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 الملخص 

 

 
 

. أ  أعمال من مستوح  الموضوع هذا . الكسرية التفاضلية المعادلات دراسة  إطار  ضمن المذكرة هذه تندرج  
  ال المقالة الزابوت،. ج و  مطر . م. م ،طابوش. ن رحايل،ب

و وجود  لدراسة اموشك  بنو  بلعادي إليها  استند  ت   
تحت كاتيغامبولا -هيلفر الكسرية المشتقة باستخدام ،ي   ولانجف ليوفيل -ستورم من عام لنظام الحل وحدانية  

  ابتدا طش   
  من خلال استكشاف جانب  ، سعينا الدراسات هذه نتائج من مستوحي    ،ئ 

لإكمال التحليل الرياض 
. ققرار بشكل أعمتالاس  
ومعممة  كلاسيكية  مفاهيم لعدة وفقا  المدروس النظام حلول استقرار  تحليل على ا زنرك السياق هذا  ف  

واستقرار  راسياس،- هايرز - أولام استقرار  المعمم، هايرز - أولام استقرار  هايرز،- أولام استقرار : ه  و  للاستقرار،  
من  نوع كل  صحة تضمن كافية  وطش   د تحديل  دقيقة تحليلية تقنيات ا استخدمن. المعمم راسياس-هايرز-أولام  

   الاستقرار 
 
. المدروس الكسري النظام ر إطا ف   

  
  ال النتائج فعالية براز إ و  يةالنظر  وانبالج توضيحل ا علمي لا مثاا دمنق المذكرة، نهاية ف 

. عليها  الحصول مت ت   
 
 

كاتيغامبولا،-هيلفر نوع من الكسرية المشتقة المعمم، ي  لانجف و  ليوفيل-ستورم نظام:  المفتاحية الكلمات  
هايرز،- أولام ت  بمع الاستقرار  لباناخ، الإنكماش مبدأ  لشودر، الثابتة النقطة هنةب  م  ،ل  أسكو-أرزولا هنةب  م  

 -هايرز-أولامت  بمع الاستقرار  راسياس،-هايرز - أولامت  بمع الاستقرار  المعمم، هايرز -أولام ت  بمع الاستقرار 
. المعمم رسياس  



Abstract

This thesis falls within the framework of studying fractional differential equations.

This subject was inspired by the work of A. Berhail, N. Tabouche, M.M. Matar and J.

Alzabut, article [9] on which Belaadi, and Benkamouche [7] based their work to study of

the existence and uniqueness of the solution to a generalized system of Sturm-Liouville

and Langevin type, using the Hilfer-Katugampola fractional derivative under an initial

condition. Inspired by the results of these studies, we sought to complete the mathematical

analysis by further exploring the aspect of stability.

In this context, we focused on the stability analysis of the solutions of the studied sys-

tem according to several classical and generalized notions of stability, namely Ulam-Hyers

stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and generalized

Ulam-Hyers-Rassias stability. We used rigorous analytical techniques to establish suffi-

cient conditions that guarantee the validity of each type of stability within the framework

of the studied fractional system.

At the end of this thesis, we presented a practical example to illustrate the theoretical

aspects and highlight the effectiveness of the obtained results .

Key words: Generalized Sturm-Liouville and Langevin system, Hilfer-Katugampola frac-

tional derivative, Arzela-Ascoli theorem, Schauder fixed point theorem, Banach contrac-

tion principle, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias

stability, generalized Ulam-Hyers-Rassias stability.
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Résumé

Ce mémoire s’inscrit dans le cadre de l’étude des équations différentielles fraction-

naires. Ce sujet a été inspiré du travail de A. Berhail, N. Tabouche, M.M. Matar et J.

Alzabut, article [9] sur lequel se sont appuyés Belaadi et Benkamouche [7] pour étudier

l’existence et l’unicité de la solution d’un système généralisé de type Sturm-Liouville et

Langevin, en utilisant la dérivée fractionnaire de Hilfer-Katugampola, avec condition ini-

tiale. En s’inspirant des résultats de ces travaux, on a cherché à compléter l’analyse

mathématique en approfondissant l’aspect de la stabilité.

Dans ce contexte, on s’est concentré sur l’analyse de la stabilité des solutions du système

étudié selon plusieurs notions classiques et généralisées de stabilité, à savoir la stabilité

d’Ulam-Hyers, la stabilité d’Ulam-Hyers généralisée, la stabilité d’Ulam-Hyers-Rassias,

et la stabilité d’Ulam-Hyers-Rassias généralisée. On a utilisé des techniques analytiques

rigoureuses afin d’établir les conditions suffisantes garantissant la vérification de chacune

de ces formes de stabilité dans le cadre du système fractionnaire étudié.

À la fin du mémoire, on a présenté un exemple pratique afin d’illuster l’aspect théorique

et de mettre en évidence l’efficacité des résultats obtenus.

Mots clés: Système généralisé de Sturm-Liouville et Langevin, Dérivé fractionnaire de

Hilfer-Katugampola, Théorème du Arzela-Ascoli, Théorème du point fixe de Schauder,

Principe de contraction de Banach, Stabilité au sens de Ulam-Hyers, Stabilité au sens

de Ulam-Hyers généralisé, Stabilité au sens de Ulam-Hyers-Rassias, Stabilité au sens de

Ulam-Hyers-Rassias généralisé.

6



Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Preliminaries 4

1.1 Special functions of fractional calculus . . . . . . . . . . . . . . . . . . . . 4

1.1.1 The Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 The Beta function . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Mittag-Leffler function . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Fractional Integrals and Fractional Derivatives . . . . . . . . . . . . . . . . 7

1.2.1 Riemann-Liouville Fractional Integral and Derivative . . . . . . . . 7

1.2.2 Hadamard Fractional Integral and Derivative . . . . . . . . . . . . . 9

1.3 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Shauder fixed point theorem . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Krasnoselskii fixed point theorem . . . . . . . . . . . . . . . . . . . 11

1.3.3 Banach contraction principle . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Arzela-Ascoli theorem . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Study of generalized Sturm-Liouville system and Langevin of Hilfer-

Katugampola fractional differential equations 12

2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Generalized Fractional Integrals and Derivatives . . . . . . . . . . . 14

2.1.3 Hilfer-Katugampola Fractional Derivative . . . . . . . . . . . . . . . 14

2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7



Contents 8

3 Stability in the sense of Ulam-Hyers and Ulam-Hyers-Rassias 29

3.1 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Ulam-Hyers stability . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Generalized Ulam-Hyers stability . . . . . . . . . . . . . . . . . . . 30

3.1.3 Ulam-Hyers-Rassias stability . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Generalized Ulam-Hyers-Rassias stability . . . . . . . . . . . . . . . 31

3.2 Stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Conclusion 43

Bibliography 44

Universiy 8 May 1945-Guelma A.Boufernana



0.1. Introduction 1

0.1 Introduction

Fractional calculus is a branch of mathematical analysis that generalizes the clas-

sical concepts of differentiation and integration to non-integer orders. Unlike traditional

calculus, which is limited to derivatives and integrals of integer order, fractional calculus

allows for operators of arbitrary real or complex order. These operators are typically

classified within the broader framework of pseudo-differential operators.

As a natural extension of conventional calculus retains many of its foundational proper-

ties while enabling new levels of mathematical modeling and analysis. It offers a unified

framework for integration and differentiation of any order whether integer, fractional (e.g

0.5, 0.3, 0.7), or even complex-valued thus providing powerful tools for studying complex

phenomena across physics, engineering and mathematics.

The historical roots of fractional calculus trace back to the late 17th century. In a 1695

letter to l’Hospital, Leibniz posed the now-famous question: What does a derivative of

non-integer order mean? His response ”This may seem paradoxical at first, but it might

one day lead to useful results” set the stage for a centuries-long exploration into deriva-

tives of arbitrary order.

The first rigorous formalization of fractional derivatives can be traced to Liouville’s work

between 1832 and 1837, followed by Riemann’s contributions that culminated in what

is now known as the ”Riemann-Liouville approach”. Subsequently, additional theories

emerged, including those of Grunwald-Leitnikov, Weyl, and Caputo see [24]. During that

period, practical applications of these theories were almost nonexistent, which led to it

being regarded as abstract and consisting mainly of mathematical manipulations with

little practical use.

Since then, the field has undergone accelerated development, driven by foundational con-

tributions such as the Riemann-Liouville, Caputo, Hadamard, and Grunwald-Letnikov

formulations [12][14][36], and more recently, the Hilfer-Katugampola derivative. The lat-

ter is described in great detail in references [19][20][21][22].

At this time, fractional derivatives find applications across a wide range of disciplines

including biology, mechanics, economics, and systems engineering thanks to their ca-

pacity to capture long-memory dynamics and non-local interactions. One particularly

Universiy 8 May 1945-Guelma A.Boufernana



0.1. Introduction 2

impactful application is in the modeling of random physical processes via the Langevin

equation, originally introduced in [25], and further developed to describe systems evolving

in stochastic or disordered environments [2][9][10][26][40].

Another cornerstone of applied mathematics, the Sturm-Liouville problem, has been suc-

cessfully extended into the fractional domain, given its broad applicability in solving

boundary value problems across science and engineering [3][23]. The fusion of the frac-

tional Langevin equation with the fractional Sturm-Liouville framework allows for a more

nuanced representation of complex dynamic systems, especially those influenced by mem-

ory and spatial non-locality [19][21][22].

A further research by Kiataramkul, Ntouyas, Tariboon, and Kijjahathankorn has proposed

models incorporating Hadamard derivatives into the fractional Langevin-Sturm-Liouville

system under periodic boundary conditions [23]. Other studies have further explored the

existence and uniqueness of solutions for generalized Sturm-Liouville-Langevin systems

with anti-periodic boundary conditions [27].

Another crucial and notably significant area of research that has recently garnered in-

creased attention is dedicated to the stability analysis of differential equations of both

integer and noninteger order. The initial work was started by Ulam in 1940 and sub-

sequently validated by Hyers. This type of stability is referred to as Ulam-Hyers (UH)

stability, generalized UH stability. The stability introduced by Rassias is referred Ulam-

Hyers-Rassias (UHR) stability. Despite this, Obloza [29] was the first mathematician who

introduced the UH stability for differential equations.

This research work is organized into three chapters, each addressing a fundamental aspect

of the study on the stability of a generalized Sturm-Liouville and Langevin system of

Hilfer-Katugampola fractional differential equations. The aim of this work is to provide

a comprehensive analysis that moves from theoretical foundations to applied stability

results.

• First chapter

As a starting point, we introduce the essential mathematical tools and concepts

used throughout the thesis. We review special functions such as the Gamma, Beta,

and Mittag-Leffler functions, which play a crucial role in fractional calculus. Next,

we present the main ideas of fractional integration and differentiation, focusing on

Universiy 8 May 1945-Guelma A.Boufernana



0.1. Introduction 3

well-known definitions, including those of Riemann-Liouville, Hadamard, and Ca-

puto. These concepts form the foundation for the analysis presented in the following

chapters.

• Second chapter

Here, we study the following generalized system of fractional differential equations of

the Sturm-Liouville and Langevin type involving the Hilfer-Katugampola fractional

derivative
ρDαi,βi

a+

[
pi(t)

ρD
α′i,β

′
i

a+ + ri(t)
]
ui(t) = fi (t, u1(t), u2(t)) t ∈ [a, T ], a > 0, i = 1, 2,

ui(a) = 0,

(0.1)

where, 0 < αi, α
′
i < 1 and 0 ≤ βi, β

′
i ≤ 1. ρDα,β is the Hilfer-Katugampola derivative

of order α, (0 < α < 1) and type β, (0 ≤ β ≤ 1).

fi : [a, T ]× R× R→ R are a continuous functions, pi ⊂ C([a, T ],R\{0}) and

ri ∈ C([a, T ],R) for i = 1, 2.

First, we start by introducing this type of fractional derivative and discussing its

main properties. Then, we present some useful lemmas that will support the theo-

retical development. After that, we discuss the main results regarding the existence

and uniqueness of solutions of the previous system.

• Third chapter

In this chapter, we examine the stability of the system using the concepts of Ulam-

Hyers and Ulam-Hyers-Rassias stability. Different types of stability are analyzed,

and sufficient conditions are established within the framework of the generalized

fractional system introduced earlier, supported by rigorous mathematical proofs.

To conclude, an example is provided to demonstrate the results.

Universiy 8 May 1945-Guelma A.Boufernana



Chapter 1
Preliminaries

This chapter aims to provide a thorough overview of the core principles of frac-

tional calculus. It covers the essential properties of key functions, fractional integrals and

derivatives, along with several fixed point theorems that are considered crucial for the

advancement of the remaining components of our study.

1.1 Special functions of fractional calculus

In this section, we outline the basic properties of certain special functions that

applied in other chapters. Specifically, we focus on the Gamma, Beta and Mittag-Leffler

function, which are crucial in the study of fractional derivatives and fractional differential

equations.

1.1.1 The Gamma function

Certainly, Euler’s Gamma function is one of the fundamental functions in fractional

calculus, as it extends the concept of the factorial n! to non-integer and even complex

values of n.

Definition 1.1 [24, 32] The Gamma function Γ(z) is defined by the integral

Γ(z) =

∫ ∞
0

tz−1e−tdt, z ∈ C. (1.1)

such that : Re(z) > 0.

4



1.1. Special functions of fractional calculus 5

Properties of Gamma Function

• One of the basic properties of the Gamma function is that it satisfies the following

functional equation:

For all z with Re(z) > 0,

Γ(z + 1) = zΓ(z). (1.2)

which can be easily proved by integration by parts:

Γ(z + 1) =

∫ ∞
0

e−ttzdt =
[
−e−ttz

]t=∞
t=0

+ z

∫ ∞
0

e−ttz−1dt = zΓ(z)

.

• Obviously, Γ(1) = 1, and using (1.2) we obtain for z = 1, 2, 3, · · · :

Γ(2) = 1Γ(1) = 1 = 1 !,

Γ(3) = 2Γ(2) = 2 · 1 ! = 2 !,

Γ(2) = 3Γ(3) = 3 · 2 ! = 3 !,

...

Γ(n+ 1) = nΓ(n) = n · (n− 1) ! = n !.

• Γ(1
2
) = 2

∫ ∞
0

e−t
2

dt =
√
π, (Gaussian intergral).

• Γ(n+ 1
2
) =

(2n !)

22nn !

√
π.

• Γ(z)Γ(1− z) =
π

sin(πz)
, z ∈ C, 0 < Re(z) < 1.

1.1.2 The Beta function

The Beta function is one of the fundamental functions in fractional calculus, and is

particulary significant when used in conjunction with the Gamma function.

Definition 1.2 [24, 32] The Beta function represents a type of Euler integral, defined for

all complex numbers x and y with strictly positive real parts by

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y ∈ C, (1.3)

Universiy 8 May 1945-Guelma A.Boufernana



1.1. Special functions of fractional calculus 6

such that : (Re(x) > 0,Re(y) > 0).

Proposition 1.1 The Beta function can be written in terms of Gamma function as follow

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, Re(x) > 0, Re(y) > 0.

Some Properties of Beta Function

The most important properties of the Beta function are :

• The Beta function is symmetric, i.e.,

β(x, y) = β(y, x), Re(x) > 0, Re(y) > 0.

• Recursive relation:

β(x+ 1, y) =
x

x+ y
β(x, y),

β(x, y + 1) =
y

x+ y
β(x, y).

• β(x+ 1, y) + β(x, y + 1) = β(x, y).

• Special value:

β(1, y) =
1

y
, β(x, 1) =

1

x
.

• Connection with binomial coefficients:

β(x, y) =
(x+ y − 1) !

(x− 1) !(y − 1) !
.

1.1.3 Mittag-Leffler function

The basic Mittag-Leffler function, defined and studied by the Swedish mathemati-

cian in 1903, is a generalization of the exponential function ex. This function is of signif-

icant importance in the theory of fractional calculus.

Definition 1.3 [24] The Mittag-Leffler function is defined by the following power series

Eα(x) =
∞∑
k=0

xk

Γ(kα + 1)
, x ∈ C, α > 0.

Universiy 8 May 1945-Guelma A.Boufernana



1.2. Fractional Integrals and Fractional Derivatives 7

Definition 1.4 [24] The generalized Mittag-Leffler function is given by

Eα,β(x) =
∞∑
k=0

xk

Γ(kα + β)
, x ∈ C, α > 0, β > 0.

Some relations with classical functions

Now, we present some relations with classical functions:

• Eα,1(x) =
∞∑
k=0

xk

Γ(kα + 1)
= E(x),

• E1,1(x) = E1(x) = ex,

• E2,1(x) = cosh(
√
x),

• E1,2(x) =
ex − 1

x
,

• E1,3(x) =
ex − 1− x

x2
,

• E2,2(x) =
sinh(x)

2
.

1.2 Fractional Integrals and Fractional Derivatives

This section contains definitions and some properties of fractional integrals and

fractional derivatives of different type.

1.2.1 Riemann-Liouville Fractional Integral and Derivative

In this section, we give the definition of the Riemann-Liouville fractional integrals

and fractional derivatives.

Universiy 8 May 1945-Guelma A.Boufernana



1.2. Fractional Integrals and Fractional Derivatives 8

Definition 1.5 [24] Let I = [a, b] be a finite interval on the real axis R. The Riemann-

Liouville fractional integrals, Iαa+f and Iαb−f of order α ∈ R, the left and right-sided are

defined, for f ∈ C([a, b],R), respectively, by

Iαa+f(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, α > 0, t > a, (1.4)

and

Iαb−f(t) =
1

Γ(α)

∫ b

t

(s− t)α−1f(s)ds, α > 0, b > t. (1.5)

Definition 1.6 [24] Let α > 0 and n ∈ N∗ such that n− 1 < α < n. The right Riemann-

Liouville fractional derivative of order α, of a function f ∈ C([a, b],R) is defined as follows

RLDα
a+f(t) =

(
d

dt

)n
In−αa+ f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1f(s)ds, (1.6)

The left Riemann-Liouville derivative of order α of f is defined by

RLDα
b−f(t) =

(
−d
dt

)n
In−αb− f(t) =

1

Γ(n− α)

(
−d
dt

)n ∫ b

t

(s− t)n−α−1f(s)ds. (1.7)

Properties

• Linearity
RLDα

a+(λf(t) + µg(t)) = λRLDα
a+f(t) + µRLDα

a+g(t). (1.8)

In general, we have

RLDα
a+(RLDβ

a+f)(t) 6=RL Dβ
a+(RLDα

a+f)(t) 6=RL Dα+β
a+ f(t). (1.9)

• The Riemann-Liouville fractional derivative of a constant C is given by

RLDα
a+C =

C(t− a)−α

Γ(1− α)
, t > a.

Universiy 8 May 1945-Guelma A.Boufernana



1.2. Fractional Integrals and Fractional Derivatives 9

• The Riemann-Liouville fractional derivative of a power function (t− a)ν for ν > −1

and α > 0
RLDα

a+(t− a)ν =
Γ(ν + 1)

Γ(ν − α + 1)
(t− a)ν−α, t > a.

• Composition formulas

Let m− 1 ≤ α < m and n− 1 ≤ β < n

RLDα
a+(RLDβ

a+f)(t) =RL Dα+β
a+ f(t)−

n∑
j=1

[RLDβ−j
a+ f(t)]t=a

(t− a)−α−j

Γ(−α− j + 1)
. (1.10)

RLDβ
a+(RLDα

a+f)(t) =RL Dα+β
a+ f(t)−

m∑
j=1

[RLDα−j
a+ f(t)]t=a

(t− a)−β−j

Γ(−β − j + 1)
. (1.11)

1.2.2 Hadamard Fractional Integral and Derivative

Here, we present the Hadamard fractional integrals and derivatives, we outline some

key properties of these operators.

Definition 1.7 [24] Let α > 0 and let (a, b), (a ≤ a ≤ b ≤ ∞) be a finite or infinite

interval. The Hadamard fractional integral of order α for a function f is defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

(log
t

s
)α−1

f(s)

s
ds, (a ≤ t ≤ b). (1.12)

Definition 1.8 [24] Let (a, b), (a ≤ a ≤ b ≤ ∞) be a finite or infinite interval. The

Hadamard fractional derivative of order α for a function f is defined by

Dα
a+f(t) =

1

Γ(n− α)

(
t
d

dt

)n ∫ t

a

(log
t

s
)n−α−1

f(s)

s
ds, n = [α] + 1, a ≤ t ≤ b. (1.13)
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Properties

• If Re(α) > 0 and Re(β) > 0, then(
Iαa

(
log

t

a

)β−1)
(x) =

Γ(β)

Γ(α + β)

(
log

x

a

)β+α−1
.

• Let α, β ∈ R, 0 < a < b <∞ such that α > 0, β > n and n = [α] + 1,(
Dα
a

(
log

t

a

)β−1)
(x) =

Γ(β)

Γ(β − α)

(
log

x

a

)β−α−1
.

Caputo Fractional Derivatives

Now, we present the definition of the Caputo fractional derivative [24].

Definition 1.9 The Caputo fractional derivative of order α ∈ R+ of a function f ∈
Cn([a, b]) is defined by

CDα
a f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds t > a

with n− 1 < α < n.

Some Properties

• Linearity: Let n− 1 < α < n and λ, µ ∈ C

CDa(λf(t) + µg(t)) = λCDaf(t) + µCDag(t).

• CDaC = 0, (Constant).

• Interpolation [17]

lim
α−→n

CDαf(t) = f (n)(t),

lim
α−→n−1

CDαf(t) = f (n−1)(t)− f (n−1)(0).
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1.3 Theorems

In this section, we present several theorems that will be used in subsequent devel-

opment of our work.

1.3.1 Shauder fixed point theorem

Theorem 1.1 [13] Let F be a nonempty closed subset of a Banach space E and T : F →
F be a continuous mapping such that T (F ) ⊂ E is relatively compact. Then T has at

least one fixed point in F .

1.3.2 Krasnoselskii fixed point theorem

Theorem 1.2 [13] Let E be a Banach space, let F be a bounded closed convex subset

of E and let T1, T2 be two mappings from F into E such that T1x + T2y ∈ F for every

pair x, y ∈ F . If T1 is contraction and T2 is completely continuous, then the equation

T1x+ T2x = x has a solution on F .

1.3.3 Banach contraction principle

Theorem 1.3 [13] Let Ω be a nonempty closed subset of a Banach space and T : Ω→ a

conraction operator. Then, there exists a unique ω ∈ E such that T (ω) = ω.

1.3.4 Arzela-Ascoli theorem

Theorem 1.4 [13] Let X = C([a, b]) equipped with the norm

‖f‖ = max
t∈[a,b]

| f(t) | .

If M is a subset of X such that:

• M is uniformely bounded, i.e ∃ c > 0, ‖f‖ ≤ c,∀ f ∈M .

• M is equicontinuous, that is,

∀ ε > 0,∃ δ > 0,∀ t1, t2 ∈ [a, b] such that | t1−t2 |< δ et u ∈M ⇒| u(t1)−u(t2) |< ε.

Then, M is relatively compact.
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Chapter 2
Study of generalized Sturm-Liouville system

and Langevin of Hilfer-Katugampola

fractional differential equations

In this chapter, we focus on the existence and uniqueness of solutions for a general-

ized system of Sturm-Liouville and Langevin fractional differential equations involving the

Hilfer-Katugampola derivative, in the weighted spaces. First, we will present the Hilfer-

Katugampola fractional derivatives which was introduced by Oliveira [30, 31]. This new

formulation is a Hilfer-type fractional differentiation operator, this is, an integer order

derivative performing between generalized fractional integrals according to Katugampola

[19]. This new fractional derivatives interpolates the Hilfer, Hilfer-Hadamard, Riemann-

Liouville, Hadamard, Caputo, Caputo-Hadamard, generalized and generalized Caputo-

type fractional derivatives, as well as the Weyl and Liouville fractional derivatives for

particular cases of integration extremes.

This chapter is organized as follows: In Section 2.1, we provide some definitions and lem-

mas that will be utilized in subsequent sections. In Section 2.2, we present our problem

and estabish a key lemma that demonstrates the equivalence between the inital value

problem and the integral equation. In Section 2.3, we present and prove the existence

and uniqueness theorem for the initial value problem presented in the previous section by

using Schauder’s fixed point and Banach’s contraction principle.

12
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2.1 Preliminary

In this section, we will conduct a rigorous examination of fractional calculus within

the Hilfer-Katugampola framework, accompanied by a comprehensive and detailed anal-

ysis designed to facilate a deeper comprehension and appreciation of the foundational

principles underlying this concept.

2.1.1 Function spaces

Definition 2.1 [22, 30, 31] Let I = [a, b] (0 < a < b < ∞) be a finite interval on the

half-axis R+. We denote by C[a, b] the Banach space of continuous functions g from I to

R with the norm

‖g‖C = max
t∈I
|g(t)|.

1) The weighted space Cγ,ρ[a, b] of functions g on (a, b] is defined by

Cγ,ρ[a, b] =

{
g : (a, b]→ R :

(
tρ − aρ

ρ

)γ
g(t) ∈ C(I)

}
,

where 0 ≤ γ < 1, ρ > 0 equipped with the norm

‖g‖Cγ,ρ =

∥∥∥∥(tρ − aρρ

)γ
g(t)

∥∥∥∥
C

= max
t∈I

∣∣∣∣(tρ − aρρ

)γ
g(t)

∣∣∣∣ .
We have C0,ρ[a, b] = C[a, b].

2) Let δρ =
(
tρ d
dt

)
. For n ∈ N, we denote by Cn

δρ,γ
([a, b]) the Banach space of functions

g which are continuously differentiable with operetor δρ on [a, b] up to order (n− 1) and

the derivative δnρ g of order n on (a, b] such that δnρ g ∈ Cγ,ρ[a, b], this is

Cn
δρ,γ[a, b] =

{
g : (a, b]→ R : δkρ ∈ C(I), k = 0, 1 . . . , n− 1, δnη g ∈ Cγ,ρ(I)

}
,

where n ∈ N, with the norms

‖g‖Cnδρ,γ =
n−1∑
k=0

∥∥δkρg∥∥C +
∥∥δnρ g∥∥Cγ,ρ ,

and

‖g‖Cnδρ =
n∑
k=0

max
t∈I

∣∣δkρg(x)
∣∣ .

For n = 0, we have

C0
δρ,γ[a, b] = Cγ,ρ[a, b].
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2.1. Preliminary 14

2.1.2 Generalized Fractional Integrals and Derivatives

In order to generalize the Riemann-Liouville and Hadamard fractional integrals,

Katugampola [19] introduced the generalized fractional integral. Subsequently, the au-

thor defined the generalized fractional derivatives associated with the generalized integral

operators, constructed so that these differential operators extend the Riemann-Liouville

and Hadamard fractional derivatives [20].

Generalized Fractional Integrals

Definition 2.2 [19, 21] Let α, ρ ∈ R with α > 0 and ρ > 0. The generalized left-sided

fractional integral ρIαa+f(·) of order α is defined by

(ρIαa+f) (t) =
ρ1−α

Γ(α)

∫ t

a

(tρ − sρ)α−1 sρ−1f(s)ds, t > a. (2.1)

Similarly, the generalized right-sided fractional integral ρIαb−f(·) is defined by

(ρIαb−f) (t) =
ρ1−α

Γ(α)

∫ b

t

(tρ − sρ)α−1 sρ−1f(s)ds, t < b. (2.2)

Generalized Fractional Derivatives

Now, we introduce the generalized fractional derivatives corresponding respectively

to the fractional integrals (2.1) and (2.2).

Definition 2.3 [19, 21] Let α ∈ R, such that α /∈ N, α > 0, n = [α] + 1 and ρ > 0.

The generalized fractional derivatives ρDα
a+f(·) (left-sided) and ρDα

b−f(·) (right-sided)

corresponding to the generalized integrals (2.1) and (2.2) are defined for

0 ≤ a < t < b ≤ ∞, by :

(ρDαa+f) (t) =
ρ1−n+α

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

a

(tρ − sρ)n−α−1 sρ−1f(s) ds, (2.3)

and

(ρDαb−f) (t) =
ρ1−n+α

Γ(n− α)

(
−t1−ρ d

dt

)n ∫ b

t

(tρ − sρ)n−α−1 sρ−1f(s) ds. (2.4)

2.1.3 Hilfer-Katugampola Fractional Derivative

In this subsection, we present the definition of the Hilfer-Katugampola fractional

derivatives introduced by Oliveira [30, 31].
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Definition 2.4 [30, 31] Let order α and type β satisfy 0 < α < 1 and 0 ≤ β ≤ 1, the

Hilfer-Katugampola fractional derivative (left-sided/right-sided), with respect to t, with

ρ > 0 of a function f ∈ C1−γ,ρ(I) is defined by(
ρDα,βa± f

)
(t) =

(
±ρIβ(1−α)a±

(
tρ−1

d

dt

)
ρI(1−β)(1−α)a± f

)
(t)

=
(
±ρIβ(1−α)a± δρ

ρI(1−β)(1−α)a± f
)

(t),

(2.5)

where I is the generalized fractional integral given in Definition 2.2.

We present and discuss our results involving the Hilfer-Katugampola fractional

derivative using only the left-sided operator ρDα,βa+ .

Properties 1 [19, 30, 31]

P1) The operator ρDα,βa+ can be written as

ρDα,βa+ = ρIβ(1−α)a+ δρ
ρI1−γa+ = ρIβ(1−α)a+

ρDγa+ , γ = α + β(1− α).

Proof. From Definition 2.2 of the generalized fractional integral, we have

(ρDα,βa+ f)(x) = ρIβ(1−α)a+

(
x1−ρ

d

dx

)[
ρ1−(1−β)(1−α)

Γ[(1− β)(1− α)]

∫ x

a

tρ−1

(xρ − tρ)1−(1−β)(1−α)
f(t)dt

]

=

[
ρIβ(1−α)a+

ρ1+α+β−αβ

Γ[(1− β)(1− α)− 1]

∫ x

a

tρ−1

(xρ − tρ)1+α+β−αβ
f(t)dt

]
(x)

= (ρIβ(1−α)a+
ρDγa+f)(x),

where operator D is the generalized fractional derivetive given in Definition 2.3.

This completes the proof.

P2) The fractional derivative ρDα,βa+ is an interpolator of the following fractional deriva-

tives : Hilfer (ρ → 1), Hilfer-Hadamard (ρ → 0), generalized fractional derivative

(β = 0), generalized Caputo-type (β = 1), Riemann-Liouville (β = 0, ρ → 1),

Hadamard (β = 0, ρ → 0), Caputo (β = 1, ρ → 1), Caputo-Hadamard (β = 1,

ρ→ 0), Liouville (β = 0, ρ→ 1, a = 0) and Weyl (β = 0, ρ→ 1, a = −∞).
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P3) We consider the following parameters α, β, γ, µ satisfying

γ = α + β(1− α), 0 ≤ α, β, γ < 1, 0 ≤ µ < 1.

Thus, we define the spaces

Cα,β
1−γ,µ[a, b] =

{
f ∈ C1−γ,ρ[a, b],

ρDα,βa+ f(·) ∈ Cµ,ρ[a, b]
}
,

and

Cγ
1−γ,ρ[a, b] =

{
f ∈ C1−γ,ρ[a, b],

ρDγa+f(·) ∈ C1−γ,ρ[a, b]
}
,

where Cµ,ρ[a, b] and C1−γ,ρ[a, b] are weighted spaces of continuous functions on (a, b]

defined in Definition 2.1 .

It is abvious that

Cγ
1−γ[a, b] ⊂ Cα,β

1−γ[a, b].

Lemma 2.1 [19, 35] Let α, β and ρ > 0. Then, for f ∈ Cγ
1−γ,ρ(a, b), we have(

ρIαa+ρI
β
a+f
)

(·) =
(
ρIα+βa+ f

)
(·),

(
ρDαa+ρI α̇a+f

)
(·) = f(·),

(
ρDαa+ρD

β
a+f
)

(·) =
(
ρDα+βa+ f

)
(·).

Lemma 2.2 [4] Let ρIαa+ and ρDαa+, respectively according to equations (2.1) and (2.3).

Then,

ρIαa+
(
tρ − aρ

ρ

)β−1
(x) =

Γ(β)

Γ(α + β)

(
xρ − aρ

ρ

)α+β−1
, α ≥ 0, β > 0,

ρDαa+
(
tρ − aρ

ρ

)β−1
(x) = 0, 0 < α < 1.

Lemma 2.3 [30, 31] Let 0 < α < 1, 0 ≤ γ < 1. If f ∈ Cγ[a, b] and ρI1−αa+ f(·) ∈ C1
γ [a, b],

then

ρIαa+ρDαa+ (f) (x) = f(x)−
(
ρI1−αa+ f

)
(a)

Γ(α)

(
xρ − aρ

ρ

)α−1
,

for all x ∈ I = (a, b).

Lemma 2.4 [30, 31] Let 0 < a < b <∞, α > 0, 0 ≤ γ < 1 and f ∈ Cγ,ρ[a, b]. If α > γ,

then ρIαa+(f) is continuous on [a, b] and

(ρIαa+f) (a) = lim
t→a+

(ρIαa+) f(t) = 0.
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Proof. Since f ∈ Cγ,ρ[a, b], then

(
tρ − aρ

ρ

)γ
f(t) is continuous on [a,b], and

∣∣∣∣(tρ − aρρ

)γ
f(t)

∣∣∣∣ ≤M, t ∈ [a, b],

for some positive constant M. Consequently,

|(ρIαa+f)(t)| ≤M

[
ρIαa+

(
tρ − aρ

ρ

)−γ]
(t),

and by Lemma 2.2, we can write

|(ρIαa+f)(t)| ≤M
Γ(1− γ)

Γ(α− γ + 1)

(
tρ − aρ

ρ

)α−γ
.

As α > γ, the right-hand side of the last equation goes to zero when t→ a+.

The proof is finished.

Lemma 2.5 [30, 31] Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. If f ∈ Cγ
1−γ[a, b],

then
ρIγa+

ρDγa+f(·) = ρIαa+ρD
α,β
a+ f(·), (2.6)

and
ρDγa+

ρIαa+f(·) = ρDβ(1−α)a+ f(·). (2.7)

Proof. We first prove Equation (2.6), using Property P1, we can write

ρIγa+
ρDγa+f = ρIγa+

ρI−β(1−α)a+
ρDα,βa+ f = ρIα+β−αβa+

ρI−β+αβa+
ρDα,βa+ f = ρIαa+ρD

α,β
a+ f.

To prove Equation (2.7), we use Definition 2.4 to get

ρDγa+
ρIαa+f = δρ

ρI1−γa+
ρIαa+f = δρ

ρI1−β+αβa+ f = δρ
ρI1−β(1−α)a+ f = ρDβ(1−α)a+ f.

The proof is finished.

Lemma 2.6 [30, 31] Let f ∈ L(a, b). If ρDβ(1−α)a+ f exists on L(a, b), Then

ρDα,βa+
ρIαa+f(·) = ρIβ(1−α)ρa+ Dβ(1−α)a+ f(·).
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Proof. From Lemma 2.2, Definition 2.3 and Definitin 2.4, we get

ρDα,βa+
ρIαa+f = ρIβ(1−α)a+

ρDγa+
ρIαa+f

= ρIβ(1−α)a+ δρ
ρI(1−γ)a+

ρIαa+f

= ρIβ(1−α)a+ δρ
ρI1−β(1−α)a+ f

= ρIβ(1−α)a+
ρDβ(1−α)a+ f.

This completes the proof.

Lemma 2.7 [30, 31] Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β(1− α). If f ∈ C1−γ[a, b]

and ρI1−β(1−α)a+ f ∈ C1
1−γ[a, b], then ρDα,βρa+ I

α
a+f exists on (a, b] and

ρDα,βa+ ·
ρIαa+f(·) = f(·).

Proof. Using Lemma 2.3, Lemma 2.2 and Lemma 2.6, we obtain(
ρDα,βa+

ρIαa+f
)

(t) =
(
ρIβ(1−α)a+

ρDβ(1−α)a+ f
)

(t)

= f(t)−
(ρIβ(1−α)a+ f)(a)

Γ(α)

(
tρ − aρ

ρ

)β(1−α)−1

= f(t), t ∈ (a, b].

The proof is finished.
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2.2 Problem Statement

We cosider the following generalized system of fractional differential equations of the

Sturm-Liouville and Langevin involving the Hilfer-Katugampola fractional derivative with

initial value
ρDαi,βi

a+

[
pi(t)

ρD
α′i,β

′
i

a+ + ri(t)
]
ui(t) = fi (t, u1(t), u2(t)) t ∈ [a, T ], a > 0, i = 1, 2,

ui(a) = 0,

(2.8)

where, 0 < αi, α
′
i < 1 and 0 ≤ βi, β

′
i ≤ 1. ρDα,β is the Hilfer-Katugampola derivative of

order α, (0 < α < 1) and type β, (0 ≤ β ≤ 1).

fi : [a, T ]× R× R→ R are a continuous functions, pi ∈ C([a, T ],R\{0}) and

ri ∈ C([a, T ],R) for i = 1, 2.

In order to prove the main theorem of existence and uniqueness of the solution of

Problem (2.8), we present the following key lemma, which describes the corresponding

integral equation.

Lemma 2.8 [7] Let αi + βi(1− αi), where 0 < αi < 1 and 0 ≤ βi ≤ 1 if fi : J ×R2 → R
is a function such that

fi(·, u1(·), u2(·)) ∈ C1−γi,ρ[a, T ], ∀ui ∈ C1−γi,ρ[a, T ], i = 1, 2.

A function u = (u1, u2) with ui ∈ Cγi
1−γi,ρ[a, T ] is the solution of Problem (2.8) if and only

if ui satisfies the following integral equation

ui(t) = ρIα
′
i

a+

(
1

pi(t)
ρIαia+fi (t, u1(t), u2(t))

)
− ρIα

′
i

a+

(
ri(t)

pi(t)
ui(t)

)
. (2.9)

Proof. We start by showing the implication in this direction (⇒).

We apply ρIαia+ on both sides of Problem (2.8) and using Lemma 2.3 and Lemma 2.5,

we obtain

ρIαia+
ρDαi,βia+

[
pi(t)

ρDα
′
i,β
′
i

a+ + ri(t)
]
ui(t) = ρIαia+fi(t, u1(t), u2(t)),

ρIγia+
ρDγia+

[
pi(t)

ρDα
′
i,β
′
i

a+ + ri(t)
]
ui(t) = ρIαia+fi(t, u1(t), u2(t)),
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[
pi(t)

ρDα
′
i,β
′
i

a+ + ri(t)
]
ui(t)− ρI1−γia+

[
pi(a)ρDα

′
i,β
′
i

a+ + ri(a)
]
ui(a)

Γ(γi)

(
tρ − aρ

ρ

)γi−1

= ρIαia+fi(t, u1(t), u2(t)),

[
pi(t)

ρDα
′
i,β
′
i

a+ + ri(t)
]
ui(t) = ρIαia+fi(t, u1(t), u2(t)),

it follows that

ρDα
′
i,β
′
i

a+ ui(t) =
1

pi(t)

(
ρIαia+fi(t, u1(t), u2(t))

)
− ri(t)

pi(t)
ui(t). (2.10)

Next, we apply the integral ρIα
′
i

a+ on both sides of Equation (2.10), then we use

the Lemma 2.3 an Lemma 2.5, we obtain

ρIα
′
i

a+
ρDα

′
i,β
′
i

a+ ui(t) = ρIα
′
i

a+

[
1

pi(t)

(
ρIαia+fi(t, u1(t), u2(t))

)
− ri(t)

pi(t)
ui(t)

]
,

ρIγ
′
i

a+
ρDγ

′
i

a+ui(t) = ρIα
′
i

a+

[
1

pi(t)

(
ρIαia+fi(t, u1(t), u2(t))

)
− ri(t)

pi(t)
ui(t)

]
,

ui(t)− ρI1−γ
′
i

a+
ui(a)

Γ(γi)

(
tρ − aρ

ρ

)γ′i−1
= ρIα

′
i

a+

[
1

pi(t)

(
ρIαia+fi(t, u1(t), u2(t))

)
− ri(t)

pi(t)
ui(t)

]
,

ui(t) = ρIα
′
i

a+

(
1

pi(t)
ρIαia+fi(t, u1(t), u2(t))

)
− ρIα

′
i

a+

(
ri(t)

pi(t)
ui(t)

)
. (2.11)

Now, we show the implication in the opposite direction (⇐).

We apply ρDα
′
i,β
′
i

a+ on both sides of Equation (2.11) and by the Lemma 2.7, it follows that

ρDα
′
i,β
′
i

a+ ui(t) = ρDα
′
i,β
′
i

a+
ρIα

′
i

a+

(
1

pi(t)
ρIαia+fi(t, u1(t), u2(t))

)
− ρDα

′
i,β
′
i

a+
ρIα

′
i

a+

(
ri(t)

pi(t)
ui(t)

)
,

ρDα
′
i,β
′
i

a+ ui(t) =
1

pi(t)
ρIαia+fi(t, u1(t), u2(t))−

ri(t)

pi(t)
ui(t),
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pi(t)
ρDα

′
i,β
′
i

a+ ui(t) = ρIαia+fi(t, u1(t), u2(t))− ri(t)ui(t),

pi(t)
ρDα

′
i,β
′
i

a+ ui(t) + ri(t)ui(t) = ρIαia+fi(t, u1(t), u2(t)),

[
pi(t)

ρDα
′
i,β
′
i

a+ + ri(t)
]
ui(t) = ρIαia+fi(t, u1(t), u2(t)). (2.12)

Now, by applying the operator ρDαi,βia+ on both sides of Equation (2.12) and using the

Lemma 2.7, we get

ρDαi,βia+

[
pi(t)

ρDα
′
i,β
′
i

a+ + ri(t)
]
ui(t) = ρDαi,βia+

ρIαia+fi(t, u1(t), u2(t)),

ρDαi,βia+

[
pi(t)

ρDα
′
i,β
′
i

a+ + ri(t)
]
ui(t) = fi(t, u1(t), u2(t)).

By Equation (2.11), we have

ui(t) =

ρIα
′
i

a+

(
1

pi(t)
ρIαia+fi(t, u1(t), u2(t))

)
1 + ρIα

′
i

a+

(
ri(t)
pi(t)

) ,

and for t = a,

ui(a) =

ρIα
′
i

a+

(
1

pi(a)
ρIαia+fi(a, u1(a), u2(t))

)
1 + ρIα

′
i

a+

(
ri(a)
pi(a)

) .

Hence, by Lemma 2.4, we have ui(a) = 0. The proof is fulfilled.

2.3 Existence and uniqueness

For study existence and uniqueness of solution of the problem (2.8), we consider the

following hypotheses and notations.

In all the sequel, we consider the operator

A : C1−γ1,ρ(J)× C1−γ2,ρ(J)→ C1−γ1,ρ(J)× C1−γ2,ρ(J),
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(J = [a, T ]) defined by

Au = A(u1, u2) = (A1u1,A2u2)

with

|‖Au‖| = max{‖A1u1‖, ‖A2u2‖},

where

Aiui(t) = ρIα
′
i

a+

(
1

pi
ρIαia+fi

)
(t, u1(t), u2(t))− ρIα

′
i

a+

(
ri
pi
ui

)
(t). (2.13)

Notations We denote

p∗i = inf
t
|pi(t)| , r∗i = sup

t
|ri(t)| ,

and we assume that

Li = 2CiMi +Di < 1, i = 1, 2. (2.14)

with

Ci =

(
T ρ − aρ

ρ

)1−γi+αi+α′i 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

,

and

Di =

(
T ρ − aρ

ρ

)α′i r∗i
p∗i ρΓ(α′i + 1)

.

Hypotheses

(H1) For i = 1, 2, there exists a constant Mi > 0 such that :

|fi (t, u1, u2)−fi (t, v1, v2) | ≤Mi (‖u1 − v1‖+ ‖u2 − v2‖) , ∀ t ∈ [a, T ], ∀ ui, vi ∈ R i = 1, 2.

(H2) For all u = (u1, u2), there exists σi > 0 such that

|fi(t, u)| ≤ σi, ∀ t ∈ J, (i = 1, 2).
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2.3.1 Existence

Within this section, we prove the existence of the solution of Problem (2.8), which

is based on Shauder’s fixed point theorem.

Theorem 2.1 Assume that (H2) is satisfied. Then Problem (2.8) has at least one solu-

tion in C1−γ1,ρ × C1−γ2,ρ.

Proof. To demonstrate the existence of a solution, we reformulate Problem (2.8) as a

fixed point problem. Indeed, since Problem (2.8) is equivalent to the integral equation

(2.13), the fixed points of A are the solutions of the problem (2.8). Then, we will verify

the assumptions of Shauder’s fixed point theorem.

Consequently, the proof will be devided into several steps.

First Step

We prove that the operator A is continuous. For every bounded Ω ⊂ C1−γ1,ρ × C1−γ2,ρ

there exists ω > 0 such that

Ω = {u ∈ C1−γ1,ρ × C1−γ2,ρ : ‖u‖C1−γi,ρ
≤ ω},

where ω = max(ω1, ω2) and γ = max(γ1, γ2).

Let (un)n∈N ∈ Ω a sequence such that lim
n→∞

‖uni − ui‖C1−γi,ρ
= 0. Then for every t ∈ J we

have∣∣∣∣∣(Aiuni(t)−Aiui(t))
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣

≤
(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+(|fi (s, un1(s), un2(s))− fi(s, u1(s), u2(s))|)
)

+

(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
r∗i
p∗i

(|uni(s)− ui(s)|)
)

(t)

≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+(|fi (s, un1(s), un2(s))− fi(s, u1(s), u2(s))|)
)

+ ρIα
′
i

a+

(
r∗i
p∗i

(‖uni − ui)‖C1−γi,ρ

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi)Γ(α′i)

(T ρ − aρ)αi+α′i
ραi+α

′
i+2αiα′i

(|fi (s, un1(s), un2(s))− fi(s, u1(s), u2(s))|)
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+
r∗i

p∗iΓ(α′i)

(T ρ − aρ)α′i
ρα
′
i+1αi′

(
‖uni − ui‖C1−γi,ρ

)

≤
(
T ρ − aρ

ρ

)1+αi+α
′
i−γi 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

(|fi (s, un1(s), un2(s))− fi(s, u1(s), u2(s))|)

+
r∗i

p∗i ρΓ(α′i + 1)

(
T ρ − aρ

ρ

)α′i (
‖uni − ui‖C1−γi,ρ

)

Since f is continuous and lim
n→∞

‖uni − ui‖C1−γi,ρ
= 0. Then

|‖(Auni)(t)− (Aui)(t)‖|n→∞ → 0.

Consequently, A is continuous.

Second Step

We will show that A(Ω) ⊂ Ω. We choose ω a positive real number such that

ω ≥ max

(
C1σ1

1−D1

,
C2σ2

1−D2

)
.

By the assumption (H2), for all t ∈ J and for all u ∈ Ω, we have∣∣∣∣∣Aiui(t)
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣

≤

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

pi
ρIαia+fi(s, u1(s), u2(s))

)
(t)

∣∣∣∣∣
+

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
ri
pi
ui

)
(t)

∣∣∣∣∣
≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+ |fi(s, u1(s), u2(s))|
)

(t)

+

(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
r∗i
p∗i
|ui(s)|

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+(
1

p∗i

ρIαia+σi)(t) + ρIα
′
i

a+(
r∗i
p∗i
‖ui‖)(t)
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≤
(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi)Γ(α′i)

(T ρ − aρ)(αi+α′i)

ραi+α
′
i+2αiα′i

σi +
r∗i

p∗iΓ(α′i)

(T ρ − aρ)α′i
ρα
′
i+1α′i

‖ui‖

≤
(
T ρ − aρ

ρ

)1−γi+αi+α′i σi
p∗i ρ

2Γ(αi + 1)Γ(α′i + 1)
+

r∗i
p∗i ρΓ(α′i + 1)

(
T ρ − aρ

ρ

)α′i
ωi

≤ Ciσi +Di ‖ui‖

≤ Ciσi +Diωi.

We obtain |‖Au‖| ≤ ω, from which it follows that A(Ω) ⊂ Ω.

Third Step

We show that Au is uniformly bounded. For all u ∈ Ω, we have∣∣∣∣∣Aiui(t)
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣

≤

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+fi(s, u1(s), u2(s))
)

(t)

∣∣∣∣∣
+

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+
ri
pi
ui(s)(t)

∣∣∣∣∣
≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+ |fi(s, u1(s), u2(s))|
)

(t)

+ ρIα
′
i

a+

(
r∗i
p∗i
‖ui(s)‖

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi+αi+α′i 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

σi

+
r∗i

p∗i ρΓ(α′i + 1)

(
T ρ − aρ

ρ

)α′i
ωi

≤ (Ciσi +Diωi) .

Thus, |‖Au‖| ≤ max {C1σ1 +D1ω1, C2σ2 +D2ω2} . Then, Au is uniformly bounded.

Universiy 8 May 1945-Guelma A.Boufernana



2.3. Existence and uniqueness 26

Fourth Step

Finally, we show that Au is equicontinuous. Let u ∈ Ω and t1, t2 ∈ J with t1 < t2, we

have ∣∣∣∣∣(Aiui(t2)−Aiui(t1))
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣

≤
(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi + α′i)

∫ t1

a

((
tρ2 − sρ

ρ

)αi+α′i−1
−
(
tρ1 − sρ

ρ

)αi+α′i−1)
sρ−1

×|fi(s, u1(s), u2(s))|ds

+

(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi + α′i)

∫ t2

t1

((
tρ2 − sρ

ρ

)αi+α′i−1
sρ−1

)
|fi(s, u1(s), u2(s))|ds

+

(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
r∗i
p∗i
|ui(s)(t2)− ui(s)(t1)|

)
.

It follows that∣∣∣∣∣(Aiui(t2)−Aiui(t1))
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣

≤
(
T ρ − aρ

ρ

)1−γi σi
p∗iΓ(αi + α′i)

∫ t1

a

((
tρ2 − sρ

ρ

)αi+α′i−1
−
(
tρ1 − sρ

ρ

)αi+α′i−1)
sρ−1ds

+

(
T ρ − aρ

ρ

)1−γi σi
p∗iΓ(αi + α′i)

∫ t2

t1

((
tρ2 − sρ

ρ

)αi+α′i−1
sρ−1

)
ds

+ ρIα
′
i

a+

(
r∗i
p∗i
‖ui(s)‖ |(t2 − t1)|

)

≤
(
T ρ − aρ

ρ

)1−γi σi
p∗i ρΓ(αi + α′i + 1)

((
tρ2 − aρ

ρ

)αi+αi′
−
(
tρ1 − aρ

ρ

)αi+αi′)

+
r∗iω

p∗iΓ(α′i)

(∫ t2

a

(
tρ2 − sρ

ρ

)α′i−1
sρ−1ds−

∫ t1

a

(
tρ1 − sρ

ρ

)α′i−1
sρ−1ds

)
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≤
(
T ρ − aρ

ρ

)1−γi σi
p∗i ρΓ(αi + α′i + 1)

((
tρ2 − aρ

ρ

)αi+α′i
−
(
tρ1 − aρ

ρ

)αi+α′i)

+
r∗iω

ρp∗iΓ(α′i + 1)

(
tρ2 − t

ρ
1

ρ

)α′i
.

Consequently, we have

‖‖Au (t2)−Au (t1) ‖‖ → 0 as t1 → t2,

which implies that Au is equicontinuous.

Thus, by the Arzela-Ascoli theorem, Au is completely continuous, and by Shauder’s fixed

point theorem, the operator A indeed has a fixed point. The proof is finished.

2.3.2 Uniqueness

Theorem 2.2 Suppose that assumption (H1) and (2.14) are satisfied, the problem (2.8)

has a unique solution in C1−γ1,ρ × C1−γ2,ρ.

Proof. For all ui, vi ∈ C1−γi,ρ(J) and for t ∈ J , we have∣∣∣∣∣(Aiui(t)−Aivi(t))
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣

≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+|fi (s, u1(s), u2(s))− fi (s, v1(s), v2(s)) |
)

(t)

+

(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
r∗i
p∗i
|ui(s)− vi(s)|

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+(Mi(‖u1 − v1‖+ ‖u2 − v2‖))
)

(t)

+ ρIα
′
i

a+

(
r∗i
p∗i
‖ui − vi‖

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi)Γ(α′i)

(T ρ − aρ)αi+α′i
αiα′iρ

αi+α′i+2
(Mi(‖u1 − v1‖+ ‖u2 − v2‖))

+
r∗i

p∗iΓ(α′i)

(T ρ − aρ)α′i
α′iρ

α′i+1
(‖ui − vi‖)
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≤
(
T ρ − aρ

ρ

)1−γi+αi+α′i 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

(Mi(‖u1 − v1‖+ ‖u2 − v2‖))

+
r∗i

p∗i ρΓ(α′i + 1)

(
T ρ − aρ

ρ

)α′i
(‖ui − vi‖)

≤ (2MiCi +Di)‖u− v‖.

Hence, |‖Au − Av‖| ≤ L‖u − v‖ where L = max {L1, L2}. Since L < 1, the operator A
is a contraction. Thus, according to Banach’s contraction principle, Problem (2.8) has a

unique solution. This completes the proof.
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Chapter 3
Stability in the sense of Ulam-Hyers and

Ulam-Hyers-Rassias

Stability analysis has got too much importance on research side. it is very impor-

tant from numerical and optimization point of view in investigating various problems of

physics, mathematical biology, biophysics, economics, where the actual solution is almost

difficult. In literature, we come across different approaches towards stability analysis.

However, in this paper we discuss the Ulam-Hyers (UH) stability approach which is com-

paratively the most simple and easy way of investigation the stability of systems.

Its history goes back to the middle of the 19th century. In 1940, Ulam gave a wide rang-

ing talk before the mathematics club of the Wisconsin university in which he discussed

several important unsolved problems [37] and he raised the question concerning the ho-

momorphism stability ”Under what conditions does there exist an additive mapping near

an approximately additive mapping?”. In the next year, Hyers positively answered the

question of Ulam’s partially [15]. Moreover, a generalized was obtained by Rassias for

the Hyers results [33]. And since 1940, the mathematics authors have been interested to

studied the Ulam-type stability problems [5, 28, 34]. In last few decades, Jung extended

the previously mentioned stability results, see [18]. Obloza [29] established the UH sta-

bility of linear differential equations.

The Ulam stability analysis is very useful in a lot of applications, such as optimization,

numerical analysis, etc..., for more detailed study of Ulam-type stability with different

approaches see [16, 39]. Some recent work on stability of differential equations (or their

solutions) with variety of initial or boundary conditions are reported in [1, 6, 8, 11, 38].

In this chapter, we aim to study the stability of solution to problem(2.8) based on Ulam-

Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized Ulam-Hyers-Rassias

29
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principles and define its fundamental criteria.

3.1 Stability analysis

In this section, we describe the various stability definitions that are essential to

understanding our problem.

3.1.1 Ulam-Hyers stability

Let Φi defined in C1−γ1,ρ(J)× C1−γ2,ρ(J) such that

Φi(u1, u2)(t) =ρ Dαi,βi
a+

[
pi(t)

ρD
α′i,β

′
i

a+ + ri(t)
]
ui(t)− fi (t, u1(t), u2(t)) , t ∈ [a, T ], i = 1, 2.

Definition 3.1 The problem (2.8) is Ulam-Hyers (UH) stable if there exists a real number

ζ > 0 such that for each pair (ε1, ε2) ∈ R+ × R+ and for each solution

u = (u1, u2) ∈ C1−γi,ρ(J)× C1−γi,ρ(J) satisfying the inequality
|Φi(u1, u2)(t)| ≤ εi t ∈ [a, T ], i = 1, 2,

ui(a) = 0,

(3.1)

there exists a unique solution v = (v1, v2) ∈ C1−γ1,ρ(J)×C1−γ2,ρ(J) of (2.8) satisfying the

inequality

‖u− v‖C1−γ,ρ ≤ ζε,

where ε = max(ε1, ε2).

3.1.2 Generalized Ulam-Hyers stability

Definition 3.2 The problem (2.8) is generalized Ulam-Hyers (GUH) stable if there exists

ξ ∈ C(R+,R+) with ξ(0) = 0 such that for each pair (ε1, ε2) ∈ R+ × R+ and for each

solution u = (u1, u2) ∈ C1−γi,ρ(J) × C1−γi,ρ(J) satisfying (3.1), there exists a unique

solution

v = (v1, v2) ∈ C1−γ1,ρ(J)× C1−γ2,ρ(J) of (2.8) satisfying the inequality

‖u− v‖C1−γ,ρ ≤ ξ(ε).
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3.1.3 Ulam-Hyers-Rassias stability

Definition 3.3 The problem (2.8) is Ulam-Hyers-Rassias (UHR) stable with respect to

(ψ1, ψ2) ∈ C([a, T ],R+) × C([a, T ],R+) if there exists a real number µ > 0 such that for

each pair (ε1, ε2) ∈ R+ × R+ and for each solution u = (u1, u2) ∈ C1−γ1,ρ(J)× C1−γ2,ρ(J)

satisfying the inequality
|Φi(u1, u2)(t)| ≤ εiψi(t) t ∈ [a, T ], i = 1, 2,

ui(a) = 0,

(3.2)

there exists a unique solution v = (v1, v2) ∈ C1−γ1,ρ(J)×C1−γ2,ρ(J) of (2.8) satisfying the

inequality

‖u− v‖C1−γ,ρ ≤ µεψ(t),

where ε = max(ε1, ε2).

3.1.4 Generalized Ulam-Hyers-Rassias stability

Definition 3.4 The problem (2.8) is generalized Ulam-Hyers-Rassias (GUHR) stable

with respect to (ψ1, ψ2) ∈ C([a, T ],R+)×C([a, T ],R+) if there exists a real number µ > 0

such that for each solution u = (u1, u2) ∈ C1−γ1,ρ(J) × C1−γ2,ρ(J) of (3.2), there exists a

unique solution v = (v1, v2) ∈ C1−γ1,ρ(J)× C1−γ2,ρ(J) of (2.8) satisfying the inequality

‖u− v‖C1−γ,ρ ≤ µψ(t).

Remark 3.1 A function u = (u1, u2) ∈ C1−γi,ρ×C1−γi,ρ is a solution of (3.1) if and only

if there exists a function gi ∈ C([a, T ],R) such that

1) |gi(t)| ≤ εi, t ∈ [a, T ], i = 1, 2.

2) ρDαi,βi
a+

[
pi(t)

ρD
α′i,β

′
i

a+ + ri(t)
]
ui(t) = fi (t, u1(t), u2(t)) + gi(t), t ∈ [a, T ], i = 1, 2.

Remark 3.2 A function u = (u1, u2) ∈ C1−γi,ρ×C1−γi,ρ is a solution of (3.2) if and only

if there exists a function gi ∈ C([a, T ],R) such that

1) |gi(t)| ≤ εiψi(t), t ∈ [a, T ], i = 1, 2.

2) ρDαi,βi
a+

[
pi(t)

ρD
α′i,β

′
i

a+ + ri(t)
]
ui(t) = fi (t, u1, u2(t)) + gi(t), t ∈ [a, T ], i = 1, 2.
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3.2 Stability results

Theorem 3.1 Assume that hypotheses (H1) and condition (2.14) are satisfied. Then,

solution of Problem (2.8) is stable in the sense of Ulam-Hyers (UH) and generalized

Ulam-Hyers (GUH).

Proof. Let εi ∈ R+, i = 1, 2, and since we have assumed that u = (u1, u2) ∈ C1−γ1,ρ(J)×
C1−γ2,ρ(J) is a solution of (3.1). By Remark 3.1, there exists a function gi ∈ C([a, T ],R)

such that |gi(t)| ≤ εi, t ∈ [a, T ], i = 1, 2, and satisfying the problem
ρDαi,βi

a+

[
pi(t)

ρD
α′i,β

′
i

a+ + ri(t)
]
ui(t) = fi (t, u1(t), u2(t)) + gi(t), t ∈ [a, T ], i = 1, 2,

ui(a) = 0,

(3.3)

Using Lemma 2.8, the problem (3.3) has a solution given as

ui(t) = ρIα
′
i

a+

(
1

pi(t)
ρIαia+ [fi (t, u1(t), u2(t)) + gi(t)]

)
− ρIα

′
i

a+

(
ri(t)

pi(t)
ui(t)

)
.

Theorem 2.2 ensures the existence of a unique solution v = (v1, v2) ∈ C1−γ1,ρ(J) ×
C1−γ2,ρ(J) of Problem (2.8) and satisfies the integral equation

vi(t) = ρIα
′
i

a+

(
1

pi(t)
ρIαia+fi (t, v1(t), v2(t))

)
− ρIα

′
i

a+

(
ri(t)

pi(t)
vi(t)

)
.

On the other hand, for any i = 1, 2, t ∈ [a, T ], we establish∣∣∣∣∣(ui(t)− vi(t))
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣

≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+|fi (s, u1(s), u2(s))− fi (s, v1(s), v2(s)) |
)

(t)

+

(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+ |gi(s)|
)

(t)

+

(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
r∗i
p∗i
|ui(s)− vi(s)|

)
(t)
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≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+(Mi(‖u1 − v1‖+ ‖u2 − v2‖))
)

(t)

+

(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+εi
)

(t)

+ ρIα
′
i

a+

(
r∗i
p∗i
‖ui − vi‖

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi)Γ(α′i)

(T ρ − aρ)αi+α′i
αiα′iρ

αi+α′i+2
(Mi(‖u1 − v1‖+ ‖u2 − v2‖))

+

(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi)Γ(α′i)

(T ρ − aρ)αi+α′i
αiα′iρ

αi+α′i+2
εi

+
r∗i

p∗iΓ(α′i)

(T ρ − aρ)α′i
α′iρ

α′i+1
(‖ui − vi‖)

≤
(
T ρ − aρ

ρ

)1−γi+αi+α′i 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

(Mi(‖u1 − v1‖+ ‖u2 − v2‖)

+

(
T ρ − aρ

ρ

)1−γi+αi+α′i 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

εi

+
r∗i

p∗i ρΓ(α′i + 1)

(
T ρ − aρ

ρ

)α′i
(‖ui − vi‖)

≤ CiMi(‖u1 − v1‖+ ‖u2 − v2‖) + Ciεi +Di(‖ui(s)− vi‖)
≤ CiMi2‖u− v‖+ Ciεi +Di‖u− v‖

≤ (2CiMi +Di)‖u− v‖+ Ciεi

≤ Li‖u− v‖+ Ciεi.

By condition (2.14), we deduce that

‖u− v‖C1−γ,ρ ≤
C

1− L
ε

with C = max(C1, C2) and ε = max(ε1, ε2). This prove the existence of positive real

number ζ = C
1−L , so that by Definition 3.1, the solution of Problem (2.8) is Ulam-Hyers

(UH) stable.
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Let ξ : R+ −→ R+ be a continuous function such that

ξ(ε) = ζε,

where ξ(0) = 0. According to the above, we can write

‖u− v‖C1−γ,ρ ≤ ξ(ε) =
C

1− L
ε.

Hence, by Definition 3.2, the solution of Problem (2.8) is generalized Ulam-Hyers (GUH)

stable. This concludes the proof.

Theorem 3.2 Assume that hypotheses (H1) and condition (2.14) are satisfied and the

following hypotheses hold:

(H3) There exists an increasing function ψi ∈ C([a, T ],R+) and there exists ηi > 0 such

that for any t ∈ [a, T ]
ρIα

′
i+αi

a+ ψi(t) ≤ ηiψi(t), i = 1, 2.

Then, Problem (2.8) is Ulam-Hyers-Rassias(UHR) stable and consequently generalized

Ulam-Hyers-Rassias(GUHR) stable.

Proof. Let εi > 0, i = 1, 2, and since we have assumed that u ∈ C1−γ1,ρ(J)× C1−γ2,ρ(J)

is solution of (3.2). Hence by Remark 3.2, there exists a function gi ∈ C([a, T ],R) such

that |gi(t)| ≤ εiψi(t), t ∈ [a, T ], i = 1, 2, and satisfying the problem
ρDαi,βi

a+

[
pi(t)

ρD
α′i,β

′
i

a+ + ri(t)
]
ui(t) = fi (t, u1(t), u2(t)) + gi(t), t ∈ [a, T ], a > 0, i = 1, 2,

ui(a) = 0,

(3.4)

By Lemma 2.8, the solution to Problem (3.4) is given by

ui(t) = ρIα
′
i

a+

(
1

pi(t)
ρIαia+ [fi (t, u1(t), u2(t)) + gi(t)]

)
− ρIα

′
i

a+

(
ri(t)

pi(t)
ui(t)

)
, i = 1, 2.

According to Theorem 2.2, Problem (2.8) has a unique solution v = (v1, v2) ∈ C1−γ1,ρ(J)×
C1−γ2,ρ(J) that satisfies the integral equation

vi(t) = ρIα
′
i

a+

(
1

pi(t)
ρIαia+fi (t, v1(t), v2(t))

)
− ρIα

′
i

a+

(
ri(t)

pi(t)
vi(t)

)
.

Therefore, for any t ∈ [a, T ], we have∣∣∣∣∣(ui(t)− vi(t))
(
tρ − aρ

ρ

)1−γi
∣∣∣∣∣
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≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+|fi (s, u1(s), u2(s))− fi (s, v1(s), v2(s)) |
)

(t)

+

(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+ |gi(s)|
)

(t)

+

(
tρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
r∗i
p∗i
|ui(s)− vi(s)|

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+(Mi(‖u1 − v1‖+ ‖u2 − v2‖))
)

(t)

+

(
T ρ − aρ

ρ

)1−γi
ρIα

′
i

a+

(
1

p∗i

ρIαia+εiψi(s)
)

(t) + ρIα
′
i

a+

(
r∗i
p∗i
‖ui − vi‖

)
(t)

≤
(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi)Γ(α′i)

(T ρ − aρ)αi+α′i
αiα′iρ

αi+α′i+2
(Mi(‖u1 − v1‖+ ‖u2 − v2‖))

+

(
T ρ − aρ

ρ

)1−γi 1

p∗iΓ(αi)Γ(α′i)

(T ρ − aρ)αi+α′i
αiα′iρ

αi+α′i+2
εiηiψi(t)

+
r∗i

p∗iΓ(α′i)

(T ρ − aρ)α′i
α′iρ

α′i+1
(‖ui − vi‖)

≤
(
T ρ − aρ

ρ

)1−γi+αi+α′i 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

(Mi(‖u1 − v1‖+ ‖u2 − v2‖)

+

(
T ρ − aρ

ρ

)1−γi+αi+α′i 1

p∗i ρ
2Γ(αi + 1)Γ(α′i + 1)

εiηiψi(t)

+
r∗i

p∗i ρΓ(α′i + 1)

(
T ρ − aρ

ρ

)α′i
(‖ui − vi‖)

≤ CiMi(‖u1 − v1‖+ ‖u2 − v2‖) + Ciεiηiψi(t) +Di(‖ui − vi‖)

≤ 2CiMi‖u− v‖+ Ciεiηψi(t) +Di‖u− v‖

≤ (2CiMi +Di)‖u− v‖+ Ciεiηiψi(t)

≤ Li‖u− v‖+ Ciεiηiψi(t).
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By condition (2.14), we deduce that

‖u− v‖C1−γ,ρ ≤
Cη

1− L
εψ(t).

Where ε = max(ε1, ε2) and C = max(C1, C2). This demonstrates the existence of positive

real number

µ =
Cη

1− L
,

with η = max(η1, η2), ψ(t) = max
t∈[a,T ]

(ψ1(t), ψ2(t)). Consequently, as by Definition 3.3, the

solution of Problem (2.8) is Ulam-Hyers-Rassias (UHR) stable.

Furthermore, letting ε = 1, the problem (2.8) is generalized Ulam-Hyers-Rassias (GUHR)

stable. This completes the proof.
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3.3 Numerical example

We consider the following fractionnal differential problem

0.3D0.4,0.5
[
100
t

0.3
D0.3,0.4 + 0.01t

]
u1(t) = t

8
(cos|u1| − cos|u2|) t ∈ [

π

3
,
5π

6
]

0.3D0.3,0.6
[
200
t

0.3
D0.6,0.3 + 0.1t

]
u2(t) = t

15
(sin|u1| − sin|u2|)

u1(
π

3
) = u2(

π

3
) = 0,

(3.5)

with

(α1 = 0.4, α′1 = 0.3, α2 = 0.3, α′2 = 0.6) ∈ (0, 1),

(β1 = 0.5, β′1 = 0.4, β2 = 0.6, β′2 = 0.3) ∈ [0, 1],

(γ1 = 0.7, γ′1 = 0.5, γ2 = 0.9, γ′2 = 0.6) ∈ [0, 1).

and

f1(t, u1, u2) =
t

8
(cos|u1| − cos|u2|)

f2(t, u1, u2) =
t

15
(sin|u1| − sin|u2|)

Since

(
t0.3 − (π

3
)0.3

0.3

)0.3

f1(t, u1, u2) ∈ C([
π

3
,
5π

6
]), we have f1 ∈ C0.3,0.3([

π

3
,
5π

6
]),

and since

(
t0.3 − (π

3
)0.3

0.3

)0.1

f1(t, u1, u2) ∈ C([
π

3
,
5π

6
]), we conclude that f2 ∈ C0.1,0.3([

π

3
,
5π

6
]).

By using all the data provided in our problem (3.5), we obtain

|f1(t, u1, u2)− f1(t, v1, v2)| ≤
5π

48
(‖u1 − u2‖+ ‖v1 − v2‖),

|f2(t, u1, u2)− f2(t, v1, v2)| ≤
π

18
(‖u1 − u2‖+ ‖v1 − v2‖),

|f1(t, u1, u2)| ≤
5π

24
,

|f2(t, u1, u2)| ≤
π

9
,
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for all t ∈ [
π

3
,
5π

6
]. Consequently, hypoyheses (H1) and (H2) are satisfied.

with 
p1(

π

3
) = 100(

3

π
) =

300

π
= 95.492965,

p1(
5π

6
) = 100(

6

5π
) =

600

5π
= 38.197186,

where p∗1 = inf

{
p1(

π

3
), p1(

5π

6
)

}
= 38.197186.


p2(

π

3
) = 200(

3

π
) =

600

π
= 190.985931,

p2(
5π

6
) = 200(

6

5π
) =

1200

5π
= 76.394372,

where p∗2 = inf

{
p2(

π

3
), p2(

5π

6
)

}
= 76.394372.

Also, 
r1(

π

3
) = 0.01(

π

3
) = 0.010471,

r1(
5π

6
) = 0.01(

5π

6
) = 0.026179,

where r∗1 = sup

{
r1(

π

3
), r1(

5π

6
)

}
= 0.026179.


r2(

π

3
) = 0.1(

π

3
) = 0.104719,

r2(
5π

6
) = 0.1(

5π

6
) = 0.261799,

where r∗2 = sup

{
r2(

π

3
), r2(

5π

6
)

}
= 0.261799.

Since 
M1 =

5π

48

M2 =
π

18
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

C1 =

(
T ρ − aρ

ρ

)1−γ1+α1+α′1 1

p∗1ρ
2Γ(α1 + 1)Γ(α′1 + 1)

= (1.069299)1
1

38.197186× (0.3)2 × 0.4× 2.218× 0.3× 2.991

=
1.069299

2.736737
= 0.390720,

C2 =

(
T ρ − aρ

ρ

)1−γ2+α2+α′2 1

p∗2ρ
2Γ(α2 + 1)Γ(α′2 + 1)

= (1.069299)1
1

76.394372× (0.3)2 × 0.3× 2.991× 0.6× 1.489

=
1.069299

5.511724
= 0.194004,

and

D1 =

(
T ρ − aρ

ρ

)α′1 r∗1
p∗1ρΓ(α′1 + 1)

= (1.069299)0.3
0.026179

38.197186× 0.3× 0.3× 2.991

= (1.069299)0.3
0.026179

10.285738
= 0.002597,

D2 =

(
T ρ − aρ

ρ

)α′2 r∗2
p∗2ρΓ(α′2 + 1)

= (1.069299)0.6
0.261799

76.394372× 0.3× 0.6× 1.489

= (1.069299)0.6
0.261799

20.475219
= 0.013310,

we obtain
L1 = 2C1M1 +D1 = 2(0.390720)

5π

48
+ 0.002597 = 0.258322 < 1,

L2 = 2C2M2 +D2 = 2(0.194004)
π

18
+ 0.013310 = 0.081030 < 1.

Therefore, condition (2.14) is verified. Since the assumption (H1) of Theorem 2.2 is satis-

fied, we deduce that Problem (3.5) has a unique solution in C0.3,0.3([
π

3
,
5π

6
])×C0.1,0.3([

π

3
,
5π

6
]).
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Moreover, since the assumption (H1) and condition (2.14) of Theorem 3.1 are satisfied,

this confirms that the solution is stable in the sense of Ulam-Hyers (UH) and generalized

Ulam-Hyers (GUH).

Now, let us define the following two increasing functions on the interval [
π

3
,
5π

6
] :

ψ1(t) = t2, ψ2(t) = et.

For the first function ψ1(t), we have

I(t) =

∫ t

a

(tρ − sρ)α−1sρ−1s2ds =
tρα+2

ρ

∫ 1

(a
t
)ρ

(1− u)α−1u
ρ+2
ρ du.

by the following change of variable

u =
sρ

tρ
=⇒ s = tu

1
ρ =⇒ ds = t(

1

ρ
)u

1
ρ
−1du.

Let us note that the integral is a Beta-type function such that

βx(p, q) =

∫ x

0

tp−1(1− t)q−1dt.

An upper bound of the integral which denoted by J(t)

J(t) =

∫ 1

(a
t
)ρ

(1− u)α−1u
ρ+2
ρ du

≤
∫ 1

0

(1− u)α−1u
ρ+2
ρ du

≤ β

(
α,
ρ+ 2

ρ

)
.

On a bounded interval [a, T ], we have

I(t) ≤ 1

ρ
T ραt2β

(
α,
ρ+ 2

ρ

)
≤ Ct2,

with

C = β

(
α,
ρ+ 2

ρ

)
1

ρ
T ρα,

where

β

(
α,
ρ+ 2

ρ

)
=

Γ(α)Γ(ρ+2
ρ

)

Γ(α + ρ+2
ρ

)
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Substituting the values α = α1 + α′1 = 0.7, ρ = 0.3, and T =
5π

6
, we get

C ' 1.2901

Then, for t ∈ [
π

3
,
5π

6
], we have

I(t) ≤ 1.2901t2, ψ1(t) = t2.

Since our integral is given by

ρIα1+α′1
a+ ψ1(t) =

0.30.3

Γ(0.7)
I(t).

Then, we obtain
ρIα1+α1′

a+ ψ1(t) ≤ η1ψ1(t).

with η1 = 0.6926.

Now, we move on to the second function ψ2(t), we have

J(t) = ρIα2+α′2
a+ ψ2(t) = C0

∫ t

a

(tρ − aρ)α−1sρ−1esds,

such that

C0 =
ρ1−(α2+α′2)

Γ(α2 + α′2)
.

For s ∈ [a, t], as s ≤ t, we have es ≤ et then

J(t) ≤ C0e
t

∫ t

a

(tρ − aρ)α−1sρ−1ds.

Let us set

K(t) =

∫ t

a

(tρ − aρ)α−1sρ−1ds.

We evaluate the integral K(t) using the same change of variable as before and we obtain

K(t) =
tρα

ρ

∫ 1

aρ
tρ

(1− u)α−1du.

Let us make a second change of variable

x = 1− u =⇒ dx = −du,
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we get

K(t) =
tρα

ρα

(
1− aρ

tρ

)α
.

Hence,

J(t) ≤ C0e
t t
ρα

ρα

(
1− aρ

tρ

)α
, with

(
1− aρ

tρ

)α
≤ 1.

It follows that

J(t) ≤ C0

ρα
T ραet.

Substituting the values α = α2 + α′2 = 0.9, ρ = 0.3, T =
5π

6
, and C0 =

0.30.1

Γ(0.9)
, we obtain

J(t) ≤ 3.9845et.

However, J(t) = ρIα2+α′2
a+ ψ2(t), this yields

ρIα2+α′2
a+ ψ2(t) ≤ η2ψ2(t), with η2 = 3.9845.

So, hypotheses (H3) is satisfied.

Consequently, the hypotheses of Theorem 3.2 are satisfied, which ensures the stabil-

ity of solution in both Ulam-Hyers-Rassias (UHR) and generalized Ulam-Hyers-Rassias

(GUHR).
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Conclusion

This research makes a significant contribution, mainly covering the following aspects:

New extension to the study of Sturm-Liouville and Langevin fractional differential equa-

tions involving the Hilfer-Katugampola fractional derivative. By means of rigorous anal-

ysis, we have successfully derived an integral representation of our problem. This has

facilated the effective reformulation of the problem as a fixed point theorem. The exis-

tence of a solution to our problem (see (2.8)) was demonstrated via Schauder fixed point

theorem, while uniqueness was ensured by imposing an additional constraint using Ba-

nach contraction principle.

Furthermore, under the same conditions ensuring the existence and uniqueness of the

solution, we are able to analyze and establish its stability in the sense of Ulam-Hyers

and generalized Ulam-Hyers. Moreover, by imposing only one additional condition, we

extended the stabiity results to the senses of Ulam-Hyers-Rassias and generalized Ulam-

Hyers-Rassias.

Finally, a numerical example was introduced to substantiate and confirm the theoretical

derived results.
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