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Résumé

Les barrages font face a des menaces multiples pouvant compromettre leur sécurité et
mettre en péril des vies humaines, telles que 'accumulation d’objets flottants, les sit-
uations de noyade non détectées, et I'apparition progressive de fissures structurelles.
Ces problématiques soulignent le besoin urgent d’un systeme de surveillance intelligent,
capable de réagir rapidement et de maniere autonome.

Pour répondre a ces défis, un systeme de détection basé sur 'intelligence artificielle
et la vision par ordinateur a été congu afin d’identifier automatiquement trois types
de risques critiques : les objets flottants, les noyades et les fissures dans les structures
hydrauliques.

Le systéme repose sur I'architecture YOLOvVS en deep learning pour réaliser des détec-
tions en temps réel a partir d’images issues de caméras de surveillance. Chaque module
a été entrainé sur des jeux de données annotés, avec un traitement rigoureux incluant le
prétraitement, ’augmentation de données et ’ajustement des hyperparametres.

Les résultats obtenus dans un environnement contrélé montrent des performances
prometteuses pour les trois modules de détection. Cette solution constitue une avancée
vers une plateforme intelligente et adaptable pour améliorer la gestion et la sécurité des
barrages en Algérie.

Mots-clés : sécurité des barrages, surveillance intelligente, YOLOvVS, deep learning,

vision par ordinateur, détection d’objets flottants, noyade, fissures



1il

Abstract

Ensuring dam safety requires proactive monitoring of multiple critical risks, including
floating debris, potential drowning incidents, and the gradual emergence of structural
cracks. In response to these challenges, this work presents an integrated intelligent
system based on computer vision and artificial intelligence, designed to detect and classify
these hazards in real-time from visual data.

The proposed system unifies three complementary detection modules within a sin-
gle platform: floating object detection, drowning detection, and crack detection. Each
module is built upon the YOLOvS8 deep learning architecture and trained on dedicated,
annotated datasets with tailored preprocessing and optimization techniques.

This unified approach enables the system to automatically analyze surveillance im-
agery, generate accurate alerts, and support decision-making in dam management op-
erations. The experimental results, obtained in a controlled environment, confirm the
system’s effectiveness and robustness across all three detection tasks. This work lays the
foundation for a future deployable solution to enhance dam safety through intelligent
and autonomous monitoring.

Keywords: Integrated intelligent system, dam safety, deep learning, YOLOvVS, com-
puter vision, floating object detection, drowning detection, crack detection, real-time

monitoring.
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General introduction

Dams are essential infrastructure for water management, energy production, and envi-
ronmental balance. However, ensuring their operational safety remains a complex and
high-risk challenge. Dams are vulnerable to various hazards, including the accumula-
tion of floating debris, accidental sinkings, and the formation of structural cracks, all of
which can jeopardize their stability and safety. Traditional monitoring approaches rely
heavily on manual inspections and fixed surveillance cameras, which are labor-intensive,
reactive, and susceptible to human error. Recent advances in artificial intelligence (AI),
particularly in the fields of deep learning and computer vision, have opened new avenues
for improving anomaly detection and automating dam monitoring. In this context, our
thesis proposes an intelligent system capable of detecting and classifying three types of
safety-related anomalies in dam environments: floating objects, sinking accidents, and
structural cracks. Our approach is based on developing and training object detection
models using carefully selected, pre-processed datasets. These models were evaluated
under various environmental conditions to assess their accuracy and reliability in realis-
tic scenarios. To support demonstration and testing, we developed a basic programming
interface that displays the model functionality in a simplified monitoring environment.

This thesis is divided into four chapters:

Chapter 1: Technological Trends in Dam Safety - Artificial Intelligence, the Internet
of Things, and Hazard Detection Chapter 1 provides a comprehensive background on the
general framework of the research problem, highlighting the reality of dams in Algeria,
their strategic importance in securing water resources, and the challenges they face in

maintenance and monitoring. The chapter begins with an overview of Algerian dams,



followed by a presentation of their economic and social importance, with examples of
the country’s largest dams. It then moves on to discuss the challenges associated with
managing these vital facilities, particularly with regard to monitoring floating objects,
sinkings, and structural cracks, which pose a direct threat to public safety and dam oper-
ational efficiency. The chapter also explores the need to employ smart systems powered
by the Internet of Things (IoT) and modern artificial intelligence technologies to achieve
proactive and effective monitoring. It elaborates on the mechanism of data transmission
and storage via IoT networks, comparing the capabilities of human and machine learn-
ing in handling visual data. The chapter concludes with an introductory overview of
the three main technical areas addressed by the project: floating object detection, crack
detection, and sinking detection. This paves the way for subsequent chapters to detail
the proposed technical solutions. Chapter 02: Deep Learning Approaches to Object De-
tection this chapter addresses the basic technical aspects related to deep learning-based
computer vision algorithms, focusing on their use in object detection tasks in images.
The chapter opens with a general introduction that paves the way for an in-depth ex-
planation of the most important algorithms used in this field. It reviews Faster R-CNN,
RetinaNet, and YOLO in its various versions, from YOLOv2 to YOLOvS8. The chapter
then moves on to discuss previous related work, reviewing the most prominent studies on
detecting floating objects and sinking cases in aquatic environments using artificial in-
telligence techniques, as well as research related to detecting structural cracks in dams.
Through this presentation, the chapter provides an analytical overview of previously
adopted approaches.

Chapter 03: Conception Chapter Three focuses on the design and practical imple-
mentation of the proposed intelligent system, detailing the technical procedures used to
prepare the data and train artificial intelligence models for each of the three tasks: de-
tecting floating objects, detecting sinking cases, and monitoring structural cracks. The
chapter begins with a general introduction, then moves on to a systematic presentation of
the preprocessing steps, starting with collecting data from various sources, through clean-

ing and segmenting, and finally addressing the challenges associated with class diversity



and imbalanced distribution. The chapter also explains data augmentation techniques
used to improve model performance in cases of few classes.Separate sections are devoted
to training each model, explaining the chosen version of the YOLO algorithm and the
reasons for its selection, in addition to justifying the selection of appropriate hyperpa-
rameters for each case. It also details how the datasets were combined and balanced,
especially in cases of class imbalance. The chapter also addresses the technical chal-
lenges faced in the training process, such as limited computational resources or image
complexity. It concludes with an analysis of the YOLOvS architecture and explains why
this algorithm was adopted as the final choice for the proposed model.

Chapter04: Implementation presents the practical aspect of the project, evaluating
the performance of the trained models and analyzing their results in a real-world oper-
ating environment. It begins by defining the development environment used, describing
the hardware and software characteristics used during the training and testing processes.
It then goes on to detail the training and validation processes, presenting graphs and
statistical measures of the models’ performance in detecting floating objects, cracks, and
sinking situations. The chapter also includes an analysis of the test results, reviewing
the model accuracy and other performance indicators such as reliability and efficiency,
and providing an in-depth discussion of the results to understand the strengths and
shortcomings of the proposed system. The chapter also devotes a section to presenting
the user interface developed for the system’s demonstration, highlighting how images
can be manually entered and real-time predictions obtained. The chapter concludes
with an evaluative conclusion summarizing the most important findings and opening up
prospects for future system improvement within the framework of more comprehensive

field applications.



Chapter 1

Technological Trends in Dam Safety:
Al, IoT, and Risk Detection

1.1 Introduction

Dams are among the most important means by which we conserve and exploit water and
hydropower, which are used in various fields, such as agriculture and providing drinking
water. They also play a fundamental role in protecting against natural disasters. This
engineering achievement is considered one of the most important vital infrastructures.
However, despite all its benefits, it also presents challenges. With prolonged use, concrete
dams become susceptible to corrosion, cracking, and disintegration, weakening their
structural integrity and reducing their ability to withstand pressure. This can lead to
disasters like the one that occurred in Libya.

The presence of foreign objects within dams also poses a significant threat to the
infrastructure of these vital facilities and the surrounding environment. They can cause
blockages in pumps and turbines used for generating power or pumping water, damaging
equipment and disrupting vital dam operations. The fall of dead animals and waste can
also contaminate water, threatening human health and living organisms. Therefore,
early detection of objects in dams and potential concrete problems, such as cracks, can

save us from disasters and costly maintenance costs.
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Dams are tourist destinations where visitors enjoy the natural beauty and water
activities. However, the presence of deep water makes them dangerous areas, especially
for children who may be exposed to drowning accidents. This is where smart drowning
detection systems come in. They monitor the water and alert the relevant authorities
immediately after an emergency occurs.

This is what prompted us to develop a smart monitoring system for water dams,
using Internet of Things sensors and artificial intelligence algorithms, to ensure safety
and optimal management of water resources, making dams safer recreational areas for

families and visitors.

1.2 Economic and environmental importance of dams

1.2.1 Economic Role of Dams

e Agriculture: Dams ensure a stable water supply for irrigation, which increases
crop productivity and supports food security. Globally, agriculture accounts for

more than 69% of freshwater withdrawal [1, 2].

o« Hydropower: Hydroelectric power generated by dams offers a renewable and
cost-effective energy source. For instance, Turkey has a hydropower potential of

433 GWh/year, making it a strategic asset for national energy planning [3].

o Flood control: By regulating river flow, dams help protect downstream residen-
tial and agricultural areas. A study in China’s Wangmo Basin showed that dam

implementation reduced flooded housing areas by 12.9% to 30.2% [4].

e Tourism and local economy: Dams and their surrounding artificial lakes create
opportunities for ecotourism, recreation, and job creation. The Tehri Dam in India,

for example, attracts tourists for activities like boating and medical tourism [5].
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1.2.2 Environmental role of dams

Dams also provide key environmental benefits, including;:

« Biodiversity support: Reservoirs create aquatic habitats that foster fish, birds,

and other species [6].

e Saltwater intrusion control: In coastal areas, dams help block seawater from

contaminating groundwater sources [6].

o Lower carbon emissions: Hydropower reduces dependence on fossil fuels, con-

tributing to climate change mitigation [6].

e Soil and land protection: By regulating water flow, dams prevent soil erosion

and limit desertification [6].

1.3 Dams in Algeria

1.3.1 Overview of Dams in Algeria and their importance

Algeria currently has 81 dams with a total capacity exceeding 9 billion m3. By 2030,
the number is expected to reach 120, storing up to 12.5 billion m3. These dams support

agriculture, drinking water supply, hydroelectric power, and flood control [7].
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FIGURE 1.1: Geographical location of dams in Algeria [8]
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Dams are a key component of Algeria’s national water and economic strategy, playing

a vital role in:

o Industrial support: Providing water to major industrial zones and manufactur-

ing operations across the country [9].

o Agricultural irrigation: Enhancing food security by ensuring consistent water
supply for crops, especially in drought-prone regions. For example, Beni Haroun

Dam irrigates six key agricultural provinces [9].

e Drinking water supply: Ensuring access to potable water for a wide range of

communities and cities [9].

1.3.2 Examples of the largest dams in Algeria

3

« Beni Haroun Dam (Mila): Stores 228 million m® annually. It supplies drinking

water, irrigates 30,000 hectares, and transfers water to six wilayas [10].

FIGURE 1.2: Beni Haroun Dam [11]

« Koudiat Acerdoune Dam (Bouira): With a storage of 640 million m?, it

provides water for 1.58 million people and irrigates 19,000 hectares [10].
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FIGURE 1.3: Koudiat Acerdoune Dam [11]

« Taksebt Dam (Tizi-Ouzou): Holds 175 million m3 and supplies both drinking

and industrial water to the region [10].

FIGURE 1.4: Taksebt Dam [11]

1.3.3 Dams Management Challenges in Algeria

Dams in Algeria face various environmental and operational challenges affecting their

performance and sustainability:

o Siltation and sedimentation: Sediment accumulation reduces storage capacity
and affects water quality, especially in semi-arid regions like Algeria, where erosion
and surface runoff are common challenges [10]. Globally, over 25% of dam storage

capacity is at risk of being lost by 2050 [12, 13].

o Floating debris and waste: Objects such as wood, plastic, and industrial waste
can block intake systems and damage mechanical components, increasing mainte-

nance costs and flood risks due to obstructed discharge channels [14, 15].
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o Water pollution: Industrial, urban, and agricultural waste contributes to poor
water quality in several dams (e.g., Ouled Malouk), requiring advanced treatment

before use [15].

o Erosion and mechanical wear: Coarse sediments can erode gates and pipelines,

reducing dam lifespan and demanding costly repairs [15].

o Drowning incidents: In 2023 alone, 25 people drowned in Algerian dams, with
96% of cases occurring in unmonitored zones. This highlights the need for intelli-

gent safety systems and public awareness [16, 17].

o Toxic algal blooms: Dams like Hammam Debagh have experienced cyanobacte-
rial blooms (e.g., Planktothriz rubescens), which produce toxins harmful to human
health and disrupt water treatment processes. Early detection systems are essential

to mitigate these risks [14].

1.4 The Need for Intelligent Systems to Detect Float-
ing Objects, Drowning People, and Structural
Cracks

1.4.1 Threats Posed by Floating Objects, Cracks, and Drown-
ing in Dams
1) Floating Objects

Floating debris such as wood, plastic, and waste poses operational and environmental
challenges for dams. It can block intakes, reduce turbine efficiency, damage mechanical
parts, and increase maintenance costs [15, 18, 19]. Additionally, decomposing waste
deteriorates water quality and promotes bacterial growth, raising health concerns [20].
These impacts highlight the importance of early detection systems and preventive clean-

ing strategies.
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2) Cracks in Dams

Cracks threaten dam stability by allowing water infiltration, weakening structural in-
tegrity, and increasing collapse risk. Their presence in seismic zones exacerbates danger
due to fluctuating internal pressures during earthquakes [21]. Effective monitoring and

timely intervention are essential to prevent structural failure.

3) Drowning Incidents

Low-head dams often conceal hydraulic hazards such as submerged hydraulic jumps,
which can trap individuals in deadly recirculating currents. Despite their small size, these
dams contribute to dozens of fatalities annually worldwide [22]. Intelligent surveillance

systems and hydrodynamic risk assessment are necessary to reduce such accidents.

1.4.2 Traditional Systems vs Intelligent Systems

Traditional dam monitoring methods—such as visual inspections, manual measurements,
and basic statistical models—have long been used to detect cracks, floating debris, and
drowning incidents. However, these methods face major limitations: they are labor-

intensive, lack real-time data, and rely heavily on human intervention [23, 24].

1) Traditional Dam Monitoring Systems

e Visual Inspection and Manual Instrumentation: These techniques depend
on human observation and mechanical tools like pressure gauges. They are slow,

error-prone, and unable to detect hidden or sudden structural changes [23, 24].

» Statistical Models: Traditional models (e.g., HST, MLR) rely on historical data
and assume gradual degradation, making them ineffective for predicting sudden

failures [24].

e Drowning Detection: Despite the presence of lifeguards, drowning incidents

remain frequent due to fatigue, distractions, and lack of training [25].



Chapter 1. Technological Trends in Dam Safety: Al, IoT, and Risk Detection 8

¢ General Limitations:

— No real-time monitoring or early warning systems.
— High dependency on human input increases error margins.
— Inability to process large or irregular data sets [23, 24].

— Lack of predictive capability for future risks [23].

These limitations highlight the need for intelligent systems that integrate Al, IoT,

and computer vision to provide automated, real-time, and predictive monitoring of dams.

2) Intelligent Dam Monitoring Systems

To overcome the limitations of traditional methods, intelligent systems based on Artificial
Intelligence (AI), the Internet of Things (IoT), and Computer Vision have transformed

dam monitoring by offering real-time, automated, and accurate detection capabilities.

« Remote Sensing and IoT Integration:

— Structural Monitoring: Geodetic tools like TLS and SAR provide accu-
rate deformation measurements. Combined with IoT, they enable continuous

monitoring and early warning for structural risks [25].

— Smart Sensor Networks: [0T sensors collect real-time data (e.g., pressure,
temperature, seepage) and transmit it via Wi-Fi, LoRaWAN, or 4G/5G to
the cloud. AI then analyzes this data to detect anomalies, allowing officials

to respond quickly via mobile applications [26].

e Al and Computer Vision: Advanced models such as SSD, Faster-RCNN, and
YOLOv5 are used to detect floating debris and drowning people in surveillance
images and videos. These models offer high accuracy and speed, making them

suitable for real-time water monitoring systems [27].
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1.5 Role of the Internet of Things (IoT)

1.5.1 Definition of Internet of Things

is a network of connected physical objects equipped with sensors and software to collect
and exchange data. It links the physical and digital worlds to improve efficiency and

control [28].

1.5.2 The role of the Internet of Things in the field of dams

IoT improves dam management by using sensors to monitor water levels, pressure, tem-
perature, and environmental changes. This enables real-time detection of floods, struc-
tural issues, and risks to dam stability [29, 30]. IoT enables real-time data transmission
to the cloud, where Al analyzes patterns to predict risks. Motion sensors, for example,

help detect floating objects and potential drowning cases [31].

1.5.3 Data Collection Using the Internet of Things

Types of Sensors Used in Dams

IoT technologies utilize various sensors to monitor dam conditions and detect potential

threats. These include:

1. Motion & Object Detection Sensors:

« LiDAR (Light Detection and Ranging): Uses laser pulses to measure
distances and detect surface changes such as landslides or floating debris.

Example: LeddarTech LeddarVu8 [32].

« Radar (Radio Detection and Ranging): Emits electromagnetic waves
to detect moving objects and environmental patterns with high accuracy.

Example: Vaisala’s radar systems [33].

2. Water Level Sensors:
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o Ultrasonic technology: Measures the distance to the water surface by

analyzing reflected sound waves [34].

« Radar-based level sensors: Use electromagnetic pulses to track water lev-

els even in harsh conditions. Example: Endress+Hauser Micropilot FMR6x
[35].
3. Temperature & Humidity Sensors:
o Infrared (IR) Sensors: Detect temperature from a distance without phys-
ical contact using infrared radiation. Example: Fluke Ti480 PRO [36].
e Humidity Sensors: Monitor moisture levels in the air or materials sur-

rounding the dam to assess risk factors [37].

4. Pressure Sensors: Measure internal water pressure and structural stress to detect

early signs of cracks or erosion [38].

Transmission Mechanism and Data Storage via IoT

o Transmission Mechanism:
— LoRaWAN: A long-range, low-power wireless protocol for transmitting small
data packets from sensors [39)].
— Zigbee: A short-range, low-energy protocol using mesh networking, ideal for
connecting multiple sensors reliably. Operates at 2.4 GHz [40].
o Data Storage:
— Cloud storage: Allows scalable and remote access to collected data, man-
aged by third parties [40].

— Edge computing: Processes data locally near the source, enabling real-time

reactions to anomalies [41].

— Local storage: Stores data on-site using physical devices, offering more

control and independence [42].
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1.6 Concepts Related to AI and ML and DL

1.6.1 Artificial Intelligence (AI)

Artificial Intelligence (AT) refers to systems capable of perceiving their environment and
making decisions to achieve goals [43, 44]. Technically, IEEE defines Al as data process-
ing, learning from experience, and autonomous decision-making, while ISO emphasizes
pattern analysis and knowledge extraction [45]. These definitions highlight AI’s evolu-
tion as a field focused on developing adaptive, intelligent systems that can learn, reason,

and interact independently across sectors like healthcare, finance, and transport [46].

The Al Landscape

Artificial
Intelligence

Deep
Learning

Generative

FiGURE 1.5: Different subdomain AI, ML, ANN and DL
[47]

1.6.2 Machine Learning

Machine learning (ML), a branch of A, enables systems to learn from data and make
decisions without explicit programming. It includes supervised, unsupervised, semi-
supervised, and reinforcement learning. ML models use statistical methods to classify
data, predict outcomes, and detect patterns. Despite challenges like the need for strong
math skills, quality data, and algorithm expertise, ML greatly improves efficiency and

workflow optimization. [46].
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[48]

Artificial Intelligence VS Machine Learning

Artificial Intelligence (AI)

Machine Learning (ML)

A computer science field that builds systems
simulating human intelligence (learning, rea-
soning, problem-solving).

Encompasses technologies like ML, NLP, and
robotics.

Developing systems that can perform tasks
that require human intelligence.

It may operate using pre-programmed rules

and knowledge or by learning from data.

A subset of Al that develops algorithms to
learn from data and improve without explicit
programming

Focuses on data-driven models and algo-
rithms.

Enable systems to learn from data and make
decisions or predictions based on that.

It relies entirely on data to learn and extract

patterns.

TABLE 1.1:

Differences between Artificial Intelligence and Machine

Learning [49, 50]
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Human learning VS Machine learning

Machine learning

Human learning

Analyzes large datasets using algorithms.
Needs retraining to adapt to new data or
tasks.

Pattern-based, lacks awareness.

Needs data and training.

Struggles with noisy/incomplete data with-

out preprocessing.

Learns through experience and interaction.

Learns and adapts to new situations

Understands, reasons, and decides contextu-
ally.

Learns independently via curiosity and ex-
ploration.

Analyzes incomplete info and decides wisely.

TABLE 1.2: Differences between Human learning and Machine learning

[51]
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FIGURE 1.7: Human learning VS Machine learning

[52]

1.6.3 Deep Learning

Deep learning, a subset of AI, mimics the human brain to recognize complex patterns

in images, text, and audio—improving analysis, prediction, and automation of tasks like

image recognition and speech-to-text conversion[53].
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Deep Learning Subfields

« Artificial Neural Networks (ANNSs):Brain-inspired models composed of in-
terconnected layers (input, hidden, output) that process data, recognize patterns,

and support decision-making [54].

Input Output

FIGURE 1.8: Architecture of ANN
[55]

« Convolutional Neural Networks (CNNs): A specialized type of ANN for
image recognition, integrating feature extraction within the network. CNNs are
efficient for processing image data and widely used in computer vision tasks like

YOLO, Faster R-CNN, and SSD [54].
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FIGURE 1.9: Architecture of CNNs
[56]

« Deep Neural Networks (DNNs): Consist of an input layer, multiple hidden
layers, and an output layer. They use weights and activation functions to transform
inputs and can approximate any function, making them useful in vision, speech,

fraud detection, and predictive maintenance [57].
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Feature DNN

FIGURE 1.10: Architecture of DNNs
[58]

« Recurrent Neural Networks (RNNs): RNNs are neural networks designed
for sequential data. They use recurrent connections to retain previous inputs,
making them suitable for tasks like speech recognition, translation, and time series

analysis[59].

o Long Short-Term Memory Networks(LSTM):LSTMs are a type of RNN
designed to retain information over long sequences. They address the vanishing
gradient problem, making them suitable for tasks requiring long-term memory in

deep learning. [60].

« Generative Adversarial Network (GAN): GANs consist of a generator and a
discriminator competing to create realistic synthetic data. They are widely used

in image generation, content creation, and data augmentation [61].

» Reinforcement Learning (RL): A type of Al where an agent learns by inter-
acting with its environment to maximize rewards, adjusting its actions based on

feedback through trial and error[62].

o Transfer Learning:A technique where a model trained on one task is reused and
adapted for a related task, reducing the need for retraining from scratch. This

saves time and data, especially in deep learning. [63].
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How Transfer Learning Works
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FIGURE 1.11: The architecture of Transfer Learning

o Attention Mechanisms: Is a deep learning technique that allows neural net-
works to focus on the most relevant information by weighting input elements dif-
ferently. Inspired by the human brain, it improves the efficiency of models and is
used in fields such as machine translation, computer vision, and natural language

processing [64].

o Autoencoders for unsupervised learning and feature extraction:re neural
networks used in unsupervised learning and feature extraction. They compress
input data into a lower-dimensional representation via an encoder and then re-
construct it through a decoder, learning meaningful features by minimizing recon-

struction error[65].

Advanced Techniques in Deep Learning

o Classification: Assigns labels to input data by learning patterns from features.

CNNs are widely used for accurate image classification [66].

e Object Detection: Detects and locates objects in images or videos using bound-
ing boxes. It merges classification and localization, with deep learning boosting its

effectiveness in fields like surveillance and autonomous systems [67].

o Segmentation: Divides images into meaningful regions by labeling each pixel.
CNN-based segmentation is essential in medical imaging, self-driving vehicles, and

remote sensing [68].
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What is there in image Which pixels belong to
and where? which object?

Is this a dog?
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Image Classification Object Detection Image Segmentation

FiGURE 1.12: Difference between classification,detection,segmentation

[69]

1.7 Datasets

Data is essential for machine learning, as model performance relies on dataset quality.

A diverse and accurate dataset enhances learning, leading to more reliable results.

1.7.1 Detecting floating objects above the dam water

The Marine Dataset from Roboflow, containing 6,424 images across six categories (ship,
sinker, swimmer, trash, boat, buoy), was used to train the AI model. Its environmental
diversity simulates real dam conditions, enabling accurate detection of floating objects

and improving early monitoring and prevention s[70].

1.7.2 Crack detection

A combined dataset of 28,574 images was created by merging SDNET2018 with the
dawgsurfacecrackssag dataset. It includes images of concrete structures, classified into
two categories: with cracks and without cracks. This dataset was used to train the model

for dam crack detection [71, 72].

1.7.3 Drowning detection

The Drowning Detection dataset from Roboflow, comprising 9,651 diverse images of

people in water, was used to train a model for early drowning detection. It enables
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the system to analyze body positions and movements to predict potential drowning and

trigger timely alerts [73].

1.8 Conclusion

This chapter provides a comprehensive overview of a smart dam monitoring system based
on Internet of Things (IoT) and artificial intelligence (AI) technologies, highlighting
the challenges associated with traditional systems and how to address them through
modern technological solutions. The shortcomings of manual monitoring were addressed,
particularly the difficulty of early detection of cracks or floating objects, and how Al can
enhance the effectiveness of such monitoring through real-time intelligent monitoring. We
also discussed the role of deep learning in analyzing images and videos to detect floating
objects, structural cracks, and drowning, using advanced models such as YOLO and
CNN. We also reviewed the types of sensors used to collect data, methods for transmitting
it using technologies such as LoRaWAN and Zigbee, and processing mechanisms, both
via cloud and edge computing. This chapter sets the stage for the practical aspects of
the following chapters, which will review the smart models used, the results of the tests,
and the extent to which this system can transform dam management, ensuring greater

safety and sustainability in the face of environmental and structural challenges.
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Chapter 2

Computer Vision , Deep Learning

for Smart Detection

2.1 Introduction

With the rise of artificial intelligence and computer vision, it’s now possible to detect and
track objects automatically and accurately. This technology is being used in many areas,
from security systems to self-driving cars and environmental monitoring. In the case of
dams, floating objects like trash or small boats can cause serious problems for both
operations and the environment. That’s why using smart systems for object detection
is becoming more important. This chapter introduces the technical background of our
project, including basic concepts of computer vision, object detection, deep learning
(especially YOLO), as well as data preparation, augmentation, and the tools we used

during development.
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2.2 Computer Vision

2.2.1 Definition of computer vision

Computer Vision, also known as Machine Vision, is a field that enables machines to
interpret and understand visual information from images or videos. It involves object
detection, localization, and tracking, aiming to simulate the human visual system. This
technology is widely applied in areas like security, quality inspection, and autonomous

driving[74].

2.2.2 The Importance of Computer Vision

Deep learning-based computer vision enables fast and accurate crack detection on dam
surfaces, minimizing manual inspections and reducing potential risks. [75]. These sys-
tems allow continuous automated monitoring of water bodies, detecting waste that
could obstruct flow or harm infrastructure. Advanced algorithms like YOLO and CNNs
can analyze high-resolution images and detect even small defects, enabling proactive

prevention.|[76, 77].

2.3 Deep learning-based object detection algorithms

Object detection algorithms play a key role in analyzing visual data, with continuous
advancements enhancing their accuracy and efficiency. This section highlights the main

algorithms used for detecting floating objects and cracks in dams

2.3.1 Faster R-CNN (Region Convolutional Neural Network)

Faster R-CNNis an advanced object detection model that uses a Region Proposal Net-
work (RPN) to generate candidate object regions. While it offers high accuracy, it is

slower than YOLOv3 due to complex operations like region proposal and classification.
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It also demands significant computational resources, making it less suitable for real-time

or high-speed applications that require quick response times. [78].

2.3.2 RetinalNet

RetinaNet is a popular object detection model known for addressing class imbalance
using Focal Loss, making it effective for detecting small or underrepresented objects. It
balances speed and accuracy but may be less suitable for detecting larger floating objects

like boats, where other models perform better[79].

2.3.3 YOLO (You Only Look Once)

YOLO (You Only Look Once)is a high-speed, real-time object detection model based
on CNNs. Introduced in 2016 by Joseph Redmon et al. [80], it predicts bounding boxes
and classes simultaneously through end-to-end training, achieving both fast inference

and high accuracy [80]. Below is an image showing the architectural structure of the

YOLO model

FIGURE 2.1: YOLO model architecture [81]

The model is divided into three main stages:

« Image Division into Cells: The first step in the YOLO algorithm is dividing the
input image into a grid of cells. Each cell in this grid is responsible for detecting
objects in its corresponding region. The size of the grid is denoted by S x S (e.g.,
3x3 grid), and each cell is tasked with predicting the location and the class of the

objects within its region[82].
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e T Cells =t

FIGURE 2.2: Divide the image into (S x S) grid

« Bounding Box Prediction for Each Cell: After dividing the image into cells,
each cell predicts a set of B bounding boxes, where each box includes the following
five components: x, y: the coordinates of the center of the bounding box relative
to the grid cell. w, h: the width and height of the bounding box relative to the
entire image. Confidence: a score that indicates the intersection over union (IoU)
between the predicted bounding box and the ground truth box. Each grid cell, in
essence, outputs a vector of predictions for each bounding box, and the confidence
score helps evaluate how well the predicted box overlaps with the actual object in

the image [80].

» Intersection over Union (IoU):Is a key metric in object detection used to
evaluate the accuracy of predicted bounding boxes. It is the ratio between the
overlapping area of the predicted and ground truth boxes to their combined area. A
higher IoU means a better prediction. Typically, a threshold (e.g., 0.5) determines
if a prediction is correct. IoU is crucial during both training and evaluation, as
it helps assess bounding box confidence by comparing overlap with ground truth.

[30).
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FIGURE 2.3: Intersection over union and example of IoU

o Anchor Box: After dividing the image into grid cells, each cell predicts a set of

B bounding boxes. Each box includes five key components: x and y represent the
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coordinates of the center relative to the grid cell, w and h indicate the width and
height relative to the entire image, and the confidence score reflects the Intersection
over Union (IoU) between the predicted and actual ground truth box. These
predictions form a vector that helps evaluate the accuracy of object localization

within each cell.

FIGURE 2.4: The predicted vector in the case of multiple boxes in the
cell and the tensor that specifies the bounding box

o« Non Maximum Suppression: In object detection, Non-Maximum Suppression
(NMS) is used to eliminate duplicate bounding boxes for the same object by keeping

only the one with the highest confidence score and removing the rest.[83]:

— Start by selecting the bounding box with the highest confidence score.

— Measure the Intersection over Union (IoU) between this box and the others.
— Remove any box that has an IoU greater than 50% with the selected box.
— Choose the next highest scoring box from the remaining candidates.

— Continue this process until all bounding boxes have been reviewed, ensuring

that only the most reliable detections are kept.

Sten 1 Sakecting Buuniing Shen X Db Boundieg S S Fnal Dupin
e with highasl sccre b widh hegh oreadagn

FIGURE 2.5: The output after different steps of NMS [84]
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YOLOv2 Model

YOLOvV2, developed in 2016 by Redmon and Farhadi, introduced key improvements
such as batch normalization, anchor boxes, high-resolution classifiers, and multi-scale
training. These enhancements boosted both speed and accuracy, achieving 76.8% mAP
at 67 FPS on PASCAL VOC 2007, and 78.6% mAP with 544x544 resolution [85]. It
also introduced YOLO9000, a unified model jointly trained on ImageNet and COCOQO,
capable of detecting over 9,000 object categories, achieving 19.7% mAP on classes with

detection labels and 16.0% on others, showcasing strong scalability [86].

YOLOv3 Model

YOLOv3, introduced in 2018, featured Darknet-53 as a new backbone with residual
connections and a deeper architecture, improving feature extraction. It supported multi-
scale predictions, boosting performance on objects of varying sizes. YOLOv3 achieved
57.9% mAP at IoU 0.5 with an inference time of 51 ms/image on a Titan X GPU, offering
performance comparable to RetinaNet but with significantly faster speed—making it one

of the most efficient detectors of its time [87].

YOLOv4 Model

YOLOv4, developed in 2020 by Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan
Mark Liao, achieved a balance between accuracy and speed in real-time object detection.
It introduced key innovations such as Mish activation, CmBN, WRC, CSP connections,
and Self-Adversarial Training (SAT). These enhancements enabled the model to reach
43.5% AP and 65.7% AP50 on MS COCO, running at 65 FPS on a Tesla V100 GPU.
YOLOv4 was optimized for strong performance even on standard GPUs, making it ideal

for real-time applications[88].
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YOLOv5 Model

YOLOV5, released by Glenn Jocher (Ultralytics) in 2020 and implemented in PyTorch,
improved upon YOLOv4 with a refined CSPDarknet53 backbone, enhanced neck com-
ponents (SPPF, CSP-PAN), and a YOLOv3-style head. It introduced AutoAnchor to
optimize anchor boxes per dataset and used advanced augmentation techniques like
MixUp, Mosaic, and random affine transforms. Available in multiple sizes (YOLOv5n—
YOLOv5x), it balances speed and accuracy, is open-source, and actively maintained by

the community[89].

YOLOv6 Model

YOLOV6, released in 2022, introduced a redesigned architecture with components like
the BiC module, SimCSPSPPF, and RepBi-PAN to boost detection efficiency. It com-
bines anchor-based and anchor-free methods through Anchor-Aided Training (AAT) and
improves small object detection via self-distillation. Available in versions (n, s, m, 1), it
achieves up to 52.8% AP. Like previous versions, it’s open-source, actively maintained,

and widely used in practice and research[90)].

YOLOvT7 Model

YOLOv7, developed in 2022 by Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan
Mark Liao, introduced key innovations like E-ELAN, planned re-parameterized convo-
lution, coarse-to-fine label assignment, trainable bag-of-freebies. Trained from scratch
on MS COCO (no pre-trained weights), it achieved 56.8% AP at 30+ FPS and 55.9%
AP at 56 FPS (YOLOvT7-E6) on an NVIDIA V100, outperforming models like SWIN-L
and ConvNeXt-XL. It set a new standard in real-time object detection by balancing

exceptional accuracy and high speed.[91].
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YOLOv8 Model

YOLOVS, released by Ultralytics in January 2023, is an advanced real-time object de-
tection model that builds on the YOLOV5 structure (backbone, neck, head) with major
enhancements. It features an anchor-free detection head for improved accuracy and
reduced errors, alongside optimized convolutional layers for better feature extraction.

The model supports tasks like instance segmentation and leverages FPNs for multi-
scale object detection. Based on an enhanced Darknet-53, YOLOvS achieves faster
and more efficient performance than YOLOv7. It offers an easy-to-use API, enabling
deployment on both embedded and cloud systems.

Available in variants like YOLOvS8n, s, m, 1, x, it provides flexibility across perfor-
mance and resource needs. These improvements made YOLOvS8 the model of choice in

this project. [92]

2.4 Related works

2.4.1 Detecting Floating Objects and Drowning People

Ref Year Title Approach Dataset Accuracy

93] 2023 Soft-NMS YOLOv5  en- Custom 86.3% mAP
YOLOv5  with hanced with dataset
SIOU for Small Soft-NMS  and
Water Sur- SIOU
face Floater

Detection
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Ref Year Title Approach Dataset Accuracy
[94] 2025 An  annotated YOLOvV9, IWHR_AI Label FYéaewdi1
Dataset and YOLOVS, (3000 67.7%,
Benchmark for YOLOvSs, images) YOLOvSs:
Detecting Float- Faster R-CNN, 66.2%,
ing Debris in RetinaNet, SSD, YOLOvb5s:
Inland Waters CenterNet2 65.9%,  Faster
R-CNN: 54.6%
[95] 2023 Detecting Float- YOLOv5-FF FODS-00-01 /
ing Objects on (6240 images)
the Surface of
Fresh Water En-
vironments
[96] 2024 MS-YOLO: A MS-YOLO Indoor  simu- Precision:
Lightweight and lated drowning 80.9%, Recall:
High-Precision dataset 7.8%, F1-Score:
YOLO  Model 82%, mAPQ0.5:
for  Drowning 86.4%
Detection
[97] 2023 Detection of YOLOv5s Special Dataset mAP@Q.5:
Floating ~ Ob- 92.01%,
jects on Water mAP@0.5:0.95:
Surface Us- 59.62%
ing  YOLOv5s
in an  Edge
Computing

Environment
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Ref Year

Title

Approach

Dataset

Accuracy

[98]

2024

Research on
Detection of
Floating Objects
in River and
Lake

on Al

Based
Intel-
ligent Image

Recognition

SSD, Faster R-

CNN, YOLOV5

Special Dataset

/

[99]

2021

Improved
YOLO  Based
Detection  Al-
gorithm for
Floating Debris

in Waterways

FMA-YOLOv5s

Custom
dataset (2400

river images)

mAP@Q.5:
79.41%

[100]

2024

Improved

YOLOvS8 Algo-
rithm for Water
Surface  Object

Detection

YOLOv8n-MSS

Special Dataset

mAP@0Q.5:
87.9%,
mAP@0.5:0.95:
47.6%

[101]

2024

Enhanced Water
Surface Ob-
ject  Detection
with

TaskAligned

Dynamic
Sample As-
signment  and

Attention Mech-

anisms

YOLOvS&s

/

mAP: 47.5%
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Ref Year Title Approach Dataset Accuracy
[102] 2023 An  Improved Enhanced Drone- mAP@O.5:
YOLOv5 Al- YOLOv5 (ICA captured 98.5%,
gorithm for Module, BiFPN) pool dataset mAP@(.5:0.95:
Drowning  De- 73.3%
tection in the
Indoor  Swim-
ming Pool
[103] 2024 Improved Auto- YOLOVS, Swimming and YOLOvVS:
matic Drowning YOLOv5  (for Drowning De- mAP = 90.1%,
Detection ~ Ap- comparison) tection Dataset YOLOv5: mAP
proach with = 88.5%
YOLOvVS
[104] 2025 WSEAS Trans- YOLOVS, Custom YOLOVS:
actions on ResNetb0, Xcep- Dataset 82.1%,
Information tion, CNN ResNet50:
Science and 83.4%,  Xcep-
Applications tion: 85.8%,
CNN: 66%
[105] 2023 An  Improved Improved Self-made Precision:
YOLOv5 Al- YOLOv5 dataset 98.1%, Re-
gorithm for call: 98.0%,
Drowning  De- mAP@Q.5:
tection in the 98.5%
Indoor  Swim-

ming Pool
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Ref Year Title Approach Dataset Accuracy

[106] 2024 Improved Auto- YOLOVS, Swimming and YOLOVS:
matic Drowning YOLOv5 Drowning De- 90.1%,
Detection  Ap- tection Dataset YOLOv5: 88.5%

proach with
YOLOvS8

Table 2.1: Recent studies on detecting floating objects and drowning cases.

The table above clearly demonstrates that YOLO models, in their various versions,
are the preferred choice in modern research on floating object detection and drowning
incidents. This is primarily due to their excellent balance of accuracy and real-time image
processing capability. Several studies have found that newer versions like YOLOv8 and
YOLOV9 perform better than older versions like YOLOvV5, as well as traditional models
like Faster R-CNN and SSD. Using custom datasets that reflect the true complexity of
aquatic environments also helps these models perform better. For my project, which
focuses on floating object detection in dams and early warnings of drownings, I chose
YOLOVS because it offers high accuracy, fast processing, and reliable results—key factors
when working in sensitive environments where rapid responses are critical. YOLOvS
excels in the field of computer vision, outperforming older versions like YOLOv5 and
slower models like Faster R-CNN. It achieves this through an anchorless detection head
and enhanced convolutional layers that help the model better capture important features.
Additionally, it uses feature pyramid networks (FPNs), which allow it to detect objects

of various sizes, even in complex water scenes.

2.4.2 Detecting cracks in dams
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Ref Year Title Approach Dataset Accuracy
[107] 2024 Concrete  Sur- YOLOvS-CD RDD2022 and RDD2022:
face Crack (Improvements  Wall Crack mAP50: 93.3%,
Detection ~ Al-  over YOLOvVS8n) mAP50-95:
gorithm  Based 77.6%
on Improved Wall Crack:
YOLOvS mAP50: 91.5%,
mAP50-95:
77.6%
[108] 2020 Real-Time Con- YOLACT 500 manually mAP: 29.8%
crete Crack annotated im-
Detection  and ages from 5
Instance Seg- open databases
mentation using
Deep  Transfer
Learning
[109] 2025 Data-driven YOLOv7, Mask / YOLOVT:
Detection and R-CNN mAP@OQ.5:
Evaluation 96.1%,  Speed:
of Damages 40 fps
in Concrete Mask R-CNN:
Structures mAP@OQ.5:
92.1%,  Speed:

18 fps
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Ref Year Title Approach Dataset Accuracy
[110] 2024 CL-YOLOvVS: CL-YOLOvS8 Extended mAP: 83.7%

Crack Detection (with ConvNeXt dataset of
Algorithm  for V2 and LSKA)  exposed  wall
Fair-Faced Walls surfaces
Based on Deep
Learning
[111] 2025 Intelligent Road YOLOvVS + 4,029 road sur- /
Crack Detection ECA + CBAM face images
and Analysis attention mech-
Based on Im- anisms
proved YOLOvVS
[112] 2023 A Novel Ap- YOLOvVS / Accuracy: 94%
proach for
Concrete Crack
and Spall De-
tection  Based
on Improved
YOLOvS
[113] 2024 Embedded YOLOvS + C2f- RDD20 (Road F1 Score: 57.3%
Road Crack Faster + SE At- Damage Detec-
Detection  Al- tention tion 2020)

gorithm  Based
on Improved

YOLOvVS
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Ref Year Title Approach Dataset Accuracy

[114] 2020 Detection ~ Of CNN Special data Precision:
Concrete Cracks 92.25%
using Dual-

channel  Deep

Convolutional
Network
[115] 2024 Bridge Bottom Faster R-CNN 4 Drone- Precision:
Crack Detection VGG-16 captured 92.03%, Recall:
and  Modeling high-resolution  96.54%
Based on Faster bridge images
R-CNN and
BIM
[116] 2023 Advanced Crack Faster R-CNN- / mAPQO.5:
Detection and ResNet50/101, 99.1%,
Segmentation RetinaNet- mAP@0.5:0.95:
on Bridge Decks ResNet50/101, 79.8%
Using Deep YOLOv7 Precision:
Learning 98.7%, Recall:
95.1%, F1 Score:
0.97

Table 2.2: Recent studies on concrete crack detection cases.

Using the YOLO (You Only Look Once) model for crack detection is an excellent
choice for several technical and practical reasons. First, YOLO boasts high image pro-
cessing speed, detecting objects in an image at once without the need for multiple stages.
This enables real-time or short-time inspection, essential for engineering applications
that require continuous and efficient monitoring. Second, YOLO has good accuracy in
locating small, scattered cracks on surfaces. The algorithm divides the image into a

grid and accurately analyzes each part, allowing for detailed defect detection. Third,
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YOLO is easier to use and train than some other, more complex models, making it
easier for researchers and engineers to set up and customize the model for their specific
crack dataset. Finally, YOLO offers an excellent balance between speed and detection
quality, making it suitable for use on devices with limited computing power while main-
taining high accuracy. Several recent studies have supported this trend, with improved
YOLOv8 models achieving significant performance, reaching accuracy rates above 90%
on widely used datasets. Other variants, such as YOLOv7, have demonstrated high accu-
racy combined with fast inference speeds, outperforming more resource-intensive models
like Mask R-CNN. Additional enhancements incorporating attention mechanisms have
further boosted the model’s ability to intelligently detect cracks on various surfaces.
These results confirm the ability of modern YOLO models to provide accurate and rapid
crack detection compared to other methods, making them a practical and effective choice
that meets the dual requirements of accuracy and speed, which explains their widespread

adoption in modern engineering research and applications.

2.5 Conclusion

In this chapter, we learned how to use deep learning techniques to detect objects, flood-
ing, and cracks in dams. We chose the YOLOv8 model to perform these tasks due to its
high detection capabilities in real time and with good accuracy. The next chapter will
discuss the structure and features of this model in detail. Overall, using YOLOVS is an
effective step toward developing an intelligent system capable of quickly detecting threats

or faults, enhancing safety and operational efficiency in dam-related environments.
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Chapter 3

Conception

3.1 Introduction

In this chapter, we propose an integrated approach for detecting cracks, drowning inci-
dents, and floating objects in dam environments. We will explore the intricate architec-
ture of the YOLOvV8 model, as well as the procedures for data preparation and model

training. This chapter outlines the system objectives, architecture, and design steps.

3.2 System Goals

The goal of this project is to build a deep learning-based system that enhances dam
safety monitoring by automatically detecting critical threats. The system targets three
main tasks: detecting floating objects, identifying potential drowning situations, and
recognizing cracks in dam concrete. A digital camera, functioning as an optical sensor,
is used to periodically capture images of the dam’s water surface and concrete struc-
tures. These images are analyzed by a pre-trained YOLOv8 model to identify objects
or anomalies. This approach combines deep learning with IoT principles, offering a real-
time, automated solution that improves the efficiency and accuracy of hazard detection

in dam environments.
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3.3 Architecture of the System

The deployed system follows a real-time operational architecture designed to detect haz-
ards in dam environments using Al and IoT technologies. It begins with smart IoT
cameras installed in critical locations to continuously capture live image streams. These
visual inputs are processed by a pre-trained deep learning model (YOLOVS), which iden-
tifies potential risks such as floating objects, drowning individuals, or structural cracks.
The detection results are sent to a centralized dashboard interface, where alerts are vi-
sually displayed. Each alert includes the location of the hazard on an interactive map,
a snapshot of the incident, the detection time, and relevant metadata. This real-time
interface helps dam operators monitor and respond to critical situations promptly and

effectively.

loT Cameras
(Real-time fead)

i

Al Model (YOLOvE)
Floating objects
Drowning detection
Crack detection

Analysis and Risk Detection

Alerts & Warning Syste

Operator f Authorities

FIGURE 3.1: Global architecture
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3.4 Data Acquisition

In our system, fixed digital cameras are strategically installed around the dam to peri-
odically capture images of the water surface and concrete structures. This setup ensures
stable, clear visuals that accurately reflect the environment. The captured images are
directly analyzed by a pre-trained YOLOv8 model to detect floating objects, potential
drowning cases, and cracks. This real-time visual data enables continuous monitoring

and early hazard detection, enhancing overall dam safety..

3.5 Preprocessing and Model Training for Floating
Object Detection

3.5.1 Data Collection

The dataset for floating object detection was carefully selected to ensure realism and
diversity. The Marine Dataset from Roboflow was chosen for its richness, containing
14,278 images across six categories: boat (5,910), buoy (1,663), ship (3,356), sinker
(535), swimmer (2,198), and trash (1,187). It is split into training (92.34%), validation
(5.73%), and test (1.93%) sets. With accurate annotations and varied visual conditions
(lighting, angles, environments), this dataset is ideal for robust model training in dam-

like settings. [70].

FIGURE 3.2: Some Pictures from Marine Dataset [70]
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3.5.2 Data Preparation
Data Cleaning

A rigorous data cleaning process was applied to ensure quality and consistency. Low-
quality, blurred, unlabeled, or incorrectly annotated images were removed, along with
duplicates to avoid overfitting. Categories irrelevant to this task, such as ”sinker” and
"swimmer,” were excluded, as this part focuses on general floating object detection.
These categories were addressed separately in Part 3 using a specialized drowning de-

tection dataset.

Dataset Splitting

After cleaning, the dataset was restructured to ensure balanced learning. It was re-split
into training (7,634 images — 79.99%), validation (955 images — 10.01%), and testing
(955 images — 10.01%) subsets. This repartitioning guarantees fair sample distribution,
enabling effective model training, reliable hyperparameter tuning, and proper evaluation

on unseen data.

Challenges Faced in Data Preparation

During dataset analysis, we identified a class imbalance, with the trash category sig-
nificantly underrepresented. To correct this without distorting class proportions, we
applied a filtering step to select only images containing trash objects exclusively. This
ensured that augmentation was applied in a controlled, class-specific manner. If we had
augmented mixed-content images, it would have defeated the purpose of class balancing.
After augmentation, trash instances increased from 929 to 1,730 objects across 1,465

images, improving the model’s ability to detect this underrepresented class.

Augmentation

We applied the following transformations using the Albumentations library:
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« A.HorizontalFlip (p=0.5): Simulates orientation changes by flipping the image

horizontally, reflecting real-world water movement.

A.RandomRotate90 (p=0.5): Introduces rotation to help the model recognize

objects from different angles due to current or wind.

+ A.RandomBrightnessContrast (p=0.5): Adjusts lighting to reflect natural

variations like sunlight, shadows, and reflections.

o A.HueSaturationValue (p=0.5): Alters color properties to mimic differences

in water quality, cameras, or time of day.

o A.MotionBlur (p=0.3): Adds blur effects to simulate motion from waves or

camera shifts, enhancing robustness.

It is important to highlight that augmentation was deliberately limited. The filtering
process narrowed the selection to images containing only trash objects, which repre-
sented a small subset of the dataset. Expanding augmentation beyond this would have

compromised class purity and potentially introduced unwanted noise or imbalance.

FI1GURE 3.3: Distribution of categories before and after the augmentation
process

3.5.3 Which Version Did We Choose and Why?

In this part, we chose the YOLOv8n model for the detection of floating objects in dam

environments due to several technical and practical advantages:
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o Lightweight and Fast Inference: YOLOvS8n is the smallest and fastest model
in the YOLOvS8 family, making it ideal for real-time applications and deployment

on edge devices with limited computational resources.

o Strong Performance with Multi-Scale Objects: The model incorporates FPN
(Feature Pyramid Network) and PANet structures, enabling effective detection of
objects at various scales—from very small to large—within the same image. This
is especially important given that the dataset includes floating objects of different

sizes.

« High Accuracy Despite Simplicity: YOLOv8n offers competitive accuracy
despite its lightweight nature, thanks to architectural improvements such as C2f

modules and better internal information flow.

o Easy to Train and Deploy: YOLOvS8n integrates seamlessly with the Ultralytics
framework, providing streamlined tools for training, validation, evaluation, and

model export in formats such as ONNX or TorchScript.

o Flexible and Customizable: The model is highly adaptable to the specific
needs of the project, including custom classes, image resolutions, and preprocessing

strategies, allowing fine-tuned performance.

e Strong Community Support and Reliability: YOLOvVS benefits from an ac-
tive and growing community, with extensive documentation, frequent updates, and

community-driven troubleshooting, ensuring reliable and sustainable use.

3.5.4 Train Model on Our Data
Hyperparameter Choices to Train YOLOvVS8

The training process included two main phases: a warm-up stage focused on the detection
head, followed by fine-tuning of the entire network. In both phases, key hyperparam-

eters were carefully selected to match the dataset characteristics and the challenges of
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detecting floating objects. The table below summarizes these hyperparameters, their

values, and selection rationale.

Hyperparameter Value Phase 1

Value Phase 2 Explanation & Justification

epochs

patience

imgsz

batch

optimizer

Ir0

Irf
weight__decay
cos_Ir

freeze

mosaic

mixup

hsv_h

hsv_s

hsv v

90

20

640

16

Adam

le-4

0.1

0.015

0.7

0.4

180

20

768

32

Adam

5e-5

0.001

0.001

True

0.5

0.1

0.015

0.7

0.4

Balanced between learning progres-

sion and overfitting prevention.

Early stopping patience (if no im-

provement).

Larger image size helps better de-

tect small floating objects.

Batch size adapted to memory,

larger in Phase 2.
Adaptive optimizer.
Initial learning rate.
Final learning rate ratio.
Regularization parameter.
Cosine LR schedule.
Frozen layers in phase 1.
Mosaic augmentation.
Mixup augmentation.
Hue shift.

Saturation shift.

Brightness variation.
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Hyperparameter Value Phase 1 Value Phase 2 Explanation & Justification

translate 0.1 0.1 Translation augmentation.
scale 0.3 0.3 Scale augmentation.
degrees 10.0 10.0 Rotation augmentation.
fliplr 0.5 0.5 Horizontal flip.

save True True Save checkpoints.

save_ period 10 10 Save every 10 epochs.
exist_ ok True True Overwrite existing folders.

TABLE 3.1: YOLOvVS8 Training Configuration for Detection of Floating
Objects

3.6 Preprocessing and Model Training for Detection

Cracks in Dams

3.6.1 Data Collection

Selecting a suitable dataset for crack detection in dams was challenging, as it required
the inclusion of both crack and crack-free (void) images to ensure balanced training and
reduce false positives. To meet this need, we combined two complementary datasets.
The SDNET2018 dataset from Kaggle, comprising 56,092 images, was used as the main
source for crack-free samples. From its three surface classes, we selected the one that
best resembles dam concrete textures to ensure realism. For cracked images, we used
dawgsurfacecrackssag, available on Roboflow, which includes 23,008 high-quality, labeled
crack images. The merging of both datasets resulted in a balanced dataset of 28,574
images, equally split between crack and no-crack categories (14,287 each) [71, 72]
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FIGURE 3.4: Some Pictures from dawgsurfacecrackssag Data [71, 72]

3.6.2 Data Preparation
Dataset Merging

To create a balanced dataset for crack detection, we merged two sources: dawgsur-
facecrackssag (for cracked images) and SDNET2018 (for non-cracked surfaces). Both
datasets were standardized in format and labeling. This combination allowed the model
to better distinguish between cracked and intact areas, enhancing detection accuracy

and reducing false positives.

Balancing the Dataset by Synchronizing the Number of Images per Class

To address class imbalance, the dataset was balanced by reducing the size of the larger
class to match the smaller one. This step ensured equal representation of cracked and
non-cracked images during training, improving the model’s generalization and reducing

the risk of overfitting to the majority class.

Divide Data

After merging the two datasets, the unified set was split into training (70.01%), valida-
tion (19.98%), and testing (10.01%) subsets, totaling 20,001, 5,714, and 2,859 images,
respectively. Annotation files were carefully aligned with their corresponding images to

preserve data integrity and ensure accurate model training and evaluation.
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Total Daladst Datributicn Diidribaficn par Spll

ey

B l

FIGURE 3.5: Distribute Images for the Combined Dataset (Detection
Cracks)

Challenges Faced in Data Preparation

o Absence of Tag Files in Background Images: Images without cracks were not
accompanied by tag files, while detection models require a tag file for each image.

Blank files were created for these images to maintain data structure consistency.

« Maintaining Image and Label Consistency During Segmentation: When
segmenting the data into training, validation, and test sets, it was essential to
ensure that each image was transmitted correctly with its label file to avoid any

loss of information.

3.6.3 Which Version Did We Choose and Why?

In this study, the YOLOv8-Nano model was selected for crack detection tasks due to

several key advantages:

« Lightweight and Real-Time Capabilities: YOLOv8-Nano is a highly efficient,
lightweight model (< 5MB), designed for fast inference on low-power or embedded

devices.

e Superior Detection of Small Cracks: Cracks are often thin, faint, and difficult
to detect. YOLOvVS introduces anchor-free heads, refined receptive fields, and

enhanced multi-scale feature extraction.
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e Scalability to Large and Irregular Cracks: Thanks to its improved neck
architecture and feature fusion (FPN/PAN), YOLOv8n can accurately detect long,

irregular surface cracks.

e Fast Training and Easy Customization: Due to its small size and optimized

architecture, YOLOvS8n trains quickly and adapts well to new datasets.

¢ Modern Features and Robust Performance: YOLOv8n includes modern en-

hancements such as improved frame resolution handling.

o Edge Deployment Ready: Its minimal size and computational efficiency allow
YOLOv8n to be deployed on low-resource devices without needing cloud infras-

tructure.

o Performance Comparison with Larger Models: Although a larger model
such as YOLOvV8-M was also tested, it yielded slightly lower performance in this
specific task, with a mAP50 of 78% and mAP50-95 of 92%, compared to the higher
performance achieved by YOLOv8-Nano.



Chapter 3. Conception 46

3.6.4 Train Model on Our Data

Hyperparameter Choices to Train YOLOv8-n

Hyperparameter Value Explanation & Justification

epochs 50 Provides sufficient training while avoiding
overfitting.

patience 10 Allows early training to be stopped if the
model is not improving.

imgsz 640  Image size that balances resolution and
memory consumption.

batch 16 Batch size compatible with available memory

o on GPU. )
optimizer Adam To achieve stable convergence speed using

adaptive learning rate.
Ir0 0.001 A moderate initial learning rate speeds up

model learning.
Irf 0.01 A low end learning rate ratio helps to grad-

ually reduce the learning rate.
warmup__bias_Ir 0.1 A custom learning rate for biases at the be-

ginning of training.

TABLE 3.2: YOLOvVS Training Configuration for Detection of Cracks in
Dams

3.7 Preprocessing and Model Training for Detection

Drowning at Dams

3.7.1 Data Collection

For the drowning detection task, the publicly available “Drowning Detection” dataset
from Roboflow was used. Originally composed of three categories (non-swimming, swim-
ming, drowning), the dataset was refined to include only swimming and drowning cat-

egories, excluding non-swimming due to its limited diversity and low relevance. After
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filtering, 9,046 images remained and were split as follows: 70% for training (7,197 im-

ages), 15% for validation (1,099 images), and 15% for testing (750 images)[73].[73].

FIGURE 3.6: Some Pictures from Drowning Detection Dataset [73]

Images and Objects per Class

N Unigue Images
B Objects

8000

6000 -

Count

4000 -

2000 -

Drowning Swimming

F1cURE 3.7: Distribute Images and Objects into Categories

3.7.2 Data Preparation
Data Cleaning

As part of preprocessing, a data cleaning step was performed to ensure the quality and
relevance of the drowning detection dataset. Images lacking label files or containing
incorrect annotations were removed. Only properly labeled images with Swimming and
Drowning instances were kept. The validated data were then organized under a cleaned-

dataset structure, maintaining the original train/val/test split.
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Challenges Faced in Data Preparation

o Class Imbalance and Irrelevant Labels: The “not swimming” class was un-

derrepresented and included irrelevant data. It was excluded to avoid noise.

o Cleaning and Filtering the Labels: Scripts were used to remove annotations

related to the excluded class and adjust remaining labels.

o Maintaining Dataset Consistency: Ensuring dataset integrity after modifying

label files was critical.

e Class Re-indexing and YAML Configuration: Class indices were updated

consistently across all splits, and the data.yaml file was modified.

o Verifying Final Distribution: Confirming the final image and object distribu-

tion per class was essential.

o Avoiding Data Leakage and Split Validation: Care was taken to ensure

proper data splitting ratios without overlap.

3.7.3 Which Version Did We Choose and Why?

For the task of detecting drowning in aquatic environments, the YOLOv8-M model was

chosen for the following reasons:

o Higher Accuracy: YOLOvV8-M outperformed both YOLOvV8-N and YOLOvVS-S

models in training.

o Better Generalization in Aquatic Environments: The model effectively han-

dles complex aquatic scenes.

« Reliable Detection of Isolated Objects: YOLOvV8-M has a better ability to

detect partially submerged or partially visible individuals.

« Balanced Performance: It provides an ideal balance between computational

cost and detection accuracy.
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3.7.4 Train Model on Our Data

Hyperparameter Choices to Train YOLOvV8-m

Hyperparameter Value

Explanation & Justification

epochs 50
imgsz 640
batch 16
optimizer SGD
Ir0 0.001
Irf 0.01
amp True
patience 10
workers 2

Provides enough training cycles for effective

learning without overfitting.
A standard input size that balances detection

%uality and resource usage.
uitable for available GPU memory in Kag-

le.
Preferred for better generalization and stable

learning.
An appropriate initial learning rate for a

medium-sized model.
A suitable final learning rate factor that al-

lows %radual convergence.
Enables mixed-precision training to reduce

memory usage.
Enables early stopping if no improvement is

seen over 10 epochs.
Set low to avoid data loading issues in Kag-

gle.

TABLE 3.3: YOLOvS8 Training Configuration for Detection of Drowning

Incidents

3.8 Training Constraints and Challenges

During the training of our models, we encountered several constraints that significantly

impacted the workflow and training efficiency:

o Google Colab Limitations: GPU sessions were unstable and frequently discon-

nected.

o Session Expiration Before Completion: Both in Colab and Kaggle, session

time limits terminated training prematurely.
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Transition to Kaggle: Kaggle provided more consistent resources, but training

still took considerable time.

Time Constraints: Managing large datasets and training deep learning models

requires significant computational time.

Limited Hyperparameter Experimentation: GPU memory limitations re-

stricted experimentation with certain hyperparameters.

3.9 Model Configuration

3.9.1 Why YOLO Was Chosen

High Inference Speed for Real-Time Applications: YOLO offers high-speed

inference, crucial for water surface monitoring.

Excellent Balance Between Accuracy and Speed: YOLO offers a favorable

trade-off compared to region-based detectors.

Lightweight and Edge-Device Friendly: Optimized for deployment on low-

resource devices.

Ease of Customization and Retraining: Supports fast fine-tuning on custom

datasets.

All-in-One Framework with Developer Support: Provides a complete object

detection pipeline with strong community support.

Improved Detection of Small and Overlapping Objects: Enhances perfor-

mance on small and partially occluded objects.

Active Community and Continuous Development: Ensures regular updates

and access to learning resources.
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3.9.2 YOLOvVS8 Architecture

YOLOVS is the latest evolution in the YOLO family of models, built to handle com-
plex computer vision tasks such as object detection, image classification, and instance
segmentation. The model benefits from a redesigned backbone, neck, and head, inte-
grating more efficient convolutional layers. YOLOvS8 adopts an anchor-free detection
head, which simplifies bounding box prediction and enhances detection precision. It also
supports instance segmentation, allowing differentiation between multiple instances of
the same class within a single image. The backbone, inspired by the Darknet-53 ar-
chitecture, has been optimized to extract more detailed features through larger feature
maps. Additionally, it incorporates Feature Pyramid Networks (FPNs), enabling robust

performance when detecting objects of diverse sizes in a single frame.
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3.10 Conclusion

In conclusion, this chapter provided a detailed examination of the training process for

the YOLOvVS8 model within the context of our dam monitoring system. We explored

the system’s architecture, the data preparation for each of the three detection tasks—

floating object detection, drowning detection, and crack detection—as well as the specific

setup and training procedures of the model. This chapter lays the foundation for under-

standing the technical implementation, with the resulting performance and analysis to

be presented in the next chapter.
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Chapter 4

Implementation

4.1 Introduction

An integrated development environment (IDE) including software and hardware tools
was adopted to design and implement the smart dam monitoring system. In this project,
we used a set of programming languages, frameworks, and libraries appropriate for each
task, along with an execution environment that supports efficient training and testing.
In this chapter, we will review the components of the development environment used,
including hardware and software, then explain the steps for implementing the system and
the techniques adopted at each stage. We will also present the most significant challenges
we faced during development, and finally present the results obtained to evaluate the

model’s performance in each task.
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4.2 Development Environment

4.2.1 Characteristics of the Material Used

Model Part  Used Laptop

Processor Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz

RAM 8.00 GB )
System type 64-bit Operating System, x64-based processor

Edition Windows 10 Pro

TABLE 4.1: Characteristics of the material used.

4.2.2 Hardware Environment

Google Colaboratory: Google Colab is a free cloud-based platform that lets users
write and run Python code directly in the browser with no setup required. It supports
free GPU and TPU usage, making it ideal for machine learning and data science. As an
extension of Jupyter Notebooks, it stores files on Google Drive and facilitates easy sharing
and collaboration. [118]. Kaggle: Kaggle is Google’s advanced cloud platform for data
science and machine learning. It offers an interactive, browser-based environment for
developing and testing models without local setup. Users can upload datasets, use
Jupyter Notebooks, and access GPUs like NVIDIA Tesla P100/T4 and TPUs (e.g.,
TPU v3-8) to accelerate deep learning tasks. The platform provides 13 GB RAM, up to
70 GB cache, and 30 free GPU hours per week. With support for CPUs and a strong
global community, Kaggle is ideal for experimentation, learning, and participating in

data science competitions.

4.2.3 Software Environment

Python: Python is a versatile and easy-to-learn programming language known for its
clear syntax, dynamic typing, and strong support for object-oriented programming.
As an interpreted language, it enables rapid development and is widely used in both
education and professional fields due to its readability, flexibility, and rich standard

library[119]. PyTorch: PyTorch is an open-source deep learning framework written in
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Python, known for its flexibility and ease of use. It supports GPU acceleration, reverse-
mode auto-differentiation, and dynamic computation graphs, making it ideal for tasks
like image recognition and language processing, as well as rapid experimentation and
prototyping [120].

Jupyter Notebook: Jupyter Notebook is a free, open-source web-based tool for
creating and sharing interactive computational documents. Originally called IPython
Notebook, it was renamed in 2014. It supports over 40 programming languages, in-
cluding Python, R, and Scala, making it ideal for both education and research. [121].
OpenCV: Open Source Computer Vision Libraryis an open-source library used for im-
age processing, computer vision, and machine learning. It offers over 2,500 optimized
algorithms for tasks like object recognition, face detection, 3D vision, robotics, and aug-
mented reality. Supporting multiple languages (Python, C++, Java) and operating sys-
tems, it is a powerful and flexible tool widely adopted in Al and computer vision research
[122]. Matplotlib: Matplotlib is a Python library for data visualization and graphical
plotting, supporting various platforms. It enables the creation of different types of charts
like histograms, scatter plots, and bar graphs. When used with NumPy, it becomes a
powerful tool for scientific and numerical visualization. As an open-source alternative
to MATLAB, Matplotlib offers flexible APIs that allow developers to integrate plots
into GUI applications [123]. Albumentations: Albumentations is a high-performance
image augmentation library designed to enhance deep learning models in computer vi-
sion. It offers a variety of transformations—Ilike rotation, flipping, brightness changes,
and noise addition—to boost training data diversity, especially for small or imbalanced
datasets. Widely used in industry and research, it integrates smoothly with frameworks
like PyTorch and TensorFlow, helping models generalize better across diverse data[124].

Streamlit: Is an open-source Python framework that allows data scientists and
AI/ML engineers to rapidly build interactive data applications with minimal code. It
enables quick development and deployment of dynamic apps, making it as simple to use
as installing a standard Python library. [125]. Folium: Folium is a powerful Python

library that combines Python’s data processing with Leaflet.js’s mapping capabilities.
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It enables the creation of interactive maps and geospatial visualizations, which can be
shared as HTML files or embedded in web apps—making it ideal for analyzing and
displaying geospatial data.[126].

4.3 Training and Validation

The model has been trained and is now in the validation phase to evaluate its perfor-
mance. To ensure the highest level of efficiency, the training process was continuously
monitored. We will review the training results according to the project’s three main

axes: detecting floating objects, monitoring flooding, and detecting dam cracks.

4.3.1 Training and Validation Visualizations

In this section, we present selected examples of validation training images in each task:

4.3.2 Training and Validation Visualizations

1. Detection of Floating Objects

FIGURE 4.1: Train and Validation batches (floating objects).

2. Detection of Cracks in Dams
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3.

FIGURE 4.2: Train and Validation batches (cracks in dams).

Detection of Drowning at Dams

FIGURE 4.3: Train and Validation batches (drowning at dams).

4.3.3 Train/Val Metrics

Metrics used for evaluation include:

True Positives (TP): Instances where the model correctly identifies a positive sam-

ple.

False Positives (FP): Instances where the model incorrectly classifies a negative

sample as positive.

True Negatives (TN): Instances where the model correctly identifies a negative

sample.

False Negatives (FN): Instances where the model incorrectly classifies a positive

sample as negative.
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Mean Average Precision (mAP): Measures the model’s capacity to reliably recog-

nize objects.

Intersection over Union (IoU): Estimates the overlap between predicted and ground

truth bounding boxes.

Precision:
brecision — TP
recision = TP + FP
Recall:
TP
l=———
Reca TP - TN

. Detection of Floating Objects The model was trained using a two-stage strat-

egy: freezing the first 10 layers for 90 epochs, then fine-tuning all layers for 180

epochs.

FIGURE 4.4: Results of floating objects.
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Class Images Instances Precision Recall mAP50 mAP50-95

all 955 1828 0.756  0.728 0.77 0.466
boat 266 794 0.788  0.816 0.859 0.509
buoy 158 480 0.676  0.487 0.535 0.218
ship 315 447 0.727  0.776 0.797 0.43
trash 95 107 0.834  0.832 0.887 0.709

TABLE 4.2: Results of train set of floating objects.

Class Images Instances Precision Recall mAP50 mAP50-95

all 955 1828 0.75  0.727 0.761 0.471
boat 266 794 0.777  0.805 0.844 0.481
buoy 158 480 0.637  0.465 0.512 0.224
ship 315 447 0.703  0.727 0.75 0.393
trash 95 107 0.884 0.913 0.937 0.788

TABLE 4.3: Results of test set of floating objects.
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FIGURE 4.5: Confusion matrix and Matrix Normalized (floating objects).

2. Detection of Cracks in Dams The model was trained on 50 epochs.
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FIGURE 4.7: Confusion matrix for cracks in dams.

Dataset  Images Instances Precision Recall mAP50 mAP50-95

Train set 2714 3027 0.995  0.935 0.981
Test set 566 794 0971  0.923 0.974

TABLE 4.4: Results of test and train set for cracks in dams.



Chapter 4. Implementation

3. Detection of Drowning at Dams The model was trained on 50 epochs.

AP Metras Prrcaion £ Aecad
] | e e —— — -
an 4 — AN e | CUT > T e T
— AT
/ 2 N
y ,
f bl |/
af
|
.
|
.
® P W
Trareng and Vakdabion Lass
an
Lo .Iul
fuo
L
E F =
—
FIGURE 4.8: Results of drowning at dams.
Confusion Matrix
500
»
400
300
= 200
E =100
Q 5 31
:
3
. . _ S
Drowning swimming background
True

FI1GURE 4.9: Confusion matrix of drowning at dams.



Chapter 4. Implementation

62

Class Images Instances Precision Recall mAP50 mAP50-95
all . 1099 1959 0.902  0.887 0.935 0.598
Drowning 720 788 0.914  0.911 0.946 0.634
Swimming 553 1168 0.891 0.862 0.924 0.561
TABLE 4.5: Results of train set of drowning at dams.
Class Images Instances Precision Recall mAP50 mAP50-95
all _ 750 1147 0.807  0.801 0.809 0.517
Drowning 433 461 0.751  0.889 0.78 0.539
Swimming 394 686 0.864 0.712 0.838 0.494

TABLE 4.6: Results of test set of drowning at dams.
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4.4 Test, Results, and Discussion

4.4.1 Test Results

anginal Resuits

FIGURE 4.10: Inference Results on Test Images.
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Tasks Floating ObIjects Drowning Cracks
Model Yolov8n Yolov8m Yolov&n Yolov&s Yolov&m Yolov&n
mAP50 0.77 0.68 0.905 0.935 0.935 0.981
mAP50-95 0.466 0.38 0.54 0.579 0.598 0.828
Recall 0.728 0.63 0.85 0.886 0.887 0.935
Precision 0.756 0.67 0.867 0.907 0.902 0.955

TABLE 4.7: Training models results.

Tasks Floating Objects Drowning Cracks
Model Yolov8n Yolov8m Yolov&n Yolov8s Yolov8m Yolov&n
mAP50 0.466 0.41 0.766 0.787 0.809 0.974
mAPH0-95 0.77 0.72 0.467 0.488% 0.517 0.802
Recall. 0,727 0.637 0.775 0.815 0.801 0.923
Precision 0.75 0.668 0.763 0.789 0.807 0.971

TABLE 4.8: Test models results.

4.4.2 Discussion

The results obtained across the three core tasks—floating object detection, drowning
detection, and crack detection—highlight the ability of the YOLOvS architecture to
adapt to diverse visual environments and operational constraints. Each task brought
forth unique challenges, ranging from small-scale object variability to complex human
movement patterns and fine-grained texture analysis.

In the floating object detection task, the use of YOLOvS8n resulted in a more favorable
balance between detection accuracy and consistency. It achieved a test mAP50 of 0.466
and a mAP50-95 of 0.77, with a precision of 0.75 and recall of 0.727. While the overall
detection of objects such as trash and boat remained strong, categories like buoy—
typically smaller and visually ambiguous—posed greater challenges. Comparatively, the
YOLOv8m model showed lower generalization capacity, with a test mAP50 of 0.41,
suggesting that the lightweight version (YOLOv8n) handled the task more effectively,
particularly in scenarios involving small object sizes and cluttered water surfaces.

For drowning detection, performance was significantly enhanced with the use of the
YOLOv8m model, which yielded a test mAP50 of 0.809, mAP50-95 of 0.517, precision
of 0.807, and recall of 0.801. These results were further supported during training,
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where the model reached a recall of 0.887 and mAP50 of 0.935. Such metrics indicate
high responsiveness in identifying early-stage drowning behaviors, despite the visual
complexity of dynamic human movement in water.

The crack detection task consistently exhibited the highest performance across all
evaluations. The YOLOv8n model achieved a training mAP50 of 0.981 and test mAP50
of 0.974, alongside exceptional precision (0.971) and recall (0.923) in the test phase.
These values reflect the model’s strong capacity to learn and generalize thin, high-
contrast patterns across varied surfaces.

In summary, the results reflect how different configurations of YOLOvVS excel in
different contexts: YOLOvS8n for small-scale object detection in floating debris scenarios,
YOLOv8m for capturing complex human-water interactions in drowning detection, and

YOLOvS8n again for high-precision structural crack analysis.

4.5 System Interface

The main interface allows users to choose the type of detection by displaying a drop-down

list of the three types.

@ i Dam Monitoring System

%

N Floating Ot eetin _ (rcketcien o Do et

FIGURE 4.11: Interface main of our system.
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The home page also contains a dashboard button that takes users to another page
showing the hazard’s location, type, time, day, and type on a map. It also shows the

number of detected cases across the system’s three tasks.

O detbd [1] pashboard Dam Monitoring System

B

0.. . ; ;

Incidents Location Overview

+

F1GURE 4.12: Dashboard page.

The latter contains a Reset button allows you to reset or restore the initial state
of the interface. Below is a demonstration of how the system works to detect floating

objects and react to alerts in practice Here we put a pucture with waste:

FIGURE 4.13: Detection Process (objects).

Here we see that it actually appeared in the notifications and its location also ap-

peared.
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FIGURE 4.14: Detection alert (objects).

Here we also put a picture of the drowning detection:

© Main petecion woa Drowning Detection
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FIGURE 4.15: Detection Process (drowning).

We see that the system has also detected it and the number of alerts has increased:

1 oo
Main Detection

© ounbaurs (L] Dashbhoard Dam Monitoring System
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Incidents Location Overview

B &*
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FIGURE 4.16: Detection alert (drowning).

This image shows the information card that appears after the examination:
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Incidents Location Overview

FIGURE 4.17: Information card that appears after the examination.

4.6 Conclusion

This chapter reviews the practical aspects of a smart dam monitoring system designed
to detect three types of potential hazards: floating objects on the water surface, sinking
conditions, and cracks in dam structures. Advanced computer vision and deep learn-
ing techniques were employed using YOLOv8 models after careful dataset preparation,
including integration and data augmentation techniques.

The chapter begins with a detailed explanation of the training plan followed, identify-
ing the settings and programming environments used to develop the models, whether on
local computers or using cloud services such as Google Colab. Experimental performance
results were then presented for each task, focusing on detection accuracy, response speed,
and model performance in realistic scenarios simulating dam operating conditions.

The results demonstrated that the system is capable of providing accurate indicators
of hazards, paving the way for its adoption as an aid in early monitoring and decision-
making processes. This project highlights the great potential of employing artificial
intelligence in developing smart solutions to protect critical infrastructure and repre-
sents an important step towards an automated and effective monitoring system that

contributes to reducing risks and improving response in water resources management.
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(General conclusion

This project presents a practical and forward-looking approach to enhancing dam safety
using artificial intelligence. A smart monitoring system was developed to address three
critical challenges: detecting floating objects on the water surface that may obstruct
dam operations, recognizing early signs of drowning incidents to enable timely inter-
vention, and identifying structural cracks in dam walls as a preventive measure. The
system relies on modern Al-based object detection techniquesYOLO, and was trained
on carefully prepared and diverse datasets for each task. Specific attention was given
to the complexity of drowning detection, which often involves subtle human movements,
varying postures, and partial submersion—making it one of the most challenging scenar-
ios to address. Thanks to robust data preparation, targeted augmentation, and careful
class balancing, the system achieved strong performance across all tasks, even in vi-
sually complex or cluttered environments. One of the strengths of this solution is its
ability to run on low-cost, resource-limited devices, making it highly applicable in remote
or under-equipped environments. , making it suitable for real deployment in resource-
constrained dam facilities. This project sets a solid foundation for future improvements,
such as integrating real-time sensor data, testing in live dam environments, enhancing
the user interface for rapid response, and expanding datasets to improve generalization.
Ultimately, it demonstrates how Al can be used not only to monitor infrastructure but

also to help save lives through early detection and timely action.
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Chapter 5

Annex startup

5.1 Axe 01: Project Presentation

5.1.1 Project Idea

Our project involves developing an Al-powered smart system for dam monitoring and
early hazard detection, focusing on safety and prevention. The idea emerged after con-
ducting a field study and reviewing reports that revealed critical challenges facing dams
in Algeria, such as the accumulation of floating objects, unobserved drowning incidents,
and structural cracks. We are working on designing a scalable prototype of a smart plat-
form that analyzes images captured by surveillance cameras installed around the dam.
The system automatically detects floating objects, signs of drowning, and cracks in the
structure using trained artificial intelligence models. Detected hazards are visualized
on an interactive map, and immediate alerts are sent to the relevant authorities. The
project is being developed by the Department of Computer Science as part of a university

graduation project.

Avoiding Mechanical Failures and Downtime: Floating objects such as logs, de-
bris, or boats can obstruct turbines and intake systems. Early detection helps maintain

continuous operation and reduces emergency maintenance needs.



Chapter 5.  Annex startup 71

Enhancing Safety by Detecting Drowning Incidents: Real-time analysis of surveil-
lance images enables quick detection of drowning cases, allowing immediate rescue ac-

tions and reducing the risk of fatalities.

Protecting the Environment and Ecosystem: Identifying floating waste helps pre-

vent water pollution and supports ecological balance around the dam.

Instant Alerts with Geolocation: The system instantly notifies relevant teams of
any detected hazard—whether structural, environmental, or human-related—along with

its exact location on an interactive map.

Scalable and Cost-Effective Deployment: It utilizes existing camera infrastructure
without requiring intrusive sensors, making it easy to implement across multiple dam

locations.

User-Friendly Smart Interface: Operators can monitor threats through a simple web

dashboard that displays alerts in real time, with no need for technical expertise.

5.1.2 Work Team

This project was designed and developed by Boumelit Yassamine, a master’s student
in Computer Science. She was responsible for creating the HydroGuard prototype, in-
cluding the development of AI models, user interface design, and system integration.
The work was carried out under the supervision and academic guidance of Mr. Khaled
Halimi, His expertise and mentorship were essential in the orientation and success of the

project.

5.1.3 Project Objectives
Short-Term Objectives

o Develop a smart solution for early detection of dam hazards like sinking, floating

objects, and cracks.

« Validate feasibility by creating and testing a prototype with field partners.
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o Establish initial partnerships with stakeholders in water and dam management.
o Increase awareness of dam risks and the solution’s importance via campaigns and
workshops.
Medium-Term Objectives
o Achieve adoption by local dam authorities as a monitoring and early warning tool.
o Expand into regional markets with similar infrastructure challenges.

o Enhance the interface and add features based on user feedback (e.g., risk reports,

incident logs, alarm integration).
Long-Term Objectives
beginitemize
Become a leading reference in smart safety for dams and water infrastructure.

Extend the solution to sectors like ports, lakes, and drainage systems.

Help reduce disasters and financial losses caused by delayed hazard responses.

5.1.4 Implementation Schedule

Phases Month| Month| Month| Month| Month| Month
1 2 3 4 53 6
Planning and preparation of a | v/ v

preliminary study
Prototype development v v
Deployment and initial testing
Testing and Optimization

Full Deployment

Marketing and Promotion

AN
AN

<<

TABLE 5.1: Implementation Schedule
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5.2 Axe 02: Innovative Aspects

5.2.1 Nature of the Innovations

Al-Powered Risk Detection: The project uses advanced Al and deep learning
to monitor dam risks, detecting floating and sinking objects as well as tiny struc-
tural cracks. These models effectively recognize subtle image patterns beyond
human or traditional system capabilities. Real-Time Monitoring and Alerts:
The system analyzes images instantly and alerts officials immediately upon detect-
ing hazards, enabling rapid intervention to prevent disasters like turbine blockages
or crack worsening. Interactive Risk Map Dashboard: An interactive dash-
board shows hazard locations on a smart map, with details such as detection time,
hazard type (sinking, floating object, crack), and images—helping operators make
quick, informed decisions without technical expertise. Scalability and Flexibil-
ity: Designed for expansion beyond adding cameras, the scalable prototype sup-
ports multiple dam sites locally and nationally. It adapts to varying conditions,
transitions from recorded to live video analysis, and integrates smoothly with ex-
isting systems, allowing gradual adoption and ongoing development to meet safety

needs.

5.2.2 Fields of Innovation

This project combines several innovative fields to create an advanced dam safety mon-
itoring solution. Using Al and computer vision, it analyzes images to detect unusual
objects or events in real time. The user interface features an interactive map that
helps non-technical users make informed decisions. The system supports early warning
and environmental risk management, enabling rapid responses to prevent damage or
loss. Additionally, it offers future potential for expansion through multi-sensor integra-
tion and task diversification, evolving into a comprehensive tool for water infrastructure

monitoring.
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5.3 Axe 03: Strategic Market Analysis

5.3.1 Market Segment

o The primary market includes Algerian public bodies managing dams and water
resources, especially the National Agency for Dams and Transfers (ANBT), re-

sponsible for over 80 dams.

o The Ministry of Water Resources (MMRE) plays a key role in national adoption

and support.

« The National Sanitation Office (ONA) and National Office of Irrigation and Drainage

(ONID) monitor facilities linked to reservoirs and canals.

o The General Directorate of Civil Protection relies on the system for flood response

and accurate alerts.

o Engineering and supervision firms like CTE and SGI Algeria seek to integrate

smart monitoring tools.

» Local water distribution agencies (AUEA) use the system to detect faults and leaks

at municipal or regional levels.

o Private hotels, resorts, water parks, and pools represent potential clients needing

continuous water safety monitoring.

o Fish farming operations can benefit in pond monitoring, foreign object detection,

and water quality control.

o Seawater desalination plants gain from early detection of debris or leaks, enhancing

preventive maintenance and efficiency.
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5.3.2 Measuring the Intensity of Competition

Although our smart platform innovatively combines Al and image analysis to detect
floating objects, sinking incidents, and cracks in dams, it enters a local market still dom-
inated by traditional tools and intervention methods. Competition varies by platform

function and falls into four main categories:

1. Traditional Methods (Indirect Competition Through Manual and Vi-
sual Monitoring): Field actors rely on unintelligent methods for detection and

intervention, especially in urgent or recurring cases.

e In the case of floating objects and sinking cases, they rely on guards or

citizens, and on surveillance cameras without any automatic analysis.

o As for cracks, they are visually monitored during periodic field visits by

technical teams.

o Weaknesses:

— Difficulty detecting small or rapidly moving objects.

— Delayed reporting and intervention due to the absence of automatic

alerts.
— No prior behavioral analysis of sinking cases.
— Lack of digital documentation and data accumulation over time.

— Reliance on human judgment in assessing cracks, which reduces accu-

racy.

2. Consulting Offices and Contractors — Traditional Partial Solutions: Or-
ganizations like CTE Algérie, SGI Algérie, and BEAH handle dam monitoring
and technical assessments, mainly for public institutions, relying on periodic field

inspections and reports.
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3. Weaknesses:

e They do not provide instant solutions or continuous automated monitoring.
o A complete lack of artificial intelligence tools or image analysis.

o They provide partial services, usually limited to cracks without integration

with other elements (sinking, floating objects).

o Their reports are delayed, which reduces the effectiveness of rapid response.

Public Institutions (Target Market and Partial Competitors): Includes ANBT,
Algerian Waters (ADE), and State Irrigation Directorates (DRE/DTP), which oversee

dam supervision, monitoring, and periodic maintenance

Despite their pivotal role, they often:
e Rely on human field teams or external consulting firms.
» Lack intelligent systems capable of real-time analysis or alerts.

o Use surveillance cameras for documentation purposes only without integrating

them with advanced analytical tools.
Weaknesses:
e Slow response to sudden events.
o Poor integration between agencies and a multiplicity of methods.
o Lack of digitization and smart transformation despite their strategic importance.

However, these institutions are not considered direct technical competitors, but rather
represent a key target market that could benefit from the platform as a decision-making

support tool and proactive monitoring.
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Future Threats (Foreign Solutions or Local Startup): With the expansion of the
digital innovation and artificial intelligence market, new competitors may emerge in the

future, either:
o From Algerian startups working in the field of smart infrastructure technologies.

e Or through foreign partnerships (French, German, Chinese, etc.) offering smart

monitoring solutions or Al-enabled equipment.

o Weaknesses:

— There is currently no Algerian platform offering a comprehensive solution

that integrates crack, floating, and sinking detection.
— Awareness of smart solutions in this field remains limited.

— The absence of competitors with strong local implementation capabilities

opens the door to leadership.

o (Conclusion: Despite the presence of traditional practices and some entities that
may be considered partial competitors, our platform has a strong competitive

position thanks to:

— Its unique integration of three vital functions.
— Its reliance on artificial intelligence and real-time image analysis.

— Its provision of a reliable and effective early warning system.

o This makes it a leading opportunity in the Algerian market, both as a standalone

project and as a solution that can be adopted and integrated by existing players.
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5.3.3 Marketing Strategy

A multi-faceted marketing strategy has been developed to ensure widespread adoption
of the system and tangible impact in the Algerian market, considering the specific stake-

holders in dam and water safety sectors.

1. Direct Sales: Target decision-makers in public institutions (ANBT, ADE, DTP),
engineering firms (SGI, CTE), and contractors through demos and technical docu-

mentation showcasing the system’s value in prevention, efficiency, and cost savings.

2. Strategic Partnerships: Collaborate with inspection and engineering companies
to integrate the system into projects, partner with university research centers for
improvement and testing, and coordinate with Civil Protection and environmental

agencies to broaden adoption.

3. Free Trials and Incentives: Offer a free trial at a pilot dam in cooperation with

public institutions, provide a 20

4. Awareness Campaigns and National Initiatives: Link the project to national
environmental safety and drowning prevention initiatives through participation in
awareness events and campaigns like the “Clean Dam” initiative, with interactive

field demos alongside local authorities.

5. Digital and Media Presence: Develop a simple website highlighting system
features, user testimonials, and live demos; promote via Facebook and LinkedIn
targeting technical agencies; produce short awareness videos in collaboration with

journalists to present the project as an innovative local initiative.
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5.4 Axe 04: Production and Organization Plan

5.4.1 Production Process

1. Needs Study and Market Analysis: Conducted a field study with dam man-
agement, maintenance engineers, civil protection, and ADE to identify real needs

and early hazard detection challenges.

2. System Design and Technical Architecture: Developed a preliminary system
design featuring back-end data collection and analysis, plus a front-end interface

for alerts, designed flexibly for future expansion.

3. Smart Model Development: Created three Al models, each specialized in de-

tecting floating objects, sinkholes, and cracks, trained on realistic datasets.

4. Performance Testing and Optimization: Performed tests in semi-realistic
environments using simulated dam data; analyzed results with metrics like mAP

to enhance model accuracy.

5. Pilot Deployment and Integration: Deployed a pilot platform with an inter-
active map interface, tested by water resource users to gather feedback and guide

improvements.

6. Follow-up and Maintenance: Monitored system performance regularly post-
launch, provided updates, and prepared a technical user guide to facilitate adoption

by non-technical users.

5.4.2 Procurement

1. Hardware: Digital surveillance cameras (IP/RTSP), a GPU-equipped computer,

and a GPS receiver/module for capturing precise incident coordinates.

2. Software:
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» Geographic data management tools (e.g., Leaflet.js, Google Maps API) to

display incident locations on an interactive map with exact GPS data.

o Alert systems (e.g., Firebase Notifications, Email APIs) to promptly notify

dam authorities or rescue teams of critical events like floods or large cracks.

« Database systems (PostgreSQL, Firebase) to store incident records, images,

coordinates, and alert details.
3. Integration and Interface:

o UI and development frameworks (e.g., Flask, React, FastAPI) for a central-
ized platform allowing supervisors to monitor incidents and access detailed

reports.

« Incident management tools (dashboards, cards) presenting alert details: time,

type, images, coordinates, and maps.

5.4.3 Workforce

Effective workforce organization is crucial for the smooth development of the Al-based
smart dam monitoring platform. Due to the project’s technical and multidisciplinary
nature, the team must encompass diverse skills while maintaining a streamlined structure

during initial phases. The primary roles include:

o Software Engineer: Develops the system and integrates components.
o Al Engineer: Trains and optimizes Al models.
o Network Technician: Configures cameras and communication interfaces.

o Project Manager: Oversees progress, coordinates the team, prepares reports, and

ensures timeline adherence.
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Legal Advisor: Ensures compliance with technical and legal standards, drafts con-

tracts, protects intellectual property, and provides legal counsel.
o UI/UX Designers: Design user-friendly and visually appealing interfaces.

o Marketing Specialists: Prepare promotional content and participate in events to

present the platform.

» Customer/User Support Specialist: Provides technical assistance and resolves user

inquiries to ensure effective system use.

TABLE 5.2: Team Structure and Number of Positions

Position | Number

Project Manager
Artificial Intelligence Engineers
Software Engineer

Network Technicians
Legal Consultant

UI/UX Designer
Marketing Specialist
User Support Specialis(1)

U Gy T Gy T Gy Y T G T G gy

5.4.4 Key Partners

The success of the HydroGuard system relies on strategic collaborations with several key

partners across technical, academic, and financial domains:

1. Technical and Development Partners:

o Hardware Manufacturers: Companies providing high-quality smart surveil-
lance cameras (e.g., Reolink) and GPU-based servers for real-time image

processing.

o Software and Al Partners: Platforms and experts in Al and machine learning
(e.g., Roboflow, Google Colab, GitHub, Kaggle) contributing to the devel-

opment and optimization of detection algorithms.
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2. Academic and Incubation Support:

o University Business Incubators: Offer pre-incubation support, mentorship,

networking, and assistance with startup certification and funding access.
3. Financial and Investment Partners:

o ALCOR Invest: Provides equity financing for innovative technology projects

in Algeria.

« ACF (Algeria Corporate Fund): A national public fund that supports high-

potential startups, especially in Al, digital transformation, and energy.

o Algeria Startup Fund: Official financial support for projects certified as Star-
tups.

o MDI (Mediterranean Development Initiative): Offers financial backing to

entrepreneurial projects, often with international collaboration.

o FINADEV Algérie: Microfinance and soft loans for small and emerging en-

terprises.

o Algerian Business Angels Network (ABAN): A national network of angel

investors focused on early-stage startups.

o Algerian Startup Initiative (ASI): Offers mentorship, resources, and funding

for tech-driven startups.

5.5 Axe 05: Financial Plan

5.5.1 Costs and Charges

1. Technical Development Costs:
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 Developing Al algorithms specific to each function (detecting drowning, float-

ing objects, and cracks).

o Building an interactive user interface and back-end system for image pro-

cessing.

« Using specialized tools such as Roboflow and cloud training services (Google

Colab, GPU servers).

o Testing models and continuously improving their performance.
2. Infrastructure and Equipment Costs:

» Hosting the platform on secure and scalable cloud servers.
« Powerful graphics processing units (GPUs) for training and operation.

o High-resolution cameras for collecting field imagery.
3. Human Resources Costs:

 Includes costs associated with staff and legal counsel costs.
4. Training and Promotion Costs:

o Organizing training workshops for end users.

Designing promotional materials such as videos and a website.

Participating in innovation events or giving presentations to official bodies.

Building a visual identity and professional logo for the platform.

5. Operating Costs:

o Operating expenses such as transportation, and communication means.
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Detail | Unit | Total
Reolink Go PT Plus(4) 40.000.00 | 160.000.00
Development Tools(google Colab GitHub kaggle ...) | 23.000.00 | 23.000.00
Sponsor Ads 20.000.00 | 20.000.00
obile phone line 12.000.00 | 12.000.00
transportation 25.000,00 | 25.000,00
security 25.000,00 | 25.000,00
Cloud hosting 15.000.00 | 15.000.00
GPU servers 40.000.00 | 40.000.00
Total | 20.000.00 | 32.000.00
TABLE 5.3: Estimated Operational and Equipment Costs
Position | Unit salary/Month | total salary/Month
Project Manager(1) 80.000.00 80.000.00
Artificial Intelligence Engineers (1) 70.000.00 70.000.00
Software Engineer(1) 40.000.00 40.000.00
Network Technicians(2) 60.000.00 120.000.00
Legal Consultant (1) (per task) 50.000.00 50.000.00
UI/UX Designer(1) 50.000.00 50.000.00
Marketing Specialist(1) 65.000.00 65.000.00
User Support Specialis(1) 55.000.00 55.000.00
Total \ 470,000.00 \ 530,000.00

TABLE 5.4: Estimated Monthly Human Resource Costs

Position

| Monthly Salary (DA) | Duration (Months) | Total Cost (DA)

Project Manager 80.000.00 6 480.000.00
AT Engineer 70.000.00 3 (Phase 2 to 4 210.000.00
Software Engineer 40.000.00 3 (Phase 2 to 4 120.000.00
Network Technicians (x2) 120.000.00 2 (Phase 5 to 6 240.000.00
Legal Consultant 50.000.00 (per task) 1 50.000.00
UI/UX Designer 50.000.00 1 (Phase 2) 50.000.00
Marketing Specialist 65.000.00 1 (Phase 6) 65.000.00
User Support Specialis 55.000.00 1 55.000.00
Total | \ | 1.270.000.00

TABLE 5.5: Estimated Monthly Human Resource Costs

5.5.2 Pricing

Now, to set a price for the system, we perform the following calculation: Technical costs

+ human resources costs + sales margin = 32.000.00 + 1.270.000.00 + 30%
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sales margin = 1,590,000 x 0.30 = 477,000 DA

So: 1,590,000 4 477,000 = 2,067,000 DA

From this we conclude that the final price is: 2,067,000 DA
Final Selling Price = 2,067,000 DA

e Since our system focuses on three points and we have potential markets whose

interest in one part may have prompted us to sell the system as follows:

Component | Proposed Fixed Price
Drowning Detection 689,000 DA
Floating Object Detection 689,000 DA
Crack Detection 689,000 DA
Full System 2,067,000 DA

TABLE 5.6: Breakdown of Fixed Prices per Detection Module

5.5.3 Costs and Charges

Based on a national market study, multi-scenario financial forecasts (conservative and
optimistic) were prepared to estimate turnover over a three-year period. These forecasts
are based on incremental market penetration assumptions, taking into account the pos-
sibility of selling the system in full or in part, depending on customer needs (drowning

detection, crack detection, or floating object detection).

Component | The first year | The second year | The third year
Full System 1 2 3
Drowning Detection 2 3 6
Crack Detection ) 0 1 2
Floating Object Detection 1 2 3

TABLE 5.7: Pessimistic Revenue Projection

Year 1 Revenue: 4,134,000 DA Year 2 Revenue: 8,268,000 DA Year 3 Revenue:
13,780,000 DA
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Component | The first year | The second year | The third year
Full System

Drowning Detection
Crack Detection
TABLE 5.8: Optimistic Revenue Projection
Year 1 Revenue: 11,024,000 DZD Year 2 Revenue: 21, 492,000 DZD Year 3 Revenue:
15,847,000 DZD

DO i QO
LW OO
= oYW

Floating Object Detection

Year | Year Turnover (DA) | Operating Costs (DA) | Net Profit (DA)
First year 4,134,000 1,600,000 2,534,000
Second year 8.268.000 1/600.000 6.668.000
Third year 13,780,000 1,600,000 6,668,000

TABLE 5.9: Financial Analysis (pessimist)

Year | Year Turnover (DA) | Operating Costs (DA) | Net Profit (DA)
First year 11,024,000 1,600,000 9,424,000
Second year 21,492,000 1,600,000 19,892,000
Third year 15,847,000 1,600,000 14,247,000

TABLE 5.10: Optimistic Scenario Financial Analysis

5.6 Axe 06: Experimental Prototype

5.6.1 Prototype

The following images show the experimentation of the three tasks:
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(B) Floating Objects Detection

(¢) Crack Detection

FIGURE 5.1: Overview of Detection Modules

They also show how the number of alerts changed from zero to three.
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HydroGuard & Home # Detection MW Dashbowrd 80 [}

[Lll Dashboard

.8 &1 -

o 0 0

HydroGuard

[ Dashboard

B Reset Data
- =Y -
Drowning Alerts Crack Alerts Floating Objects

1 1 1

(B) Dashboard after detecting a hazard

FIGURE 5.2: Comparison of dashboard status before and after hazard
detection

These pictures show how the site appears with information on the map
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(A) Alert displayed on the map

& G (© 127.001:5000/dsshboardhumi ISR A}

ROWNING
Date: 2025.06-20
Time: 06.56:47
Location:

ation: Bouhamdana Dam, Guel
Coordinates: (36 4700445, 7.2086654)

(B) Example of a drowning incident — information displayed

= C (@ 127.004:5000/dashboard i

8 FLOATNG *
Date: 2025-06.20
Time: 065340

Location: Bouhamdane D
Coordinates: (36 4700445, 7.2

(c) Example of a floating object detection — details displayed

F1GURE 5.3: Dashboard interface showcasing alert, drowning case, and
floating object detection

This is the website link: https://it.univ-guelma.dz/HydroGuard/


https://it.univ-guelma.dz/HydroGuard/
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