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Abstract

This thesis falls within the framework of studying fractional differential equations.
This subject was inspired by the work of A. Berhail, N. Tabouche, M.M. Matar and J.
Alzabut, article [9] on which Belaadi, and Benkamouche [7] based their work to study of
the existence and uniqueness of the solution to a generalized system of Sturm-Liouville
and Langevin type, using the Hilfer-Katugampola fractional derivative under an initial
condition. Inspired by the results of these studies, we sought to complete the mathematical
analysis by further exploring the aspect of stability.
In this context, we focused on the stability analysis of the solutions of the studied sys-
tem according to several classical and generalized notions of stability, namely Ulam-Hyers
stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized
Ulam-Hyers-Rassias stability. We used rigorous analytical techniques to establish suffi-
cient conditions that gquarantee the validity of each type of stability within the framework
of the studied fractional system.
At the end of this thesis, we presented a practical example to illustrate the theoretical

aspects and highlight the effectiveness of the obtained results .

Key words: Generalized Sturm-Liouville and Langevin system, Hilfer-Katugampola frac-
tional derivative, Arzela-Ascoli theorem, Schauder fized point theorem, Banach contrac-
tion principle, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias
stability, generalized Ulam-Hyers-Rassias stability.



Résumé

Ce mémoire s’inscrit dans le cadre de ’étude des équations différentielles fraction-
naires. Ce sujet a été inspiré du travail de A. Berhail, N. Tabouche, M.M. Matar et J.
Alzabut, article [9] sur lequel se sont appuyés Belaadi et Benkamouche [7] pour étudier
Vezistence et l'unicité de la solution d’un systéme généralisé de type Sturm-Liouville et
Langevin, en utilisant la dérivée fractionnaire de Hilfer-Katugampola, avec condition ini-
tiale. En s’inspirant des résultats de ces travaux, on a cherché a compléter l’analyse
mathématique en approfondissant l’aspect de la stabilité.

Dans ce contexte, on s’est concentré sur 'analyse de la stabilité des solutions du systeme
étudié selon plusieurs notions classiques et généralisées de stabilité, a savoir la stabilité
d’Ulam-Hyers, la stabilité d’Ulam-Hyers généralisée, la stabilité d’Ulam-Hyers-Rassias,
et la stabilité d’Ulam-Hyers-Rassias généralisée. On a utilisé des techniques analytiques
rigoureuses afin d’établir les conditions suffisantes garantissant la vérification de chacune
de ces formes de stabilité dans le cadre du systéme fractionnaire étudié.

A la fin du mémoire, on a présenté un exemple pratique afin d’illuster l’aspect théorique

et de mettre en évidence efficacité des résultats obtenus.

Mots clés: Systeme généralisé de Sturm-Liouville et Langevin, Dérivé fractionnaire de
Hilfer-Katugampola, Théoréme du Arzela-Ascoli, Théoréme du point fixe de Schauder,
Principe de contraction de Banach, Stabilité au sens de Ulam-Hyers, Stabilité au sens
de Ulam-Hyers généralisé, Stabilité au sens de Ulam-Hyers-Rassias, Stabilité au sens de

Ulam-Hyers-Rassias généralisé.



Contents

0.1 Introduction) . . . . . . . . . . . 1
(1__Preliminaries| 4
[1.1 ~Special tunctions of fractional calculus| . . . . . ... ... ... ... ... 4
(L1.1 The Gamma functionl . . . . . . . . . . . ... ... 4

(L1.2  The Beta functionl . . . . . . . .. ... ... L. 5

(1.1.3  Mittag-Leffler function| . . . . . .. .. ... .. ... ... ..... 6

(1.2 Fractional Integrals and Fractional Derivatives . . . . . .. .. ... .. .. 7
[1.2.1 Riemann-Liouville Fractional Integral and Derivative| . . . . . . .. 7

[1.2.2 Hadamard Fractional Integral and Derivativel. . . . . . . . . . . .. 9

(.3 Theorems . . . . . . . . 11
[1.3.1 Shauder fixed point theorem| . . . . . . . ... .. ... ... .... 11

[1.3.2  Krasnoselskii fixed point theorem| . . . . . . .. .. ... ... ... 11

[1.3.3 Banach contraction principle|. . . . . . . .. ... ... ... ... . 11

(.3.4  Arzela-Ascoli theorem| . . . . . .. .. ... .. ... 11

2 Study of generalized Sturm-Liouville system and Langevin of Hilfer- |
[  Katugampola fractional differential equations| 12
2.1 Preliminary| . . . . . .. . . . 13
[2.1.1 Function spaces| . . . . . . . . . . . ... 13

[2.1.2  Generalized Fractional Integrals and Derivatives . . . . . . . .. .. 14

[2.1.3  Hilfer-Katugampola Fractional Derivativel. . . . . . . . . . ... .. 14

2.2 Problem Statement| . . . . . . ..o oL 19
[2.3  Existence and uniqueness|. . . . . . . ... 21
.31 Existencel . . . . ..o 23

[2.3.2  Uniqueness| . . . . . . .. . ... 27




Contents

[3 Stability in the sense of Ulam-Hyers and Ulam-Hyers-Rassias|

[3.1 Stability analysis| . . . .. ... ... ... ..
[3.1.1  Ulam-Hyers stability |. . . . . . . .. ..
[3.1.2  Generalized Ulam-Hyers stability | . . . .
[3.1.3  Ulam-Hyers-Rassias stability|. . . . . . .
[3.1.4  Generalized Ulam-Hyers-Rassias stability]|

[3.2  Stability results| . . . . . ..o 0oL

[3.3  Numerical example| . . . . ... ... ... ...

Conclusion

[Bibliography|

Universiy 8 May 1945-Guelma

A.Boufernana

30
30
30
31
31
32
37

43

44



0.1. Introduction 1

0.1 Introduction

Fractional calculus is a branch of mathematical analysis that generalizes the clas-
sical concepts of differentiation and integration to non-integer orders. Unlike traditional
calculus, which is limited to derivatives and integrals of integer order, fractional calculus
allows for operators of arbitrary real or complex order. These operators are typically

classified within the broader framework of pseudo-differential operators.

As a natural extension of conventional calculus retains many of its foundational proper-
ties while enabling new levels of mathematical modeling and analysis. It offers a unified
framework for integration and differentiation of any order whether integer, fractional (e.g
0.5,0.3,0.7), or even complex-valued thus providing powerful tools for studying complex

phenomena across physics, engineering and mathematics.

The historical roots of fractional calculus trace back to the late 17th century. In a 1695
letter to 'Hospital, Leibniz posed the now-famous question: What does a derivative of
non-integer order mean? His response ”This may seem paradoxical at first, but it might
one day lead to useful results” set the stage for a centuries-long exploration into deriva-

tives of arbitrary order.

The first rigorous formalization of fractional derivatives can be traced to Liouville’s work
between 1832 and 1837, followed by Riemann’s contributions that culminated in what
is now known as the ”"Riemann-Liouville approach”. Subsequently, additional theories
emerged, including those of Grunwald-Leitnikov, Weyl, and Caputo see [24]. During that
period, practical applications of these theories were almost nonexistent, which led to it
being regarded as abstract and consisting mainly of mathematical manipulations with

little practical use.

Since then, the field has undergone accelerated development, driven by foundational con-
tributions such as the Riemann-Liouville, Caputo, Hadamard, and Grunwald-Letnikov
formulations [12][14][36], and more recently, the Hilfer-Katugampola derivative. The lat-
ter is described in great detail in references [19][20][21][22].

At this time, fractional derivatives find applications across a wide range of disciplines
including biology, mechanics, economics, and systems engineering thanks to their ca-

pacity to capture long-memory dynamics and non-local interactions. One particularly

Universiy 8 May 1945-Guelma A.Boufernana



0.1. Introduction 2

impactful application is in the modeling of random physical processes via the Langevin
equation, originally introduced in [25], and further developed to describe systems evolving
in stochastic or disordered environments [2][9][10] [26] [40].

Another cornerstone of applied mathematics, the Sturm-Liouville problem, has been suc-
cessfully extended into the fractional domain, given its broad applicability in solving
boundary value problems across science and engineering [3][23]. The fusion of the frac-
tional Langevin equation with the fractional Sturm-Liouville framework allows for a more
nuanced representation of complex dynamic systems, especially those influenced by mem-

ory and spatial non-locality [19][21][22].

A further research by Kiataramkul, Ntouyas, Tariboon, and Kijjahathankorn has proposed
models incorporating Hadamard derivatives into the fractional Langevin-Sturm-Liouville
system under periodic boundary conditions [23]. Other studies have further explored the
existence and uniqueness of solutions for generalized Sturm-Liouville-Langevin systems

with anti-periodic boundary conditions [27].

Another crucial and notably significant area of research that has recently garnered in-
creased attention is dedicated to the stability analysis of differential equations of both
integer and noninteger order. The initial work was started by Ulam in 1940 and sub-
sequently validated by Hyers. This type of stability is referred to as Ulam-Hyers (UH)
stability, generalized UH stability. The stability introduced by Rassias is referred Ulam-
Hyers-Rassias (UHR) stability. Despite this, Obloza [29] was the first mathematician who
introduced the UH stability for differential equations.

This research work is organized into three chapters, each addressing a fundamental aspect
of the study on the stability of a generalized Sturm-Liouville and Langevin system of
Hilfer-Katugampola fractional differential equations. The aim of this work is to provide
a comprehensive analysis that moves from theoretical foundations to applied stability

results.

e First chapter
As a starting point, we introduce the essential mathematical tools and concepts
used throughout the thesis. We review special functions such as the Gamma, Beta,
and Mittag-Leffler functions, which play a crucial role in fractional calculus. Next,

we present the main ideas of fractional integration and differentiation, focusing on

Universiy 8 May 1945-Guelma A.Boufernana



0.1. Introduction 3

well-known definitions, including those of Riemann-Liouville, Hadamard, and Ca-
puto. These concepts form the foundation for the analysis presented in the following

chapters.

e Second chapter
Here, we study the following generalized system of fractional differential equations of
the Sturm-Liouville and Langevin type involving the Hilfer-Katugampola fractional

derivative
D5 [py ()P D +ri(t)] w(t) = fi (tw (), us(t)) tela,T], a>0, i=12

ui(a) =0,

(0.1)
where, 0 < o, ot < 1and 0 < 3;, 8! < 1. PD*F is the Hilfer-Katugampola derivative
of order «, (0 < a < 1) and type 3, (0 < 5 < 1).
fi:[a,T] x R x R — R are a continuous functions, p; C C([a,T],R\{0}) and
r; € C([a,T),R) for i =1,2.

First, we start by introducing this type of fractional derivative and discussing its
main properties. Then, we present some useful lemmas that will support the theo-
retical development. After that, we discuss the main results regarding the existence

and uniqueness of solutions of the previous system.

e Third chapter
In this chapter, we examine the stability of the system using the concepts of Ulam-
Hyers and Ulam-Hyers-Rassias stability. Different types of stability are analyzed,
and sufficient conditions are established within the framework of the generalized

fractional system introduced earlier, supported by rigorous mathematical proofs.

To conclude, an example is provided to demonstrate the results.

Universiy 8 May 1945-Guelma A.Boufernana



Chapter

Preliminaries

This chapter aims to provide a thorough overview of the core principles of frac-
tional calculus. It covers the essential properties of key functions, fractional integrals and
derivatives, along with several fixed point theorems that are considered crucial for the

advancement of the remaining components of our study.

1.1 Special functions of fractional calculus

In this section, we outline the basic properties of certain special functions that
applied in other chapters. Specifically, we focus on the Gamma, Beta and Mittag-Leffler
function, which are crucial in the study of fractional derivatives and fractional differential

equations.

1.1.1 The Gamma function

Certainly, Euler’s Gamma function is one of the fundamental functions in fractional
calculus, as it extends the concept of the factorial n! to non-integer and even complex
values of n.

Definition 1.1 [24] 32] The Gamma function I'(z) is defined by the integral

['(z) :/ t=te7tdt, zeC. (1.1)
0

such that : Re(z) > 0.



1.1. Special functions of fractional calculus 5

Properties of Gamma Function

e One of the basic properties of the Gamma function is that it satisfies the following

functional equation:
For all z with Re(z) > 0,
I'(z+1) ==2I(2). (1.2)

which can be easily proved by integration by parts:

[(z+1)= / e 'trdt = [—e '] Z;o + z/ e '* 7t = 2I'(2)
0 0

e Obviously, I'(1) = 1, and using (1.2)) we obtain for z =1,2,3,--- :
r2)=1r1)y=1=11,
r@3)y=2r2)=2-1'=21,

I'(2) =30(3) =3-2! =31,

I'n+1)=nl'(n)=n-(n—1)!=nl

e I'(3) = 2/ e Pdt = /7, (Gaussian intergral).
0

e I'(n+3) = ézzlln')‘ VT
o I'(2)[(1—2) = szm), z€C, 0<Re(z)<1.

1.1.2 The Beta function

The Beta function is one of the fundamental functions in fractional calculus, and is

particulary significant when used in conjunction with the Gamma function.

Definition 1.2 [24] [32] The Beta function represents a type of Euler integral, defined for

all complex numbers x and y with strictly positive real parts by

Blx,y) = /Oltx_l(l —t)ldt, x,yeC, (1.3)

Universiy 8 May 1945-Guelma A.Boufernana



1.1. Special functions of fractional calculus 6

such that : (Re(xz) > 0,Re(y) > 0).

Proposition 1.1 The Beta function can be written in terms of Gamma function as follow

B(x,y) = =——==, Re(xz) >0, Re(y) > 0.

Some Properties of Beta Function

The most important properties of the Beta function are :

e The Beta function is symmetric, i.e.,
B(z,y) = B(y,z), Re(z) >0, Re(y) > 0.

e Recursive relation:
x

fletly) =~ B@y),
8wy +1) = ——B(y).

Bz +1,y) + B(x,y + 1) = B(x,y).

Special value:

5(179)257 ﬁ(ﬂﬁ,l): !

X

Connection with binomial coeflicients:

(x4+y—1)!
(z-Dly -1

B(z,y) =

1.1.3 Mittag-Leffler function

The basic Mittag-Lefler function, defined and studied by the Swedish mathemati-
cian in 1903, is a generalization of the exponential function e®. This function is of signif-

icant importance in the theory of fractional calculus.

Definition 1.3 [24] The Mittag-Leffler function is defined by the following power series

E = _— .
o(2) Z()F(k:oz+1)’ reC, a>0

00
.I‘k
k=

Universiy 8 May 1945-Guelma A.Boufernana



1.2. Fractional Integrals and Fractional Derivatives 7

Definition 1.4 [24] The generalized Mittag-Leffler function is given by

o0 k
xr
E _—E - _
0,3() kzor(k 3 reC, a>0, >0

Some relations with classical functions

Now, we present some relations with classical functions:

ZF ko + 1) = E(x),

k=0

Ei1(x) = Ey(2) = €7,

e Fy;(r) = cosh(y/z),

e —1
[ ] ELQ(SL’) = T 5
e —1—=x
° E173(ZIZ’) = T,
sinh(xz
[ EQQ(I‘) = 2( )

1.2 Fractional Integrals and Fractional Derivatives

This section contains definitions and some properties of fractional integrals and
fractional derivatives of different type.

1.2.1 Riemann-Liouville Fractional Integral and Derivative

In this section, we give the definition of the Riemann-Liouville fractional integrals

and fractional derivatives.

Universiy 8 May 1945-Guelma A.Boufernana



1.2. Fractional Integrals and Fractional Derivatives 8

Definition 1.5 [24] Let I = [a,b] be a finite interval on the real axis R. The Riemann-
Liouville fractional integrals, I%, f and I;* f of order o € R, the left and right-sided are
defined, for f € C([a,b], R), respectively, by

I f(t) = ﬁ/ (t—s)*'f(s)ds, a>0, t>a, (1.4)
and
o F(t) = ﬁ/t (s—)* ' f(s)ds, >0, b>t (1.5)

Definition 1.6 [24] Let o > 0 and n € N* such that n —1 < a < n. The right Riemann-

Liouville fractional derivative of order «, of a function f € C([a,b],R) is defined as follows

w0 = () s - o (%) [ treas )

The left Riemann-Liouville derivative of order « of f is defined by

s = (S) s = et (S) -t )

Properties

e Linearity
RLD3+()‘f<t) +ug(t)) = )‘RLD2[+ (t) + URLD§+g(t)- (1.8)

In general, we have

MDD (FEDL, (1) #% D (PEDg f)(8) 7 DI f(1). (1.9)

e The Riemann-Liouville fractional derivative of a constant C is given by

C(t—a)™@

RLDoc C —
at rl—a)’

t > a.

Universiy 8 May 1945-Guelma A.Boufernana



1.2. Fractional Integrals and Fractional Derivatives 9

e The Riemann-Liouville fractional derivative of a power function (t —a)” for v > —1

and o > 0
I'(v+1)

e Py

(t—a)"™@ t>a.
e Composition formulas
Letm—1<a<mandn—-1<p<n

n

t—a)
RLDa RLDﬁ t :RL DCH’B § RLD,B J ( . 110
a+( a+f)( ) at o F(—O[—j+1) ( )

| )P
[RLDZ:J (t)]t:ar((t_g _)j +1)

Ms

ML (FEDg f)() = D f (1) — (1.11)

<.
I

1.2.2 Hadamard Fractional Integral and Derivative

Here, we present the Hadamard fractional integrals and derivatives, we outline some

key properties of these operators.

Definition 1.7 [24] Let o > 0 and let (a,b),(a < a < b < o0) be a finite or infinite

interval. The Hadamard fractional integral of order « for a function f is defined by

If(t) = ﬁ/ (logé)a_I@ds, (a <t<b). (1.12)

Definition 1.8 [24] Let (a,b),(a < a < b < 00) be a finite or infinite interval. The

Hadamard fractional derivative of order « for a function f is defined by

Do f(t) = ﬁ (t%)n/a (logé)"_o‘_1 @ ds, n=la]+1, a<t<b. (1.13)

Universiy 8 May 1945-Guelma A.Boufernana



1.2. Fractional Integrals and Fractional Derivatives 10

Properties

e If Re(a) > 0 and Re(f) > 0, then

(Ig (log 2)6_1> (x) = % (log §>B+a_l :

e Let a,f € R, 0<a<b<oosuch that a >0, 8> nand n = [a] + 1,

(Dg (log £>Bl> (x) = % (log §>ﬁal.

Caputo Fractional Derivatives

Now, we present the definition of the Caputo fractional derivative [24].

Definition 1.9 The Caputo fractional derivative of order @ € R, of a function f €
C™(la, b)) is defined by

“Dyf(t) =

withn —1< a < n.

—1 t — )l (g)ds a
o s s

Some Properties

e Linearity: Let n —1 <a<nand \,ueC
c _\C c
Da(Af(t) + pug(t)) = X~ Daf(t) + 1~ Dag(t).

e “D,C =0, (Constant).

e Interpolation [17]
lim “Df(t) = f(),

a—rn

lim  “Df(t) = f" V() — fD(0).

a—n—1

Universiy 8 May 1945-Guelma A.Boufernana



1.3. Theorems 11

1.3 Theorems

In this section, we present several theorems that will be used in subsequent devel-

opment of our work.

1.3.1 Shauder fixed point theorem

Theorem 1.1 [13] Let F' be a nonempty closed subset of a Banach space E and T : F —
F be a continuous mapping such that T(F) C E is relatively compact. Then T has at

least one fized point in F.

1.3.2 Krasnoselskii fixed point theorem

Theorem 1.2 [13] Let E be a Banach space, let F' be a bounded closed convexr subset
of E and let Ty, Ty be two mappings from F into E such that Tix + Toy € F for every
pair x,y € F. If T} is contraction and Ty is completely continuous, then the equation

Tix + Thx = x has a solution on F'.

1.3.3 Banach contraction principle

Theorem 1.3 [13] Let Q be a nonempty closed subset of a Banach space and T : Q2 — a

conraction operator. Then, there ezists a unique w € E such that T(w) = w.

1.3.4 Arzela-Ascoli theorem

Theorem 1.4 [15] Let X = C([a,b]) equipped with the norm
[fIF = max [ f(2) ]

t€la,b]

If M is a subset of X such that:

o M is uniformely bounded, i.e 3 ¢ > 0,||f]| < e,V f € M.

o M is equicontinuous, that s,

Ve>0,30>0,Yt,ts €[a,b] suchthat|ti—ty |< detue M =] u(t))—u(tz) |< e.

Then, M s relatively compact.

Universiy 8 May 1945-Guelma A.Boufernana



Chapter 2

Study of generalized Sturm-Liouville system

and Langevin of Hilfer-Katugampola

fractional differential equations

In this chapter, we focus on the existence and uniqueness of solutions for a general-
ized system of Sturm-Liouville and Langevin fractional differential equations involving the
Hilfer-Katugampola derivative, in the weighted spaces. First, we will present the Hilfer-
Katugampola fractional derivatives which was introduced by Oliveira [30, B31]. This new
formulation is a Hilfer-type fractional differentiation operator, this is, an integer order
derivative performing between generalized fractional integrals according to Katugampola
[19]. This new fractional derivatives interpolates the Hilfer, Hilfer-Hadamard, Riemann-
Liouville, Hadamard, Caputo, Caputo-Hadamard, generalized and generalized Caputo-
type fractional derivatives, as well as the Weyl and Liouville fractional derivatives for
particular cases of integration extremes.

This chapter is organized as follows: In Section [2.1] we provide some definitions and lem-
mas that will be utilized in subsequent sections. In Section [2.2] we present our problem
and estabish a key lemma that demonstrates the equivalence between the inital value
problem and the integral equation. In Section we present and prove the existence
and uniqueness theorem for the initial value problem presented in the previous section by

using Schauder’s fixed point and Banach’s contraction principle.

12



2.1. Preliminary 13

2.1 Preliminary

In this section, we will conduct a rigorous examination of fractional calculus within
the Hilfer-Katugampola framework, accompanied by a comprehensive and detailed anal-
ysis designed to facilate a deeper comprehension and appreciation of the foundational

principles underlying this concept.

2.1.1 Function spaces

Definition 2.1 [22] B0, BI] Let I = [a,b] (0 < a < b < o0) be a finite interval on the
half-axis R*. We denote by Cla, b] the Banach space of continuous functions g from I to
R with the norm

lglle = max |g(t)].

1) The weighted space C., ,[a,b] of functions g on (a, b] is defined by

Crolotl = {a: @il o (1) yw e o).

p
P —ar\"” ’
g(t)|.
(57) o
We have Cg,la,b] = Cla,b].

2) Let 0, = (t*4). For n € N, we denote by C§ ([a,b]) the Banach space of functions
g which are continuously differentiable with operetor 6, on [a, b] up to order (n — 1) and
the derivative ¢7g of order n on (a,b] such that 67g € C., ,[a, ], this is

where 0 < v < 1, p > 0 equipped with the norm

tP —af\”
ngow:H( - )g<t>

= Imax
tel

C

C;pﬁ[a,b] = {g:(a,b] —R: 5]; €C(),k=0,1....n—1,6)g€ C%p(l)},

where n € N, with the norms

n—1
||g||cgM = Z H(SEQHC + H(;ZQHCW, ’
k=0

and
n

“9”03; = max ’5];9@)’ :

For n = 0, we have

Cgpﬁ[a, b =C, la, b).
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2.1.2 Generalized Fractional Integrals and Derivatives

In order to generalize the Riemann-Liouville and Hadamard fractional integrals,
Katugampola [19] introduced the generalized fractional integral. Subsequently, the au-
thor defined the generalized fractional derivatives associated with the generalized integral
operators, constructed so that these differential operators extend the Riemann-Liouville

and Hadamard fractional derivatives [20].

Generalized Fractional Integrals

Definition 2.2 [19, 21] Let o, p € R with @ > 0 and p > 0. The generalized left-sided
fractional integral 7I%, f(-) of order « is defined by

("L f) () = 161(03 /at (tP — s°)* 5P f(s)ds, t > a. (2.1)
Similarly, the generalized right-sided fractional integral #I{* f(-) is defined by
pi [* -1
TN = fs /t (17 — s)* L L f(s)ds, t < b. (2.2)

Generalized Fractional Derivatives

Now, we introduce the generalized fractional derivatives corresponding respectively

to the fractional integrals (2.1) and (2.2).

Definition 2.3 [19, 21] Let @ € R, such that « ¢ N, @« > 0, n = [a] + 1 and p > 0.
The generalized fractional derivatives D% f(-) (left-sided) and PDg- f(-) (right-sided)
corresponding to the generalized integrals and are defined for
0<a<t<b< oo, by:

oo n 0= F () [ e e ey

and

020 0= o (<) [y e a2

2.1.3 Hilfer-Katugampola Fractional Derivative

In this subsection, we present the definition of the Hilfer-Katugampola fractional

derivatives introduced by Oliveira [30], B31].
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Definition 2.4 [30), BI] Let order o and type § satisfy 0 < a < 1 and 0 < g < 1, the
Hilfer-Katugampola fractional derivative (left-sided /right-sided), with respect to t, with
p > 0 of a function f € Cy_, ,(I) is defined by

(ppgff> (t) = (:I:”Ifil_a) (ﬁ—l%) pzéi—ﬁ)(l—a)f) (t)

(2.5)

- <4__pIBj(E1—a) 5, pT-P01-e) f> (),
where Z is the generalized fractional integral given in Definition [2.2]

We present and discuss our results involving the Hilfer-Katugampola fractional

derivative using only the left-sided operator /’Daaf :
Properties 1 [19, [30, [31)]
P1) The operator ’)D:;’B can be written as
DY = PN o7 = pZPNeDY oy = a4 B(1— ).

Proof. From Definition of the generalized fractional integral, we have

P, _ pBl-a) —p d pl—(l—ﬁ)(l—a) x -1 }
("D f)(x) =PT (xl %) [T[(l —B)(1—a) /a (2r — tp)l_(l_ﬁ)(l_a)f(t)dt

[prs-a) p1+a+,8—aﬁ x tP—1
i e e

— (/TP eD7 f) (),

where operator D is the generalized fractional derivetive given in Definition [2.5
This completes the proof. m

P2) The fractional derivative pDz"f 18 an interpolator of the following fractional deriva-
tives : Hilfer (p — 1), Hilfer-Hadamard (p — 0), generalized fractional derivative
(B = 0), generalized Caputo-type (6 = 1), Riemann-Liouwville (f = 0, p — 1),
Hadamard (8 = 0, p — 0), Caputo (B8 =1, p — 1), Caputo-Hadamard (8 = 1,
p — 0), Liouville (3 =0, p—1,a=0) and Weyl (=0, p— 1, a = —0c0).
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P3) We consider the following parameters o, B, v, p satisfying
y=a+B(l-a),0<a,B,y<1, 0<pu<l.
Thus, we define the spaces

1_'77”

O30l b] = {f € C1yyla 0PI () € Cpla,b]}

and
Ol pla;b] = {f € Crqpla,b], "Dy, f(1) € lev,p[aab]}

where C, ,la,b] and Cy_, ,la,b] are weighted spaces of continuous functions on (a, b

defined in Definition .

It is abvious that
C7_,a,b] C C7[a, b).
Lemma 2.1 [19, [35] Let o, B and p > 0. Then, for f € C]__ (a,b), we have

1=v,p

(z2rilf) 0 = (T271) 0
(DT ) () = f(),

(7Pl 1) () = (D1 ().

Lemma 2.2 [J] Let ?I% and *D<., respectively according to equations (2.1)) and (2.3).

Then,
e t — qf B—1 B F(ﬁ) P — af a+p—1
“+< p ) (x)_F(a+6)( p ) ez 0 =0

tr—ar\P7!
”Dgﬁr( ) (z)=0, O0<a<l.
p

Lemma 2.3 [30,131] Let 0 < a < 1,0 <~y < 1. If f € C,[a,b] and PT.;“f(-) € C’Ha,b],
then

T (1) ) = st - L L ()
for allz € I = (a,b).

Lemma 2.4 [30,131] Let0 <a<b<oo, a>0, 0<y<1landfeC,,labl. Ifa>",
then PZ% (f) is continuous on [a,b] and

(°Z2. f) (a) = lim (°T2%) f(2) = 0.

t—at
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tP — af

p

y
Proof. Since f € C, ,[a,b], then ( ) f(t) is continuous on [a,b], and

(5) o[ s, seren

for some positive constant M. Consequently,

P —aP\ 7
() o
p
and by Lemma 2.2 we can write

- T(1—7) [tr—a\*"
ez 0] < M U (F)

(T N < M

As a > 7, the right-hand side of the last equation goes to zero when t — a™.
The proof is finished. m

Lemma 2.5 [30,137] Let0 <a<1,0< <1 andy=a+B—ap. If f € C]_[a,b],
then

PTLPDL f() = "I DIl (), (2:6)
and
DT f () = DA F (). (2.7)

Proof. We first prove Equation (2.6]), using Property , we can write

—B(1— — —
PTD), f =TT D = TP mete fretep i — eTo e DR .

To prove Equation ([2.7)), we use Definition to get

PDLITe S = 0T T f = 0T = ST p = DY
The proof is finished. =
Lemma 2.6 [30,(31] Let f € L(a,b). If prJ(rl_a)f exists on L(a,b), Then

PDIPIf() = T DT,
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Proof. From Lemma [2.2] Definition 2.3 and Definitin [2.4] we get

DIPITe f = f’IfS‘C”pD; ‘T2 f
=0T, TN f
= pg g e PO

This completes the proof. m

Lemma 2.7 [30,[31] Let 0 < a <1,0< <1l andy=a+ (1 —a). If f € Ci_,[a, ]
and pIi:B(l_a)f € C}_[a,b], then Dy PPTe f eists on (a,b] and

pr;f PTEF() = f0).
Proof. Using Lemma 2.3] Lemma [2.2] and Lemma [2.6] we obtain

(rosfezz r) (1) = (PZ20 D p) (0

T a) [ — e\ PO
REACANR P ( P >
= f(t), t € (a,b.

The proof is finished. m
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2.2. Problem Statement 19

2.2 Problem Statement

We cosider the following generalized system of fractional differential equations of the
Sturm-Liouville and Langevin involving the Hilfer-Katugampola fractional derivative with

initial value

P DB ity DL +ri(t)] wi(t) = fi (t,un(t),us(t)) te(a,T), a>0,i=12

(2.8)
where, 0 < a;,a} < 1 and 0 < f3;, ) < 1. #D*P is the Hilfer-Katugampola derivative of
order o, (0 < a < 1) and type 3, (0 < 5 <1).
fii|a,T] x R x R — R are a continuous functions, p; € C([a,T],R\{0}) and
ri € C([a, T],R) for i =1,2.

In order to prove the main theorem of existence and uniqueness of the solution of
Problem (2.8)), we present the following key lemma, which describes the corresponding
integral equation.

Lemma 2.8 [7] Let a; + Bi(1 — o), where 0 < a; <1 and 0 < B; <1 if fi: I xR* - R

18 a function such that
filur(+),ue(+)) € Ch—y, pla, T],  Vu, € Ci—, pla, T],i = 1,2.

A function u = (uy,uz) with u; € C{* [a, T is the solution of Problem (2.8) if and only

1=vip
if u; satisfies the following integral equation

w) = T (Tt 0o)) -7 (2Huw) . 29)

1
pi(t) pi(t)

Proof. We start by showing the implication in this direction (=).
We apply *Z'" on both sides of Problem ([2.8) and using Lemma and Lemma ,

we obtain

/

ngipD:i’Bi [pi(t)ppziﬁi + 7“75@)} ui(t) =I5 fi(t, ua(t), ua (1)),

PTIIDT 0D ()] wn(t) = TS (1), ua (1)),
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itpDa;”{ (1 i(t _P1'1*’7i
PO D" 4 (0] i) — 2 o

=PI fi(t, ua (1), ua(t)),

PO DI 4 ()] wit) = PTI it wi (1), wal0)),
it follows that

pi(t)

oD (1) = — (VT2 filt un (), ua(1)) — — S (1), (2.10)

pi(t)

Next, we apply the integral ijJ% on both sides of Equation (2.10)), then we use
the Lemma an Lemma we obtain

pIﬁPDZ‘iBéui(t) = pzﬁ |:pit) (PZ2 fi(t, ua (2), ua(t))) — ;:Eg ui(t)] ,
PTLPD (1) = PT0% [pit) (T2 Fi(t (1), ua(8))) — ;Z; ui(t)] ,
4 o 1—} uz(a) tP — af 7i—1 ., o 1 PTO £(f u _ Tz(t)u
wl) =BG (F50) = | (B 0n0) - SGuo)]

) =22 (T . e)) -2 (M) @

Now, we show the implication in the opposite direction («=).
We apply ”D:’ on both sides of Equation (2.11)) and by the Lemma [2.7}, it follows that

ol Bl ol - ol,B! (it
D () = DT pIaifi(@Ul(t),Uz(t))) _opiiered (p,gg u).

pi(t)

DIy (t) =

1 P £ U u _ 7
pi(t) Za-&-fl(t? 1<t)7 2(t>)
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i) Dy (1) = PTG filt, un (£), ua(t)) — ra(t)ua(t),

i) DIy (t) + ri(t)uilt) = P2 filt, wi (1), ua(t)),

U

[pi(t)ﬂpjiﬁi + m(t)] wit) =PI fit, u (), us(1)). (2.12)

Now, by applying the operator pD:i”B “ on both sides of Equation (2.12) and using the
Lemma [2.7 we get

pD:i’ﬂi [pi(t)f’pzi T+ Ti(t)] ui(t) = pD:i’Bipzjifi(t; ui(t), ua(t)),

ppoiP [pi(t)ﬂpji 4 n-(t)} wi(t) = filt, un (), us(t)).

By Equation ([2.11)), we have

lm(t) = ] _|_P_’Za; (n(t)) )
at \ pi(t)
and for t = a,
T (T fias wila), w (1))
ui(a) =

14+ pzﬁ (m(@)

pi(a)

Hence, by Lemma , we have u;(a) = 0. The proof is fulfilled. =

2.3 Existence and uniqueness

For study existence and uniqueness of solution of the problem ({2.8]), we consider the
following hypotheses and notations.

In all the sequel, we consider the operator

A Cryy p(J) X Cryy p(J) = Crgy p(J) X Crogy p(J),
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(J = [a,T]) defined by
Au = A(uhUZ) = («41U1,A2U2)

with

[[[Aull] = max{|[Avui [, | Azusl|},

where

(2

Aa) = T (2325 ) (i 0) 2 (B ) 0. 213)

Notations We denote
pi = wf|pi(®)], i =suplri(t)],

and we assume that

with
c TP — af 1—vi+ai+a; 1
L < p ) pip?T(a; + D (o + 1)
and
D — (TP - a”)a; r;*/ ‘
p pipl(a + 1)
Hypotheses

(H1) For i = 1,2, there exists a constant A; > 0 such that :
‘fz (t, u1,u2)_fi (t,Ul,U2> | < Mz (Hu1 — Ul” + ”'LL2 — UQH) y Vite [CL, T], Vui,vi eR = 1, 2.
(H2) For all u = (uy,us), there exists o; > 0 such that

’fz(t,UM SO',L', Vite J, (221,2)
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2.3.1 Existence

Within this section, we prove the existence of the solution of Problem ({2.8)), which

is based on Shauder’s fixed point theorem.

Theorem 2.1 Assume that (H2) is satisfied. Then Problem (2.8) has at least one solu-

tion in Ci_y, , X Ci_q, p.

Proof. To demonstrate the existence of a solution, we reformulate Problem as a
fixed point problem. Indeed, since Problem is equivalent to the integral equation
, the fixed points of A are the solutions of the problem (2.8). Then, we will verify
the assumptions of Shauder’s fixed point theorem.

Consequently, the proof will be devided into several steps.

First Step

We prove that the operator A is continuous. For every bounded Q@ C C1_,, , x Ci_, ,
there exists w > 0 such that

Q={ue€CiqpxXCipy: HUHCl_%,p < wj,

where w = max(w;,wsy) and v = max(vy;,¥2).
Let (uy)

have

nen € €0 a sequence such that nh_)rgo [tni — uille, ., , = 0. Then for every t € J we

‘(Aium‘(t) — Au(t) (tﬂ . &p)

IN

<tﬁ —p a”)lw pzﬁ (p%pzﬁ( 5 (8,1 (8), tna(s)) — fi(s,U1(8),U2(S))|))
(Tﬂ ; a”) o P <T—ft(|um(s) — ui(s>|)> (t)

< (=) gt (T2 (55 102(5) = s (5, ()

+

ol r;k

%

TP — g\ 1 1 TP — gP)oite
g( pa) T ()T (a)) <pai+afiz)aiag (1fi (3,11 (8), 1)) — fils,un(s), ua(s))])
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(T - )

piD () poitioys (Hum—uz‘nck%p)

TP — qf 1+a;+al—; 1
< < ) p;kaF(Oéi + 1)1‘\(0[; + 1)(‘fz (S,unl(S),ung(S)) — fi(s,u1<3)’u2(3))‘)

p

b (Y )
Unpi — U
pipl (a4 1) p =i

Since f is continuous and lim ||up; — wsl|¢;_, , = 0. Then
n—00 v

[l (A ) (£) = (Awi) () | fnsoo — 0.
Consequently, A is continuous.

Second Step
We will show that A(€2) C Q. We choose w a positive real number such that

010'1 020'2
1-D,'1-Dy )"

meaX(

By the assumption (H2), for all ¢ € J and for all u € €2, we have

tr—qr\ T
Aju(t
o ()

< (757) T (e st mio )
() ) o

T — P\ 1 o o T
g( ) LT (1) + T C )
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<

TP — P\ 177 1 (T7 — ap)(aﬂroz;) N r (T? — aﬂ)ﬂlé
7 0; 7
T I ) e A s Ry

gl

Tr — qp\ et o ¥ Tr — P\ %
S * 92 . / + * / wi
P pip*T(aq + Do + 1) - pipl'(eg + 1) P

< Cioi + D |||
§ C’iai + Dlwz
We obtain ||| Au||| < w, from which it follows that A(Q2) C €.

Third Step
We show that Awu is uniformly bounded. For all u € ), we have

P — P\
Az-uit
o (")

<

(tp ; ap>1_% PTC (i*pI:ifi(s,m(S),Uz(s))) (t)

TP — qf 1—yita;+aj 1
< TV ; o)
p pip°T(a; + I + 1)

. r <T” _ ap)ai
Wi
pipl(a; +1) P

Thus, ||| Au||| < max {Cio1 + Diwy, Cy09 + Dows} . Then, Au is uniformly bounded.
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Fourth Step
Finally, we show that Au is equicontinuous. Let u € Q and ty,t, € J with t; < t9, we
have

p

_ <Tp _ CL’O) 1—7; 1 /t1 <t§ . Sp)ai-i-a;—l B (t? _ Sp)ai-‘rozé—l Sp_l
“\ pil(es + o)) Jo p p

X| fi(s,u1(s), uz(s))|ds

TP _ P 1—; 1 to tg g ajtol—1
+ -l AGE ) d
(%) meral, (( B LEVCRRCTE

() o (Bt - w).

P i

‘(Ai“i(b) — Aiui(th)) (t” — ap)lw

It follows that

- TP _ P 1—; o /t1 t;z) g aj+al—1 - tiz 4P a;tal—1 Sp_lds
RN pil(ai + ;) Ja p p
- <Tp - ap) o oi /t2 <t5 - Sp)a#a;_l 1 ds
* /
P Pl (i +af) Jy, p

o [TF
oz (E ()1 | (t2 — t1>|)

)

- (TP — ap) L= o <t§ _ ap)aﬁai/ <t§’ _ ap>ai+ai/
- p pipl (i 4 aj + 1) p P

* o) —1 o) —1
NI /t2 th —s° P 1ds — /tl - s 1ds

Universiy 8 May 1945-Guelma A.Boufernana



2.3. Existence and uniqueness 27

TP —aP\ ' o; 10— qp\ it 10— qp\ it
< i 2 (4
- ( p > pipl(ci + o + 1) ( p ) ( p )

riw 0 — 10\ ™
ppiT(a;+1) \ p

Consequently, we have

I Aw (t2) — Au (t1) |||| = 0 as t; — to,

which implies that Au is equicontinuous.
Thus, by the Arzela-Ascoli theorem, Auwu is completely continuous, and by Shauder’s fixed
point theorem, the operator A indeed has a fixed point. The proof is finished. m

2.3.2 Uniqueness

Theorem 2.2 Suppose that assumption (H1) and (2.14) are satisfied, the problem (2.8)
has a unique solution in Ci_., , X C1_y, .

Proof. For all u;,v; € Cy_,, ,(J) and for t € J, we have

)

& ) 22 () - o)) 0

Tr — g w1
( ) PL.: (Epzai(Mi(HUl —vp|| + |luz — U2||))) (t)

)

P ) (t
: (pznu vH)()

TP — g\ 1 1 (T — ap)aﬂra; (
p T ()T () azapretent?

(™ ) T (ST () a(5) (509, (o) ) 0

+

IN

+

IN

M;([|ur — v1 ]| + [Jug — va]]))

i (TP — ap)a§

7

pfr(o/.) Ozﬁ;po‘Hl <Hul_UZ”)

)

+
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TP — aP 1—vyi+ai+al 1
< Mi(fJuy — -
< (7o) e (Ml =l + s = a1

¥ TP — qP\ %
( ) (lus = i)

+
pipl (e +1) p

Hence, ||| Au — Av||| < L||u — v|| where L = max{Ly, Lo}. Since L < 1, the operator A
is a contraction. Thus, according to Banach’s contraction principle, Problem ({2.8]) has a

unique solution. This completes the proof. m
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Chapter

Stability in the sense of Ulam-Hyers and

Ulam-Hyers-Rassias

Stability analysis has got too much importance on research side. it is very impor-
tant from numerical and optimization point of view in investigating various problems of
physics, mathematical biology, biophysics, economics, where the actual solution is almost
difficult. In literature, we come across different approaches towards stability analysis.
However, in this paper we discuss the Ulam-Hyers (UH) stability approach which is com-
paratively the most simple and easy way of investigation the stability of systems.

Its history goes back to the middle of the 19th century. In 1940, Ulam gave a wide rang-
ing talk before the mathematics club of the Wisconsin university in which he discussed
several important unsolved problems [37] and he raised the question concerning the ho-
momorphism stability ”Under what conditions does there exist an additive mapping near
an approximately additive mapping?”. In the next year, Hyers positively answered the
question of Ulam’s partially [15]. Moreover, a generalized was obtained by Rassias for
the Hyers results [33]. And since 1940, the mathematics authors have been interested to
studied the Ulam-type stability problems [5, 28] 34]. In last few decades, Jung extended
the previously mentioned stability results, see [I8]. Obloza [29] established the UH sta-
bility of linear differential equations.

The Ulam stability analysis is very useful in a lot of applications, such as optimization,
numerical analysis, etc..., for more detailed study of Ulam-type stability with different
approaches see [16], [39]. Some recent work on stability of differential equations (or their
solutions) with variety of initial or boundary conditions are reported in [1I, |6l [, [IT], 38].
In this chapter, we aim to study the stability of solution to problem based on Ulam-

Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized Ulam-Hyers-Rassias

29
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principles and define its fundamental criteria.

3.1 Stability analysis

In this section, we describe the various stability definitions that are essential to

understanding our problem.

3.1.1 Ulam-Hyers stability

Let ®; defined in Cy_, ,(J) X C1_,,,(J) such that

B, (uy, u)(t) = DO [pi(t)ppji’“ i) i) = (b (1), wa(t)) € [0, T],i = 1,2.

Definition 3.1 The problem ({2.8)) is Ulam-Hyers (UH) stable if there exists a real number
¢ > 0 such that for each pair (g1,&5) € RT x Rt and for each solution
u = (ur,u) € Ci_y, p(J) x Ci_,, ,(J) satistying the inequality

|(I)Z(u1>u2)<t)| <g te [CL,TL 1=1,2,
(3.1)

there exists a unique solution v = (vy,ve) € Ci_, ,(J) X C1_, ,(J) of (2.8)) satisfying the
inequality

||u - ,UHCI—'\/,p S C€7

where € = max(eq, &3).

3.1.2 Generalized Ulam-Hyers stability

Definition 3.2 The problem (2.8)) is generalized Ulam-Hyers (GUH) stable if there exists
¢ € C(RY,R") with £(0) = 0 such that for each pair (¢1,62) € Rt x R™ and for each
solution u = (uy,uz) € Ci_y, p(J) X Ci_s, ,(J) satisfying (3.1]), there exists a unique
solution

v = (v1,v2) € C1_y, p(J) X C1_, ,(J) of (2.8)) satisfying the inequality

lu =vlle, ., <&(e).
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3.1.3 Ulam-Hyers-Rassias stability

Definition 3.3 The problem (2.8)) is Ulam-Hyers-Rassias (UHR) stable with respect to
(1,19) € C([a, T],RT) x C([a,T],R") if there exists a real number x > 0 such that for
each pair (e1,e2) € RT x R* and for each solution u = (uy, uz) € Ci_y, p(J) X C1_, ,(J)

satisfying the inequality

|q)i(u17u2)(t)| < 5i¢i<t) te [CL, T]’ 1=1,2,
(3.2)

there exists a unique solution v = (vy,v2) € Ci_, ,(J) X C1_, ,(J) of (2.8)) satisfying the
inequality

lu = vlle ., < pep(d),

where € = max(eq, &3).

3.1.4 Generalized Ulam-Hyers-Rassias stability

Definition 3.4 The problem ([2.8)) is generalized Ulam-Hyers-Rassias (GUHR) stable
with respect to (11, 19) € C([a, T],R") x C([a, T],R") if there exists a real number > 0
such that for each solution u = (u,us) € Ci_, p(J) X C1_s, ,(J) of (3.2)), there exists a
unique solution v = (vy,v2) € C1_y, ,(J) X C1_, ,(J) of satisfying the inequality

||u - /UHclf’y,p S /"L/l/b(t)'

Remark 3.1 A function u = (uy, us2) € Ci_,, , X C1_, , is a solution of (3.1) if and only
if there exists a function g; € C([a, T],R) such that

]‘) |gz(t) <eg,te [CL,T], 1= 1’2

2) 2D [0 DL (0] wit) = Jy (oo (0), wa(t)) + gi(0), 1€ [0, T], i = 1,2,

Remark 3.2 A function v = (u, u2) € Ci_, , X C1_, , is a solution of (3.2) if and only
if there exists a function g; € C([a,T],R) such that

1) gi(t)] <epi(t), tela,T], i=1,2.
2) DI [Pi(t)pDZiﬂi +ri(0)| wi(t) = fi (tur,ua(t)) + gi(t), t€a,T], 1=1,2
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3.2 Stability results

Theorem 3.1 Assume that hypotheses (H1) and condition (2.14) are satisfied. Then,
solution of Problem (2.8) is stable in the sense of Ulam-Hyers (UH) and generalized
Ulam-Hyers (GUH).

Proof. Let ¢; € RT, i = 1,2, and since we have assumed that u = (u, u) € C1_, ,(J) X
Cl—ryp(J) is a solution of (3.1). By Remark [3.1] there exists a function g; € C([a, T], R)
such that |g;(t)| <e;, t € [a,T], 1 = 1,2, and satisfying the problem

P 0P D 1) wilt) = fi (6w (0, w(0) + (), € [, T], i =12,

(3.3)

Using Lemma , the problem (3.3 has a solution given as

) =7 (Tt ), + )] ) 22 (“ )

pi(t) pi(t)

Theorem ensures the existence of a unique solution v = (v1,v2) € Ci_y, ,(J) X
C1—r,,p(J) of Problem (2.8)) and satisfies the integral equation

lt) =2 (Tt n() ) =Tk (20

On the other hand, for any i = 1,2, t € [a, T], we establish

(ua(t) = vi(1) (tp . )

< (=) e (52218 (a9 () = F o115 ) ) 0

b;
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T —aP\N'" (1
g( . ) p:f;z(EﬂzauMi(nul—v1||+||uz—v2||>>)<t>

T —aP\" (1
+ ( - ) PT. 1 <—*pI§i5i> ()
P b;
+ T (

= —(Mi(J|us — _
- ( p ) PiT ()T () ol pitoit? (M;([lur = v + [luz — val|))

N TP — gP\ 1 1 (T? — ap)aﬂra;
7 €
Pl (ea)l(af) ciopoatent?

*
]

*
7

r
p

o=l ) 0

P (Tp_ap)a2
pil(af)  ajpeitt

7

(lJws = will)

TP — qf 1—vi+ai+a; 1 y
= 7 — _
- ( P ) pip* (o + Do + 1)( ([lur = va]] + flug — va|)

N TP — aP 1—yitai+aj 1
i
) pip?Llas + DI(a) + 1)

A (Tp‘“”)aQu b
U; — Uy
pipl(a; +1) p

< CiMy([lug — vi]] + [Jug — val]) + Cigi + Di((|lui(s) — vil])
< CiM2||u — v|| + Cie; + Dif|u — v|

By condition (2.14]), we deduce that

C
1-L

HU_UHCI—%/) S €

with C' = max(C},Cy) and ¢ = max(ey,e3). This prove the existence of positive real
number ¢ = <~ so that by Definition , the solution of Problem ([2.8) is Ulam-Hyers

1-L°

(UH) stable.
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Let £ : RT — R™ be a continuous function such that

&(e) = Ce,
where £(0) = 0. According to the above, we can write
C
u=vllcr,, <€) = ——<.

Hence, by Definition [3.2] the solution of Problem (2.8)) is generalized Ulam-Hyers (GUH)
stable. This concludes the proof. m

Theorem 3.2 Assume that hypotheses (H1) and condition are satisfied and the
following hypotheses hold:
(H3) There exists an increasing function ¢; € C([a,T],RT) and there exists n; > 0 such
that for any t € [a,T]

TN (1) < man(t), i = 1,2,
Then, Problem is Ulam-Hyers-Rassias(UHR) stable and consequently generalized
Ulam-Hyers-Rassias(GUHR) stable.

Proof. Let ¢; > 0, i = 1,2, and since we have assumed that u € Cy_,, ,(J) X Ci_, ,(J)
is solution of (3.2)). Hence by Remark [3.2] there exists a function g; € C([a,T],R) such
that |g;(t)] < ebi(t), t € [a,T], i = 1,2, and satisfying the problem

PD ™ [pi() D 4+ ()] wilt) = fi (6w (1), wa() + i(t), tE [0, T], a>0,i=1,2,

(3.4)

By Lemma [2.8 the solution to Problem (3.4) is given by
1 o o T t i
T2 b)) + 0] 25 (Zu0) =12

u;(t) = iji (pi(t) i(0)

According to Theorem 2.2}, Problem (2.8) has a unique solution v = (vy,v2) € Ci_y, ,(J) X
C1—+,,(J) that satisfies the integral equation

1
pi(t)
Therefore, for any ¢ € [a,T)], we have

(ui(t) —vi(t)) (t” ; aP) L

) =2 (s B o)) ) =2k (00

pi(t)
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g(“”“vl%%ﬁ(;%ﬁﬁwwmﬂm@»—ﬁ@m@xw®n)@

1Y i
T —aP\'"" (1
+( ) Wﬁ(7@ﬁ@@0@
1Y p;
tr—aP\'" Y
+( = ) %ﬁ(ﬁwm»www)w

T — P\ (1
< (F2) ozt (om0 = ol + e = wal))) 0

7

Tr —aP\'"" (1 C
+( “) %;(E@ﬁwm@)®+%ﬁ(%wM—QO

) )

TP — qP\ 17 1 (T? — ap)oéi-i-a;
<(557) ST e (il = ol + s )

TP — gP\ 1 TP _ gP)eite;
< ) ( ) ginii(t)

P asalp o

(TP - ar)

pil(ag)  ajpt!

(lJui = wil])

TP — gf 1—yitaita] 1 y
< o )
‘( ) ) piT (a1 e+ 1) Ml = ol e =vel)

() : ()
ENiW;
P i (as + DL+ 1)

¥ TF — aP\ %
( ) (s = v

+
pipl(a; +1) p

< CiMi([Jur — vi]| + |Jug = val|) + Cigimidi(t) + Di(|lus — vs|)
< 2C;Millu — v|| + Ciganbi(t) + Difu — v||
< (2C;M; + D;)||lu — v|| + Ciemibi(t)
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By condition (2.14]), we deduce that

&?w( )-

||U_UHCI Y,p — 1

Where £ = max(e1,¢2) and C' = max(C}, Cy). This demonstrates the existence of positive

real number

1-L’

with n = max(n;, n2), ¥(t) = max (¢1(t),19(t)). Consequently, as by Definition , the
t€la,

solution of Problem ([2.8)) is Ulam—Hyers—Rassms (UHR) stable.

Furthermore, letting ¢ = 1, the problem (2.8)) is generalized Ulam-Hyers-Rassias (GUHR)
stable. This completes the proof. m
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3.3 Numerical example

We consider the following fractionnal differential problem

( )
0-3 04,05 [% Spo304 4 . 01t] uy(t) = L(cos|luy| — cosluy|) t € [g, %]
03 p0808 | 2002 D003 10,14 (1) = L (simlun| — sin]ua]) (3.5)
s
(5 =0
with
(g =0.4,0] =0.3,a5 = 0.3, 0, = 0.6) € (0, 1),
(1 =0.5,8; =0.4,58, = 0.6, 3, =0.3) € [0, 1],
(v1 =0.7,9 = 0.5,72 = 0.9,75 = 0.6) € [0, 1).
and .
fi(t,ug,ug) = §(003|u1| — coslus)|)
t
fa(t,ug,ug) = 15(sm]u1] — sin|usg|)
103 — (Z)03\ % T b Yy
Since (%) fl<t,U1,U2) € C([g, E]), we have fl € 00.3’0.3([§, F]),
. —(3)°3 T 5w T 5w
and since O— fl(t Uy, Ug) € C([3 5 —1), we conclude that f; € 00103([3 E])

By using all the data provided in our problem (3.5]), we obtain
om
[fr(t ur, uz) = fult, v, v2)] < o (llun = el + flor = vell),

T
| fo(t, ur, ug) — fo(t, v, v2)| < 1—8(”“1 — Up| + [Jvy — v2)),

| f1(t, ur,ug)| <

o= 2|

| fo(t,ur, ug)| <
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for all t € [g, 5—7T] Consequently, hypoyheses (H1) and (H2) are satisfied.
with 3300
T
—) =100(—=) = — = 95.492965
Pl 3) ( )= :
5% 6 600
—) =100(—) = — = 38.197186
Pl 6 ) = 100( 57T) - ,
5
where pt = inf {pl(%),pl(g)} — 38.197186.
T 3 600
—) =200(—) = — = 190.985931
pa( 3) ( 7T) - ;
5 6 1200
po(28) = 200(=2) = ——— = 76.394372,
6 5T 5m

5
where p} = inf {pz(%)dh(%)} = 76.394372.

Also,
r(5y = 0.01(Z) = 0.010471,
3 3
5 5
7‘1(%) - 0.01(%) — 0.026179,

D
where r] = sup {rl(%),rl(%)} = 0.026179.

T T

Ty = 0.1(2) = 0.104719
n()=01(3) ,

5 5
TQ(%) - 0.1(%) = 0.261799,

5
where 75 = sup {?“2(%),7’2(%)} = 0.261799.
Since .
My =22
48
7r

QZE
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( TP — gf 1—y1+ai+a) 1
C, =
' ( p > pip*T(an + D) + 1)

1

= (1.069299)*
( ) 38.197186 x (0.3)%2 x 0.4 x 2.218 x 0.3 x 2.991

1.069299
=" —0.39072
2.736737 0.390720,
Tp . ap 1—72-&-0424—0/2 1
), =
? ( p ) p3p?T (s + (b + 1)

1

= (1.069299)!
( ) 76.394372 x (0.3)? x 0.3 x 2.991 x 0.6 x 1.489

1.069299
= T 0.194004
(= 5511720 ~ 94004
and
( /
TP — P\ - 0.026179
Dy = ¢ T (1.069299)%
P pipl(a + 1) 38.197186 x 0.3 x 0.3 x 2.991
0.026179
= (1.069299)°3 ——"_"_ — (.002597
(1.069299) 10.285738 ’
TP — aP\ ™ : 0.261799
Dy = ¢ 2 (1.069299)"°
P pipl(ah + 1) 76.394372 x 0.3 x 0.6 x 1.489
0.261799
= (1.069299)6 —_"""_ — .013310
| = (L069299) o 75210 ’
we obtain

Therefore, condition (2.14]) is verified. Since the assumption (H1) of Theorem [2.2]is satis-
fied, we deduce that Problem (3.5]) has a unique solution in Cy 3 0.3([=, —]) xCo.1,03(]

5
Ly =20, M, + Dy = 2(0.390720)% +0.002597 = 0.258322 < 1,

Ly =2C5My + Dy = 2(0.194004)118 + 0.013310 = 0.081030 < 1.

T 57
376
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Moreover, since the assumption (H1) and condition (2.14)) of Theorem are satisfied,
this confirms that the solution is stable in the sense of Ulam-Hyers (UH) and generalized
Ulam-Hyers (GUH).

T OT

Now, let us define the following two increasing functions on the interval [3 5 ]:

Pi(t) =12, Yo(t) =€

For the first function 1y (t), we have

t tpa+2 ! pt2
I(t) = / (tF — sP)* 5P ls?ds = / (1—w)*tu» du.
a P J(@y

t

by the following change of variable

sP 1, 1.
U= = s= tur = ds = t(—)u% 'du.
p

Let us note that the integral is a Beta-type function such that

ﬁx(p,q)I/O =1 —t)" .

An upper bound of the integral which denoted by J(t)
! p+2
J(t) = / (1—w)*tu» du
(

1
§/ (1 —u)a_lu%?du
0

sﬁ(a,p—”).
0

On a bounded interval [a,T], we have

1 2
I(t) < =T (a, i)
p p
<c,
with N
O = ﬂ (Oé, &) _Tpaa
pJ)p
where -
; (a p+2) ~ T(a)T(22)
TP (o + 2£2)
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)
Substituting the values & = oy + o} = 0.7, p = 0.3, and T = %, we get
C ~1.2901

)
Then, for t € [g, g], we have

I(t) < 1.2901¢%, oy (t) = t°.
Since our integral is given by
; 0.3%3
PTET N (t) = ().

Then, we obtain
P (t) < (1),
with 1, = 0.6926.

Now, we move on to the second function s (t), we have
/ t _
J(t) = ”ijra?z/@(t) — Co/ (1P — a?)* LsP~tesds,

such that

plf(a2+o/2)
Co= ——.
I'(az + af)

For s € [a,t], as s < t, we have e® < e’ then
t —
J(t) < C’Oet/ (t* — a)* ts*"tds.
Let us set .
K(t) = / (17 — 0 LsPLds.
We evaluate the integral K (t) using the same change of variable as before and we obtain

K(t) = f/ (1— w)*du.

P P

P

Let us make a second change of variable

r=1—u=— dr = —du,
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we get
Hence,

It follows that o
J(t) < 21t
pa

om 0.3%1

Substituting the values @ = ay + a5 =0.9, p=0.3, T = 5 and Cy = m, we obtain

J(t) < 3.9845¢".
However, J(t) =L i+a/2w2(t), this yields
PTOT (1) < mptba(t), with 1y = 3.9845.

So, hypotheses (H3) is satisfied.
Consequently, the hypotheses of Theorem are satisfied, which ensures the stabil-
ity of solution in both Ulam-Hyers-Rassias (UHR) and generalized Ulam-Hyers-Rassias

(GUHR).
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Conclusion

This research makes a significant contribution, mainly covering the following aspects:
New extension to the study of Sturm-Liouville and Langevin fractional differential equa-
tions involving the Hilfer-Katugampola fractional derivative. By means of rigorous anal-
ysis, we have successfully derived an integral representation of our problem. This has
facilated the effective reformulation of the problem as a fixed point theorem. The exis-
tence of a solution to our problem (see (2.8)) was demonstrated via Schauder fixed point
theorem, while uniqueness was ensured by imposing an additional constraint using Ba-
nach contraction principle.

Furthermore, under the same conditions ensuring the existence and uniqueness of the
solution, we are able to analyze and establish its stability in the sense of Ulam-Hyers
and generalized Ulam-Hyers. Moreover, by imposing only one additional condition, we
extended the stabiity results to the senses of Ulam-Hyers-Rassias and generalized Ulam-
Hyers-Rassias.

Finally, a numerical example was introduced to substantiate and confirm the theoretical

derived results.
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