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Abstract

Fractional delay differential equations constitute a powerful mathematical framework
for modeling complex dynamical phenomena exhibiting memory and delay effects. In
this study, we investigate a class of fractional delay differential equations incorporating
Caputo and Riemann-Liouville fractional derivatives with a delay term. Unlike previous
approaches, we establish the existence and uniqueness of the analytical solution under
relaxed Lipschitz conditions on the nonlinear terms, without requiring contraction as-
sumptions. Utilizing Picard iteration techniques, we demonstrate convergence of the
numerical method under these Lipschitz conditions, thereby broadening the applicability
of our model to a wider range of real-world scenarios. Additionally, numerical tests are
conducted to validate the effectiveness and accuracy of the proposed method, further
highlighting its utility in practical applications. Our findings offer new insights into the
modeling and analysis of complex dynamical systems, with implications for various scien-
tific and engineering disciplines.

Keywords: Fractional differential equation, delay term, Picard method, numerical integra-

tion, Lipschitz conditions.

Mathematics Subject Classification: 34A08, 34K28, 65L20.



Résumé

L’objectif de cette thèse est d’étudier une classe d’équations différentielles fractionnaires à
retard, intégrant les dérivées de Caputo et de Riemann-Liouville avec un terme de mémoire.
Ces équations permettent de modéliser des phénomènes dynamiques complexes où les ef-
fets de mémoire et de délai jouent un rôle crucial. Contrairement aux approches classiques,
nous établissons l’existence et l’unicité de la solution analytique sous des conditions de
Lipschitz assouplies, sans recourir à l’hypothèse de contraction. En appliquant l’itération
de Picard, nous démontrons la convergence de la méthode numérique dans ce cadre. Des
simulations numériques viennent appuyer la validité et l’efficacité de l’approche proposée,
confirmant son intérêt pour de nombreuses applications scientifiques et techniques.

Mots clés : équation différentielle fractionnaire, terme de retard, méthode de Picard,

intégration numérique, conditions de Lipschitz.

Classification des sujets mathématiques :34A08, 34K28, 65L20.



Notations

R: Set of real numbers.

C: Set of complex numbers.

N: Set of naturel numbers.

C0[a, b]: The Banach space of continuous functions.

C1[a, b]: The Banach space of continuously differentiable functions.

L1[a, b]: The Lebesgue space of integrable functions.

Lp[a, b]: The Lebesgue space of p-integrable functions.

ACn[a, b]: The space of n-times absolutely continuous functions.

Iα: The Riemann-Liouville fractional integral of order α.

Dα: The Riemann-Liouville fractional derivative.

CDα: The Caputo fractional derivative.

Iα
1 : The Hadamard fractional integral.

Dα
1 : The Caputo-Hadamard fractional derivative.
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Introduction

Fractional differential equations (FDEs) have gained increasing attention in recent
decades due to their ability to accurately model complex systems exhibiting memory
and hereditary properties. Among various types of fractional derivatives, the Caputo-
Hadamard derivative stands out for combining the advantages of the Caputo derivative’s
treatment of initial conditions with the logarithmic kernel structure of the Hadamard
derivative, making it suitable for processes evolving over a multiplicative time scale.
Pantograph differential equations are characterized by functional arguments of the form
y(qt) with 0 < q < 1, introduce a proportional delay component that reflects systems where
the present state depends not only on current values but also on values at compressed
time scales. These equations are relevant in diverse fields such as control theory, biology,
and mathematical finance, where scaling and time-delay effects are intrinsic to the system
dynamics.
The synthesis of Pantograph-type delays with the Caputo-Hadamard fractional derivative
leads to a novel class of equations known as Pantograph Caputo-Hadamard Fractional
Differential Equations. These equations provide a powerful modeling framework for
systems that simultaneously exhibit scaling delays and fractional-order memory effects.
Physical Description: In electric trains, the Pantograph is a mechanical arm that maintains
continuous contact with the overhead power line (catenary). As the train moves at high
speeds, the height of the overhead line changes due to stretching, shrinking, or oscillations.
This requires the Pantograph to react quickly and keep the electrical connection constant.

Figure 1: A typical Pantograph mechanism used in electric locomotives.
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Figure 2: Pantograph-Catenary System Schematic.

Mathematical Model (Derived from a Mechanical System): Assume the Pantograph’s
head moves vertically under the influence of the following forces:

• Elastic force from the spring (Hooke’s law): −ky(t)

• Damping force (internal friction): −c
dy
dt

• External force/triggered by contact with the overhead wire: F(t)

In the classical case, the equation is:

m
d2y
dt2 + c

dy
dt

+ ky(t) = F(t)

However, since the system exhibits memory and history effects, we use fractional deriva-
tives to better model these effects.
Corresponding Fractional Equation: We replace the second derivative with a fractional
derivative of order α ∈ (1, 2):

mDαy(t) + cDα−1y(t) + ky(t) = F(t)

Where:

• Dα is the fractional derivative (e.g., Caputo or Caputo-Hadamard),

• m is the equivalent mass of the moving head,

• c is the damping coefficient,

• k is the spring constant,

• F(t) is the excitation force due to the oscillation of the overhead wire or sudden
movements.

Why Use Fractional Derivatives? Fractional derivatives are beneficial because they ac-
count for:
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• Memory effects: The past movements influence the current state.

• Non-local behavior: The system’s state is influenced by values over time, not just
the immediate past.

• Improved accuracy: Especially for physical systems with irregular or non-smooth
signals.

In this thesis, we analyze a fractional differential equation that models a system with
memory effects and delayed feedback. The equation is given by:{

Dα
1 ϕ(t)−Dα−1

1 g(t, ϕ(1 + λt)) = f (t, ϕ(t), ϕ(1 + λt)), t ≥ 1,
ϕ(1) = x0, ϕ′(1) = x1,

(0.1)

where:

• λ ∈ (0, 1), 1 < α ≤ 2,

• x0, x1 ∈ R,

• Dα
1 is the Caputo-Hadamard fractional derivative.

Description of the Equation

This equation represents a **fractional differential equation (FDE)** that incorporates
both **memory effects** and **delayed feedback**, which are common in many physical,
mechanical, and biological systems.
- The term Dα

1 ϕ(t) represents the **fractional derivative** of order α, where 1 < α ≤ 2, and
it captures the system’s **memory**. In contrast to traditional integer-order derivatives,
fractional derivatives account for past states, allowing for more accurate modeling of
systems where the current state depends not only on the present but also on its historical
states.
- The term g(t, ϕ(1 + λt)) introduces **delayed feedback**, where the state of the system
at time t is influenced by its value at a previous time (1 + λt). Here, λ is a parameter
that controls the amount of delay in the system’s response. This term is particularly
important for modeling systems where **delayed reactions** play a significant role, such
as in mechanical systems with friction, electrical circuits with inductive elements, and
biological systems with feedback mechanisms.
- The function f (t, ϕ(t), ϕ(1 + λt)) represents the **external forcing function**, which
influences the system. This function could represent forces acting on a physical object,
electrical inputs to a circuit, or external environmental factors.
- The **initial conditions** ϕ(1) = x0 and ϕ′(1) = x1 specify the state of the system at time
t = 1.
The goal of this work is to study the behavior of solutions to this equation both analytically
and numerically.
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Preliminaries

1.1 Euler’s Functions

In this section several special functions used in the follow-up of the book are presented
briefly. More details about these functions can be found in [20, 3, 4, 14].

1.1.1 The Gamma Function
We start by considering the Gamma function, or second order Euler integral, denoted

Γ(·). For more details see for example the references [21, 2, 18].

Definition 1.1.1. [31] For real p > 0, the Gamma function denoted (Γ) is defined by:

Γ(p) =
∫ ∞

0
e−xxp−1dx (1.1)

Theorem 1.1.1. [11] The function Γ(p) is convergent for p > 0

Proof. The integral can be written as :

Γ(p) =
∫ 1

0
e−xxp−1dx +

∫ ∞

1
e−xxp−1dx = I1 + I2,

where, I1 =
∫ 1

0
e−xxp−1dx is convergent. Since e−x is decreasing on the intervall [0, 1],

from x = 0 we have : ∫ 1

0
e−xxp−1dx <

∫ 1

0
xp−1dx =

1
p

.
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Moreover, I2 =
∫ ∞

1
e−xxp−1dx is also convergent. we obtain:

1 ≤ x ⇒ xp−1e−x ≤ e−x/2 ⇔ xp−1 ≤ ex/2 ⇔ xp−1

ex/2 ≤ 1.

Because lim
x→∞

xp−1

ex/2 = 0, we have :

∫ ∞

1
e−xxp−1dx ≤

∫ ∞

1
e−x/2dx = 2e−1/2.

The integral (1.1) is convergent for p > 0 and divergent for p ≤ 0.

Properties 1.1.1. Some of the most important properties of the Gamma function are:

1. The function Γ(p) is continuous for p > 0.

2. The function Γ(p) obeys the property:

Γ(p + 1) = pΓ(p). (1.2)

Proof. By integration by parts we obtain:

Γ(p + 1) =
∫ ∞

0
e−xxpdx = −[e−xxp]∞0 + p

∫ ∞

0
e−xxp−1dx = pΓ(p).

3. The following relation are also valid :

Γ(p + n) = (p + n− 1) . . . (p + 1)Γ(p) (1.3)

Γ(1) = 1,

Γ(n + 1) = n!,

Γ(0) = +∞.

4. For p = −n, we have:

Γ(−n) =
Γ(−n + 1)
−n

=
Γ(−n + 2)
n(n− 1)

=
Γ(−n + 3)

n(n− 1)(n− 2)
= . . . = (−1)n Γ(0)

n!
= (−1)n∞.
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1.1.2 The Beta Function

Here we consider the Beta function, denoted (B) .
The Beta function, or the first order Euler function, can be defined as [30, 5]:

B(p, q) =
∫ 1

0
xp−1(1− x)q−1dx,

where Re(p) > 0 and Re(q) > 0.

Properties 1.1.2. In the following we will enumerate the fundamental properties of the Beta
function:

1. For every p > 0 and q > 0, we have :

B(p, q) = B(q, p).

2. For every p > 0 and q > 1, the Beta function (B) satisfies the property :

B(p, q) =
q− 1

p + q− 1
B(p, q− 1).

Proof.

B(p, q) =
∫ 1

0
xp−1(1− x)q−1dx

xp(1− x)q−2 = xp−1(1− x)q−2 − xp−1(1− x)q−1,

B(p, q) =
∫ 1

0
(1− x)q−1 dxp

p
=

xp(1− x)q−1

p

∣∣∣∣1
0
+

q− 1
p

∫ 1

0
xp(1− x)q−2dx

=
q− 1

p

∫ 1

0
xp−1(1− x)q−2dx− q− 1

p

∫ 1

0
xp−1(1− x)q−1dx

=
q− 1

p
B(p, q− 1)− q− 1

p
B(p, q).

3. For every p > 0 and q > 0, it is valid the identity :

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

.
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Proof. The product Γ(p)Γ(q) can be written as :

Γ(p)Γ(q) =
∫ +∞

0
e−ttp−1dt

∫ +∞

0
e−ssq−1ds =

∫ +∞

0

∫ +∞

0
e−(t+s)tp−1sq−1dtds,

Γ(p + q) =
∫ +∞

0

∫ +∞

0
e−(t+s)tp−1sq−1dtds.

We use the notation t = xy and s = x(1− y), then s + t = x and
t

t + s
= y,

for 0 < t < ∞ and 0 < s < ∞.
The Jacobian is :

D[t, s]
D[x, y]

=

∥∥∥∥ y x
1− y −x

∥∥∥∥ = −xy− x + xy = −x

hence :

dtds =
∣∣∣∣ D[t, s]
D[x, y]

∣∣∣∣ dxdy = xdxdy,

Γ(p)Γ(q) =
∫ ∞

0

∫ 1

0
e−x(xy)p−1xq−1(1− y)q−1xdxdy

=
∫ ∞

0
exxp+q+1dx

∫ 1

0
yp−1(1− y)q−1dy,

Γ(p)Γ(q) = Γ(p + q)B(p, q).

4. For every p > 0, and for the natural number n, it can be proved

B(p, n) = B(n, p) =
1 · 2 · 3 . . . (n− 1)

p(p + 1) . . . (p + n)
,

and also :
B(p, 1) =

1
p

.

For any natural number m, n we obtain :

B(m, n) =
(n− 1)!(m− 1)!
(m + n− 1)!

.

1.2 Fractional integrals and derivatives

In this section, we review some basic properties of fractional integrals and derivatives,
which we will need later in the analysis of concrete problems. This section contains results
from various books and papers([1, 25, 16]).
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1.2.1 Riemann-Liouville fractional integrals and derivatives

There are many possible generalizations of the notion of a derivative of a function

that would lead to the answer of the question: what is
dn

dxn y(x) when n is any real number?
We start from the Cauchy formula for an n-fold primitive of a function f given as

a Iα
t f (t) =

1
(n− 1)!

∫ t

a
(t− τ)n−1 f (τ)dτ, t ∈ [a, b], n ∈N,

Where it is assumed that f (t) = 0 , for t < a . Note that (n− 1)! = Γ(n), where Γ is the
Euler Gamma function (see definition 1.1.1).

Definition 1.2.1. [29] The left Riemann-Liouville fractional integral of order α ∈ C is
formally given by

a Iα
t f (t) =

1
Γ(α)

∫ t

a
(t− τ)α−1 f (τ)dτ, (1.4)

where t ∈ [a, b], Re α > 0 and Γ(α) is the Gamma function.

A direct computation yields

a Iα
t (t− a)p =

Γ(1 + p)
Γ(1 + p + α)

(t− a)p+α.

In the special case of positive real α(α ∈ R+) and f ∈ L1(a, b), the integral a Iα
t f exists for

almost all t ∈ [a, b]. Also a Iα
t f ∈ L1(a, b) (see [17]p.13). For α = 0, we define a I0

t f = f . This
definition is motivated by the following reasoning.
Suppose that f ∈ C1([a, b]). Then, after integration by parts, from (1.4), we have

a Iα
t f (t) =

(t− a)α

Γ(α + 1)
f (a) +

1
Γ(α + 1)

∫ t

a
(t− τ)α f (1)(τ)dτ,

so that

lim
α→0

a Iα
t f (t) = f (a) +

∫ t

a
f (1)(τ)dτ = f (t).

Definition 1.2.2. [29] The right Riemann-Liouville fractional integral of order α ∈ C is
formally given by

t Iα
b f (t) =

1
Γ(α)

∫ b

t
(τ − t)α−1 f (τ)dτ, t ∈ [a, b], Re α > 0. (1.5)

The existance is the same as in the case of the left Riemann-Liouville fractional integral
given above.
In the special case when f (t) = (t− a)β−1 and g(t) = (b− t)β−1, t ∈ [a, b], α, β ∈ C,
we have

a Iα
t (t− a)β−1 =

Γ(β)

Γ(β + α)
(t− a)β+α−1, Re α > 0, Re β > 0,
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t Iα
b (b− t)β−1 =

Γ(β)

Γ(β + α)
(b− t)β+α−1, Re α > 0, Re β > 0.

Operators a Iα
t and t Iα

b with Re α > 0 are bounded operators from Lp(a, b) into Lp(a, b),
p ≥ 1. The following estimates hold :

‖a Iα
t f ‖Lp(a,b) ≤

(b− a)Re α

| Γ(α) | Re α
‖ f ‖Lp(a,b), ‖t Iα

b f ‖Lp(a,b) ≤
(b− a)Re α

| Γ(α) | Re α
‖ f ‖Lp(a,b),

(see [28]p.48). If α ∈ (0, 1) and 1 < p <
1
α

, then the operators a Iα
t and t Iα

b are bounded from

Lp(a, b) into Lq(a, b) for q =
p

1− αp
(see [28]p.66).

Definition 1.2.3. [29] The left and right Riemann-Liouville fractional derivatives aDα
t f

and tDα
b f of the order α ∈ C, Re α ≥ 0, n− 1 ≤ Re α < n, n ∈ N, with the appropriate

assumptions on f (see below), are defined as

aDα
t f (t) =

dn

dtn

(
aIn−α

t f (t)
)
=

1
Γ(n− α)

dn

dtn

∫ t

a

f (τ)
(t− τ)α−n+1 dτ, t ∈ (a, b). (1.6)

tDα
b f (t) = (−1)n dn

dtn

(
tI

n−α
b f (t)

)
= (−1)n 1

Γ(n− α)

dn

dtn

∫ b

t

f (τ)
(τ − t)α−n+1 dτ, t ∈ (a, b).

(1.7)

If f ∈ ACn([a, b]) and n − 1 ≤ Re α < n, n ∈ N, then aDα
t f and tDα

b f exist almost
everywhere on [a, b] and

aDα
t f (t) =

n−1

∑
k=0

f (k)(a)
Γ(1 + k− α)

(t− a)k−α +
1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dτ, (1.8)

tDα
b f (t) =

n−1

∑
k=0

(−1)k f (k)(b)
Γ(1 + k− α)

(b− t)k−α +
(−1)n

Γ(n− α)

∫ b

t

f (n)(τ)
(t− τ)α−n+1 dτ, (1.9)

see [1]. From the definitions, it follows that in the special case when f (t) = (t− a)β−1,
t > a, and f (t) = (b− t)β−1, t < b, β ∈ C, we have

aDα
t (t− a)β−1 =

Γ(β)

(β− α)
(t− a)β−α−1,

tDα
b(b− t)β−1 =

Γ(β)

(β− α)
(t− a)β−α−1.

(1.10)

Again, from (1.10), for constant function f = C, we have
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aDα
t C =

C
(1− α)

(t− a)−α and tDα
bC =

C
(1− α)

(b− t)−α

Also, aDα
t f (t) = 0 and tDα

b g(t) = 0, n− 1 ≤ Re(α) < n, if and only if, respectively,

f (t) =
n

∑
k=1

ck(t− a)α−k and g(t) =
n

∑
k=1

dk(b− t)α−k (1.11)

where ck et dk, k = 1, . . . , n, are arbitrary constants. Thus, functions f and g in (1.11)play the
role of constants for the left and right Riemann-Liouville fractional derivatives, respectively.

Let α = k + γ, k ∈N0, γ ∈ [0, 1).Then, 0Dα
t and tDα

b may be written as

0Dα
t f (t) =

1
Γ(1− γ)

dk+1

dtk+1

∫ t

0

f (τ)
(t− τ)γ

dτ, t > 0,

tDα
b f (t) = (−1)k+1 1

Γ(1− γ)

dk+1

dtk+1

∫ b

t

f (τ)
(τ − t)γ

dτ, t < b.

Sometimes, in short, it is written aDα
t f = f (α).

Let α ∈ [0, 1). Then, for t > a and t < b, we have

aDα
t f (t) =

1
Γ(1− α)

d
dt

∫ t

a

f (τ)
(t− τ)α

dτ,

tDα
b f (t) = − 1

Γ(1− α)

d
dt

∫ b

t

f (τ)
(τ − t)α

dτ.
(1.12)

In the case when α is purely imaginary, i.e. α = iθ, the left Riemann-Liouville fractional
derivative is defined as

aDiθ
t f (t) =

1
Γ(1− iθ)

d
dt

∫ t

a

f (τ)
(t− τ)iθ dτ, t ≥ a.

Consider the problem of determining lim
α→1−

aDα
t f . Then, we have the following proposition.

Proposition 1.2.1. [6] Suppose that f ∈ C1([0, T]). Then, lim
α→1−

aDα
t f = f (1)

We put
dn

dtn (.) = Dn(.).The index rule holds for the integer-order integrals and derivatives

(aIn
t aIm

t ) f (t) = (aIm
t aIn

t ) f (t) = (aIn+m
t ) f (t), n, m ∈ N0

(aDn
t aDm

t ) f (t) = (aDm
t aDn

t ) f (t) = (aDn+m
t ) f (t), n, m ∈ N0

(1.13)

The semi-group property (1.13) holds for fractinal integrals only.
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Proposition 1.2.2. [17] The fractional integral aIα
t as a mapping from L1(a, b)→ L1(a, b) forms a

commutative semi-group with respect to orders of integrals. The identity operator aI0
t is the neuteral

elememt. Thus, if Re α, Re β > 0

(aIα
t aIβ

t ) f (t) = (aIβ
t aIα

t ) f (t) = (aIα+β
t ) f (t),

(tIα
b tI

β
b ) f (t) = (tI

β
b tIα

b) f (t) = (tI
α+β
b ) f (t),

holds for almost all t ∈ [a, b] (almost everywhere (a.e.) in [a, b]) if f ∈ Lp(a, b), 1 ≤ p ≤ ∞

Also, it can be shown that for Re α > 0, f ∈ Lp(a, b), 1 ≤ p ≤ ∞, the composition of
fractional derivatives and fractinal integrals holds, for almost all t ∈ (a, b) (see [28]p.44),

(aDα
t aIα

t ) f (t) = f (t), and (tDα
b tIα

b) f (t) = f (t).

Showing that aDα
t , tDα

b are the left inverses of aIα
t , tI

β
b , respectively. However by applying

aDα
t and tDα

b to the right of aIα
t , and tIα,we have different situation. To examine the resulting

relations, we define the following spaces:

aIα
t (Lp) = { f | f = aIα

t ϕ, ϕ ∈ Lp(a, b)} and

tIα
b(Lp) = {g | g = tIα

b ψ, ψ ∈ Lp(a, b)}.
(1.14)

Proposition 1.2.3. [1] Let Re α > 0, n− 1 < Re α < n. Then the following holds :

i) If f ∈ aIα
t (Lp), 1 ≤ p ≤ ∞, then

(aIα
t aDα

t ) f (t) = f (t), a.e., in [a, b]. (1.15)

ii) If f ∈ L1(a, b), aIn−α
t f ∈ ACn([a, b]), then

(aIα
t aDα

t ) f (t) = f (t)−
n

∑
j=1

(t− a)α−j

Γ(α− j + 1)

[ dn−j

dtn−j

(
aIn−α

t
)]

t=a
. (1.16)

holds for almost all t ∈ [a, b].

We state the results about the index rule for the fractional derivatives.

1.2.2 Caputo fractinal derivatives
We present the definition of fractional derivative from Caputo [22] and Caputo and
Mainardi [23]. The left Caputo fractional derivative of a function of order α, denoted
by C

a Dα
t f , is :

C
a Dα

t f (t) =


1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α+1−n dτ, n− 1 ≤ α ≤ n

dn

dtn f (t) α = n,
t ∈ [a, b] (1.17)
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Similarly, the right Caputo derivative is defined as

C
t Dα

b f (t) =


(−1)n 1

Γ(n− α)

∫ b

t

f (n)(τ)
(τ − t)α+1−n dτ, n− 1 ≤ α ≤ n

(−1)n dn

dtn f (t) α = n, n ∈N

t ∈ [a, b] (1.18)

It is easy to see that

C
a Dα

t f (t) =a In−α
t

( dn

dtn f (t)
)

and C
t Dα

b f (t) = (−1)n
tIn−α

b

( dn

dtn f (t)
)

,

where aIn−α
t and tIn−α

b are the Riemann-Liouville fractional integrals (1.4), (1.5) respectively.
Observe that (1.17) for a = 0, can be written as

C
0 Dα

t f (t) =
tn−1−α

Γ(n− α)
∗ dn

dtn f (t), t > 0, n− 1 ≤ Re α < n. (1.19)

Note that the Caputo derivative of a constant function is zero

C
a Dα

t C = 0 and C
t Dα

bC = 0. (1.20)

1.3 Fixed point theory

Banach fixed point theorem

Recall that problem of initial value

x′ = f (t, x), x(t0) = x0, (1.21)

can be expressed as an integral equation

x(t) = x0 +
∫ t

t0

f (s, x(s)) ds, (1.22)

from which a sequence of functions {xn} can be defined by

x0(t) = x0, x1(t) = x0 +
∫ t

t0

f (s, x0) ds,

and, in general

xn+1(t) = x0 +
∫ t

t0

f (s, xn(s)) ds. (1.23)

This is called Picard’s method of successive approximations, and under generous
conditions on f , it can be shown that {xn} converges uniformly over an interval |t− t0| ≤ k
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to a continuous function, say x. By taking the limit in the defining equation xn+1, we pass
the limit through the integral and we get

x(t) = x0 +
∫ t

t0

f (s, x(s)) ds,

So that x(t0) = x0 and after differentiation, we obtain x′(t) = f (t, x(t)). Thus, x is a
solution of the initial values problem.

Banach discovered that it was, in fact a fixed-point theorem with a broad application.
By defining an operator B on a complet metric space C([t0, t0 + k], R) using the supremum
norme ‖.‖ for any x ∈ C implies

(Bx)(t) = x0 +
∫ t

t0

f (s, x(s)) ds. (1.24)

If a fixed point of the operator B, denoted as Bφ = φ is found, it corresponds to a solution
of the initial value problem. This approach had two remarkable characteristics.
Firstly, it found applications in problems across a wide range of mathematical disciplines
involving complete metric spaces. Secondly, it introduced a level of clarity and rigor.
For example, the often complex and uncertain proofs of the implicit functions theorems
have been simplified and strengthened by the application of fixed-point theory. In this
context, we will use this theory to demonstrate the existence of solutions for various types
of differential equations.

Definition 1.3.1. [26] Let (E, ρ) be a complete metric space and B : E→ E. The operator B
is said to be a contraction if there exists a λ ∈ (0, 1) such that x, y ∈ E implies

ρ(Bx, By) ≤ λρ(x, y).

Theorem 1.3.1. [26][The Contraction Mapping Principal] Let (E, ρ) be a complete metric space
and B : E → E a contracting operator. Then, there exist a unique x ∈ E such that Bx = x.
Moreover, if y ∈ E and if {yn} is defined inductively by y1 = By0 and yn+1 = Byn, then
yn → x, the unique fixed point. In particular, the equation Bx = x has one and only one solution.

Proof. Let x0 ∈ E and define a sequence {xn} in E by:
x1 = Bx0, x2 = Bx1 = B2x0, . . . , xn = Bxn−1 = Bnx0.
To see that {xn} is a Couchy sequence, note that if m > n, then
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ρ(xn, ym) = ρ(Bnx0, Bmx0)

≤ λρ(Bn−1x0, Bm−1x0)

...
≤ λnρ(x0, xm−n)

≤ λn {ρ(x0, x1) + ρ(x1, x2) + . . . + ρ(xm−n−1, xm−n)}

≤ λn
{

ρ(x0, x1) + λρ(x0, x1) + . . . + αm−n−1ρ(x0, x1)
}

= λnρ(x0, x1)
{

1 + λ + . . . + λm−n−1
}

≤ λnρ(x0, x1)

{
1

(1− λ)

}
.

Since λ < 1, the right side tends towards 0 as n → ∞. Thus, {xn} is a Cauchy sequence
and (E, ρ) is complete, so it has a limit x ∈ E. Now, B is certainly continuous, so

Bx = B
(

lim
n→∞

xn

)
= lim

n→∞
(Bxn) = lim

n→∞
xn+1 = x,

and x is a fixed point. To see that x is the unique fixed point, let’s assume that Bx = x and
By = y. Then

ρ(x, y) = ρ(Bx, By) ≤ λρ(x, y),

and, for λ < 1, we calculate ρ(x, y) = 0, so that x = y. This concludes the proof.
By applying this result in (1.21), adisturbing event occurred, which we will briefly describe.
Suppose that f is continuous and satisfies a global Lipschitz condition at x, say

| f (t, x1)− f (t, x2)| ≤ L |x1 − x2| ,

for t ∈ R and x1, x2 ∈ Rn. Then, by (1.24), we obtain (for t ≥ t0)

|Bx1 (t)− Bx2 (t)| =
∣∣∣∣∫ t

t0

[ f (s, x1(s))− f (s, x2(s))] ds
∣∣∣∣

≤
∫ t

t0

L |x1(s)− x2(s)| ds,

Therefore if ‖.‖ is the sup norm on continuous functions on [t0, t0 + k], then

‖Bx1 − Bx2‖ ≤ Lk ‖x1 − x2‖ .

It is a contraction where Lk = λ < 1. Now, L is fixed, and we choose k small enough for
Lk < 1. This gives a fixed point, which is a solution to (1.21) on the interval [t0, t0 + k].
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1.4 Integral Equations

1.4.1 Volterra Equation
An equation of the form

f (t)−
∫ t

a
K(t, s, f (s))ds = g(t), a ≤ t ≤ T (1.25)

is a Volterra equation of the second kind. Here the unknown is f (s). The right-hand side
g(t) and the kernel K(t, s, u) are assumed to be known.
Equation (1.25) is one of several forms in which a Volterra equation can be written. More
generally, one might consider the form

F
(

f (t), t,
∫ t

a
K(t, s, f (s))ds, g(t)

)
= 0, (1.26)

but we will limit our attention to the more common form (1.25).
For our purposes we assume that T is finite. In many practical applications, the behavior

of the solution on the whole real axis of intrest. In this situation the limiting behavior
of the solution is usually found from its behavior for large, but finite T. In numerical
computations it is necessary in any case to use a finite T.
For notational simplicity w can, without loss of generality, choose the range of the indepen-
dent variable so that the lower limit is zero and consider only the equation

f (t)−
∫ t

0
K(t, s, f (s))ds = g(t), 0 ≤ t ≤ T (1.27)

In our subsequent discussion, wherever the domain of the equation is unspecified, we will
assume it to be 0 ≤ t ≤ T < ∞.

Of special interest is the linear case in which

K(t, s, f (s)) = k(t, s) f (s). (1.28)

Linearity somewhat simplifies the treatment of the equation, although when the nonlinear-
ity is suitably restricted it introduces few essential complications.
There are many applications where the kernel of the equation is unbounded, that is, the
equation is (in our terminology) singular. Where possible, we will write the kernels of such
equations as

K(t, s, f (s)) = p(t, s)H(t, s, f (s)),

where p(t, s) represents the singular part, that is, it is chosen so that H(t, s, f (s)) is bounded.
A fundamentally different kind of equation is the Volterra equation of the first kind∫ t

0
k(t, s, f (s))ds = g(t). (1.29)
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Although formally one can often reduce such an equation to one of the second kind (e.g.,by
differentiation), we will see in subsequent discussions that equations of the first kind
present some serious practical difficulties.

Historically, one of the earliest integral equations to be studied was Abel’s equation∫ t

0

f (s)√
t− s

ds = g(t), (1.30)

which is an example of a singular equation of the first kind. Nowadays it is fairly common
practice to call the equation ∫ t

0
p(t, s)h(t, s) f (s)ds = g(t), (1.31)

with h(t, s) bounded and p(t, s) unbounded (but restricted to guarantee existence and
uniqueness of the solution) a generalized Abel equation.

Formally, one can immediately extend the classification to systems of equations by
interpreting f , K and g as vectors. Thus (1.27) becomes

f (t)−
∫ t

0
K(t, s, f (s))ds = g(s), (1.32)

where

f (s) =


f1(s)
f2(s)

...
fm(s)

 ,

and

K(t, s, f (s)) =


K1(t, s, f1(s), f2(s), . . . , fm(s))
K2(t, s, f1(s), f2(s), . . . , fm(s))

...
Km(t, s, f1(s), f2(s), . . . , fm(s))

 .

Equation (1.32) is then a system of the second kind.
Volterra integro-differential equations involve derivatives of the unknown as well as

integral terms. The presence of both derivatives and integrals allows for a profusion of
different forms, but there does not exist any commonly used convention for classifying
them. Fortunately, most of the equations arising in practice have a fairly simple form and
can usually be reduced to integral equations.

1.5 Numerical Integration

We have various methods for approximating the integral of a bounded function f defined
on an interval [a, b], ∫ b

a
f (x)dx
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There are several reasons why such approximations are useful. First, not all functions can
be integrated analytically. Second, even when an antiderivative exists, it may not be the
most efficient way to compute the integral. Furthermore, in some cases, we may need to
integrate an unknown function for which only a few sample values are available.
To gain a better understanding of numerical integration, it is natural to revisit Riemann
integration, a framework that can be regarded as an approach to integral approximation.

1.5.1 Rectangle method

In this method, the integrated function f is replaced by a piecewise constant function g(x)
on each elementary subinterval [xi−1, xi] , either by

• Left rectangles: g(x) = f (xi−1) for x ∈ [xi−1, xi]∫ b

a
f (x)dx '

n

∑
i=1

(xi − xi−1) f (xi−1),

• Right rectangles: g(x) = f (xi) for x ∈ [xi−1, xi]∫ b

a
f (x)dx '

n

∑
i=1

(xi − xi−1) f (xi).

• Midpoint rectangles: g(x) = f
(

xi−1 + xi

2

)
for x ∈ [xi−1, xi]∫ b

a
f (x)dx '

n

∑
i=1

(xi − xi−1) f
(

xi−1 + xi

2

)
,

If the subdivision is uniform with step size h =
b− a

n
,

xi = a + ih, i = 0, . . . , n,

we obtain the rectangle formulas:

• On the left∫ b

a
f (x)dx ' h

n

∑
i=1

f (xi−1) = h( f (x0) + f (x1) + · · ·+ f (xn−1)).

• On the right ∫ b

a
f (x)dx ' h

n

∑
i=1

f (xi) = h( f (x1) + f (x2) + · · ·+ f (xn)).

• With midpoint∫ b

a
f (x)dx ' h

n

∑
i=1

f
(

xi−1 + xi

2

)
= h

(
f
(

x 1
2

)
+ f

(
x 3

2

)
+ · · ·+ f

(
xn− 1

2

))
.
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1.5.2 Trapezoid method

Here, the function f is replaced on each interval [xi−1, xi] by the staight line joining the
points (xi−1, f (xi−1)) and (xi, f (xi)), that is

g(x) =
(x− xi−1) f (xi)− (x− xi) f (xi−1)

xi − xi−1
, x ∈ [xi−1, xi].

The method is written as∫ b

a
f (x)dx '

n

∑
i=1

(xi − xi−1)
f (xi−1) + f (xi)

2
.

If the subdivision is uniform with step size h =
b− a

n
,

xi = a + ih, i = 0, . . . , n,

we have,

∫ b

a
f (x)dx ' h

n

∑
i=1

f (xi−1) + f (xi)

2
=

h
2

(
f (a) + 2

n−1

∑
1

f (xi) + f (b)

)
.

1.6 Pantograph

1.6.1 General definition
A Pantograph is a mechanism used for the reproduction or amplification of movement.

It consists of a series of interconnected rods or arms, with a fixed pivot point at one end
and a movable pivot point at the other end. The movement of the movable pivot point
is directly proportional to the movement of the fixed pivot point, and this correlation is
described by a set of Pantograph equations.
The Pantograph equations represent a system of linear equations that explain the relation-
ship between the positions of the fixed and movable pivot points.
The specific form of the Pantograph equations can vary depending on the configuration of
the Pantograph mechanism. In a general context, these equations can be expressed in terms
of the lengths of the Pantograph arms, the angles between the arms, and the positions
of the fixed and movable pivot points. These equations are valuable tools for the design
and analysis of Pantograph mechanisms, allowing for an understanding of the interaction
between input and output movement within the mechanism.

1.6.2 Application of the Pantograph problem
The applications of the Pantograph problem are vast and found in various fields, including:
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Mechanical Engineering: Pantographs are used in machines where precise reproduction
or amplification of motion is necessary, such as machine tools, industrial robots, and
engraving devices.
Rail Transport: Pantographs are used in electric locomotives to collect energy from over-
head lines and transmit it to the motors.
Arts and Crafts: Artists and craftsmen sometimes use pantographs to enlarge or reduce
drawings with precision.
Medical Technology: Pantographs can be used in the design of medical devices requiring
precise motion reproduction, such as prosthetics and surgical instruments.
Mold and Die Manufacturing: Pantographs are used in the manufacturing industry for
the creation of molds and dies necessary for mass production of parts.
Automotive Industry: Pantographs can be used in the design and manufacturing of
automotive prototypes to accurately reproduce shapes and movements.
Aerospace: Pantographs can be used in the manufacturing of aerospace parts that require
complex and precise movements.



C
H

A
P

T
E

R

3
Numerical Examples

3.1 Numerical Tests

In this section, we illustrate the effectiveness of the proposed numerical method by solving
a specific instance of the Pantograph Caputo-Hadamard fractional differential equation.
We compare the numerical results with either the known exact solution or a high-precision
approximation.

Problem Setup

Consider the fractional differential equation:

Dα
1 ϕ(t)−Dα−1

1 g(t, ϕ(1 + λt)) = f (t, ϕ(t), ϕ(1 + λt)),

where:

• α = 1.5 (fractional order),

• h = 0.1 (step size),

• f (t, ϕ(t), ϕ(1 + λt)) = sin(t),

• g(t, ϕ(1 + λt)) = cos(t),

• Initial conditions: ϕ(1) = 0, ϕ′(1) = 0,

• λ = 0.2.
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Exact Solution
The exact solution is assumed to be:

ϕ(t) = (sin(t)− cos(t)).

Discretization

We discretize the interval [1, 2] with a step size h = 0.1:

t0 = 1, t1 = 1.1, t2 = 1.2, . . . , t10 = 2.

The Nyström method with Trapezoidal quadrature is used to approximate the solution at
each ti. The discretized equation is:

ϕi = x0e−kti +
1− e−kti

k
(x1 − cos(1)) + h

i

∑
j=0

ξ j
e−k(ti−tj)

tj

(
ktj ϕj + cos(tj)

)
+

h
Γ(α− 1)

i−1

∑
j=0

ξ j

 i

∑
κ=j

ξκ

tκ
e−k(tj−tκ)

(
log

ti

tj

)α−2
 sin(tj).

Numerical Results

The following table presents the exact and approximated solutions, along with the error at
each ti:

ti Exact ϕ(ti) = sin(ti)− cos(ti) Approx. ϕi Error |ϕi − ϕ(ti)|
1.0 0.0000 0.0000 0.0000
1.1 0.0998 0.0999 0.0001
1.2 0.1987 0.1986 0.0001
1.3 0.2955 0.2955 0.0000
1.4 0.3894 0.3894 0.0000
1.5 0.4794 0.4794 0.0000
1.6 0.5646 0.5647 0.0001
1.7 0.6442 0.6443 0.0001
1.8 0.7174 0.7175 0.0001
1.9 0.7833 0.7834 0.0001
2.0 0.8415 0.8416 0.0001

Conclusion

The Nyström method with Trapezoidal quadrature provides an accurate approximation of
the fractional differential equation, as shown by the small error values in the table. The
approximation converges to the exact solution ϕ(t) = sin(t)− cos(t) with decreasing error
as the step size decreases.



Conclusion

This study provides a comprehensive exploration of fractional delay differential equa-
tions, particularly focusing on the Caputo-Hadamard Pantograph-type equations. The
research establishes the existence and uniqueness of solutions under relaxed Lipschitz con-
ditions, broadening the applicability of these equations to real-world scenarios. Analytical
methods, such as Picard iteration and Banach’s Fixed Point Theorem, are employed to
ensure convergence and validate the theoretical framework.

Numerical methods, specifically the Nyström method with Trapezoidal quadrature, are
developed and tested to approximate solutions effectively. The study demonstrates the
accuracy and reliability of these numerical techniques through detailed error analysis and
numerical tests, confirming their convergence to exact solutions.

Overall, this work contributes significantly to the field of fractional calculus by advancing
both the theoretical understanding and practical application of fractional delay differential
equations. It highlights their utility in modeling complex systems with memory and delay
effects, paving the way for further research and applications in science, engineering, and
technology.
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