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Abstract

This thesis presents a novel numerical approach for solving nonlinear Fredholm
integro-differential equations involving both the unknown function and its
derivative. The proposed method combines the backward finite difference technique
with the Nystrom method to significantly reduce the size of the resulting nonlinear
system, compared to the classical approach introduced by Bounaya et al. [1]. This
reduction enhances computational efficiency, especially for large integration intervals
where traditional methods become impractical. To guarantee convergence and
stability, we construct an appropriate norm on RN™!, Numerical experiments
confirm the effectiveness of the proposed scheme, demonstrating improved accuracy
and reduced execution time. This work contributes to the development of reliable
numerical tools for solving nonlinear integro-differential equations, with potential
applications in various fields of science and engineering.

Key words: Fredholm integral-differential equations, nonlinearity, Nystrom method,
backward finite differences.



Résumé

Cette mémoire présente une nouvelle approche numérique pour la résolution des
équations intégrales-différentielles non linéaires de Fredholm faisant intervenir a la
fois la fonction inconnue et sa dérivée. La méthode proposée combine la technique

des différences finies rétrogrades avec la méthode de Nystrom, ce qui permet de
réduire de manieére significative la taille du systéme non linéaire obtenu, en
comparaison avec l’approche classique introduite par Bounaya et al. [1]. Cette
réduction améliore l'efficacité du calcul, notamment pour les grands intervalles
d’intégration ot les méthodes traditionnelles deviennent peu pratiques. Afin de
garantir la convergence et la stabilité de la méthode, une norme appropriée est
construite dans I’espace RN 11, Les expériences numériques confirment I'efficacité du
schéma proposé, en montrant une meilleure précision et une réduction du temps de
calcul. Ce travail contribue au développement d’outils numériques fiables pour la
résolution des équations intégrales-différentielles non linéaires, avec des applications
potentielles dans divers domaines scientifiques et techniques.

Mots clé : Equations intégrales-différentielles de Fredholm, non-linéarité, méthode de
Nystrom, différences finies rétrogrades.
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Introduction

Integro-differential equations arise naturally in a wide range of scientific and engi-
neering applications, including physics, biology, control theory, and finance. These
equations combine the features of both differential and integral equations, and are
used to model systems in which the current rate of change depends not only on the
present state but also on the history or spatial distribution of the system.

In particular, nonlinear Fredholm integro-differential equations involving both the
unknown function and its derivative are of significant interest due to their capacity
to describe complex dynamic behaviors. However, the analytical solutions of such
equations are rarely obtainable, which motivates the development of reliable and
efficient numerical methods.

The study of these equations poses several challenges: the presence of both the
function and its derivative inside the integral introduces additional complexity, and
the global nature of the Fredholm integral operator makes the computational cost
higher, especially over large domains. Therefore, the construction of accurate and
stable numerical schemes is crucial.

In this work, we consider a nonlinear Fredholm integro-differential equation of the
form

o) =)+ [ Flts,0(s),9/(9)ds, telab)

where the kernel function F and the source term ¢ are given and assumed to satisfy
suitable regularity conditions. Under appropriate assumptions, the existence and
uniqueness of a solution ¢ € C![a,b] are guaranteed.

The aim of this thesis is twofold. First, we recall a known numerical method based
on the Nystrom technique [2, 3, 8, 10, 13, 14], as introduced by Bounaya et al. [1],
for solving such equations by discretizing both the original equation and its deriva-
tive. Although effective, this method generates a large linear system that can be
computationally expensive.

Second, we propose an alternative numerical approach that incorporates finite differ-
ence approximations to reduce the overall system size, thereby improving efficiency
without compromising accuracy. We study the convergence and stability of the pro-
posed scheme, and provide theoretical error estimates under standard assumptions.
This thesis is organized as follows: after presenting the mathematical formulation
and assumptions, we describe the classical Nystrom method and its limitations. We
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then introduce our new scheme, followed by a detailed error analysis and a set of
numerical experiments to illustrate the performance and reliability of the proposed
method.



CHAPTER

Preliminaries

1.1 Integral and Integro-Differential Equations

This section is devoted to present real integral equations to be studied in our work
integro-differential equations.

1.1.1 Integral Equations

An integral equation is an equation that contains at least one integral operator acting
on the unknown function. Let [4,b] C R A real fredholm integral equations with an
integral operator has the following general form:

b
§(0(x) = f(x) + [ F(xs, p(s))ds, x € [a,b]
where f, g:[a,b] - R,and F : [a,b] X [2,b] x R — R.
An integral equation is said to be:

e Linear, if the kernel K is linear with respect to the third variable, i.e., F(x,s, u(s)) =
Fo(x,s)@(s); otherwise, it is nonlinear.

e Of the first (second) kind, if Vx € [a,b], g(x) = 0(g(x) = const).

e Homogeneous (nonhomogeneous), if Vx € [a,b], f(x) = 0(f(x) # 0).
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Example 1.1.1. We give the following

/ubK(t s)p(s)ds = f(t), (first kind),

Vtelab],
p(t )+ A / (t,s)p(s)ds, (second kind).

and for example the following nonliear equation

ts

1

Vi e [0,1]; Ag(t) = /

0

This work is dedicated to presenting the study conducted in the article [1] of the
following equation:

vt € [a,b]; ¢ +/ (t,5,9(s), ¢/ (s)) ds, (1.1)

where the kernel F and the function g satisfy some assumption that will be devlopped
in the next section :

1.2 Theoretical Study

To begin, we investigate the conditions that guarantee the existence and uniqueness
of a solution to equation (1.1).

We start by considering the space X = C!([a, b]), which comprises all functions that
are continuously differentiable on the interval [a, b]. This space is endowed with the
norm:

= t /t - o0 ! o0y
lollx trél[%lfp( )|+trél[aa,>b<}|¢()| [¢lleo + 1[¢"]]

under which X forms a Banach space.

Bounaya et al [1] have studied the existence and uniqueness of the exact solution of
equation (1.1), we assume that the kernel verifies the below hypotheses which are
sufficient for ensuring this.

. (A1) %—It: e 0 <[a,b]2 x ]R2> ,

e (Ay) g€ Cliab],

(As) [ F(t,s,x,y) = F(t,s, 5,7) [<h [x =X | +h |y -7 .

OF OF ) )
(A4)|§(t,”y) at( S, L,Y)|<B|lx—x|+ly|y—7].

(As)Q:=max(ly + 1o, I3 +14) < (2(b—a))".
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Theorem 1.2.1. Under the hypotheses (A1 — As), the equation (1.1) has a unique solution
in C[a,b].

Proof. Details can be found in [1] O

1.3 General principle of finite difference methods

1.3.1 Introduction to the Finite Difference Method

The principle of finite difference methods is closely related to the numerical schemes
used to solve ordinary differential equations (ODEs). The simplest approach to
numerically solving partial differential equations (PDEs) consists in setting up a
regular grid in space (and possibly time) and computing approximate solutions at
the grid points.

A key aspect of this method is discretization, which involves approximating the dif-
ferential operators by replacing the derivatives in the equation with difference quotients.
The difference between the exact solution and the numerical one is determined by
the error made in this replacement. This error is called the discretization error or
truncation error.

The term truncation error reflects the fact that only a finite part of a Taylor series
expansion is used in the approximation. For simplicity, we will consider only the
one-dimensional case.

The main idea behind any finite difference scheme is based on the definition of the
derivative of a smooth function ¢ at a point x € IR:

¢/(x) = lim (x + h}z — ()

When £ is small but non-zero, the quotient on the right-hand side provides a good
approximation of the derivative. In other words, if / is sufficiently small, then:

¢(X+h21— P o (x)

The quality of this approximation is judged by how the error behaves as & — 0. More
precisely, the approximation is said to be consistent if the error tends to zero as /1 goes

to zero. If the function u is sufficiently smooth in a neighborhood of x, this error can
be quantified using a Taylor expansion:

p(x+) = pl) +hg'(x) + gy -

which implies that:

p(x+h) —gx)
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h
Thus, the truncation error is ~ ¢ (x) 4+ O(h?), which tends to zero as i — 0.
This approach forms the foundation of more advanced schemes used to approximate

solutions of ordinary or partial differential equations in practice.
1.3.2 Taylor series

Given that the function ¢ is C? (twice continuously differentiable) in the neighborhood
of x, the general Taylor expansion for ¢(x + 1) around x up to the second order is:

2
p(x+h) = p(x) +hg'(x) + 5 ¢ () + O(K)

Here:
* ¢(x) is the value of the function at x,
* ¢/(x) is the first derivative of ¢ at x,
* ¢"(x) is the second derivative of ¢ at x,

e O(h®) denotes the remainder term, which is of order /* as h — 0.

1.3.3 Forward Finite Difference

The forward finite difference is given by the formula:

x+h)—g@(x
) = 2D = 00)
It is clear that this formula converges if ¢ € C!'[a,b]. Moreover, if ¢ € C?[a,}], a

Taylor expansion shows that:

(P(x+h21_ QD(X) . (P/(x) < Ch,

where the constant C is given by:
C = 1 . "
= sup |¢"(y)]
yE[x,x+ho)

This means that the error is of order O(h), and the method is first-order accurate.



Chapter 1. Preliminaries 7

1.3.4 Backward Finite Difference

The backward finite difference approximation of the derivative is given by:

q)/(x) ~ QD(JC) — Z)(x — h)

Similarly, if ¢ € C?[a, b], then:

where:
1

c=1 swp ¢y

]/G[xfh(),x]

This also results in a first-order approximation.

1.3.5 Central Finite Difference

The central finite difference approximation provides a more accurate estimate of the
first derivative by using points on both sides of x. It is given by:

iy L ext+h) —e(x—h)
¢'(x) ~ T :

Assuming ¢ € C°[a, b], a Taylor expansion around the point x shows that:

¢(x+h) —g(x—h)

) < 2
T ¢'(x)| < Ch%,

where:

1
C=y sup PP w)|.
yE€[x—ho,x+hp)
Thus, the central difference method is **second-order accurate**, meaning the trunca-
tion error is of order O(h?), and it provides better accuracy compared to forward and
backward finite differences for the same step size.



CHAPTER

Numerical Solution of Nonlinear Fred-
holm Integro-Differential Equations

In this chapter, we focuses onthe numerical study of the equation :

o(t) = g(t) + /ab E(t,s,¢(s), ¢ (s)ds, Vt€ [a,b],

where F, and g are given real functions that satisfy

oF

g E
Under the assumptions (A1) — (As) presented previousely. The soltion ¢ exists and
unique in C1[a, b]. Firstly, we recal the method used by Bounaya et al [1]. Secoundly,
we explain our new approch based on finite difference method. Additionally, they
derived the form ofits derivative ¢’(t):

C%([a,b)* x R%,R), g € C'([a,b],R).

o0 = [ t,5,905),¢/(5) ds + 5100, @

2.1 Classical Nystrom method

In [1], Bounaya et al. used a new Nystrom method to deal with ¢(t) and ¢'(t) jointly.
They obtained a big linear system, which made their method difficult to apply in the
context of large integration intervals.
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Theorem 2.1.1. Under assumptions (A1 — As), the equation (1.1) has a unique solution in
X

Proof. Bounaya et al ([1]) used Banach fixed point to obtain this result O

The approach begins by reducing the continuous equations (1.1) and (2.1) to a finite-
dimensional problem using the well-known Nystrom method. Then, the resulting
algebraic system is solved using the method of successive approximations.

Let N € IN*, and consider the uniform subdivision

Ay = {ti:a+ih,h:b%,i:o,L...,N}.

Accordingly, we have:

b
plt) = 8(t) + [ F(tis,9(s),¢/(s)) ds @2
/ / b aF /
¢ () =g )+ | 55 (tis, (), 9/(s)) ds. @3
By applying a quadrature formula, equations (2.2) and (2.3) are approximated as:
N
¢i = &+ Y wiF(ti, tj, 9}, ¢}) + Ru(h, i), (2.4)
j=0
/ / al aF / .
Qi =gi+), W= (tis i, 9, 9j) + Ra(h, 1), (2.5)
j=0

where ¢(t;) = ¢;, g(t;) = gi, and the weights w; as well as the remainder terms
R1(h,i), Ra(h,i) depend on the quadrature rule used.
The quadrature rule is said to be *consistent* if it satisfies:

lim (max |R1(h,i)\> ~ lim (max ]Rz(h,i)|) = 0.

N—oco \ 0<i<N N—oo \ 0<i<N

Assuming the local consistency errors Rq(h,i) and Ry(h, i) are negligible, we obtain
the following algebraic system for alli € {0,1,...,N}:

N

pi=8i+ 2 w]F(tZ/ t]/P]/ 0-])/ (26)
j=0

N OF
0i=gi+), wjg(ti, ti, 0, 0j). (2.7)
=0
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Let 7 = (po,00,01,01,---,PN,ON) € R?N*2 denote the vector of unknowns. Then, the
system can be written as a fixed-point equation:

= ®(n).
From this formulation, the following existence theorem can be established.

Theorem 2.1.2. Under the hypothesis (A1 — As) and if one of the following conditions

1
N = max{11 + l3, lz + l4} < bTa, (28)
. lzl3(b —11) 1
’B_max{l4’ll+1—l4(b—a) <b—a' (2.9)

is satisfied, then, the system of (2.6), (2.7) has a unique solution.

Proof. Bounaya et al [1] used the classical Banach fixed point in R*N*2 to obtain the
result. O

The next theorem proves the convergence of the classical Nystrom method:

Theorem 2.1.3. Denote R(h) = 'r%axN|R1(h,i)| + _rgaxN|R2(h,i)| and
1=0,..., 1=u,...,

Ir(b—a)
’1—214(17—01))'

.....

So, under the hypothesis (A1 — As), (2.8) and (2.9), we have the following error estimates :

R(h)
_ I _ <
o= ol 119~ llo < 7= =7 210)

CR(h)
l¢ = pllo < 1-_Bb—a)

R e L] @1

Proof. (A1 — As) give as

(2.11)

N
lo—plle < Y [wil(hlg; — il + Llgj —ojl) + max [Ri(k,D)|,  (213)
j=0 i=0,...,

N
lg" = lloo < ) il (sl @j — ;| + Ll — ojl) + max |Ry(h,)]. (2.14)
= 0o
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The summation of (2.13) and (2.14) gives us

N
¢ —plloo+ |9 = llo < (19 = plleo + [|¢" = Tlloo) Y ;] + R().
j=0

N
Since Z |w]| = b — a, then, the inequality (2.10) is satisfied. Otherwise, from (2.14),
j=0
we get
b— ll)lg
/I o < ( _ . .
19/ =l < s o = el + T
After that, by substituting (2.15) in (2.13), we obtain

¢ —pllo < (b—a)Bll¢ —plle + CR(R).

Hence, (2.11) is satisfied.
Finally, since 1 — B(b —a) < 1 —l4(b — a), then, substituting (2.11) in (2.15) implies
(2.12). 0

(2.15)

2.2 Backward finite difference method

For N > 2, we introduce a subdivision of [a, b] given by:

b—a
N-—-1’

h= xi=a+(j—1)h 1<j<N,

and a numerical integration formula given for all ¢ € C [a,b] by
b N
| ewar~Y po(t)
j=1

where, the weights {p]} are supposed to verify,

N
@:=sup ) |pj|< oo,
N2>2j=1

N
Vo € C'la,b], lim | / —Y pie (t) |=0. (2.16)
=1

N—+4c

Applying the Nystrom method[11, 12, 13], with the previous numerical integration
formula, to equation (1.1), we obtain, V1 < j < N,

N
¢i =) piF(ti t;, 9j, 97) + 8 (1), (2.17)
=1
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where, ¢; ~ ¢ (t;) and ¢; ~ ¢’ (t;) . Now, we use the Backward finite difference
derivative [14] to deal with q);-, 2 < j < N, which gives us

oi~h! (9 — 9j1) - (2.18)
Including the last approximation in system (2.17) to obtain, forall 1 <i < N,
al 1 !
¢i = Y oiF(titj, i, h 1 (@ — @j—1)) + p1F(ti, t, 91, ¢7) + g (1) . (2.19)

=2

At this stage, we understand that we have to add an equation for ¢}. For that, we
apply Nystrom method with the same numerical integration formula to equation
(2.1), which gives us

/ al aF / /
P1= ) pigr (tuti @), 97) +8 (1)
=

Using (2.18) with the same previous steps, we obtain

N 9r oF
g1 = ijg(tlffj/(l)jzhlq(@j—(Pj—l))+P1§(f1/f1/¢1/(l)'1)+8'(f1)-(2-20)
=2

Our new method involves solving the linear system (2.19)- (2.20) of size N + 1, which
is much better compared to the one developed by Bounaya et al.[1], which is of size
2N.

2.3 Numerical study

In this section, we are going to show that our new method based on backward finite
difference and Nystrom techniques is perfectly converging. For that, we equip RN}
with a special norm given, for all V € RN and > 0, by

_ -1(yv. _v.
1V = max {11V [l max 157 (V= Vi) 1}

where, || . ||« is the usual norm of RN! given for all V € RN ! as

|V |lo= max [V;].
1<i<N+1

Theorem 2.3.1. Supposing that (A1 — As), then for all h > 0, the system (2.19) - (2.20)
has a unique solution (@1, g2, ...., pn, ¢1) € RNTL
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Proof. For N > 1, we introduce :

oy ]RN-i-l N ]RN+1
Vi Dn
1%} DN 2
V= —
Vit DN, N1

by
VV e RNTL o (V) = (P (V), Pna (V), ..., Pnonsr (V) € RNF

where: V1 <i <N,
S 1
Dyi(V) = ) pjF <ti1 ti, Vi, h = (V; — Vj—1)> +p1F(ti, t1, VN, Vvgr) + g(ti)
=2
and,
N oF 1 oF ,
Syni1 (V) = g.ojg (fl,fj, Vi, h=(V; — Vj—1)> +p1§(f1,t1,VN, VNt1) + 8 (t)
]:

Which means that the system (2.19) - (2.20) is equivalent to : Find A € RN such
that A = ®x (A). We have, forall V, W € RN*landalll1 <i <N,

N
| DN (V) = @i (W) | < hi ) | pi [l V=W |
=2

N
+ LY e || (Vi = Vi) — hL (W — Wi_y) |
=2
+ pih | VN = Wn | +p1la | VN1 — W |
Then, forall1 <i < N,
| Dni(V) = @n,i (W) [[£20Q || V =W ],

Now, for all V, W € RN*! we obtain
N
[ Pnvst (V) = @vaven W) | < ) Ly | (| V=W |
j=2

L | N (Vy = Vi) —=h™ ' (W = W) |
p1ls | VN —Wn | +p1la | VNp1 — Wi |)
2b—a)Q || V=W |,

IN + +



Chapter 2. Numerical Solution of Nonlinear Fredholm Integro-Differential
Equations 14

Using the mean value theorem, we conclude the existence of {Cz’j} and {61]} where
1 <1i,j <N, i # jsuch that,

B_F
ot
Then, forall2 <i < N,

(Cij/tjl‘/jle) =h" (F(tl’t]’v W) F(z 1/1L V W))

N
_ oF
| B (@i (V) = Pica (V) = hLy (@i (W) = Pvjia (W) = > Pip (tinty, Viy Wi) —
=

oF
e = (tic, t, Vier, Wist) + 01 F (8, 1, Vi, Wi) — o1 F (i1, t1, Vi, Wiy S2(0—a)Q ||V =W ],
We obtain, VV, W € RN,

| N (V) =D (W) [[n<2(b—a)Q ||V =W ];.

Which means that ®y is a contraction, because 20() < 1, and using Banach fixed
point theorem, we conclude that the system 2.19 - 2.20 has a unique solution

((Plz 4)2/-"'/ q)N/ q)/l) S RN+1
forall N > 2. O

Just take the trapezoidal rule [14] with p; = pn = g andp; =h2<j<N-1

To study the error of our method, we introduce the discretization error {v;} ;< n 1
as

vi = @(x))—¢;, 1<i<N,
Nt = ¢ (x1) — @,

and the consistence errors as

b N
@1 (h) = max | / F(t;s,9(s), ¢'(s))ds — Y_ p;F (t,s,(t;), ¢'(t})) |,
A a ] 1
@ (h) = max | ¢'(t) =1 (g () =9 (ti-1)) |
N 9F ,
@3 (k) = max | / (5,05 9'(9) ds = Loy (15,004, 9/(4)) |

Theorem 2.3.2. For N > 1,

v |[h< (1=2(b—a)Q) ! (max@;(h) + (b — a)Qe@,(h)) .
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Proof. For,1 <i <N,

lvi| =

IN

<

X

We have,

| N1 |

Then,

| ¢ (xi) — @i |

AL

t s, ¢(s ds - ZP] tut]r @j h_ ((Pj - 4’]’—1))

p1F(ti t1, 91, 91) |

N N
W+hY loille(x)—gei | +LY. el ¢ (t;) —h " (¢ — @j-1) |

=1 j=2

Llpi] ¢ (t)— 1]

N N
@1 (h) +EQ@; () +1 Y | pj || o(t;) — @i | +12 Y | pj |

=1 j=2

B (@ () =@ (ti1) —h (95— @j-1) |+ o1 || ¢ () — ¢ | -
Then, forall1 <i < N,

IN

| v [< @1 (h)+ (b—a)Qw@; (h)+ (b—a)Q || v |- (2.21)

|§0 (x1) — §01|

b 9F N 9F _
| / (t:5,9(), 9'(5)) 5 = Yo pigy (t1.ti 951 (95— 9j-1))
]:
oF
Prar (t1, 1, 91, 91) |

h)+lsz\Pj|(P(tj)—(Pj!
=1

N
LY ol ¢ () —h " (¢j— @j-1) | +p1la | ¢/ (x1) — ¢} |
=2

N
@3 (h)+(b—a)0@2(h)+l32 Lo 1l ¢ () =t |
=

ui o 11 (0 () = ¢ (t54)) = (9= 1) |

Llpi]l @ (t1) — ¢ |-

| una S @3(h) + (b—a)Qw@y (h) +2(b—a)Q || v |, - (2.22)
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Using the same sequences {Ci]-} 1<i <N and {a]} 1<ij<N as in the previous theorem’s
proof, we obtain for all 2 < i < Ni#l 7

T i—vien) | = [ (e (t) — @ (ti1) —h Y (@i — i) |

b
< | [ B (15 006),9/(5) — F (1,5 0(6), ¢/(5))) ds
N N
- I3 Zipjéiij — Iy Z‘épjéi]-hl (j —@j-1)
j= j=
— pilsén (¢’ (x1) — ¢1) |

N
< L+ i+ (b—a)Qas(h)+13)_ [ pill ¢ (t;) — ¢ |
=

N
+ LY e [1H (o (x)) — ¢ (xj-1) —h 7" (@) — ¢j-1) |
j=2
+ Lol (¢ (x1) — 1) |,
Therefore, forall2 <i < N,
| B (v = vi1) |< @3 (1) + (b — a) Q@ () +2(b —a)Q | v | (2.23)
Using (2.20), (2.21) and (2.22), we obtain
|| v |[»< max (@1 (h), @3 (1)) + (b —a)Qw@z (h) +2(b —a)Q [ v || -
Then,

1V Ilx< (1 =2(b—a)Q) ™ (max (@1 (h)), @3 (1)) + (b = a)Q@; (h)).

From (2.16) and (A1), we can conclude that, for alli € {1,2,3},

lim w; (h) = 0.
hl_% z()

But, using (A1) — (A2), we obtain,

h .
0200 28

And this proves that our method is perfectly converging under assumptions (A1), (Az), (A3), (As)
and (As).



CHAPTER

Numerical Examples

3.1 Numerical test

We take the same numerical example studied in [1], i.e we consider the nonlinear
integro-differential equation:

11
o(t) =g(t)+ [ gsin[2s+1+0() +(1=5)e" —¢'(s)] ds,

with known exact solution ¢(t) = te’. We apply the Nystrom method using numerical
quadrature and a backward finite difference scheme to approximate ¢'.

Discretization

We consider a uniform subdivision of [0, 1]:
1
- = (] — <j<N.
h N1’ ti (j—1)h, 1<j<N

We use a numerical quadrature formula:

1 N
| F&ds = Y eif (e,
j=1

where p; are weights (we use the trapezoidal rule).
The derivative is approximated using the backward finite difference:

;PP @i
?j 7

Q

j=2,...,N.
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The discretized system becomes:
> ¢ — Pj-1
¢i = Y_pjF(titj, j, T) + 01F(ti, t1, 91, 91) + g(ti), 1<i<N,
j=2

with an additional equation:

N 9r Qi — Qi1 oF
91 = ij§(t1,tj, P, %) +P1—at (t1,t, 91, 91) + &' (1)
=2

| | Backward finite difference | Full Nystrom Bounaya and al.[1] |
N Error Matrix Time Error Matrix Time
Conditioning Conditioning

20 | 8.23e-04 9.35e+0 2.15e-3 | 1.14e-04 3.41e+1 4.34e-3

50 | 1.35e-05 6.39e+0 1.08e-2 | 7.22e-04 1.75e+1 1.62e-2
100 | 3.27e-06 6.77e+0 1.36e-1 | 5.48e-06 1.68e+1 3.97e-1
200 | 8.19e-07 8.11e+0 4.11e-1 | 4.76e-06 1.68e+1 4.78e-1
500 | 1.32e-07 1.45e+1 2.39e+0 | 3.83e-06 1.68e+1 4.52e+0
750 | 5.96e-08 1.45e+1 5.68e+0 | 1.84e-07 1.68e+1 9.55e+0
1000 | 3.27e-08 1.45e+1 9.41e+0 | 8.54e-08 1.68e+1 3.22e+1

Table 3.1: Our method vs Bounaya and al. method[1]

In this example, we have studied a nonlinear Fredholm integro-differential equation
with a known exact solution ¢(t) = te', using two distinct numerical approaches:

¢ The full Nystrom method as used by Bounaya et al., which applies quadrature
rules to both the function and its derivative within the nonlinear kernel.

¢ A new approach based on the backward finite difference formula, where
the derivative ¢'(s) is approximated explicitly outside the integral using a
first-order backward scheme.

Our numerical results lead to the following conclusions:

* Both methods produce accurate approximations of the exact solution, with
errors on the order of 10~ to 107, depending on the discretization.

¢ The backward finite difference method significantly reduces computational
time compared to the full Nystrom method. This gain in efficiency is due to
the explicit treatment of the derivative, which avoids its repeated nonlinear
evaluation within the integral.
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¢ From an implementation standpoint, the backward scheme is simpler, faster,
and more memory-efficient, while still maintaining good numerical accuracy.

Therefore, the proposed backward finite difference-based method presents itself
as an effective and computationally efficient alternative to the classical Nystrom
approach for solving nonlinear Fredholm integro-differential equations.



Conclusion

In this thesis, we investigated the numerical solution of a class of nonlinear Fredholm
integro-differential equations involving both the unknown function and its derivative.
Such equations are fundamental in modeling various real-world phenomena across
physics, biology, and engineering. However, due to their inherent complexity and the
presence of nonlinearities, obtaining analytical solutions is often impossible, making
numerical methods essential.

We began by revisiting the classical Nystrom method as applied by Bounaya et
al. [1], which jointly discretizes the integro-differential equation and its derivative.
Although effective, this method results in a large nonlinear system, which can be
computationally intensive for problems defined over large intervals.

To address this challenge, we proposed a new numerical approach that integrates the
finite difference method for approximating derivatives with the Nystrom method for
integral discretization. This strategy allows for a significant reduction in the size of
the algebraic system, thereby improving computational efficiency while preserving
accuracy.

We provided a rigorous theoretical analysis of the method, including convergence
results and error estimates, under a set of standard regularity and Lipschitz conditions.
Numerical experiments confirmed the theoretical predictions and demonstrated the
efficiency, stability, and reliability of the proposed scheme.

Overall, the method developed in this thesis offers a practical and efficient tool for
solving a broad class of nonlinear integro-differential equations. It opens the door to
further research, such as extensions to systems of equations, treatment of singular
kernels, or applications to inverse problems and control theory. Future work may
also explore adaptive mesh techniques and higher-order approximations to further
enhance accuracy and computational performance.
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