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Preface 

 

This practical work booklet is designed for third-year LMD students in Materials Physics. 

Its primary goal is to strengthen the theoretical knowledge acquired in lectures through hands-

on experimental applications while developing essential skills in equipment handling and data 

interpretation in solid-state physics. 

The experiments covered in this document focus on the following topics: 

 Atomic stacking: Investigation of crystalline structures through the analysis of 

different atomic stacking arrangements. 

 X-ray diffraction: Introduction to diffraction techniques for characterizing crystalline 

structures, with an emphasis on phase identification and lattice parameter 

determination. 

 Electron diffraction: Study of electron diffraction phenomena using a polycrystalline 

graphite sample, demonstrating the wave nature of electrons. 

 Mechanical testing: Measurement of elastic properties, including Young's modulus 

and Poisson’s ratio, to analyze material deformation under stress. 

 Microhardness: Assessment of local mechanical properties through micro-

indentation tests to evaluate materials' resistance to plastic deformation. 

This practical program is designed to deepen students' understanding of the fundamental 

physical principles governing material properties while familiarizing them with essential 

experimental techniques. The emphasis is placed on measurement precision, rigorous data 

analysis, and clear result presentation. 

To make the most of these practical sessions, students are expected to have a solid 

foundation in crystallography and a strong command of the necessary mathematical and 

physical tools. 
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Lab 0: Least Squares Method  

for Error Calculation 
 

I. Introduction 

In experimental sciences, we typically work with two sets of data, denoted {y1, y2, …, 

yn} and {x1, x2, …, xn}, obtained from measurements. The regression problem consists of 

determining a potential relationship between the x's and y's, often expressed as y = f(x). 

When this relationship is linear, that is, of the form y = ax + b, it is referred to as linear 

regression. However, even if such a relationship exists, experimental data usually do not 

perfectly conform to this equation. This is due to the measurement errors inherent in the data. 

To account for these uncertainties in the mathematical model, the measured values 

{y1, y2, …, yn} are often considered as realizations of a random variable Y, and sometimes 

{x1, x2, …, xn} are also considered as realizations of a random variable X. In this context, Y 

is called the dependent variable or explained variable, while X is referred to as the 

independent variable or explanatory variable. 

II. Least Squares Line 

The data points (xi, yi), where i = 1, 2, …, n, can be represented as a cloud of n points, 

called a scatter plot, in the (x, y) plane. The centroid of this cloud can be easily calculated; it 

is the point with the following coordinates: 

(𝑥̅, 𝑦̅) = (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
,
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
)                                                            (1) 

𝑥̅ 𝑎𝑛𝑑 𝑦̅ represent the mean values of x and y, respectively. 

Seeking an affine relationship between the variables X and Y involves finding a line 

that best fits the cloud of points. Among all possible lines, we choose the one with a 

remarkable property: it minimizes the sum of the squared differences between the observed 

values yi and the values predicted by the line yi = axi + b.  If εi represents this difference, also 
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called the residual, the principle of ordinary least squares (OLS) consists of choosing the 

values of a and b that minimize the following relation: 

𝐸 = ∑𝜀𝑖
2

𝑛

𝑖=0

= ∑(𝑦𝑖 − (𝑎𝑥𝑖 − 𝑏))
2
       

𝑛

𝑖=0

                                             (2) 

 

The values of a and b are determined from the following relations: 

𝑎 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

                                                    (3) 

𝑏 = 𝑦̅ − 𝑎𝑥̅                                                                  (4) 

III. Variance and Covariance 

Variance and covariance are two measures used in statistics. Variance is a measure of 

the dispersion of data, while covariance indicates the degree to which two random variables 

change together. Variance is more of an intuitive concept, but covariance is mathematically 

defined in a way that may not seem intuitive at first glance. Often, the variance of X is used to 

express the value of a, 𝑠𝑥
2, and the covariance of the random variables X and Y, covxy : 

𝑎 =
𝑐𝑜𝑣𝑥𝑦

𝑠𝑥
2

                                                                             (5) 

with: 

𝑠𝑥
2 =

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑛
                                                                    (6) 

and: 

𝑐𝑜𝑣𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

𝑛
                                                       (7) 
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IV. Standard Deviation 

In mathematics, the standard deviation is a positive real quantity, possibly infinite, 

used in probability theory to characterize the distribution of a random variable around its 

mean. The formula for the standard deviation is: 

𝜎 = √
∑ |𝑥𝑖 − 𝑥̅|2𝑛

𝑖=1

𝑛
                                                                    (8) 
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Lab 1: Stacking Structures 
 

I. Principle 

Study various crystalline structures on a large scale using both exploded and compact 

molecular models, where the atoms making up the crystal are represented as spherical balls. 

II. Objectives 

 Build different types of compact and non-compact stacking’s for several crystalline 

structures and examine their unit cells. 

 Observe the various crystallographic sites in the face-centered cubic and hexagonal 

unit cells, and calculate the lattice parameters based on the crystallographic geometry. 

III. Theoretical Reminder 

III.1. Crystalline Lattice 

A perfect crystal is a collection of particles (ions, atoms, or molecules) regularly 

arranged in space. This arrangement is described by: 

 A crystalline lattice formed by a set of nodes, 

 A basic motif, consisting of one or more atoms, that occupies the positions of these 

nodes. 

 

Figure 1: A three-dimensional crystalline lattice defined by the three primitive vectors 𝒂⃗⃗ , 𝒃⃗⃗ , 
and 𝒄⃗ . 
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III.2. Unit Cell 

The unit cell is the parallelepiped defined by the three primitive vectors 𝒂⃗⃗ , 𝒃⃗⃗ , and 𝒄⃗ , 

also known as the lattice parameters. 

 

Figure 2: Unit cell. 

III.3. Reduced Coordinates 

Since the crystalline lattice is periodic, the positions of the atoms within the unit cell 

are represented by the coordinates (x, y, z) such that: 0 ≤ x < 1, 0 ≤ y < 1, and 0 ≤ z < 1. 

III.4. Coordination 

The coordination, or coordination number, of a given particle represents the number of 

nearest particles surrounding that particle. 

III.5. Multiplicity 

Multiplicity m refers to the number of nodes belonging to the conventional unit cell. 

III.6. Crystallographic Sites 

Crystallographic sites correspond to interstitial spaces between atoms. The most 

common are tetrahedral sites, surrounded by 4 atoms, and octahedral sites, surrounded by 6 

atoms. 

 

Figure 3: a) Tetrahedral site, and b) Octahedral site. 
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II.7. Packing Density 

Packing density represents the ratio of the volume actually occupied by the atoms of 

the motif to the total volume of the unit cell. If we assume the atoms to be spherical with 

radius R, the packing density C can be calculated using the following relation: 

𝐶 =
𝑚. 𝑉𝑚𝑜𝑡𝑖𝑓

𝑉𝑐𝑒𝑙𝑙
                                                                              (1) 

m is the multiplicity of the unit cell. 

If we assume the atoms to be spherical with radius R, the volume of an atom can be calculated 

using the following relation: 

𝑉 =
4

3
𝜋𝑅3                                                                                (2) 

III.8. Density 

The density ρ of the crystal is defined by: 

𝜌 =
𝑚 × 𝑚𝑚𝑜𝑡𝑖𝑓

𝑉𝑐𝑒𝑙𝑙
                                                                          (3) 

 

III.9. Compact and Non-Compact Stacking’s  

Compact stacking refers to the arrangement of atomic spheres in space in such a way 

as to achieve the highest possible sphere density without any overlap between them. 

 

Figure 4: a) Non-Compact, and b) Compact Stacking’s. 

Compact stacking’s of two types differ only in the way the tangent spheres are stacked on top 

of each other. 
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a) Compact A-B-C stacking 

 In this type of stacking, the spheres are arranged in a three-layer repeating pattern, 

where the third layer (C) fits into the gaps of the first layer (A), creating a repeating ABC 

structure. 

b) Compact A-B stacking 

 In this stacking, the spheres are arranged in a two-layer repeating pattern, where the 

second layer (B) fits into the gaps of the first layer (A), forming an AB structure. 

 

Figure 5: a) Compact A-B-C stacking and b) Compact A-B stacking. 

 

Figure 6: a) The closely stacked arrangement in the face-centered cubic compact model and 

b) The exploded model. 

 

Figure 7: a) The closely stacked arrangement in the hexagonal compact model and b) The 

exploded model. 
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IV. Procedure 

a) Experiment 1 

 Construct the A-B-C compact stacking using the spheres provided to you, 

 Construct the unit cell of the FCC lattice, 

 Represent the unit cell in perspective, 

 Identify the sequence of the A-B-C compact layers in the FCC unit cell, 

 Indicate the direction in which these layers are stacked, 

 Determine the coordination number of an atom and the multiplicity of the unit cell.  

 Draw the projection of the unit cell onto the XOY plane, 

 Derive the reduced coordinates of the atoms. 

 Establish the relationship between the atomic radius R and the lattice parameter a. 

 Observe the positions of the tetrahedral and octahedral sites,  

 Represent these sites and provide their reduced coordinates. 

Application: In the alloy with the formula AlxNiyTi𝑧, titanium atoms form the face-centered 

cubic lattice, aluminum atoms occupy all the octahedral sites, and nickel atoms occupy all the 

tetrahedral sites. 

 Represent the unit cell in perspective: Illustrate the arrangement of titanium, 

aluminum, and nickel atoms within the FCC lattice. 

 Determine the alloy's formula: Based on the number of atoms per unit cell and the 

positions of aluminum and nickel in the octahedral and tetrahedral sites, respectively, 

derive the stoichiometric ratio of Al, Ni, and Ti. 

b) Experiment 2 

 Construct the A-B compact stacking: Use the provided spheres to form the 

arrangement. 

 Deduce the construction of the elementary and triple hexagonal unit cells: Represent 

both unit cells in perspective. 

 Identify the sequence of the A-B-A-B compact layers in the triple hexagonal unit cell: 

Indicate the direction along which these layers are ordered. 

 Determine the coordination number of an atom and the multiplicity of the triple unit 

cell. 
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 Draw the projection of the unit cell onto the XOY plane: Derive the reduced 

coordinates of the atoms. 

 Establish the relationship between the atomic radius R and the lattice parameter a. 

 Establish the relationship between the lattice parameters a and c. 

 Observe the positions of the tetrahedral and octahedral sites: Represent these sites and 

provide their reduced coordinates. 

Application: Zinc crystallizes in a compact hexagonal structure. What is the value of the 

lattice parameter a, given that the atomic radius of zinc is 1.37 Å? 

c) Experiment 3 

 Construct the non-compact stacking: Use the provided spheres to form the 

arrangement. 

 Deduce the construction of the body-centered cubic (BCC) unit cell: Represent the 

unit cell in perspective. 

 Identify the sequence of the non-compact layers in the body-centered cubic unit cell: 

Indicate the direction in which these layers are ordered. 

 Determine the coordination number of an atom and the multiplicity of the unit cell.  

 Draw the projection of the unit cell onto the XOY plane: Derive the reduced 

coordinates of the atoms. 

 Establish the relationship between the atomic radius R and the lattice parameter a. 

 Observe the positions of the tetrahedral and octahedral sites: Represent these sites and 

provide their reduced coordinates. 

Application: In the alloy with the formula CsxCly, chloride ions form a simple cubic lattice, 

and cesium ions occupy the centers of the cubes. 

 Represent the unit cell in perspective: Illustrate the arrangement of chloride and 

cesium ions in the unit cell. 

 Determine the formula of the alloy: Based on the positions of cesium and chloride 

ions, calculate the stoichiometric ratio of Cs to Cl in the unit cell. 

 Provide the coordination number of each ion: Identify the number of nearest 

neighbors for both chloride and cesium ions. 

 Establish the relationship between the lattice parameter a and the ionic radii RCl 

and RCs: Relate the lattice parameter to the radii of chloride and cesium ions. 
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 Calculate the density (ρ) of the crystal:  

Data: Molar mass of the crystal, M=168.36 g/mol, ionic radius of Cl⁻, RCl=1.81 Å, ionic 

radius of Cs⁺, RCs=1.67 Å, C=0.63, Avogadro's number, N=6.023×1023 atoms/mol. 
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X-ray Diffraction 
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Lab 2: X-ray Diffraction 
 

I. Principle 

Irradiating polycrystalline powder samples of NaCl and CsCl with X-rays and examining 

the resulting diffraction patterns captured on photographic films is a technique used to analyze 

the crystal structures of these materials. 

II. Objectives 

 Capture X-ray diffraction photographs using the Debye-Scherrer method for powder 

samples of sodium chloride (NaCl) and cesium chloride (CsCl). 

 Evaluate and assign the Debye-Scherrer diffraction rings to the corresponding crystal 

lattice planes. 

 Determine the lattice constants of the studied samples. 

 Determine the number of atoms per unit cell in each crystal structure. 

III. Theoretical Reminder 

When an X-ray beam strikes a material, it is scattered by the electrons of the atoms in 

that material. The atomic scattering power of a single atom is represented by the atomic form 

factor f, which is approximately proportional to the number of electrons in the atom. 

Therefore, we have: 

𝑓 ∝ 𝑍                                                                             (1) 

where Z is the atomic number. If the material being studied has an ordered periodic structure, 

constructive interference occurs between the diffracted waves. The resulting diffraction is 

determined by Bragg's law: 

2. 𝑑ℎ𝑘𝑙  . 𝑠𝑖𝑛𝜃 = 𝑛.                                                               (2) 

where n is an integer indicating the diffraction order, dhkl is the interplanar spacing, λ is the 

wavelength of the X-rays, and θ is the Bragg angle. 
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Figure 1: Diffraction of an X-ray beam by crystal planes 

The intensity of the diffracted X-rays is proportional to the square of the structure factor Fhkl, 

given by the following relation: 

𝐹ℎ𝑘𝑙 = ∑𝑓𝑗𝑒
𝑖2𝜋(ℎ𝑥𝑗+𝑘𝑦𝑗+𝑙𝑧𝑗)                                                      (3)

𝑗

 

where xj,yj,zj are the coordinates of an atom j in the unit cell, h, k, l are the Miller indices of 

the reflecting plane, and fj is the atomic scattering factor of atom j. 

For a body-centered cubic (BCC) structure, the positions of the atoms in the unit cell are: 

(0,0,0) and (1/2, 1/2, 1/2). 

 Fhkl=0 if h+k+l=2n+1 (i.e., an odd number). 

 Fhkl=2fj if h+k+l=2n (i.e., an even number). 

For a face-centered cubic (FCC) structure, the positions of the atoms in the unit cell are: (0, 0, 

0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2). 

 Fhkl=0 if h, k, l are not of the same parity (i.e., mixed). 

 Fhkl=4fj if h, k, l are all of the same parity (i.e., all even or all odd). 

 When monochromatic X-rays bombard a polycrystalline sample composed of 

randomly oriented crystallites, some of the crystallites are oriented in such a way that their 

lattice planes and the direction of the primary beam satisfy Bragg's law. As a result, all 

reflections from a particular set of lattice planes form a cone, with the axis of the cone aligned 

with the incident beam and the angle at the apex being 4θ. A photographic film placed 
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perpendicular to the primary beam will record these concentric circles as reflections, forming 

Debye-Scherrer rings. 

 

Figure 2: Demonstration of the diffraction of a primary X-ray beam by a photographic film 

placed perpendicular to the incident beam. 

If the diameter of a diffraction ring is D, and L is the distance between the sample and the 

film, the Bragg angle is given by the following expression: 

𝜃 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛

𝐷

2𝐿
                                                                        (4) 

If the sample consists of cubic crystals with a lattice parameter a, then: 

𝑑ℎ𝑘𝑙 =
𝑎

√ℎ2 + 𝑘2 + 𝑙2
                                                                (5) 

By substituting relations (4) and (5) into relation (2), we obtain: 

𝑠𝑖𝑛2𝜃 = 𝑠𝑖𝑛2 (
1

2
𝑎𝑟𝑐𝑡𝑎𝑛

𝐷

2𝐿
) =


2

4𝑎2
(ℎ2 + 𝑘2 + 𝑙2)                               (6) 

The diffracted rings are assigned to the Miller indices of the reflecting planes of the 

crystal lattice as follows: the ratios are obtained from the sum of the squares of the triplets (h, 

k, l), and then a correspondence is sought between these ratios and the ratios of the observed 

values of 𝑠𝑖𝑛2𝜃 associated with the diffraction rings. 

To begin, the deepest ring is assigned to the (100) plane. If this does not yield a 

satisfactory result, the (110) plane is tried, and so on, until a satisfactory match of the ratios is 

found. 
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IV. Materials and Equipment 

 

Figure 3: The basic X-ray apparatus with a 35 kV.  

1- Mo anode drawer for X-ray apparatus 

2- Mortar and pestle, 70 ml, porcelain 

3- Spoon with spatula tip, length = 150 mm 

4- Sodium chloride, 250 g 

5- Cesium chloride, 5 g 

6- Diaphragm tube with zirconium foil 

7- Vernier caliper, plastic 

8- Film holder 

9- X-ray films, 100 × 100 mm² 

 

V. Procedure 

 The sample (the NaCl powder, then the CsCl powder) placed on a sample holder must 

be in the form of a fine, homogeneous powder to ensure isotropic scattering of the X-

rays, and. 

 Use an X-ray apparatus equipped with an X-ray source of Mo ((K)=0.711Å), 

directed towards the sample at a controlled intensity 
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 A photographic film is positioned perpendicularly to the incident X-ray beam, at a 

known distance from the sample, and set to capture the diffraction patterns in the form 

of rings. 

 The primary X-ray beam bombards the sample, causing diffraction of the X-rays by 

the crystal planes in the sample. 

 After irradiating the sample, the film is developed using a specific X-ray photographic 

developer. 

 The concentric circles observed on the film are called "Debye-Scherrer rings."  

 Each ring corresponds to a reflection of the X-rays from a specific crystal plane and 

attributed to a particular set of crystal planes using Bragg's law and Miller indices. 

 The radii of the rings are measured, and from these, the values of 𝑠𝑖𝑛2𝜃 are calculated. 

 These values are compared with Miller indices to identify the crystal planes which are 

responsible for each diffraction ring. 

 The lattice constants can then be determined using Bragg's relationship. 

 This allows for the characterization of the crystal structure of the studied sample. 

 The interplanar distances dhkl of the reflecting planes are calculated from Bragg's 

relation. 

 The Miller indices (h, k, l) are determined for each diffraction to provide a complete 

picture of the crystal structure of the material. 

a) Study of NaCl powder 

After taking Debye-Scherrer photographs of the sodium chloride powder samples, 

 Calculate the structure factor Fhkl for the NaCl structure, and discuss its values 

according to the values of the Miller indices h, k, l. 

 Evaluate the Debye-Scherrer rings using the vernier caliper and assign them to the 

corresponding lattice planes, knowing that the distance between the sample and the 

film is L=32 mm+0.5 mm (the thickness of the film). The wavelength of the incident 

X-ray beam is λ(Kα)=0.711 Å (the average value of λ(Kα1) and λ(Kα2).  

 Report the values in the following table: 

 

 

N of the  
Intensity D (mm)  () 

𝑠𝑖𝑛2𝜃𝑛

𝑠𝑖𝑛2𝜃1

 
(ℎ2 + 𝑘2 + 𝑙2)𝑛

(ℎ2 + 𝑘2 + 𝑙2)111

 hkl 𝑑ℎ𝑘𝑙(Å) a (Å) 
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reflexion 

1         

2         

3         

4         

5         

6         

7         

 

 What observations can you make about the obtained hkl indices? 

 Based on these, what would the crystal structure of NaCl be? 

 Calculate the NaCl lattice constant and express it as: aNaCl = amoy  a. 

 Determine the relative error ∆a/a. 

 Compare your calculated value of a with the literature value: alitt = 5.639 Å. 

 Calculate the multiplicity m of the NaCl unit cell, using the following data: ρNaCl = 

2.16 g/cm³, molar mass of Na (MNa = 22.9 g/mol), molar mass of Cl (MCl = 35.45 

g/mol), and Avogadro's number NA = 6.022 × 10²³ atoms/mol. 

b) Study of CsCl powder 

After taking Debye-Scherrer photographs of the cesium chloride powder samples, 

 The same questions as those asked for the NaCl powder sample, using the following 

data: alitt = 4.110 Å, CsCl = 3.97 g.cm3, molar mass of Cs (MCs = 132.91g/mol), molar 

mass of Cl (MCl = 35.45 g/mol), and Avogadro's number NA = 6.022 × 10²³ 

atoms/mol. 
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Lab 3 

Electron Diffraction 
 

 

 

 

 

 

 

 

 

 

 

 
  



25 

 

 

 
 

Lab 3: Electron Diffraction 
 

I. Principle 

Observation of electron diffraction on a polycrystalline graphite sample and confirmation of 

the wave-like nature of electrons. 

II. Objectives 

 Calculating Planck’s constant h. 

 Verifying de Broglie’s hypothesis for the electron wavelength. 

III. Theoretical Reminder 

In 1924, Louis de Broglie proposed the hypothesis that particles inherently exhibit 

wave-like properties, with their wavelength being related to their momentum as follows: 

 =
ℎ

𝑝
                                                                                     (1) 

Where h=6.6256×10−34 J.s is the Planck constant and λ\lambdaλ is the wavelength of the 

moving particle. 

This equation can be transformed for electrons that have been accelerated by a voltage Ua into 

the following equation: 

 =
ℎ

√2.𝑚. 𝑒. 𝑈𝑎

                                                                          (2) 

Where: λ is the wavelength of the electron, m is the mass of the electron (9.11×10−31 kg, e is 

the elementary charge (1.602×10−19 C), Ua is the acceleration voltage. 

The momentum p of a particle can be determined from the relation: 

𝑝 = 𝑚. 𝑣 = √2. 𝑒.𝑚. 𝑈𝑎                                                                 (3) 



26 

 

 

 In this experiment, the wave-like behavior of electrons in a vacuum tube is 

demonstrated through diffraction on a polycrystalline graphite sample. Diffraction rings are 

observed on the fluorescent screen of the tube, surrounding a central spot along the beam's 

direction, with the diameter D varying depending on the accelerating voltage. These rings 

result from the diffraction of electrons by the lattice planes of microcrystals that meet the 

Bragg condition: 

2𝑑𝑠𝑖𝑛 = 𝑛                                                                           (4) 

θ: The Bragg angle, n: the diffraction order (with n=1), d: the distance between the crystal 

planes. 

 

Figure 1: X-ray diffraction by a set of lattice planes hkl. 

 

Figure 2: X-ray diffraction tube. 

The diameter of the diffraction ring attributed to the Bragg angle θ is: 

𝐷 = 2. 𝐿. 𝑡𝑎𝑛2                                                                         (5) 

where: L is the distance between the graphite sample and the fluorescent screen, θ is the 

Bragg angle. 

For small Bragg angles, the diffraction ring diameter D can be approximated by the following 

formula: 
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𝑑 = .
2. 𝐿

𝐷
                                                                           (6) 

Using the previous relations, we find: 

 

𝐷 = 𝑘.
1

√𝑈𝑎

                                                                         (7) 

with   

𝑘 =
2. 𝐿. ℎ

𝑑. √2.𝑚. 𝑒
                                                                      (8) 

 

 Since graphite has a crystalline structure with two interplanar distances 

d1=2.13×10−10 m and d2=1.23×10−10m, two diffraction rings with average diameters D1 and D2 

will be observed in the first diffraction order (n=1). 

 

Figure 3: a) Interplanar distances d1 and d2, b) Diffraction rings. 

 

 

 

 

 



28 

 

 

IV. Materials and Equipment 

 

Figure 4: Experimental setup for electron diffraction. 

V. Procedure 

 Apply an acceleration voltage Ua≤5 kV and observe the diffraction pattern on the 

fluorescent screen. 

 Vary the acceleration voltage between 3 kV and 5 kV in steps of 0.5 kV and, each 

time, measure the inner and outer diameters D1 and D2 of the two diffraction rings. 

 Record the measured values in the table below. 

𝑈𝑎 (kV) Ring 1 Ring 2 

3.0 D1int (cm) D1ext (cm) D1moy (cm) D2int (cm) D2ext (cm) D2moy (cm) 

3.5       

4.0       

4.5       

5.0       

 Measure the distance "L" between the graphite and the fluorescent screen. 

 Calculate the experimental wavelength values λexp and theoretical wavelength values 

λtheo for each diffraction ring, and record both the measured and calculated values in 

the table below. 
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𝑈𝑎 (kV) Ring 1 Ring 2 

3.0 D1moy (cm) 1exp (pm) 1theo (pm) D2moy (cm) 2exp (pm) 2theo (pm) 

3.5       

4.0       

4.5       

5.0       

 

 What would you say about the obtained results? 

 Plot the two curves D1moy=f(Ua) and D2moy=f(Ua) on the same graph and, from these 

two curves, determine the experimental values of the interplanar distances d1 and d2 of 

graphite. (Use the least squares method) 

 What would you say about the obtained results? 

 Calculate the experimental value of Planck's constant h. 

 Conclude with interpretations. 
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Lab 4 

Mechanical Testing 
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Lab 4: Mechanical Testing 
 

I. Principle 

The principle of this test is based on the bending of a simply supported flat rod under a 

central load. The applied force causes deflection, which depends on the material's stiffness, 

the flat rod's geometry, and the force magnitude. By measuring the deflection and knowing 

the beam's dimensions, the Young's modulus (E) of the material can be calculated. 

II. Objectives 

 Determine the Young's modulus (E) of a material from the deflection of a flat rod 

under a known load. 

 Understand the relationship between force, deflection, and flat rod geometry. 

 Measure the bending stiffness of materials. 

 Understand elastic deformation behavior. 

 Identify the flexural properties of materials. 

III. Theoretical Reminder 

A flat rod with thickness b and width a, is supported at both ends by two supports 

separated by the span length L. It is subjected to a force acting at its center. The deflection  

(or bending) is then expressed as a function of the Young's modulus E and the geometric 

properties of the flat rod, as follows: 

 =
1

4
(
𝐿

𝑏
)
3

.
1

𝑎
.
𝐹𝑦

𝐸
                                                                   (1) 

Where: λ is the deflection (or bending) of the flat rod, L is the span length between the 

supports, b is its thickness, a is its width, Fy is the applied force at its center, E is the Young's 

modulus of the material. 
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Figure 1: Deflection of a flat rod under applied force Fy. 

 

The table below contains the theoretical values of the Young's modulus for different types of 

materials. 

Material a [mm] b [mm] E [N.m-2] 

Steel 10 1.5 2.0591011 

Steel 10 2 2.0631011 

Steel 10 3 2.1711011 

Steel 15 1.5 2.2041011 

Steel 20 1.5 2.1111011 

Aluminum 10 2 6.7021010 

Brass 10 2 9.2221010 

 

IV. Materials and Equipment 

 

Figure 2: Experimental setup for mechanical testing.       
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1. Dial indicator, 10/0.01 mm 

2. Comparator support 

3. Square rod PASS 

4. Flat rod 

5. Weight holder for slit weights 

6. Knife with clamp 

7. Set of 7 flat rods 

8. Dynamometer 1 N 

9. Slit weights 

10. Tripod PASS 

11. Measuring tape, l = 2 m 

 

                                                                                          Dial indicator 

V. Procedure 

a) Experiment 1 

 Place the steel bar with a width a=10 mm and thickness b=1.5 mm on the two 

supports, spaced L=0.30 m apart. 

 Hang different loads (masses) at its center and measure the deflection λ using the dial 

indicator. 

 Record the measured values in a table and plot the curve λ=f (F). 

 Determine, from this curve, the value of the Young's modulus "E". 

 Conclude with interpretations. 

b) Experiment 2 

 For a constant load, place in turn the steel bars of different widths a, and a constant 

thickness b=1.5 mm on the two supports, spaced L=0.30 m apart. 

 Hang a fixed load and measure the deflection λ as a function of the width a using the 

dial indicator. 

 Record the measured values in a table and plot the curve λ=f (a). 

 Conclude with interpretations. 

c) Experiment 3 

 Place the steel bar with a width of 10 mm and a thickness of 2 mm on the support. 
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 Hang a fixed load and measure the deflection λ as a function of the distance between 

the supports L. 

 Record the measured values in a table and plot the curve λ=f (L). 

 Determine, from this curve, the value of the Young's modulus "E". 

 Conclude with interpretations. 

d) Experiment 4 

 Place, one at a time, the steel bars of different thicknesses and a fixed width a=10 on 

the support. 

 For a fixed load and a fixed support distance, measure the deflection λ as a function of 

the thickness of each bar. 

 Record the measured values in a table and plot the curve λ=f (b). 

 Conclude with interpretations. 

e) Experiment 5 

 Place, one at a time, the aluminum, and brass bars with a width a=10 mm and a 

thickness b=2 mm on the support. 

 Fix the distance between the supports and measure the deflection λ as a function of the 

load m. 

 Record the measured values in a table and plot the curves λ=f (F). 

 Determine, from these curves, the value of the Young’s modulus E for each bar. 

 Conclude with interpretations. 
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Lab 5 

Microhardness 
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Lab 5: Microhardness 
 

I. Principle  

A small indenter, usually a diamond pyramid or Vickers indenter, is used to create an 

impression on the material's surface. The hardness value is then determined by measuring the 

size of the indentation and calculating it based on the applied force and indentation size. 

II. Objectives 

 Highlight the hardness test. 

 Be able to operate and use the durometer to measure the hardness of different 

materials. 

 Characterize a material based on the hardness test. 

III. Theoretical Reminder 

Hardness defines a material's resistance to deformation when a hard object penetrates its 

surface. It is typically assessed using durometers, which perform non-destructive tests widely 

used in manufacturing for rapid quality control of finished products. This testing method 

provides valuable information about a material’s properties, including tensile strength, 

ductility, and wear resistance.  

According to standards, hardness is expressed as a dimensionless number and is measured 

on different scales depending on the material type. It is commonly represented by the letter H, 

derived from the word "Hardness" in English.  

The most commonly used hardness testing methods include the Brinell, Vickers, and 

Rockwell tests. 

The Brinell test consists of pressing an indenter, usually a steel or tungsten carbide ball 

with a diameter D, into the material under a defined load F. Once the load is removed, two 

diameters, d1 and d2, at a 90° angle to each other, are measured on the impression left on the 

surface. These measurements are taken using a magnifying device and a graduated scale, 

accounting for the magnification factor. 
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Figure 1: Brinell principal 

The Brinell hardness number is calculated using the formula: 

𝐵𝐻 = 0.102
𝐹

𝜋𝐷
2

(𝐷 − √𝐷2 − 𝑑2)
                                                        (1) 

Where: P is the test load [N], D is the diameter of the ball [mm] and d is the arithmetic mean 

of the two diagonals d1 and d2 [mm]. 

The Brinell method is appropriate for hardness testing of materials ranging from soft 

metals (light metals with a density < 5 mg/cm³, such as aluminum, titanium, alkali metals, 

alkaline earth metals, lead, and zinc) to harder metals (such as steel or iron). 

The principle of the Vickers test is similar to that of the Brinell test, with the only 

difference being the shape of the indenter. In this test, a square-based diamond pyramid 

indenter with a 136° apex angle is pressed into the material under a specified load F. After the 

load is removed, two diagonals, d1 and d2, are measured on the impression left on the surface. 

These measurements are taken using a suitable optical system. 

The Vickers hardness number is calculated using the formula: 

𝑉𝐻 = 0.102
2𝑃𝑠𝑖𝑛 (

136
2 )

𝑑2
= 0.189

𝑃

𝑑2
                                                 (2) 
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Where: P is the test load [N], and d is the arithmetic mean of the two diagonals d1 and d2 

[mm]. 

 

Figure 2: Vickers principal 

The Vickers hardness test is applicable to both hard and soft materials because the 

measurement remains unaffected by the applied load (ranging from 49 to 981 N), thanks to 

the constant penetration angle. However, it requires a well-prepared surface finish, and the 

sample must have small dimensions. This testing method is primarily conducted in a 

laboratory environment and includes a specific subgroup for testing the hardness of welds. 

IV. Materials and Equipment 

 

Figure 3: Experimental setup for microhardness testing. 
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V. Procedure 

a) Brinell Hardness 

 Place the indenter in contact with the material surface. 

 Apply the force and maintain it for 10 to 15 seconds. 

 Measure two diameters of the indentation, at 90° to each other. The measurement is taken 

using a magnifying device and a calibrated ruler, accounting for the magnification factor. 

Note: Hardness is expressed as the ratio of the force F to the surface area S of the spherical 

impression made in the metal. 

b) Vickers hardness 

 Polish both surfaces of each specimen. 

 Clean with an alumina solution to remove burrs from the surfaces. 

 If necessary, recalibrate the durometer using standard samples. 

 For one face, take several measurements and calculate the average (limit to three 

measurements for each face) for each metal using both hardness methods. 

 Present these measurements in a comparative table. 

 Interpret and discuss the results obtained, and draw conclusions.  
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	SYLLABUS
	Objectives:
	This lab provides an educational framework for exploring the structural and mechanical properties of solid materials through practical experiments. It aims to bridge the gap between theory and practice while introducing students to modern tools and me...
	III. Theoretical Reminder
	III.1. Crystalline Lattice
	A perfect crystal is a collection of particles (ions, atoms, or molecules) regularly arranged in space. This arrangement is described by:
	 A basic motif, consisting of one or more atoms, that occupies the positions of these nodes.
	Figure 1: A three-dimensional crystalline lattice defined by the three primitive vectors ,𝒂., ,𝒃., and ,𝒄..
	III.2. Unit Cell
	The unit cell is the parallelepiped defined by the three primitive vectors ,𝒂., ,𝒃., and ,𝒄., also known as the lattice parameters.
	Figure 2: Unit cell.
	III.3. Reduced Coordinates
	Since the crystalline lattice is periodic, the positions of the atoms within the unit cell are represented by the coordinates (x, y, z) such that: 0 ≤ x < 1, 0 ≤ y < 1, and 0 ≤ z < 1.
	III.4. Coordination
	The coordination, or coordination number, of a given particle represents the number of nearest particles surrounding that particle.
	III.5. Multiplicity
	Multiplicity m refers to the number of nodes belonging to the conventional unit cell.
	III.6. Crystallographic Sites
	Crystallographic sites correspond to interstitial spaces between atoms. The most common are tetrahedral sites, surrounded by 4 atoms, and octahedral sites, surrounded by 6 atoms.
	Figure 3: a) Tetrahedral site, and b) Octahedral site.
	II.7. Packing Density
	Packing density represents the ratio of the volume actually occupied by the atoms of the motif to the total volume of the unit cell. If we assume the atoms to be spherical with radius R, the packing density C can be calculated using the following rela...
	𝐶=,𝑚,.𝑉-𝑚𝑜𝑡𝑖𝑓.-,𝑉-𝑐𝑒𝑙𝑙..                                                                              (1)
	m is the multiplicity of the unit cell.
	If we assume the atoms to be spherical with radius R, the volume of an atom can be calculated using the following relation:
	𝑉=,4-3.𝜋,𝑅-3.                                                                                (2)
	III.8. Density
	The density ρ of the crystal is defined by:
	𝜌=,𝑚×,𝑚-𝑚𝑜𝑡𝑖𝑓.-,𝑉-𝑐𝑒𝑙𝑙..                                                                          (3)
	III.9. Compact and Non-Compact Stacking’s
	Compact stacking refers to the arrangement of atomic spheres in space in such a way as to achieve the highest possible sphere density without any overlap between them.
	Figure 4: a) Non-Compact, and b) Compact Stacking’s.
	Compact stacking’s of two types differ only in the way the tangent spheres are stacked on top of each other.
	a) Compact A-B-C stacking
	In this type of stacking, the spheres are arranged in a three-layer repeating pattern, where the third layer (C) fits into the gaps of the first layer (A), creating a repeating ABC structure.
	b) Compact A-B stacking
	In this stacking, the spheres are arranged in a two-layer repeating pattern, where the second layer (B) fits into the gaps of the first layer (A), forming an AB structure.
	Figure 5: a) Compact A-B-C stacking and b) Compact A-B stacking.
	Figure 6: a) The closely stacked arrangement in the face-centered cubic compact model and b) The exploded model.
	Figure 7: a) The closely stacked arrangement in the hexagonal compact model and b) The exploded model.
	IV. Procedure
	where Z is the atomic number. If the material being studied has an ordered periodic structure, constructive interference occurs between the diffracted waves. The resulting diffraction is determined by Bragg's law:
	2.,𝑑-ℎ𝑘𝑙. .𝑠𝑖𝑛𝜃=𝑛.(                                                               (2)
	where n is an integer indicating the diffraction order, dhkl is the interplanar spacing, λ is the wavelength of the X-rays, and θ is the Bragg angle.
	Figure 1: Diffraction of an X-ray beam by crystal planes
	The intensity of the diffracted X-rays is proportional to the square of the structure factor Fhkl, given by the following relation:
	,𝐹-ℎ𝑘𝑙.=,𝑗-,𝑓-𝑗.,𝑒-𝑖2𝜋,ℎ,𝑥-𝑗.+𝑘,𝑦-𝑗.+𝑙,𝑧-𝑗...                                                      (3).
	where xj,yj,zj are the coordinates of an atom j in the unit cell, h, k, l are the Miller indices of the reflecting plane, and fj is the atomic scattering factor of atom j.
	For a body-centered cubic (BCC) structure, the positions of the atoms in the unit cell are: (0,0,0) and (1/2, 1/2, 1/2).
	 Fhkl=0 if h+k+l=2n+1 (i.e., an odd number).
	 Fhkl=2fj if h+k+l=2n (i.e., an even number).
	For a face-centered cubic (FCC) structure, the positions of the atoms in the unit cell are: (0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2).
	 Fhkl=0 if h, k, l are not of the same parity (i.e., mixed).
	 Fhkl=4fj if h, k, l are all of the same parity (i.e., all even or all odd).
	When monochromatic X-rays bombard a polycrystalline sample composed of randomly oriented crystallites, some of the crystallites are oriented in such a way that their lattice planes and the direction of the primary beam satisfy Bragg's law. As a resul...
	Figure 2: Demonstration of the diffraction of a primary X-ray beam by a photographic film placed perpendicular to the incident beam.
	If the diameter of a diffraction ring is D, and L is the distance between the sample and the film, the Bragg angle is given by the following expression:
	𝜃=,1-2.𝑎𝑟𝑐𝑡𝑎𝑛,𝐷-2𝐿.                                                                        (4)
	If the sample consists of cubic crystals with a lattice parameter a, then:
	,𝑑-ℎ𝑘𝑙.=,𝑎-,,ℎ-2.+,𝑘-2.+,𝑙-2...                                                                (5)
	By substituting relations (4) and (5) into relation (2), we obtain:
	,𝑠𝑖𝑛-2.𝜃=,𝑠𝑖𝑛-2.,,1-2.𝑎𝑟𝑐𝑡𝑎𝑛,𝐷-2𝐿..=,,(-2.-4,𝑎-2..,,ℎ-2.+,𝑘-2.+,𝑙-2..                               (6)
	The diffracted rings are assigned to the Miller indices of the reflecting planes of the crystal lattice as follows: the ratios are obtained from the sum of the squares of the triplets (h, k, l), and then a correspondence is sought between these ratios...
	To begin, the deepest ring is assigned to the (100) plane. If this does not yield a satisfactory result, the (110) plane is tried, and so on, until a satisfactory match of the ratios is found.
	IV. Materials and Equipment
	Figure 3: The basic X-ray apparatus with a 35 kV.
	1- Mo anode drawer for X-ray apparatus 2- Mortar and pestle, 70 ml, porcelain 3- Spoon with spatula tip, length = 150 mm 4- Sodium chloride, 250 g 5- Cesium chloride, 5 g 6- Diaphragm tube with zirconium foil 7- Vernier caliper, plastic 8- Film holder...
	V. Procedure
	 The sample (the NaCl powder, then the CsCl powder) placed on a sample holder must be in the form of a fine, homogeneous powder to ensure isotropic scattering of the X-rays, and.
	 Use an X-ray apparatus equipped with an X-ray source of Mo (((K()=0.711Å), directed towards the sample at a controlled intensity
	 A photographic film is positioned perpendicularly to the incident X-ray beam, at a known distance from the sample, and set to capture the diffraction patterns in the form of rings.
	 The primary X-ray beam bombards the sample, causing diffraction of the X-rays by the crystal planes in the sample.
	 After irradiating the sample, the film is developed using a specific X-ray photographic developer.
	 The concentric circles observed on the film are called "Debye-Scherrer rings."
	 Each ring corresponds to a reflection of the X-rays from a specific crystal plane and attributed to a particular set of crystal planes using Bragg's law and Miller indices.
	 The radii of the rings are measured, and from these, the values of ,𝑠𝑖𝑛-2.𝜃 are calculated.
	 The lattice constants can then be determined using Bragg's relationship.
	 This allows for the characterization of the crystal structure of the studied sample.
	 The interplanar distances dhkl of the reflecting planes are calculated from Bragg's relation.
	 The Miller indices (h, k, l) are determined for each diffraction to provide a complete picture of the crystal structure of the material.
	a) Study of NaCl powder
	After taking Debye-Scherrer photographs of the sodium chloride powder samples,
	 Evaluate the Debye-Scherrer rings using the vernier caliper and assign them to the corresponding lattice planes, knowing that the distance between the sample and the film is L=32 mm+0.5 mm (the thickness of the film). The wavelength of the incident ...
	 Report the values in the following table:
	 Calculate the multiplicity m of the NaCl unit cell, using the following data: ρNaCl = 2.16 g/cm³, molar mass of Na (MNa = 22.9 g/mol), molar mass of Cl (MCl = 35.45 g/mol), and Avogadro's number NA = 6.022 × 10²³ atoms/mol.
	b) Study of CsCl powder
	After taking Debye-Scherrer photographs of the cesium chloride powder samples,
	 The same questions as those asked for the NaCl powder sample, using the following data: alitt = 4.110 Å, (CsCl = 3.97 g.cm(3, molar mass of Cs (MCs = 132.91g/mol), molar mass of Cl (MCl = 35.45 g/mol), and Avogadro's number NA = 6.022 × 10²³ atoms/mol.
	In 1924, Louis de Broglie proposed the hypothesis that particles inherently exhibit wave-like properties, with their wavelength being related to their momentum as follows:
	(=,ℎ-𝑝.                                                                                     (1)
	Where h=6.6256×10−34 J.s is the Planck constant and λ\lambdaλ is the wavelength of the moving particle.
	This equation can be transformed for electrons that have been accelerated by a voltage Ua into the following equation:
	(=,ℎ-,2.𝑚.𝑒.,𝑈-𝑎...                                                                          (2)
	Where: λ is the wavelength of the electron, m is the mass of the electron (9.11×10−31 kg, e is the elementary charge (1.602×10−19 C), Ua is the acceleration voltage.
	The momentum p of a particle can be determined from the relation:
	𝑝=𝑚.𝑣=,2.𝑒.𝑚.,𝑈-𝑎..                                                                 (3)
	In this experiment, the wave-like behavior of electrons in a vacuum tube is demonstrated through diffraction on a polycrystalline graphite sample. Diffraction rings are observed on the fluorescent screen of the tube, surrounding a central spot along ...
	2𝑑𝑠𝑖𝑛(=𝑛(                                                                           (4)
	θ: The Bragg angle, n: the diffraction order (with n=1), d: the distance between the crystal planes.
	Figure 1: X-ray diffraction by a set of lattice planes hkl.
	Figure 2: X-ray diffraction tube.
	The diameter of the diffraction ring attributed to the Bragg angle θ is:
	𝐷=2.𝐿.𝑡𝑎𝑛2(                                                                         (5)
	For small Bragg angles, the diffraction ring diameter D can be approximated by the following formula:
	𝑑=(.,2.𝐿-𝐷.                                                                           (6)
	Using the previous relations, we find:
	Since graphite has a crystalline structure with two interplanar distances d1=2.13×10−10 m and d2=1.23×10−10m, two diffraction rings with average diameters D1 and D2 will be observed in the first diffraction order (n=1).
	Figure 3: a) Interplanar distances d1 and d2, b) Diffraction rings.
	IV. Materials and Equipment (1)
	Figure 4: Experimental setup for electron diffraction.
	V. Procedure (1)
	IV. Materials and Equipment (2)
	Figure 2: Experimental setup for mechanical testing.
	Dial indicator
	V. Procedure (2)
	IV. Materials and Equipment (3)
	V. Procedure (3)
	b) Vickers hardness
	 For one face, take several measurements and calculate the average (limit to three measurements for each face) for each metal using both hardness methods.
	 Present these measurements in a comparative table.
	 Interpret and discuss the results obtained, and draw conclusions.
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