
 

 جزائريـــــة الديمقراطيـــــة الشعبيـــــةالجمــــهورية ال   
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIR     

 
 

et 

 

 

 
 

 

 
 

 

 

Ministère de l’Enseignement Supérieur de la 

Recherche Scientifique 

Université 8 mai 1945 Guelma 

Faculté des Mathématiques et de 

l’Informatique et des Sciences de la Matière 
Département de Mathématiques 

 

م العالــي و ـوزارة التعلي

 البحث العلمـي

 1945اي ـــم 8جامعـة 

 قالمـــة

كليــة الرياضيـات و الإعـلام 

 الآلـي و علــوم المـادة

 قسم الرياضيات

 

 

 

 

 

 

Course support for the module 
 

 

 

 
 

 

 

 

 

 

 

Intended for first year of LMD computer science 

& first year of computer engineering 
 

 

 

 

 

Presented by: Dr. Meriem MERAD  

 

 

 

 

 

 

 

Academic year  2025 

 

MATHEMATICAL 

ANALYSIS  I 
 



Summary

1 Real numbers 7
1.1 Number Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Operations with Real numbers . . . . . . . . . . . . . . . . . . . . . 10
1.3 The field of real numbers . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Commutative Field . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Totally Ordered Field . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Commutative Archimedean Field . . . . . . . . . . . . . . . . 11

1.4 Principle of Mathematical Induction . . . . . . . . . . . . . . . . . . 12
1.5 Absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 R-Valued Field . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 The greatest integer function . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8 Upper and Lower Bounds. Completeness Axioms . . . . . . . . . . . . 20
1.9 Archimedean property . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.10 The Density of the Rational Numbers . . . . . . . . . . . . . . . . . 27
1.11 Extend Real Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.12 Topological Properties of Real numbers . . . . . . . . . . . . . . . . . 29
1.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 The Field of Complex Numbers 33
2.1 Algebraic expression of a Complex Number . . . . . . . . . . . . . . . 33
2.2 Operations on Complex numbers . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Modulus of complex number . . . . . . . . . . . . . . . . . . . 35
2.3 Geometric representation of Complex numbers . . . . . . . . . . . . . 35
2.4 Trigonometric Form of a Complex Number . . . . . . . . . . . . . . . 36
2.5 Exponential of Complex numbers . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Euler’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Exponential form of Complex numbers . . . . . . . . . . . . . . . . . 39

2



University 8 May 1945-Guelma Dr.M.MERAD

2.7 Nth roots of Complex numbers . . . . . . . . . . . . . . . . . . . . . 40
2.8 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Sequences of Real Numbers 43
3.1 Bounded sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Monotony of a Real Sequence . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Lower limit and upper limit of a sequence . . . . . . . . . . . . . . . 47
3.4 Extracted Sequence (Subsequence) . . . . . . . . . . . . . . . . . . . 47
3.5 Convergence and Divergence of Sequence . . . . . . . . . . . . . . . . 48
3.6 Limits and inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Convergence of monotone sequences . . . . . . . . . . . . . . . . . . . 55
3.8 Limits and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.9 Adjacent Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Recurrence Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10.1 Monotonicity of a Recurrence Sequence . . . . . . . . . . . . . 58
3.11 Cauchy’s Convergence Criterion . . . . . . . . . . . . . . . . . . . . 59
3.12 Bolzano-Weierstrass Property . . . . . . . . . . . . . . . . . . . . . . 60
3.13 Exercise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Real Functions of a Real Variable 64
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Even, odd and periodic functions . . . . . . . . . . . . . . . . 66
4.1.2 Bounded and monotonic functions . . . . . . . . . . . . . . . . 67
4.1.3 Maximum and Minimum local of function . . . . . . . . . . . 70

4.2 Limit of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.1 Finite limit at infinity . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Infinite limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Infinite limit at point . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Infinite limit at infinity . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Indeterminate Forms . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Theorems on Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Operations on Limits . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Continuous function . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Discontinuity of a Function . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Uniform Continuity on an Interval . . . . . . . . . . . . . . . . . . . . 85
4.8 Extension by Continuity . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Fundamental Theorem’s . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.10 Order of a Variable - Landau Notation (Asymptotic Equivalence) . . 89

3



University 8 May 1945-Guelma Dr.M.MERAD

4.10.1 Equivalence functions . . . . . . . . . . . . . . . . . . . . . . . 91
4.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Differentiable functions 95
5.1 Differentiable functions . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Right and Left Derivative . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Operations on differentiable functions . . . . . . . . . . . . . . . . . . 98
5.4 Higher-Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Leibniz Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Taylor’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.1 Taylor’s Formula with Lagrange Remainder . . . . . . . . . . 102
5.5.2 Taylor Maclaurin Formula . . . . . . . . . . . . . . . . . . . . 102

5.6 Theorems on Differentiable Functions . . . . . . . . . . . . . . . . . . 102
5.6.1 Global and Local extremum - Fermat’s Theorem . . . . . . . . 102
5.6.2 Rolle’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.3 Theorem of finite increments . . . . . . . . . . . . . . . . . . . 104

5.7 Convexity of a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7.1 Point of Inflexion . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.8 Asymptotes of a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.9 Construct the Graph of a Function . . . . . . . . . . . . . . . . . . . 108
5.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Elementary functions 113
6.1 Logarithm and Exponential . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Natural logarithm . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 Exponential function . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.3 Logarithm with an arbitrary base . . . . . . . . . . . . . . . . 114
6.1.4 Power Function . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Reciprocal Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . 118
6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4



General Introduction

The objective of this course is to provide a transition between the knowledge of
analysis acquired in high school and the foundational concepts that will form one of
the pillars of mathematical training in undergraduate and engineering studies.

This document presents the Analysis 1 course that I teach during the first semes-
ter of the first year in the Computer Science Engineering program.

It contains the main mathematical analysis tools that students must understand
and master. The document can be used as a reference text for first-year computer
science students who will face mathematical problems and wish to learn techniques
to solve them.

The course is divided into six chapters covering the fundamental topics of Analysis
1 :

First chapter covers Field of real numbers, absolute value, the greatest integer
function, upper and lower bounds, the completeness axioms, the Archimedean pro-
perty, the density of rational numbers, extend real line, and includes related exercises.

Chapter Two presents different forms of complex numbers, Euler’s identity, the
nth roots of complex numbers, and includes exercises.

Chapter Three covers bounded and monotonic sequences, lower and upper limits,
subsequences, limits and their properties, convergence and divergence, adjacent, re-
currence and Cauchy sequences, and the Bolzano-Weierstrass theorem. .

Chapter Four introduces special classes of functions, explores limits, continuity
and discontinuity, covers fundamental theorems of continuous functions, the recipro-
cal function, the order of a variable, and includes exercises..
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Chapter Five presents the definitions and properties of differentiable functions,
discusses Theorems on differentiable functions, Taylor’s formula, convexity and asymp-
totes of a curve, and includes exercises.

The last chapter covers elementary functions, including logarithmic and exponen-
tial functions, hyperbolic functions and their inverses, and includes exercises."
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Chapter 1

Real numbers

1.1 Number Sets
In mathematics, we often study sets whose elements are real numbers. Some spe-

cial sets of numbers that are frequently encountered are defined as follows :

– N is the set of Natural numbers : N = {0, 1, 2, 3, ...}

– Z is the set of Integers : The set of integers Z includes all positive and negative
whole numbers, as well as zero, like this

Z = {.....,−3,−2,−1, 0, 1, 2, 3, ...}

– D is the set of Decimal numbers : D = { p
10n
| p ∈ Z, n ∈ N}.

Example 1.1. 1.234 = 1234
103

is a decimal number.

– Q is the set of Rational numbers : Q = {p
q
| p ∈ Z, q ∈ Z∗}.

Rational numbers are numbers that can be expressed as the quotient of two in-
tegers, i.e., a fraction, with a non-zero denominator. Note that all terminating
or repeating decimals (also known as periodic decimal expansions) are rational
numbers.

Example 1.2. 3
5

= 0.6 (terminating decimals).

1

3
= 0.33333...and 1.179325325325... (repeating decimals)

7
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– R is the set of Real numbers, that can be represented by any decimal expan-
sion, limited or not.

Example 1.3. 123.10100010000100001.........

– R\Q is the set of Irrational numbers, which are real numbers that cannot be
expressed as the quotient of two integers. In other words, an Irrational num-
ber is a real number that cannot be written in the form p

q
, where p and q are

integers, and q 6= 0.

Example 1.4. −
√

2, π, and e.
These numbers have decimal expansions that are non-terminating and non-
repeating.

– C is the set of Complex numbers is defined as :

C = {a+ bi | a, b ∈ R}

Where i is the imaginary unit satisfying i2 = −1.
Recall that a complex number is formed by adding a real number a to a real
b multiple of i, where i2 = −1. The real number a is called the real part, and
the real number b is called the imaginary part of the complex number.

Remark 1.1. We have
N ⊂ Z ⊂ D ⊂ Q ⊂ R ⊂ C.

Lemma 1.1. A number is rational if and only if it admits a periodic or finite decimal
writing.

Proof. The direct implication (⇒) is based on Euclid’s Division. For the converse
(⇐) let’s examine an example to illustrate how it works :

Let us show that x = 12, 34202120212021... is rational number.
Here, the repeating decimal starts two digits after the decimal point ; therefore, we
multiply by 100 :

100.x = 1234, 202120212021..... (1)

Now, we will shift everything to the left by the length of one period. Therefore, we
multiply by 10000 to shift the decimal point four digits to the left.

10000.100.x = 12342021, 20212021..... (2)

8
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The fractional parts after the decimal point in lines (1) and (2) are identical. There-
fore, when we subtract equation (1) from equation (2), we obtain

10000.100.x− 100.x = 12342021− 1234

so
999900.x = 12340787

therefore
x =

12340787

999900
.

So of course x ∈ Q.

Example 1.5. Prove that
√

2 is not rational number.

Proof by Contradiction. Assume that
√

2 is a rational number. By definition, a
rational number can be expressed as

√
2 =

p

q
, p ∈ Z, q ∈ Z∗,

where p and q have no common factors other than 1.
Squaring both sides of the equation

(
√

2)2 =
p2

q2
=⇒ p2 = 2q2.

p2 is even, then p is even. Thus, we can express p as :

p = 2p′

where p′ is an integer. Substituting p = 2p′ into the equation p2 = 2q2 :

4p′2 = 2q2 =⇒ q2 = 2p′2.

The equation q2 = 2p′2 implies that q2 is even, By the same reasoning as before, q
must also be even. Thus, we can express q as :

q = 2m, m ∈ Z∗

We have both p and q are even, and have 2 as a common factor. However, this
contradicts our initial assumption that p and q have no common factors other than
1. We conclude that

√
2 is not a rational number. Therefore,

√
2 is irrational.
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1.2 Operations with Real numbers
There are several fundamental properties concerning the operations of addition

and multiplication on real numbers that are essential in algebra.
The set of real numbers, denoted R, is equipped with two internal operations : addi-
tion (+) and multiplication (×), satisfying the following axioms :

– Commutative property of addition : ∀(x, y) ∈ R2, x+ y = y + x

– Associative property of addition : ∀(x, y, z) ∈ R3,

(x+ y) + z = x+ (y + z)

– Identity property of addition : ∀x ∈ R, x+ 0 = 0 + x = x

– Additive inverse property : ∀x ∈ R, x+ (−x) = (−x) + x = 0

– Commutative property of multiplication : ∀(x, y) ∈ R2,

x× y = y × x

– Associative property of multiplication :∀(x, y, z) ∈ R3,

(x× y)× z = x× (y × z)

– Identity property of multiplication : ∀x ∈ R, x× 1 = 1× x = x

– Multiplicative inverse property : ∀x ∈ R∗, x× 1
x

= 1
x
× x = 1

– Distributive property : ∀(x, y, z) ∈ R3, x× (y + z) = x× y + x× z.

1.3 The field of real numbers

1.3.1 Commutative Field

The set of real numbers R, equipped with the usual addition and multiplication
operations, forms a commutative field.

Remark.1.2. Generally, any set, such as R, whose elements satisfy the above pro-
perties is known as a field.

10
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For example, the set of integers Z is not a field because it does not satisfy the pro-
perty of multiplicative inverses. However, in Z, only 1 and −1 have multiplicative
inverses. But, there is no integer n such that 2× n = 1, because 1

2
is not an integer.

1.3.2 Totally Ordered Field

Proposition 1.1. (R,+,×,≤) is a totally order field.

Proposition 1.1. means that ≤ is a total order relation in R ; that satisfies the follo-
wing properties for all elements x, y, and z in R :

1. Reflexivity : ∀x ∈ R, x ≤ x.

2. Antisymmetry : If (x ≤ y and y ≤ x) =⇒ x = y.

3. Transitivity : If (x ≤ y and y ≤ z) =⇒ x ≤ z.

4. ≤ is total relation : ∀x, y ∈ R, (x ≤ y) or (y ≤ x).

Remark 1.3. A relation R on a set A is called a total order if, for every pair of
elements x, y ∈ A, is comparable.
This property is known as comparability or the trichotomy property, ensuring that
every pair of elements in A is comparable under R.

1.3.3 Commutative Archimedean Field

A field F is said to be a commutative Archimedean field if :
– F is a commutative field,
– F satisfies the Archimedean property :

∀x ∈ F, ∃n ∈ N such that x < n.

Proposition 1.2. (R,+, ·) is commutative Archimedean field.

From these axioms, many properties of R can be derived. Some examples are given
in the next :

– ∀x, y, z ∈ R, x ≤ y =⇒ x+ z ≤ y + z

– ∀x, y ∈ R, (x ≤ y and z ≥ 0) =⇒ x× z ≤ y × z

11
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– ∀x, y, z, t ∈ R, (x ≤ y and z ≤ t) =⇒ x+ z ≤ y + t

– x ≤ y =⇒ −x ≥ −y

– x > 0 =⇒ 1
x
> 0

– (x ≤ 0) ∧ (y ≥ 0) =⇒ x.y ≤ 0

– 0 < x < y =⇒ 0 < 1
y
< 1

x

– ∀m ∈ N∗, 0 < x < y =⇒ 0 < xm < ym.

1.4 Principle of Mathematical Induction
Mathematical induction is a method of proof used to show that a property holds

for all natural numbers from a certain starting point. It involves three main steps :

1. For n = 0 or n = 1, prove that the property is true.
2. Assume that the property is true for n.
3. Use the induction hypothesis to prove that the property is true for n+ 1.

Example 1.6. Prove that for all integers n ≥ 1 :

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

For n = 1 :

1 =
1(1 + 1)

2
=

2

2
= 1 is true

Assume the formula holds for n, i.e.,

1 + 2 + · · ·+ n =
n(n+ 1)

2

We must show that :

1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

Using the induction hypothesis :

12
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1 + 2 + · · ·+ n+ (n+ 1) =

(
n(n+ 1)

2

)
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

So the formula also holds for n+ 1.
By the principle of mathematical induction, the formula

1 + 2 + · · ·+ n =
n(n+ 1)

2

is true for all integers n ≥ 1.

1.5 Absolute value
Definition 1.1. The absolute value of a real number x, denoted as |x|, represents
the distance of x from zero on the real number line, it is always positive.
Mathematical definition : Absolute value for a real number x is defined as

|x| =
{

x if x ≥ 0
−x if x < 0

Example 1.7.

| − 9| = 9, |9| = 9, | − 2

3
| = 2

3
, and |0| = 0.

1.5.1 R-Valued Field

The set of real numbers R is a valued field, i.e., a field equipped with an absolute
value function :

| · | : R→ R+

Satisfying the following properties for all x, y ∈ R :
– (Positivity) : |x| ≥ 0 and |x| = 0 ⇐⇒ x = 0

– (Multiplicatives) : |xy| = |x||y|

13
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– (Triangle inequality) : |x+ y| ≤ |x|+ |y|.

Properties 1.1. For all x, y, and r ∈ R, where r > 0. The following properties are
satisfied

1. |x| ≥ 0, | − x| = |x|, x ≤ |x|, and |x| = 0⇐⇒ x = 0

2.
√
x2 = |x|, and |x|2 = x2

3. |x.y| = |x|.|y|, and ∀ x 6= 0, | 1
x
| = 1

|x|

4. |x| ≤ r ⇐⇒ −r ≤ x ≤ r and |x| ≥ r ⇐⇒ x ≥ r or x ≤ −r

5. Triangle inequality : ∀x, y ∈ R, |x+ y| ≤ |x|+ |y|.

Indeed. ∀x, y ∈ R, we have

|x+ y|2 = (x+ y)2 = x2 + y2 + 2xy

and
(|x|+ |y|)2 = |x|2 + |y|2 + 2|x||y| = x2 + y2 + 2|x||y|.

Apply the inequality xy ≤ |xy|. Since |xy| = |x||y|, we have :

2x.y ≤ 2|x|.|y|.

So
|x+ y|2 ≤ (|x|+ |y|)2.

Take the square root of both sides, therefore

|x+ y| ≤ |x|+ |y|.

Remark 1.4. Inequality becomes equality if x and y have the same sign.

6. Second triangle inequality : ||x| − |y|| ≤ |x− y|.

Indeed. ∀x, y ∈ R, we have

|x| = |x− y + y| ≤ |x− y|+ |y|

14
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=⇒ |x| − |y| ≤ |x− y| (1)

we have also
|y| = |y − x+ x| ≤ |y − x|+ |x|

then
|y| − |x| ≤ |y − x| = |x− y|

=⇒ −|x− y| ≤ |x| − |y| (2)

From (1), (2), and properties 4, we obtain

||x| − |y|| ≤ |x− y|.

Training exercise 1.1.

1. Let the function f(x) = |x−3|+|x+3|, by writing f without the absolute value :

|x− 3| =
{
x− 3, if x ≥ 3
3− x, if x < 3

furthermore
|x+ 3| =

{
x+ 3, if x ≥ −3
−3− x, if x < −3

So

f(x) =


−2x, if x < −3
6, if x ∈ [−3, 3[
2x, if x ≥ 3.

2. Solve the following equation

|4x+ 8| − |x− 3| = 3.

Using definition of absolute value, then

|4x+ 8| =
{

4x+ 8, if x ≥ −2
−4x− 8, if x < −2

|x− 3| =
{
x− 3, if x ≥ 3
−x+ 3, if x < 3

Solve in each interval :

15
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– x < −2. In this interval, both 4x+8 and x−3 are negative. Substitute these
into the original equation :

−4x− 8 + x− 3 = 3 =⇒ x =
−14

3
.

Since −14
3
' −4.67, which is less than−2, this solution is valid in this interval.

– −2 ≤ x < 3. In this interval 4x+8 is positive and x−3 is negative. substitute
these into the original equation, then

4x+ 8 + x− 3 = 3 =⇒ x =
−2

5
.

Since −2
5
' −0.4, which is between −2 and 3, this solution is valid in this

interval.

– x ≥ 3. In this interval, both 4x + 8 and x − 3 are positive, substitute these
into the original equation

4x+ 8− x+ 3 = 3 =⇒ x =
−8

3
.

Since −8
3
' −2.67, which is less than 3, this solution is not valid in this

interval.
Therefore the solutions to the equation are : x = −14

3
, and x = −2

5
.

3. Solve the following inequality :

|x+ 2| > |3x+ 5|

Using definition of absolute value, then

|x+ 2| =
{
x+ 2, if x ≥ −2
−x− 2, if x < −2

and
|3x+ 5| =

{
3x+ 5, if x ≥ −5

3

−3x− 5, if x < −5
3

We will analyze the inequality in each of these intervals.

16
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– x < −2. In this interval, both x+2 and 3x+5 are negative. Substitute these
into the inequality, then

−x− 2 > −3x− 5 =⇒ x >
−3

2

Since x < −2 in this interval, there is no solution because −3
2

is greater than
−2.

– −2 ≤ x < −5
3
. In this interval, x + 2 ≥ 0 and 3x + 5 < 0. Substitute these

into the inequality, then

x+ 2 > −3x− 5 =⇒ x >
−7

4

Since−7
4
' −1.75, which is greater than −2, the solution in this interval is

−7

4
< x <

−5

3
.

– x ≥ −5
3
. In this interval, both x+ 2 and 3x+ 5 are positive. Substitute these

into the inequality, then

x+ 2 > 3x+ 5 =⇒ x <
−3

2

Since x ≥ −5
3
' −1.67, which is less than −3

2
, the solution in this interval is

−5

3
≤ x <

−3

2
.

Combining the solutions from all intervals, the solution to the inequality is :
−7
4
< x < −3

2
.

1.6 The greatest integer function
Definition 1.2. The greatest integer function of a real number x, denoted by [x] is
the largest integer value less than or equal to x. This is written as :

f : R −→ Z
x −→ [x].

17



University 8 May 1945-Guelma Dr.M.MERAD

Example 1.8. [1.65] = 1, [0.016] = 0, [−3.14] = −4, [−1.96] = −2.

Properties 1.2. ∀x, y ∈ R, the following properties are satisfied :

1. ∀x ∈ R, [x] ∈ Z

2. [x] ≤ x < [x] + 1, and x− 1 < [x] ≤ x

3. [x] = k =⇒ x ∈ [k, k + 1[

4. ∀x ∈ R, and m ∈ Z, [x+m] = [x] +m

5. ∀x, y ∈ R, if x ≤ y =⇒ [x] ≤ [y].

Proof.
4- For any x ∈ R, we have

[x] ≤ x ≤ [x] + 1

which implies
[x] +m ≤ x+m ≤ [x] +m+ 1,

for all m ∈ Z. On the other hand

[x+m] ≤ x+m ≤ [x+m] + 1.

Since [x+m] is the largest integer less than or equal to x+m, then

[x] +m ≤ [x+m] (1)

Similarly, [x+m] + 1 is the smallest integer greater than or equal to x+m, so

[x+m] + 1 ≤ [x] +m+ 1.

After simplifying, we obtain

[x+m] ≤ [x] +m (2)

From (1) and (2), we conclude [x+m] = [x] +m.

18
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5- Let x, y ∈ R, and assume x ≤ y. Let m = [x] and n = [y], then

m ≤ x < m+ 1, and n ≤ y < n+ 1,

so
m ≤ x ≤ y < n+ 1.

Thus, we have
m < n+ 1 =⇒ m ≤ n

because m and n are integers numbers. Therefore [x] ≤ [y].

Training exercise 1.2. Solve the following equation with greatest integer function :
a) [x]2 + [x+ 1]− 3 = 0

b) [x−1
2

] = −2

Solution.

a)
[x]2 + [x+ 1]− 3 = 0

Using property 4, we obtain

[x]2 + [x] + 1− 3 = 0

Noted [x] = y, then the equation becomes

y2 + y − 2 = 0

this equation admits two solutions y = 1 or y = −2.
Which implies [x] = 1 or [x] = −2. Therefore the solutions to the equation
are : x ∈ [−2,−1[∪[1, 2[.

b) According to property 3, we have

[
x− 1

2
] = −2 =⇒ −2 ≤ x− 1

2
< −1

which implies
−4 ≤ x− 1 < −2 =⇒ −3 ≤ x < −1.

Therefore the solutions to the equation are : x ∈ [−3,−1[.
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1.7 Intervals
Definition 1.3. A subset I of R is called an interval if :

∀a ∈ I, ∀b ∈ I, ∀x ∈ R, (a ≤ x ≤ b)⇒ x ∈ I.

Let a and b be two real numbers such that a ≤ b.

The table below summarizes the types of bounded or unbounded intervals

Notation Type Included Endpoints Set Definition

]a, b[ Open interval None {x ∈ R | a < x < b}

[a, b] Closed interval a and b {x ∈ R | a ≤ x ≤ b}

[a, b[ Half-open (right) a only {x ∈ R | a ≤ x < b}

]a, b] Half-open (left) b only {x ∈ R | a < x ≤ b}

]a,+∞[ Infinite (open) None {x ∈ R | x > a}

[a,+∞[ Infinite (closed left) a only {x ∈ R | x ≥ a}

]−∞, b[ Infinite (open) None {x ∈ R | x < b}

]−∞, b] Infinite (closed right) b only {x ∈ R | x ≤ b}

1.8 Upper and Lower Bounds. Completeness Axioms
Definition 1.4. Let A be a subset of R, a real numberM is called an upper bound
of A if

for all x ∈ A we have x ≤M, .

If A has an upper bound, then we say that A is bounded above.

Example 1.9.

a) Let A = [−1, 3[, ∀x ∈ A, x < 3, then M = 3 is an upper bound of A.
Any real number M ′ ≥ 3 is also an upper bound of A. So A is bounded above.

b) Let A = {x2,−2 < x < 1}, M = 4 is an upper bound of A. Any real number
M ′ ≥ 4 is also an upper bound of A. So A is bounded above.
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c) Let A = N = {1, 2, 3, ...}. A has no upper bound. Therefore A is not bounded
above.

Definition 1.5. Let A be a subset of R, a real number m is called lower bound
of A if

for all x ∈ A, we have x ≥ m.

If A has a lower bound, then we say that A is bounded below.

Example 1.10.

a) Let A = [−1, 3[, for all x ∈ A, x ≥ −1, then m = −1 is a lower bound of A. Any
real numberm′ ≤ −1 is also a lower bound of A. Therefore A is bounded below.

b) Let A = {x2,−2 < x < 1}, for all x ∈ A, x ≥ 0, then m = 0 is a lower bound
of A. Any real number m′ ≤ 0 is a lower bound of A. Therefore A is bounded
below.

Definition 1.6. A subset A of R is said to be bounded, if it is both bounded above
and bounded below.

Example 1.11.

a) A = [−1, 3[, it has un upper bound and a lower bound, then is bounded.

b) A = {x2,−2 < x < 1}, it has un upper bound and a lower bound, then is boun-
ded.

c) A = N = {1, 2, 3, ...}, it has no upper bound, then A is not bounded.

Definition 1.7. If M is an upper bound of A and M ∈ A, then M is called the
maximum of A, denoted by maxA.

Definition 1.8. If m is a lower bound of A and m ∈ A, then m is called the mini-
mum of A, denoted by minA.

Example 1.12.

a) Let A = [−1, 3[. The maximum of A does not exist, and minA = −1.
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b) Let A = {x2,−2 ≤ x ≤ 1}, then maxA = 4,minA = 0.

c) Let A = N = {1, 2, 3, ...}, then minA = 0, the maximum of A does not exist.

Definition 1.9. Let A be a nonempty subset of R that is bounded above, we say
that α is the supremum of A if α is the smallest upper bound of A, and we denote
it by supA.

Definition 1.10. Let A be a nonempty subset of R that is bounded above. Then
α = supA if and only if :
i) x ≤ α for all x ∈ A
ii) If M is an upper bound of A, then α ≤M.

Remark 1.5. That means α is the smallest of all upper bounds of A.

Proposition 1.3. Let A be a nonempty subset of R that is bounded above. Then
α = supA, if and only if the following conditions are satisfied :
i) x ≤ α for all x ∈ A
ii) For every ε > 0, there exists a ∈ A such that α− ε < a.

Remark 1.6.
– If A is nonempty and bounded above, then exists α = supA ∈ R

– If A is nonempty and not bounded above, then supA =∞

– If A = ∅, then supA = −∞. Any real number is an upper bound of ∅.

Example 1.13
a) Let A =]−∞, 2[, then supA = 2

b) Let A = {x2,−2 < x < 1}, then supA = 4.
c) Let A = N, then supA does not exist.

Definition 1.11. Let A be a nonempty subset of R that is bounded below. We say
that β is the infimum of A if β is the largest lower bound of A, and we denote it by
inf A.

Definition 1.12. Let A be a nonempty subset of R that is bounded below. Then
β = inf A if and only if :
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a) β ≤ x for all x ∈ A
b) If m is a lower bound of A, then m ≤ β.

Proposition 1.4. Let A be a nonempty subset of R that is bounded below. Then
β = inf A if and only if the following conditions satisfied :

i) β ≤ x for all x ∈ A
ii) For every ε > 0, there exists b ∈ A such that b < β + ε.

Remark 1.7.
– When the supremum (respectively, the infimum) exists, it is unique.

– The supremum of A (respectively, the infimum) does not necessarily belong to
the set A.

– If the maximum of A (respectively, the minimum of A) exists, then supA =
maxA (respectively inf A = minA).

– If the supremum of A (respectively , the infimum of A) belongs to A, then
maxA = supA (respectively, minA = inf A).

– If the supremum of A (respectively, the infimum of A) does not belong to A,
then maxA (respectively, minA) does not exist.

Properties 1.3.
1. Let A and B be two nonempty bounded subsets of R such that A ⊂ B. Then :

inf B ≤ inf A ≤ supA ≤ supB.

Indeed :
We know that for all x ∈ A, we have :

inf A ≤ x ≤ supA⇒ inf A ≤ supA.

Also, since every element x ∈ A also belongs to B, it follows that inf B ≤ x
for all x ∈ A. This means that inf B is a lower bound of A. But inf A is the
greatest lower bound of A, so :

inf B ≤ inf A.
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Similarly, since every x ∈ A is in B, we have x ≤ supB for all x ∈ A. Thus,
supB is an upper bound of A. But supA is the least upper bound of A, so :

supA ≤ supB.

2. Let A and B be two nonempty bounded subsets of R, so

sup(A ∪B) = max(supA, supB)

and
inf(A ∪B) = min(inf A, inf B).

Example 1.14.
Let A = [0, 1], B = [−1, 2], it is clear that A ⊂ B.

supA = 1 supB = 2, inf A = 0, inf B = −1.

Note that
supA ≤ supB, inf B ≤ inf A.

Example 1.15. Find sup, inf, max, and min of the following subsets
1. A =]− 1, 3[∪]4, 8[

supA = max(sup(]− 1, 3[), sup(]4, 8[)) = max(3, 8) = 8,

inf A = min(inf(]− 1, 3[), inf(]4, 8[)) = min(−1, 4) = −1,

maxA and minA does not exists.

2. B = {n+1
n

; n ∈ N∗} = {1 + 1
n
, n ∈ N∗}

it is clear that
∀ n > 0, 1 < 1 +

1

n
≤ 2.

Therefore
supB = maxB = 2

inf B = 1, and minB does not exists.

3. C = {(sinx+ cosx)2, 0 ≤ x ≤ π}
Assume that

y = (sinx+ cosx)2 = sin2 x+ cos2 x+ 2 sinx. cosx
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so
y = 1 + sin(2x)

we have 0 ≤ x ≤ π, then
−1 ≤ sin(2x) ≤ +1

0 ≤ 1 + sin(2x) ≤ 2.

Therefore
supC = maxC = 2

and
inf C = minC = 0.

Training exercise 1.3. Suppose that A and B are subset of R nonempty and
bounded from above. Define

A+B = {a+ b, a ∈ A and b ∈ B.}

Prove that A+B is bounded from above and sup(A+B) = supA+ supB.
Answer :
Let α = supA and β = supB.
Take any x ∈ A+B, then there exist a ∈ A and b ∈ B such that x = a+ b.
Since α = supA, β = supB then

a ≤ α and b ≤ β

It follows that x = a+ b ≤ α+ β, then α+ β is an upper bound of A+B, and so
A+B is bounded from above.
sup(A+B) = α + β if

– x ≤ α + β for all x ∈ A+B

– For any ε > 0, then exist u ∈ A+B such that α + β − ε < u.

Take any ε, since α = supA, there exist a ∈ A such that α− ε
2
< a.

Similarly, since β = supB, there exist b ∈ B such that β − ε
2
< b.

Then
(α + β)− ε < a+ b,

Let u = a+ b ∈ A+B and (α + β)− ε < u

sup(A+B) = α + β = supA+ supB.
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1.9 Archimedean property
The completeness axiom implies the Archimedean property, which states that

every real number is strictly less than some natural number.

Theorem 1.1. (Archimedean property for R). For each x ∈ R, there exists n ∈ N
such that x < n.

Proof. Assume, for contradiction, that there exists a real number x ∈ R such that,

x ≥ n for all n ∈ N.

Thus, N ⊂ R is bounded above. Hence, by the completeness axiom, sup(N) = α
exists. Now because α − 1 < α there is an m ∈ N such that α − 1 < m. Therefore,
α < m + 1 = n ∈ N ; contradicting the fact that α is an upper bound for N. This
contradiction completes the proof.

In the next theorem, we show that the Archimedean property implies two useful
results.

Theorem 1.2. Each of the following statements holds :
a) For all x ∈ R and y ∈ R, if x > 0, then there exists n ∈ N such that

y < nx

b) For all x ∈ R, if x > 0, then there exists n ∈ N such that 0 < 1
n
< x.

Proof. We begin by proving statement (a).
Let x, y ∈ R where x > 0. Consider the real number y

x
. By Theorem 1.1, there is an

n ∈ N such that
y

x
< n

Multiplying both sides of this inequality by x, we obtain

y < nx.

Thus, we have shown that for x > 0, there exists an n ∈ N such that y < nx. The
proof of (a) is complete.
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Now, to prove statement (b), let x > 0. From (a) where we take y = 1, we conclude
that there exists n ∈ N such that

0 < 1 < nx.

Thus, we have

0 <
1

n
< x.

This completes the proof of (b).

1.10 The Density of the Rational Numbers
Definition 1.13. Let A ⊂ R. We say that A is dense in R if, for all x, y ∈ R with
x < y, there exists a ∈ A such that x < a < y.

Theorem 1.3. (Density of Q in R).
For all x, y ∈ R, if x < y, then there exists a q ∈ Q such that x < q < y.

Proof. Let x, y ∈ R with x < y. Then y − x > 0.
By the Archimedean Property (Theorem 1.2(a)), there exists n ∈ N such that

1

n
< y − x.

Multiplying both sides by n, we get :

1 < n(y − x) ⇒ nx < ny − 1.

Since nx < ny − 1, and the set of integers Z is dense in R, there exists an integer
m ∈ Z such that :

nx < m < ny.

Dividing the inequality by n, we obtain :

x <
m

n
< y.

Let q = m
n
∈ Q. Then x < q < y, as desired.
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1.11 Extend Real Line
Definition 1.14. The extended real line, denoted by R, is the set :

R = R ∪ {−∞,+∞}

Properties 1.4.

1. ∀x ∈ R,−∞ ≤ x ≤ +∞.

2. ∀x ∈ R, x+ (+∞) = (+∞) + x = +∞, and x+ (−∞) = (−∞) + x = −∞
(+∞) + (+∞) = (+∞), (−∞) + (−∞) = (−∞)

3. ∀x > 0, x(+∞) = +∞, and x(−∞) = −∞

4. ∀x < 0, x(+∞) = −∞, and x(−∞) = +∞

5. (+∞) · (+∞) = +∞, (−∞) · (−∞) = +∞
(+∞) · (−∞) = (−∞) · (+∞) = −∞

6. ∀x ∈ R, x
+∞ = x

−∞ = 0.

Corollary 1.1. Every nonempty subset of the extended real line R = R∪{−∞,+∞}
has a supremum and an infimum in R.

Example 1.16. Let A = {x ∈ R : x > 100} ⊂ R.
Then :

inf A = 100, supA = +∞
Thus, A has both a supremum and an infimum in R, even though it is not bounded
above in R.

Properties 1.5.
– R is not a field because arithmetic operations like∞−∞ or∞/∞ are undefined.
– The total order on R can be extended to R. This set can be equipped with a

total order defined by :

−∞ ≤ x ≤ +∞ for all x ∈ R.

Thus, R is a totally ordered set, but not a field.
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– R is compact. Every sequence in R that diverges has a limit in R (possibly
±∞).

1.12 Topological Properties of Real numbers
Definition 1.15. Neighborhood in R
Let V ⊆ R be a nonempty set and let a ∈ R. We say that V is a neighborhood of
a if there exists an open interval I such that :

a ∈ I and I ⊆ V.

In other words, a set V is a neighborhood of a point a if it contains an open
interval around a.

Example 1.17. The interval [−1, 3], and ]−2, 1] are two neighborhoods of 0, because

0 ∈]− 1, 3[⊂ [−1, 3]

and
0 ∈]− 2, 1[⊂]− 2, 1]

but [0, 1] is not a neighborhood of a point 0.

Definition 1.15. Open Subsets of R
A subset A ⊆ R is said to be open if it is a neighborhood of each of its points. That
is, for every a ∈ A, there exists an open interval I ⊆ R such that :

a ∈ I ⊆ A.

Example 1.18. Open interval ]a, b[ is open set of R. Indeed

∀x ∈]a, b[: x ∈]a, b[⊂]a, b[.

Remark 1.8. An arbitrary union of open subsets of R is an open subset of R.

Definition 1.16. Closed Subsets of R
A subset A ⊆ R is said to be closed if its complement R \ A is open.

Equivalently, A is closed if it contains all its limit points. That is, if (xn) ⊆ A
and lim

n→∞
xn = ` ∈ R, then ` ∈ A.
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Example 1.19. Closed interval ]a, b[ is closed set of R. Indeed

[a, b]c = [−∞, a[∪]b,+∞[.

Definition 1.17. Compact subset A ⊂ R is a set that is
– closed
– bounded.

This result follows from the Heine-Borel Theorem :

Theorem 1.4. A subset of R is compact if and only if it is closed and bounded.

Example 1.20.
– The closed interval [a, b] with a ≤ b is compact.
– A finite set such as {1,

√
2, π} is compact.

– The set
{

1
n
| n ∈ N∗

}
∪ {0} is compact.

– The open interval ]a, b[ : not closed, then not compact
– The set [a,+∞) : not bounded, then not compact
– R : not bounded, then not compact.
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1.13 Exercises
Exercise 1.1. Prove that

1. 3
√

45 + 29
√

2 +
3
√

45− 29
√

2 is integers number.
2. If r ∈ Q and x /∈ Q then r + x /∈ Q, and if r 6= 0 then rx /∈ Q.
3.
√

2 is irrational number, and deduce that
√

7 +
√

2 /∈ Q .
4. ln 3

ln 2
is not rational number.

5. Deduce that
√

18 /∈ Q.

Exercise 1.2.

1. Let (a, b) ∈ Q+ ×Q+ such that
√
ab /∈ Q. Prove that

√
a+ 3

√
b /∈ Q.

2. Knowing that if m is prime then
√
m is irrational, show that

√
5 + 3
√

2 is
irrational.

Exercise 1.3.

1. Prove the following relations
a) |x+ y| = |x|+ |y| ⇐⇒ x.y ≥ 0.

b)
√
x2 + y2 ≤ |x|+ |y|

c)
√
x+ y ≤

√
x+
√
y, ∀x, y ∈ R+.

d) |
√
x−√y| ≤

√
|x− y|

2. Solve the following equations in R
a) ||x+ 2| − |x− 4|| = 2

b) |2x−1
x+1
| = 1

Exercise 1.4.
1. Let [x] be the integer part of x ; to show that ∀x ∈ R

a) x ≤ y =⇒ [x] ≤ [y].
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b) [x] + [y] ≤ [x+ y] ≤ [x] + [y] + 1

2. Solve the following equations :

a) x2 − 4x = [x] in the interval [0, 2]

b) [x] + |x− 1| = x

3. Calculate lim
n−→+∞

1

n2
([x] + [2x] + [3x] + ...+ [nx]).

Exercise 1.5.
Determine the sup, inf, max, and min of the following parts of R.

A =]− 5, 5], B = [−1, 1]∪]2, 4[, C = { 5

n
;n ∈ N∗}

D = { −n+ 1

n
; n ∈ N∗}, E = {(−1)n+

1

n
, n ∈ N∗}}, F = {x ∈ R/3x2+8x−3 < 0},

G = { 2x− 1

x+ 4
; |x− 5| < 2}.

Exercise 1.6. :

1. Let A be a nonempty subset of R. define −A = {−x, x ∈ R}.
a) Prove that if A is bounded below then −A is bounded above.

b) Prove that if A is bounded below then inf A = − sup(−A).

2. Prove that if B = {εx, x ∈ A} then supB = ε supA.

3. Prove that sup(A ∪B) = max(supA, supB).

Exercise 1.7.
Determine the sup, inf,max, and min of the following parts of R.

A = [−1,
√

2] ∩Q, B = {(−1)n +
3

n2
, n ∈ N∗}, C = {m+ n

m.n
, m, n ∈ N∗}.
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Chapter 2

The Field of Complex Numbers

This section presents the fundamental concepts of complex numbers, such as
operations on complex numbers, their representation in various forms, and an intro-
duction to solving equations of the form zn = c.

2.1 Algebraic expression of a Complex Number
A complex number is represented by z = a + ib, where a ∈ R is the real part,

b ∈ R is the imaginary part, and i is the imaginary unit defined by i2 = −1.
We can write

z = Re(z) + i Im(z)

This form is called the algebraic (or Cartesian) expression of the complex number z.
The set of all complex numbers is denoted by C.

Notes :
– If b = 0, then z is a real number.

– If a = 0, then z is a purely imaginary number.

Properties 2.1. Let z be a complex number. We have the following properties :
1. If z = 0, then a = b = 0

2. If z1 = a1 + ib1 and z2 = a2 + ib2 then z1 = z2 ⇐⇒ a1 = a2 and b1 = b2.
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2.2 Operations on Complex numbers
In this section, we present the basic operations on complex numbers, including

addition, subtraction, multiplication, and division.
1. The complex conjugate of a complex number z = a+ ib is given by z = a− ib.

Example 2.1.
z1 = −9 + i3, then z1 = −9− i3,

z2 =
1

5
− i2

3
, then z2 =

1

5
+ i

2

3
.

2. Addition, subtraction, and multiplication follow the same rules as for polyno-
mials, except that after multiplication, one must simplify by using i2 = −1.

Example 2.2.

(6 + i3) + (−2− i) = (6− 2) + i(3− 1) = 4 + i2.

(−2 + 5i)− (3− i) = (−2− 3) + i(5 + 1) = −5 + i6

(2 + 5i)(1− 3i) = 2− i− 15i2 = 17− i.
To divide z by w, multiply z

w
by w

w
so that the denominator becomes a real

number.

Example 2.3.
2 + 3i

1− 5i
=

2 + 3i

1− 5i
× 1 + 5i

1 + 5i
=
−13 + 13i

26
= −1

2
+ i

1

2
.

Remark 2.1.
– The arithmetic operations on complex numbers satisfy the same properties as

those on real numbers, such as commutativity and associativity. For example :

z · w = w · z, z + w = w + z, (z + w) + u = z + (w + u), etc.

– For any complex number z and any integer n, the power zn is defined as follows :
– If n > 0, then zn is the product of z multiplied by itself n times :

zn = z · z · . . . · z︸ ︷︷ ︸
n factors

.

– If n = 0, then z0 = 1, provided z 6= 0.
– If n < 0, then zn is defined as the reciprocal of z−n, provided z 6= 0 :

zn =
1

z−n
.
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2.2.1 Modulus of complex number

The modulus |z| of a complex number z = a+ ib is defined as

|z| =
√
a2 + b2.

Example 2.4.
Calculate the modulus of complex number z = 4− 2i.

|z| =
√

(4)2 + (−2)2 =
√

20 = 2
√

5.

Properties 2.2. For all z, z1, z2 ∈ C, the following properties hold :
1. |z| = 0⇐⇒ z = 0

2. z = z

3. |z| = |z| = | − z| = | − z|
4. |z1 + z2| ≤ |z1|+ |z2| (Triangle inequality)
5. |z1z2| = |z1| · |z2|

6.
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2| , for z2 6= 0

7. z · z = |z|2

8. z is purely real ⇐⇒ z = z

9. z is purely imaginary ⇐⇒ z = −z
10. Re(z) = z+z

2
, Im(z) = z−z

2i

2.3 Geometric representation of Complex numbers
The complex plane is the plane formed by all complex numbers, equipped with

a Cartesian coordinate system. The horizontal axis, called the real axis, represents
the real part of the complex number, while the vertical axis, called the imaginary
axis, represents the imaginary part.
A complex number z = a+ ib can be represented in the complex plane as the ordered
pair (a, b).
Alternatively, z can be viewed as a vector ~OP , where the initial point O is the origin
and the terminal point P is the point (a, b) in the plane.
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– The modulus of z is the length of the vector ~OP :

|z| = OP =
√
a2 + b2.

Example 2.5. If z = 3 + 2i, then

|z| =
√

32 + 22 =
√

13.

– The argument of z, denoted arg(z), is the angle (measured in radians or degrees)
between the positive real axis and the vector ~OP , taken in the counterclockwise
direction.

2.4 Trigonometric Form of a Complex Number
Given a nonzero complex number z = a + ib, we can express the point (a, b)

in polar coordinates using r and θ, where r = |z| = OP is the modulus of z, and
θ = arg(z) is the argument (angle) :

a = r cos θ, b = r sin θ.

Substituting into the expression for z, we obtain :

z = a+ ib = r cos θ + ir sin θ = r(cos θ + i sin θ),

which is called the polar form or trigonometric form of the complex number.

Example 2.6. We want to express z in polar form : z = r(cos θ + i sin θ).
1. Let z =

√
6 + i

√
2.

– First, compute the modulus :

r = |z| =
√

(
√

6)2 + (
√

2)2 =
√

6 + 2 =
√

8 = 2
√

2.

– Next, compute the argument : cos(θ) =
√
6

2
√
2

=
√
3
2

sin(θ) =
√
2

2
√
2

= 1
2

=⇒ θ =
π

6
.

– Therefore, the polar form of z is :

z = 2
√

2
(

cos
(π

6

)
+ i sin

(π
6

))
.
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2. Let z = −3 + 3i.
– First, compute the modulus :

r = |z| =
√

(−3)2 + 32 =
√

9 + 9 =
√

18 = 3
√

2.

– Next, compute the argument θ : cos(θ) = − 3
3
√
2

= −
√
2
2

sin(θ) = 3
3
√
2

=
√
2
2

=⇒ θ =
3π

4
.

– Therefore, the polar form of z is :

z = 3
√

2

(
cos

(
3π

4

)
+ i sin

(
3π

4

))
.

2.5 Exponential of Complex numbers
Definition 2.1. The complex exponential function is defined as ez, where z ∈ C.
The number e is the base of the natural logarithm and is defined as the value of ez
at z = 1.

Properties 2.3. The complex exponential function ez, where z ∈ C, has the follo-
wing properties :

1. For any complex numbers z1, z2 ∈ C,

ez1+z2 = ez1ez2 .

This property is similar to the exponential law for real numbers.
2. For any complex number z ∈ C and any integer n,

enz = (ez)n.

3. The complex exponential function is periodic with a period of 2πi. Specifically,
for any z ∈ C,

ez+2πi = ez.

This property reflects the fact that the complex exponential function repeats
itself after every multiple of 2πi.
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4. The derivative of ez with respect to z is the same as the function itself :

d

dz
ez = ez.

This is a fundamental property of the complex exponential function, analogous
to the derivative of the exponential function in the real case.

5. For any non-zero complex number z,

eln z = z and ln(ez) = z.

Note that the complex logarithm is multivalued, meaning that ln z can have
multiple values, differing by integer multiples of 2πi.

2.5.1 Euler’s Formula

For any real number θ, Euler’s formula states that

eiθ = cos θ + i sin θ.

This formula connects the complex exponential function with trigonometric func-
tions, and it is fundamental in the study of complex numbers and their geometric
interpretation.

More generally

ex+iy = ex.eiy = ex(cos y + i sin y) for all real numbers x and y.

Example 2.7. Let’s compute an example to illustrate the concept. If z = 1 + iπ,
then :

e1+iπ = e1(cosπ + i sinπ)

e1+iπ = e(cos π + i sin π)

e1+iπ = e(−1 + 0i)

e1+iπ = −e

Thus, e1+iπ = −e.
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2.6 Exponential form of Complex numbers
The exponential form of a complex number is a way of representing the complex

number using Euler’s formula. Given a nonzero complex number z = a+ ib, we can
express z in polar form :

z = (r cos θ) + i(r sin θ)

z = r(cos θ + i sin θ)

using Euler’s formula
z = reiθ.

Where r = |z| is the modulus of the complex number, and θ = arg(z) is the argument.

Example 2.8.
z = −3 + 3i Algebraic form

z = 3
√

2(cos
3π

4
+ i sin

3π

4
) Polar form

z = 3
√

2ei
3π
4 Exponential form.

Properties 2.4. Here are the main properties of complex numbers in exponential
form :

– Two complex numbers z1 = r1e
iθ1 and z2 = r2e

iθ2 are equal if and only if :

r1 = r2 and θ1 = θ2 + 2kπ, for some integer k.

– For z = eiθ, then
z = re−iθ

– Based on formula of Euler and that

e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin(θ).

Since

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i

– |eiθ| = 1, for every real number θ.

– If z1 = r1e
iθ1 and z2 = r2e

iθ2 , then :

z1 · z2 = r1r2e
i(θ1+θ2)

and
z1
z2

=
r1
r2
ei(θ1−θ2) for z2 6= 0
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– Powers (De Moivre’s Theorem)

zn = (reiθ)n = rneinθ

2.7 Nth roots of Complex numbers
To solve the equation zn = c for complex numbers, you can follow a structured

approach using polar (or exponential) form of complex numbers.
– Express c in polar form, as follows c = reiθ.
– We assume z has polar form

z = r′eiφ

Raising both sides to the power n

zn = (r′eiφ)n = r′neinφ

Setting this equal to c
r′neinφ = reiθ

which implies that

r′ = n
√
r, and φ =

θ + 2kπ

n
, k ∈ Z.

So
z = n
√
rei(

θ+2kπ
n

)

Since complex arguments repeat every 2π, only n values of k (usually 0 ≤ k < n)
yield distinct solutions.
Thus, the general form of the nth roots of c is :

zk = n
√
r · ei(

θ+2πk
n ), for k = 0, 1, . . . , n− 1.

Example 2.9. Consider the equation z2 = 4i.
In other words, we are trying to find the "square root of 4i".
The number 4i can be written in polar form

4ei
π
2 .

Now, we need to find the square roots of 4ei
π
2 . The formula for the square roots of a

complex number reiθ is

zk =
√
r · ei(

θ+2πk
2 ), for k = 0, 1.
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So

zk = 2 · e
i

(
π
2 +2πk

2

)
, for k = 0, 1.

Thus, the two possible values for z are :

z1 = 2ei
π
4 , z2 = 2ei

5π
4 .

We can now convert these polar forms back into rectangular form

z1 = 2(cos(
π

4
) + i sin(

π

4
)), z2 = 2(cos(

5π

4
) + i sin(

5π

4
)).
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2.8 Exercises.
Exercise 2.1.

1. Compute real and imaginary part of z = i−4
2i−3

2. Compute the absolute value and the conjugate of

z = (1 + i)6, w = i17.

3. Write in the "algebraic" form the following complex numbers

z = i5 + i+ 1, w = (3 + 3i)8

4. Write the given complex number in the algebraic form

2ei
iπ
4 ,
√

2(cos
3π

4
+ i sin

3π

4
)

5. Write in the "trigonometric" form the following complex numbers

z = 6i, w = (cos
π

3
− i sin

π

3
)7

6. Compute the cube roots of z = −8.

Exercise 2.2.

1. Prove that (1 + i)6 = −8i

2. Deduce solution of equation (E) :z2 = −8i

3. Write the two solutions of (E) in algebraic form, and in exponential form.
4. Find all z ∈ C such that ( z−1

z+1
)2 = 2i

Exercise 2.3.
Establish the following equalities :

1. (cos(π
7
) + i sin(π

7
))(1−i

√
3

2
)(1 + i) =

√
2(cos(5π

84
) + i sin(5π

84
))

2. (1− i)(cos(π
5
) + i sin(π

5
))(
√

3− i) = 2
√

2(cos(13π
60

)− i sin(13π
60

))

3.
√
2(cos( π

12
)+i sin( π

12
))

1+i
=
√
3
2
− 1

2
i.

42



Chapter 3

Sequences of Real Numbers

Suppose for each positive integer n, we are given a real number an. Then, the list
of numbers a1, a2, . . . , an, . . . is called a sequence, and this ordered list is usually
written as (an) or {an}. We define a sequence as follows :

Definition 3.1. A sequence of real numbers is a function defined on the set N, of
natural numbers whose range is contained in the set R of real numbers.

u : N −→ R

n −→ un.

– The value un is called the general term of the sequence (un)n∈N.

– The value u0 is called the first term of the sequence.

– We also consider sequences (un)n∈N that are defined only from a certain index
n0.

For example, the sequence with general term un =
√
n− 2 is only defined for n ≥ 2.

Remark 3.1. A sequence can be defined explicitly by a formula or implicitly by a
recurrence relation :

– By an explicit formula, for the general term of the sequence (un) ; that is, ex-
pressing un directly in terms of n.

– By a recurrence relation, which defines each term of the sequence in terms of
one or more of the preceding terms.
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Example 3.1.

1. Let (un)n∈N be a sequence defined by :

un = 2− 1

n+ 1
, ∀n ∈ N

then u0 = 1, u1 = 3
2
, u2 = 5

3
, ...

2. Let (un)n∈N be a sequence defined by :

un+1 =
1√

un + 1
, and u0 = 1,∀n ∈ N∗

then u1 = 1√
2
, u2 = 1√

1√
2
+1

,...

3.1 Bounded sequence
– A sequence (un)n∈N is bounded above if and only if :

∃M ∈ R,∀ n ∈ N; un ≤M.

– A sequence (un)n∈N is bounded below if and only if :

∃ m ∈ R,∀ n ∈ N; un ≥ m.

– A sequence is said to be bounded if it is both bounded above and bounded
below, or if there exists P ∈ R+ such that

|un| ≤ P, ∀n ∈ N.

Example 3.2.

1. For all n ∈ N, un = sin(n). Then the sequence (un)n∈N is bounded. Indeed,
|un| ≤ 1 for all n ∈ N.

2. The sequence (un)n∈N ; where un = n3 is bounded below by 0 but it is not
bounded above. Therefore it is not bounded.
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3. The sequence (un)n∈N ; where un = (−1)n×4n√
n2+1

is bounded. Indeed,

|un| = |
(−1)n × 4n√

n2 + 1
|.

Since |(−1)n| = 1 for all n, this simplifies to :

|un| =
4n√
n2 + 1

.

We now bound |un| from above

|un| ≤
4n√
n2

= 4.

Therefore un is bounded.

3.2 Monotony of a Real Sequence
Let (un)n∈N be a sequence of real numbers.

– We say that un is increasing if ∀n ∈ N, un+1 ≥ un,(i.e : un+1 − un ≥ 0)

– We say that un is decreasing if ∀n ∈ N, un+1 ≤ un, (i.e : un+1 − un ≤ 0)

– We say that un is monotone if it is either increasing or decreasing.

Remark 3.2.

– If (un)n∈N is a sequence with strictly positive terms, then it is increasing (res-
pectively, decreasing) if and only if ∀n ∈ N, un+1

un
≥ 1 (respectively, ∀n ∈ N,

un+1

un
≤ 1).

– We say that the sequence is strictly increasing, strictly decreasing, or strictly
monotonic if the corresponding inequalities are strict.

Example 3.3.
1. For un = n−1

2n+1
+ 3, ∀n ∈ N, the sequence (un)n∈N is increasing. Indeed,

un+1 − un =
n

2n+ 3
− n− 1

2n+ 1
=

3

(2n+ 3)(2n+ 1)
≥ 0, ∀n ∈ N.
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2. For vn = 2n

(n)!
, ∀n ∈ N∗, the sequence (vn)n∈N∗ is decreasing. Indeed, since

vn > 0, ∀n ∈ N∗, we compute

vn+1

vn
=

2n+1

(n+ 1)!
.
(n)!

2n
=

2

n+ 1
≤ 1

for all n ∈ N∗, which shows that the sequence is increasing.
3. Let the sequence (un) be defined by :{

u1 = 1
2
,

un+1 = u2n + 3
16

– Prove that ∀n ≥ 1, 1
4
< un <

3
4
.

– Determine whether the sequence un is decreasing .

Proof.
– For n = 1, we have

1

4
< u1 =

1

2
<

3

4
, is true

Assume that 1
4
< un <

3
4
, for same n ≥ 1. We will show that this implies

1

16
< u2n <

9

16
⇐⇒ 1

16
+

3

16
< u2n +

3

16
<

9

16
+

3

16

⇐⇒ 1

4
< un+1 <

3

4
.

By mathematical induction

∀n ≥ 1,
1

4
< un <

3

4
.

– Monotonicity

un+1 − un = u2n +
3

16
− un = u2n − un +

3

16
.

Define the function f(x) = x2 − x+ 3
16
, and compute the discriminant

∆ = (−1)2 − 4(1)(
3

16
) =

1

4
.

The roots are
x1 =

1

4
, x2 =

3

4
.

Since f(x) < 0 between its roots, so

un+1 < un =⇒ (un) is strictly decreasing.
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3.3 Lower limit and upper limit of a sequence
Definition 3.2. For each sequence (un), we define its upper limit limun and lower
limit limun as follows. We set

qn = sup
k≥n

uk, and pn = inf
k≥n

uk,

We define
limun = inf

n
qn, and limun = sup

n
pn.

Theorem 3.1. Let (un)n∈N be a real sequence

lim
n−→+∞

un = `, if and only if limun = limun = `.

Example 3.4. Let un = 1
n
. Calculate upper limit and lower limit of un

q1 = sup{1, 1

2
, ...,

1

n
, ...} = 1, q2 =

1

2
, ..., qn =

1

n
.

Hence
limun = inf

n
qn = inf{1, 1

2
, ...,

1

n
, ...} = 0

and
p1 = inf

k≥1

1

k
= inf{1, 1

2
, ...,

1

n
, ...} = 0, p2 = inf

k≥2

1

k
= 0, ..., pn = 0.

Hence
limun = sup

n
pn = 0.

we have
limun = limun = 0

Therefore
lim

n−→+∞
un = 0.

3.4 Extracted Sequence (Subsequence)
Definition 3.3. We say that a sequence (vn) is an extracted sequence or a subse-
quence of a sequence (un) if there is an application ϕ : N −→ N strictly increasing
such that

∀n ∈ N, vn = uϕ(n)
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Example 3.5. Let (un)n∈N∗ be a real sequence such that

un =
(−1)n

n
,

we can extract two subsequences (u2n)n∈N∗ and (u2n+1)n∈N , we have

u2n =
1

2n
, and u2n+1 =

−1

2n+ 1

Remark 3.3. If ϕ is a strictly increasing application of N to N, we have

∀n ∈ N, ϕ(n) ≥ n.

Theorem 3.2. (Monotone Subsequence Theorem)
Every sequence of real numbers has a monotonic subsequence.

3.5 Convergence and Divergence of Sequence
Definition 3.4. A sequence of real numbers (un)n∈N is said to converge to a real
number ` if

∀ε > 0,∃Nε ∈ N,∀n ≥ Nε, |un − `| < ε.

We denote this by :
lim

n→+∞
un = `.

We also say that ` is the limit of the sequence (un).

Example 3.6. We consider the sequence (un)n∈N defined by :

un =
2n + (−1)n

2n
.

Prove that the sequence (un) converges to 1, i.e.,

∀ε > 0,∃Nε ∈ N,∀n ≥ Nε ⇒ |un − 1| < ε.

We compute :

|un − 1| =
∣∣∣∣2n + (−1)n

2n
− 1

∣∣∣∣ .
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Let’s simplify this

|un − 1| =
∣∣∣∣(−1)n)

2n

∣∣∣∣ =
1

2n
.

So
|un − 1| < ε⇐⇒ 1

2n
< ε.

then

2n >
1

ε
⇐⇒ n >

ln(1
ε
)

ln(2)

Thus, choosing Nε = [
ln( 1

ε
)

ln(2)
] + 1 ensures convergence.

Theorem 3.3. If a sequence (un)n∈N converges, then its limit is unique.

Proof. Let’s assume by contradiction that (un)n∈N converges to two different limits
`1 and `2 such that `1 6= `2. Then we have

limun = `1 ⇐⇒ ∀ε > 0,∃Nε1 ∈ N,∀n ≥ Nε1, |un − `1| <
ε

2

and
limun = `2 ⇐⇒ ∀ε > 0,∃Nε2 ∈ N,∀n ≥ Nε2, |un − `2| <

ε

2
Let’s note Nε = max(Nε1, Nε2), then for all n > Nε, we have

|`1 − `2| = |(`1 − un) + (un − `2| ≤ |(un − `1)|+ |(un − `2| ≤ ε

This leads to |`1 − `2| < ε. must hold. This implies that |`1 − `2| = 0, which contra-
dicts the assumption that `1 6= `2. Therefore, we conclude that `1 = `2, and the limit
is unique.

Definition 3.5. A sequence is said to be divergent if it does not converge to a finite
real number.

Example 3.7. There are two types of divergence :
1. Divergence of infinite type : In this case, the sequence tends to +∞ or
−∞.
For example, the sequence with general term un = 2n+ 4 diverges to +∞.

2. Divergence of undefined-limit type : In this case, the sequence has no
finite or infinite limit.
That is, the limit does not exist in the extended real line. For example, the
sequence with general term un = (−1)n.
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Example 3.8. Study the convergence of the following sequence un = (−1)n.
This sequence alternates between two values :

u0 = 1, u1 = −1, u2 = 1, u3 = −1, . . .

So we observe that
u2n = 1, and u2n+1 = −1.

Hence, the sequence does not approach a single value as n→∞. More precisely, the
sequence does not converge.

Definition 3.6. Let a real sequence (un)n∈N.
– The sequence (un)n∈N tends to +∞ if

∀A > 0,∃N ∈ N,∀n ≥ N =⇒ un ≥ A.

– The sequence (un)n∈N tends to −∞ if

∀A > 0,∃N ∈ N,∀n ≥ N =⇒ un ≤ −A.

Theorem 3.4. If a sequence (un)n∈N converges to ` ; then the sequence (|un|)n∈N
converges to |`|.

Proof. Let the sequence (un)n∈N tends to `. For all ε > 0, there exists N ∈ N, such
that :

∀n ∈ N, n ≥ N, |un − `| ≤ ε,

but we have, ||un| − |`|| ≤ |un − `|, we deduce that

∀n ∈ N, n ≥ N, ||un| − |`|| ≤ ε.

Therefore
lim

n→+∞
|un| = |`|.

Remark 3.4. The converse is not true. Indeed, consider the following example :

un = (−1)n,

we have |un| = |(−1)n| = 1, ∀n ∈ N, then |un| converges to 1, but un is not
convergent.

Theorem 3.5. Every convergent sequence is bounded.
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Proof. Let (un)n∈N be a sequence that converges to a limit ` ∈ R. Then by virtue
of the Theorem 3.4. (|un|)n∈N converges to |l|, in other words

∀ε > 0,∃N ∈ N,∀n ∈ N, n ≥ N, ||un| − |`|| ≤ ε.

that’s to say |`| − ε ≤ |un| ≤ ε+ |`|. Let’s choose ε = 1, then

for n ≥ N, |un| ≤ 1 + |`|.

By then posing
M = max{|u1|, |u2|, ..., |uN |, 1 + |`|}

we obtain
|un| ≤M, ∀n ∈ N.

Therefore (un)n∈N is bounded.

Remark 3.5. The converse is clearly false, as illustrated by the sequence un =
(−1)n, ∀n ∈ N, which is bounded since |(−1)n| = 1, ∀n ∈ N, yet it does not converge.

Property 3.1. Let (an) be a bounded sequence and (bn) a sequence such that

lim
n→∞

bn = 0.

Then,
lim
n→∞

(anbn) = 0.

Proof.
Since (an) is bounded, there exists a constant M > 0 such that

|an| ≤M for all n ∈ N.

Since lim
n→∞

bn = 0, for any ε > 0, there exists a number N ∈ N such that for all
n > N ,

|bn| <
ε

M
.

Thus, for all n > N ,
|anbn| = |an| · |bn| < M · ε

M
= ε.

Therefore, lim
n→∞

anbn = 0.
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Example 3.9. We consider the sequence un = (−1)n, Recall that this sequence
does not converge, but it is bounded. We also consider the sequence vn = 1

n
, which

converges to 0. According to the previous property 3.1, the product of these two
sequences converges to 0. That is :

lim
n−→+∞

(−1)n

n
= 0.

3.6 Limits and inequalities
Theorem 3.6. (Gendarmes’ Theorem)
Let (un)n∈N, (vn)n∈N, and (wn)n∈N be real sequences. If (un)n∈N and (wn)n∈N both
converge to the same limit `, and if there exists n0 such that ∀n ≥ n0,

un ≤ vn ≤ wn,

then the sequence vn also converges to `.

Proof.
Let ε > 0. Since lim

n→+∞
un = `, ∃n1 ∈ N such that ∀n ≥ n1,

|un − `| < ε =⇒ `− ε < un < `+ ε.

Similarly, since lim
n→+∞

wn = `, ∃n2 ∈ N such that ∀n ≥ n2,

|wn − `| < ε =⇒ `− ε < wn < `+ ε.

Let’s choose ∀n ≥ N = max(n1, n2), then for all n ≥ N , we have

`− ε < un ≤ vn ≤ wn < `+ ε

Hence, for all n ≥ N,
|vn − `| < ε.

This shows that (vn) converges to `.

Example 3.10. Calculate the following limits using Gendarmes’ Theorem :

1) un =
n sinn

(n+ 1)2
, 2) vn =

n∑
k=1

n

n2 + k
, 3) wn =

1

n2

n∑
k=1

[kx], x ∈ R.

Solution :
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1. We know that
−n

(n+ 1)2
≤ n sinn

(n+ 1)2
≤ n

(n+ 1)2
,

both sequences have the same limit

lim
n−→+∞

−n
(n+ 1)2

= lim
n−→+∞

n

(n+ 1)2
= 0,

we conclude lim
n→+∞

un = 0.

2. For every integer k of {1, 2, 3, ..., n}, we have
n

n2 + n
≤ n

n2 + k
≤ n

n2 + 1
.

Now apply this to the entire sum

n2

n2 + n
≤ vn ≤

n2

n2 + 1
,

both sequences have the same limit

lim
n→+∞

n2

n2 + n
= lim

n→+∞

n2

n2 + 1
= 1.

we conclude by the Gendarmes’ Theorem

lim
n→+∞

vn = 1.

3. For all x ∈ R, we have kx− 1 < [kx] ≤ kx.
Summing over k = 1 to n, we obtain :

n∑
k=1

(kx− 1) <
n∑
k=1

[kx] ≤
n∑
k=1

kx.

This simplifies to

x

n∑
k=1

k − n <
n∑
k=1

[kx] ≤ x

n∑
k=1

k.

Using the identity
n∑
k=1

k =
n(n+ 1)

2
, we get :

x · n(n+ 1)

2
− n <

n∑
k=1

[kx] ≤ x · n(n+ 1)

2
.
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Now divide the entire inequality by n2 to get bounds on wn :

1

n2

(
x · n(n+ 1)

2
− n

)
< wn ≤

1

n2
· x · n(n+ 1)

2
.

Simplify each bound :

x(n+ 1)

2n
− 1

n
< wn ≤

x(n+ 1)

2n
.

As n→∞, both bounds converge to x
2
, so by the Gendarmes’ Theorem :

lim
n→∞

wn =
x

2
.

Corollary 3.1. If (un)n∈N converges to `, and un ≥ 0 for all n ∈ N, then ` ≥ 0.
(Similarly, if un ≤ 0, then ` ≤ 0).

Proof. We will prove by contradiction. Suppose that un ≥ 0 and ` ≤ 0. Let

ε =
|`|
2

=⇒ `+ ε = `+
|`|
2
< 0.

Since
un −→ ` =⇒ ∃nε ∈ N,∀n > nε =⇒ `− ε < un < `+ ε < 0.

contradicting the assumption that un ≥ 0 ∀n ∈ N.
Therefore, our assumption that ` < 0 must be false, so ` ≥ 0.

Corollary 3.2.. If (un)n∈N and (vn)n∈N are two convergent sequences such that
un ≥ vn for all n ∈ N , then

lim
n−→+∞

un ≥ lim
n−→+∞

vn.

Proof. Consider the sequence (wn)n∈N defined by

wn = un − vn ≥ 0, because un ≥ vn.

We have
lim

n−→+∞
wn = ( lim

n−→+∞
un)− ( lim

n−→+∞
vn)

which according to the previous corollary 3.1, implies that

lim
n−→+∞

wn ≥ 0.
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Therefore
lim

n−→+∞
un ≥ lim

n−→+∞
vn.

Theorem 3.7. If the sequence (un)n∈N converges to `, then every subsequence ex-
tracted from (un)n∈N also converges to `.

Proof. Let ϕ : N −→ N be a strictly increasing function that defines a subsequence
vn of un that is vn = uϕ(n).
Since un −→ `, then ∀ε > 0, there exists N ∈ N such that

∀n ≥ N, |un − `| ≤ ε (1).

Now, since ϕ(n) ≥ n, it follows that ϕ(n) ≥ N whenever n ≥ N . Therefore, inequality
(1) remains valid if we replace n by ϕ(n), and we get

|uϕ(n) − `| ≤ ε.

Consequently uϕ(n) = vn converges to `.

3.7 Convergence of monotone sequences
We now state the fundamental theorem of convergence of monotone sequences.

Theorem 3.8.
a) If a sequence of real numbers is increasing and bounded from above, then it

converges.

b) If a sequence of real numbers is decreasing and bounded from below, then it
converges.

Training exercise 3.1. Study the nature of the sequence (un)n∈N∗ defined by

u1 = 1, un+1 =
√

2 + un, n ≥ 1.

– Prove that un < 2 for all n ∈ N∗
– Prove that un is increasing sequence
– Deduce that un is convergent, and compute its limit.

55



University 8 May 1945-Guelma Dr.M.MERAD

Solution.
– For n = 1,

u1 = 1 < 2.

Assume un < 2 for some n ≥ 1. Then

un + 2 < 4 =⇒
√
un + 2 < 2 =⇒ un+1 < 2.

Therefore un < 2,∀n ∈ N.

– For n = 1, we have u1 = 1 ≤ u2 =
√

3.
Suppose that un − un−1 ≥ 0 then :

un+1 − un =
√
un + 2−

√
un−1 + 2 =

un − un−1√
un + 2 +

√
un−1 + 2

≥ 0

Therefore un is increasing.

– (un)n∈N∗ is increasing, and bounded above then it is convergent. Also

lim
n−→∞

un = lim
n−→∞

un+1 = `

then
lim
n−→∞

un+1 = lim
n−→∞

√
un + 2⇐⇒

√
`+ 2 = `

we obtain the equation `2 − `− 2 = 0, so ` = 2 or −1.
But since un ≥ 1 and increasing, the only possible limit is ` = 2.

3.8 Limits and properties
It is natural to wonder how the limits of sequences behave with respect to opera-

tions. In this sense, the limit behaves as simply as possible when the sequences are
convergent.

Proposition 3.1. Let (un) and (vn) be two sequences converging to the limit `1
and `2 respectively. Then

lim
n→∞

(un ± vn) = `1 ± `2

lim
n→∞

(un × vn) = `1 × `2

lim
n→∞

λ× un = λ`1, λ ∈ R
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lim
n→∞

un
vn

=
`1
`2
, if `2 6= 0

lim
n→+∞

|un| = |`1|

These properties allow us to calculate the limits using already well-known limits.

Remark 3.6. It is possible for the sum of two divergent sequences to be convergent.

Example 3.11. Let two sequences be defined by un = 2n and vn = −2n+e−n. Both
(un)n∈N and (vn)n∈N are divergent. However, their sum (un + vn)n∈N is convergent
because

un + vn = e−n,

and since lim
n→+∞

e−n = 0, we have

lim
n→+∞

(un + vn) = 0.

3.9 Adjacent Sequences
Definition 3.7. Two real sequences (un)n∈N and (vn)n∈N are said to be adjacent if :

(un)n∈N is increasing,

(vn)n∈N is decreasing,

and lim
n→∞

(un − vn) = 0.

Example 3.12. Let (un)n∈N and (vn)n∈N be two sequences defined by

un =
n∑
k=0

1

k!
, vn = un +

1

n.n!
.

Show that (un) and (vn) are adjacent.

Solution. For all n ∈ N, we have

un+1 − un =
n+1∑
k=0

1

k!
−

n∑
k=0

1

k!
=

1

(n+ 1)!
> 0.

57



University 8 May 1945-Guelma Dr.M.MERAD

Therefore (un) is increasing.

vn+1 − vn = un+1 +
1

(n+ 1).(n+ 1)!
− un −

1

n.n!

=
1

(n+ 1)!
− (n+ 1)2 − n
n(n+ 1)(n+ 1)!

=
−1

n(n+ 1)(n+ 1)!
< 0.

Therefore (vn) is decreasing.
Moreover, for all n ∈ N,

vn − un =
1

n.n!
=⇒ lim

n−→+∞

1

n.n!
= 0.

All three criteria are satisfied. Therefore (un)n∈N and (vn)n∈N are adjacent.

Theorem 3.9. If the sequences (un)n∈N and (vn)n∈N are adjacent then they converge
to the same limit.

3.10 Recurrence Sequences
Definition 3.8. A Recurrence sequence is a sequence defined by their first term(s)
and a recurrence relation which can be of the form un+1 = f(un) where f is a function.

Example 3.13. Let’s consider

u0 = 0, un+1 =
2

u2n + 1
.

This generates

u1 = 2, u2 =
2

5
, u3 =

50

29
, ...

3.10.1 Monotonicity of a Recurrence Sequence

Let f be a function defined on an interval I, and suppose the sequence (un)
defined

un+1 = f(un).

– If f is decreasing on I, then the sequence (un) is not guaranteed to be mono-
tonic.
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– If f is increasing, then the sequence (un) is monotonic, and its direction can
be determined by comparing f(u0) to u0
– If f(u0)− u0 > 0, then the sequence (un)n∈N is increasing.
– If f(u0)− u0 < 0, then the sequence (un)n∈N is decreasing.

Example 3.14. Define the recurrence sequence

u0 = 0, un+1 =
1

2
un + 1

Let’s define
f(x) =

1

2
x+ 1 (increasing function)

Compute f(u0)− u0
f(u0)− u0 = f(0)− 0 = 1 > 0

So the sequence is increasing.

Theorem 3.10. Let f : I −→ I be a continuous function defined on an interval
I ⊂ R, and let (un) be a sequence defined by

un+1 = f(un), with u0 ∈ I.

If the sequence (un) converges to a limit ` ∈ I, then f(`) = `.

Example 3.15. Calculate the limit of the recurrence sequence given in the example
3.14.
The sequence un is increasing and bounded above then un converges to `, such that

` = f(`)⇐⇒ ` =
1

2
`+ 1 =⇒ ` = 2.

Therefore limun = 2.

3.11 Cauchy’s Convergence Criterion
Definition 3.9. A sequence (un) is called a Cauchy sequence, if

∀ε > 0,∃n0 ∈ N, ∀p, q ≥ n0, |up − uq| < ε.

Theorem 3.11. A real sequence (un) converges if and only if it is a Cauchy sequence.
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Proof. Suppose limun = `. Then by definition for convergence, for all ε > 0, there
exists n0 ∈ N such that

∀n > n0 =⇒ |un − `| <
ε

2

then

|up − uq| = |(up − `)− (uq − `)| ≤ |(up − `)|+ |(uq − `)| <
ε

2
+
ε

2
= ε.

for all p, q ≥ n0.

Example 3.17. Using Cauchy criterion of convergence, examine the convergence of
sequence (un) where

un =
n∑
k=1

1

k!
.

A sequence (un) is convergent if and only if it is a Cauchy sequence, i.e,
For every ε > 0, there exists n0 ∈ N such that for all n,m > n0,

|un − um| < ε.

|un − um| = |
1

(m+ 1)!
+

1

(m+ 2)!
+ ...+

1

n!
|

≤ 1

2m
+

1

2m+1
+ ...+

1

2n−1

=
1

2m
(
1− 1

2n−m−1

1− 1
2

)

=
1

2m−1
(1− 1

2n−m−1
) <

1

2m−1
< ε.

∀ε > 0, ∀m > [1− ln(ε
ln(2)

] + 1 =⇒ |un − um| < ε.

Therefore (un) is Cauchy sequence, then the sequence (un) converges.

3.12 Bolzano-Weierstrass Property
Theorem 3.12. Every bounded sequence in R has a convergent subsequence.
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Proof. Let (un)n∈N be a bounded sequence of real numbers. That is, there exists a
constant M > 0 such that for all n ∈ N, we have

|un| ≤M.

By theMonotone Subsequence Theorem, every sequence of real numbers has
a monotonic subsequence. Therefore, there exists a subsequence (uϕ(n))n∈N of (un)
that is either increasing or decreasing.

Since (un) is bounded, every subsequence of (un) is also bounded. In particular,
the monotonic subsequence (uϕ(n)) is bounded.

A bounded monotonic sequence of real numbers converges by the Theorem 3.8.
Hence, the subsequence (uϕ(n)) converges.
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3.13 Exercise.
Exercise 3.1.
Calculate the limit of the following sequences with the general term

un =
n

n2 + 1
+

n

n2 + 2
+

n

n2 + 3
+ · · ·+ n

n2 + n
, vn =

1

n!
(1! + 2! + · · ·+ n!),

wn =
√
n(
√
n− 1−

√
n).

Exercise 3.2.
Let the sequence (un) defined by the general term :

un =
2n + (−1)n

2n
, n ∈ N

Show that limun = 1. For what values of n, |un − 1| less then ε and less then 10−4.

Exercise 3.3.
Determine which of the following sequences are bounded

un = n(−1)n , vn = Σn
k=1

1

k + n
.

Study the monotony of the following sequences and deduce possibly their nature :

un = Σn
k=1

k2

n2
, vn = Σn

k=1

1

k + n
, wn =

1× 3× 5× · · ·(2n− 1)

2× 4× 6× · · · × (2n)
.

Exercise 3.4.
Let the sequence (un) be defined by :

un = 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n
, n ≥ 1.

1. Show that the sequences u2k and u2k+1 are adjacent.
2. Deduce the nature of (un).

Exercise 3.5.
We consider the sequence (un)n∈N of real numbers whose general term is defined by
recurrence

u0 = 2, un+1 =
√

2un − 1.
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1. Show that, for all n ∈ N, un ≥ 1

2. Show that the sequence (un)n∈N is decreasing
3. Deduce that the sequence (un)n∈N is convergent and determine its limit.

We consider the sequences (vn) and (wn) of real numbers defined for all n ≥ 1 by

vn =
n∑
k=0

1

k!
, wn = vn +

1

n!
.

Show that these two sequences are convergent and have the same limit.

Exercise 3.6.
Let the sequence (un) be defined by :

un =

 u1 = 1
2
,

un+1 = u2n + 3
16

.

1. Prove that ∀n ≥ 1, 1
4
< un <

3
4
.

2. Study the nature of the sequence un and calculate its limit if it is convergent.
3. Let E = {un, n ≥ 1}. Determine supE and inf E.

Exercise 3.7. Find inf un, supun, lim inf un and lim supun if :

un =
(−1)n

n
+

1 + (−1)n

2
; un = 1 +

n

n+ 1
cos

nπ

2
.
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Chapter 4

Real Functions of a Real Variable

This chapter is devoted to the study of functions of a real variable, which are
commonly used to model various problems in mathematics, mechanics, and other
fields.

4.1 Preliminaries
Definition 4.1. Let E ⊂ R. A function f of a real variable x defined on the set E is
any mapping from E into R ; that is, each element of E is associated with a unique
element of R. This is denoted as :

f : E → R, x 7→ f(x).

The domain of definition of f is the set defined by

D(f) := {x ∈ E | f(x) exists}.

A set f(E) = {y = f(x) | x ∈ D(f)} is called the range of f and is denoted by Im(f).

Definition 4.2. The graph of the function f is the set of ordered pairs of real
numbers (x, f(x)), where x ∈ D(f). We write :

Γ(f) = {(x, f(x)) | x ∈ D(f)}.

Example 4.1. Give the largest possible domain of the following functions :
1. f(x) = x2

x−3

2. g(x) = ln(x+ 1)
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3. h(x) = 2−
√

9− x2

Solution.

1. f(x) = x2

x−3
For this function, we must ensure that the denominator is not equal to zero.
Therefore, the domain is all real numbers except x = 3.

D(f) = {x ∈ R | x 6= 3}.

2. g(x) = ln(x+ 1)

The natural logarithm function is defined only for positive arguments. There-
fore, we need :

x+ 1 > 0 ⇒ x > −1.

Thus, the largest domain of g(x) is :

D(g) = {x ∈ R | x > −1}.

3. h(x) = 2−
√

9− x2
For this function, we must ensure that the expression inside the square root is
non-negative, we need :

9− x2 ≥ 0 ⇒ −3 ≤ x ≤ 3.

Thus, the largest domain of h(x) is :

D(h) = {x ∈ R | −3 ≤ x ≤ 3}.

Definition 4.3.
– A function f is called injective if each element in the codomain has at most

one preimage.

– It is called surjective if each element in the codomain has at least one preimage.

– It is called bijective if it is both injective and surjective, i.e., if each element in
the codomain has exactly one preimage.

Remark 4.1. Also recall that a function has an inverse if and only if it is bijective.
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4.1.1 Even, odd and periodic functions

Definition 4.4. A function f , defined on a symmetric interval I (that is to say,
∀x ∈ I,−x ∈ I), is said to be :

– Even if and only if ∀x ∈ I, f(−x) = f(x),

– Odd if and only if ∀x ∈ I, f(−x) = −f(x).

Geometrically :

– If f is even, then its graph is symmetrical with respect to the y-axis.

– If f is odd, then its graph is symmetrical with respect to the origin.

Example 4.2.

– Let f(x) =
ex

2

x4 + 1
.

Compute f(−x) :

f(−x) =
e(−x)

2

(−x)4 + 1
=

ex
2

x4 + 1
= f(x)

Thus, f is an even function on R. Its graph is symmetric with respect to the
y-axis.

– We want to determine whether the function

g(x) =
x2 cosx

sin2(x) + 1

is even. Compute g(−x) :

g(−x) =
(−x)2 cos(−x)

sin2(−x) + 1
=

x2 cosx

sin2 x+ 1
= g(x)

g is an even function on R.
– Consider the function h(x) = x3. This function is odd because :

h(−x) = (−x)3 = −x3 = −h(x), ∀x ∈ R.

Therefore, h(x) = x3 is an odd function. Its graph is symmetric with respect
to the origin.
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Definition 4.5. A function f is called periodic if there exists T > 0 such that

f(x+ T ) = f(x) for all x ∈ R.

The smallest such positive number T is called the period of the function f .

Remark 4.2. If T is a period of a function f , then for any integer k 6= 0, kT is also
a period of f , because :

f(x+ kT ) = f((x+ (k − 1)T ) + T ) = f(x+ (k − 1)T ) = · · · = f(x).

Example 4.3.
1. The function f(x) = x− [x], where [x] denotes the integer part of x, is periodic

with period 1. Indeed

∀x ∈ R, f(x+ 1) = x+ 1− [x+ 1] = x+ 1− [x]− 1 = x+ [x] = f(x).

2. The function f(x) = sin(x) is periodic with period 2π, since

sin(x+ 2π) = sin(x), ∀x ∈ R.

4.1.2 Bounded and monotonic functions

Definition 4.6. Let f : E −→ R be a real-valued function, we say that :

– f is bounded above on E if

∃M ∈ R such that ∀x ∈ E, f(x) ≤M.

– f is bounded below on E if

∃m ∈ R such that ∀x ∈ E, m ≤ f(x).

– f is bounded on E if it is both bounded above and bounded below, that is :

∃m,M ∈ R such that ∀x ∈ E, m ≤ f(x) ≤M

or equivalently,
∃C > 0 such that ∀x ∈ E, |f(x)| ≤ C.
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Example 4.4.

1. f(x) = cos x is bounded on R. Indeed

−1 ≤ cos(x) ≤ 1.

The infimum and supremum of f on R are :

inf
x∈R

f(x) = −1, sup
x∈R

f(x) = 1.

2. f(x) = e−
1
x is bounded on ]0,+∞[. The image of f over this interval is :

f(]0,+∞[) =]0, 1[.

Therefore,
sup

x∈]0,+∞[

f(x) = 1, inf
x∈]0,+∞[

f(x) = 0.

3. The function x 7→ lnx is not bounded, because as x→ 0+, we have :

lnx→ −∞,

and as x→ +∞, we have :
lnx→ +∞.

This implies that the logarithmic function is neither bounded above nor boun-
ded below.

Definition 4.7. A function f defined on E ⊂ R is said to be :

– Increasing on E if

∀x1, x2 ∈ E, x1 ≤ x2 =⇒ f(x1) ≤ f(x2).

– Decreasing on E if

∀x1, x2 ∈ E, x1 ≤ x2 =⇒ f(x1) ≥ f(x2).

– If f is either increasing or decreasing on E, we say that f is monotone on E.
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Remark 4.3.
If the inequalities in the definitions above are strict, we obtain the notions of strictly
increasing and strictly decreasing functions.

Example 4.5.

1. Let f(x) = 2x+ 3. We show that f is an increasing function on R.

Let x1, x2 ∈ R such that x1 ≤ x2.

f(x1) = 2x1 + 3, f(x2) = 2x2 + 3.

Since 2x1 + 3 ≤ 2x2 + 3, we get :

f(x1) ≤ f(x2).

Therefore, f is increasing on R.
Alternatively, we can observe that the derivative of f(x) = 2x+ 3 is :

f ′(x) = 2 > 0 for all x ∈ R,

which confirms that f is strictly increasing on R.

2. Let f(x) =
1

x
. We analyze the monotonicity of f on the interval ]0,+∞[.

Let x1, x2 ∈]0,+∞[ with x1 < x2.

Then,

f(x1) =
1

x1
>

1

x2
= f(x2).

Thus,
x1 < x2 ⇒ f(x1) > f(x2),

which shows that f is strictly decreasing on ]0,+∞[.

Proposition 4.1. The sum of two increasing (respectively, decreasing) functions is
an increasing (respectively, decreasing) function.

Corollary 4.1. Let f be strictly monotone on set E ⊂ R. Then f is injective on E.
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4.1.3 Maximum and Minimum local of function

Definition 4.8.
– A function f is said to have a local maximum at a point x0 if there exists an

interval I around x0 such that

f(x0) ≥ f(x), ∀x ∈ I

– A function f is said to have a local minimum at a point x0 if there exists an
interval I around x0 such that

f(x0) ≤ f(x), ∀x ∈ I

4.2 Limit of function
Definition 4.9. (Neighborhood of a Point)
Let x0 ∈ R. A neighborhood of x0 is any open interval of the form

]x0 − δ, x0 + δ[, with δ > 0.
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Definition 4.10. Let f be a function defined on a neighborhood of a point x0. We
say that f has a limit ` ∈ R at the point x0 if :

∀ε > 0, ∃δ > 0 such that |x− x0| < δ ⇒ |f(x)− `| < ε.

Example 4.6. Let f(x) =
x2 − 1

x− 1
for x 6= 1. We want to find lim

x→1
f(x).

We simplify the expression :

f(x) =
x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1 for x 6= 1.

So,
lim
x→1

f(x) = lim
x→1

(x+ 1) = 2.

Even though f is not defined at x = 1, it has a limit at that point.

Example 4.7. Let f(x) = 5x− 3. Show that

lim
x→1

f(x) = 2,

using the epsilon-delta definition.

We want to show that :

∀ε > 0, ∃δ > 0 such that 0 < |x− 1| < δ ⇒ |f(x)− 2| < ε.

Now compute :

|f(x)− 2| = |5x− 3− 2| = |5x− 5| = 5|x− 1|.

So to ensure that |f(x)− 2| < ε, we need :

5|x− 1| < ε⇒ |x− 1| < ε

5
.

Thus, we can choose δ = ε
5
. Then :

0 < |x− 1| < δ ⇒ |f(x)− 2| < ε.

Therefore
lim
x→1

f(x) = 2.
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Theorem 4.1. If f has a limit at point x0, then this limit is unique.

Proof. (by contradiction). Let

lim
x→x0

f(x) = `1 and lim
x→x0

f(x) = `2,

Assume, that `1 6= `2.
Let ε = |`1−`2|

3
, which is strictly positive. Since limx→x0 f(x) = `1, there exists δ1 > 0

such that for all x satisfying 0 < |x− x0| < δ1, we have

|f(x)− `1| < ε.

Similarly, since limx→x0 f(x) = `2, there exists δ2 > 0 such that for all x satisfying
0 < |x− x0| < δ2, we have

|f(x)− `2| < ε.

Let δ = min(δ1, δ2). For any x such that 0 < |x − x0| < δ, both of the following
inequalities hold :

|f(x)− `1| < ε and |f(x)− `2| < ε.

Now consider the difference |`1 − `2|. Using the triangle inequality, we get

|`1 − `2| ≤ |f(x)− `1|+ |f(x)− `2| < ε+ ε =
2|`1 − `2|

3
.

This is a contradiction, because we assumed that `1 6= `2, so the inequality
|`1 − `2| < 2|`1−`2|

3
cannot hold. Therefore, `1 = `2, proving the uniqueness of the

limit.

Definition 4.11.
– The right limit of a function f at a point x0 is the limit of f(x) as x approaches
x0 from values greater than x0. It is denoted as :

lim
x→x+0

f(x) = `,

which means :

∀ε > 0,∃δ > 0 such that for all x, if 0 < x− x0 < δ, then |f(x)− `| < ε.
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– The left limit of a function f at a point x0 is the limit of f(x) as x approaches
x0 from values less than x0. It is denoted as :

lim
x→x−0

f(x) = `,

which means :

∀ε > 0,∃δ > 0 such that for all x, if 0 < x0 − x < δ, then |f(x)− `| < ε.

Remark 4.4.
– If the limit of f exists at the point x0, then both the right and left limits also

exist, and we have :

lim
x→x0

f(x) = lim
x→x−0

f(x) = lim
x→x+0

f(x).

– If
lim
x→x−0

f(x) 6= lim
x→x+0

f(x),

then f does not have a limit at the point x0.

Example 4.8. Evaluate the limit :

lim
x→0

x2 + 2|x|
x

Df = R∗. We have

|x| =

 x, if x ≥ 0

−x, if x < 0

so
x2 + 2|x|

x
=

 x2+2x
x

= x+ 2, if x ≥ 0

x2−2x
x

= x− 2, if x < 0

We analyze this limit by considering the left and right limits separately. Thus :

lim
x→0+

x2 + 2|x|
x

= lim
x→0+

(x+ 2) = 2

and
lim
x→0−

x2 + 2|x|
x

= lim
x→0−

(x− 2) = −2
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Since
lim
x→0−

x2 + 2|x|
x

6= lim
x→0+

x2 + 2|x|
x

,

Therefore lim
x→0

x2 + 2|x|
x

does not exist.

4.2.1 Finite limit at infinity

We say that a function f(x) has a finite limit at infinity if :

lim
x→+∞

f(x) = ` or lim
x→−∞

f(x) = `

where ` ∈ R, meaning that the function approaches a real (finite) number as x
tends to positive or negative infinity.

Mathematically

lim
x→+∞

f(x) = `⇐⇒ ∀ε > 0, ∃A > 0, ∀x ∈ R, x > A⇒ |f(x)− `| < ε.

lim
x→−∞

f(x) = `⇐⇒ ∀ε > 0, ∃A > 0,∀x ∈ R, x < −A⇒ |f(x)− `| < ε.

Example 4.9.

1.
lim

x→+∞

3x+ 1

x+ 2
= 3,

and
lim

x→−∞

1

x
= 0.

2. We want to prove that

lim
x→∞

1

x2 + 1
= 0.

For every ε > 0, there exists B(ε) > 0 such that

∀x > B(ε) =⇒
∣∣∣∣ 1

x2 + 1
− 0

∣∣∣∣ < ε

Given that ∣∣∣∣ 1

x2 + 1
− 0

∣∣∣∣ < ε⇐⇒ x2 + 1 >
1

ε
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⇐⇒ x2 >
1

ε
− 1

⇐⇒ x >

√
1

ε
− 1

Therefore, we choose B(ε) =
√

1
ε
− 1. By the definition of a limit at infinity,

we conclude :
lim
x→∞

1

x2 + 1
= 0

4.3 Infinite limit

4.3.1 Infinite limit at point

We say that a function f(x) has an infinite limit at a point x0 ∈ R if :

lim
x→x0

f(x) = +∞ or lim
x→x0

f(x) = −∞

This means that as x approaches x0, the values of f(x) increase or decrease wi-
thout bound.

Mathematically

lim
x→x0

f(x) = +∞⇐⇒ ∀M > 0, ∃δ > 0,∀x ∈ R, |x− x0| < δ =⇒ f(x) > M.

lim
x→x0

f(x) = −∞⇐⇒ ∀M > 0, ∃δ > 0∀x ∈ R, |x− x0| < δ =⇒ f(x) < −M.

Example 4.10.

lim
x→0

1

x2
= +∞

and
lim
x→0−

1

x
= −∞ and lim

x→0+

1

x
= +∞.

4.3.2 Infinite limit at infinity

We say that a function f(x) has an infinite limit at infinity if :

lim
x→+∞

f(x) = +∞ or lim
x→+∞

f(x) = −∞
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lim
x→−∞

f(x) = +∞ or lim
x→−∞

f(x) = −∞

This means that as x increases or decreases without bound, the values of f(x)
also grow without bound in the positive or negative direction.

Mathematically

lim
x→+∞

f(x) = +∞⇐⇒ ∀A > 0,∃B > 0,∀x ∈ R, x > B =⇒ f(x) > A.

lim
x→−∞

f(x) = +∞⇐⇒ ∀A > 0,∃B > 0,∀x ∈ R, x < −B =⇒ f(x) > A.

lim
x→+∞

f(x) = −∞⇐⇒ ∀A > 0,∃B > 0,∀x ∈ R, x > B =⇒ f(x) < −A.

lim
x→−∞

f(x) = −∞⇐⇒ ∀A > 0,∃B > 0,∀x ∈ R, x < −B =⇒ f(x) < −A.

Example 4.11.
1.

lim
x→+∞

x2

x+ 1
= +∞

2.
lim

x→−∞
e−x

3

= +∞

3. We want to show that :
lim

x→+∞
ln(x3) = +∞

We say that lim
x→+∞

f(x) = +∞ if :

∀A > 0, ∃B > 0 such that x > B ⇒ f(x) > A

note that
ln(x3) = 3 ln(x)

We want
3 ln(x) > A⇒ ln(x) >

A

3
⇒ x > eA/3

Choose B = eA/3. Then for all x > B, we have :

ln(x3) = 3 ln(x) > A

By definition, we conclude :

lim
x→+∞

ln(x3) = +∞
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4.3.3 Indeterminate Forms

The following are the standard indeterminate forms encountered in limits :

0

0
,
∞
∞
, 0 · ∞, ∞−∞, 00, ∞0, 1∞.

Example 4.12. Let’s calculate the following limits :
1.

lim
x→+∞

√
x√

x+
√
x

The direct evaluation of this limit at +∞ results in an indeterminate form ∞
∞ .

Then
lim

x→+∞

√
x√

x+
√
x

= lim
x→+∞

√
x√

x(1 + 1√
x
)

= lim
x→+∞

√
x

√
x(
√

(1 + 1√
x
)

= lim
x→+∞

1√
1 + 1√

x

= 1.

2.

lim
x→0

√
1 + x−

√
1− x

x

The direct evaluation of this limit at x = 0 results in an indeterminate form 0
0
.

To resolve this, we multiply the numerator and denominator by the conjugate
of the numerator :

√
1 + x−

√
1− x

x
·
√

1 + x+
√

1− x√
1 + x+

√
1− x

=
2x

x(
√

1 + x+
√

1− x)

Canceling the x gives :

2√
1 + x+

√
1− x

Taking the limit as x→ 0 :

lim
x→0

2√
1 + x+

√
1− x

=
2

1 + 1
= 1

Thus, the limit is 1.
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4.4 Theorems on Limits

4.4.1 Operations on Limits

Let
lim
x→x0

f(x) = `1 and lim
x→x0

g(x) = `2

Then the following operations hold :
1. lim

x→x0
(f(x)± g(x)) = `1 ± `2

2. lim
x→x0

f(x) · g(x) = `1 · `2

3. (if `2 6= 0) lim
x→x0

f(x)

g(x)
=
`1
`2

4. lim
x→x0

λ · f(x) = λ · `1

5. lim
x→x0

[f(x)]n = `n1 , lim
x→x0

n
√
f(x) = n

√
`1 (if defined)

6. f(x) ≤ g(x) =⇒ `1 ≤ `2.

Theorem 4.2.(Gendarme’s Theorem)
Suppose that

lim
x→x0

f(x) = lim
x→x0

h(x) = `

If
f(x) ≤ g(x) ≤ h(x)

in a neighborhood of x0, then
lim
x→x0

g(x) = `.

Example 4.13. Let us evaluate the following limits :
1. We want to evaluate the limit :

lim
x→0

x2 sin

(
1

x

)
We use the fact that for all real numbers x 6= 0, we have :

−1 ≤ sin

(
1

x

)
≤ 1
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Multiplying all sides of the inequality by x2 ≥ 0, we obtain :

−x2 ≤ x2 sin

(
1

x

)
≤ x2

Now, take the limit of the left and right sides as x→ 0 :

lim
x→0

(−x2) = 0 and lim
x→0

(x2) = 0.

By the Gendarme’s Theorem, it follows that

lim
x→0

x2 sin

(
1

x

)
= 0

2.
lim

x→+∞

[x]

x

We know that for any real number x, the following inequality holds :

x− 1 < [x] ≤ x

Dividing all parts of the inequality by x > 0 :

x− 1

x
<

[x]

x
≤ 1

Simplifying :

1− 1

x
<

[x]

x
≤ 1

Now, taking the limit as x→ +∞ :

lim
x→+∞

(
1− 1

x

)
= 1 and lim

x→+∞
1 = 1

Therefore, by the Gendarme’s Theorem :

lim
x→+∞

[x]

x
= 1.
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4.5 Continuous function
Definition 4.12.(Continuity at a Point)
Let f : I → R be a function, where I ⊂ R is an interval, and let x0 ∈ I.

1. We say that f is continuous at x0 if this following three conditions must be
satisfied :
(a) f(x0) is defined,
(b) lim

x→x0
f(x) exists,

(c) lim
x→x0

f(x) = f(x0).

2. We say that f is left-continuous at x0 if

lim
x→x−0

f(x) = f(x0)

3. We say that f is right-continuous at x0 if

lim
x→x+0

f(x) = f(x0)

Example 4.14. Consider the function

h(x) =

{
1
2
x+ 1 if x > 2

−x+ 1 if x ≤ 2

We study the continuity of h at the point x = 2.

h(2) = −2 + 1 = −1

Left limit as x→ 2−, we find :

lim
x→2−

h(x) = −2 + 1 = −1 = h(2).

Then the function h is left continuous at 2.
Right limit as x→ 2+, we find :

lim
x→2+

h(x) =
1

2
· 2 + 1 = 1 + 1 = 2 6= h(2).
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Since
lim
x→2−

h(x) 6= lim
x→2+

h(x).

Therefore, the limit lim
x→2

h(x) does not exist, and the function is not continuous at
x = 2.

Definition 4.13.(Epsilon-Delta Definition of Continuity)
Let f : R→ R be a function, and let x0 ∈ R.

1. We say that f is continuous at x0 if

∀ε > 0, ∃δ > 0 such that ∀x ∈ R, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε

2. We say that f is left-continuous at x0 if

∀ε > 0, ∃δ > 0 such that ∀x ∈ R, 0 < x0 − x < δ ⇒ |f(x)− f(x0)| < ε

3. We say that f is right-continuous at x0 if

∀ε > 0, ∃δ > 0 such that ∀x ∈ R, 0 < x− x0 < δ ⇒ |f(x)− f(x0)| < ε.

Example 4.15.

1. Prove that f(x) = x2 is continuous at x0 = 2

We want to find δ > 0 such that :

|x− 2| < δ ⇒ |x2 − 4| < ε

Note that :
|x2 − 4| = |x− 2||x+ 2|

we have,
1 < x < 3⇒ 3 < x+ 2 < 5⇒ |x+ 2| < 5

Then :
|x2 − 4| = |x− 2||x+ 2| < 5 · |x− 2|

We want
5 · |x− 2| < ε⇒ |x− 2| < ε

5

So, we choose
δ =

ε

5
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For all ε > 0, choosing δ = ε
5
, such that

|x− 2| < δ ⇒ |x2 − 4| < ε

Hence, f(x) = x2 is continuous at x = 2 according to the epsilon-delta defini-
tion.

2. Let the function f be defined by :

f(x) =

{
x sin

(
1
x2

)
if x 6= 0,

0 if x = 0.

We want to study the continuity of f at the point x0 = 0.

We have :
|f(x)− f(0)| = |x sin

(
1

x2

)
| ≤ |x|,

since | sin
(

1
x2

)
| ≤ 1 for all x 6= 0.

Let ε > 0. Choose δ = ε. Then, if |x| ≤ δ, we get :

|f(x)− f(0)| ≤ |x| ≤ δ = ε.

Therefore, f is continuous at the point x0 = 0.

Definition 4.14.(Continuity on an Interval)
A real-valued function f is said to be continuous on a given interval I if it is conti-
nuous at every point of that interval.

Remark 4.5. All of the following functions are continuous on their domains of
definition :

– Polynomial functions : f(x) = anx
n + · · ·+ a1x+ a0

– Rational functions : f(x) = P (x)
Q(x)

, where Q(x) 6= 0

– Exponential functions : f(x) = ax, a > 0

– Logarithmic functions : f(x) = ln(x), x > 0
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– Trigonometric functions : sin(x), cos(x), tan(x), . . . on their domains.

Theorem 4.3. Let f and g be functions continuous on an interval I ⊆ R, and let
c ∈ R. Then, the following functions are also continuous on I :

f + g, f − g, c · f, f · g, f
g
, provided g(x) 6= 0 ∀x ∈ I.

Example 4.16. Let g(x) =
√
x and h(x) = ln(x) defined on the interval I =

]0,+∞[. Both functions are continuous on I.
Then, the following functions are also continuous on I

– f1(x) = g(x) + h(x) =
√
x+ ln(x)

– f2(x) = g(x) · h(x) =
√
x · ln(x)

– f3(x) = g(x)
h(x)

=
√
x

ln(x)
, continuous on ]0, 1[∪]1,+∞).

Theorem 4.4. (Continuity of the Composition of Functions)
If f is continuous at a and g is continuous at f(a), then the composition g ◦ f is
necessarily continuous at a. Moreover, we have :

lim
x→a

g(f(x)) = g
(

lim
x→a

f(x)
)

= g(f(a)).

Example 4.17. We consider the function :

f(x) = ln(2 + sinx)

Note that :
−1 ≤ sinx ≤ 1, for all x ∈ R

So
1 ≤ 2 + sin(x) ≤ 3.

Since
2 + sin x > 0 for all x ∈ R

Therefore, the function f(x) is defined for all real numbers x and continuous on R.

83



University 8 May 1945-Guelma Dr.M.MERAD

4.6 Discontinuity of a Function
1. If the function f is not defined at x0, then f is discontinuous at x0.
2. If f is defined in a neighborhood of x0, then f is said to be discontinuous at
x0 if there exists ε > 0 such that for every δ > 0,

∃x ∈ (x0 − δ, x0 + δ) \ {x0} such that |f(x)− f(x0)| ≥ ε.

3. If the one-sided limits exist but are not equal :

lim
x→x−0

f(x) 6= lim
x→x+0

f(x),

then f is discontinuous at x0, and x0 is a point of discontinuity of the first kind.
4. If at least one of the one-sided limits does not exist or is not finite :

lim
x→x−0

f(x) or lim
x→x+0

f(x) does not exist or is infinite,

then f is discontinuous at x0, and x0 is a point of discontinuity of the second
kind.

5. If the limit exists but is not equal to the function value :

lim
x→x0

f(x) exists and is finite, but lim
x→x0

f(x) 6= f(x0),

then f is discontinuous at x0. This is called a removable discontinuity.

Example 4.18.
1. Undefined at x0

f(x) =
1

x
, undefined at x0 = 0.

Since f is not defined at 0, it is discontinuous at 0.

2. Discontinuity (First Kind)

f(x) =

{
1 if x < 0,

2 if x ≥ 0.

lim
x→0−

f(x) = 1 6= lim
x→0+

f(x) = 2.

So f is discontinuous at x = 0, and this is a discontinuity of the first kind.
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3. Discontinuity of the Second Kind

f(x) =

{
sin
(
1
x

)
if x 6= 0,

0 if x = 0.

As x→ 0,
1

x
→∞⇒ f(x) oscillates without limit.

The limit does not exist at 0, so this is a discontinuity of the second kind.
4. Removable Discontinuity

f(x) =

{
x2−1
x−1 if x 6= 1,

3 if x = 1.

x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1 for x 6= 1.

So,
lim
x→1

f(x) = 2 6= f(1) = 3.

This is a removable discontinuity at x = 1.

4.7 Uniform Continuity on an Interval
Definition 4.15. Let f : I → R be a function defined on an interval I ⊆ R. We say
that f is uniformly continuous on I if :

∀ε > 0, ∃δ > 0 such that ∀x, y ∈ I, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Remark 4.6. In ordinary continuity, δ may depend on both ε and the point x. In
uniform continuity, δ depends only on ε, not on the point.

Theorem 4.5. (Heine-Cantor)
If f is continuous on a closed and bounded interval [a, b], then f is uniformly conti-
nuous on [a, b].

Example 4.19.
1. Let f(x) = x2 on the closed interval [0, 1]. Since f is continuous on a compact

interval, it is uniformly continuous.

2. Let f(x) = 1
x
on the interval ]0, 1[. Then f is continuous on ]0, 1[, but not

uniformly continuous. Indeed, as x → 0+, f(x) → ∞, and we cannot find a
single δ that works for all x, y ∈]0, 1[ for a given ε.
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4.8 Extension by Continuity
Definition 4.16. Let f be a function defined on a set I \ {a}. If the limit lim

x→a
f(x)

exists and is finite, we can define :

f̃(x) =

{
f(x) if x 6= a

lim
x→a

f(x) if x = a

Then, f̃ is called the continuous extension of f at the point a. In this case, f̃
is continuous at x = a.

Example 4.20.

1. Consider the function
f(x) =

sinx

x

which is defined for all x 6= 0.
We know that :

lim
x→0

sinx

x
= 1

We define the extended function f̃ by :

f̃(x) =

{
sinx
x

if x 6= 0

1 if x = 0

Thus, f̃ is continuous at x = 0, and hence continuous on R.

2. Consider the function

f(x) = e1/x, defined for x 6= 0

We know that
lim
x→0+

e1/x = +∞

Since we cannot define f(0) in such a way that the function becomes continuous
at x = 0.

The function f(x) = e1/x does not admit a continuous extension at x = 0.
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4.9 Fundamental Theorem’s
Theorem 4.6.(Intermediate Value Theorem)
Let f be a function continuous on the closed interval [a, b], and let N be a real
number between f(a) and f(b), i.e.,

f(a) < N < f(b) or f(b) < N < f(a)

Then there exists a number c ∈]a, b[ such that :

f(c) = N

Interpretation : A continuous function on an interval takes every intermediate va-
lue between its endpoints.

Theorem 4.7.
Let f : [a, b]→ R be a continuous function. If :

f(a) · f(b) < 0

then there exists at least one point c ∈]a, b[ such that :

f(c) = 0.

This is particularly useful for proving that an equation f(x) = 0 has a solution
in ]a, b[ if f(a)f(b) < 0.

Example 4.21.
1. Let us consider the function :

f(x) = x3 − x− 1

Prove that f(x) = 0 admits a solution in the interval ]1, 2[. We evaluate the
function at the endpoints of the interval [1, 2] :

f(1) = 13 − 1− 1 = −1

f(2) = 23 − 2− 1 = 8− 2− 1 = 5

we have
f(1) · f(2) < 0.
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Because f is a polynomial (and thus continuous on [1, 2]), the hypotheses of
the Intermediate Value Theorem are satisfied.
There exists c ∈]1, 2[ such that f(c) = 0

So, the equation x3− x− 1 = 0 has at least one real root in the interval (1, 2).

2. Let us consider the function :

g(x) = x sinx+ cosx− x2

With the Intermediate Value Theorem applied to prove that the equation
g(x) = 0 has at least one positive solution and one negative solution.

This function is continuous on R because it is composed of continuous elemen-
tary functions (product, sine, cosine, square, etc.).
moreover we have

g(−π) = (−π) sin(−π) + cos(−π)− (−π)2

= 1− π2 < 0

and
g(0) = 0 · sin(0) + cos(0)− 02 = 1 > 0.

g(π) = (π) sin(π) + cos(π)− (π)2

= −1− π2 < 0

We see that :
g(−π) · g(0) < 0 and g(π) · g(0) < 0

Therefore, by the Intermediate Value Theorem, there exists c1 ∈] − π, 0[ such
that : g(c1) = 0, and c2 ∈]0, π[ such that g(c2) = 0. So, the equation has at
least one positive solution and one negative solution.

Theorem 4.8. Let f : I → R be a continuous and strictly monotonic function on
an interval I ⊂ R. If there exist a, b ∈ I such that :

f(a) · f(b) < 0,

then the equation f(x) = 0 has a unique solution in the interval ]a, b[.
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Theorem 4.9. The image of a closed interval under a continuous function is a clo-
sed interval. In other words, if f : [a, b] → R is continuous, then f([a, b]) is a closed
interval in R.

Theorem 4.10. If f is continuous on [a, b], then :

– f is bounded on [a, b],

– f attains its bounds : there exist xmin, xmax ∈ [a, b] such that

f(xmin) = min
x∈[a,b]

f(x), f(xmax) = max
x∈[a,b]

f(x).

Theorem 4.11. Let f : I → R be a continuous and strictly monotonic function
defined on an interval I ⊂ R. Then

1. f is bijective from I onto its image f(I),
2. The inverse function f−1 : f(I)→ I exists,
3. f−1 is continuous and strictly monotonic on f(I), and its monotonicity is the

same as that of f .

Example 4.22. Let f(x) =
√
x on [0,+∞[.

Thus is continuous function, strictly increasing, then its inverse function

f−1(x) = x2 on [0,+∞[

is also continuous.

4.10 Order of a Variable - Landau Notation (Asymp-
totic Equivalence)

Definition 4.17.
1. We say that a function f is negligible compared to a function g as x→ x0

if :

lim
x→x0

f(x)

g(x)
= 0

In this case, we write :

89



University 8 May 1945-Guelma Dr.M.MERAD

f(x) = o(g(x)) as x→ x0

Interpretation : f(x) becomes insignificant in comparison with g(x) near x0.

Example 4.23.
Let f(x) = x2 and g(x) = x. Then :

f(x)

g(x)
=
x2

x
= x→ 0 as x→ 0

So we conclude :

x2 = o(x) as x→ 0

This expresses that x2 is negligible compared to x near 0.

2. We say that f is dominated by g as x→ x0, and we write :

f(x) = O(g(x)) as x→ x0

if and only if there exists a constant C > 0 and a neighborhood of x0 such
that :

|f(x)| ≤ C · |g(x)| for all x sufficiently close to x0.

Interpretation : This means that f(x) is at most of the same order of ma-
gnitude as g(x) near x0. In other words, f does not grow faster than g, up to
a constant factor.

Example 4.22. Let f(x) = 3x2 + 5x and g(x) = x2.
Then :

f(x)

g(x)
=

3x2 + 5x

x2
= 3 +

5

x

- As x→ 0 : the expression is unbounded, so f(x) 6= O(x2) near 0. - As x→∞ :
f(x)
x2

= 3 + 5
x
→ 3, so we conclude :

f(x) = O(x2) as x→∞
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Remark 4.7. If g 6= 0 in a neighborhood of x0, then :

– f = o(g) if and only if lim
x→x0

f(x)

g(x)
= 0,

– f = O(g) if and only if f(x) · g(x)is bounded in a neighborhood of x0.

Definition 4.18. Let f and g be two functions defined on ]0,+∞[. We define that :
– f = o(g) as x→ +∞, if and only if

lim
x→+∞

f(x)

g(x)
= 0.

– f = O(g) as x→ +∞, if and only if there exists a constant C > 0 and a real
number x1 > 0 such that :

|f(x)| ≤ C · |g(x)| for all x > x1.

Similarly, we define the relations f = o(g) and f = O(g) as x→ −∞.

4.10.1 Equivalence functions

Definition 4.19. Let f and g be two functions defined in a neighborhood of x0,
except possibly at x0. We say that f is equivalent to g as x→ x0, written f(x) ∼ g(x),
if

lim
x→x0

f(x)

g(x)
= 1.

Example 4.23. Let us consider the functions

f(x) = sinx and g(x) = x,

We have :
lim
x→0

sinx

x
= 1.

Therefore, we can write :

sinx ∼ x as x→ 0.

This means that sin(x) and x are asymptotically equivalent near 0.
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Theorem 4.12. Let f and g two functions defined in the neighborhood of x0 except
perhaps at x0. We suppose that f ∼ g at x0 then, if lim

x→x0
f(x) exists then lim

x→x0
g(x)

exists also, and we have
lim
x→x0

f(x) = lim
x→x0

g(x).
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4.11 Exercises
Exercise 4.1.
Calculate the limit of the following functions

1. lim
x−→+∞

x+
√
x

x+ 1

2. lim
x−→+∞

√
x− 3−

√
x+ 1

3. lim
x−→0

x2 + |x|
x2 − |x|

4. lim
x−→5

√
(x− 5)2

x− 5

5. lim
x−→0

cosx− 1

x

6. lim
x−→π

4

tanx− 1

x− π
4

7. lim
x−→0

tan 5x

sin 3x
.

Exercise 4.2.
Using the definition of the limit of a function, show that

1) lim
x−→2

x2 − 1

x2 + 1
=

3

5
, 2) lim

x−→1

2

(x− 1)2
= +∞, 3) lim

x−→∞

x2 − 1

x2 + 1
= 1.

Exercise 4.3.
Study the continuity of the following functions

f(x) =

 x sin( 3
x
) if x 6= 0

0 if x = 0
g(x) =


√
x+1−1
tanx

if x 6= 0

1
2

if x = 0
; h(x) =


sin(x−2)
x2−2x if x 6= 0

2 if x = 0

Determine a and b so that the function f is continuous at x0 = 2

f(x) =

 x2+x−a
x−2 , if x > 2

2x+b
3
, if x ≤ 2.
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Exercise 4.4.

1. Let f be a real function defined by

f(x) =

 ex − a if x < 0

b ln(1 + x), if x ≥ 0

Determine a and b so that f is continuous and differentiable on R.
2. We define the real function g as follows

g(x) =
|x+ 1|

(x+ 1)(x2 − x+ 1)

Can we extend g by continuity at −1.

Exercise 4.5.
Let f be a function defined on R by

f(x) = x5 − x3 + x− 2

1. Show that f(x) = 0 admits a solution α with 1 < α < 2.
2. Determine the sign of the function f(x), ∀x ∈ R.
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Chapter 5

Differentiable functions

5.1 Differentiable functions
Definition 5.1. Let I ⊂ R be an interval, and let f : I → R be a real-valued
function. Let x0 ∈ I. We say that f is differentiable at x0 if the following limit
exists and is finite :

lim
x→x0

f(x)− f(x0)

x− x0
= ` ∈ R.

This limit, if it exists, is called the derivative of f at x0 and is denoted by

f ′(x0) or
df

dx
(x0).

5.1.1 Right and Left Derivative

Definition 5.2.
– We say that a function f is left-differentiable at a point x0 ∈ R if the following

limit from the left exists and is finite

lim
x→x−0

f(x)− f(x0)

x− x0
= f ′−(x0) (left derivative)

– We say that a function f is right-differentiable at a point x0 ∈ R if the following
limit from the right exists and is finite

lim
x→x+0

f(x)− f(x0)

x− x0
= f ′+(x0) (right derivative)
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Remark 5.1. For f to be differentiable at x0, it is necessary and sufficient that f
is differentiable from the left and from the right at x0, and that the two limits are
equal. i.e.,

lim
x→x−0

f(x)− f(x0)

x− x0
= lim

x→x+0

f(x)− f(x0)

x− x0
= f ′(x0).

Definition 5.3. A function defined on an open interval I of R to R is said to be
differentiable on I if it is differentiable at every point in I.

Example 5.1.
1. Consider :

f(x) =

{
x2 if x ≤ 1

2x− 1 if x > 1

Left derivative at x = 1

f ′−(1) = lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

x2 − 1

x− 1
= lim

x→1−

(x− 1)(x+ 1)

x− 1
= lim

x→1−
x+1 = 2.

Right derivative at x = 1

f ′+(1) = lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

2x− 1− 1

x− 1
= lim

x→1+

2x− 2

x− 1
= lim

x→1+
2 = 2.

Thus, f is differentiable at x = 1 and f ′(1) = 2.

2. The function f(x) = |x| is differentiable for x 6= 0, but it is not differentiable
at x = 0. Indeed
The function f(x) = |x| is piecewise defined as :

f(x) =

{
x if x ≥ 0,

−x if x < 0.

To study the differentiability at x = 0, we need to check the left and right
derivatives at x = 0.

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

f(x)− 0

x
= lim

x→0−

−x
x

= −1.

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

f(x)− 0

x
= lim

x→0+

x

x
= 1.
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The left and right derivatives at x = 0 are not equal :

f ′−(0) = −1, f ′+(0) = 1.

Thus, the function f(x) = |x| is not differentiable at x = 0.

5.1.2 Differential

If f is differentiable at a, the differential of f at a, denoted dfa, is the linear
map defined by :

dfa(h) = f ′(a) · h

It provides the best linear approximation to f near the point a :

f(a+ h) ≈ f(a) + f ′(a)h.

Example 5.2. Let f(x) = x2. We will compute the derivative, the differential, and
the linear approximation at the point a = 3.
Derivative :

f ′(x) = 2x =⇒ f ′(3) = 6

Differential at a = 3 The differential is :

df3(h) = f ′(3) · h = 6h.

Linear approximation

f(3 + h) ≈ 6h+ 9.

5.2 Geometric Interpretation
If the function f is differentiable at x0, then the graph (Γ) has a tangent line at

x0. The equation of this tangent line (T ) is given by the following formula :

y = f(x0) + f ′(x0)(x− x0).

Remark 5.2. If the function f has a left derivative `− and a right derivative `+ at x0,
such that `− 6= `+, then the graph (Γf ) of f has two half-tangents at M0(x0, f(x0)),
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and we say that M0 is a corner point of (Γf ).

For example f(x) = |x|, has a corner point at x = 0.

Proposition 5.1. If f is differentiable at x = a, then f is continuous at x = a.

Proof. We have

lim
x→a

[f(x)− f(a)] = lim
x→a

[
f(x)− f(a)

x− a
][x− a]

And since f is differentiable at x = a, then

lim
x→a

[f(x)− f(a)] = lim
x→a

[
f(x)− f(a)

x− a
] lim
x→a

[x− a] = f ′(a) · 0 = 0

So
lim
x→a

[f(x)− f(a)] = 0 =⇒ lim
x→a

f(x) = f(a).

Therefore f is continuous at a.

Remark 5.3.
– For f to be differentiable at x = a, it must also be continuous at x = a.
– If f were not continuous at x = a, the derivative could not exist because there

would be a discontinuity at that point.
– Thus, differentiability at a point x = a guarantees continuity at that point.

5.3 Operations on differentiable functions
Theorem 5.1. Let f and g be two functions differentiable at x0, and let α, β ∈ R.
Then the functions f + g, fg, αf + βg, and f

g
(if g(x0) 6= 0) are also differentiable at

x0, and we have

(f + g)′(x0) = f ′(x0) + g′(x0)

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

(αf + βg)′(x0) = αf ′(x0) + βg′(x0)(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

[g(x0)]2
, if g(x0) 6= 0

Proposition 5.2. Let f be differentiable at x0, and let g be differentiable at f(x0).
Then the composition g ◦ f is differentiable at x0, and we have
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(g ◦ f)′(x0) = g′
(
f(x0)

)
· f ′(x0).

Proof. We want to compute the limit

lim
x→x0

g(f(x))− g(f(x0))

x− x0

We have

g(f(x))− g(f(x0))

x− x0
=
g(f(x))− g(f(x0))

f(x)− f(x0)

f(x)− f(x0)

x− x0
=

Since f is differentiable at x0, and g is differentiable at f(x0), we can write

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0)

and
lim
x→x0

g(f(x))− g(f(x0))

f(x)− f(x0)
= g′(f(x0)

Therefore
lim
x→x0

g(f(x))− g(f(x0))

x− x0
= g′

(
f(x0)

)
· f ′(x0).

Example 5.3.
Let

f(x) = x2 + 1 and g(u) = sin(u)

We define the composition :

(g ◦ f)(x) = g(f(x)) = sin(x2 + 1)

To differentiate g(f(x))

(g ◦ f)′(x) = g′
(
f(x)

)
· f ′(x)

We compute each part :

f ′(x) = 2x and g′(u) = cos(u)⇒ g′
(
f(x)

)
= cos(x2 + 1)

So,
(g ◦ f)′(x) = cos(x2 + 1) · 2x.

99



University 8 May 1945-Guelma Dr.M.MERAD

Proposition 5.3. (Derivative of an Inverse Function)
Let f be a bijective function that is differentiable at a point x0, and suppose that
f ′(x0) 6= 0. Then the inverse function f−1 is differentiable at y0 = f(x0), and its
derivative is given by : (

f−1
)′

(y0) =
1

f ′(x0)
=

1

f ′ (f−1(y0))
.

Example 5.4. Let f(x) = ex. Then the inverse function is f−1(y) = ln(y).
The derivative of f is f ′(x) = ex. Therefore

(ln(y))′ =
(
f−1
)′

(y) =
1

eln(y)
=

1

y
.

5.4 Higher-Order Derivatives
Definition 5.4. Let f be a real function, differentiable on an interval I ⊂ R. We say
that f is n-times differentiable on I if all its successive derivatives f ′, f ′′, f (3), . . . , f (n)

exist on I.
f (n) is called the n-th derivative of f , and we have by recurrence :

f (0) = f(x), f (n) = (f (n−1))′.

Example 5.5. Let f(x) = xn. We will calculate the first derivatives using the recur-
rence relation :

f ′(x) = nxn−1

f ′′(x) = n(n− 1)xn−2

f (3)(x) = n(n− 1)(n− 2)xn−3

f (n)(x) = n! (where n! is the factorial of n).

5.4.1 Leibniz Formula

Let f and g be functions that are n-times differentiable. Then the nth derivative
of their product is given by :

(fg)(n)(x) =
n∑
k=0

Ck
nf

(k)(x) · g(n−k)(x)
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Where Ck
n = n!

k!(n−k)! . This is known as the Leibniz formula.

Example 5.6. Let f(x) = x2, g(x) = ex. Compute (fg)(3)(x).
We know :

f(x) = x2, f ′(x) = 2x, f ′′(x) = 2, f (n)(x) = 0, n ≥ 3

g(x) = ex, g(n)(x) = ex for all n

Using Leibniz’s formula :

(fg)(3)(x) = C0
3f(x)g(3)(x) + C1

3f
′(x)g(2)(x) + C2

3f
′′(x)g(1)(x) + C3

3f
(3)(x)g(x)

= 1 · x2ex + 3 · 2xex + 3 · 2ex + 0 = (x2 + 6x+ 6)ex.

5.5 Taylor’s Formula
Let f be a function that is n-times continuously differentiable on an interval

around a point a ∈ R. Then, for all x near a, we have :

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +Rn(x)

where Rn(x) is the remainder term of the Taylor approximation.

Example 5.7.
Let f(x) = ex. Since all derivatives of ex are equal to ex, we have :

f (n)(x) = ex and f (n)(0) = 1

The Taylor polynomial of order n for f(x) at a = 0 is :

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+Rn(x).

where Rn(x) is the remainder term.
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5.5.1 Taylor’s Formula with Lagrange Remainder

Let f be a function that is (n + 1)-times continuously differentiable on an open
interval containing a and x. Then there exists a point ξ between a and x such that :

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+· · ·+ f (n)(a)

n!
(x−a)n+

f (n+1)(ξ)

(n+ 1)!
(x−a)n+1

The final term is known as the Lagrange remainder.

Example 5.8. Taylor Expansion of sin(x) with Lagrange Remainder.
Let f(x) = sin(x). We expand f around a = 0 up to order 3. We have

f(x) = sin(x)

f ′(x) = cos(x), f ′(0) = 1

f ′′(x) = − sin(x), f ′′(0) = 0

f (3)(x) = − cos(x), f (3)(0) = −1

f (4)(x) = sin(x), f (4)(ξ) = sin(ξ)

Taylor Expansion with Lagrange Remainder

sin(x) = x− x3

3!
+

sin(ξ)

4!
x4 for some ξ ∈ (0, x).

5.5.2 Taylor Maclaurin Formula

If a = 0, We obtain what is known as the Taylor Maclaurin formula with the
Lagrange remainder

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+· · ·+f (n)(a)

n!
(x−a)n+

f (n+1)(θx)

(n+ 1)!
(x−a)n+1,

where 0 < θ < 1.

5.6 Theorems on Differentiable Functions

5.6.1 Global and Local extremum - Fermat’s Theorem

Definition 5.5. A function f is said to have a local extremum at a point x0 if
there exists an interval I around x0 such that :
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– f(x0) ≥ f(x) for all x ∈ I (then x0 is a local maximum), or
– f(x0) ≤ f(x) for all x ∈ I (then x0 is a local minimum).

Definition 5.6.
– We say that a function f has a global maximum (respectively, a global mini-

mum) at the point x0 if :

f(x0) ≥ f(x) (respectively, f(x0) ≤ f(x)) for all x ∈ Domain(f).

– We say that f has a global extremum at the point x0 if f has either a global
maximum or a global minimum at x0.

Theorem 5.2. (Fermat’s Theorem)
If a function f has a local extremum at a point c, and f is differentiable at c, then :

f ′(c) = 0.

5.6.2 Rolle’s Theorem

Theorem 5.3. (Rolle’s theorem)
If a real-valued function f is continuous on a closed interval [a, b], differentiable on
the open interval ]a, b[, and f(a) = f(b), then there exists at least one c in the open
interval ]a, b[ such that

f ′(c) = 0.

Example 5.9.

1. Let the function f be defined on [0; 1] by

f(x) = x2 − x

f is continuous on [0; 1], and differentiable on an interval ]0; 1[, and

f(0) = f(1) = 0.

Therefore according to Rolle’s Theorem there exists a c ∈]0, 1[ such that
f ′(c) = 0⇐⇒ 2c− 1 = 0 =⇒ c = 1

2
.

2. To show that the equation

4x3 − 18x2 + 22x− 6 = 0
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has at least one solution in the open interval ]1, 3[, we define the function :

f(x) = x4 − 6x3 + 11x2 − 6x

Observe that f is a polynomial function, and therefore continuous and diffe-
rentiable on R.
Compute the values at the endpoints of the interval :

f(1) = 14 − 6(1)3 + 11(1)2 − 6(1) = 0, f(3) = 34 − 6(3)3 + 11(3)2 − 6(3) = 0

then by Rolle’s Theorem, there exists c ∈]1, 3[ such that

f ′(c) = 0

thus
f ′(x) = 4x3 − 18x2 + 22x− 6

Therefore, the equation 4x3 − 18x2 + 22x − 6 = 0 has at least one solution in
]1, 3[, as a consequence of Rolle’s Theorem.

3. Let the function f be defined on [−1; 1] by

f(x) = |x|.

but This function is continuous on [−1; 1] and satisfies f(−1) = f(1) = 1 but
it is not differentiable at 0 (f ′R = 1 and f ′L = −1). Therefore there does not
exist a c ∈]− 1, 1[ such that f ′(c) = 0.

5.6.3 Theorem of finite increments

Theorem 5.4. Mean Value Theorem (Lagrange)
Let f : [a; b] −→ R be a continuous function on [a; b], and differentiable on ]a; b[.
Then there exists a point c ∈]a; b[, such that

f(b)− f(a) = (b− a).f ′(c).

Corollary 5.1. If f is differentiable on an interval I ⊂ R, then, for all distinct
x1;x2 ∈ I, there exists a point c between x1 and x2 such that :

f(x2)− f(x1) = (x2 − x1)f ′(c).
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Example 5.10.
Prove ∀x ∈ [0,+∞[, ex > x+ 1 using the Mean Value Theorem. Let us consider the
function :

f(x) = ex

The function f is continuous and differentiable on [0, x] for any x > 0.

Apply the Mean Value Theorem, for x > 0, there exists a c ∈]0, x[ such that

f ′(c) =
f(x)− f(0)

x− 0
=
ex − 1

x

Since f ′(x) = ex, we have :

ex − 1

x
= ec for some c ∈]0, x[

Multiply both sides by x :

ex − 1 = xec ⇒ ex = 1 + xec

Now, since c > 0, we know that ec > 1. So

ex = 1 + xec > 1 + x · 1 = x+ 1

Therefore, for all x > 0, ex > x+ 1.

Theorem 5.5.(L’Hopital’s Rule)
Let f and g be functions that are differentiable on an open interval I containing a.
Suppose that :

– lim
x→a

f(x) = lim
x→a

g(x) = 0 or ±∞,
– g′(x) 6= 0 for all x near a (except possibly at a),

– The limit lim
x→a

f ′(x)

g′(x)
exists or is ±∞.

Then
lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Remarks 5.4.
– This rule can also be applied as x→∞ or x→ −∞.
– The rule applies to indeterminate forms of the type 0

0
or ∞∞ .
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5.7 Convexity of a Curve
Definition 5.7. A function f : I → R, defined on an interval I ⊆ R, is called
convex if for all x, y ∈ I and t ∈ [0, 1], we have :

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

This inequality means that the graph of f lies below the chord connecting any
two points on the graph.

Corollary 5.2. The graph of f is said to be

– Convex on I if :
f ′′(x) ≥ 0 for all x ∈ I.

– Concave on I if :
f ′′(x) ≤ 0 for all x ∈ I.

Geometric Interpretation : If f is convex, then the graph of the function lies
above any of its tangents. If f is concave, the graph lies below its tangents.

Example 5.11. The function f(x) = |x| is convex on R. Indeed

We verify the definition of convexity : for all x, y ∈ R and for all t ∈ [0, 1], using
triangular inequality we obtain

|tx+ (1− t)y| ≤ t|x|+ (1− t)|y|.

5.7.1 Point of Inflexion

Definition 5.8. Let f be a differentiable function on an interval I ⊆ R, and let
x0 ∈ I. Let Γf denote the graph of f .

We say that x0 is a point of inflection of f if the graph Γf changes concavity
at the point M0 = (x0, f(x0)), that is, the curve crosses its tangent at M0.

Theorem 5.6. (Point of Inflexion)
A point x0 ∈ I is called a point of inflection if the concavity of f changes at x0, that
is :

f ′′(x0) = 0 and f ′′ changes sign at x0.
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5.8 Asymptotes of a Curve
Let f : D → R be a real-valued function defined on a domain D ⊆ R. An asymp-

tote is a line that the graph of a function approaches as the variable tends toward
a finite value or toward infinity.

– Vertical Asymptote : The line x = a is a vertical asymptote of f if :

lim
x→a−

f(x) = ±∞ or lim
x→a+

f(x) = ±∞

– Horizontal Asymptote : The line y = L is a horizontal asymptote if :

lim
x→±∞

f(x) = L

– Oblique (Slant) Asymptote : If there exists a line y = ax+ b such that :

lim
x→±∞

[f(x)− (ax+ b)] = 0

then y = ax+ b is an oblique asymptote of the graph of f .

Example 5.12.
1. Consider the function

f(x) =
1

x− 2
.

This function is undefined at x = 2. We compute the limits :

lim
x→2−

1

x− 2
= −∞, lim

x→2+

1

x− 2
= +∞.

Therefore, the line x = 2 is a vertical asymptote.

2. Consider the function
f(x) =

1

x+ 1
.

We compute the limits at infinity

lim
x→∞

1

x+ 1
= 0, lim

x→−∞

1

x+ 1
= 0.

Both limits equal 0, so the line y = 0 is a horizontal asymptote of the graph of
f(x).
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3. Consider the function
f(x) =

x2 + 1

x
.

We can rewrite it as
f(x) = x+

1

x
.

As x→∞ or x→ −∞, the term 1
x
→ 0. We verify

lim
x→∞

(f(x)− x) = lim
x→∞

1

x
= 0.

The same limit holds as x→ −∞. The line y = x is an oblique (slant) asymp-
tote.

5.9 Construct the Graph of a Function
Let a real function f : R → R, the graph of f can be studied and drawled by

following these steps :

1. Determine the domain of definition of the function.

2. Symmetry :
– If f(−x) = f(x), then the function is even (symmetric about the y-axis).
– If f(−x) = −f(x), then the function is odd (symmetric about the origin).

3. To study the asymptotic behavior of a function. We distinguish three types of
asymptotes : Vertical asymptotes, Horizontal asymptotes, Oblique asymptotes.

4. Limits and Continuity : Analyze the limits and discontinuities.

5. First Derivative f ′(x)
– Study the sign of f ′(x) to determine intervals of increase or decrease.
– Critical points occur where f ′(x) = 0 or is undefined.
– Use the First Derivative Test to identify local maxima and minima.

6. Second Derivative (f ′′(x)) :
– Study the sign of f ′′(x) to determine intervals of concavity.
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– Points where f ′′(x) = 0 and concavity changes are inflection points.

7. Graph Sketching :
– Plot the points : extremum, inflection points.
– Draw asymptotes lines.
– Draw the curve using the information above.

Example 5.13.

Analysis of the Function f(x) = ln

(
e2x + 5

ex − 2

)
– The function is defined when the denominator is strictly positive and the whole

expression inside the logarithm is positive :

ex − 2 > 0⇒ x > ln(2)

So the domain is :

Df = ]ln(2), +∞[

– Limit at ln(2)+

lim
x→ln(2)+

f(x) = ln

(
e2 ln(2) + 5

eln(2) − 2

)
= ln

(
4 + 5

0+

)
= +∞

There is a vertical asymptote at x = ln(2).

– Behavior at Infinity

lim
x→+∞

f(x) = lim
x→+∞

ln

(
e2x + 5

ex − 2

)
= lim

x→+∞
ln(

ex + 5e−x

1− 2e−x
) = +∞.

– First derivative is used to study the increasing or decreasing of the function

f ′(x) =
(2(ex − 2)ex − e2x − 5)ex

(ex − 2)(e2x + 5)

– Second Derivative is used to analyze concavity and inflection points.

f ′′(x) =
2ex(e4x + 10e3x − 30e2x + 40ex + 25)

e6x − 4e5x + 14e4x − 40e3x + 65e2x − 100ex + 100
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Vertical asymptote at x = ln(2) (dashed red line).
The function increases for x > ln(5), and tends to +∞.
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5.10 Exercises
Exercise 5.1.
Study the differentiability at x0 of functions :

f(x) = (x− 1)|x− 1|; x0 = 1, g(x) = |x− 1|+ |x+ 1|, x0 = −1

h(x) = x+ (x− 1) arcsin

√
x

x+ 1
; x0 = 1.

Exercise 5.2.

Let f(x) =

 x2 sin 1
x
, if x 6= 0

0, if x = 0
.

1. Is f differentiable at x = 0 ?
2. Is f ′ continuous at x = 0 ?

Under what condition does the function

g(x) =


xn sin 1

x
, if x 6= 0

0, if x = 0

admits a continuous derivative at the point x0 = 0 ?

Exercise 5.3.
Determine the values of α and β for which the function

f(x) =

 α + βx2, if |x| < 1

1
|x| , if |x| ≥ 1,

is continuous and differentiable on R.

Exercise 5.4.
Calculate the derivatives of the following functions

f(x) = ln(1+ln(x)), g(x) = eln(x)+2, h(x) =

 x(1 + e
1
x )−1, if ; x < 0

ln(3 +
3
√
x5), if x ≥ 0.

L(x) = tan2(1−2x)
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Exercise 5.5.
Let the function y(x) = 2−x2

x2
.

1. Show that y′(x) 6= 0 on [−1, 1]

2. Is there a contradiction with the theorem of Rolle ?
Exercise 5.6.
Using the Mean Value Theorem, establish the following inequalities :

1. For all x ∈ [0,+∞[,
x

1 + x
≤ ln(x+ 1) ≤ x.

2. For all x, y ∈ R,
| sin(x)− sin(y)| ≤ |x− y|.

Exercise 5.7.

1. Write the Taylor-Lagrange formula of order 5 at 0 for the function sin(x).
2. What is the value of the limit :

lim
x→0

sinx− x
x2

?

3. Show that for all x ≥ 0,

x− x3

6
≤ sinx ≤ x− x3

3
+

x5

120
.

What happens when x is negative ?
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Chapter 6

Elementary functions

6.1 Logarithm and Exponential

6.1.1 Natural logarithm

Definition 6.1. The natural logarithm, denoted ln(x), is the logarithm to the base
e, where e ≈ 2.71828.

It is defined for all x > 0 and is the inverse of the exponential function ex. That
is :

ln(x) = y if and only if ey = x.

Properties 6.1.
– ln(x) is defined on ]0,+∞[
– ln(x) is continuous and differentiable on ]0,+∞[, and

d

dx
ln(x) =

1

x
, x > 0

– For all x > 0, ln(x) is increasing

– lim
x→0

ln(x+ 1)

x
= 1

– ln(ab) = ln(a) + ln(b),
– ln

(
a
b

)
= ln(a)− ln(b),

– ln(ar) = r ln(a), for all a, b > 0 and r ∈ R
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6.1.2 Exponential function

Definition 6.2. The exponential function, denoted exp(x) or ex, is defined for all
real numbers x.

It is the inverse of the natural logarithm function ln(x). That is :

exp(x) = ex, and ln(ex) = x.

Properties 6.2. The exponential function satisfies the following properties :
1. For all x > 0, exp(ln(x)) = x and for all x ∈ R, ln(exp(x)) = x

2. exp(a+ b) = exp(a)× exp(b)

3. exp(nx) = (exp(x))n, for all n ∈ N
4. The exponential function is continuous and strictly increasing, and satisfies :

lim
x→−∞

exp(x) = 0 and lim
x→+∞

exp(x) = +∞

5. The exponential function is differentiable and :
d

dx
exp(x) = exp(x), for all x ∈ R

It is convex, and satisfies the inequality :

exp(x) ≥ 1 + x

6.1.3 Logarithm with an arbitrary base

Definition 6.3. The logarithm with an arbitrary base a > 0, a 6= 1, is denoted by
loga(x). It is defined for all x > 0, and it is the inverse of the exponential function
xa. That is :

loga(x) =
ln(x)

ln(a)
.

Properties 6.3. Let a be a strictly positive real number such that a 6= 1. For all
x, y ∈ ]0,+∞[ and n ∈ Z, the following properties hold :

1. If a > 1 and x ∈]1,+∞[, then the logarithmic function loga(x) is strictly
increasing and concave.

2. If x ∈]0, 1[, then the function loga(x) is strictly decreasing and convex.
3. loga(x× y) = loga(x) + loga(y)

4. loga
(
1
x

)
= − loga(x)

5. loga(x
n) = n loga(x)

6. loga

(
x
y

)
= loga(x)− loga(y).
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graphical representation of the log and exp

6.1.4 Power Function

By definition, for a > 0 and b ∈ R

ab = exp(b ln(a))

Remark 6.1.
1.
√
a = a1/2 = exp

(
1
2

ln(a)
)

2. The n-th root of a can be written as :

n
√
a = a1/n = exp

(
1

n
ln(a)

)
Proposition 6.1. Let x, y > 0 and a, b ∈ R. The following properties hold :
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– xa+b = xa · xb

– x−a =
1

xa
– (xy)a = xa · ya
– (xa)b = xab

– ln(xa) = a ln(x)

6.2 Hyperbolic functions
Definition 6.4.

– The hyperbolic sine (sinh) and hyperbolic cosine (cosh) functions are defined
on R with values in R as follows :

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2

– The hyperbolic tangent and hyperbolic cotangent are defined by :

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x

coth(x) =
cosh(x)

sinh(x)
=
ex + e−x

ex − e−x
, x 6= 0

Properties 6.4.
1. Fundamental Identity

cosh2(x)− sinh2(x) = 1

2. The hyperbolic sine (sinh) and hyperbolic cosine (cosh) functions are differen-
tiable on R, and their derivatives are :

sinh′(x) = cosh(x), cosh′(x) = sinh(x)

3. The function sinh is odd, strictly increasing on R, and

lim
x→−∞

sinh(x) = −∞, lim
x→+∞

sinh(x) = +∞

4. The function cosh is even, strictly decreasing on ]−∞, 0], and strictly increa-
sing on [0,+∞) and

lim
x→−∞

cosh(x) = lim
x→+∞

cosh(x) = +∞
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5. The hyperbolic tangent function tanh is differentiable on R, and for every
x ∈ R, its derivative is given by :

tanh′(x) = 1− tanh2(x)

6. The hyperbolic cotangent function coth is differentiable on R \ {0}, and for
every x ∈ R \ {0}, its derivative is given by :

coth′(x) = − 1

sinh(x)
.

7. The function (tanh) is odd and strictly increasing on R.

lim
x→∞

tanh(x) = 1, lim
x→−∞

tanh(x) = −1.

8. The function coth is odd and strictly decreasing on R \ {0}

lim
x→∞

coth(x) = 1, lim
x→−∞

coth(x) = −1.

9. Parity

sinh(−x) = − sinh(x) (odd function)
cosh(−x) = cosh(x) (even function)
tanh(−x) = − tanh(x) (odd function)
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graphical representation of the hyperbolic functions
sinh, cosh, tanh

6.3 Reciprocal Hyperbolic Functions
Definition 6.5. The hyperbolic sine function is a bijection from R to R. Its inverse
is called the inverse hyperbolic sine and is denoted by argsh(x)

argsh :
R −→ R

x 7−→ argsh(x),

∀x ∈ R,∀y ∈ R : y = argsh(x) =⇒ x = sinh(y).
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Properties 6.5. The function argsh(x) (also written as sinh−1(x)) has the following
properties :

– ∀x ∈ R : argsh(sinhx) = x, and ∀x ∈ [0, π] : sinh(argsh(x)) = x.
– it is continuous on R,
– strictly increasing,
– odd : argsh(−x) = − argsh(x),
– differentiable on R, in particular on the interval [−1, 1]. Its derivative is given

by :
d

dx
argsh(x) =

1√
x2 + 1

graphical representation of the Argsh and Sinh.

Definition 6.6. The hyperbolic cosine function is a bijection from [0,+∞[ to
[1,+∞[. Its inverse is called the inverse hyperbolic cosine and is denoted by argch(x)

argch :
[1,+∞[−→ [0,+∞[

x 7−→ argch(x),

∀x ∈ [1,+∞[, ∀y ∈ [0,+∞[: y = argch(x)⇐⇒ x = cosh(y).
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Proposition 6.6. The function argch(x) (also written as cosh−1(x)) has the following
properties :

– it is continuous on the interval [1,+∞[,
– strictly increasing,
– not an odd or even function,
– differentiable on ]1,+∞[.
Its derivative is given by :

d

dx
argch(x) =

1√
x2 − 1

, x > 1

graphical representation of the Argch and Cosh

Definition 6.7. The hyperbolic tangent function defines a bijection from R onto its
image ]− 1, 1[. The inverse function is called the inverse hyperbolic tangent function
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and is denoted by argth, that is :

argth :
]− 1, 1[−→ R

x 7−→ argth(x),

∀x ∈]− 1, 1[,∀y ∈ R : y = argth(x)⇐⇒ x = tanh(y).

Properties 6.7. The function argth(x) (also written as tanh−1(x)) has the following
properties :

– it is continuous on the open interval ]− 1, 1[,
– strictly increasing,
– odd : argth(−x) = − argth(x),
– differentiable on ]− 1, 1[.
Its derivative is given by :

d

dx
argth(x) =

1

1− x2
, |x| < 1.
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graphical representation of the Argth and Tanh
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6.4 Exercises
Exercise 6.1.
Show that for all x ∈ [−1, 1], we have

sin(arccosx) =
√

1− x2 = cos(arcsinx).

Exercise 6.2.

1. Calculate :

arcsin
(

sin
π

3

)
, arccos

(
cos

π

3

)
, arccos

(
sin

π

3

)
.

2. Calculate :

arccos

(
cos

4π

3

)
, arccos

(
cos

7π

3

)
, arcsin

(
sin

2π

3

)
, arcsin

(
sin

7π

3

)
.

Exercise 6.3.
Let f : R→ R be the function defined by :

f(x) = argcosh
(√

1 + x2
)
.

1. Determine the domain of definition of the function f .
2. Compute argcosh(cosh(t)) for all t ∈ R.
3. Show that for all x ∈ R, we have :

f(x) = argsinh(|x|).

4. Compute f ′(x) for all x ∈ R∗.
5. Is the function f differentiable at x = 0 ?

Exercise 6.4.

1. Calculate the exact values of :

arcsin

(√
3

2

)
, arccos

(
−1

2

)
, arctan(1).
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2. Simplify the expressions :

arcsin(sin 5π/6), arccos(cos 7π/4), arctan(tan 3π).

3. Prove that for all x ∈ [−1, 1],

sin(arccosx) =
√

1− x2.

4. Show that :
arcsin(x) + arccos(x) =

π

2
, ∀x ∈ [−1, 1].

5. Calculate derivatives :

d

dx
arcsin(x),

d

dx
arccos(x),

d

dx
arctan(x).

6. Solve for x :

arcsin(x) =
π

6
, arccos(x) =

π

3
, arctan(x) = 1.

7. Evaluate :
arccos(cos 5π/3), arcsin(sin 11π/6).

8. Express arctan
(
1
x

)
in terms of arctan(x), for x > 0.

9. Show that :
tan(arcsinx) =

x√
1− x2

, x ∈ (−1, 1).
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