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Résumé

Cette étude utilise la méthode de tir unidimensionnelle pour résoudre numéri-
quement un probléme aux limites (BVP) gouverné par une équation différentielle
ordinaire (EDO). Ces types de problemes apparaissent dans divers domaines
scientifiques et techniques, notamment la conduction thermique, la physique
des semi-conducteurs, 1’électrochimie, les transferts thermiques, ’élasticité, la
thermoélasticité, la physique des plasmas, les matériaux a effets de mémoire et
la dynamique des populations.

Mots-clés : Méthode de tir, problemes aux limites, solutions numériques,
EDO.



Abstract

This study employs the one-dimensional shooting method to numerically
solve a boundary value problem (BVP) governed by an ordinary differential
equation (ODE). Such BVPs arise in diverse scientific and engineering domains,
including thermal conduction, semiconductor physics, electrochemistry, heat
transfer, elasticity, thermoelasticity, plasma physics, materials with memory
effects, and population dynamics.

Keywords: Shooting method, boundary value problems, numerical solu-
tions, ODEs.
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Chapter 1

Introduction

The numerical resolution of differential equations is undoubtedly one of the
richest and most dynamic fields in numerical analysis, offering a wide range of
applications across various scientific and engineering domains. Whether in fluid
mechanics, heat conduction, electromagnetism, or structural analysis, differen-
tial equations play a fundamental role in modeling physical phenomena and
predicting their behavior under specific conditions.

Among the types of differential equations commonly encountered, initial
value problems and boundary value problems are of particular importance.
While the former can often be tackled using classic integration techniques, the
latter present unique challenges due to the necessity of satisfying constraints
at multiple points, typically at the boundaries of the domain. In such cases,
analytical solutions are rarely obtainable, which has led to the development and
refinement of numerous numerical methods.

This work is particularly focused on the shooting method, a powerful tech-
nique for solving boundary value problems associated with ordinary differential
equations (ODEs). The shooting method transforms a boundary value prob-
lem into an initial value problem by guessing the missing initial condition(s),
integrating the ODE, and adjusting the guess iteratively until the boundary
condition at the other end is satisfied. Despite its conceptual simplicity, the
method is both effective and versatile, especially when combined with robust
root-finding algorithms like the secant method or Newton-Raphson method.

To build a comprehensive understanding, we begin by revisiting foundational
numerical methods used for solving initial value problems. These include the
Taylor method, the fourth-order Runge-Kutta method—well known for its bal-
ance between accuracy and computational efficiency—and the secant method,
which aids in refining estimates for boundary conditions in the context of shoot-
ing. These techniques form the core of the first chapter, providing the necessary
mathematical and computational tools for the remainder of the study.

In the second chapter, we introduce the shooting method in detail, elucidat-
ing its theoretical foundation and practical implementation. Through a guided
example, we demonstrate the step-by-step procedure involved in its application
and discuss its advantages and limitations. This method, as developed and an-
alyzed in several key studies [1,2], continues to be widely used in both academic
research and industrial simulations, as further illustrated by references [3-8].

The third and final chapter is dedicated to applying the shooting method



to a specific and illustrative tow case: Solving the boundary value problem.
This classic example not only showcases the utility of the shooting method
but also provides an opportunity to compare the numerical solution obtained
with those derived from alternative analytical or approximate approaches. The
comparative analysis highlights the precision and adaptability of the method,
particularly in nonlinear contexts where analytical solutions may not exist or
may be intractable.

The overarching goal of this memoir is to provide a structured and practi-
cal pathway toward mastering one of the fundamental techniques in numerical
differential equation solving. Beyond the theoretical exposition, our empha-
sis on examples and implementation serves to bridge the gap between abstract
mathematics and real-world applications.

In summary, this work is organized as follows:

e Chapter 2 presents foundational numerical methods for initial value prob-
lems.

e Chapter 3 introduces and explains the shooting method in detail.

e Chapter 4 applies the shooting method to the pendulum problem, with
analysis and comparison of results.

Through this journey, we aim to demonstrate not only the mathematical
rigor behind these techniques but also their practical relevance and effectiveness
in solving complex boundary value problems.



Chapter 2

Numerical Methods

In this chapter, we present four numerical methods: the Taylor method and the
Runge-Kutta method for solving differential equations, and the Newton lmethod
for finding the roots of nonlinear equations. These methods are used to obtain
approximate solutions when analytical approaches are difficult or impossible.

2.1 Taylor Methods

We will limit ourselves, however, to the second-order Taylor method. We aim
to approximate the solution at time ¢ = ¢,,41, given the value at time t = ¢,,.
We immediately have:

Yltnst) = y(ta) + ¥/ (b)h + LR L o)

Using the differential equation:
y'(t) = ft,y())
y(to) = Yo

we find:

Wtrir) = 9lt) + F(to(t )+ L2 0

In the previous expression, the derivative of the function f(t,y(t)) with re-
spect to time appears. The chain rule gives us:

oft,y®) . Of(t y(t))

(tu)) = LI STEIOL
that is: 9F(t. (s OF(t u(t
R N0)

Therefore, we obtain:

h2 <8f(tn,y(tn)) N Of (tn,y(tn))

Y(tnt1) = y(tn)+hf (tn, y(tn))+ = 2! s

. St p(t2))) +O0)



By neglecting terms of order 3 and higher, we arrive at the formula:

% (6f(t"éi/(t")) n 8f(tn({;;!(tn)) f(tn,y(tn))>

which forms the basis of the Taylor method

y(tn-l-l) ~ y(tn)+hf(tnay(tn))+

Exemple 2.1.1
Find the solution of the boundary value problem
u'=u+z, z€l0,1]
u(0) =0, wu(l)=0

using the shooting method. Use the fourth order Taylor series method to solve
the initial value problem with h = 0.2. We take u/(0) = 3. The Taylor series
method gives

h? h3 ht
" = u, h / " " (4)
Up41 = Up + un+—2 un+—6 Uy, +—24un
h? h3 !
= tn + hutyy + - (un + @) + z(“;z + 1)+ 5 (un + )

h? At h? , h?  ht h3
:(1+2+24>Un+<h+6>un+<2+z4>xn+6

h? h3
Uy = Uy, + by + o+ ul?

R2\ h3 h3 h2

With A = 0.2, we have

Un+1 = 0.00133 + 0.02007z,, + 1.02007wu,, + 0.20133u,,

w1 = 0.02+ 0.20133z,, + 0.20133u,, + 1.02u/,

We get:
u(0.2) ~ up = 0.10200, '(0.2) ~ 1}y = 0.53000
w(0.4) ~ uz = 0.21610, /(0.4) ~ u}y = 0.62140
u(0.6) ~ ug = 0.35490, u'(0.6) ~ ', = 0.77787
u(0.8) ~ us = 0.53200, '(0.8) ~ u}, = 1.00568
u(1.0) ~ ug = 0.76254, /(1.0) ~ uj; = 1.31397
Let the second choice of the initial slope be u/(0) = —1. We get:
w(0.2) ~ up = —0.09934, /(0.2) ~ b = —0.49000
w(0.4) ~ uz = —0.19464, '(0.4) ~ uly = —0.45953
u(0.6) ~ ug = —0.28171, 4/ (0.6) ~ u/, = —0.40738
u(0.8) ~ us = —0.35601, «/(0.8) ~ u, = —0.33145
u(1.0) =~ ug = —0.41250, u'(1.0) ~ ug = —0.22869



We have:

0—0.76254
C2 117504 0.6 895, C1 C2 0.35105
Hence,
u(z) = 0.35105u1 (x) + 0.64895uq ()
We find:

1(0.2) = 0.35105u4 (0.2)+0.64895u2(0.2) = 0.35105(0.10200)4-0.64895(—0.09934) ~ —0.02866
1(0.4) = 0.35105u1 (0.4)+0.64895u2(0.4) = 0.35105(0.21610)4-0.64895(—0.19464) ~ —0.05045
Similarly, we get:
u(0.6) ~ —0.05823, u(0.8) = —0.04427, u(1.0) ~ —0.000002
The exact solution is:
u(0.2) = —0.02868, u(0.4) = —0.05048, u(0.6) = —0.05826

u(0.8) = —0.04429, u(1.0) =0

2.1.1 Algorithm of the Second-Order Taylor Method
1. Given:

e a time step h,
e an initial condition (tg,yo),

e and a maximum number of iterations V.

2. For0<n<N:

—_ h2 af(tn7 yTL) 6f(t7b7 y'n/)
Yn+1 = Yn + hf(tna yn) + ? ( ot + ay f(tnvyn)>

tnt1 =1Tp + h
Print or record ¢,4+1 and y,41.

3. Stop.

2.2 Runge-Kutta methods

We first explain the principle involved in the Runge-Kutta methods. By the
Mean Value Theorem any solution of

u' = f(t,u), wulto) =mno, € [to,d]
satisfies

u(tjs1) = u(ty) + hu'(t; + 0h) = u(t;) + hf(t; + Oh,u(t; + 6h)), 0<60<1



For 0 =

, we have

u(tjyr) = u(ty) + hf (tﬂ' + gu (tj * Z))

Euler’s method with spacing h/2 gives

h h
U tj+§ NUj"‘gfj

Thus, we have the approximation

1
2

h h
Ujt1 = Uj + hf (tj + §,u]‘ + 2f]>

which may be written as
Ki =hf;

h 1
Ky = hf (tj + 5t 2K1)
Ujt1 = Uj + Ky (221)
Alternatively, again using Euler’s method, we proceed as follows:
h 1 1
o’ (tj + 2> ~ 5 (u'(tj) + U/(tj + h)) ~ 5 [f(tj,uj) + f(tj + h,Uj + hf])]

and thus we have the approximation

Uy = g+ 5 (1) + Tt + b+ hf) (222)
which may be written as
Ky = hf(t;,u;)
Ko =hf(t; +h,u; + K1)
Ujt1 = uj + %(Kl + K>) (2.2.3)

This method is also called Euler-Cauchy method.
Either (2.2.2) or (2.2.3) can be regarded as

ujt1 = u; + h (average slope) (2.2.4)

This is the underlying idea of the Runge-Kutta approach. In general, we find
the slope at t; and at several other points, average these slopes, multiply by h
and add the result to u;. Thus the Runge-Kutta method with v slopes can
be written as

Ky =hf(tj,uj)

Ky =hf(t; + coh,uj + aanKi)

K3 = hf(t; +czh,uj + a3 K1 + a3 K2)

Ky =hf(t; + cah,uj + ann K1 + aso Ko + a3 K3)

v—1
KU = hf (tJ + th, U + Zam‘Ki>

i=1



and
Ujr1 = u; + W1 Ky + WKy +--- + W, K, (2.2.5)

From (2.2.5), we may interpret the increment function as the linear com-
bination of the slopes at t; and at several other points between ¢; and ;4.
Further, knowing the values of the quantities on the right-hand side of (2.2.5),
the solution value u;;1 may be obtained directly. Thus, (2.2.5) represents the
explicit Runge-Kutta method with v slopes. To determine the parameters
¢’s, a’s and w’s in (2.2.5), we expand ;i1 in powers of h such that it agrees
with the Taylor series expansion of the solution of the differential equation up
to a certain number of terms.

Consider the following Runge-Kutta method with two slopes:

Ky = hf(t;,uy)

Ky = hf(tj + CQh,Uj + a21K1) (2.2.6)
ujp1 = uj + Wi Ky + Wa Ko

where the parameters cp, a2, Wi and Wy are chosen to make u;,1 closer to
u(t;j+1). Now Taylor’s series gives
h? h3

guﬂ(tj) + gum(tj) +-

u(tjp1) = ulty) + hu'(t;) +
h? h3
= u(tj)+hf(tja u(t]))+§(ft+ffu)t+§ [ftt + 2ftfu + fzfuu + fu(ft + ffu)]t+ o

(2.2.7)
We also have

Ky =hf;

h2
Ky = hf(tj+cah,ujtaz f;) = hfj+h(02ft+a21ffu)t+? (C%ftt + 2c2a21 fifu + a%lf2fuu>t+' -

Substituting the values of K7 and K5 in (2.2.6), we get

h3
Ujyp1 = uj+(W1+W2)hfj+h2(W202ft+W2a21ffu)t+?W2 (3 fur + 2c2a01 frfu + a§1f2fuu)t+‘ .

(2.2.8)
Comparing the coefficients of various powers of h in (2.2.7) and (2.2.8), we
obtain

Wi+Wy =1

1
coWs = 3

1
an Wy = 5

The solution of this system is
W- ! Wy =1 1 (2.2.9)
ag1 = Ca, =—, =1-— 2.
21 2 2= 5, 1 %y

where ¢y # 0 is arbitrary. Substituting (2.2.9) in (2.2.8), we get

h2 hSCQ 2
wjyr =uj; +hf;+ 7(ft + ffu)e + T(ftt +2fifu+ f7 fun)e + - (2.2.10)



The local truncation error is given by

Tj1 = ultjsr)—ujpr = h° [((13 - 22) (for +2fefu+ 2 Fuu)t + %(fu(ft + )+
(2.2.11)

which shows that the method (2.2.6) is of second order. The free parameter
co is usually taken between 0 and 1. Sometimes cp is chosen such that one
of the W’s in the method (2.2.6) is zero or the truncation error is minimized.
minimum. Such a formula is called an optimal formula.

It may be noted that every Runge-Kutta method should reduce to a quadra-
ture formula when f(¢,u) is independent of u with W’s as weights and ¢’s as
abscissas.

If o = %, we get

h h
Ujt1 =u; +hf (tj toout 2fj)
which is the Euler’s method with spacing h/2. It reduces to the mid-point
quadrature rule when f(¢,u) is independent of w.
For co =1, we get

h
ujt1 =y + o [f (8, u5) + f(t + hyuj + hfy)]
which reduces to the trapezoidal rule when f(¢,u) is independent of w.
For ¢y = %, the truncation error is minimum. We have the optimal method

2

1 3

h,Uj + %fj) (2.2.12)

We note that the second order method (2.2.6) requires two function evalua-
tions for each step of integration. Similarly, we find that the third and fourth
order methods require three and four function evaluations respectively for each
step of integration. However, for 5 < v < 7, the order of the methods becomes
v — 1 only. For v > 8, the order of the method reduces further to v — 2.

The following two equations occur typically in all Runge-Kutta methods of
the form (2.2.5)

i—1
C; = E Qjj, i:2,3,...,’0
Jj=1
and

S
j=1

The number of unknown parameters are then v(v + 1)/2.
We now list the second, third and fourth order Runge-Kutta methods.
Second Order Methods

Co asy W1 W2
s 1 (1) 1 (Euler’s methO(} with spacing h/2)
1 1 5 5
2
2 2 % 3 (Optimal)



Third Order Methods

W3

Nystrom

Nearly optimal

Classical

Heun

Fourth Order Methods

C2 | A21
C3 | 31 a32
Cq | Q41 Q42 A43

‘Wl W2 W3 W4
1] 1
t1d 1
2 2 :
1lo 0 1 Classical
‘ 12 21
6 6 6 6
1] 1
3|3
s 1 -1 1 Kutta
‘ 1 3 31
8 8 8 8

2.3 Runge-Kutta Method (4th Order)

= H), ulte) =

may be written as:

1
uj =uj; + E(KI + 2K + 2K3 + K4)
where
Ky Ky K3
Koy Koo Kos
Kl - ) K2 = . 5 K3 - )
Knl Kn2 Kn3

Ky
Koy



and

Kil = hf(tj, U1,5, U255 - - - ,umj)

h
Kigzhf(tj—i—

1 1 1
5 U + Ky, ugj + Ko, .o, U + Knl)

2 2 2

h
Kis=hf (ﬁj+2

1 1 1
;U1 + §K127U2,j + §K227 N Zan)

Ky = hf (tj =+ h,uLj + K13,UQ,J‘ + Kog, .. <y Up,j + Kn3) , 1= 1(1)n

In explicit form:

UL,5+1 U1,5 K Kz K3 Ky
U2 j+1 Uz, j +1 Ko o Koo ) K3 Koy
= = + +
. . 6 . . : :
Un,j+1 Un,,j Knl Kn2 KnS Kn4

Example 2.3.1

Solve the initial value problem:

u = —2tu?, w(0)=1
with h = 0.2 on the interval [0,1]. Use the fourth-order classical Runge-

Kutta method.
For 7 =0:

toZO, uO:1

K1 = hf(to,ug) = —2(0)(1)> =0

1 2
Ky =hf (to + g,uo + 2K1> = -2 (02> (1)2 = —0.04

h 1 0.2
K3 =hf (to + 5t + 2K2> =2 (2> (0.98)% = —0.038416

Ky = hf(to + h,up + K3) = —2(0.2)(0.961584)% = —0.0739715

1

u(02) ~ uy =1+ (0~ 0.08 ~ 0.076832 — 0.0739715) = 0.9615328

For j =1:

10



t1 =0.2, wu; =0.9615328

Ky = hf(t1,u1) = —2(0.2)(0.9615328)% = —0.0739636

h K
Ky = hf <t1 +5oun 21> —2(0.2)(0.3)(0.924551)% = —0.1025754

h K.
K3 = hf (t1 gt 22> = —2(0.2)(0.3)(0.9102451)% = —0.0994255

Ky = hf(ty + h,uy + K3) = —2(0.2)(0.4)(0.8621073)2 = —0.1189166
1
u(0.4)  uz = 0.9615328+ (—0.0739636-2(0.1025754)~2(0.0994255)~0.1189166)

1
= 0.9615328 + 6(70.0739636 —0.2051508 —0.1988510 — 0.1189166) = 0.8620525
Similarly, we get:

w(0.6) ~ ug = 0.7352784
w(0.8) &~ uyg = 0.6097519
w(1.0) ~ us = 0.5000073

Example 2.3.2
Solve the system of equations:
u'=—-3u+2v, u(0)=0
1
v =3u—4v, v(0)==

2

with h = 0.2 on the interval [0,1]. Use the Euler-Cauchy method.
For 7 =0:

tU = O, ug = O, Vo = 0.5
K1 = hfl(to,U07’l)0) = 0.2(—3 -0+ 2- 05) =0.2
K21 = hfg(to,’dmvo) = 0.2(3 -0—4- 05) =-04
Ky = hfl (t() + h,ug + K11,v0 + K21) = 02[—3(0 + 02) + 2(05 — 04)] = —0.08

11



Koy = hfa(to + hyuo + K11, v0 + Ka1) = 0.2[3(0 + 0.2) — 4(0.5 — 0.4)] = 0.04

1
U(OQ) X Uup = Ug + §(K11 + Klg) = 0.06
1
1}(02) V1 =V + §(K21 + KQQ) =0.32
For j =1:

t1=0.2, u; =0.06, v =0.32

K1 = hfl(tl, ul,m) = 02(—3 -0.06 +2 - 032) = 0.092
K21 = hfg(tl, Ui, ’Ul) = 02(3 -0.06 —4- 032) = —0.22

Ko =hf1 <t1+h,U1+K11,U1+K21) = 0.2[—3(0.06+0.092)+2(0.32—0.22)] = —0.0512

Koy = hfa(ti+h, ui+ K11, v1+Ka1) = 0.2[3(0.0640.092) —4(0.32—0.22)] = 0.0112

1
U(04) U = Ul + §(K11 + K12) = 0.0804

1
U(04) X Vy = V1 + §(K21 + K22) = 0.2156
Similarly, we get:
u(0.6) ~ ug = 0.082152, v(0.6) = vz = 0.152456

u(0.8) =~ uy = 0.079309, ©(0.8) ~ vg = 0.112359
u(1.0) = us = 0.069000, v(1.0) =~ vs = 0.086190

2.3.1 Algorithme for Runge-Kutta methods
Given the initial value problem:
W= fltu),  ult) = o
with step size h, the algorithm proceeds as follows:
1. Initialize: t = tg, u = ug
2. For each step 5 =0,1,2,...:
Ky =h- f(t,u;)
ngh-f(tj—l—};, Uj“‘;Kl)

Ujr1 = uj + Ko
tiyi=t;+h

12



2.4 Implicit Runge-Kutta Methods

The implicit Runge-Kutta method using v slopes is defined as:

K, = ]’Lf <tj + cih,uj + Z aime>

m=1

wip =uj+ Yy Wk, (2.4.1)

m=1

where

v
C; = E Qij, 7::172,...7’0
j=1

and a;;, 1 < 4,5 <wv, Wy, Wa,..., W, are arbitrary parameters. The slopes
K,, are defined implicitly. The number of unknown parameters are v(v + 1).
We now give the derivation for the case v = 1. We have:
K1 = hf(tj + Clh,’LLj + anKl)
Ujp1 = u; + Wi Ky (2.4.2)
The Taylor series gives

2 2
u(tjsr) = u(tj)+hu’(tj)+h—u”(tj)+~ = u(tj)+hf(tj7u(tj))+%(ft+ffu)tj+- z

2
and
Ky =hf(tj,uj)+cihfe+anKifu+---=(hf+ cthft +anhfKify) + O(h3)
= hf +h(c1fe +ar ffu)e, + O(h?) (2.4.3)

Substituting (2.4.2) into (2.4.3) and comparing the coefficients of h and h?,
we get

1
co=ai, Wi=1 W= 5

We obtain .
Wi =1, G=an =g

The second order implicit Runge-Kutta method becomes
K1 = hf(tj + ih,uj + 3 K1)
Ujt1 = Uj + K, (244)
For v = 2, the implicit Runge-Kutta method (2.4.1) becomes

K1 =hf(t; + cih,uj + a1 Ky + a12Ks)

Ky = hf(tj + cah,uj + a2 K1 + a2 K>)
Ujr1 = Uj + WKy + Wy Ky (245)
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where the parameter values

leév WQZ%
3+/3 3-V3
1 = 3 C2 =
6 6
an = i, G12—i+§
ag =1 B gy =1 (2.4.6)

lead to a fourth order method.

Example 2.4.1

Solve the initial value problem
u' = —2tu?, u(0) =1

with h = 0.2 on the interval [0,1]. Use the second order implicit Runge-
Kutta method. The second order implicit Runge-Kutta method is given by

Uj+1:Uj—|—K1, j:0,1,2,374

h 1
Ky =hf (tj + 50U + 2K1)
which gives
2
1
K, = —h(2lfj + h) <’U,j + 2K1>
or

h(2t; + h)KF +4(1+ hu (2t + h) Ky + 4h(2t; + h)u? = 0

Solving it as a quadratic in K7, we get

—4(1 + huj(2t; + h)) + /16 + 32hu;(2t; + h)
2h(2t; + h)

K =

For j =0,tg =0,ug =1,

K — —401+.2-(2- 0); .+(.2\/)1.62+ 82:(2)-2-0) _ _ 4384750

w(0.2) & uy = ug + K1 = 1 — 0.0384759 = 0.9615241
For j = 1,4 = 0.2,u; = 0.9615241,

_ —4(1+.12-0.9615241) + /16 + 3.84 - 0.9615241
- 0.24

u(0.4) = ug = u; + K1 = 0.9615241 — 0.0997344 = 0.8617897

K = —0.0997344

Similarly, we get
u(0.6) ~ uz = 0.7343987

u(0.8) ~ uy = 0.6082158
u(1.0) ~ uz = 0.4980681

14



2.5 Newton’s methods

Newton’s method can be motivated by the mean value theorem. Let z, 1
approximate the root x., of the equation g(x) = 0. According to the mean
value theorem,

9(Tp-1) = =9g'(2)(Tn-1 — To0)

For some z on the interval between x,,_1 and x.,. If we substitute x,,_1 for z
and the next approximant z,, for ., then this equality can be rearranged to
provide the definition

g(zn—1)
gl(xn—l)

of Newton’s method. From the perspective of functional iteration, Newton’s
method can be rephrased as x, = f(z,—1), where f(z) = = — g(x)/g'(x).
Newton’s method applied to a typical function g(z), starting from xg = 1
and moving toward the unique root of g(z) = 0 on (0,00). The iterate z,, is
taken as the point of intersection of the x-axis and the tangent drawn through
[%n—1,9(zn—1)]. The method fails to converge if xq is chosen too far to the left
or right.

The local convergence properties of Newton’s method are determined by

Ty = Tyl — (2.5.1)

/ T T 1 T
Flw) = 1— g/( ) , 9 o,o)g (200) _o
9 (7o) 9 (Too)
If we let e, = x, — T be the current error in approximating x.,, then
executing a second-order Taylor expansion around z., yields

en = f(@n_1) — [(T) = f'(Too)en—1 + %f”(z)ei,l (2.5.2)
S

where z again lies between x,,_1 and z. Provided f”(z) is continuous and
xo is close enough to ., the error representation (2.5.2) makes it clear that
Newton’s method converges and that

. €n 1
lim —— = = f"(2).

n—oo €y 2

This property is referred to as quadratic convergence. If an iteration function
f(z) satisfies 0 < |f'(z0)| < 1, then a first-order Taylor expansion implies
lim;, 00 €n/€n—1 = (o), which is referred to as linear convergence.

All else being equal, quadratic convergence is preferred to linear convergence.
In practice, Newton’s method can fail miserably if started too far from a desired
root Zo. Furthermore, it can be expensive to evaluate the derivative ¢'(x).
For these reasons, simpler, more robust methods such as bisection are often
employed instead of Newton’s method. The following two examples highlight
favorable circumstances ensuring global convergence of Newton’s method on a
properly defined domain.

15



Example2.5.1
We apply Newton’s Method to approximate a root of the function

f(z) =2% 22 —5.

Step 1: Compute the derivative
f'(x) = 32% — 2.

Step 2: Newton’s Iteration Formula

Newton'’s iteration formula is

f(zn)

In+1 = Tn — fI(ZL' )
n

Step 3: Choose an Initial Guess

Let us choose xg = 2.

Step 4: Perform Iterations

_ f(2) _ 8—4—5 _ -1 _
L4 $1—2_f,(2) =2 12—2 —Q—ﬁ—Zl

_ f(2.1) 9.261—4.2—5 0.061

o 13~ 2.09455

Conclusion

After a few iterations, Newton’s Method converges to a root near
T ~ 2.09455,

which satisfies f(x) = 0.

2.5.1 Algorithme for Newton methods

16



Algorithm 1 Newton’s Method for Root Finding

1: Input: Function f(z), derivative f'(z), initial guess zg, tolerance ¢, maxi-
mum iterations N

2: Qutput: Approximate root x
3: forn=0to N —1do
4: Compute f(zy,) and f'(x,)
5. if [f'(z,)] < 107!2 then
6: Error: Derivative too small
7 Exit
8: end if )

T
YT T )
10: if |xp41 — 2n| < € then
11: Return z,; as the root
12: end if
13: end for

14: Warning: Maximum iterations reached without convergence

17



Chapter 3

Shooting Method

In the shooting method, we solve the initial value problem

' = f(z,u,u) (3.0.1)

ula) =ry, u'(a)=a (3.0.

where « is some approximation of the initial slope. Using any of the methods
for solving the initial value problems, the approximation u(*) (b) to the solution
u(b) is determined. This value is either smaller or larger than the required
solution u(b) = ra.

Let us denote g(ag) = u™(b) — u(b), where «y is the first approximation of
a. If g(ap) = 0, then the condition at x = b is satisfied. If this condition is not
satisfied, then we repeat the above procedure using v'(a) = a1 to find another
estimate u(? (b) for u(b). The process is usually repeated until the computed
value at = b agrees with the boundary condition u(b).

The shooting method defines a functional relationship g(a) = 0, between
u(b) and the initial slope u'(a) . The problem is then to find the root of this
equation. This root cannot be determined by the Newton-Raphson method and
the secant method is often used. Secant method gives:

Ont+1 = Qi — [g(an) — g(;nl)} glan), n=12,... (3.0.3)

We have:
s =g — {M] g(a1) (3.04)
a3 = ag — {u@)(b?:u(lz)(b)] g(as) (3.0.5)

If the differential equation is linear, then the shooting method becomes very
simple. It can be shown that the function relationship g(«) = 0 between v’ (a)
and u(b) is also linear. We suppose that we have computed two solutions u; ()
and ug(z) of the differential equation. Both the solutions are obtained using
the same initial value wj(a) = r1 = ws(a), but different initial slopes u(a)
and uf(a). Then, by the superposition principle, the solution of the differential
equation can be written as:

18



u(z) = crug () + coug(x) (3.0.6)

We have:
u(a) =7 =cam +em (3.0.7)
or
cite=1 (3.0.8)
and
u(b) = 2 = cru1(b) + cauz(b) (3.0.9)

Solving equations, we get:

y2 — u1(D)
UQ(b) — ul(b)’

Substituting back, we get the solution of the differential equation

Coy =

Cc1 = 1-— Co (3010)

Exemple
Find the solution of the boundary value problem using the shooting method
and the fourth-order Taylor series method with h = 0.2:

u' =u' + 2 xel0,1], u0)=0, wu(l)=0

We assume v’ (0) = «, and integrate using the Taylor method.

Step 1: Derivatives

Given:
"

U :u'+x2
W =0+ 2 =u + 2% + 22

u® =u" 42 =0/ 42?422 +2

Step 2: Taylor series formula

h2 hS h4
Upt1 = Uy + hul, + ?u;: + Euxl + ﬂugf)
h? h3
Uy =y b+ o e

With h = 0.2, we compute:

h? =0.04, h®=0.008, h*=0.0016
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Step 3: First trial with «/(0) = 0.5
up =0, wuy=0.5

Using the Taylor method, we compute the following (rounded):

0.0 | 0.00000 | 0.50000
0.2 | 0.11080 | 0.61330
0.4 | 0.23891 | 0.75172
0.6 | 0.38746 | 0.92171
0.8 | 0.55953 | 1.12987
1.0 | 0.75804 | 1.38335

Step 4: Second trial with «/(0) = —0.5
up =0, wuy=—0.5

Results:

0.0 | 0.00000 | —0.50000
0.2 | —0.09080 | —0.38670
0.4 | —0.17891 | —0.24828
0.6 | —0.26171 | —0.07829
0.8 | —0.33753 | 0.12987
1.0 | —0.40804 | 0.38335

Step 5: Linear combination to satisfy u(1) =0

We seek constants cq, co such that:
u(z) = crur () + coug(x), u(l) =0

0—ui (1) —0.75804 ~ —0.75804
ua(1) —uy(1)  —0.40804 — 0.75804  —1.16608
Cc1 = 1-— Co = 0.3500

~ (0.6500

Cy =

Step 6: Final approximate solution

u(z) = 0.35uq () + 0.65us(x)

x u(x)

0.0 | 0.00000
0.2 | —0.0202
0.4 | —0.0327
0.6 | —0.0086
0.8 | 0.0135
1.0 | 0.00000
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Chapter 4

Application of the Shooting
Method

The shooting method is an approach for solving boundary value problems by
converting them into initial value problems. This involves imposing additional
conditions at a single point and iteratively adjusting them until the boundary
conditions at the other end are met.

In practice, the shooting method tends to be slow. Consequently, finite dif-
ference methods are generally preferred for solving boundary value problems.

The following Corollary establishes general conditions that ensure the exis-
tence and uniqueness of a solution to a second-order boundary value problem
[23,25].

4.1 Corollary

Let p(t) be a C'-function, p(t) : RT — RT, which is non-increasing. Consider a
linear two-point boundary value problem of the form

1
' + pt)u + —p' (t)u =0, (4.1.1)
@
subject to the boundary conditions

u(0) = ¢, u'(0) = =29,

where

1
7’>§7 (>0, a>1cR", t>0.

Under these conditions, the problem admits a unique solution.

These results guarantee the existence and uniqueness of the solution to the
two-point boundary value problem under consideration. Consider the solution
of the boundary value problem (3.1.1). In the shooting method, ws solve the
initial value problem

!

1
0% >§7a>1,t20€R+,u0:17uT:0

21



2t 2N et
209"t + 1 (2ay't + 1)2
Clearly, the analytic solution to the IVP is given by

u(t) = (2@20215 + C_O‘> -

Consider the second-order differential equation

1

u' = —p(t)u’ — ap’(t)u = f(t,u,u’), (4.1.2)
subject to the boundary conditions
uw(0)=¢, u(T)=p. (4.1.3)

First, Eq. (3.1.2) is written in terms of a system of two first-order differential
equations:

{ u =
v = f(t,u,v)
A shooting method works with the initial value problem
u' = f(tu,u), (4.1.4)
subject to the boundary conditions
w(0)=¢, '(0) =\ (4.1.5)
which is usually treated as a system

u=v
v = f (ta u, U)
w(0) = ¢, v(0) = A
finding a value of A that gives a solution satistfying w(T) = .

ux(t) represents the solution of the initial value problem (3.1.4)-(3.1.5) trying
to find a root of the linear function

RN\ =ux(T) -5

ug(t) is the solution of (3.1.4)-(3.1.5) with A = 0, and w(t) is the solution of
the corresponding homogeneous ordinary differential equation satisfying w(0) =
0, w'(0) = 1. Then

ux(t) = up(t) + Aw(t)

and thus
R(A) =uwo(T)+ \w(T) — B

We want to select A so that

ug(T) + Aw(T) = p
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R(\) is linear. Using the equation of the straight line

)\n—l - )\n—2
R()\nfl) - R()\n72)

ur — u(0)

A1 = 1.001A
T_o0 '™ 0

/\n = /\n—l - < ) R()\n—l)7 )\0 =

To apply Secant method, Eq. (3.1.4) is written in terms of two first-order
differential equations,

u =, v = —p(t)v — ép’(t)u, (4.1.6)

subject to the boundary conditions
u(0)=¢, u(T)=24. (4.1.7)

Let us denote the missing slope by
u'(0) = \. (4.1.8)

As an example, consider the solution of Eq. (3.1.4)-(3.1.5) for v/ = 0.6,{ =

4 1 2(+ 2(a+1) . .
l,a=11, p= ;a(;“,;_i,p’ = 7((204«)/7#1)2‘ As a first approximation, let us
assume the missing initial slope to be «/(0) = A\ = —1.2

Iteration Table:

Iteration An R(An) Error (| R(An) |)
0 -1.000000  0.496862 0.496862
1 -1.200000  0.151311 0.151311
2 -1.287577  -0.000001 0.000001
3 -1.287576  0.000000 0.000000

The missing initial slope A is approximately: -1.287575920052582

4.2 Solving the Boundary Value Problem
We aim to solve the boundary value problem (BVP):
u” +p(t)u’ + q(t)u =0,

with boundary conditions:

Define: 5
2(¢) (a+1)

(207t +1)*

Rewrite the equation as a system of first-order ordinary differential equations
(ODEs). Let:

p(p)= 20t

= t:—
20yt + 1’ q(t)

Then:



uy(t) = —p(t)ua(t) + q(t)ui (t).

Initialize parameters:

h = N v = ¢, u20=0, vip=0, v20=1.

Using the Runge-Kutta method, for each i = 0,1,..., N — 1, compute the
increments for both systems:
First System (ul,i,ugﬂ-):

k1,1 = hug, = h[—p(ti)ua; + q(ti)ui )],

1 h 1 h 1

ko1 =h [W,z‘ + 2%,2} , koo = [ D (tz + 2) (U2,¢ + 2k1,2) +4q (ti + 2) (ul,i + 2%,1)} )
1 1 h 1

k31 =h|ug; + ikz,z , ksp=h|-plt + =) (u2; + *kz,z +aqlti+ 5 ) vt §k2,1 ;

ka1 =hlua;+ksa]l, kiz=h[—p(t; (Uz i T ks2) +q(ti +h) (w1 +k31)].
Update the values:

1
Ul 41 = Ul + 6(k1’1 +2ko 1 +2k3 1 + kan),

1
U i41 = U2 + 6(k1’2 +2ko o + 2k3 0 + ka2).
Second System (vlﬂ-,fu%):

k/1,1 = hUQ,ia h[ p )UZ i+ Q(t )Ul z} )
1 1 h 1
Fa=h [ * 2’“32] ' Fa= [ ! (“ > ( * 2’“3’2) o <“‘ * 2) ( i 2%1)} |
/ 1 / 1 / h 1 /
k3,1 =h V2,i + 5]6272 s ]f3 2 = =h —p tl — V2.i + *k272 + q ti =+ 5 U1,i =+ §k2’1 s

Ky =hlva; + ko], kyo=h[-p(t;+h) (U2 i T kb o) +q(ti +h) (v + k5 ,)]
Update the values:

1
V1,41 = V1, + g(k'n + 2’“5,1 =+ 2k§,1 +ki1),

1
V2,41 = V2,i + g(kllz + 2k5 o 4 2k 0 + k) o).
The shooting method yields:

B — Ui,N

w20 = v
1,N

Final solution:

W1= U1,5 + W2,0V1,i, W2 = U2,4 + wW2,0V2,4-

The output is:
(l’i, Wl, VVQ)7
where W1 =~ u(t;) and W2 =~ u/(t;).

Approximate values of u(t) and v(t):
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t u(t) v(t) t u(t) v(t) t u(t) v(t)
0.0000 1.000000 -1.287576 0.6061 0.532873 -0.475584 1.2121 0.316898 -0.272165
0.0303 0.962308 -1.201701 0.6364 0.518709 -0.459151 1.2424 0.308737 -0.266340
0.0606 0.927079 -1.124778 0.6667 0.505030 -0.443720 1.2727 0.300752 -0.260764
0.0909 0.894052 -1.055522 0.6970 0.491808 -0.429210 1.3030 0.292932 -0.255422
0.1212 0.862997 -0.992851 0.7273 0.479017 -0.415547 1.3333 0.285273 -0.250303
0.1515 0.833749 -0.936058 0.7576 0.466629 -0.402664 1.3636 0.277766 -0.245391
0.1818 0.806152 -0.884500 0.7879 0.454621 -0.390496 1.3939 0.270407 -0.240677
0.2121 0.780064 -0.837587 0.8182 0.442972 -0.378986 1.4242 0.263187 -0.236148
0.2424 0.755352 -0.794781 0.8485 0.431660 -0.368084 1.4545 0.256102 -0.231793
0.2727 0.731896 -0.755599 0.8788  0.420668 -0.357742 1.4848 0.249146 -0.227603
0.3030 0.709586 -0.719609 0.9091 0.409978 -0.347921 1.5152 0.242315 -0.223569
0.3333 0.688323 -0.686431 0.9394 0.399576 -0.338586 1.5455 0.235602 -0.219682
0.3636 0.668019 -0.655739 0.9697 0.389447 -0.329707 1.5758 0.229004 -0.215934
0.3939 0.648599 -0.627259 1.0000 0.379582 -0.321263 1.6061 0.222517 -0.212318
0.4242  0.629996 -0.600769 1.0303 0.369968 -0.313231 1.6364 0.216136 -0.208829
0.4545 0.612157 -0.576101 1.0606 0.360590 -0.305574 1.6667 0.209857 -0.205459
0.4848 0.595039 -0.553140 1.0909 0.351438 -0.298265 1.6970 0.203679 -0.202206
0.5152  0.578602 -0.531777 1.1212 0.342501 -0.291287 1.7273 0.197597 -0.199063
0.5455 0.562786 -0.511803 1.1515 0.333771 -0.284623 1.7576 0.191609 -0.196028
0.5758 0.547555 -0.493104 1.1818 0.325239 -0.278254 1.7879 0.185713 -0.193098
Approximate values of u(t) and v(t):

t u(t) v(t) t u(t) v(t)
1.8182 0.179904 -0.190265 2.4242 0.078434 -0.148728
1.8485 0.174179 -0.187522 2.4545 0.073952 -0.147214
1.8788 0.168535 -0.184867 2.4848 0.069515 -0.145738
1.9091 0.162970 -0.182296 2.5152 0.065122 -0.144301
1.9394 0.157481 -0.179806 2.5455 0.060771 -0.142899
1.9697 0.152067 -0.177394 2.5758 0.056462 -0.141533
2.0000 0.146725 -0.175057 2.6061 0.052193 -0.140200
2.0303 0.141453 -0.172792 2.6364 0.047964 -0.138899
2.0606 0.136250 -0.170596 2.6667 0.043774 -0.137630
2.0909 0.131112 -0.168466 2.6970 0.039621 -0.136392
2.1212  0.126038 -0.166401 2.7273 0.035506 -0.135183
2.1515 0.121027 -0.164396 2.7576 0.031426  -0.134003
2.1818 0.116075 -0.162450 2.7879 0.027382 -0.132852
2.2121 0.111183 -0.160560 2.8182 0.023373 -0.131728
2.2424 0.106347 -0.158724 2.8485 0.019398 -0.130632
2.2727 0.101566 -0.156941 2.8788  0.015455 -0.129561
2.3030 0.096839 -0.155206 2.9091 0.011545 -0.128514
2.3333 0.092163 -0.153520 2.9394 0.007666 -0.127492
2.3636  0.087538 -0.151879 2.9697 0.003818 -0.126492
2.3939 0.082962 -0.150282 3.0000 -0.000000 -0.125515

u(T) with A = -1.2875759200131718: 1.6776510736171701e-12
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Numerical Solution of the BVP for Different 5 Values

T T ‘ ‘ ‘ ‘
- - - Analytic Solution

A \ B =0.233

\ B =0.09

\ B =0.15

00l \ B=0.25
0.8 |-
0.7
< 06
0.5
0.4}
0.3
0.2 |

| | | ‘ : ‘ :

0 0.5 1 1.5 2 2.5 3

4.3 System of First Order Initial Value Prob-
lems

Let the second order initial value problem be given as

" 4 (7/)2 (6 + 1) u6+1

e 2 D) =0 (4.3.1)

w0)=¢  uT) =45,

Define y; = u. Then, we have the system

/2
§+1)
A /://:4(7)( 5+1
BT w =l BT € (207t + 1)1

y1(0)=¢, %(T) =4
The system is given by

Bj/ - [4(7')2@%1)2/(5“1 ; B;Egﬂ = m

& @5yt U1
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To apply Newton’s method, Eq. (3.3.1) is written in terms of two first-order
differential equations,

du dys

E = Y2, E - f(t7y1a 92) (432)
We denote the missing initial slope by
d
%(0) =s or y(0)=s (4.3.3)

The problem is to find s such that the solution of Eq. (4.3.2), subject to the
initial condition (4.3.3), satisfies the boundary condition at the second point,
u(T) = B. In other words, if the solutions of the initial value problem are
denoted by u(t, s) and ya(t, s), one searches for the value of s such that

u(T,s) = =¢(s) =0 (4.3.4)
For Newton’s method, the iteration formula for s is given by
(n)
n+1) _ n ¢(S )
Js
or -
uw(T,s\™) -
st — g(n) _ — Ty (4.3.6)
ds
Example: If we take 3=0.23 ,7 =060=1.1and (=1
Tter s #(s) % Snew

1 1.00000000  5.110422 x 1020 3.090169 x 10%°  -0.65376774
2 -0.65376774  2381.03628225  208287.52418781 -0.66519922
3 -0.66519922  1064.39906181  61357.16868982  -0.68254681
4 -0.68254681  473.57904276 18205.16799457  -0.70856025
5  -0.70856025  209.13406704 5463.43071932  -0.74683915
6  -0.74683915 91.24624437 1669.57499705  -0.80149152
7 -0.80149152 39.02747968 525.37307304 -0.87577679
8  -0.87577679 16.13575433 173.52422685 -0.96876527
9  -0.96876527 6.27357833 62.26088694 -1.06952803
10 -1.06952803 2.15774503 25.87616713 -1.15291538
11 -1.15291538 0.56118636 13.88473956 -1.19333287
12 -1.19333287 0.07179419 10.51749821 -1.20015903
13 -1.20015903 0.00160904 10.05047346 -1.20031913
14 -1.20031913 8.6 x 1077 10.03982902 -1.20031922

The method converged successfully to:

To determine ¢’, we differentiate partially with respect to s all the equations

in (3.1.4) and ( 3.1.5)

’qu/ = fus (t7us>uls)v + fu’5 (tu Umuls)v

s =u/(0) = —1.200319
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and ¢ and s are independent,

_ Ous

v(0)=0, V' (0)=1, v= s (4.3.8)
Recall that ug is defined as the solution of the problem
uy = f(t,us, uy) (4.3.9)
subject to the boundary conditions
us(0) =&, u,(0)=s (4.3.10)

In vector notation, define

vl =[] =]

Then, we can write the system as
y' = flz.y), y(@o)=0b.

Let an integer N > 0 be chosen and set h = (b—a)/N. Partition the interval
[a,b] into N subintervals with the mesh points

ti=a+(—1)h foreachi=1,--- N.

Use the notation w;; for each j =0,1,---, N and ¢ = 1,2 to denote an approx-
imation wy ; to u(t;); we,; to u'(¢;) . For the initial conditions, set

wio=§& wao=(B-¢/(b—a)
(8 —¢&)/(b—a) is the slope of the straight line through (a, &) and (b, /).

kii=hwy;1, kio=hf{t,wii—1,w2,-1),
koq = hf(t+h/2,wi -1+ Skia, wai1 + ki),
ks = Rhf(t+h/2,wi -1+ Skoy, wa i1 + Ska),
kai=hf(t+hwi i1+ ks, wai—1 + ks 2),
1
wy,; = Wi,i-1+ E(kl’l +2ko 1 4+ 2k3 1 + ka1),

1
Wo; = Wai—1 + 6(k1,2 +2ko 9 + 2k3 2 + ka2),

Ky =hya, ki =hlfy(t, w1, w2i—1)y1 + fy(t, w11, wa 1)yl
/ 1 /
ky,1=h <y2 + 2k1,2> )
/ 1 ! 1 /
koo = hfy(t+h/2,w1 i 1,wi-1) (Y1 + §k1’1 +fy(t+h/2, w1 -1, w25-1) | Y2 + §k1’2 )
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1
k§,1 =h <y2 =+ 2%,2) )
1 1
ks o = hfy(t+h/2, w11, w2,i71)(yl+§ké)1)+fy(t+h/27UJLifl,w27i71)(y2+§k/2,2)7

kf;,l = h(y2 + ké,Q)a
kfl,2 = hfy(t +h, W1,5—1, w2,i71)(y1 + ]fé’l) + fy(t + h, W1,i—1, w2’i71)(y2 + ]ﬂég).

1
Y1 =y1 + é(kll’l + 2k, | 4 2k5 4 ki),

1
Y2 =y2 + g(k/u + 21“5,2 + 2IC:/3,2 + kﬁ;,z)

for g = 0.23:

T w; V(x;) | |wi — V()]
0.000000 | 1.000000 | 1.000000 0.000000
0.300000 | 0.738288 | 0.738390 0.000102
0.600000 | 0.588194 | 0.588427 0.000233
0.900000 | 0.490351 | 0.490757 0.000406
1.200000 | 0.421254 | 0.421880 0.000626
1.500000 | 0.369690 | 0.370591 0.000900
1.800000 | 0.329620 | 0.330852 0.001232
2.100000 | 0.297494 | 0.299119 0.001625
2.400000 | 0.271084 | 0.273168 0.002084
2.700000 | 0.248923 | 0.251533 0.002610
3.000000 | 0.230000 | 0.233208 0.003208

for 5 = 0.22:

; w; V(i) | Jwi = Y(w:)]
0.000000 | 1.000000 | 1.000000 0.000000
0.300000 | 0.737968 | 0.738390 0.000423
0.600000 | 0.587463 | 0.588427 0.000964
0.900000 | 0.489081 | 0.490757 0.001675
1.200000 | 0.419294 | 0.421880 0.002585
1.500000 | 0.366875 | 0.370591 0.003716
1.800000 | 0.325768 | 0.330852 0.005084
2.100000 | 0.292414 | 0.299119 0.006705
2.400000 | 0.264576 | 0.273168 0.008591
2.700000 | 0.240777 | 0.251533 0.010756
3.000000 | 0.220000 | 0.233208 0.013208
for g = 0.24:
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T w; V(i) lw; — YV(z4)|
0.000000 | 1.000000 | 1.000000 0.000000
0.300000 | 0.738606 | 0.738390 0.000216
0.600000 | 0.588920 | 0.588427 0.000492
0.900000 | 0.491612 | 0.490757 0.000856
1.200000 | 0.423201 | 0.421880 0.001321
1.500000 | 0.372491 | 0.370591 0.001900
1.800000 | 0.333454 | 0.330852 0.002601
2.100000 | 0.302552 | 0.299119 0.003433
2.400000 | 0.277572 | 0.273168 0.004404
2.700000 | 0.257054 | 0.251533 0.005521
3.000000 | 0.240000 | 0.233208 0.006792

for g = 0.25:

i w; V(i) | |wi = V(i)
0.000000 | 1.000000 | 1.000000 0.000000
0.300000 | 0.738923 | 0.738390 0.000532
0.600000 | 0.589641 | 0.588427 0.001214
0.900000 | 0.492866 | 0.490757 0.002110
1.200000 | 0.425137 | 0.421880 0.003257
1.500000 | 0.375275 | 0.370591 0.004685
1.800000 | 0.337268 | 0.330852 0.006415
2.100000 | 0.307590 | 0.299119 0.008471
2.400000 | 0.284040 | 0.273168 0.010873
2.700000 | 0.265172 | 0.251533 0.013639
3.000000 | 0.250000 | 0.233208 0.016792

30




0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Numerical Solution of the BVP for Different 5 Values

T T

T T T T

- - - Analytic Solution
—— B=0.23
— B=022

B =0.24

B8 =0.25

0.5 1

31




(General Conclusion

At the end of this work, we have conducted an in-depth study of the shooting
method, relying on solid theoretical references and practical examples. This
method, although classical, remains of great importance for solving boundary
value problems, particularly in ordinary differential equations.

Through our analysis, we have highlighted the mathematical rigor required
for its implementation, as well as the graphical tools useful for its understanding.
The main objective of this work was to progressively master the procedure for
applying the shooting method, which we have achieved through a structured
approach supported by concrete results.

This work thus constitutes a solid foundation for further exploration of other
similar numerical methods and paves the way for possible extensions in more
complex or multidimensional contexts.
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