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Abstract

In this work, we investigate the controllability of a class of fractional systems in the Ψ-Caputo

sense with nonlocal initial conditions.

First, we establish the existence and uniqueness of solutions by applying the Schauder fixed point

theorem and the Banach contraction principle. Subsequently, we analyze the controllability of

the nonlinear problem. Finally, we present a numerical example to elucidate the theoretical

framework and demonstrate the obtained results.

Key words : Ψ-Caputo fractional derivative, Mittag Leffler function, controllability, nonlocal

initial condition, Schauder fixed point theorem, Banach contraction principle.
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Résumé

Dans cette étude, nous examinons la contrôlabilité d’une classe de systèmes fractionnaires

avec des conditions aux limites non locales au sens de la dérivée de Ψ-Caputo.

Dans un premier temps, nous établissons l’existence et l’unicité des solutions en appliquant

le théorème du point fixe de Schauder et le principe de contraction de Banach. Ensuite, nous

analysons la contrôlabilité du problème non linéaires. Enfin, nous présentons un exemple

numérique pour éclaircir le cadre théorique et illustrer les résultats obtenus.

Mots clés: Dérivée fractionnaire de Ψ-Caputo, fonction Mettag Leffler, contrôlabilité,

condition initiale non locale, Théorème point fixe de Schauder, Théorème point fixe de Banach.
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Notations and Abbreviations

- N Set of integers numbers.

- R Set of real numbers.

- C Set of complex numbers.

- Γ(.) Gamma function.

- B(., .) Beta function.

- Re(z) Real part of the complex number z.

- Eα,β(z) Mittag Leffler function.

- Iαa f Riemann-Liouville fractional integral of order α of function f .

- cDα
a f Caputo fractional derivative of order α of function f .

- RLDα
a f Riemann-Liouville fractional derivative of order α of a function f .

- I α;ψ
a+ f The ψ-Caputo integral of order α for a function f.

- cDα;ψ
a+ f The ψ-Caputo derivative of order α of a function f .

- L (.) Laplace Transform.

- L −1(.) Inverse Laplace Transform.

- X, Y Normed vectorial space.

- C(X, Y ) Space of continuous functions from X to Y.
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Introduction

The concept of fractional analysis has a long historical precedent, dating back to the early

1700s, when monumental figures such as L’Hopital and Leibniz laid down the fundamental

principles of differential and integral calculus. This concept, referring to a function possessing

an arbitrary real or complex order, has gained substantial prominence within the academic

community over the last three decades. It has unlocked new insights into understanding complex

and intermittent systems that classical calculus cannot handle, contributing to numerous

advances in various fields of science and engineering. Despite the complexity involved in

studying non-integer derivatives, researchers have persistently pursued this area of study and

have made significant progress in understanding and applying this concept.

The origins of fractional calculus can be traced back to a discourse between prominent

mathematicians L’Hopital and Leibniz in 1695. L’Hopital inquired about the significance of

the d1/2f
dt

derivative, which inspired Leibniz to contemplate the plausibility of derivatives of

non-integer order. Leibniz described this concept as a paradox with potential practical utilities.

However, noteworthy advancements in this domain were not realized until the 1990s.

Then, Leibniz still wrote about derivatives of general order and in 1730, Euler investigated

the result of the derivative when the order n is a fraction (In his article on the Gamma function,

a mathematical concept closely connected to the factorial function, Euler presented a quandary

concerning rational numbers. This may have contributed to the adoption of the term ”fractional”

in contemporary calculus). But, only in 1819, with Lacroix, appeared the first definition of

fractional derivative based on the expression for the nth derivative of the power function.

Considering y = xm, with m a positive integer, Lacroix developed the nth derivative

dny

dxn
=

m!

(m− n)!
xm−n, m ≥ n,

2
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and using the definition of Gamma function, for the generalized factorial, he got

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n.

Lacroix also studied the following example, for n = 1
2

and m = 1:

d1/2x

dx1/2
=

Γ(2)

Γ(3/2)
x

1
2 =

2
√
x√
π
. (1.1)

During the 1830s, Liouville and Riemann, in their own distinct manners, established the

concept of fractional derivatives, a method subsequently referred to as the ”Riemann-Liouville”

approach. Over time, additional hypotheses, including the Grunwald-Letnikov, Weyl, and

Caputo conjectures, were developed ([9, 12, 15]).

Additionally, control theory studies the behavior of dynamical systems based on their

parameters. It can be seen as a strategy to select the appropriate input for a system so that the

output matches the desired response. The goal is thus to drive the system from a given initial

state to a certain final state, while possibly respecting specific constraints [8, 10, 17].

In practice, controllability problems arise in numerous disciplines, such as: parking a car,

piloting an aircraft or guiding a satellite into orbit, optimizing information flow in a network,

controlling an epidemic, performing laser-assisted surgical procedures, and many others. For

several decades, extensive research has been conducted on controllability problems for fractional

differential equations [2, 3, 11, 19].

In this work we focus our attention on the controllability problem of a nonlinear fractional

system where the derivatives are taken in the ψ− Caputo sense .

This manuscript is organized as follow

In the first Chapter, we introduce the fundamental concepts of fractional calculus, which

will prove instrumental for our study. Specifically, we will highlight special functions such as the

Gamma function and Beta function, along with established techniques for fractional derivatives

and integrals. Additionally, we present several fixed-point theorems, which are necessary for

analyzing the existence and uniqueness of the solution.

In the second chapter, we focus on control theory for distributed parameter systems,

where we present fundamental concepts including controllability, Kalman’s Controllability Crite-

rion, optimal control, and related notions.

Contents



Contents 4

In the final chapter we establish the necessary conditions to ensure the exacte control-

lability of our problem. This follows the proof of existence and uniqueness for solutions to a

nonlinear fractional differential equation in the Ψ-Caputo sense, using Banach’s contraction

principle and Schauder’s fixed-point theorem. Finally, we provide an illustrative example to

demonstrate the obtained results.

Contents



Chapter 1
Preliminaries

In this chapter, we present some fundamental theories related to fractional calculus. In this

context, the focus will intentionally be on different approaches to generalizing the concepts of

differentiation and integration for a fractional order.

1.1 Special functions

1.1.1 Gamma Function

One of the fundamental functions for fractional calculus is the Gamma function, which extends

the factorial function to the set of complex numbers.

Definition 1.1 [9] The Gamma function Γ(z) is defined by the following integral

Γ(z) =

∫ +∞

0

xz−1e−xdx, Re(z) > 0, (1.1)

where the improper integral converges absolutely in the complex half-plane where the real part

is strictly positive. Obviously, Γ(1) = 1 and Γ(n+ 1) = n!.

Remark 1.1 :

1) The Gamma function is strictly decreasing for 0 < z < 1, and moreover, we have

Γ(z + 1) = zΓ(z), ∀z ∈ C.

In general, we have

Γ(z + n) = z(z + 1)(z + 2)......(z + n− 1)Γ(z), ∀n ≥ 1.

5



Chapter 1. Preliminaries 6

2) The Gamma function is verified

Γ(z)Γ(1− z) =
π

sin(πz)
.

We will obtain this formula under the condition 0 < Re(z) < 1 and then show that it holds for

z 6= 0, ±1, ±2...

Special values

Γ(1/2) =
√
π, Γ(3/2) =

√
π

2
, Γ(5/2) =

3
√
π

4
, .....,

In general, we have

Γ(n+
1

2
) =

(2n)!

22nn!

√
π, ∀n ∈ N.

Legendre’s duplication formula:

Γ(1 + z)Γ(z +
1

2
) = 2−2z

√
πΓ(2z + 1).

1.1.2 Beta Function

The so-called Beta function, which is an Euler type integral, insteacl of a certain combination

of values of the Gamma function. In some cases the Beta function is more favorable than the

Gamma function. Since it is convenient to use it in fractional derivatives of the Power function.

Definition 1.2 Let z, w ∈ C such that Re(z) > 0 and Re(w) > 0, the function beta is defined

by

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt. (1.2)

Proposition 1.1 Let z, w ∈ C such that Re(z) > 0, Re(w) > 0. The Beta function B satisfies

the following properties:

• The Beta function is symmetric, i.e. B(z, w) = B(w, z).

• B(z, w) = B(z + 1, w) +B(z, w + 1).

• B(z, w) = Γ(z)Γ(w)
Γ(z+w)

.

This relation provides the continuation of the beta function for the entire complex plane, if

we have the continued gamma function.

1.1. Special functions
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1.1.3 Mittag-Leffler Function

The Mittag-Leffler function (denoted Eα,β, named after the Swedish mathematician Gösta

Mittag-Leffler (1903)) is a special function - meaning it cannot be computed from rational

equations - that operates in the complex plane and depends on two parameters. This function

is a direct generalization of the exponential function, and it plays a major role in fractional

calculus.

Definition 1.3 [9] Let z ∈ C such that Re(z) > 0. We define the Mittag-Leffler function as

follows:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, (1.3)

In particular, when α = 1 we recover the exponential function E1(z) = ez.

More generally, the two-parameter Mittag-Leffler function is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(kα + β)
, α, β > 0, (1.4)

If A is a n× n matrix, we get

Eα,β(Atα) =
∞∑
k=0

Aktkα

Γ(kα + β)
. (1.5)

Remark 1.2 :

1) If β = 1, we get the relation (1.3) because

Eα,1(z) =
∞∑
k=0

zk

Γ(kα + 1)
= Eα(z).

2) If α = β = 1, then

E1,1(z) =
∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

zk

k!
= ez.

3) If α = 2, β = 1, then

E2,1(z) =
∞∑
k=0

zk

Γ(2k + 1)
= cosh(

√
z).

4) If α = n, n ∈ N, the Mettag Effler function satisfies the following formulas(
d

dz

)n
En(λzn) = λEn(λzn),(

d

dz

)n
[zβ−1En,β(λzn)] = zβ−n−1En,β−n(λzn).

In general, (
d

dz

)n
Eα,β(z) = n!En+1

α,β+αn(z),

1.1. Special functions
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1.2 Fractional Calculus

This section will be devoted to basic definitions of some fractional integrals and derivative.

1.2.1 Riemann-Liouville fractional derivative

The notion of fractional integral of order α ∈ C (Re(α) > 0), according to the Riemann-Liouville

approach, generalizes the famous formula (attributed to Cauchy) of repeated integral n times.

Let f be a continuous function on the interval [0, T ], T > 0. A primitive of f is given by the

expression:

I1f(t) =

∫ t

0

f(τ) dτ.

For a second primitive, we have:

I2f(t) =

∫ t

0

I1f(u) du =

∫ t

0

(∫ u

0

f(s) ds

)
du

=

∫ t

0

(∫ t

s

du

)
f(s) ds =

∫ t

0

(t− s)f(s)ds.

By repeating n times, we arrive at the nth primitive of the function f in the form:

Inf(t) =

∫ t

0

dt1

∫ t1

0

dt2.....

∫ tn−1

0

f(tn)dtn

=
1

(n− 1)!

∫ t

0

(t− s)n−1f(s)ds, n ∈ N∗.

This formula is called the Cauchy formula, and since the generalization of the factorial by the

Gamma function: Γ(n) = (n− 1)! Riemann realized that this formula could make sense even

when n takes a non-integer value, and he defined the fractional integral as follows:

Definition 1.4 [9] Let Ω = [a, b] be a finite interval on the real axis R and f is a continuous

function in Ω. The Riemann-Liouville fractional integral Iαa f(t) of order α > 0 of the function

f is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t > a, n < α < n+ 1. (1.6)

Definition 1.5 [9] The Riemann-Liouville fractional derivative (noted by RLDα) of order α > 0

of the function f ∈ L1(Ω) is defined by

RLDα
a f(t) =

(
d

dt

)n
(In−αa f)(t) (1.7)

=
1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1f(s)ds, (1.8)

1.2. Fractional Calculus
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with n− 1 < α < n, n ∈ N∗.

When α = n, then RLDα
a f(t) = f (n)(t), where f (n) is the usual derivative of f of order n.

Example 1.1 :

We consider the function f defined by f(x) = (x− a)β, β ∈ R. We have

Iαa f(x) = Iαa (x− a)β =
1

Γ(α)

∫ t

a

(x− s)α−1(s− a)βds

=
Γ(β + 1)

Γ(α + β + 1)
(x− a)α+β.

Moreover, we have

RLDα
a (t− a)β =

Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α.

Proposition 1.2 Let f : [a, b]→ R be a continuous function, the Riemann-Liouville fractional

integral has the following property:

Iαa
[
Iβa f(t)

]
= Iα+β

a f(t), α, β > 0.

Moreover, we have
d

dt
(Iαa f) (t) = Iα−1

a f(t), α > 0.

1.2.2 Hadamard Fractional Integral and Derivative

Definition 1.6 [12] Let (a, b), (0 < a ≤ b ≤ ∞) be a finite interval. The Hadamard fractional

integral of order α of a function x is defined by

Iαa x(t) =
1

Γ(α)

∫ t

a

(
log

t

s

)α−1
x(s)

s
ds, a ≤ t ≤ b. (1.18)

Definition 1.7 [12] Let (a, b), (0 < a ≤ b ≤ ∞) be a finite interval. The Hadamard fractional

derivative of order α of a function x is defined as follows:

Dα
ax(t) =

1

Γ(n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−α−1
x(s)

s
ds, n = [α] + 1, a ≤ t ≤ b. (1.19)

Lemma 1.1 If a > 0 and β > α > 0, then

Dα
a

(
log

x

a

)β−1

(t) =
Γ(β)

Γ(β − α)

(
log

x

a

)β−α−1

, (1.9)

and

Iαa

(
log

x

a

)β−1

(t) =
Γ(β)

Γ(β + α)

(
log

t

a

)β+α−1

. (1.10)

1.2. Fractional Calculus
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1.2.3 Caputo fractional derivative

The Riemann-Liouville formulation involves initial conditions that incorporate the boundary

values of its fractional derivatives at the lower limit. Although these initial value problems can

be addressed mathematically, their solutions lack practical utility due to the absence of a clear

physical interpretation for such conditions. To resolve this issue, M. Caputo introduced an

alternative approach.

Definition 1.8 [9] Let [a, b] be a finite interval of the real line R and let f be a function of

class Cn([a, b]). The fractional Caputo derivative cDα
a of order α > 0 of the function f is defined

through the Riemann-Liouville fractional derivative, that is to say

cDα
a f(t) =RL Dα

a

[
f(t)−

n−1∑
k=0

f (k)(a)

k!
(t− a)k

]
, (1.11)

with n− 1 < α < n, n ∈ N∗.

We deduce that if fk(a) = 0 for k = 0, 1, 2, ..., n− 1, we get

cDα
a f(t) =RL Dα

a f(t).

Definition 1.9 [9] The Caputo derivative of order α > 0 of the function f of class Cn([a, b]) is

defined by

cDα
a f(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)

(t− s)α+1−nds, t > a,

with n− 1 < α < n, n ∈ N∗.

When α = n ∈ N, then

cDα
a f(t) = f (n)(t),

where f (n) is the usual derivative of f of order n.

Remark 1.3 One difference between the Riemann-Liouville definition and the Caputo definition

is that the Caputo derivative of a constant is zero, where as the Riemann-Liouville fractional

derivative of a constant C is

RLDα
aC =

Ct−α

Γ(1− α)
6= 0.

Lemma 1.2 [9]:

1) Let f ∈ C([a, b]), ∀t ∈ [a, b], ∀α ∈]n− 1, n[, we have the following propertie

cDα
a I

α
a f(t) = f(t).

1.2. Fractional Calculus
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2) Let f ∈ Cn([a, b]), ∀t ∈ [a, b], ∀α ∈]n− 1, n[, we have the following propertie

Iα(cDα)f(t) = f(t)−
n−1∑
k=0

f (k)(a)

k!
(t− a)k. (1.12)

Theorem 1.1 [12] Let Re(α) > 0. If f ∈ Cn[a, b] then the Caputo fractional derivative cDα
a f

exist almost every where on [a, b] and we have

cDα
a f(t) = In−αDnf(t), t > a. (1.13)

1.2.4 Ψ-Caputo fractional derivative

Some primitive notions, definitions and notations about Ψ−Caputo derivative are recalled in

this section. Let [a, b] be a finite interval of the real line R and α > 0. Let Ψ ∈ C1([a, b],R) be

an increasing function having a continuous derivative such Ψ′(t) 6= 0 on [a, b].

Definition 1.10 [9] The αth Ψ- integral for an integrable function x : [a, b]→ R with respect

to Ψ is given as

I α;Ψ
a+ x(t) =

1

Γ(α)

∫ t

a

(Ψ(t)−Ψ(s))α−1Ψ′(s)x(s) ds, t > a, (1.14)

in which n < α < n+ 1, n ∈ N.

Remark 1.4 :

• We can write I α;Ψ
a+ x(t) = 1

Γ(α)

∫ t
a

Φ̆α
s (t)x(s) ds, where Φ̆α

s (t) = (Ψ(t)−Ψ(s))α−1Ψ′(s).

• When Ψ(t) = t, the Ψ-Caputo fractional derivative corresponds to the classical Caputo

fractional derivative.

• When Ψ(t) = ln t, the Ψ-Caputo fractional derivative corresponds to the Hadamard

fractional derivative.

Definition 1.11 [9] Let n ∈ N, x ∈ Cn([a, b],R), and Ψ ∈ Cn([a, b],R). The αth Ψ-Caputo

derivative of x is defined by

cDα;Ψ
a+ x(t) = I n−α;Ψ

a+ ∂nΨx(t),

in which n = [α] + 1 for α /∈ N, n = α for α ∈ N and ∂Ψ =
(

1
Ψ′(t)

d
dt

)
.

In other words,

cDα;Ψ
a+ x(t) =


∫ t
a

Ψ′(s)(Ψ(t)−Ψ(s))n−α−1

Γ(n−α)
∂nΨx(s) ds, α /∈ N,

∂nΨx(t), α = n ∈ N.

1.2. Fractional Calculus
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Remark 1.5 :

If x ∈ Cn−1([a, b],R), the αth Ψ-Caputo derivative of x is specified as

cDα;Ψ
a+ x(t) = Dα;Ψ

a+

(
x(t)−

n−1∑
k=0

∂kΨx(a)

k!
(Ψ(t)−Ψ(a))k

)
.

The composition rules for above Ψ-operators are given in this lemma.

Lemma 1.3 [9] Let n − 1 < α < n, Ψ ∈ Cn([a, b],R), and x ∈ Cn−1([a, b],R). Then the

following holds

I α;Ψ
a+

cDα;Ψ
a+ x(t) = x(t)−

n−1∑
k=0

∂kΨx(a)

k!
[Ψ(t)−Ψ(a)]k ,

for all t ∈ [a, b]. Moreover, if m ∈ N and x ∈ Cn+m−1([a, b],R), then, the following holds:

∂mΨ

(
cDα;Ψ

a+ x
)

(t) = cDα+m;Ψ
a+ x(t) +

n−1∑
k=0

[Ψ(t)−Ψ(a)]k+n−α−m

Γ(k + n− α−m+ 1)
∂k+m

Ψ x(a).

Observe that if ∂kΨx(a) = 0, ∀ k = n, n+ 1, . . . , n+m− 1, we can get the following relation

∂mΨ

(
cDα;Ψ

a+ x
)

(t) = cDα+m;Ψ
a+ x(t), t ∈ [a, b].

Lemma 1.4 [12] Let α, l > 0, and x ∈ C([a, b],R). Then ∀t ∈ [a, b] and we suppose that

Qa(t) = Ψ(t)−Ψ(a), we have

1.I α;Ψ
a I l;Ψ

a x(t) = I α+l;Ψ
a x(t).

2.cDα;Ψ
a+ I α;Ψ

a x(t) = x(t).

3.I α;Ψ
a (Qa(t))

l−1 =
Γ(l)

Γ(l + α)
(Qa(t))

l+α−1.

4.cDα;Ψ
a+ (Qa(t))

l−1 =
Γ(l)

Γ(l − α)
(Qa(t))

l−α−1.

5.cDα;Ψ
a+ (Qa(t))

k = 0, k ∈ {0, ..., n− 1}, n ∈ N, α ∈ (n− 1, n).

Lemma 1.5 [9] If γ > 0 and λ ∈ C, then

cDγ
a(Eγ(λ(t− a)γ)(x)) = λEγ(λ(x− a)γ), (1.15)

and

cDγ
at
γ−1(Eγ(λt

−γ)(x)) =
1

x
Eγ,1−γ(λx

−γ), (1.16)

where Eγ is the Mettag Leffler function.

1.2. Fractional Calculus
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1.3 Laplace Transform

As in the integer-order case, the Laplace transform is used to solve fractional-order differential

equations. It is a tool that converts a differential equation into a linear equation where derivative

forms disappear.

Definition 1.12 The Laplace transform of a function f(t) of a real positive variable t ∈ (0,+∞)

is the function F (λ) defined by:

F (λ) = (L f)(λ) = L {f(t)}(λ) =

∫ +∞

0

e−λtf(t) dt, λ ∈ C. (1.17)

The Laplace transform of f exists if the integral (1.17) converges.

Properties of the Laplace Transform:

1. The Laplace transform is a linear operator, meaning that for any functions f and g with

Laplace transforms and for any real numbers α, β we have:

L {αf + βg} = αL {f}+ βL {g}.

2. Let F (λ) and G(λ) be the Laplace transforms of f(t) and g(t), respectively. Then, the

convolution product (f ∗ g) is given by:

L {(f ∗ g)(t)}(λ) = F (λ) ·G(λ) = L

{∫ t

0

f(t− z)g(z) dz

}
. (1.18)

3. The Laplace transform of the n-th derivative of a function f is:

L {f (n)(t)}(λ) = λnF (λ)−
n−1∑
k=0

λkf (n−k−1)(0).

Definition 1.13 [9] The inverse Laplace transform of a function g(λ) is given by:

(L −1g)(t) = L −1{g(λ)}(t) =
1

2πi

∫ γ+i∞

γ−i∞
eλtg(s) ds, (1.19)

where γ is chosen such that the integral converges.

Definition 1.14 [5] The Laplace transform formulas for the fractional integral and the Caputo

derivative are given by:L {cDαf(t)} (λ) = λαF (λ)−
∑n−1

k=0 f
(k)(0)λα−k−1, (n− 1 < α ≤ n),

L
{
I1−α

0 f(t)
}

(λ) = λα−1F (λ).
(1.20)

1.3. Laplace Transform
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Moreover, if A is a n× n matrix, thenL −1 {λα−1(λαI − A)−1} (t) = Eα(Atα),

L −1 {(λα − A)−1} (t) = tα−1Eα,α(Atα).
(1.21)

Lemma 1.6 [11] Let y ∈ Cn(a, b) and y(n) ∈ L1(a, b). The Laplace transform of the Ψ-Caputo

fractional derivative is given by the following relation

L
{
cDα;Ψ

a+ y(t)
}

(λ) = λαL (y(t))−
n−1∑
k=0

λα−k−1y(k)(a). (1.22)

with n− 1 < α ≤ n, (n ∈ N∗).

Lemma 1.7 [9] Let γ > 0, y ∈ Cn(a, b) and y(n) ∈ L1(a, b). Then the following relations holds
L −1 {λγ−1(λγI − A)−1} (t) = Eγ(A(Qa(t))

γ),

L −1 {(λγI − A)−1} (t) = Φγ
s (t)Eγ,γ(A(Qa(t))

γ),

(1.23)

where L −1 is the inverse Laplace transform.

1.4 Point fixed Theorems

Definition 1.15 [14] A set U of a normed space X is relatively compact if the closure U is

compact it means if every sequence of points in U has a cluster point in X.

Remark 1.6 Relatively compact sets are granting some compactness properties. They are

commonly used to study the convergence and properties of sequences and continuous functions.

Definition 1.16 [14] Let (E, d) be a metric space. We say that (E, d) is a compact space if

and only if, for every open covering of E, we can extract a finite open subcovering.

A space is compact if it is relatively compact in itself.

Definition 1.17 [14] A bounded linear operator Φ acting from a Banach space X into another

Banach space Y is completely continuous if it transforms weakly-convergent sequences in X to

norm-convergent sequences in Y.

Equivalently, the operator Φ is completely continuous if it maps every relatively weakly compact

subset of X into a relatively compact subset of Y.

1.4. Point fixed Theorems
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Remark 1.7 :

1) It is easy to see that every completely continuous operator is compact, however the converse

is false.

2) If X is reflexive, the two classes of operators (completely continuous operator and compact)

do coincide.

1.4.1 Ascoli-Arzela Theorem

Arzela-Ascoli theorem, demonstrated by Italian mathematicians Giulio Ascoli and Cesare Arzela,

characterizes, using the notion of equicontinuity, the relatively compact subsets of the space of

continuous functions from a compact space into a metric space.

Theorem 1.2 [4] Let (X, ‖.‖X) be a compact normed space and (Y, ‖.‖Y ) a complete normed

space, a subset A of C(X, Y ) is relatively compact if and only if:

1) A is equicontinuous if it is equicontinuous at all a ∈ X i.e., for all ε > 0, ∃δ > 0 such that

∀x ∈ X, ‖x− a‖X< δ ⇒ ∀Φ ∈ A, ‖Φ(x)− Φ(a)‖Y< ε, .

2) The set A is uniformly bounded, i.e., there exists a constant K > 0 such that

‖Φ(x)‖X 6 K, ∀ x ∈ X and Φ ∈ A.

1.4.2 Banach fixed-point theorem

Theorem 1.3 [4] Let X = (X, ‖.‖X) be a Banach space, and let Φ : X → X be a contraction

mapping on X i.e. such that

∃ 0 < k < 1, ‖Φu− Φv‖ ≤ k‖u− v‖, ∀ u, v ∈ X.

Then, Φ admits a unique fixed point u in X, i.e Φu = u.

1.4.3 Schauder fixed point theorem

Theorem 1.4 [4] Let X = (X, ‖.‖X) be a Banach space and let U be a closed convex subset of

X. Let Φ : U → U be a continuous and compact mapping. Then Φ admits a fixed point belonging

to U.

Master PDE and Numerical Analysis Guelma University Debabgha Zineb



Chapter 2
Controllability of distributed system

Controllability is a fundamental concept in the analysis of dynamic systems. It refers to the

ability to impose a desired behaviour on a system, meaning to move a system from an arbitrary

initial state to a desired state in finite time using a control.

A control system is a dynamic system depending on a parameter called the control, usually

subject to constraints. Among the main objectives of control theory, which will be discussed in

this work, is the notion of controllability.

2.1 Controllability

Let T > 0, consider a linear differential system defined on [0, T ] byx
′(t) = Ax(t) +Bu(t),

x(0) = x0,
(2.1)

where A is a square matrix (n× n) called the state matrix, and B is a matrix (n×m) called

the control matrix, x(t) is the state of the system, and x0 is the initial condition. The solution

of (2.1) is given by:

x(t, x0, u) = etAx0 +

∫ t

0

e(t−s)ABu(s)ds. (2.2)

Several notions of controllability can be defined. The most important ones are exact controlla-

bility, approximate controllability, and zero controllability.

16
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2.1.1 Exacte Controllability

Definition 2.1 [8] The system ( 2.1) is exactly controllable at time T if, for all states x0, x1 in

the state space, there exists an admissible control u such that

x1 = x(T, x0, u). (2.3)

Remark 2.1 If x1 = 0, the system (2.1) is said to be ”zero-controllable” or have ”zero

controllability” .

Definition 2.2 We define the controllability space (or reachable space), denoted C , as the set

of all states reachable from the initial state x0. Mathematically:

C = {x ∈ Rn : ∃u ∈ L2(0, T ;Rm) such that x(T ) = x1}. (2.4)

2.1.2 Approximate Controllability

Approximate controllability is a property of a dynamical system that ensures it can be steered

arbitrarily close to any desired state within a given time frame, even if exact controllability

(reaching the target state precisely) is not guaranteed.

Definition 2.3 [8] Let T > 0. The control system (2.1) is approximately (weakly) controllable

at time T if, for all x0, x1in the state space and for all ε > 0, there exists a control u such that

the solution of the system satisfies:

‖x(T, x0, u)− x1‖ ≤ ε. (2.5)

Example: Heat equation is approximately controllable but not exactly controllable due to

smoothing effects (because heat diffuses everywhere, allowing the state to be steered close to

any target profile).

Master PDE and Numerical Analysis Guelma University Debabgha Zineb
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Figure :Exacte and approximate controllability

Remark 2.2 :

1) Weak or approximate controllability is easier to verify in applications.

2) Exacte controllability is the strongest of the three notions.

Example:

Steering the rudder of an airplane will change its direction (yaw), but it will not affect its

altitude. Conversely, adjusting the angle of the wings to ascend or descend will change the

altitude but not the direction. This illustrates that certain variables in a system cannot be

influenced by specific inputs, which means the system is not fully controllable from those inputs.

2.1.3 Kalman’s Controllability Criterion

Here, we will give the famous Kalman controllability condition of a finite-dimensional linear

system, this condition is based on an algebraic condition, it is the rank of a matrix by block

formed by A and B as follows.

Definition 2.4 Controllability Matrix:

The matrix

W = (B,AB, · · · , An−1B), (2.6)

is called the Kalman controllability matrix.

The following theorem provides a necessary and sufficient condition for controllability when A

and B do not depend on time and there are no constraints on the control.

Master PDE and Numerical Analysis Guelma University Debabgha Zineb
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Theorem 2.1 [17] The linear system (2.1) is controllable if and only if:

rank(W ) = n. (2.7)

We also say that the pair (A,B) is controllable.

Remark 2.3 :

1) The matrix W is called the kalman matrix and the condition is referred to as the ”kalman

condition” this condition depends on the initial data, in other words, ifx0 is a system ,the

autonomous linear system is controllable in time T since it is controllable at all times from any

points.

2) If the matrix A defining the system (2.1 is diagonal with distinct elements two by two, then

the system is controllable if and only if the matrix B has no null columns.

Example 2.1 Consider a dynamic system described by:x
′(t) = Ax(t) +Bu(t),

x(0) = x0

where the matrices A and B are given by:

A =

2 1

0 3

 , B =

0

1


This system is controllable because the controllability matrix W has full rank. Indeed,

AB =

1

3

⇒ W =

0 1

1 3


det(W ) = −1⇒ rankW = 2.

we give here a result that allows us to provide a characterization of controllability.

2.1.4 Characterization of Controllability

For all t ∈ [0, T ], we can write the solution (2.2) of the system (2.1) in the form:

x(t, x0, u) = X0 + Ltu, (2.8)

where Ltu is the bounded linear operator defined by:

Lt :

L2(0, T, U)→ Rn

u→
∫ t

0
e(t−s)ABu(s)ds,

(2.9)

Master PDE and Numerical Analysis Guelma University Debabgha Zineb
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and

X0 = etAx0.

For simplicity, let us take X0 = 0.

We consider its adjoint L∗t given by:

L∗t :

Rn → L2(0, T, U)

z → L∗t (z) = B∗eA
∗(T−t)z,

such that

(L∗t (z), u) = (z, Ltu), ∀u ∈ L2(0, T, U), ∀z ∈ Rn. (2.10)

Proposition 2.1 [17] The system (2.1) is exactly controllable at time T > 0 if and only if the

operator LT is surjective, i.e.,

∀x0, x1 ∈ Rn, ∃u ∈ Uad, x(x0, u)(T ) = x1.

Proof. Let x0, x1 ∈ Rn be two arbitrary states. The equation x(T, x0, u) = x1, has a solution

in L2(0, T, U) if and only if the equation

LTu = x1 − eTAx0,

has a solution in L2(0, T, U). The equivalence of the two equations leads to the proposition.

Remark 2.4 From the previous proposition, we can say that the system (2.1) is controllable if

and only if Im(LT ) = Rn.

The matrix W has full rank if and only if the linear operator Lt is surjective.

Proposition 2.2 [1] There is an equivalence between

• The system (2.1) is weakly controllable,

• Im(LT ) = Rn.

• Im(LTL
∗
T ) = Rn,

• Ker(L∗T ) = {0}.
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2.2 Controllability Gramian

We introduce the controllability matrix called the ”Controllability Gramian” by:

W = LTL
∗
T =

∫ T

0

esABB∗esA
∗
ds, (2.11)

where A∗ and B∗ denote the transpose matrices of A and B.

Corollary 2.1 [8] The following properties are equivalent:

1. The pair (A,B) is controllable at time T > 0.

2. The operator Lt is surjective.

3. The operator L∗t is injective.

4. The matrix W is invertible.

Remark 2.5 : The controllability matrix W is always positive because

〈Wx, x〉 =

∫ T

0

|B∗esA∗x|2ds = ‖L∗Tx‖2 > 0. (2.12)

2.3 Optimal Control

In this section, we will determine the optimal control that allows reaching a given target.

In the case where the system is controllable, there will generally be an infinite number of controls

that answer the question.

Optimization is used to find the control that ensures controllability with a minimal cost given

by a function. It is interesting to construct one that ”consumes the least energy”

The energy functional we choose here is

J(u) =

∫ T

0

‖u(s)‖2ds.

We denote

Uad = {u ∈ U, x(T, x0, u) = x1}.
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Thus, we seek the solution to the optimization problem with the following constraint:

(P ) {min J(u), u ∈ Uad}. (2.13)

Two questions arise:

• Find the existence of an optimal control.

• Find a way to compute it, that is, describe a method to calculate the control in terms of

the various parameters of the problem.

Theorem 2.2 [17] The problem (P ) has a unique solution if and only if :

• J is continuous, coercive and strictly convex,

• Uad is convex, closed and non-empty

the following theorem defines the unique control u that minimizes the functional J over the set

Uad

Theorem 2.3 [17] the control u transfers x0 in x1 = x(T, x0, u) is given by:

u(s) = B∗e(T−s)A∗W−1
T (x1 − eTAx0). (2.14)
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Chapter 3
Controllability for a class of Ψ-caputo

fractionnal system

In this chapter, we investigate the controllability of a nonlinear fractional problem with nonlocal

initial conditions in the sense of the Ψ-Caputo derivative but firstly, we establish the existence

and uniqueness of solutions to the problem. To achieve this, we employ two key mathematical

tools: Schauder’s fixed-point theorem and the Banach contraction principle.

3.1 Problem statement

We consider the following fractional differential problem
cDα;Ψ x(t) = Ax(t) + f(t, x(t)) +Bu(t), t ∈ J = (0, T ],

x(0) = h(x),
(3.1)

where

• cDα;Ψ is the fractional derivative in the sense of Ψ-Caputo of ordre α such that 0 < α < 1.

• x(t) ∈ Rn is the state vector.

• u(t) ∈ Rm is the control.

• A is (n, n) square matrix ans B is (n,m) matrix.

• h : Rn → Rn and f : J × Rn → Rn are a given functions.

• x(0) is the initial condition.

23
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3.2 Integral equation

In order to prove the main theorems of existence and uniqueness of the solution of the fractional

problem (3.1), we present the following key lemma, which describes the corresponding integral

equation. We prove an equivalence result between the differential equation of our problem and

the integral equation.

Lemma 3.1 Let η be a continuous function. Consider the following linear system
cDα;Ψx(t) = Ax(t) +Bu(t) + η(t), t ∈ J

x(0) = h(x).
(3.2)

Then, x is the solution of the problem (3.2) if and only if x satisfies the following integral

equation

x(t) = h(x) +
1

Γ(α)

∫ t

0

(Qs(t))
α−1Ψ′(s)(Ax(s) +Bu(s) + η(s))ds. (3.3)

One can rewrite the solution in terms of the Mittag-Leffler function

x(t) = Eα(A(Q0(t))α)h(x) +

∫ t

0

Φ̆α
s (t)Eα,α(A(Qs(t)

α)(Bu(s) + η(s)) ds, (3.4)

Proof. :

1) Performing I α;Ψ to both sides of (3.2) and using definition (1.10), one can get the following

integral equation:

I α;Ψ
[
cDα;Ψx(t)

]
= I α;Ψ [Ax(t) +Bu(t) + η(t))] .

Appling the Lemme 1.3, it means

I α;Ψ cDα;Ψx(t) = x(t)−
n−1∑
k=0

∂kΨx(0)

k!
[Ψ(t)−Ψ(0)]k , n− 1 < α < n,

we obtain

x(t)− x(0) =
1

Γ(α)

∫ t

0

(Qs(t))
α−1Ψ′(s) [Ax(s) +Bu(s) + η(s))] ds.

2) To obtain the formula (3.4), applying the Laplace transform to both sides of the first equation

of system (3.2), we get

L { cDα;Ψx(t)}(λ) = L {Ax(t) +Bu(t) + η(t)}(λ),
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by using Lemma (1.6), we obtain

λαL (x(t))(λ)− λα−1x(0) = AL (x(t))(λ) + L {Bu(t) + η(t)}(λ).

Therefore,

(λαI − A)L (x(t))(λ) = λα−1x(0) + L {Bu(t) + η(t)}(λ).

We find

L (x(t))(λ) = λα−1(λαI − A)−1h(x) + (λαI − A)−1L {Bu(t) + η(t)}(λ).

Taking the inverse Laplace transform of the above side equation, we obtain

x(t) = L −1{λα−1(λαI − A)−1}h(x) + L −1{(λαI − A)−1L {Bu(t) + η(t)}(λ)}.

By virtue of Lemma (1.7), we get

x(t) = Eα(A(Q0(t))α)(h(x)) +

∫ t

0

Φ̆α
s (t)Eα,α(A(Qs(t)

α)(Bu(s) + η(s)) ds.

Alternatively, by applying the derivative cDα;Ψ to equation (3.4), one obtains problem (3.2).

The proof is complete.

Remark 3.1 :

Lemme (3.1) establishes the equivalence between the nonlinear problem (3.1) and the following

integral equation

x(t) = h(x)− 1

Γ(α)

∫ t

0

(Qs(t))
α−1Ψ′(s)(Ax(s) +Bu(s) + f(s, x(s)))ds. (3.5)

Or

x(t) = Eα(A(Q0(t))α)h(x) +

∫ t

0

Φ̆α
s (t)Eα,α(A(Qs(t)

α)(Bu(s) + f(s, x(s)) ds.

In the next section, we formulate and prove the existence and the uniqueness for solution of the

nonlinear fractional system (3.1) in the Ψ-Caputo sense.
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3.3 Existence and uniqueness

Throughout this work, we denote Ξ = C(J,Rn) the Banach space of continuous functions in J

which equipped by the norm

‖x‖Ξ = sup
t∈J
|x(t)|.

We define the operator Λ : Ξ→ Ξ by

Λx(t) = h(x) +
1

Γ(α)

∫ t

0

(Qs(t))
α−1Ψ′(s)(Ax(s) +Bu(s) + f(s, x(s)))ds. (3.6)

Having established the necessary groundwork, we can now proceed to derive the existence

criteria for the solution of the nonlinear fractional problem (3.1).

The following assumptions will be considered:

(A1) For any t ∈ J , the function x→ f(t, x) satisfies the Lipschitz condition:

∀x1, x2 ∈ Ξ, ∃Lf > 0, such that

‖f(t, x1)− f(t, x2)‖Ξ ≤ Lf‖x1 − x2‖Ξ. (3.7)

(A2) There exist constant M > 0 such that : sup
t∈J
‖f(t, x)‖ ≤M, ∀x ∈ Ξ.

(A3) The function h is continuous and there exist a positive constant µ1 such that

‖h(x)‖ ≤ µ1‖x‖. (3.8)

and ∀x, y ∈ Ξ, ∃k > 0, such that

‖h(x)− h(y)‖ ≤ k‖x− y‖. (3.9)

(A4) There exist θ ∈ R+, with

θ = k +
‖A‖+ Lf
Γ(α + 1)

‖Q(T )‖α < 1.

Theorem 3.1 Given the conditions (A1)− (A3), the fractional system (3.1) has at least one

solution over the interval J.

Proof. We shall show that the map Λ : Ξ→ Ξ has a fixed point based on Schauder fixed point

theorem.
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First Step:

we prove that Λ is continuous operator.

Let (xn)n∈N a sequcence of real numbers of Ξ, such that ‖xn − x‖ → 0 as n→ +∞.
We define the norm between Λxn and Λx as follows:

‖Λxn − Λx‖Ξ = sup
t∈[0,T ]

|Λxn(t)− Λx(t)|.

Then, ∀t ∈ [0, T ], we have

|Λxn(t)− Λx(t)| ≤ |h(xn)− h(x)|+ 1

Γ(α)

∫ t

0

|Qs(t)|α−1|Ψ′(s)|
(
|A(xn(s)− x(s))|

+ |f(s, xn(s))− f(s, x(s)|
)
ds

≤ k‖xn − x‖+
1

Γ(α)
(‖A‖+ Lf )‖xn − x‖

∫ T

0

|Qs(t)|α−1|Ψ′(s)|ds

≤
(
k +
‖A‖+ Lf
Γ(α + 1)

‖Q0(T )‖α
)
‖xn − x‖.

Since ‖xn − x‖Ξ → 0 as n→∞, this implies that: ‖Λxn − Λx‖Ξ → 0 as n→∞.
Consequently, Λ is continuous.

Second Step:

we show that Λ transfers bounded sets into bounded sets in Ξ.

Suppose that there exists ρ such that

ρ >
(‖Bu‖+M)|Q0(T )|α

(1− µ1)Γ(α + 1)− ‖A‖|Q0(T )|α
> 0.

For any x in the subset Bρ of the space Ξ given by

Bρ = {x ∈ Ξ, ‖x‖Ξ ≤ ρ}.

We have

|Λx(t)| ≤ |h(x)|+ 1

Γ(α)

∫ t

0

|Qs(T )|α−1|Ψ′(s)||(Ax(s) +Bu(s) + f(s, x(s))|ds

≤ µ1‖x‖+
1

Γ(α)

∫ t

0

|Qs(T )|α−1|Ψ′(s)||(Ax(s) +Bu(s) + f(s, x(s))|ds

≤ µ1‖x‖+
‖A‖‖x‖+ ‖Bu‖+M

Γ(α + 1)
|Q0(T )|α

≤ µ1ρ+
‖A‖ρ+ ‖Bu‖+M

Γ(α + 1)
|Q0(T )|α.

Therefore Λ(Bρ) ⊂ Bρ.
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Third Step: Show that Λ(Bρ) is equicontinuous. Let x ∈ Ξ, for any t1, t2 ∈ J, such that

0 ≤ t1 < t2 ≤ T, we have

|Λx(t2)− Λx(t1)| ≤ 1

Γ(α)

∫ t2

0

|Qs(t2)|α−1Ψ′(s)|Ax(s) +Bu(s) + f(s, x(s))|ds

− 1

Γ(α)

∫ t1

0

|Qs(t1)|α−1Ψ′(s)|Ax(s) +Bu(s) + f(s, x(s))|ds

≤ 1

Γ(α)

∫ t1

0

(
|Qs(t2)|α−1 − |Qs(t1))|α−1

)
Ψ′(s)

× |Ax(s) +Bu(s) + f(s, x(s))|ds

+
1

Γ(α)

∫ t2

t1

|Qs(t2)|α−1Ψ′(s)|Ax(s) +Bu(s) + f(s, x(s))|ds

≤ 1

Γ(α)
(‖A‖‖x‖+ ‖Bu‖+M)

.

(∫ t1

0

(|Qs(t2)|α−1 − |Qs(t1)|α−1)Ψ′(s)ds+
|Qt1(t2)|α

α

)
,

which yields that

|Λx(t2)− Λx(t1)| → 0 as t2 → t1.

This implies that Λ(Bρ) is equicontinuous.

Consequently, by the Arzela-Ascoli theorem, the operator Λ is completely continuous. According

to Shauder fixed point Theorem, the map Λ has at least one fixed point in Ξ, which complete

the proof.

In the next theorem, the uniqueness of solutions for problem (3.1) is established using the

Banach contraction principle.

Theorem 3.2 Given the conditions (A1) − (A4), the fractional equation (3.1) is ensured to

have a unique solution over the interval J.

Proof. For all x, y ∈ Ξ and for t ∈ J, we have

|Λx(t)− Λy(t)| ≤ |h(x)− h(y)|

+
1

Γ(α)

∫ t

0

|Qs(t))
α−1||Ψ′(s)|

.

(
|Ax(s)− Ay(s)|+ |f(s, x(s))− f(s, y(s))|

)
ds.
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According to hypothesis (A1)-(A3), we have

|Λx(t)− Λy(t)| ≤ k‖x− y‖+
1

Γ(α)
(‖A‖+ Lf )‖x− y‖

∫ T

0

|Qs(t))
α−1||Ψ′(s)|ds

≤ k‖x− y‖+
1

Γ(α + 1)
(‖A‖+ Lf )‖x− y‖|Q0(T )|α

≤
(
k +
‖A‖+ Lf
Γ(α + 1)

|Q0(T )|α
)
‖x− y‖.

By using (A4), we get

‖Λx− Λy‖ ≤ θ‖x− y‖.

Since θ < 1, this implies that the operator Λ is contraction. According to the Banach contraction

principle, the problem (3.1) has a unique solution in Ξ.
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3.4 Controllability of a Fractional System

Definition 3.1 (Exact Controllability) :

The system (3.1) is said to be exactly (or completely) controllable on J if for every desired final

state x1, there exists a control u such that x satisfies

x(T, u) = x1.

Theorem 3.3 System (3.1) is exactly controllable on J if and only if the Gramian matrix

W =

∫ T

0

Φ̆α
s (T )Eα,α(A(Qs(t)

α)BB∗Eα,α(A∗(Qs(T )α) ds. (3.10)

is nonsingular.

Proof.

Sufficiency. Assume that the matrix W is nonsingular, then W−1 exists. Set the control u(t)

as

u(t) = B∗Eα,α(A(Qs(t)
α)W−1

(
x1 − Eα(A(Q0(t))αh(x)−

∫ t

0

Φ̆α
s (t)Eα,α(A(Qs(t)

α)f(s, x(s) ds

)
.

Then

x(T, u) = Eα(A(Q0(T ))αh(x)

+

∫ T

0

Φ̆α
s (T )Eα,α(A(Qs(T )α)(Bu(s) + f(s, x(s)) ds

= Eα(A(Q0(T ))αh(x)

+

∫ T

0

Φ̆α
s (T )Eα,α(A(Qs(T )α)(BB∗Eα,α(A(Qs(T )α)W−1

(
x1 − Eα(A(Q0(T ))αh(x)

−
∫ T

0

Φ̆α
s (t)Eα,α(A(Qs(T )α)f(s, x(s)

)
+ f(s, x(s)) ds

= x1.

We get x(T, u) = x1, then system (3.1) is controllable on J .

Necessity. Assuming system (3.1) is controlled on J , we shall demonstrate that the Gramian

matrix W is nonsingular. In fact, if W is singular, then a nonzero vector z exists, such that

z∗Wz = 0.

That is, ∫ t

0

z∗Φ̆α
s (t)Eα,α(A(Qs(t)

α)BB∗Eα,α(A∗(Qs(t)
α)z ds = 0.
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which yields

z∗Φ̆α
s (t)Eα,α(A(Qs(t)

α)B = 0. (3.11)

Suppose that system (3.1) is controllable on J , and we choose control functions u1(t), u2(t) such

that

x(t) = Eα(A(Q0(t))αh(x) (3.12)

+

∫ t

0

Φ̆α
s (t)Eα,α(A(Qs(t)

α)(Bu1(s) + f(s, x(s)) ds = 0,

and

z = Eα(A(Q0(t))αh(x) (3.13)

+

∫ t

0

Φ̆α
s (t)Eα,α(A(Qs(t)

α)(Bu2(s) + f(s, x(s)) ds 6= 0

Inserting (3.12) into (3.13), one can get

z =

∫ t

0

Φ̆α
s (t)Eα,α(A(Qs(t)

α)B(u2(s)− u1(s)) ds.

Therefore,

z∗z =

∫ t

0

Φ̆α
s (t)z∗Eα,α(A(Qs(t)

α)B (u2(s)− u1(s)) ds,

according to (3.11) we get z∗z = 0, which leads to z = 0. This result contradicts z 6= 0.

The proof is finished.

3.5 Example

Consider the following fractional nonlinear system: CD0.3
0 x(t) = Ax(t) +Bu(t) + f(t, x(t)), t ∈ [0, 0.5]

x(0) = h(x)

where

A =


0 1 0

0 0 1

0 0 0

 , B =


1

0

1

 , h(x) =


x− 1

x2

0

 .

And the nonlinear term is :

f(t, x(t)) =


sinx

t

x− t

 .
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We have

A2 = A · A =


0 0 1

0 0 0

0 0 0

⇒ A3 = 0.

Hence, Ak = 0, ∀ k ≥ 3. Then the Mittag-Leffler function, is given by:

Eα(ATα) = I +
ATα

Γ(1 + α)
+

A2T 2α

Γ(1 + 2α)
.

Then:

E0.3(AT 0.3) ≈ I + 0.905A+ 0.628A2 =


1 0.905 0.628

0 1 0.905

0 0 1

 .

Therefore,he controllability Gramian is given by:

W =

∫ T

0

Φ̆α
s (T )Eα,α(A(T − s)α)BBTEα,α(AT (T − s)α) ds

Using:

BBT =


1 0 1

0 0 0

1 0 1

 ,

W =

∫ T

0

T−0.7E0.3,0.3(AT 0.3)BB>E0.3,0.3(A>T 0.3) dτ

the Mittag-Leffler Function is

E0.3,0.3(AT 0.3) =
I

Γ(0.3)
+
AT 0.3

Γ(0.6)
+
A2T 0.6

Γ(0.9)

then

W ≈


0.675 0.246 0.489

0.246 0.268 0.246

0.489 0.246 0.489


det(W ) ≈ 0.0131 6= 0,

then, the controllability Gramian W is non-singular. Therefore, the system is controllable.
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General Conclusion

D
uring this work, an analytical method was proposed to study the controllability of a Ψ-

Caputo fractional system with nonlocal initial conditions. Firstly, we prove the existence

and uniqueness for solution of the system by using the Schauder fixed point theorem and the

contraction principal of Banach.

To demonstrate exact controllability, we constructed the controllability Gramian matrix

using the Mittag-Leffler function. Moreover, example was included to verify the effectiveness of

the results.
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