
SO
22 + 2z 24— 19 ifx >0
e ﬂ:x—Z, ifzx <0

T

We analyze this limit by considering the left and right limits separately. Thus :
7? + 2||

lim = lim (z+2) =2
z—0t T z—0t
and 2\ o
im 2 9y = o
z—0~ X z—0~
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Since 2 2,
lim L‘ﬂ £ lim L’“ﬂ’

z—0~ X z—0t X

2
2
Therefore lim Lm
x—0 €T

does not exist.

4.2.1 Finite limit at infinity
We say that a function f(z) has a finite limit at infinity if :

lim f(zx)=¢ or lim f(z)="/¢

T—+00 r—r—00

where ¢ € R, meaning that the function approaches a real (finite) number as x
tends to positive or negative infinity.

Mathematically

lim f(z)=0<=Ve>0,3A>0VeeRz>A=|f(x)—{ <e.

r——+00

lim f(z)=0<=Ve>0,3dA>0VeeRz<-A=|f(zx)—{ <e.

T—r—00
Example 4.9.
1.
. 3z +1
lim =3,
z—+oo 1+ 2
and

2. We want to prove that

For every € > 0, there exists B(e) > 0 such that

Vr > B(e) = —0| <

Given that ) .
—0<e<=a*+1>-

2 +1 €
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5 1
<z >-—-1
15

1
< x>/ -—-1
€

Therefore, we choose B(e) = ,/% — 1. By the definition of a limit at infinity,

we conclude :

w1—>rrolo 2 +1 -
4.3 Infinite limit

4.3.1 Infinite limit at point

We say that a function f(z) has an infinite limit at a point zy € R if :
lim f(z) =400 or lim f(z)= —o0
T—T0 T—x0

This means that as x approaches zg, the values of f(x) increase or decrease wi-
thout bound.

Mathematically

lim f(z) =400 <= VM >0, 30 > 0,Vz € R, |z —z¢| < 6 = f(z) > M.

T—T0

lim f(z) =—c0 <= VM >0, 36 > Wz € R, |z —x¢| < § = f(z) < —M.

T—T0

Example 4.10.

o1
lim — = 4+
z—0 5(;2
and
.1 )
lim — = —-oc0 and lim — = +o0.
z—0" X z—0+t T

4.3.2 Infinite limit at infinity
We say that a function f(z) has an infinite limit at infinity if :

lim f(x) =400 or lim f(z)=—o0

T—r4-00 T—>+00
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lim f(z) =400 or lim f(z)=—oc0

T—r—00 T—r—00
This means that as z increases or decreases without bound, the values of f(z)
also grow without bound in the positive or negative direction.

Mathematically
lim f(z)=+400<=VA>0,9B>0,Vx € R,z > B= f(x) > A.

T——+00

lim f(z) =400<=VA>0,3B>0,Vz € Rz < —B = f(x) > A.

T—r—00

lim f(z)=—-c0o<=VA>0,3B>0,Vz e R,z > B = f(z) < —A.

T—+00

lim f(z)=—-0c0<=VA>0,3B>0,Vx € R,z < —B = f(x) < —A.
Tr—r—00

Example 4.11.

1.

{L’2

lim =400
z—+o0 T + 1

. _ 3
lim e = +oo
T——00

3. We want to show that :

lim In(2*) = 400
r——+00

We say that hIJP flz) = +o0if :

T—r+00

VA >0, 3B > 0 such that z > B = f(x) > A

note that
In(z*) = 31n(x)

We want

A
3In(z) > A= In(x) > 3TE> A3

Choose B = e4/3. Then for all z > B, we have :
In(2*) = 3In(z) > A
By definition, we conclude :

lim In(2%) = 400
r—+00
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4.3.3 Indeterminate Forms
The following are the standard indeterminate forms encountered in limits :

0 oo

, o’ 1°°.
0 oo

0-00, cO— ooO0

Example 4.12. Let’s calculate the following limits :

1.
lim i
z—+400 /o + \/5
The direct evaluation of this limit at +oo results in an indeterminate form %
Then
lim a: = lim L
z—=+00 | [ 4 \/5 T——+00 :E(l + %)
1
zlir}rl \/E - :lnil 1:1.
T—r+00 Tr—r+00
(1 + f W1+ 7=
2.
o Vltr—V1—ua
lim
z—0 x

The direct evaluation of this limit at = 0 results in an indeterminate form 8.
To resolve this, we multiply the numerator and denominator by the conjugate

of the numerator :

\/1+x—\/1—x'\/1+x—1—\/1—m7 2
T Vitz+vVi—z z(V1+z+V1I—2)

Canceling the z gives :

2
Vitz+/1—x

Taking the limit as x — 0 :
I 2 2
11m = =
e=0\/1+ax+/1—2z 1+1
Thus, the limit is 1.
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4.4 Theorems on Limits

4.4.1 Operations on Limits

Let
lim f(z) =4, and lim g(z) =0y

T—T0 Tr—T0
Then the following operations hold :
L. lim (f(z) £g(x)) =0, £ 4
T—rT0

2. lim f(x)-g(x) =401 0ly

: . flz) 4
3. (if 6y #0) g}gglo o) " B

4. lim M- flz) = X6

T—T0
5. lim [f(z)]" = 7, lim {/f(z) = /¢, (if defined)
T—T0 T—x0

6. f(x) < g(x) =l < ls.

Theorem 4.2.(Gendarme’s Theorem)
Suppose that
lim f(z) = lim h(z) =/

a0 Tz
If

f(z) < g(x) < h(z)
in a neighborhood of x, then

lim g(z) = ¢.

T—T0
Example 4.13. Let us evaluate the following limits :

1. We want to evaluate the limit :

1
lim 22 sin (—)
x—0 x

We use the fact that for all real numbers x # 0, we have :
1
—1 <sin (—) <1
x

78



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

Multiplying all sides of the inequality by 2 > 0, we obtain :

. 1
—z? < 2% sin (—) < z?
T

Now, take the limit of the left and right sides as z — 0 :

lim(—2%) =0 and lim(2?) = 0.
z—0 z—0

By the Gendarme’s Theorem, it follows that

1
lim 22 sin (—) =0
x—0 x

lim m
r—+o0 I

We know that for any real number z, the following inequality holds :
r—1<[z] <z
Dividing all parts of the inequality by x > 0 :

—1
x <u§1
X

X

Simplifying :

—

1—

SHE
AN

Now, taking the limit as x — 400 :

T—+00 €T Tr—+00

lim (l—l):l and lim 1=1
Therefore, by the Gendarme’s Theorem :

lim m =1.
r——+00 I
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4.5 Continuous function

Definition 4.12.(Continuity at a Point)
Let f: I — R be a function, where I C R is an interval, and let xo € I.

1. We say that f is continuous at z if this following three conditions must be
satisfied :

(a) f(xo) is defined,
(b) le f(x) exists,

(c) lim f(z) = f(xo).
T—T0
2. We say that f is left-continuous at x, if

lim f(z) = f(xo)

T—=T)
3. We say that f is right-continuous at x, if

lim f(z) = f(2o)

+
CC—).TO

Example 4.14. Consider the function

h(z) %x—i—l ifxz>2
€T) =
—x+1 fx<2

We study the continuity of h at the point x = 2.
h(2)=-241=-1
Left limit as x — 27, we find :

lim h(z) =-2+1=—-1=h(2).

T—2~

Then the function h is left continuous at 2.
Right limit as z — 2%, we find :

1
lim h(r) =5 -2+1=1+1=2%h().

z—2t
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Since

lim h(z) # lim h(z).

T—2~ z—2F
Therefore, the limit lir% h(x) does not exist, and the function is not continuous at
T—

r = 2.

Definition 4.13.(Epsilon-Delta Definition of Continuity)
Let f: R — R be a function, and let zy € R.

1. We say that f is continuous at zq if
Ve >0, 36 > 0 such that Vo € R, |z — 29| <0 = |f(z) — f(xo)| < e
2. We say that f is left-continuous at z if

Ve > 0,30 > 0such that Ve e R, 0 < xg —z < d = |f(z) — f(zo)] < €

3. We say that f is right-continuous at x, if

Ve >0, 36 > 0 such that Vx € R, 0 <z — g < d = |f(x) — f(z0)| < e.

Example 4.15.

1. Prove that f(x) = x? is continuous at o = 2
We want to find ¢ > 0 such that :

lz -2 <= |2 —4|<¢

Note that :
2% — 4] = |z — 2||z + 2|
we have,
l<rx<3=3<zx+2<b=|r+2/<5
Then :
|2> — 4] = |z = 2|z +2| <5 |z — 2
We want

5-|x—2\<€:>|x—2|<§

So, we choose

§=2
5
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For all € > 0, choosing § = £, such that

lz—2|<d=|2*—4|<e

Hence, f(z) = z? is continuous at x = 2 according to the epsilon-delta defini-
tion.

2. Let the function f be defined by :

ponfy 12
We want to study the continuity of f at the point zy = 0.
We have :

) = 1) = fosin (25 ) 1 < b
since |sin (Z5) | < 1 for all z # 0.

Let € > 0. Choose § = ¢. Then, if |z| < §, we get :

|f(x) = fO)] < x| <5 =e.
Therefore, f is continuous at the point xy = 0.

Definition 4.14.(Continuity on an Interval)
A real-valued function f is said to be continuous on a given interval [ if it is conti-
nuous at every point of that interval.

Remark 4.5. All of the following functions are continuous on their domains of
definition :
— Polynomial functions : f(z) = a,2" + -+ - + a1x + aop

— Rational functions : f(x) = gg, where Q(x) # 0
— Exponential functions : f(z) = a®, a >0

— Logarithmic functions : f(z) = In(x), x > 0
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— Trigonometric functions : sin(x), cos(x), tan(z), ... on their domains.

Theorem 4.3. Let f and g be functions continuous on an interval I C R, and let
¢ € R. Then, the following functions are also continuous on [ :

f+ga f_ga C'f> fg, §7PTOV1dedg(I’)7éOVIL'€I

Example 4.16. Let g(z) = v/r and h(z) = In(z) defined on the interval I =
10, +o0[. Both functions are continuous on I.
Then, the following functions are also continuous on [

- filz) = g(x) + h(z) = Vo + In(z)
= folx) = g(z) - h(z) = Vx - In(z)

— f3(z) % %, continuous on |0, 1{U]1, +o0).

Theorem 4.4. (Continuity of the Composition of Functions)
If f is continuous at a and g is continuous at f(a), then the composition g o f is
necessarily continuous at a. Moreover, we have :

lim g(f(x)) = g (lim f(2)) = g(f(a).

a—a z—a
Example 4.17. We consider the function :
f(z) =In(2 +sinx)
Note that :
—1<sinzx <1, forallzeR

So
1 <2+sin(z) < 3.

Since
24+sinz >0 forallz eR

Therefore, the function f(x) is defined for all real numbers x and continuous on R.
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4.6 Discontinuity of a Function

1. If the function f is not defined at zg, then f is discontinuous at xg.

2. If f is defined in a neighborhood of zg, then f is said to be discontinuous at
xo if there exists € > 0 such that for every ¢ > 0,

dx € (kg — 0,00+ ) \ {mo} such that |f(z) — f(xo)| > e.
3. If the one-sided limits exist but are not equal :

lim f(x) # lim_f(z),

TT T
then f is discontinuous at z, and x is a point of discontinuity of the first kind.

4. If at least one of the one-sided limits does not exist or is not finite :

lim f(x) or lim f(x) does not exist or is infinite,
T—T x%xar

then f is discontinuous at xg, and xy is a point of discontinuity of the second
kind.

5. If the limit exists but is not equal to the function value :

lim f(x) exists and is finite, but  lim f(z) # f(xo),

T—x0 T—T0

then f is discontinuous at xy. This is called a removable discontinuity.

Example 4.18.
1. Undefined at zg .
f(z) = —, undefined at zo = 0.

Since f is not defined at 0, it is discontinuous at 0.

2. Discontinuity (First Kind)

1 if z <0,
f(x)_{2 if 2 >0.

lim f(z) =14%# lim f(z)=2.

z—0— r—0t

So f is discontinuous at x = 0, and this is a discontinuity of the first kind.
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3. Discontinuity of the Second Kind
sin (1) if 2 #0,
fay= o)
0 if v =0.
1
Asxz — 0, — — oo = f(z) oscillates without limit.
x

The limit does not exist at 0, so this is a discontinuity of the second kind.

z2-1
I ifx£1,
/(@) {3 if x =1.

21 —1 1
L :(x )@+ ):x+1 for © #£ 1.
r—1 r—1

4. Removable Discontinuity

So,
lim f(x) =2 # f(1) = 3.

This is a removable discontinuity at x = 1.

4.7 Uniform Continuity on an Interval

Definition 4.15. Let f : I — R be a function defined on an interval I C R. We say
that f is uniformly continuous on [ if :

Ve >0, 30 > 0 such that Ve,y € I, [z —y| <d = |f(z) — f(y)| <e.

Remark 4.6. In ordinary continuity, § may depend on both £ and the point x. In
uniform continuity, 0 depends only on €, not on the point.

Theorem 4.5. (Heine-Cantor)
If f is continuous on a closed and bounded interval [a,b], then f is uniformly conti-
nuous on [a, b].

Example 4.19.

1. Let f(x) = z* on the closed interval [0, 1]. Since f is continuous on a compact
interval, it is uniformly continuous.

2. Let f(z) = 1 on the interval ]0,1[. Then f is continuous on ]0,1[, but not

uniformly continuous. Indeed, as z — 07, f(x) — oo, and we cannot find a
single 0 that works for all x,y €]0, 1] for a given ¢.
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4.8 Extension by Continuity

Definition 4.16. Let f be a function defined on a set I\ {a}. If the limit lim f(z)
r—a

exists and is finite, we can define :

- f(z) if v #a
f(@) = {lim f(z) ifx=a

r—ra

Then, f is called the continuous extension of f at the point a. In this case, f
is continuous at z = a.

Example 4.20.

1. Consider the function

sin x
fl) ==
which is defined for all x # 0.
We know that : _
. sinx
lim =1
z—0 I

We define the extended function f by :

< ST f g #£0
f(x)_{1 if 2 =0

Thus, f is continuous at x = 0, and hence continuous on R.

2. Consider the function
f(x) =e'*  defined for z # 0
We know that

lim e'/* = +00
z—0t

Since we cannot define f(0) in such a way that the function becomes continuous
at x = 0.

The function f(z) = e'/* does not admit a continuous extension at z = 0.
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4.9 Fundamental Theorem’s

Theorem 4.6.(Intermediate Value Theorem)
Let f be a function continuous on the closed interval [a,b], and let N be a real
number between f(a) and f(b), i.e.,

fla) < N < f(b) or f(b)<N < f(a)
Then there exists a number ¢ €]a, b| such that :
fle)=N

Interpretation : A continuous function on an interval takes every intermediate va-
lue between its endpoints.

Theorem 4.7.
Let f : [a,b] — R be a continuous function. If :

fla)- f(b) <0
then there exists at least one point ¢ €]a, b[ such that :
fle)=0.

This is particularly useful for proving that an equation f(x) = 0 has a solution

in Ja, b if f(a)f(b) < 0.

Example 4.21.

1. Let us consider the function :
flx)=a®—z—1

Prove that f(z) = 0 admits a solution in the interval |1,2[. We evaluate the
function at the endpoints of the interval [1,2] :

fy=1"-1-1=-1
f2)=2>-2-1=8-2-1=5

we have

f(1)- f(2) <0.
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Because f is a polynomial (and thus continuous on [1,2]), the hypotheses of
the Intermediate Value Theorem are satisfied.
There exists ¢ €]1,2[ such that f(c) =0

3

So, the equation 2° — 2z — 1 = 0 has at least one real root in the interval (1, 2).

2. Let us consider the function :
g(x) = xsinz + cosx — z*

With the Intermediate Value Theorem applied to prove that the equation
g(x) = 0 has at least one positive solution and one negative solution.

This function is continuous on R because it is composed of continuous elemen-
tary functions (product, sine, cosine, square, etc.).

moreover we have

g(~) = (=) sin(~7) + cos(~7) — (=)’

=1-72<0
and
g(0) = 0 - sin(0) + cos(0) — 0* = 1 > 0.
g(m) = () sin(7) + cos(w) — ()?
=-1-7<0
We see that :

g(=m)-9(0) <0 and g(m)-g(0) <0

Therefore, by the Intermediate Value Theorem, there exists ¢; €] — 7, 0] such
that : g(c;) = 0, and ¢y €0, 7[ such that g(c2) = 0. So, the equation has at
least one positive solution and one negative solution.

Theorem 4.8. Let f: I — R be a continuous and strictly monotonic function on
an interval I C R. If there exist a,b € I such that :

fla)- f(b) <0,

then the equation f(z) = 0 has a unique solution in the interval |a, b[.
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Theorem 4.9. The image of a closed interval under a continuous function is a clo-
sed interval. In other words, if f : [a,b] — R is continuous, then f([a,b]) is a closed
interval in R.

Theorem 4.10. If f is continuous on [a, b], then :
— [ is bounded on |a, b],
— f attains its bounds : there exist Zyin, Tmax € [a, b] such that

f(Tmin) = ;Q[if})] f(@),  f(Tmax) = max f(z).

Theorem 4.11. Let f : I — R be a continuous and strictly monotonic function
defined on an interval I C R. Then

1. f is bijective from I onto its image f([),
2. The inverse function f~1: f(I) — I exists,

3. f~!is continuous and strictly monotonic on f(I), and its monotonicity is the
same as that of f.

Example 4.22. Let f(z) = /& on [0,+o0l.
Thus is continuous function, strictly increasing, then its inverse function

f(x)=2" on [0, +o0]

is also continuous.

4.10 Order of a Variable - Landau Notation (Asymp-
totic Equivalence)

Definition 4.17.

1. We say that a function f is negligible compared to a function g as = — x
if :

1m M =
A o) "

In this case, we write :
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f(z) = olg(x)) asz — o

Interpretation : f(x) becomes insignificant in comparison with g(x) near .

Example 4.23.
Let f(z) = 2% and g(z) = z. Then :

flz) o

—r=—=x—0 asz—0

glz) z
So we conclude :
v =o(z) asx—0

This expresses that z? is negligible compared to x near 0.

2. We say that f is dominated by g as * — x(, and we write :

f(z) = O(g(x)) asz —z
if and only if there exists a constant C' > 0 and a neighborhood of zy such
that :
|f(z)] < C-lg(z)| for all z sufficiently close to z.

Interpretation : This means that f(x) is at most of the same order of ma-
gnitude as g(x) near xy. In other words, f does not grow faster than g, up to
a constant factor.

Example 4.22. Let f(z) = 3z% + 5z and g(z) = 2.

Then :
2
flz) 3z +5x_3+§
g(x) x? x
- Asz — 0 : the expression is unbounded, so f(z) # O(z?) near 0. - As z — oo :
f@) _

=3+ g — 3, so we conclude :
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Remark 4.7. If g # 0 in a neighborhood of z, then :

— f=o0(g) ifand onlyif lim m =0,

T—x0 g(;p

- f=0(g) ifandonlyif f(x)-g(x)is bounded in a neighborhood of .

Definition 4.18. Let f and g be two functions defined on |0, +oo[. We define that :
— f=o0(g9) as x — +oo, if and only if

im M =

— f=0(g) asx — +o0, if and only if there exists a constant C' > 0 and a real
number x; > 0 such that :
|f(x)] < C-lg(z)| forall z > ;.
Similarly, we define the relations f = o(g) and f = O(g) as * — —oc.

4.10.1 Equivalence functions

Definition 4.19. Let f and g be two functions defined in a neighborhood of x,
except possibly at zo. We say that f is equivalent to g as x — xg, written f(x) ~ g(z),
if

lim M = 1.

=0 g(x)
Example 4.23. Let us consider the functions

f(z) =sinz and g¢g(z) ==z,

We have : ‘
sinz _

lim
z—0 X
Therefore, we can write :

sinz ~x asx — 0.

This means that sin(z) and z are asymptotically equivalent near 0.
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Theorem 4.12. Let f and g two functions defined in the neighborhood of x( except
perhaps at zo. We suppose that f ~ g at xg then, if lim f(x) exists then lim g(x)
T—x0 T—x0
exists also, and we have
lim f(z) = lim g(z).

T—T0 Tr—xQ
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4.11 Exercises

Exercise 4.1.
Calculate the limit of the following functions

L fim EEVE
z—4oo x4+ 1

2. lim Vr—3—+Vz+1

r—>+00
22 + |z

T—0 12 — ‘x|

_ 2
4 tim YEZOP
r—b (13—5

cosx — 1

7. lim

z—0 sin 3x

Exercise 4.2.
Using the definition of the limit of a function, show that

ox2—=1 3 , 2 |
D Jim ey =y Mmoo 9

Exercise 4.3.
Study the continuity of the following functions

zsin(3) ifz#£0 Votl=l i g £ () 2 ifa #£0
f(m) — T g($) — tanx , h(x) — xTe—2x
0 ifx =0 % ifz =0 2 ifx=0

Determine a and b so that the function f is continuous at xq = 2

N
fx) =

b ifr <2,
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Exercise 4.4.

1. Let f be a real function defined by

xT

et —a if <0

bIn(1+=x), if x>0

fz) =

Determine a and b so that f is continuous and differentiable on R.

2. We define the real function g as follows

|z + 1]
(x+1)(x2 =z +1)

g(z) =

Can we extend g by continuity at —1.

Exercise 4.5.
Let f be a function defined on R by

flx)=2" -2 +2 -2

1. Show that f(z) = 0 admits a solution a with 1 < o < 2.
2. Determine the sign of the function f(z), Vx € R.
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Chapter 5

Differentiable functions

5.1 Differentiable functions

Definition 5.1. Let I C R be an interval, and let f : I — R be a real-valued
function. Let o € I. We say that f is differentiable at z; if the following limit

exists and is finite :
lim f(x) — f(xo)

T—x0 r — Xy

=/ ecR.

This limit, if it exists, is called the derivative of f at xy and is denoted by

af

f'(zo) or -

(2o)-

5.1.1 Right and Left Derivative

Definition 5.2.
— We say that a function f is left-differentiable at a point zy € R if the following
limit from the left exists and is finite

i 1) = fw)

= f"(z0) (left derivative)
ToTy T — Zo

— We say that a function f is right-differentiable at a point xq € R if the following
limit from the right exists and is finite

1) = f()

a:—)xaL T — T

= fi(xo) (right derivative)
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Remark 5.1. For f to be differentiable at x, it is necessary and sufficient that f
is differentiable from the left and from the right at z(, and that the two limits are

equal. i.e.,
lim f(z) = f(@o) — lim f(z) = f(@o)

=T €T — X a:—ma' T — T

= ['(x0).

Definition 5.3. A function defined on an open interval I of R to R is said to be
differentiable on I if it is differentiable at every point in I.

Example 5.1.

1. Consider :

20 —1 ifx>1

f(a:):{mZ ifxz<l1

Left derivative at x = 1

—f1 21 -1 1
P P T €0 I VAN Ul S P Cilal 3 CU ) S PR Y
z—1- z—1 z=1- r — 1 z—1— r—1 rz—1—
Right derivative at z =1
—f@1 20 —1—1 2x — 2
£L(1) = lim @) =) gy 2ol 2 o
z—1+ rz—1 z—1t r—1 =1+t . — 1 z—1t

Thus, f is differentiable at = 1 and f/(1) = 2.

2. The function f(z) = |z| is differentiable for x # 0, but it is not differentiable
at = 0. Indeed

The function f(x) = |z| is piecewise defined as :

f(x):{x if x>0,

—x ifz<O.

To study the differentiability at x = 0, we need to check the left and right
derivatives at z = 0.

i f@ - fO) . f@) -0 -
x—0— xr — O z—0~ X z—0~- X
lim M: lim M: lim le_
z—0+ x—0 z—0+ €T =0+ T
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The left and right derivatives at £ = 0 are not equal :

fL0)=-1, fi(0)=1

Thus, the function f(z) = |z| is not differentiable at x = 0.

5.1.2 Differential

If f is differentiable at a, the differential of f at a, denoted df,, is the linear
map defined by :

dfa(h) = f'(a) - D

It provides the best linear approximation to f near the point a :

fla+h) = f(a) + f'(a)h.
Example 5.2. Let f(z) = 22. We will compute the derivative, the differential, and

the linear approximation at the point a = 3.
Derivative :

fl(x) =22 = [f'(3) =6
Differential at a = 3 The differential is :

dfs(h) = f'(3) - h = 6h.

Linear approximation

f(3+h)~6h+9.

5.2 (Geometric Interpretation

If the function f is differentiable at xq, then the graph (I') has a tangent line at
xo. The equation of this tangent line (7') is given by the following formula :

y = f(xo) + f'(w0)(x — x0).

Remark 5.2. If the function f has a left derivative /_ and a right derivative ¢, at x,
such that ¢_ # ¢, then the graph (I'y) of f has two half-tangents at My(zo, f(z0)),
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and we say that M, is a corner point of (I'y).

For example f(z) = |z|, has a corner point at x = 0.
Proposition 5.1. If f is differentiable at x = a, then f is continuous at = = a.
Proof. We have

lim [f(z) — f(a)] = lim|

T—a T—a Tr—a

And since f is differentiable at x = a, then

lim(f(z) — f(a)] = lim[M] lim[z —a] = f'(a) - 0=0

z—a T—a r—a r—a

So
lim[f(z) — f(a)] = 0 = lim f(z) = f(a).

r—a r—ra

Therefore f is continuous at a.

Remark 5.3.
— For f to be differentiable at x = a, it must also be continuous at = = a.
— If f were not continuous at z = a, the derivative could not exist because there
would be a discontinuity at that point.
— Thus, differentiability at a point x = a guarantees continuity at that point.

5.3 Operations on differentiable functions

Theorem 5.1. Let f and g be two functions differentiable at xg, and let «, 8 € R.
Then the functions f + g, fg, af + 8¢9, and % (if g(zo) # 0) are also differentiable at
xg, and we have

(f +9)(z0) = f'(x0) + g'(x0)
(f9) (o) = f'(z0)g(xo) + f(x0)g' (20)
(af + Bg) (w0) = af'(w0) + B9 (w0)

LY :f(%)g(xo)—f(xo)g’(xo) £ ol
(5) ol A

Proposition 5.2. Let f be differentiable at xg, and let g be differentiable at f(x).
Then the composition g o f is differentiable at x(, and we have
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(9o f)(zo) = ¢ (f(z0)) - f'(z0).

Proof. We want to compute the limit

9(f(x)) — 9(f(x0))

lim
T—T0 T — 2o
We have
9(f (@) — g(f(z0)) _ 9(f(x)) — g(f(20)) f(z) — f(z0) _
T — f(x) = f(xo) T — I
Since f is differentiable at x4, and ¢ is differentiable at f(zg), we can write
T—rxo T — Zo
e () ~ 9(f(a)
. g X)) —4g To))
M@~ fay U
Therefore
Example 5.3.

Let
f(x)=2*+1 and g(u) = sin(u)

We define the composition :

(9o f)(z) = g(f(2)) = sin(z* + 1)
To differentiate g(f(x))

We compute each part :
fl(z) =2z and ¢'(u)=cos(u) = ¢'(f(z)) = cos(z® + 1)
So,
(go f)(x) = cos(x* + 1) - 2.
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Proposition 5.3. (Derivative of an Inverse Function)

Let f be a bijective function that is differentiable at a point x(, and suppose that
f'(z0) # 0. Then the inverse function f~! is differentiable at yo = f(xo), and its
derivative is given by :

—1\/ _ 1 = !
(f71) (o) = (o) f (fHwo))

Example 5.4. Let f(z) = €*. Then the inverse function is f~!(y) = In(y).
The derivative of f is f/'(x) = e*. Therefore

(n(y)) = (f) ) = 57 =

5.4 Higher-Order Derivatives

Definition 5.4. Let f be a real function, differentiable on an interval I C R. We say
that f is n-times differentiable on [ if all its successive derivatives f/, f", f®, ..., f™
exist on /.

™ is called the n-th derivative of f, and we have by recurrence :

fO = fz), f™ = (fy.

Example 5.5. Let f(x) = 2". We will calculate the first derivatives using the recur-

rence relation :
f'(z) = na™!

f"(x) =n(n — 1)z" 2
@) =n(n—1)(n—2)z"3

f™(x) =n! (where n! is the factorial of n).

5.4.1 Leibniz Formula

Let f and g be functions that are n-times differentiable. Then the nth derivative
of their product is given by :

(f9)™(x) =Y CrfP(x)- g7 P(x)
k=0
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Where C* = #lk), This is known as the Leibniz formula.

Example 5.6. Let f(z) = 22, g(z) = ¢*. Compute (fg)® (z).
We know :

fla) =2 fl2)=22, f'(x)=2, [f"(2)=0,n2>3
glz) =€, ¢g™M(x)=e" foralln
Using Leibniz’s formula :
(f9)¥ (@) = C3f ()9 (x) + C5 f'(2)g™®) () + CF " () g™V () + C5 ) () g ()

=1-2%"+3 22" +3-2¢" +0 = (2> + 62 + 6)e”.

5.5 Taylor’s Formula

Let f be a function that is n-times continuously differentiable on an interval
around a point a € R. Then, for all x near a, we have :

f// (a)

fl@) = fla)+ fa)z —a) + (@ —a) 4 +

f"(a)

n!

(x —a)" + Ry(x)
where R, (z) is the remainder term of the Taylor approximation.

Example 5.7.
Let f(z) = €”. Since all derivatives of e* are equal to e”, we have :

f™(z)=¢e" and f™(0)=1
The Taylor polynomial of order n for f(x) at a =0 1is :
2 1’3 n

v x x
e _1+x+5+§+---+m+Rn(:¢).

where R, (z) is the remainder term.
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5.5.1 Taylor’s Formula with Lagrange Remainder

Let f be a function that is (n + 1)-times continuously differentiable on an open
interval containing a and z. Then there exists a point & between a and z such that :

™ (a
(x—a)®+-- ._{_fn—!()(x_ayq_

J(e)

(n+1)! "

f(@) = fla)+ f(a)(z—a)+—~ (r—a
The final term is known as the Lagrange remainder.

Example 5.8. Taylor Expansion of sin(z) with Lagrange Remainder.
Let f(z) = sin(z). We expand f around a = 0 up to order 3. We have

f'(2) = cos(a), F0)=1

J(x) = —sin(x), 71(0)=0

fO(2) = —cos(@),  fO(0) = -1
()

3 .
sin(z) = x — % + wjlﬁx‘l for some & € (0, ).

5.5.2 Taylor Maclaurin Formula

If a = 0, We obtain what is known as the Taylor Maclaurin formula with the
Lagrange remainder
f(n+1)((91’)
(n+1)!

)n—&—l7

f(@) = fla)+f(a)(z—a)+=——

(x—a

where 0 < 6 < 1.

5.6 Theorems on Differentiable Functions

5.6.1 Global and Local extremum - Fermat’s Theorem

Definition 5.5. A function f is said to have a local extremum at a point zq if
there exists an interval I around x( such that :
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— f(zg) > f(z) for all z € I (then z, is a local maximum), or
— f(zo) < f(z) for all x € I (then xy is a local minimum).

Definition 5.6.
— We say that a function f has a global maximum (respectively, a global mini-
mum) at the point xz if :

f(zo) > f(x) (respectively, f(xo) < f(x)) for all z € Domain(f).

— We say that f has a global extremum at the point z if f has either a global
maximum or a global minimum at xg.

Theorem 5.2. (Fermat’s Theorem)
If a function f has a local extremum at a point ¢, and f is differentiable at ¢, then :

fie)=o.

5.6.2 Rolle’s Theorem

Theorem 5.3. (Rolle’s theorem)

If a real-valued function f is continuous on a closed interval [a, b, differentiable on
the open interval |a, b[, and f(a) = f(b), then there exists at least one ¢ in the open
interval |a, b| such that

f'(c) =0.
Example 5.9.
1. Let the function f be defined on [0; 1] by
fla)=a—a
f is continuous on [0; 1], and differentiable on an interval |0; 1], and
fO)=rf(1)=0

Therefore according to Rolle’s Theorem there exists a ¢ €]0,1] such that

fle)=0<=2c—1=0=c=1.

2. To show that the equation
4o — 182* + 222 — 6 =0
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has at least one solution in the open interval |1, 3[, we define the function :
f(z) = 2* — 62° 4+ 112% — 62

Observe that f is a polynomial function, and therefore continuous and diffe-
rentiable on R.

Compute the values at the endpoints of the interval :
f1)=1"=6(1)>+11(1)*-6(1) =0, f(3)=3"—6(3)>+11(3)>—6(3) =0
then by Rolle’s Theorem, there exists ¢ €|1, 3[ such that

f'le)=0

thus
f'(x) = 42® — 182 + 222 — 6

Therefore, the equation 423 — 1822 + 222 — 6 = 0 has at least one solution in

|1, 3], as a consequence of Rolle’s Theorem.

3. Let the function f be defined on [—1;1] by

f(x) = |z|.

but This function is continuous on [—1;1] and satisfies f(—1) = f(1) = 1 but
it is not differentiable at 0 (fr, = 1 and f; = —1). Therefore there does not
exist a ¢ €] — 1, 1] such that f'(c) = 0.

5.6.3 Theorem of finite increments

Theorem 5.4. Mean Value Theorem (Lagrange)
Let f : [a;b] — R be a continuous function on [a;b], and differentiable on ]a;b|.
Then there exists a point ¢ €]a; b[, such that

f(b) = f(a) = (b—a).f'(c).

Corollary 5.1. If f is differentiable on an interval I C R, then, for all distinct
x1; T2 € I, there exists a point ¢ between z; and x5 such that :

f(@2) = fz1) = (z2 — 21) f'(c).
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Example 5.10.
Prove Vz € [0, +00[, €* > 2+ 1 using the Mean Value Theorem. Let us consider the
function :

fz) =e*

The function f is continuous and differentiable on [0, z] for any = > 0.

Apply the Mean Value Theorem, for x > 0, there exists a ¢ €]0, x[ such that

oy 1) =10 e

z—0 T

Since f'(x) = e*, we have :

r—1
¢ =e° for some ¢ €]0, z|

T

Multiply both sides by x :

e —1=uze = e"=1+ xe
Now, since ¢ > 0, we know that e® > 1. So

e =14ze*>14z-1=x+1
Therefore, for all x > 0, e* > x + 1.

Theorem 5.5.(L’Hopital’s Rule)
Let f and g be functions that are differentiable on an open interval I containing a.
Suppose that :
— lim f(z) =limg(z) =0 or Zoo,
T—a r—a

— ¢'(z) # 0 for all = near a (except possibly at a),

!
— The limit lim f/(x) exists or is +oo.
v—a g'(x)

Then )
lim @ = lim f,(x)
r—ra g(x) r—a g (;U)

Remarks 5.4.

— This rule can also be applied as © — o0 or £ — —00.
— The rule applies to indeterminate forms of the type 8 or 2.
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5.7 Convexity of a Curve

Definition 5.7. A function f : I — R, defined on an interval I C R, is called
convex if for all z,y € [ and t € [0, 1], we have :

flz 4+ (1 —t)y) <tf(z)+ (1 —1)f(y).

This inequality means that the graph of f lies below the chord connecting any
two points on the graph.

Corollary 5.2. The graph of f is said to be
— Convex on [ if :

f"(x) >0 forallzel.

— Concave on [ if :
f"(x) <0 forallz el

Geometric Interpretation : If f is convex, then the graph of the function lies
above any of its tangents. If f is concave, the graph lies below its tangents.

Example 5.11. The function f(z) = |z| is convex on R. Indeed

We verify the definition of convexity : for all z,y € R and for all ¢ € [0, 1], using
triangular inequality we obtain

te + (1 —t)y| < tlz| + (1 — )|yl

5.7.1 Point of Inflexion

Definition 5.8. Let f be a differentiable function on an interval I C R, and let
xo € I. Let I'y denote the graph of f.

We say that z, is a point of inflection of f if the graph I'y changes concavity
at the point My = (xq, f(z0)), that is, the curve crosses its tangent at M.

Theorem 5.6. (Point of Inflexion)
A point ¢ € I is called a point of inflection if the concavity of f changes at xq, that
is :

f"(x9) =0 and f” changes sign at z.
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5.8 Asymptotes of a Curve

Let f : D — R be a real-valued function defined on a domain D C R. An asymp-
tote is a line that the graph of a function approaches as the variable tends toward
a finite value or toward infinity.

— Vertical Asymptote : The line z = a is a vertical asymptote of f if :

lim f(x) =400 or lim f(z)=+o0

T—a~ r—a™t

— Horizontal Asymptote : The line y = L is a horizontal asymptote if :
lim f(x)=1L

r—+o0

— Oblique (Slant) Asymptote : If there exists a line y = ax + b such that :
lim [f(xz)— (ax+b)] =0

xr—*+00

then y = ax + b is an oblique asymptote of the graph of f.

Example 5.12.

1. Consider the function

1
This function is undefined at z = 2. We compute the limits :
. 1 ) 1
lim = —o00, lim = 4o00.
32— L — 2 =2+ T — 2

Therefore, the line x = 2 is a vertical asymptote.

2. Consider the function

1
fx) = r+1
We compute the limits at infinity
1 1
im =0, lim =0

Both limits equal 0, so the line y = 0 is a horizontal asymptote of the graph of
f(z).
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3. Consider the function

241

fla) =
We can rewrite it as 1
fla)=z+ .

As x — oo or x — —o0, the term % — 0. We verify

lim (f(z) —x) = lim 1 0.

T—00 r—00 I

The same limit holds as * — —oo. The line y = z is an oblique (slant) asymp-
tote.

5.9 Construct the Graph of a Function

Let a real function f : R — R, the graph of f can be studied and drawled by
following these steps :

1. Determine the domain of definition of the function.

2. Symmetry :
— If f(—x) = f(x), then the function is even (symmetric about the y-axis).
— If f(—x) = —f(x), then the function is odd (symmetric about the origin).

3. To study the asymptotic behavior of a function. We distinguish three types of
asymptotes : Vertical asymptotes, Horizontal asymptotes, Oblique asymptotes.

4. Limits and Continuity : Analyze the limits and discontinuities.

5. First Derivative f'(x)
— Study the sign of f/(z) to determine intervals of increase or decrease.
— Critical points occur where f’(z) = 0 or is undefined.
— Use the First Derivative Test to identify local maxima and minima.

6. Second Derivative (f"(z)) :
— Study the sign of f”(z) to determine intervals of concavity.
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— Points where f”(z) = 0 and concavity changes are inflection points.

7. Graph Sketching :
— Plot the points : extremum, inflection points.
— Draw asymptotes lines.
— Draw the curve using the information above.

Example 5.13.
621‘ _|_ 5

61‘_

Analysis of the Function f(z) =1In

The function is defined when the denominator is strictly positive and the whole
expression inside the logarithm is positive :

e’ —2>0=z>1n(2)

So the domain is :

Dy = Jin2), +ool
— Limit at In(2)*

' 621n(2) + 5 4+ 5
| f(z)=n (m) = 1“( 0+ > = o

There is a vertical asymptote at = In(2).

Behavior at Infinity

2x T —x
e“r 4+ 95 e’ + de
li = lim 1 = lim In(——) = )
— First derivative is used to study the increasing or decreasing of the function

(2(e* — 2)e” — e* — 5)e”
(2@ 19

f'(x) =

Second Derivative is used to analyze concavity and inflection points.

2e%(e' + 103 — 30e?® + 40e” + 25)

" o
F@) = e i 1 T2 — 4065 1 6562 — 1000* £ 100
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Graph of fix) = In (522

, ex—2
[ 2
6F | — fx)=In(522)
: === x=1In(2) (vertical asymptote)
]
5/ 1
1
]
1
4t
]
1
Py 1
X3k
= 1
]
1
1
2r !
1
1
]
1r
]
1
1
of—
1.0 1.5 2.0 2.5 3.0 3.5 4.0
X

Vertical asymptote at = In(2) (dashed red line).
The function increases for z > In(5), and tends to +oc.

110



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

5.10 Exercises

Exercise 5.1.
Study the differentiability at xq of functions :

fla)=(x—-D]x—=1]; 20=1, gx)=|z -1+ |z+1], xo=-1

h(xz) = x + (z — 1) arcsin ;o = 1.

z+1

Exercise 5.2.

2?sint, ifx #0
Let f(z) = * .
0, ifx=0

1. Is f differentiable at x =07
2. Is f’ continuous at x =07
Under what condition does the function
x”sin%, ifx #0

g(z) =14 0, ifex =0

admits a continuous derivative at the point zo =07

Exercise 5.3.
Determine the values of o and 3 for which the function

Fa) = a+ B2?, if |z <1

= if |z| > 1,

||

is continuous and differentiable on R.

Exercise 5.4.
Calculate the derivatives of the following functions

z(1+ e%)_l, if; <0

z) = In(1+In(z)), g¢(z) = @2 plz) =
F(#) = n(1+in(x), g(a) D=

111
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Exercise 5.5.
Let the function y(z) = 222

1. Show that y/(z) # 0 on [—1,1]
2. Is there a contradiction with the theorem of Rolle ?

Exercise 5.6.
Using the Mean Value Theorem, establish the following inequalities :

1. For all z € [0, +o0],
T

1+z

<ln(z+1) <z

2. For all x,y € R,
|sin(z) —sin(y)| < |z —yl.

Exercise 5.7.

1. Write the Taylor-Lagrange formula of order 5 at 0 for the function sin(z).
2. What is the value of the limit :

iig% sin;— T,
3. Show that for all z > 0,
3 G I
x—ggsinxgx—g—l—m.

What happens when z is negative ?
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Chapter 6

Elementary functions

6.1 Logarithm and Exponential

6.1.1 Natural logarithm

Definition 6.1. The natural logarithm, denoted In(x), is the logarithm to the base
e, where e ~ 2.71828.

It is defined for all x > 0 and is the inverse of the exponential function e*. That
Is :

In(x) =y if and only if e =x.

Properties 6.1.

— In(z) is defined on 0, +00]

— In(x) is continuous and differentiable on |0, +-o00[, and

d 1
| S
o n(x) = x>0
— For all z > 0, In(z) is increasing
i le
z—0
ln(ab) l(a)—l—ln()
= In(§) = In(a) — In(b),
— In(a") =rln(a), forall a,b >0 and r€R
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6.1.2 Exponential function

Definition 6.2. The exponential function, denoted exp(x) or e”, is defined for all
real numbers x.

It is the inverse of the natural logarithm function In(z). That is :

exp(z) = e, and In(e®) = z.

Properties 6.2. The exponential function satisfies the following properties :

1. For all x > 0, exp(In(z)) = z and for all z € R, In(exp(z)) =z

2. exp(a + b) = exp(a) x exp(b)

3. exp(nx) = (exp(z))", for all n € N

4. The exponential function is continuous and strictly increasing, and satisfies :

xEIPm exp(z) =0 and xEI—&I-loo exp(z) = +00

5. The exponential function is differentiable and :

d
. exp(z) = exp(x), forallz e R
x

It is convex, and satisfies the inequality :

exp(z) > 1+

6.1.3 Logarithm with an arbitrary base

Definition 6.3. The logarithm with an arbitrary base a > 0, a # 1, is denoted by
log,(z). It is defined for all > 0, and it is the inverse of the exponential function

z%. That is : In )
n(x

| = .

0g, () n(a)

Properties 6.3. Let a be a strictly positive real number such that a # 1. For all
x,y € ]0,+o00[ and n € Z, the following properties hold :

1. If a > 1 and x €]1,4+0o0[, then the logarithmic function log,(z) is strictly
increasing and concave.

If x €]0, 1], then the function log,(x) is strictly decreasing and convex.
log,(z x y) = log,(x) + log,(y)

loga (%) = - loga(x)

log,(a") = nlog,(z)

log, (£) = loga(x) ~ log, (y),

S Ot N
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graphical representation of the log and exp

6.1.4 Power Function
By definition, for a > 0 and b € R

a® = exp(bln(a))

Remark 6.1.

1. Va=a'? =exp (3 In(a))
2. The n-th root of a can be written as :

1
Va=a'" = exp (— ln(a))
n
Proposition 6.1. Let z,y > 0 and a,b € R. The following properties hold :
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— T r -
g b

e
g Sy
- (xab:xab

6.2 Hyperbolic functions

Definition 6.4.
— The hyperbolic sine (sinh) and hyperbolic cosine (cosh) functions are defined
on R with values in R as follows :

er —e® et + e %

sinh(z) = — cosh(x) = 5

— The hyperbolic tangent and hyperbolic cotangent are defined by :

fanh(z) = sinh(z) e” —e™”
~ cosh(z) et de

cosh(z) e +e™®
th(z) = = 0
coth(z) sinh(x) e* —e®’ v#

Properties 6.4.

1. Fundamental Identity
cosh?(z) — sinh?(z) = 1

2. The hyperbolic sine (sinh) and hyperbolic cosine (cosh) functions are differen-
tiable on R, and their derivatives are :

sinh’(z) = cosh(z), cosh’(x) = sinh(z)
3. The function sinh is odd, strictly increasing on R, and

lim sinh(z) = —oo0, lim sinh(z) = 400
T—r—00 Tr—-+00

4. The function cosh is even, strictly decreasing on | — 0o, 0], and strictly increa-
sing on [0, +00) and

lim cosh(x) = lim cosh(x) = +o0
T—>—00 r—+00
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5. The hyperbolic tangent function tanh is differentiable on R, and for every
x € R, its derivative is given by :

tanh’(z) = 1 — tanh*(x)

6. The hyperbolic cotangent function coth is differentiable on R\ {0}, and for
every x € R\ {0}, its derivative is given by :

1
sinh(z)

coth'(z) = —

7. The function (tanh) is odd and strictly increasing on R.

lim tanh(z) =1, lim tanh(x) = —1.

T—00 T—r—00

8. The function coth is odd and strictly decreasing on R\ {0}

lim coth(x) =1, lim coth(x) = —1.

T—r00 T—r—00

9. Parity

sinh(—z) = —sinh(z) (odd function)
cosh(—x) = cosh(z) (even function)
tanh(—xz) = —tanh(z) (odd function)

117



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

graphical representation of the hyperbolic functions
sinh, cosh, tanh

— y =sinh(x)
- =y = cosh(x)
----- y = tanh(x)

6.3 Reciprocal Hyperbolic Functions

Definition 6.5. The hyperbolic sine function is a bijection from R to R. Its inverse
is called the inverse hyperbolic sine and is denoted by argsh(x)

R—R
argsh :

xr — argsh(z),
Ve € R,Vy € R:y = argsh(z) = x = sinh(y).

118



UNIVERSITY 8 MAY 1945-GUELMA Dr.M.MERAD

Properties 6.5. The function argsh(x) (also written as sinh~'(x)) has the following
properties :

— Vo € R: argsh(sinhz) = z, and Vz € [0, 7] : sinh(argsh(z)) = z.

— it is continuous on R,

— strictly increasing,

— odd : argsh(—z) = — argsh(x),

— differentiable on R, in particular on the interval [—1, 1]. Its derivative is given

by :

1

d
— argsh(z) = ——
gsh(z) =

dx

e =

graphical representation of the Argsh and Sinh.

Definition 6.6. The hyperbolic cosine function is a bijection from [0, +oo[ to
[1,4+o00]. Its inverse is called the inverse hyperbolic cosine and is denoted by argch(z)

[1, +00[— [0, +o0]
argch :
x — argch(z),

Vr € [1,+oo[,Vy € [0,400[: y = argch(z) <= x = cosh(y).
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Proposition 6.6. The function argch(z) (also written as cosh™*(z)) has the following
properties :

— it is continuous on the interval [1,4o00],

— strictly increasing,

— not an odd or even function,

— differentiable on |1, +00].

Its derivative is given by :

1

d
— argch(z) = ———
geh(z) = ———

> 1
dx

graphical representation of the Argch and Cosh

A

Courbe de la
fonction ¢h

Courbe de la
fonction argch

Definition 6.7. The hyperbolic tangent function defines a bijection from R onto its
image | — 1, 1[. The inverse function is called the inverse hyperbolic tangent function
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and is denoted by argth, that is :

|—-1,1[—R
argth :
xr — argth(x),

Ve €] —1,1[,Vy € R: y = argth(z) <= = = tanh(y).

Properties 6.7. The function argth(x) (also written as tanh™'(x)) has the following
properties :

— it is continuous on the open interval | — 1, 1],

— strictly increasing,

— odd : argth(—z) = — argth(x),

— differentiable on | — 1, 1].

Its derivative is given by :

d
— argth(z) =

< 1.
o |z

1
1 — a2’
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graphical representation of the Argth and Tanh

T ‘ Courbe de
argth
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6.4 Exercises

Exercise 6.1.
Show that for all z € [-1, 1], we have

sin(arccos ) = V1 — 22 = cos(arcsin z).

Exercise 6.2.
1. Calculate :

n (sin5) (cos3) (sin5)
arcsin (sin — ), arccos (cos— ), arccos(sin— ).
3 3 3
2. Calculate :

A T ) 21 . 0T
arccos COS? ,  arccos cos? , arcsin sm? , arcsin sm? .

Exercise 6.3.
Let f : R — R be the function defined by :

f(z) = argcosh (\/1—1—7) :

—_

. Determine the domain of definition of the function f.

[\

. Compute argcosh(cosh(t)) for all t € R.
3. Show that for all z € R, we have :

f(z) = argsinh(|z|).

>~

. Compute f'(x) for all z € R*.
5. Is the function f differentiable at x =07

Exercise 6.4.

1. Calculate the exact values of :

3 1
arcsin (%_) ,  arccos (—5) , arctan(1).
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2. Simplify the expressions :
arcsin(sin b7 /6), arccos(cos7m/4), arctan(tan3m).
3. Prove that for all z € [-1, 1],
sin(arccos z) = V1 — 22.

4. Show that : -
arcsin(x) + arccos(x) = 5 Vo e [-1,1].

5. Calculate derivatives :

d d
— arcsin(z), —— arccos(z), —— arctan(z).

dx dx dx

6. Solve for = :

arcsin(z) = %, arccos(z) = g, arctan(z) = 1.

7. Evaluate :
arccos(cos bm/3), arcsin(sin 117/6).

8. Express arctan (1) in terms of arctan(z), for z > 0.

9. Show that :
T

Vi

tan(arcsinz) = r e (—1,1).

124



Bibliographie

[1] Robert Magnus, Fundamental Mathematical Analysis, Springer Undergraduate
Mathematics Series.

[2] C. Baba-Hamed, K. Benhabib, Analysis 1 : Course Review and Exercises with
Solutions, O.P.U. (1985).

[3] Wieslawa J. KACZOR et Maria T. NOWAK : Problems in Analysis I : Real
Numbers, Sequences and Series, EDP Sciences, 2008.

[4] B. Aebischer, Introduction to Analysis : Course and Solved Exercises. Vuibert,
(2011).

[5] A. Frioui, Lecture Notes : Analysis 1, for Bachelor’s Students in Mathematics.
Course handout, University of May 8, 1945 Guelma. 2016

[6] M. KESMIA, Mahematics 1, Constantine 1 University, 2020.
[7] M. Bekiri, Mustapha Stambouli University of Mascara, Algeria,(2022).
[8] M.Lecture Notes for Preparatory School Students.

[9] Gilles Costantini, Analysis : Course and Solved Exercises, de boeck, Bruxelles.

125



	Real numbers
	Number Sets
	Operations with Real numbers 
	The field of real numbers
	Commutative Field
	Totally Ordered Field
	Commutative Archimedean Field

	Principle of Mathematical Induction
	Absolute value
	R-Valued Field

	The greatest integer function
	Intervals
	Upper and Lower Bounds. Completeness Axioms
	Archimedean property
	The Density of the Rational Numbers 
	Extend Real Line
	Topological Properties of Real numbers
	Exercises

	The Field of Complex Numbers
	Algebraic expression of a Complex Number
	Operations on Complex numbers
	Modulus of complex number

	Geometric representation of Complex numbers
	Trigonometric Form of a Complex Number
	Exponential of Complex numbers
	Euler's Formula

	Exponential form of Complex numbers 
	Nth roots of Complex numbers
	Exercises.

	Sequences of Real Numbers
	Bounded sequence
	Monotony of a Real Sequence
	Lower limit and upper limit of a sequence
	Extracted Sequence (Subsequence)
	Convergence and Divergence of Sequence
	Limits and inequalities
	Convergence of monotone sequences
	Limits and properties
	Adjacent Sequences
	Recurrence Sequences
	Monotonicity of a Recurrence Sequence

	Cauchy's Convergence Criterion 
	Bolzano-Weierstrass Property
	Exercise.

	Real Functions of a Real Variable
	Preliminaries
	Even, odd and periodic functions
	Bounded and monotonic functions
	Maximum and Minimum local of function

	Limit of function
	Finite limit at infinity

	Infinite limit
	Infinite limit at point
	Infinite limit at infinity
	Indeterminate Forms

	Theorems on Limits
	Operations on Limits

	Continuous function
	Discontinuity of a Function
	Uniform Continuity on an Interval
	Extension by Continuity
	Fundamental Theorem's
	Order of a Variable - Landau Notation (Asymptotic Equivalence)
	Equivalence functions

	Exercises

	Differentiable functions
	Differentiable functions
	Right and Left Derivative
	Differential

	Geometric Interpretation
	Operations on differentiable functions
	Higher-Order Derivatives
	Leibniz Formula

	Taylor's Formula
	Taylor's Formula with Lagrange Remainder
	Taylor Maclaurin Formula

	Theorems on Differentiable Functions
	Global and Local extremum - Fermat's Theorem
	Rolle's Theorem
	Theorem of finite increments

	Convexity of a Curve
	Point of Inflexion

	Asymptotes of a Curve
	Construct the Graph of a Function
	Exercises

	Elementary functions
	Logarithm and Exponential
	Natural logarithm
	Exponential function
	Logarithm with an arbitrary base
	Power Function 

	Hyperbolic functions
	Reciprocal Hyperbolic Functions
	Exercises


