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Résumé

Cette étude utilise la méthode de tir unidimensionnelle pour résoudre numéri-
quement un problème aux limites (BVP) gouverné par une équation différentielle
ordinaire (EDO). Ces types de problèmes apparaissent dans divers domaines
scientifiques et techniques, notamment la conduction thermique, la physique
des semi-conducteurs, l’électrochimie, les transferts thermiques, l’élasticité, la
thermoélasticité, la physique des plasmas, les matériaux à effets de mémoire et
la dynamique des populations.

Mots-clés : Méthode de tir, problèmes aux limites, solutions numériques,
EDO.



Abstract

This study employs the one-dimensional shooting method to numerically
solve a boundary value problem (BVP) governed by an ordinary differential
equation (ODE). Such BVPs arise in diverse scientific and engineering domains,
including thermal conduction, semiconductor physics, electrochemistry, heat
transfer, elasticity, thermoelasticity, plasma physics, materials with memory
effects, and population dynamics.

Keywords: Shooting method, boundary value problems, numerical solu-
tions, ODEs.
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Chapter 1

Introduction

The numerical resolution of differential equations is undoubtedly one of the
richest and most dynamic fields in numerical analysis, offering a wide range of
applications across various scientific and engineering domains. Whether in fluid
mechanics, heat conduction, electromagnetism, or structural analysis, differen-
tial equations play a fundamental role in modeling physical phenomena and
predicting their behavior under specific conditions.

Among the types of differential equations commonly encountered, initial
value problems and boundary value problems are of particular importance.
While the former can often be tackled using classic integration techniques, the
latter present unique challenges due to the necessity of satisfying constraints
at multiple points, typically at the boundaries of the domain. In such cases,
analytical solutions are rarely obtainable, which has led to the development and
refinement of numerous numerical methods.

This work is particularly focused on the shooting method, a powerful tech-
nique for solving boundary value problems associated with ordinary differential
equations (ODEs). The shooting method transforms a boundary value prob-
lem into an initial value problem by guessing the missing initial condition(s),
integrating the ODE, and adjusting the guess iteratively until the boundary
condition at the other end is satisfied. Despite its conceptual simplicity, the
method is both effective and versatile, especially when combined with robust
root-finding algorithms like the secant method or Newton-Raphson method.

To build a comprehensive understanding, we begin by revisiting foundational
numerical methods used for solving initial value problems. These include the
Taylor method, the fourth-order Runge-Kutta method—well known for its bal-
ance between accuracy and computational efficiency—and the secant method,
which aids in refining estimates for boundary conditions in the context of shoot-
ing. These techniques form the core of the first chapter, providing the necessary
mathematical and computational tools for the remainder of the study.

In the second chapter, we introduce the shooting method in detail, elucidat-
ing its theoretical foundation and practical implementation. Through a guided
example, we demonstrate the step-by-step procedure involved in its application
and discuss its advantages and limitations. This method, as developed and an-
alyzed in several key studies [1,2], continues to be widely used in both academic
research and industrial simulations, as further illustrated by references [3–8].

The third and final chapter is dedicated to applying the shooting method

1



to a specific and illustrative tow case: Solving the boundary value problem.
This classic example not only showcases the utility of the shooting method
but also provides an opportunity to compare the numerical solution obtained
with those derived from alternative analytical or approximate approaches. The
comparative analysis highlights the precision and adaptability of the method,
particularly in nonlinear contexts where analytical solutions may not exist or
may be intractable.

The overarching goal of this memoir is to provide a structured and practi-
cal pathway toward mastering one of the fundamental techniques in numerical
differential equation solving. Beyond the theoretical exposition, our empha-
sis on examples and implementation serves to bridge the gap between abstract
mathematics and real-world applications.

In summary, this work is organized as follows:

� Chapter 2 presents foundational numerical methods for initial value prob-
lems.

� Chapter 3 introduces and explains the shooting method in detail.

� Chapter 4 applies the shooting method to the pendulum problem, with
analysis and comparison of results.

Through this journey, we aim to demonstrate not only the mathematical
rigor behind these techniques but also their practical relevance and effectiveness
in solving complex boundary value problems.

2



Chapter 2

Numerical Methods

In this chapter, we present four numerical methods: the Taylor method and the
Runge-Kutta method for solving differential equations, and the Newton lmethod
for finding the roots of nonlinear equations. These methods are used to obtain
approximate solutions when analytical approaches are difficult or impossible.

2.1 Taylor Methods

We will limit ourselves, however, to the second-order Taylor method. We aim
to approximate the solution at time t = tn+1, given the value at time t = tn.
We immediately have:

y(tn+1) = y(tn + h)

y(tn+1) = y(tn) + y′(tn)h+
y′′(tn)h

2

2
+O(h3)

Using the differential equation:{
y′(t) = f(t, y(t))

y(t0) = y0

we find:

y(tn+1) = y(tn) + f(tn, y(tn))h+
f ′(tn, y(tn))h

2

2
+O(h3)

In the previous expression, the derivative of the function f(t, y(t)) with re-
spect to time appears. The chain rule gives us:

f ′(t, y(t)) =
∂f(t, y(t))

∂t
+

∂f(t, y(t))

∂y
· y′(t)

that is:

f ′(t, y(t)) =
∂f(t, y(t))

∂t
+

∂f(t, y(t))

∂y
· f(t, y(t))

Therefore, we obtain:

y(tn+1) = y(tn)+hf(tn, y(tn))+
h2

2

(
∂f(tn, y(tn))

∂t
+

∂f(tn, y(tn))

∂y
· f(tn, y(tn))

)
+O(h3)

3



By neglecting terms of order 3 and higher, we arrive at the formula:

y(tn+1) ≈ y(tn)+hf(tn, y(tn))+
h2

2

(
∂f(tn, y(tn))

∂t
+

∂f(tn, y(tn))

∂y
· f(tn, y(tn))

)
which forms the basis of the Taylor method

Exemple 2.1.1

Find the solution of the boundary value problem

u′′ = u+ x, x ∈ [0, 1]

u(0) = 0, u(1) = 0

using the shooting method. Use the fourth order Taylor series method to solve
the initial value problem with h = 0.2. We take u′(0) = 1

2 . The Taylor series
method gives

un+1 = un + hu′
n +

h2

2
u′′
n +

h3

6
u′′′
n +

h4

24
u(4)
n

= un + hu′
n +

h2

2
(un + xn) +

h3

6
(u′

n + 1) +
h4

24
(un + xn)

=

(
1 +

h2

2
+

h4

24

)
un +

(
h+

h3

6

)
u′
n +

(
h2

2
+

h4

24

)
xn +

h3

6

u′
n+1 = u′

n + hu′′
n +

h2

2
u′′′
n +

h3

6
u(4)
n

=

(
1 +

h2

2

)
u′
n +

(
h+

h3

6

)
un +

(
h+

h3

6

)
xn +

h2

2

With h = 0.2, we have

un+1 = 0.00133 + 0.02007xn + 1.02007un + 0.20133u′
n

u′
n+1 = 0.02 + 0.20133xn + 0.20133un + 1.02u′

n

We get:
u(0.2) ≈ u2 = 0.10200, u′(0.2) ≈ u′

2 = 0.53000

u(0.4) ≈ u3 = 0.21610, u′(0.4) ≈ u′
3 = 0.62140

u(0.6) ≈ u4 = 0.35490, u′(0.6) ≈ u′
4 = 0.77787

u(0.8) ≈ u5 = 0.53200, u′(0.8) ≈ u′
5 = 1.00568

u(1.0) ≈ u6 = 0.76254, u′(1.0) ≈ u′
6 = 1.31397

Let the second choice of the initial slope be u′(0) = − 1
2 . We get:

u(0.2) ≈ u2 = −0.09934, u′(0.2) ≈ u′
2 = −0.49000

u(0.4) ≈ u3 = −0.19464, u′(0.4) ≈ u′
3 = −0.45953

u(0.6) ≈ u4 = −0.28171, u′(0.6) ≈ u′
4 = −0.40738

u(0.8) ≈ u5 = −0.35601, u′(0.8) ≈ u′
5 = −0.33145

u(1.0) ≈ u6 = −0.41250, u′(1.0) ≈ u′
6 = −0.22869

4



We have:

c2 =
0− 0.76254

−1.17504
= 0.64895, c1 = 1− c2 = 0.35105

Hence,
u(x) = 0.35105u1(x) + 0.64895u2(x)

We find:

u(0.2) = 0.35105u1(0.2)+0.64895u2(0.2) = 0.35105(0.10200)+0.64895(−0.09934) ≈ −0.02866

u(0.4) = 0.35105u1(0.4)+0.64895u2(0.4) = 0.35105(0.21610)+0.64895(−0.19464) ≈ −0.05045

Similarly, we get:

u(0.6) ≈ −0.05823, u(0.8) ≈ −0.04427, u(1.0) ≈ −0.000002

The exact solution is:

u(0.2) = −0.02868, u(0.4) = −0.05048, u(0.6) = −0.05826

u(0.8) = −0.04429, u(1.0) = 0

2.1.1 Algorithm of the Second-Order Taylor Method

1. Given:

� a time step h,

� an initial condition (t0, y0),

� and a maximum number of iterations N .

2. For 0 ≤ n ≤ N :

yn+1 = yn + hf(tn, yn) +
h2

2

(
∂f(tn, yn)

∂t
+

∂f(tn, yn)

∂y
f(tn, yn)

)
tn+1 = tn + h

Print or record tn+1 and yn+1.

3. Stop.

2.2 Runge-Kutta methods

We first explain the principle involved in the Runge-Kutta methods. By the
Mean Value Theorem any solution of

u′ = f(t, u), u(t0) = η0, t ∈ [t0, b]

satisfies

u(tj+1) = u(tj) + hu′(tj + θh) = u(tj) + hf(tj + θh, u(tj + θh)), 0 < θ < 1

5



For θ = 1
2 , we have

u(tj+1) = u(tj) + hf

(
tj +

h

2
, u

(
tj +

h

2

))
Euler’s method with spacing h/2 gives

u

(
tj +

h

2

)
≈ uj +

h

2
fj

Thus, we have the approximation

uj+1 = uj + hf

(
tj +

h

2
, uj +

h

2
fj

)
which may be written as

K1 = hfj

K2 = hf

(
tj +

h

2
, uj +

1

2
K1

)
uj+1 = uj +K2 (2.2.1)

Alternatively, again using Euler’s method, we proceed as follows:

u′
(
tj +

h

2

)
≈ 1

2
(u′(tj) + u′(tj + h)) ≈ 1

2
[f(tj , uj) + f(tj + h, uj + hfj)]

and thus we have the approximation

uj+1 = uj +
h

2
[f(tj , uj) + f(tj + h, uj + hfj)] (2.2.2)

which may be written as

K1 = hf(tj , uj)

K2 = hf(tj + h, uj +K1)

uj+1 = uj +
1

2
(K1 +K2) (2.2.3)

This method is also called Euler-Cauchy method.
Either (2.2.2) or (2.2.3) can be regarded as

uj+1 = uj + h (average slope) (2.2.4)

This is the underlying idea of the Runge-Kutta approach. In general, we find
the slope at tj and at several other points, average these slopes, multiply by h
and add the result to uj . Thus the Runge-Kutta method with v slopes can
be written as

K1 = hf(tj , uj)

K2 = hf(tj + c2h, uj + a21K1)

K3 = hf(tj + c3h, uj + a31K1 + a32K2)

K4 = hf(tj + c4h, uj + a41K1 + a42K2 + a43K3)

...

Kv = hf

(
tj + cvh, uj +

v−1∑
i=1

aviKi

)

6



and
uj+1 = uj +W1K1 +W2K2 + · · ·+WvKv (2.2.5)

From (2.2.5), we may interpret the increment function as the linear com-
bination of the slopes at tj and at several other points between tj and tj+1.
Further, knowing the values of the quantities on the right-hand side of (2.2.5),
the solution value uj+1 may be obtained directly. Thus, (2.2.5) represents the
explicit Runge-Kutta method with v slopes. To determine the parameters
c’s, a’s and w’s in (2.2.5), we expand uj+1 in powers of h such that it agrees
with the Taylor series expansion of the solution of the differential equation up
to a certain number of terms.

Consider the following Runge-Kutta method with two slopes:

K1 = hf(tj , uj)

K2 = hf(tj + c2h, uj + a21K1) (2.2.6)

uj+1 = uj +W1K1 +W2K2

where the parameters c2, a21,W1 and W2 are chosen to make uj+1 closer to
u(tj+1). Now Taylor’s series gives

u(tj+1) = u(tj) + hu′(tj) +
h2

2!
u′′(tj) +

h3

3!
u′′′(tj) + · · ·

= u(tj)+hf(tj , u(tj))+
h2

2!
(ft+ffu)t+

h3

3!

[
ftt + 2ftfu + f2fuu + fu(ft + ffu)

]
t
+· · ·

(2.2.7)
We also have

K1 = hfj

K2 = hf(tj+c2h, uj+a21fj) = hfj+h(c2ft+a21ffu)t+
h2

2

(
c22ftt + 2c2a21ftfu + a221f

2fuu
)
t
+· · ·

Substituting the values of K1 and K2 in (2.2.6), we get

uj+1 = uj+(W1+W2)hfj+h2(W2c2ft+W2a21ffu)t+
h3

2
W2

(
c22ftt + 2c2a21ftfu + a221f

2fuu
)
t
+· · ·

(2.2.8)
Comparing the coefficients of various powers of h in (2.2.7) and (2.2.8), we

obtain
W1 +W2 = 1

c2W2 =
1

2

a21W2 =
1

2

The solution of this system is

a21 = c2, W2 =
1

2c2
, W1 = 1− 1

2c2
(2.2.9)

where c2 ̸= 0 is arbitrary. Substituting (2.2.9) in (2.2.8), we get

uj+1 = uj + hfj +
h2

2
(ft + ffu)t +

h3c2
4

(ftt + 2ftfu + f2fuu)t + · · · (2.2.10)

7



The local truncation error is given by

Tj+1 = u(tj+1)−uj+1 = h3

[(
1

6
− c2

4

)
(ftt + 2ftfu + f2fuu)t +

1

6
(fu(ft + ffu))t + · · ·

]
(2.2.11)

which shows that the method (2.2.6) is of second order. The free parameter
c2 is usually taken between 0 and 1. Sometimes c2 is chosen such that one
of the W ’s in the method (2.2.6) is zero or the truncation error is minimized.
minimum. Such a formula is called an optimal formula.

It may be noted that every Runge-Kutta method should reduce to a quadra-
ture formula when f(t, u) is independent of u with W ’s as weights and c’s as
abscissas.

If c2 = 1
2 , we get

uj+1 = uj + hf

(
tj +

h

2
, uj +

h

2
fj

)
which is the Euler’s method with spacing h/2. It reduces to the mid-point
quadrature rule when f(t, u) is independent of u.

For c2 = 1, we get

uj+1 = uj +
h

2
[f(tj , uj) + f(tj + h, uj + hfj)]

which reduces to the trapezoidal rule when f(t, u) is independent of u.
For c2 = 2

3 , the truncation error is minimum. We have the optimal method

uj+1 = uj +
1

4
hfj +

3

4
hf(tj +

2

3
h, uj +

2

3
fj) (2.2.12)

We note that the second order method (2.2.6) requires two function evalua-
tions for each step of integration. Similarly, we find that the third and fourth
order methods require three and four function evaluations respectively for each
step of integration. However, for 5 ≤ v ≤ 7, the order of the methods becomes
v − 1 only. For v ≥ 8, the order of the method reduces further to v − 2.

The following two equations occur typically in all Runge-Kutta methods of
the form (2.2.5)

ci =

i−1∑
j=1

aij , i = 2, 3, . . . , v

and
v∑

j=1

Wj = 1

The number of unknown parameters are then v(v + 1)/2.
We now list the second, third and fourth order Runge-Kutta methods.
Second Order Methods

c2 a21 W1 W2
1
2

1
2 0 1 (Euler’s method with spacing h/2)

1 1 1
2

1
2

2
3

2
3

1
4

3
4 (Optimal)

8



Third Order Methods

c2 a21
c3 a31 a32

W1 W2 W3

1
3

1
3

2
3 0 2

3
1
4 0 3

4

Nyström

1
2

1
2

3
4 0 3

4
2
9

1
3

4
9

Nearly optimal

1 −1 2
1
6

4
6

1
6

Classical

1
3 0
2
3

2
3 0
1
4 0 3

4

Heun

Fourth Order Methods

c2 a21
c3 a31 a32
c4 a41 a42 a43

W1 W2 W3 W4

1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

Classical

1
3

1
3

2
3 1 −1 1

1
8

3
8

3
8

1
8

Kutta

2.3 Runge-Kutta Method (4th Order)

du

dt
= f(t, u), u(t0) = η

may be written as:

uj+1 = uj +
1

6
(K1 + 2K2 + 2K3 +K4)

where

K1 =


K11

K21

...
Kn1

 , K2 =


K12

K22

...
Kn2

 , K3 =


K13

K23

...
Kn3

 , K4 =


K14

K24

...
Kn4


9



and

Ki1 = hf(tj , u1,j , u2,j , . . . , un,j)

Ki2 = hf

(
tj +

h

2
, u1,j +

1

2
K11, u2,j +

1

2
K21, . . . , un,j +

1

2
Kn1

)

Ki3 = hf

(
tj +

h

2
, u1,j +

1

2
K12, u2,j +

1

2
K22, . . . , un,j +

1

2
Kn2

)

Ki4 = hf (tj + h, u1,j +K13, u2,j +K23, . . . , un,j +Kn3) , i = 1(1)n

In explicit form:


u1,j+1

u2,j+1

...
un,j+1

 =


u1,j

u2,j

...
un,j

+
1

6



K11

K21

...
Kn1

+ 2


K12

K22

...
Kn2

+ 2


K13

K23

...
Kn3

+


K14

K24

...
Kn4




Example 2.3.1

Solve the initial value problem:

u′ = −2tu2, u(0) = 1

with h = 0.2 on the interval [0, 1]. Use the fourth-order classical Runge-
Kutta method.

For j = 0:

t0 = 0, u0 = 1

K1 = hf(t0, u0) = −2(0)(1)2 = 0

K2 = hf

(
t0 +

h

2
, u0 +

1

2
K1

)
= −2

(
0.2

2

)
(1)2 = −0.04

K3 = hf

(
t0 +

h

2
, u0 +

1

2
K2

)
= −2

(
0.2

2

)
(0.98)2 = −0.038416

K4 = hf(t0 + h, u0 +K3) = −2(0.2)(0.961584)2 = −0.0739715

u(0.2) ≈ u1 = 1 +
1

6
(0− 0.08− 0.076832− 0.0739715) = 0.9615328

For j = 1:

10



t1 = 0.2, u1 = 0.9615328

K1 = hf(t1, u1) = −2(0.2)(0.9615328)2 = −0.0739636

K2 = hf

(
t1 +

h

2
, u1 +

K1

2

)
= −2(0.2)(0.3)(0.924551)2 = −0.1025754

K3 = hf

(
t1 +

h

2
, u1 +

K2

2

)
= −2(0.2)(0.3)(0.9102451)2 = −0.0994255

K4 = hf(t1 + h, u1 +K3) = −2(0.2)(0.4)(0.8621073)2 = −0.1189166

u(0.4) ≈ u2 = 0.9615328+
1

6
(−0.0739636−2(0.1025754)−2(0.0994255)−0.1189166)

= 0.9615328+
1

6
(−0.0739636−0.2051508−0.1988510−0.1189166) = 0.8620525

Similarly, we get:

u(0.6) ≈ u3 = 0.7352784

u(0.8) ≈ u4 = 0.6097519

u(1.0) ≈ u5 = 0.5000073

Example 2.3.2

Solve the system of equations:

u′ = −3u+ 2v, u(0) = 0

v′ = 3u− 4v, v(0) =
1

2

with h = 0.2 on the interval [0, 1]. Use the Euler-Cauchy method.
For j = 0:

t0 = 0, u0 = 0, v0 = 0.5

K11 = hf1(t0, u0, v0) = 0.2(−3 · 0 + 2 · 0.5) = 0.2

K21 = hf2(t0, u0, v0) = 0.2(3 · 0− 4 · 0.5) = −0.4

K12 = hf1(t0 + h, u0 +K11, v0 +K21) = 0.2[−3(0+ 0.2)+ 2(0.5− 0.4)] = −0.08

11



K22 = hf2(t0 + h, u0 +K11, v0 +K21) = 0.2[3(0 + 0.2)− 4(0.5− 0.4)] = 0.04

u(0.2) ≈ u1 = u0 +
1

2
(K11 +K12) = 0.06

v(0.2) ≈ v1 = v0 +
1

2
(K21 +K22) = 0.32

For j = 1:

t1 = 0.2, u1 = 0.06, v1 = 0.32

K11 = hf1(t1, u1, v1) = 0.2(−3 · 0.06 + 2 · 0.32) = 0.092

K21 = hf2(t1, u1, v1) = 0.2(3 · 0.06− 4 · 0.32) = −0.22

K12 = hf1(t1+h, u1+K11, v1+K21) = 0.2[−3(0.06+0.092)+2(0.32−0.22)] = −0.0512

K22 = hf2(t1+h, u1+K11, v1+K21) = 0.2[3(0.06+0.092)−4(0.32−0.22)] = 0.0112

u(0.4) ≈ u2 = u1 +
1

2
(K11 +K12) = 0.0804

v(0.4) ≈ v2 = v1 +
1

2
(K21 +K22) = 0.2156

Similarly, we get:

u(0.6) ≈ u3 = 0.082152, v(0.6) ≈ v3 = 0.152456

u(0.8) ≈ u4 = 0.079309, v(0.8) ≈ v4 = 0.112359

u(1.0) ≈ u5 = 0.069000, v(1.0) ≈ v5 = 0.086190

2.3.1 Algorithme for Runge-Kutta methods

Given the initial value problem:

u′ = f(t, u), u(t0) = u0

with step size h, the algorithm proceeds as follows:

1. Initialize: t = t0, u = u0

2. For each step j = 0, 1, 2, . . .:

K1 = h · f(tj , uj)

K2 = h · f
(
tj +

h

2
, uj +

1

2
K1

)
uj+1 = uj +K2

tj+1 = tj + h

12



2.4 Implicit Runge-Kutta Methods

The implicit Runge-Kutta method using v slopes is defined as:

Ki = hf

(
tj + cih, uj +

v∑
m=1

aimKm

)

uj+1 = uj +

v∑
m=1

WmKm (2.4.1)

where

ci =

v∑
j=1

aij , i = 1, 2, . . . , v

and aij , 1 ≤ i, j ≤ v, W1,W2, . . . ,Wv are arbitrary parameters. The slopes
Km are defined implicitly. The number of unknown parameters are v(v + 1).

We now give the derivation for the case v = 1. We have:

K1 = hf(tj + c1h, uj + a11K1)

uj+1 = uj +W1K1 (2.4.2)

The Taylor series gives

u(tj+1) = u(tj)+hu′(tj)+
h2

2
u′′(tj)+· · · = u(tj)+hf(tj , u(tj))+

h2

2
(ft+ffu)tj+· · ·

and

K1 = hf(tj , uj) + c1hft + a11K1fu + · · · = (hf + c1h
2ft + a11hfK1fu) +O(h3)

= hf + h2(c1ft + a11ffu)tj +O(h3) (2.4.3)

Substituting (2.4.2) into (2.4.3) and comparing the coefficients of h and h2,
we get

c1 = a11, W1 = 1, W1c1 =
1

2

We obtain

W1 = 1, c1 = a11 =
1

2

The second order implicit Runge-Kutta method becomes

K1 = hf(tj +
1
2h, uj +

1
2K1)

uj+1 = uj +K1 (2.4.4)

For v = 2, the implicit Runge-Kutta method (2.4.1) becomes

K1 = hf(tj + c1h, uj + a11K1 + a12K2)

K2 = hf(tj + c2h, uj + a21K1 + a22K2)

uj+1 = uj +W1K1 +W2K2 (2.4.5)
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where the parameter values

W1 = 1
2 , W2 = 1

2

c1 =
3 +

√
3

6
, c2 =

3−
√
3

6

a11 = 1
4 , a12 = 1

4 +
√
3
6

a21 = 1
4 −

√
3
6 , a22 = 1

4 (2.4.6)

lead to a fourth order method.

Example 2.4.1

Solve the initial value problem

u′ = −2tu2, u(0) = 1

with h = 0.2 on the interval [0, 1]. Use the second order implicit Runge-
Kutta method. The second order implicit Runge-Kutta method is given by

uj+1 = uj +K1, j = 0, 1, 2, 3, 4

K1 = hf

(
tj +

h

2
, uj +

1

2
K1

)
which gives

K1 = −h(2tj + h)

(
uj +

1

2
K1

)2

or

h(2tj + h)K2
1 + 4(1 + huj(2tj + h))K1 + 4h(2tj + h)u2

j = 0

Solving it as a quadratic in K1, we get

K1 =
−4(1 + huj(2tj + h)) +

√
16 + 32huj(2tj + h)

2h(2tj + h)

For j = 0, t0 = 0, u0 = 1,

K1 =
−4(1 + .2 · (2 · 0)) +

√
16 + 32 · (.2) · (2 · 0)

2 · (.2) · 2
= −0.0384759

u(0.2) ≈ u1 = u0 +K1 = 1− 0.0384759 = 0.9615241

For j = 1, t1 = 0.2, u1 = 0.9615241,

K1 =
−4(1 + .12 · 0.9615241) +

√
16 + 3.84 · 0.9615241

0.24
= −0.0997344

u(0.4) ≈ u2 = u1 +K1 = 0.9615241− 0.0997344 = 0.8617897

Similarly, we get
u(0.6) ≈ u3 = 0.7343987

u(0.8) ≈ u4 = 0.6082158

u(1.0) ≈ u5 = 0.4980681
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2.5 Newton’s methods

Newton’s method can be motivated by the mean value theorem. Let xn−1

approximate the root x∞ of the equation g(x) = 0. According to the mean
value theorem,

g(xn−1) =
g(xn−1)− g(x∞)

g′(z)
= g′(z)(xn−1 − x∞)

For some z on the interval between xn−1 and x∞. If we substitute xn−1 for z
and the next approximant xn for x∞, then this equality can be rearranged to
provide the definition

xn = xn−1 −
g(xn−1)

g′(xn−1)
(2.5.1)

of Newton’smethod. From the perspective of functional iteration, Newton’s
method can be rephrased as xn = f(xn−1), where f(x) = x − g(x)/g′(x).
Newton’s method applied to a typical function g(x), starting from x0 = 1
and moving toward the unique root of g(x) = 0 on (0,∞). The iterate xn is
taken as the point of intersection of the x-axis and the tangent drawn through
[xn−1, g(xn−1)]. The method fails to converge if x0 is chosen too far to the left
or right.

The local convergence properties of Newton’s method are determined by

f ′(x∞) = 1− g′(x∞)

g′(x∞)
+

g(x∞)g′′(x∞)

g′(x∞)2
= 0.

If we let en = xn − x∞ be the current error in approximating x∞, then
executing a second-order Taylor expansion around x∞ yields

en = f(xn−1)− f(x∞) = f ′(x∞)en−1 +
1

2
f ′′(z)e2n−1 (2.5.2)

=
1

2
f ′′(z)e2n−1,

where z again lies between xn−1 and x∞. Provided f ′′(z) is continuous and
x0 is close enough to x∞, the error representation (2.5.2) makes it clear that
Newton’s method converges and that

lim
n→∞

en
e2n−1

=
1

2
f ′′(x∞).

This property is referred to as quadratic convergence. If an iteration function
f(x) satisfies 0 < |f ′(x∞)| < 1, then a first-order Taylor expansion implies
limn→∞ en/en−1 = f ′(x∞), which is referred to as linear convergence.

All else being equal, quadratic convergence is preferred to linear convergence.
In practice, Newton’smethod can fail miserably if started too far from a desired
root x∞. Furthermore, it can be expensive to evaluate the derivative g′(x).
For these reasons, simpler, more robust methods such as bisection are often
employed instead of Newton’s method. The following two examples highlight
favorable circumstances ensuring global convergence of Newton’s method on a
properly defined domain.
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Example2.5.1

We apply Newton’s Method to approximate a root of the function

f(x) = x3 − 2x− 5.

Step 1: Compute the derivative

f ′(x) = 3x2 − 2.

Step 2: Newton’s Iteration Formula

Newton’s iteration formula is

xn+1 = xn − f(xn)

f ′(xn)
.

Step 3: Choose an Initial Guess

Let us choose x0 = 2.

Step 4: Perform Iterations

� x1 = 2− f(2)
f ′(2) = 2− 8−4−5

12−2 = 2− −1
10 = 2.1

� x2 = 2.1− f(2.1)
f ′(2.1) ≈ 2.1− 9.261−4.2−5

13.23−2 ≈ 2.1− 0.061
11.23 ≈ 2.09457

� x3 ≈ 2.09455

Conclusion

After a few iterations, Newton’s Method converges to a root near

x ≈ 2.09455,

which satisfies f(x) = 0.

2.5.1 Algorithme for Newton methods
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Algorithm 1 Newton’s Method for Root Finding

1: Input: Function f(x), derivative f ′(x), initial guess x0, tolerance ε, maxi-
mum iterations N

2: Output: Approximate root x
3: for n = 0 to N − 1 do
4: Compute f(xn) and f ′(xn)
5: if |f ′(xn)| < 10−12 then
6: Error: Derivative too small
7: Exit
8: end if

9: xn+1 = xn − f(xn)

f ′(xn)
10: if |xn+1 − xn| < ε then
11: Return xn+1 as the root
12: end if
13: end for
14: Warning: Maximum iterations reached without convergence

17



Chapter 3

Shooting Method

In the shooting method, we solve the initial value problem

u′′ = f(x, u, u′) (3.0.1)

u(a) = r1, u′(a) = α (3.0.2)

where α is some approximation of the initial slope. Using any of the methods
for solving the initial value problems, the approximation u(1)(b) to the solution
u(b) is determined. This value is either smaller or larger than the required
solution u(b) = r2.

Let us denote g(α0) = u(1)(b)− u(b), where α0 is the first approximation of
α. If g(α0) = 0, then the condition at x = b is satisfied. If this condition is not
satisfied, then we repeat the above procedure using u′(a) = α1 to find another
estimate u(2)(b) for u(b). The process is usually repeated until the computed
value at x = b agrees with the boundary condition u(b).

The shooting method defines a functional relationship g(α) = 0, between
u(b) and the initial slope u′(a) . The problem is then to find the root of this
equation. This root cannot be determined by the Newton-Raphson method and
the secant method is often used. Secant method gives:

αn+1 = αn −
[

αn − αn−1

g(αn)− g(αn−1)

]
g(αn), n = 1, 2, . . . (3.0.3)

We have:

α2 = α1 −
[

α1 − α0

u(2)(b)− u(1)(b)

]
g(α1) (3.0.4)

α3 = α2 −
[

α2 − α1

u(3)(b)− u(2)(b)

]
g(α2) (3.0.5)

If the differential equation is linear, then the shooting method becomes very
simple. It can be shown that the function relationship g(α) = 0 between u′(a)
and u(b) is also linear. We suppose that we have computed two solutions u1(x)
and u2(x) of the differential equation. Both the solutions are obtained using
the same initial value u1(a) = r1 = u2(a), but different initial slopes u′

1(a)
and u′

2(a). Then, by the superposition principle, the solution of the differential
equation can be written as:
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u(x) = c1u1(x) + c2u2(x) (3.0.6)

We have:
u(a) = γ1 = c1γ1 + c2γ1 (3.0.7)

or

c1 + c2 = 1 (3.0.8)

and

u(b) = γ2 = c1u1(b) + c2u2(b) (3.0.9)

Solving equations, we get:

c2 =
γ2 − u1(b)

u2(b)− u1(b)
, c1 = 1− c2 (3.0.10)

Substituting back, we get the solution of the differential equation

Exemple

Find the solution of the boundary value problem using the shooting method
and the fourth-order Taylor series method with h = 0.2:

u′′ = u′ + x2, x ∈ [0, 1], u(0) = 0, u(1) = 0

We assume u′(0) = α, and integrate using the Taylor method.

Step 1: Derivatives

Given:
u′′ = u′ + x2

u′′′ = u′′ + 2x = u′ + x2 + 2x

u(4) = u′′′ + 2 = u′ + x2 + 2x+ 2

Step 2: Taylor series formula

un+1 = un + hu′
n +

h2

2
u′′
n +

h3

6
u′′′
n +

h4

24
u(4)
n

u′
n+1 = u′

n + hu′′
n +

h2

2
u′′′
n +

h3

6
u(4)
n

With h = 0.2, we compute:

h2 = 0.04, h3 = 0.008, h4 = 0.0016
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Step 3: First trial with u′(0) = 0.5

u0 = 0, u′
0 = 0.5

Using the Taylor method, we compute the following (rounded):

x u(x) u′(x)
0.0 0.00000 0.50000
0.2 0.11080 0.61330
0.4 0.23891 0.75172
0.6 0.38746 0.92171
0.8 0.55953 1.12987
1.0 0.75804 1.38335

Step 4: Second trial with u′(0) = −0.5

u0 = 0, u′
0 = −0.5

Results:

x u(x) u′(x)
0.0 0.00000 −0.50000
0.2 −0.09080 −0.38670
0.4 −0.17891 −0.24828
0.6 −0.26171 −0.07829
0.8 −0.33753 0.12987
1.0 −0.40804 0.38335

Step 5: Linear combination to satisfy u(1) = 0

We seek constants c1, c2 such that:

u(x) = c1u1(x) + c2u2(x), u(1) = 0

c2 =
0− u1(1)

u2(1)− u1(1)
=

−0.75804

−0.40804− 0.75804
=

−0.75804

−1.16608
≈ 0.6500

c1 = 1− c2 = 0.3500

Step 6: Final approximate solution

u(x) = 0.35u1(x) + 0.65u2(x)

x u(x)
0.0 0.00000
0.2 −0.0202
0.4 −0.0327
0.6 −0.0086
0.8 0.0135
1.0 0.00000
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Chapter 4

Application of the Shooting
Method

The shooting method is an approach for solving boundary value problems by
converting them into initial value problems. This involves imposing additional
conditions at a single point and iteratively adjusting them until the boundary
conditions at the other end are met.

In practice, the shooting method tends to be slow. Consequently, finite dif-
ference methods are generally preferred for solving boundary value problems.

The following Corollary establishes general conditions that ensure the exis-
tence and uniqueness of a solution to a second-order boundary value problem
[23,25].

4.1 Corollary

Let p(t) be a C1-function, p(t) : R+ → R+, which is non-increasing. Consider a
linear two-point boundary value problem of the form

u′′ + p(t)u′ +
1

α
p′(t)u = 0, (4.1.1)

subject to the boundary conditions

u(0) = ζ, u′(0) = −2γ′ζ,

where

γ′ >
1

2
, ζ > 0, α > 1 ∈ R+, t ≥ 0.

Under these conditions, the problem admits a unique solution.
These results guarantee the existence and uniqueness of the solution to the

two-point boundary value problem under consideration. Consider the solution
of the boundary value problem (3.1.1). In the shooting method, ws solve the
initial value problem

γ′ >
1

2
, α > 1, t ≥ 0 ∈ R+, u0 = 1, uT = 0
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u′′ +
γ′(α+ 1)

2αγ′t+ 1
u′ − 2 (γ′)

2
(α+ 1)

(2αγ′t+ 1)
2 u = 0

Clearly, the analytic solution to the IVP is given by

u(t) =

(
2α

γ′

ζα
t+ ζ−α

)−1
α

Consider the second-order differential equation

u′′ = −p(t)u′ − 1

α
p′(t)u = f (t, u, u′) , (4.1.2)

subject to the boundary conditions

u(0) = ζ, u(T ) = β. (4.1.3)

First, Eq. (3.1.2) is written in terms of a system of two first-order differential
equations:

{
u′ = v
v′ = f (t, u, v)

A shooting method works with the initial value problem

u′′ = f (t, u, u′) , (4.1.4)

subject to the boundary conditions

u(0) = ζ, u′(0) = λ. (4.1.5)

which is usually treated as a system u′ = v
v′ = f (t, u, v)
u(0) = ζ, v(0) = λ

finding a value of λ that gives a solution satisfying u(T ) = β.

uλ(t) represents the solution of the initial value problem (3.1.4)-(3.1.5) trying
to find a root of the linear function

R(λ) ≡ uλ(T )− β

u0(t) is the solution of (3.1.4)-(3.1.5) with λ = 0, and w(t) is the solution of
the corresponding homogeneous ordinary differential equation satisfying w(0) =
0, w′(0) = 1. Then

uλ(t) = u0(t) + λw(t)

and thus
R(λ) ≡ u0(T ) + λw(T )− β

We want to select λ so that

u0(T ) + λw(T ) = β
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R(λ) is linear. Using the equation of the straight line

λn = λn−1 −
(

λn−1 − λn−2

R(λn−1)−R(λn−2)

)
R(λn−1), λ0 =

uT − u(0)

T − 0
, λ1 = 1.001λ0

To apply Secant method, Eq. (3.1.4) is written in terms of two first-order
differential equations,

u′ = v, v′ = −p(t)v − 1

α
p′(t)u, (4.1.6)

subject to the boundary conditions

u(0) = ζ, u(T ) = β. (4.1.7)

Let us denote the missing slope by

u′(0) = λ. (4.1.8)

As an example, consider the solution of Eq. (3.1.4)-(3.1.5) for γ′ = 0.6, ζ =

1, α = 1.1, p = γ′(α+1)
2αγ′t+1 , p

′ = − 2(γ′)
2
(α+1)

(2αγ′t+1)2
. As a first approximation, let us

assume the missing initial slope to be u′(0) = λ1 = −1.2
Iteration Table:

Iteration λn R(λn) Error (| R(λn) |)
0 -1.000000 0.496862 0.496862
1 -1.200000 0.151311 0.151311
2 -1.287577 -0.000001 0.000001
3 -1.287576 0.000000 0.000000

The missing initial slope λ is approximately: -1.287575920052582

4.2 Solving the Boundary Value Problem

We aim to solve the boundary value problem (BVP):

u′′ + p(t)u′ + q(t)u = 0,

with boundary conditions:

u(0) = ζ, u(T ) = β.

Define:

p(t) =
γ′(α+ 1)

2αγ′t+ 1
, q(t) = −2 (γ′)

2
(α+ 1)

(2αγ′t+ 1)
2 .

Rewrite the equation as a system of first-order ordinary differential equations
(ODEs). Let:

u1(t) = u(t), u2(t) = u′(t).

Then:
u′
1(t) = u2(t),

23



u′
2(t) = −p(t)u2(t) + q(t)u1(t).

Initialize parameters:

h =
T

N
, u1,0 = ζ, u2,0 = 0, v1,0 = 0, v2,0 = 1.

Using the Runge-Kutta method, for each i = 0, 1, . . . , N − 1, compute the
increments for both systems:

First System (u1,i, u2,i):

k1,1 = hu2,i, k1,2 = h [−p(ti)u2,i + q(ti)u1,i] ,

k2,1 = h

[
u2,i +

1

2
k1,2

]
, k2,2 = h

[
−p

(
ti +

h

2

)(
u2,i +

1

2
k1,2

)
+ q

(
ti +

h

2

)(
u1,i +

1

2
k1,1

)]
,

k3,1 = h

[
u2,i +

1

2
k2,2

]
, k3,2 = h

[
−p

(
ti +

h

2

)(
u2,i +

1

2
k2,2

)
+ q

(
ti +

h

2

)(
u1,i +

1

2
k2,1

)]
,

k4,1 = h [u2,i + k3,2] , k4,2 = h [−p(ti + h) (u2,i + k3,2) + q(ti + h) (u1,i + k3,1)] .

Update the values:

u1,i+1 = u1,i +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1),

u2,i+1 = u2,i +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2).

Second System (v1,i, v2,i):

k′1,1 = hv2,i, k′1,2 = h [−p(ti)v2,i + q(ti)v1,i] ,

k′2,1 = h

[
v2,i +

1

2
k′1,2

]
, k′2,2 = h

[
−p

(
ti +

h

2

)(
v2,i +

1

2
k′1,2

)
+ q

(
ti +

h

2

)(
v1,i +

1

2
k′1,1

)]
,

k′3,1 = h

[
v2,i +

1

2
k′2,2

]
, k′3,2 = h

[
−p

(
ti +

h

2

)(
v2,i +

1

2
k′2,2

)
+ q

(
ti +

h

2

)(
v1,i +

1

2
k′2,1

)]
,

k′4,1 = h
[
v2,i + k′3,2

]
, k′4,2 = h

[
−p(ti + h)

(
v2,i + k′3,2

)
+ q(ti + h)

(
v1,i + k′3,1

)]
.

Update the values:

v1,i+1 = v1,i +
1

6
(k′1,1 + 2k′2,1 + 2k′3,1 + k′4,1),

v2,i+1 = v2,i +
1

6
(k′1,2 + 2k′2,2 + 2k′3,2 + k′4,2).

The shooting method yields:

w2,0 =
β − u1,N

v1,N
.

Final solution:

W1 = u1,i + w2,0v1,i, W2 = u2,i + w2,0v2,i.

The output is:
(xi,W1,W2),

where W1 ≈ u(ti) and W2 ≈ u′(ti).

Approximate values of u(t) and v(t):
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t u(t) v(t) t u(t) v(t) t u(t) v(t)
0.0000 1.000000 -1.287576 0.6061 0.532873 -0.475584 1.2121 0.316898 -0.272165
0.0303 0.962308 -1.201701 0.6364 0.518709 -0.459151 1.2424 0.308737 -0.266340
0.0606 0.927079 -1.124778 0.6667 0.505030 -0.443720 1.2727 0.300752 -0.260764
0.0909 0.894052 -1.055522 0.6970 0.491808 -0.429210 1.3030 0.292932 -0.255422
0.1212 0.862997 -0.992851 0.7273 0.479017 -0.415547 1.3333 0.285273 -0.250303
0.1515 0.833749 -0.936058 0.7576 0.466629 -0.402664 1.3636 0.277766 -0.245391
0.1818 0.806152 -0.884500 0.7879 0.454621 -0.390496 1.3939 0.270407 -0.240677
0.2121 0.780064 -0.837587 0.8182 0.442972 -0.378986 1.4242 0.263187 -0.236148
0.2424 0.755352 -0.794781 0.8485 0.431660 -0.368084 1.4545 0.256102 -0.231793
0.2727 0.731896 -0.755599 0.8788 0.420668 -0.357742 1.4848 0.249146 -0.227603
0.3030 0.709586 -0.719609 0.9091 0.409978 -0.347921 1.5152 0.242315 -0.223569
0.3333 0.688323 -0.686431 0.9394 0.399576 -0.338586 1.5455 0.235602 -0.219682
0.3636 0.668019 -0.655739 0.9697 0.389447 -0.329707 1.5758 0.229004 -0.215934
0.3939 0.648599 -0.627259 1.0000 0.379582 -0.321263 1.6061 0.222517 -0.212318
0.4242 0.629996 -0.600769 1.0303 0.369968 -0.313231 1.6364 0.216136 -0.208829
0.4545 0.612157 -0.576101 1.0606 0.360590 -0.305574 1.6667 0.209857 -0.205459
0.4848 0.595039 -0.553140 1.0909 0.351438 -0.298265 1.6970 0.203679 -0.202206
0.5152 0.578602 -0.531777 1.1212 0.342501 -0.291287 1.7273 0.197597 -0.199063
0.5455 0.562786 -0.511803 1.1515 0.333771 -0.284623 1.7576 0.191609 -0.196028
0.5758 0.547555 -0.493104 1.1818 0.325239 -0.278254 1.7879 0.185713 -0.193098

Approximate values of u(t) and v(t):

t u(t) v(t) t u(t) v(t)
1.8182 0.179904 -0.190265 2.4242 0.078434 -0.148728
1.8485 0.174179 -0.187522 2.4545 0.073952 -0.147214
1.8788 0.168535 -0.184867 2.4848 0.069515 -0.145738
1.9091 0.162970 -0.182296 2.5152 0.065122 -0.144301
1.9394 0.157481 -0.179806 2.5455 0.060771 -0.142899
1.9697 0.152067 -0.177394 2.5758 0.056462 -0.141533
2.0000 0.146725 -0.175057 2.6061 0.052193 -0.140200
2.0303 0.141453 -0.172792 2.6364 0.047964 -0.138899
2.0606 0.136250 -0.170596 2.6667 0.043774 -0.137630
2.0909 0.131112 -0.168466 2.6970 0.039621 -0.136392
2.1212 0.126038 -0.166401 2.7273 0.035506 -0.135183
2.1515 0.121027 -0.164396 2.7576 0.031426 -0.134003
2.1818 0.116075 -0.162450 2.7879 0.027382 -0.132852
2.2121 0.111183 -0.160560 2.8182 0.023373 -0.131728
2.2424 0.106347 -0.158724 2.8485 0.019398 -0.130632
2.2727 0.101566 -0.156941 2.8788 0.015455 -0.129561
2.3030 0.096839 -0.155206 2.9091 0.011545 -0.128514
2.3333 0.092163 -0.153520 2.9394 0.007666 -0.127492
2.3636 0.087538 -0.151879 2.9697 0.003818 -0.126492
2.3939 0.082962 -0.150282 3.0000 -0.000000 -0.125515

u(T) with λ = -1.2875759200131718: 1.6776510736171701e-12
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4.3 System of First Order Initial Value Prob-
lems

Let the second order initial value problem be given as

u′′ − 4
(γ′)

2
(δ + 1)

ξδ (2δγ′t+ 1)
uδ+1 = 0 (4.3.1)

u(0) = ξ, u(T ) = β,

Define y1 = u. Then, we have the system

y′1 = u′ = y2, y′2 = u′′ = 4
(γ′)

2
(δ + 1)

ξδ (2δγ′t+ 1)
yδ+1
1

y1(0) = ξ, y1(T ) = β.

The system is given by[
y1
y2

]′
=

[
y2

4
(γ′)

2
(δ+1)

ξδ(2δγ′t+1)
yδ+1
1

]
,

[
y1(0)
y2(0)

]
=

[
ξ
s

]
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To apply Newton’s method, Eq. (3.3.1) is written in terms of two first-order
differential equations,

du

dt
= y2,

dy2
dt

= f(t, y1, y2) (4.3.2)

We denote the missing initial slope by

dy1
dt

(0) = s or y2(0) = s (4.3.3)

The problem is to find s such that the solution of Eq. (4.3.2), subject to the
initial condition (4.3.3), satisfies the boundary condition at the second point,
u(T ) = β. In other words, if the solutions of the initial value problem are
denoted by u(t, s) and y2(t, s), one searches for the value of s such that

u(T, s)− β = ϕ(s) = 0 (4.3.4)

For Newton’s method, the iteration formula for s is given by

s(n+1) = s(n) − ϕ(s(n))
∂ϕ(s(n))

∂s

(4.3.5)

or

s(n+1) = s(n) − u(T, s(n))− β
du(T,s(n))

ds

(4.3.6)

Example: If we take β = 0.23 , γ′ = 0.6,δ = 1.1 and ξ = 1

Iter s ϕ(s) dϕ
ds snew

1 1.00000000 5.110422× 1020 3.090169× 1020 -0.65376774
2 -0.65376774 2381.03628225 208287.52418781 -0.66519922
3 -0.66519922 1064.39906181 61357.16868982 -0.68254681
4 -0.68254681 473.57904276 18205.16799457 -0.70856025
5 -0.70856025 209.13406704 5463.43071932 -0.74683915
6 -0.74683915 91.24624437 1669.57499705 -0.80149152
7 -0.80149152 39.02747968 525.37307304 -0.87577679
8 -0.87577679 16.13575433 173.52422685 -0.96876527
9 -0.96876527 6.27357833 62.26088694 -1.06952803
10 -1.06952803 2.15774503 25.87616713 -1.15291538
11 -1.15291538 0.56118636 13.88473956 -1.19333287
12 -1.19333287 0.07179419 10.51749821 -1.20015903
13 -1.20015903 0.00160904 10.05047346 -1.20031913
14 -1.20031913 8.6× 10−7 10.03982902 -1.20031922

The method converged successfully to:

s = u′(0) = −1.200319

To determine ϕ′, we differentiate partially with respect to s all the equations
in ( 3.1.4) and ( 3.1.5)

v′′s = fus
(t, us, u

′
s)v + fu′

s
(t, us, u

′
s)v

′ (4.3.7)
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and t and s are independent,

v(0) = 0, v′(0) = 1, v =
∂us

∂s
(4.3.8)

Recall that us is defined as the solution of the problem

u′′
s = f(t, us, u

′
s) (4.3.9)

subject to the boundary conditions

us(0) = ξ, u′
s(0) = s (4.3.10)

In vector notation, define

y =

[
y1
y2

]
, f =

[
f1
f2

]
, b =

[
b0
b1

]
.

Then, we can write the system as

y′ = f(x,y), y(x0) = b.

Let an integer N > 0 be chosen and set h = (b−a)/N . Partition the interval
[a, b] into N subintervals with the mesh points

ti = a+ (i− 1)h for each i = 1, · · · , N.

Use the notation wij for each j = 0, 1, · · · , N and i = 1, 2 to denote an approx-
imation w1,i to u(ti); w2,i to u′(ti) . For the initial conditions, set

w1,0 = ξ; w2,0 = (β − ξ)/(b− a)

(β − ξ)/(b− a) is the slope of the straight line through (a, ξ) and (b, β).

k1,1 = hw2,i−1, k1,2 = hf(t, w1,i−1, w2,i−1),

k2,1 = hf(t+ h/2, w1,i−1 +
1
2k1,1, w2,i−1 +

1
2k1,2),

k3,1 = hf(t+ h/2, w1,i−1 +
1
2k2,1, w2,i−1 +

1
2k2,2),

k4,1 = hf(t+ h,w1,i−1 + k3,1, w2,i−1 + k3,2),

w1,i = w1,i−1 +
1

6
(k1,1 + 2k2,1 + 2k3,1 + k4,1),

w2,i = w2,i−1 +
1

6
(k1,2 + 2k2,2 + 2k3,2 + k4,2),

k′1,1 = hy2, k′1,2 = h[fy(t, w1,i−1, w2,i−1)y1 + fy(t, w1,i−1, w2,i−1)y2],

k′2,1 = h

(
y2 +

1

2
k′1,2

)
,

k′2,2 = hfy(t+h/2, w1,i−1, w2,i−1)

(
y1 +

1

2
k′1,1

)
+fy(t+h/2, w1,i−1, w2,i−1)

(
y2 +

1

2
k′1,2

)
,
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k′3,1 = h

(
y2 +

1

2
k′2,2

)
,

k′3,2 = hfy(t+h/2, w1,i−1, w2,i−1)(y1+
1

2
k′2,1)+fy(t+h/2, w1,i−1, w2,i−1)(y2+

1

2
k′2,2),

k′4,1 = h(y2 + k′3,2),

k′4,2 = hfy(t+ h,w1,i−1, w2,i−1)(y1 + k′3,1) + fy(t+ h,w1,i−1, w2,i−1)(y2 + k′3,2).

y1 = y1 +
1

6
(k′1,1 + 2k′2,1 + 2k′3,1 + k′4,1),

y2 = y2 +
1

6
(k′1,2 + 2k′2,2 + 2k′3,2 + k′4,2).

for β = 0.23:

xi wi Y(xi) |wi − Y(xi)|
0.000000 1.000000 1.000000 0.000000
0.300000 0.738288 0.738390 0.000102
0.600000 0.588194 0.588427 0.000233
0.900000 0.490351 0.490757 0.000406
1.200000 0.421254 0.421880 0.000626
1.500000 0.369690 0.370591 0.000900
1.800000 0.329620 0.330852 0.001232
2.100000 0.297494 0.299119 0.001625
2.400000 0.271084 0.273168 0.002084
2.700000 0.248923 0.251533 0.002610
3.000000 0.230000 0.233208 0.003208

for β = 0.22:

xi wi Y(xi) |wi − Y(xi)|
0.000000 1.000000 1.000000 0.000000
0.300000 0.737968 0.738390 0.000423
0.600000 0.587463 0.588427 0.000964
0.900000 0.489081 0.490757 0.001675
1.200000 0.419294 0.421880 0.002585
1.500000 0.366875 0.370591 0.003716
1.800000 0.325768 0.330852 0.005084
2.100000 0.292414 0.299119 0.006705
2.400000 0.264576 0.273168 0.008591
2.700000 0.240777 0.251533 0.010756
3.000000 0.220000 0.233208 0.013208

for β = 0.24:
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xi wi Y(xi) |wi − Y(xi)|
0.000000 1.000000 1.000000 0.000000
0.300000 0.738606 0.738390 0.000216
0.600000 0.588920 0.588427 0.000492
0.900000 0.491612 0.490757 0.000856
1.200000 0.423201 0.421880 0.001321
1.500000 0.372491 0.370591 0.001900
1.800000 0.333454 0.330852 0.002601
2.100000 0.302552 0.299119 0.003433
2.400000 0.277572 0.273168 0.004404
2.700000 0.257054 0.251533 0.005521
3.000000 0.240000 0.233208 0.006792

for β = 0.25:

xi wi Y(xi) |wi − Y(xi)|
0.000000 1.000000 1.000000 0.000000
0.300000 0.738923 0.738390 0.000532
0.600000 0.589641 0.588427 0.001214
0.900000 0.492866 0.490757 0.002110
1.200000 0.425137 0.421880 0.003257
1.500000 0.375275 0.370591 0.004685
1.800000 0.337268 0.330852 0.006415
2.100000 0.307590 0.299119 0.008471
2.400000 0.284040 0.273168 0.010873
2.700000 0.265172 0.251533 0.013639
3.000000 0.250000 0.233208 0.016792
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General Conclusion

At the end of this work, we have conducted an in-depth study of the shooting
method, relying on solid theoretical references and practical examples. This
method, although classical, remains of great importance for solving boundary
value problems, particularly in ordinary differential equations.

Through our analysis, we have highlighted the mathematical rigor required
for its implementation, as well as the graphical tools useful for its understanding.
The main objective of this work was to progressively master the procedure for
applying the shooting method, which we have achieved through a structured
approach supported by concrete results.

This work thus constitutes a solid foundation for further exploration of other
similar numerical methods and paves the way for possible extensions in more
complex or multidimensional contexts.
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[28] André Fortin, Analyse numérique pour ingénieurs , Presses Polytechnique
de Montréal,2008.
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