
 الشعبیة الدیمقراطیة الجزائریة الجمھوریة
Algeria of Republic Democratic People's 

Ministry of Higher Education and Scientific Research 

University 8 May 1945 -Guelma 

Faculty of Mathematics, Computer Science and Material Science 

Department of Computer Science 
 
 

 

 
Master's thesis Field: Computer Science 

Option : Information and Communication Sciences and Technologies. 

Theme : 
 
 

AgriSense: Intelligent Disease Detection in Cereals Using 
RGB Imaging 

 
 
 

Jury Members: 
 
-Chair of the Jury: Dr Hiba 
Abdelmoumene 
-Supervisor: Pr. Chemesse Ennehar 
Bencheriet 
-Examiner: Dr. Hakim Soussi 
-Representative: Dr. Ghania Barkat 

 
 
 

June 2025 
 

 
 
 

 
 
 
 

 

Presented By: 

Hala Hamouchi 

 



 
 
 
 
 
 
 

 
 
 
 

 ملخص 
 

 
منا المشكلات، ق جهة هذهتواجه الزراعة الحديثة تحديات كبيرة، من بينها أمراض أوراق الحبوب، انخفاض غلّة المحاصيل، وتأثيرات التغيّر المناخي. لموا

ى بنية معمارية عل AgriSense الحاسوب. يعتمد، وهو نظام مبتكر للكشف المبكر عن أمراض الحبوب باستخدام التعلم العميق ورؤية AgriSenseبتطوير 

ظام قة. يمكن للنلمرض بدامرؤوس"، حيث يحدد النموذج الأول ما إذا كانت النبتة سليمة أو مصابة، ثم يقوم النموذج اللاحق بتحديد -متسلسلة من نوع "رئيس

لصدأ ح؛ الذبول، اي في القمالصدأ الأصفر، التبقع السبتوري، والصدأ الورق مرضًا خطيرًا يصيب القمح، الذرة، والأرز، بما في ذلك الصدأ البني، 11اكتشاف 

السريع والدقيق  مكين التشخيصخلال ت الشائع، والتبقع الرمادي في الذرة؛ بالإضافة إلى اللفحة البكتيرية، التبقع البني، لفحة الأوراق، وتعفن الغمد في الأرز. من

برز راعة المستدامة. ي  المزارعين على اتخاذ إجراءات فورية، تقليل خسائر المحاصيل، وتعزيز ممارسات الز AgriSense عبر واجهة سهلة الاستخدام، يساعد

 .وراق الحبوبأمراض أهذا العمل الإمكانات الكبيرة للتعلم العميق في إحداث ثورة في المجال الزراعي من خلال التصدي للتحديات الواقعية المرتبطة ب

 
 
 
 

 

 .المستدامة الزراعة المبكر، التشخيص الحقلية، المحاصيل الحبوب، أمراض كشف العميق، التعلم:المفتاحية الكلمات

 



ABSTRACT

ABSTRACT

Modern agriculture faces major challenges, including cereal leaf diseases, reduced crop

yields, and the impacts of climate change. To address these issues, we developed Agri-

Sense, an innovative system for the early detection of cereal diseases using deep learning

and computer vision. AgriSense is based on a sequential master-slave architecture, where

the first model determines whether a cereal plant is healthy or infected, and subsequent

models identify the specific disease. The system can detect 11 critical diseases affecting

wheat, maize, and rice, including brown rust, yellow rust, septoria, and leaf rust in wheat ;

wilting, common rust, and gray leaf spot in maize ; as well as bacterial leaf blight, brown

spot, leaf blast, and sheath blight in rice. By enabling fast and accurate diagnosis through

a user-friendly interface, AgriSense helps farmers take timely action, reduce crop losses,

and promote sustainable agricultural practices. This work highlights the potential of deep

learning to revolutionize agriculture by addressing real-world challenges related to cereal

leaf diseases.

KeyWords : Deep Learning, Cereal Disease Detection, Cereal Crops, Early Diagnosis,

Sustainable Agriculture.
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RÉSUMÉ

RÉSUMÉ

L’agriculture moderne est confrontée à des défis majeurs, notamment les maladies des

feuilles de céréales, la réduction des rendements et les impacts du changement climatique.

Pour répondre à ces problèmes, nous avons développé AgriSense , un système innovant

pour la détection précoce des maladies des céréales en utilisant l’apprentissage profond et

la vision par ordinateur. AgriSense repose sur une architecture séquentielle mâıtre-esclave,

où le premier modèle détermine si une céréale est saine ou infectée, et les modèles suivants

identifient la maladie spécifique. Le système peut détecter 11 maladies critiques affectant

le blé, le mäıs et le riz, y compris la rouille brune, la rouille jaune, la septoriose et la rouille

foliaire du blé ; le flétrissement, la rouille commune et la tache grise du mäıs ; ainsi que

la brûlure bactérienne, la tache brune, le blast foliaire et la pourriture des gaines chez le

riz . En permettant un diagnostic rapide et précis via une interface conviviale, AgriSense

aide les agriculteurs à agir rapidement, à réduire les pertes de récolte et à promouvoir

des pratiques agricoles durables. Ce travail met en évidence le potentiel de l’apprentissage

profond pour révolutionner l’agriculture en répondant aux défis concrets liés aux maladies

des feuilles de céréales

Mots Clés : Apprentissage Profond, Détection des Maladies des Céréales, Cultures Céréalières,

Diagnostic Précoce, Agriculture Durable.
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GENERAL INTRODUCTION

Agriculture is the foundation of food security, providing the resources needed to feed

the world’s population. Among all crops, cereals like wheat, maize, and rice are the most

important, as they form the basis of diets for billions of people. These crops supply essential

nutrients and energy, making their successful cultivation critical for both human health and

economic stability. However, modern agriculture faces many challenges that threaten its

ability to produce enough food. These challenges include plant diseases, which can destroy

entire fields, reduced crop yields due to environmental stress, and the growing impact of

climate change.

Climate change is making farming even more difficult by causing unpredictable weather

patterns, such as droughts, floods, and extreme temperatures. These changes weaken crops

and make them more vulnerable to diseases. At the same time, plant diseases remain a

major problem, spreading quickly and leading to significant losses if not detected early.

Traditional methods of diagnosing diseases often require expert knowledge and laboratory

tests, which can be time-consuming, expensive, and inaccessible to many farmers, espe-

cially in remote areas.

To address these challenges, we have developed AgriSense , an innovative solution desi-

gned to detect cereal diseases at an early stage. AgriSense uses deep learning and computer

vision technologies to analyze images of plant leaves captured with a smartphone or uploa-

ded through a simple, user-friendly interface. The system operates in two stages using a

sequential master-slave architecture : the first model (DDN1), acting as the ”master,”

determines whether the plant is healthy or infected. If a disease is detected, the second

model (DDN2), acting as the ”slave,” identifies the specific type of disease. This sequen-

tial approach ensures efficient and accurate diagnosis, enabling farmers to take quick and

effective action to protect their crops without requiring specialized expertise.

What makes AgriSense unique is its focus on 11 specific diseases that affect wheat, maize,

and rice (four diseases for wheat, three for maize, and four for rice). To the best of our

knowledge, there is no similar tool available in Algeria, making AgriSense a pioneering
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solution for local farmers. This absence of comparable solutions in the country underscores

the importance of our project in addressing the specific needs of Algerian agriculture. By

enabling early detection and timely intervention, AgriSense aims to reduce crop losses,

improve yields, and promote sustainable farming practices.

Our thesis is organized into four chapters :

Chapter 1 : explains the importance of agriculture in ensuring food security, highlights

the role of cereal crops in global nutrition, and discusses the challenges faced by modern

farmers. It also introduces the motivation behind our project and provides an overview of

the technologies used.

Chapter 2 : reviews existing research on plant disease detection, focusing on deep learning

approaches and previous studies related to cereal crops.

Chapter 3 : describes the materials and methods used in this project, including how we

prepared the dataset, designed the models, and trained them. Special attention is given to

the sequential master-slave architecture that underpins the system’s functionality.

Chapter 4 : presents the results of our experiments, evaluates the performance of Agri-

Sense on wheat, maize, and rice diseases, and discusses its potential impact on agriculture.

Through AgriSense, we hope to empower farmers with a practical and accessible tool that

helps them protect their crops and contribute to a more sustainable and resilient agricul-

tural system.
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CHAPTER I

CEREAL DISEASES

I.1 Introduction

Cereals are a major source of food around the world and they are a part of the daily

diet for many people. The most important cereals are wheat, maize, rice, and barley. They

are important not only because they are healthy, but also because they help the economy in

many countries. In Algeria, these cereals are very important for farming and food security.

I.2 Global Health and Food Security

I.2.1 Definition of Food Security by the WHO

The World Health Organization (WHO) defines food security as a situation where all

people have enough food that is both physically available and affordable. This food must be

nutritious and safe, allowing people to stay healthy and lead an active life. This definition

shows how important good nutrition is for public health. [W1]

I.2.2 WHO’s Goals for Disease Prevention and Control

The WHO says that it is very important to protect crops from diseases to have enough

food for everyone. Healthy crops give good food for people. If we stop plant diseases,

farmers do not lose too much food, and there is always enough to eat. But if we do not

stop diseases, there will be less food, and prices will go up. We must take care of crops to

keep food safe for all. [W2]
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I.2.3 Role of Organizations in Food Security

International organizations play a key role in food security by supporting agricultural

development. They create projects that help farmers grow more food and use better far-

ming methods. These projects focus on improving soil health, providing quality seeds, and

training farmers in disease prevention. By reducing crop losses caused by plant diseases,

they help ensure a steady food supply. Their efforts also support rural communities and

make agriculture more sustainable. [W3]

I.3 Definition and Importance of Cereal Crops

I.3.1 Definition of Cereal Crops in the World

Cereal crops are plants grown primarily for their edible seeds, which serve as a staple in

human and animal diets. These seeds, rich in carbohydrates, are a major source of energy

in global diets. The most common cereals include wheat, corn, barley, rice, and oats. [W4]

I.3.2 Economic and Nutritional Importance of Cereal Crops

Cereals are very important for both food and the economy in many parts of the world.

They provide food for billions of people and play a big role in national economies. Cereals

give more than 60% of the calories people eat worldwide, with maize, wheat, and rice

being the main sources of energy. In developing countries, cereals make up about 75% of

total calorie intake and 67% of protein intake. Economically, cereals add billions of dollars

to national incomes. For example, in Canada, they bring about $68.8 billion per year

and create more than 370,000 jobs. Cereals are also important in many food industries,

like making bread and beer. Because cereals can be eaten in different ways, such as whole

grains, flour, or processed products, they help add variety to people’s diets. Overall, cereals

are essential for nutrition and farming in both rich and poor countries. [W5]

I.3.3 Economic and Nutritional Importance of Cereal Crops in

Algeria

Cereal crops are very important for food security and the economy in Algeria. Wheat is

the most consumed cereal, with each person eating about 220 kg per year. This means the

country needs about 88 million quintals of wheat for its 44 million people. Even though

the government has made efforts to increase local production, Algeria still imports about

70% of its cereals. This high dependence on imports makes the country vulnerable to

global economic changes and food shortages. About 40% of Algeria’s farmland is used to

grow cereals, which are important for both human food and animal feed. Cereals provide
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over 60% of energy intake and 75-80% of protein intake in the Algerian diet. To reduce

dependence on imports, the Algerian government has started programs to increase cereal

production, improve food security, and keep prices stable for consumers. [W6]

Figure I.1 – Cereals Production in Algeria [W6]

I.4 Cereal Growth Stages

I.4.1 The Importance of Growth Stages in Cereal Crops

Understanding the growth stages of cereal crops is essential for effective crop mana-

gement. These stages influence fertilization, irrigation, disease control, and overall yield

optimization. The Zadoks scale provides a standardized system to track these stages and

ensure timely agricultural interventions.[W7]

I.4.2 The Zadoks Scale

The Zadoks scale is a classification system used to describe the different growth stages

of cereals. It divides the plant’s development into 10 main phases, each further divided

into 100 specific stages. This scale is widely used by farmers and researchers to track crop

growth and optimize agricultural practices, such as applying fertilizers and fungicides at

the right time.[W7]
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Zadoks Stage Description

GS00-GS09 Germination : Beginning of the cycle with seed germination.

GS10-GS19 Seedling growth : Emergence of the first leaves.

GS20-GS29 Tillering : Development of tillers (secondary shoots).

GS30-GS39 Stem elongation : Formation of nodes and key leaves.

GS40-GS49 Booting and spike development : Rapid growth phase.

GS50-GS69 Heading and flowering : Critical stage for plant reproduction.

GS70-GS99 Grain filling and maturation : Grain formation and drying.

Table I.1 – Cereal growth stages according to the Zadoks scale [W7]

Figure I.2 – Cereal growth stages according to the Zadoks scale [W7]

I.4.3 Disease sensitive phases

Some growth stages are particularly sensitive to infections :

GS30-GS33 (Beginning of stem elongation) : At this stage, the plant starts growing

vertically. This is the best time to apply the first fungicides to protect the new leaves.[W7]
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Figure I.3 – Growth Stage 32 [W7]

GS37-GS39 (Flag leaf emergence) : The flag leaf is the most important for photo-

synthesis and grain filling. Protecting it from rust and septoria helps ensure a good yield.

[W7]

Figure I.4 – Growth Stage 39 [W7]

GS50-GS59 (Heading) : The spike (ear) gradually emerges from the plant. It be-

comes highly vulnerable to fusarium, which can produce toxins dangerous for human and

animal consumption.[W7]
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Figure I.5 – Growth Stage 55 [W7]

GS60-GS69 (Flowering) : This is a critical period when diseases can prevent grain

formation. An infection at this stage can cause major production losses.[W7]

Figure I.6 – Growth Stage 65 [W7]

By applying treatments at the right time, farmers can reduce the impact of diseases

and protect their crop yield.
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I.5 Challenges in Cereal Crop Cultivation

I.5.1 Impact of Climate Change

Climate change has a big impact on cereal production around the world. Changes in

temperature, rainfall, and carbon dioxide levels affect the yields of crops like wheat, maize,

and rice. In colder regions, higher CO2 levels can help increase wheat and maize yields.

But in areas near the equator, these crops may produce less because of high temperatures

and drought. Scientists predict that wheat yields could drop by 3 to 13% by the middle

of the century and up to 17% by the end of the century due to rising temperatures. For

rice, production may also decrease in many major growing countries because of water

shortages made worse by climate change. To reduce these negative effects, farmers can

change planting dates, improve water and fertilizer management, develop stronger crop

varieties, and expand farming areas.yields.[FFA+23]

Figure I.7 – Worldwide (a) total production, harvested area, and (b) production share
by region of wheat, rice, and maize 1994–2020[FFA+23]

I.5.2 Financial and Logistical Barriers

Money and organization problems make it harder to fight cereal diseases. Many farmers

cannot afford modern technologies to prevent and treat these diseases, which makes it dif-

ficult to control them. To better protect crops, farmers need good seeds, efficient irrigation
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systems, and sustainable farming methods to better withstand climate changes.[W8]

I.5.3 Cereal disease

I.5.3.1 Wheat Diseases

Wheat is a crop that is vulnerable to many diseases caused by fungi, bacteria, and

viruses. Some of the most common are rust diseases, such as :

a)yellow rust (Puccinia striiformis) [Figure I.8] and brown rust (Puccinia re-

condita) [Figure I.9], which create spots on the leaves and reduce photosynthesis. In severe

cases, they can cause yield losses of up to 40%.[FHKS18]

Figure I.8 – Yellow Rust [W8]

Figure I.9 – Brown Rust [W10]

b)septoria (Zymoseptoria tritici) [Figure I.10] is another common disease which

appears after winter and causes leaf spots. Without treatment, it can lead to yield losses

of up to 50%.[FHKS18]
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Figure I.10 – Septoria [W10]

c)Powdery mildew (Blumeria graminis) [Figure I.11], often seen in spring, creates

white patches on leaves and stems, slowing wheat growth.[FHKS18]

Figure I.11 – Powdery Mildew [W12]

I.5.3.2 Corn Diseases

Corn can be affected by several fungal diseases that weaken its growth and reduce yields.

a)Common Rust (Puccinia sorghi) [Figure I.12] appears around flowering, espe-

cially in warm and humid conditions. It causes orange-brown pustules on the leaves, redu-

cing leaf area and potentially lowering yields.[W14]

Figure I.12 – Common Rust [W15]

b)Gray Leaf Spot (Cercospora zeae-maydis) [Figure I.13] develops after flowering,

when humidity is high. It causes gray spots on the leaves, reducing the plant’s ability to

absorb sunlight and produce energy, which can decrease yields.[W13]
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Figure I.13 – Gray Leaf Spot [W16]

c)Anthracnose (Colletotrichum graminicola) [Figure I.14] mainly attacks the

stem, causing black streaks and rot. This disease appears around flowering and can lead

to significant losses in very humid conditions.[W14]

Figure I.14 – Anthracnose [W16]

d)Corn Leaf Blight (Exserohilum turcicum) [Figure I.15] affects corn from early

growth to flowering, forming long spots on the leaves. This disease can cause serious yield

losses, especially in warm and humid weather.[PP+87]

Figure I.15 – Corn Leaf Blight [W16]

I.5.3.3 Rice Diseases

Rice can get many diseases caused by fungi, bacteria, and viruses. These diseases can

damage the plants and reduce rice production.

a)Rice Blast (Magnaporthe oryzae)[Figure I.16] Affects rice from early growth to

flowering. It causes round spots on leaves and panicles, which can lower yields.[HZV+25]
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Figure I.16 – Rice Blast [W18]

b)Bacterial Leaf Blight (Xanthomonas oryzae)[Figure I.17] Can happen at any

time, but is most dangerous at the start of the season. It creates lines on leaves and can

kill plants.[LCWY25]

Figure I.17 – Bacterial Leaf Blight [W19]

c)Tungro Disease (Rice tungro virus)[Figure I.18] Mostly affects rice after early

growth. It makes the plants yellow and weak, and grains become smaller.[W17]

Figure I.18 – Tungro Disease [W20]

d)Sheath Blight (Rhizoctonia solani)[Figure I.19] Appears after early growth and

makes brown patches on leaf sheaths, reducing the plant’s strength.[W17]
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Figure I.19 – Sheath Blight [W21]

e)Brown Spot (Cochliobolus miyabeanus)[Figure I.20] Affects rice during active

growth, creating brown spots on leaves, making photosynthesis harder.[W17]

Figure I.20 – Brown Spot [W22]

f)Leaf Scald (Rhynchosporium oryzae)[Figure I.21] Causes white or brown streaks

on leaves, which reduces plant energy.[W17]

Figure I.21 – Leaf Scald [W23]

I.5.3.4 Barley Diseases

a)Net Blotch (Helminthosporium spp.)[Figure I.22]

Symptoms : Long brown lesions with yellow halos on leaves.

Favorable Conditions : Cool temperatures (around 15°C), rain, and wind.

Impact : Can cause yield losses of up to 50 q/ha, especially in winter barley. [W24]
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Figure I.22 – Net Blotch [W24]

b)Leaf Scald (Rhynchosporium spp.)[Figure I.23] Symptoms : Brown or gray

spots on leaves, often spreading in patches.

Favorable Conditions : High humidity.

Impact : Found in many regions and can cause significant losses.[W25]

Figure I.23 – Leaf Scald [W24]

c)Ramularia Leaf Spot (Ramularia spp.)[Figure I.24]

Symptoms : Small rectangular brown spots with yellow edges, similar to net blotch.

Favorable Conditions : Warm temperatures (20-28°C) and high humidity.

Impact : Appears late in the season and is often linked to non-parasitic stress.[W24]
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Figure I.24 – Ramularia Leaf Spot [W24]

d)Brown Rust (Puccinia hordei)[Figure I.25]

Symptoms : Small brown pustules on leaves that release spores.

Favorable Conditions : Moderate temperatures and high humidity.

Impact : Usually appears during stem elongation and can weaken plants.[W25]

Figure I.25 – Brown Rust [W27]

e)Powdery Mildew (Blumeria graminis f. sp. hordei)[Figure I.26]

Symptoms : White powdery coating on leaves and stems.

Favorable Conditions : Light rain that prevents spores from spreading.

Impact : Can be limited by weather conditions but may affect plant health.[W26]

Figure I.26 – Powdery Mildew [W26]

I.6 Cereal Disease Management

Cereal diseases can cause big losses for farmers. To fight them, we use two types of

methods : traditional methods and new technologies.
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I.6.1 Traditional Methods

These methods have been used for a long time to stop diseases from spreading.

I.6.1.1 Using resistant varieties

Some types of cereals are naturally stronger against diseases. For example, some wheat

varieties resist brown rust (Puccinia triticina).[BDS25]

I.6.1.2 Crop rotation

Changing crops every year prevents diseases from staying in the soil. For example, swit-

ching between wheat and maize can reduce fungal infections.[Oil24]

I.6.1.3 Good farming practices

Plant cereals with enough space to reduce humidity, which can cause diseases.[W28]

Clean fields after harvest to remove infected plant remains.[W29]

Use fertilizers carefully because too much nitrogen can increase diseases.[RWG21]

I.6.1.4 Chemical treatments

Fungicides and insecticides help fight diseases, but they must be used carefully to avoid

resistance and protect the environment.[PA14]

I.6.2 New Technologies

New technologies help detect and fight diseases faster and more effectively.

I.6.2.1 Early detection with images and sensors

Special cameras (hyperspectral and multispectral) : These can see disease symp-

toms before they are visible to the human eye.

Drones and field sensors : These monitor crops and warn farmers if there is a problem.

I.6.2.2 Artificial intelligence and agricultural data

Weather and soil-based alert systems : These predict disease risks and help farmers

make better decisions.

Mobile apps : Farmers can take a picture of a plant, and the app will identify the disease

and give advice.

17
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I.6.3 A Combined Approach for Better Management

The best way to control diseases is to use multiple methods together :

-Follow good farming practices.

-Use new technologies to detect diseases early.

-Reduce pesticide use with natural solutions.

Good disease management helps protect crops, increase yields, and protect the environ-

ment.

I.7 Datasets Available

I.7.1 Wheat Datasets

I.7.1.1 Wheat Plant Diseases

This dataset [W32] includes a collection of high-resolution images(14,155 images) cap-

tured from real-world wheat fields, covering various wheat diseases and pests. It consists

of : -Pests : Aphid, Mite, Stem Fly

-Rusts : Black Rust (Stem Rust), Brown Rust (Leaf Rust), Yellow Rust (Stripe Rust)

-Fungal Diseases :

Smut (Loose, Flag)

Common Root Rot

Helminthosporium Leaf Blight (Leaf Blight)

Wheat Blast

Fusarium Head Blight (Scab)

Septoria Leaf Blotch

Spot Blotch

Tan Spot

Powdery Mildew

Healthy

I.7.1.2 GWHD Dataset

This dataset consists only of healthy wheat growth, utilizing object detection. It includes

4,700 high-resolution RGB images and 190,000 labeled wheat heads, collected from various

countries worldwide at different growth stages, covering a diverse range of genotypes.[DMST+20]
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Figure I.27 – Dataset GWHD using bounding box [DMST+20]

I.7.2 Maize Datasets

I.7.2.1 Corn or Maize Leaf Disease Dataset

This dataset is designed for the classification of corn (maize) leaf diseases. It contains

labeled images of maize leaves categorized into four classes : [W30]

-Common Rust : 1,306 images

-Gray Leaf Spot : 574 images

-Blight : 1,146 images

-Healthy : 1,162 images

Figure I.28 – Common Rust [W30]
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Figure I.29 – Gray Leaf Spot [W30]

Figure I.30 – Blight [W30]

Figure I.31 – Healthy [W30]

I.7.3 Rice Datasets

I.7.3.1 Rice Leaf Diseases Detection

This dataset contains annotated images for the classification of eight rice leaf diseases

and healthy leaves. It includes over 11,000 images covering : [W31]

Bacterial Leaf Blight : 1,197 images

Brown Spot : 1,546 images

Healthy Rice Leaf : 1,085 images

Leaf Blast : 1,748 images

Leaf Scald : 1,332 images
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Narrow Brown Leaf Spot : 954 images

Neck Blast : 1,000 images

Rice Hispa : 1,299 images

Sheath Blight : 1,629 images

I.8 Conclusion

Cereal crops like wheat, maize, rice, and barley are very important for food and the

economy all over the world. But they can get sick because of fungi, bacteria, and viruses.

These diseases can reduce the amount of food we have and make prices go up. To protect

these crops, farmers use both old methods like crop rotation and new technology like

sensors and smart cameras. These tools help find diseases early and stop them before they

cause big problems. There are also many image datasets that help build smart systems

to recognize plant diseases. This makes it easier for farmers to take care of their crops.

The next chapter will talk about how Machine Learning in Agriculture is helping farmers

grow better crops and control diseases more easily and making farming smarter and more

efficient.
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CHAPTER II

MACHINE LEARNING IN AGRICULTURE

II.1 Introduction

Cereal crops are essential for global food security, but they are often affected by various

diseases that can seriously reduce yield and quality. As mentioned in Chapter 1, these

diseases can spread quickly if not detected early. Early and accurate detection of cereal

diseases is very important. It helps farmers take fast action and reduce crop loss. Traditional

methods are often slow and depend on expert knowledge, which is not always available. To

solve this problem, new technologies like artificial intelligence (AI) and machine learning

(ML) are becoming popular. These smart systems can analyze images of leaves and help

detect and identify diseases faster and more precisely.

II.2 Machine Learning

Machine learning is a field of computer science where systems can learn and improve

automatically from experience without being manually programmed. Unlike traditional

programming, where a developer writes specific instructions for each situation, machine

learning allows computers to learn from data. By using algorithms, the machine studies

large amounts of data to find patterns and make decisions. The more data it receives, the

better it becomes at completing tasks or making predictions.[W43]

II.2.1 Types of Machine Learning

II.2.1.1 Supervised Learning

Supervised learning is a type of machine learning where the model is trained on labeled

data. Each input comes with a known output, and the model learns to map inputs to the

correct outputs.[W44]
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II.2.1.2 Unsupervised Learning

Unsupervised learning deals with data that has no labels. The goal is to find patterns,

structures, or groupings in the data.[W44]

II.2.1.3 Reinforcement Learning

Reinforcement learning involves an agent that learns by interacting with an environ-

ment. The agent receives rewards or penalties based on its actions and tries to learn the

best strategy to maximize long-term rewards. [W44]

II.2.1.4 Semi-Supervised Learning

Semi-supervised learning uses a small amount of labeled data and a large amount of

unlabeled data. This method is useful when labeling data is expensive or time-consuming.

[W44]

Figure II.1 – Key Differences Between Machine Learning Types [W46]

II.3 Deep Learning

Deep learning is a type of machine learning that uses large neural networks with many

layers to learn from data. These networks are designed to work like the human brain, with

layers of connected units called neurons. Deep learning can automatically learn features

and patterns from large and complex datasets, especially unstructured data like images,

sounds, or text. Unlike basic machine learning, deep learning improves its performance

through repetition and does not always need human help to correct mistakes.[W43]
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II.4 Machine Learning vs Deep Learning

Artificial Intelligence (AI) is the ability of computers or robots to do tasks that usually

need human thinking, such as learning, reasoning, or problem-solving. Machine learning

and deep learning are two types of AI. Machine learning allows a computer to learn and

improve from data with little help from humans. Deep learning is a more advanced type

of machine learning. It uses artificial neural networks systems designed to work like the

human brain—to learn complex patterns from large amounts of data.[W43]

Figure II.2 – Machine Learning vs Deep Learning [W43]

II.5 Transfer learning

Transfer learning is a method in machine learning where a model developed for one task

is reused as a starting point for a different but related task. This technique is especially

helpful when the new task has limited labeled data. By using a model that has already

learned general features from a large dataset, we can improve the learning process for the

new task.[W45]
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Figure II.3 – Transfer learning [W45]

II.6 Machine learning in agriculture

Machine learning is transforming agriculture by making farming smarter, faster, and

more sustainable. With the power of data, farmers can now detect plant diseases before

they spread, predict crop yields with high accuracy, and manage water and fertilizers

more efficiently. Instead of treating the entire field the same way, they can apply the right

solution at the right place and time. This reduces waste, protects the environment, and

increases productivity. Machine learning also helps monitor animal health, detect pests

early, and adapt to changing weather conditions. It acts like an intelligent assistant that

learns from the land, supports decision-making, and empowers farmers to feed the world

more effectively.[W47]

II.7 Performance Metrics

To check the performance of a deep learning classification model,it’s important to cal-

culate a set of fundamental metrics derived from the confusion matrix. These values allow

us to quantify how well the model distinguishes between different classes. The key compo-

nents are defined as follows :

True Positive (TP) : The number of instances where the model correctly predicted the

positive class (For example : the model predicted YES, and the actual label was also YES).

True Negative (TN) : The number of instances where the model correctly predicted the

negative class (For example : the model predicted NO, and the actual label was also NO).

False Positive (FP) : The number of instances where the model incorrectly predicted
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the positive class (For example : the model predicted YES, but the actual label was NO).

This is also known as a Type I error.

False Negative (FN) : The number of instances where the model incorrectly predicted

the negative class (For example : the model predicted NO, but the actual label was YES).

II.7.1 Accuracy

Accuracy measures the overall correctness of the model by calculating the proportion

of total correct predictions (both positive and negative) among all predictions.

Accuracy =
TP + TN

TP + TN + FP + FN

II.7.2 Precision

Precision evaluates how many of the instances predicted as positive are actually positive.

It reflects the model’s ability to avoid false positives.

Precision =
TP

TP + FP

II.7.3 Recall

Recall indicates how many actual positive cases were correctly identified by the model.

It reflects the model’s ability to detect all relevant instances.

Recall =
TP

TP + FN

II.7.4 F1-Score

The F1-score is the harmonic mean of precision and recall. It provides a single metric

that balances both, especially useful when classes are imbalanced.

F1-score = 2 × Precision × Recall

Precision + Recall

F1-score =
2TP

2TP + FP + FN

II.7.5 Confusion Matrix

The confusion matrix is a tabular representation that summarizes the number of correct

and incorrect predictions. It allows visual inspection of classification performance across

classes.
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Predicted : YES Predicted : NO

Actual : YES TP FN

Actual : NO FP TN

Table II.1 – Confusion matrix for binary classification

II.8 Comparative Study of Research Articles on Ce-

real Diseases

Article 01 : Discrimination of Deoxynivalenol Levels of Barley Kernels Using

Hyperspectral Imaging in Tandem with Optimized Convolutional Neural Net-

work. [FLS20]

This article presents a model using a Convolutional Neural Network (CNN) for the analyti-

cal evaluation of hyperspectral imagery (382–1030 nm) and the classification of deoxyniva-

lenol (DON) concentrations within barley grains. To augment precision, preprocessing me-

thodologies such as wavelet transformations and max-min normalization are implemented,

in conjunction with variable selection strategies including Competitive Adaptive Reweigh-

ted Sampling (CARS) and the Successive Projections Algorithm (SPA). The investigators

conducted an analysis of 590 barley specimens sourced from Fusarium-infested agricultu-

ral fields, systematically categorizing them into three distinct classifications predicated on

DON concentrations : Class I (0.19-1.25 mg/kg), Class II (1.25-5 mg/kg), and Class III

(5-14 mg/kg). The refined CARS-SPA-CNN model attained an impressive accuracy rate

of 89.41% in differentiating grains exhibiting low DON levels (¡5 mg/kg) from those with

elevated concentrations, and 89.81% accuracy in distinguishing between Class I and Class

II. These results underscore the considerable promise of hyperspectral imaging coupled

with CNN technology for the rapid and non-destructive assessment of DON levels in bar-

ley grains.

Article 02 : Barley Disease Recognition Using Deep Neural Networks. [RGD+20]

This study developed a deep learning model to detect barley diseases using RGB images

taken directly in the field. Since the dataset was small (312 images), the researchers used

transfer learning and data augmentation—like rotating and flipping images—to improve

the model’s performance. The images, collected from infected fields, were sorted into four

groups : healthy plants, scald, net form net blotch (NFNB), and spot form net blotch

(SFNB). To make the most of the data, each image was split into 448 × 448 pixel sections,

labeled by hand, and enhanced to create more training samples.The researchers tried out

different deep learning models, including MobileNet, Xception, and InceptionV3, to see

which one performed best. MobileNet turned out to be the best model because it’s simple,
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efficient, and works well with small datasets. It was able to tell whether a plant was healthy

or diseased with 98.63% accuracy and correctly identified the specific disease 93.50% of the

time. This means farmers could use deep learning to spot barley diseases early and take

quick action to protect their crops.

Article 03 : Detection of Rice Leaf Diseases Using Image Processing. [PP20]

This article presents a method to detect diseases in rice leaves, focusing on bacterial leaf

blight, leaf smut, and brown spot. The approach uses image processing techniques like

Otsu’s method for segmentation and feature extraction methods such as Local Binary Pat-

terns (LBP) and Histogram of Oriented Gradients (HOG). After that, they used a Support

Vector Machine (SVM) to classify the diseases. The best results came from using HOG fea-

tures with a polynomial SVM, which correctly identified diseases 94.6% of the time. The

dataset had 120 images, with 40 for each disease, and came from the UC Irvine Machine

Learning Repository. These results show that image processing and machine learning can

help detect rice diseases early, giving farmers a useful tool to keep their crops healthy.

Article 04 : Disease Detection, Severity Prediction, and Crop Loss Estimation

in Maize Crop Using Deep Learning. [KRD+22]

This study focuses on diseases like Turcicum Leaf Blight and Rust in maize, which reduce

crop productivity. Manual detection takes time and needs experts, so the authors created

a deep learning system called ”Early Maize Disease Detector and Evaluator” (EMDDE).

This system uses a real-life dataset labeled by plant experts and includes a custom model,

MaizeNet, which achieves 98.50% accuracy. The study collected 2996 images of infected

maize leaves, processed them using K-Means clustering to highlight disease areas, and used

a nine-layer CNN model optimized for efficiency. The model was trained on 2460 images

and evaluated with precision, recall, and F1 score. Results show that MaizeNet detects

diseases, estimates severity, and predicts crop loss, with validation from experts. This sys-

tem automates key agricultural tasks, making it faster and more accurate than traditional

methods. It could also be improved by adding environmental and genetic factors.

Article 05 : Hyperspectral Imaging Combined With Deep Transfer Learning

for Rice Disease Detection. [FWHZ21]

This study explores the use of hyperspectral imaging and deep transfer learning to detect

rice diseases in different cultivars. Fast and accurate disease detection is important for bet-

ter rice cultivation. Researchers collected hyperspectral data from healthy and diseased rice

leaves, focusing on rice leaf blight, rice blast, and rice sheath blight. They tested three deep

transfer learning methods : fine-tuning, deep CORrelation ALignment (CORAL), and deep

domain confusion (DDC) to improve classification. Fine-tuning performed best, reaching

over 88% accuracy, while deep CORAL was good at transferring knowledge between rice

varieties. The study shows that hyperspectral imaging with deep learning can help detect

rice diseases efficiently. Future research should include more samples and rice varieties for

better results. These findings could improve disease management in agriculture.
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Article 06 : Image recognition of four rice leaf diseases based on deep learning

and support vector machine. [JLC+20]

This study focuses on identifying and classifying four rice leaf diseases using deep learning

and SVM. Fast and accurate disease detection is essential for rice production and food secu-

rity. Researchers used Convolutional Neural Networks (CNNs) to extract features from rice

leaf images and then applied Support Vector Machine (SVM) for classification. The dataset

included 8,911 images of healthy and diseased rice leaves. Using 10-fold cross-validation,

the best SVM parameters were found, achieving 96.8% accuracy. The CNN-SVM combi-

nation performed better than traditional methods, making it a promising approach for rice

disease diagnosis. The study suggests using larger datasets and improving deep learning

models for even better accuracy in the future.

Article 07 : Identification of Maize Leaf Diseases based on Convolutional Neu-

ral Network. [Wu21]

This paper focuses on identifying maize leaf diseases using a Convolutional Neural Network

(CNN). Accurate disease detection is important for better crop quality and productivity.

Traditional methods rely on manual inspection, which can be slow and inaccurate due to

human errors and environmental factors. In this study, researchers developed a two-channel

CNN model combining features from VGG and ResNet architectures. The dataset included

4,205 images of healthy and diseased maize leaves (big spot, gray leaf spot, and rust). Data

augmentation was used to fix class imbalance and improve model performance. The results

showed that the two-channel CNN achieved 98.33% accuracy, better than the VGG model

(93.33%). The study proves that combining different CNN models can improve disease

classification. It highlights the potential of deep learning for automated disease detection

in agriculture.

Article 08 : Disease Classification in Maize Crop using Bag of Features and

Multiclass Support Vector Machine.[ARM+18]

This study focuses on classifying maize leaf diseases using bag of features and Support Vec-

tor Machines (SVMs). Researchers identified three diseases—Cercospora leaf spot, common

rust, and leaf blight, along with healthy leaves—using 2,000 images from the PlantVillage

database. They applied image processing techniques to extract features, achieving 83.7%

accuracy with the bag of features method using SURF and K-means clustering. Other me-

thods, like histogram-based and GLCM features, reached 81.3% accuracy with polynomial

kernel SVMs. The results show that combining image processing and machine learning

improves disease detection in maize crops. The study highlights the importance of these

techniques for sustainable agriculture and suggests future research on larger datasets to

improve accuracy.

Article 9 : Investigation on Data Fusion of Multisource Spectral Data for Rice

Leaf Diseases Identification Using Machine Learning Methods. [FWZ+20]

This study explores the use of multisource spectral data to identify rice leaf diseases
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using machine learning. It focuses on three diseases—leaf blight, rice blast, and sheath

blight—and applies hyperspectral imaging (HSI), mid-infrared spectroscopy (MIR), and

laser-induced breakdown spectroscopy (LIBS). The researchers used three levels of data

fusion—raw data, feature fusion, and decision fusion—to improve classification accuracy.

The results showed that HSI models performed best, reaching over 93% accuracy with PCA

features. The study highlights that feature and decision fusion enhance disease identifica-

tion, proving the effectiveness of combining different spectroscopic techniques for better

rice disease detection. The findings suggest that advanced data fusion methods can make

disease detection more accurate and efficient in agriculture.

Article 10 : Classification of Rice Leaf Diseases Based onMorphological Changes.

[SPD12]

The study develops an automated system to classify rice leaf diseases, focusing on blast

and brown spot. The authors used image processing techniques to analyze radial hue distri-

bution from infected leaf images. After image acquisition and preprocessing, segmentation

techniques were applied to isolate diseased areas. Extracted features, including hue dis-

tribution, were used for classification with Bayes’ classifier and Support Vector Machine

(SVM). The Bayes classifier achieved 79.5% accuracy, while SVM reached 68.1%. The re-

sults show that the proposed system provides an efficient method for diagnosing rice leaf

diseases, helping to improve disease management and agricultural practices.

Article 11 : Wheat Disease Classification Using Continual Learning. [AKT23]

The article introduces a few-shot learning model using EfficientNet to classify 18 wheat

diseases. The model was tested on three datasets, including a manually collected set of 40

images, achieving 93.19% accuracy. This method overcomes the limitations of traditional

deep learning by requiring less data and adapting to new disease classes without retraining.

It demonstrates great potential for efficient and practical agricultural disease detection.

Article 12 : Automatic detection of yellow rust in wheat using reflectance mea-

surements and neural networks.[MBW+04]

This study proposes a low-cost optical device for remote disease detection in crops to help

reduce pesticide use. The focus is on early detection of yellow rust in wheat plants using

canopy reflectance. The researchers captured spectral images with a spectrograph placed

at spray boom height and developed a normalization method to correct variations in re-

flectance and light intensity. They used neural networks (MLP) to create disease detection

algorithms. The results showed that classification accuracy improved from 95% to over

99%, proving the device’s effectiveness. This approach can help in early disease identifica-

tion, leading to reduced pesticide use and sustainable agriculture.

Article 13 : A Neural Network-Based Approach to Multiple Wheat Disease

Recognition. [APA+22]

This study explores computer vision techniques for detecting multiple wheat leaf diseases,

including yellow spots, yellow rust, and brown rust. Using neural networks, the researchers
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achieved high accuracy between 95% and 99%, similar to expert assessments. A multi-

label classification approach was introduced, allowing the detection of multiple diseases

in a single image. The dataset included wheat leaf images, and preprocessing techniques

like rotation, flipping, and normalization were applied to improve performance. The study

used GoogleNet, a lightweight neural network, for efficient and accurate disease detection.

Evaluation metrics such as accuracy, precision, recall, and F1-score showed excellent re-

sults. The model’s lightweight design makes it suitable for mobile devices, enabling fast

and automated detection in wheat fields. Overall, this method offers a practical solution

for real-world agriculture, improving disease management with the potential for mobile

applications.

Article 14 : Deep transfer learning model for disease identification in wheat

crop. [NJM+23]

This study presents a deep transfer learning model for detecting wheat diseases using ar-

tificial intelligence (AI). The researchers used the WheatRust21 dataset, collected under

field conditions, which includes cases of stripe rust, leaf rust, and stem rust. The study

explored Convolutional Neural Networks (CNNs) and EfficientNet architectures for disease

identification. A key feature of this model is its deployment on mobile devices, allowing

real-time, on-site disease detection using images. The model achieved 99.35% accuracy,

proving the effectiveness of AI-driven methods for identifying wheat diseases. The com-

bination of CNN and EfficientNet further improved detection performance. This research

highlights the potential of AI in agriculture, particularly for disease detection, and shows

that these models can be practically implemented on mobile devices for field use.

Article 15 : Wheat leaf disease identification based on deep learning algorithms.

[XCZ+23]

This study focuses on the Wheat Disease Challenge, highlighting the impact of wheat

leaf diseases on agriculture and food security. The researchers developed a deep learning

model called RFE-CNN, which integrates Residual Channel Attention Blocks (RCABs),

Feature Boosters (FBs), and Embedding-based Metric Learning (EML). They used the

LWDCD 2020 dataset and Convolutional Neural Networks (CNNs) for accurate wheat

disease identification. The model combines parallel CNNs, RCABs, and FBs to extract

important features and improve classification accuracy. It achieved an overall accuracy of

98.83%, with a maximum testing accuracy of 99.95% and an average accuracy of 99.50%.

RFE-CNN outperforms traditional CNN models in accuracy, efficiency, and adaptability,

proving its effectiveness in identifying wheat diseases. The study suggests future research

on improving disease detection across different wheat varieties and ecological conditions

using hyperspectral imaging.

Article 16 : Hybrid Deep Learning Model to Detect Uncertain Diseases in

Wheat Leaves. [RP22]

The article discusses the serious threat of wheat rust pathogens to global wheat produc-
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tion, causing billions of dollars in losses each year. The study used VGG16 and Capsule

Networks, achieving an accuracy of 93% in identifying rust diseases. Rust fungi depend on

living host cells to grow and reproduce, making them difficult to control. A major challenge

in disease management is the constant emergence of new rust races, which makes genetic

resistance harder to maintain. Research has shown that race-specific genes in wheat pro-

duce NBS-LRR proteins, which play a key role in resistance to rust pathogens. To manage

wheat diseases, farmers use fungicides, cultural practices, and optimized planting times to

reduce the impact of rust and other diseases on wheat production.

Article 17 : Classification of wheat diseases using deep learning networks with

field and glasshouse images. [LHMB23]

This article highlights the importance of identifying and controlling wheat diseases, such

as yellow rust, Septoria tritici blotch, brown rust, and mildew, which greatly affect crop

yield and quality. These diseases can look similar at certain growth stages, making them

difficult to distinguish. To solve this problem, the study used deep learning, specifically

convolutional neural networks (CNNs), to automatically detect and classify wheat diseases

from images. Researchers collected over 19,000 images from fields and glasshouses in the

UK and Ireland in 2019, covering five categories : Septoria, yellow rust, brown rust, mil-

dew, and healthy wheat. They developed a CNN model called CerealConv, which has

13 convolutional layers with batch normalization, max pooling, and dropout to improve

performance. CerealConv achieved an accuracy of over 97%, performing 2% better than

the most accurate expert pathologist in manual classification. It also classified 999 images

faster and more accurately than human experts. When critical parts of the images were

masked, its accuracy dropped, proving that the model relies on relevant features for disease

identification. This study confirms that deep learning models like CerealConv can effecti-

vely analyze real-world wheat disease images and perform as well as, or even better than,

expert pathologists.

Article 18 : Computer Vision Framework for Wheat Disease Identification and

Classification Using Jetson GPU Infrastructure. [ARSG21]

This article highlights the importance of wheat in Ethiopia, where it is the second most

important grain crop, contributing 14% of the total calorie intake. Wheat is mainly grown

by smallholder farmers for subsistence farming. Deep learning-based classification systems

help in the early detection of wheat diseases, improving disease management. However,

Ethiopian wheat farmers face challenges such as limited access to market information and

weak market connections, which reduce their productivity and profits. The genetic diversity

of wheat is essential for developing disease-resistant varieties, making genetic research and

breeding programs important. The VGG19 model has shown high accuracy in classifying

wheat diseases, proving its potential for automated disease detection. Automating wheat

disease identification can help reduce crop losses, support Ethiopian farmers, and improve

food security by increasing wheat productivity.
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Article 19 : Leaf and spike wheat disease detection classification using an im-

proved deep convolutional architecture. [GSSS21]

This paper highlights the importance of wheat as a widely consumed grain and the im-

pact of diseases on crop loss. Automatic wheat disease classification using deep learning is

presented as a way to improve crop yield by detecting and managing diseases efficiently.

While deep learning classifiers are powerful, they can face challenges like overfitting and the

need for large datasets and high computational power. To address this, transfer learning

is used to enhance performance, especially when data and resources are limited, by using

pre-trained models. The proposed model is based on VGG16 and achieves 97.88% accuracy

in classifying 10 wheat diseases. This high accuracy demonstrates the model’s effectiveness

in identifying wheat diseases, which helps in early disease management and reducing crop

losses. The success of VGG16 highlights its potential for real-world agricultural use, im-

proving crop management and food security.

Article 20 : Identification of plant diseases using convolutional neural networks.

[JUP21]

This paper explores the use of convolutional neural networks (CNNs) to classify soybean

leaf diseases using pre-trained AlexNet and GoogleNet models. The dataset, collected from

Kolhapur district, Maharashtra, India, includes 649 images for training AlexNet and 550

images for training GoogleNet, categorized into four classes : bacterial blight, brown spot,

frogeye leaf spot, and healthy leaves. Both models achieved over 95% accuracy, demons-

trating their effectiveness in accurately identifying soybean leaf diseases.

Article 21 : A generic approach for wheat disease classification and verification

using expert opinion for knowledge-based decisions. [NNRN+19]

This study highlights how crop diseases reduce agricultural productivity due to outdated

identification methods and limited knowledge sharing. While farmers have local expertise,

the lack of platforms restricts regional information exchange. Research shows that diseases,

cultivation methods, and insufficient knowledge contribute to declining crop yields. To im-

prove disease identification and enable timely intervention, this study utilizes crowd-sourced

data from agricultural stakeholders. Traditional machine learning models struggle with di-

verse agricultural regions due to their reliance on static data and lack of expert insights. To

address this, high-quality images and symptom-based data were collected through crowd-

sourcing and augmented for training. A novel approach combining Decision Trees (DT)

and deep learning models was proposed for wheat disease classification. Expert validation

improved DT accuracy by 28.5% and CNN accuracy by 4.3%, achieving 97.2% accuracy

and leading to decision rules for wheat disease classification in a knowledge-based system.

Article 22 : Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fu-

sarium Head Blight Disease Using a Deep Neural Network in the Wild Field.

[LHZ+17]

This study focuses on classifying Fusarium Head Blight disease in wheat using deep neural
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networks and hyperspectral imaging. The experiment took place from April 29 to May 15,

2017, in a wild field setting, considering factors like wind, humidity, and temperature that

affect imaging. A total of 90 wheat ear samples were divided into 10 regions for hyper-

spectral imaging and a deep convolutional neural network (CNN) was used for analysis.

The model’s performance was evaluated using precision, recall, and F1 score. The results

show that deep neural networks can effectively diagnose Fusarium Head Blight using hy-

perspectral imaging. The study highlights experimental conditions, sample division, and

evaluation metrics, suggesting that hybrid neural networks could further improve disease

diagnosis in wheat, leading to better agricultural disease management.

II.9 Comparison Of Articles

Title of Article Architecture Dataset Results

Discrimination of Deoxy-

nivalenol Levels of Barley

Kernels Using Hyperspec-

tral Imaging in Tandem

with Optimized CNN

CNN with

CARS-SPA

optimization

590 barley samples

(hyperspectral images

382–1030 nm)

89.41% accuracy for

low vs. high DON le-

vels, 89.81% for Class

I vs. Class II

Barley Disease Recognition

Using Deep Neural Net-

works

MobileNet,

Xception, Incep-

tionV3 (Transfer

Learning)

312 RGB images (four

classes : no disease,

scald, NFNB, SFNB)

98.63% accuracy (bi-

nary), 93.50% (multi-

class)

Detection of Rice Leaf Di-

seases Using Image Proces-

sing

SVM with HOG

and LBP

120 rice leaf images

(three diseases)

94.6% accuracy with

polynomial kernel

SVM + HOG

Disease Detection, Severity

Prediction, and Crop Loss

Estimation in Maize Crop

Using Deep Learning

CNN (custom

MaizeNet)

2996 maize leaf images 98.50% accuracy

Hyperspectral Imaging

Combined With Deep

Transfer Learning for Rice

Disease Detection

Deep Transfer

Learning (Fine-

tuning, CORAL,

DDC)

Hyperspectral data of

rice leaves

88% accuracy (fine-

tuning performed

best)

Image Recognition of Four

Rice Leaf Diseases Based on

Deep Learning and SVM

CNN + SVM 8,911 rice leaf images 96.8% accuracy with

CNN-SVM
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Identification of Maize Leaf

Diseases Based on CNN

Two-channel

CNN (VGG +

ResNet)

4,205 maize leaf

images (big spot, gray

leaf spot, rust)

98.33% accuracy

(two-channel CNN),

93.33% (VGG alone)

Disease Classification in

Maize Crop Using Bag of

Features and Multiclass

SVM

SVM with bag of

features (SURF,

K-Means)

2,000 maize images

(PlantVillage)

83.7% accuracy (bag

of features + SVM)

Investigation on Data Fu-

sion of Multisource Spectral

Data for Rice Leaf Diseases

Identification

Machine Lear-

ning (PCA,

Decision Fusion)

HSI, MIR, LIBS spec-

tral data (rice di-

seases)

93% accuracy (HSI

with PCA features)

Classification of Rice Leaf

Diseases Based on Morpho-

logical Changes

Bayes Classifier,

SVM

Radial hue distribu-

tion from infected rice

leaves

79.5% (Bayes), 68.1%

(SVM)

Wheat Disease Classifica-

tion Using Continual Lear-

ning

Few-shot lear-

ning (Efficient-

Net)

Three datasets (inclu-

ding 40 manually col-

lected images)

93.19% accuracy

Automatic Detection of Yel-

low Rust in Wheat Using

Reflectance Measurements

Neural Network

(MLP)

5137 leaf spectra 95–99% accuracy

A Neural Network-Based

Approach to Multiple

Wheat Disease Recognition

GoogleNet

(Lightweight

CNN)

Wheat leaf images 95–99% accuracy,

multilabel classifica-

tion

Deep Transfer Learning Mo-

del for Disease Identifica-

tion in Wheat Crop

CNNs, Efficient-

Net

WheatRust21 dataset

(stripe rust, leaf rust,

stem rust)

– (results not fully de-

tailed)

Wheat leaf disease identifi-

cation based on deep lear-

ning algorithms

Two parallel

CNNs (LWDCD

2020)

LWDCD 2020 99.95% accuracy

Hybrid Deep Learning Mo-

del to Detect Uncertain Di-

seases in Wheat Leaves

VGG-16 and a

capsule network

No name mention 93% accuracy

Classification of wheat di-

seases using deep learning

networks with field and

glasshouse images

MobileNet,

InceptionV3,

VGG16

WheatleavesUK 91.43% accuracy
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Computer Vision Frame-

work for Wheat Disease

Classification Using Jetson

GPU Infrastructure

InceptionV3,

ResNet50, and

VGG16/19

Bishoftu dataset 99.38% accuracy

Leaf and spike wheat di-

sease detection

classification

using an im-

proved deep

convolutional

Architecture

VGG16

(LWDCD2020)

97.88% accuracy

Identification of plant di-

seases using convolutional

neural networks

AlexNet, Goo-

gleNet

Soybean leaf 95% accuracy

A generic approach for

wheat disease classification

and verification using ex-

pert opinion for knowledge-

based decisions

CNN No name mention 97.5% accuracy

An in-field automatic wheat

disease diagnosis system

GG-FCN-VD16

and VGG-FCN-

S

Wheat Disease Data-

base 2017 (WDD2017)

97.95% and 95.12%

accuracies

Classifying Wheat Hyper-

spectral Pixels of Healthy

Heads and Fusarium Head

Blight Disease Using a Deep

Neural Network in the Wild

Field

Convolutional

Neural Network

(CNN)

Wild Field 2018 75% accuracy, 74.3%

validation accuracy

Table II.2 – Comparison of Articles on Cereal Plants Disease Detection

After analyzing several research articles on cereal disease detection, it is clear that deep

learning methods—particularly Convolutional Neural Networks (CNNs)—are the most ef-

fective for classifying plant images, whether based on RGB or hyperspectral imaging. These

approaches enable fast, accurate, and automated disease detection. However, most studies

propose ”all-in-one” models that classify all disease types in a single step. Based on these

observations, we decided to adopt a different approach, using a sequential master-slave

architecture. In our method, a first model (DDN1) detects whether the plant is healthy

or diseased, and if an infection is detected, a second model (DDN2) identifies the specific

disease. This architecture is designed to improve the robustness, modularity, and accuracy

of the diagnosis.
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II.10 Conclusion

In this chapter, we explored the fundamental concepts of machine learning and its re-

levance in the field of agriculture. We began by introducing the main types of learning :

supervised, unsupervised, reinforcement, and semi-supervised learning, followed by an over-

view of deep learning and its growing impact on image-based diagnosis. We then discussed

the differences between machine learning and deep learning, highlighting their respective

advantages in various agricultural tasks. Additionally, we introduced the concept of trans-

fer learning, which allows models to benefit from previously learned knowledge, especially

useful when data is limited. Finally, we presented a comparative study of several research

works focused on cereal disease detection, providing insight into current trends, techniques,

and performance outcomes. This analysis helps identify the most promising approaches and

highlights areas that require further investigation.

The next chapter will focus on the design and conception of our proposed system, based

on the knowledge and findings discussed here.
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CONCEPTION

III.1 Introduction

Our chapter details the process that was followed to come up with a system that can

make use of RGB images in the detection and classification of diseases in cereal leaves. The

idea was to build an intelligent technology that is capable of, first, establishing the health

state of a leaf and then finding out the disease type if it’s not healthy.

A two-step process, more commonly referred to as a master-slave architecture, has been

utilized in our system : Through DDN1, the first model detects whether the leaf is healthy

or unhealthy.

If the leaf is sick, the second model, DDN2 is employed to confirm it and identify the

disease it has precisely.

We have also extended our proposed method to the three categories of cereal crops like

wheat, maize, and rice. Thus, six deep learning models are necessary with two models de-

veloped for each cereal (one model for detection and another for identification).

This chapter also details how the system was designed, the datasets as well as data prepa-

ration, and model building and training steps.

III.2 General architecture of the system

The system is structured in two sequential stages based on a master-slave architecture,

Where the first stage (master) makes the initial decision, guiding the process, while the

second stage (slave) performs a deeper analysis only if necessary. In the first stage, the

system determines whether a cereal leaf (wheat, maize, or rice) is healthy or diseased.

If the leaf is healthy, the process ends immediately. However, if the leaf is classified as

diseased, the system moves to the second stage to identify the specific disease.

The first stage uses the DDN1 model, where each model is specialized by crop type :
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DDN1 W for wheat, DDN1 M for maize, and DDN1 R for rice. Each model takes an

image of a cereal leaf and performs a binary classification : healthy or diseased.

If the result is ”diseased”, the image is passed to the second stage, which uses the DDN2

model. Again, each model is crop-specific : DDN2 W for wheat, DDN2 M for maize, and

DDN2 R for rice. These models perform multi-class classification to determine the exact

disease affecting the plant. This two-stage design simplifies the classification task, improves

model performance, and makes the system easier to maintain and update.
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Figure III.1 – Architecture of Our System
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III.3 Description of the Datasets

We use three different RGB image datasets in this study. Each one is about a specific

cereal : wheat, maize, or rice. The images in these datasets show cereal leaves, and each

image is labeled to say if the leaf is healthy or has a certain disease.

III.3.1 Wheat Dataset

To better understand the structure of the Wheat Dataset, the following table [Figure

III.2] displays the different classes, a representative image for each, and the corresponding

image count.

Figure III.2 – Wheat Dataset Description
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Figure III.3 – Distribution of Healthy and Disease Classes in the Wheat Dataset

III.3.2 Maize Dataset

The structure of the Maize Dataset is summarized in the table below[Figure III.4],

showing each class name alongside a representative image and the total number of images.

Figure III.4 – Maize Dataset Description
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Figure III.5 – Distribution of Healthy and Disease Classes in the Maize Dataset

III.3.3 Rice Dataset

The table below presents an overview of the Rice Dataset, highlighting each class, an

example image, and the number of images available per class

Figure III.6 – Rice Dataset Description
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Figure III.7 – Distribution of Healthy and Disease Classes in the Rice Dataset

III.4 Data Preprocessing

To improve model performance and generalization, we applied several data preproces-

sing steps before training the deep learning models.

III.4.1 Data Augmentation

We resorted to data augmentation to enlarge the amount of training images and to

alleviate class imbalance due to the dataset. Such a technique adds further images in each

of which the original has been altered. The ultimate purpose is to make the model more

resistant and the performance is more effective. We applied the following transformations :

rotation range = 30 : rotate the image randomly up to 30 degrees.

width shift range = 0.2 : move the image horizontally by 20%.

height shift range = 0.2 : move the image vertically by 20%.

zoom range = 0.2 : zoom in or out up to 20%.

horizontal flip = True : flip the image from left to right.

brightness range = [0.8, 1.2] : change the brightness between 80% and 120%.

Figure III.8 – Original vs Augmented Image

44



CHAPTER III Conception

Figure III.9 – Wheat Dataset Before and After Data-Augmentation

Figure III.10 – Maize Dataset Before and After Data-Augmentationt

Figure III.11 – Rice Dataset Before and After Data-Augmentation

III.4.2 Image Resizing and Normalization

Before training, we resized all the images to fit the input size required by our models.

Wheat leaf images were resized to 255×255 pixels, while maize and rice images were resized

to 224×224 pixels. In all cases, we kept the three color channels (RGB) to preserve the

color information important for identifying diseases.

After resizing, we normalized the pixel values of all images to a range between 0 and 1

by dividing each pixel value by 255. This step helps the models train more efficiently and

improves convergence.
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III.4.3 Dataset Splitting

Each dataset (Wheat, Maize, Rice) was split into three subsets :

The model was trained using 80% of the dataset.

A 10% portion was used for validation during training.

Another 10% was kept aside to test the model’s performance.

III.5 Deep Learning Models for Disease Detection and

diagnosis

This section presents the architecture and training of the DDN1 and DDN2 models

for each cereal type. For each crop (wheat, maize, rice), DDN1 detects whether the leaf

is healthy or diseased. If the leaf is diseased, DDN2 is then used to classify the specific

disease.

III.5.1 Detection and Diagnosis of Wheat Diseases

III.5.1.1 DDN1 for Wheat : Healthy vs Diseased

The figure below [FigureIII.12] illustrates the training pipeline of the DDN1 model

designed to detect whether a wheat leaf is healthy or diseased.
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Figure III.12 – Wheat DDN1

III.5.1.2 Training of DDN1 for Wheat

The master network (DDN1) is responsible for determining whether wheat leaves are

healthy or diseased. As shown in [Figure III.13], each image is first resized to 255×255

pixels and preprocessed through filtering operations. The image then passes through a

sequence of three convolutional blocks (Conv2D + MaxPooling2D), where the number of

filters increases progressively : 32, 64, and 128. These layers extract features which are then

flattened and passed to a dense layer with a sigmoid activation function.

The model outputs 0 if the leaf is healthy and 1 if diseased. In case of a healthy result (0),

no further analysis is needed. However, if the image is classified as diseased (1), the process

continues with the slave network DDN2, which performs disease classification.

The detailed architecture of DDN1 is summarized in Table [Table III.1].
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Figure III.13 – Wheat DDN1 Architecture

Layer Feature Map Size Kernel Size Stride Activation Output Shape

Input (255, 255, 3) – – – (255, 255, 3)

Conv2D (253, 253, 32) (3, 3) (1, 1) ReLU (253, 253, 32)

MaxPooling2D (126, 126, 32) (2, 2) (2, 2) – (126, 126, 32)

Dropout – – – – (126, 126, 32)

Conv2D (124, 124, 64) (3, 3) (1, 1) ReLU (124, 124, 64)

MaxPooling2D (62, 62, 64) (2, 2) (2, 2) – (62, 62, 64)

Dropout – – – – (62, 62, 64)

Conv2D (60, 60, 128) (3, 3) (1, 1) ReLU (60, 60, 128)

MaxPooling2D (30, 30, 128) (2, 2) (2, 2) – (30, 30, 128)

Dropout – – – – (30, 30, 128)

Flatten – – – – 115200

Dense 128 – – ReLU 128

Dropout – – – – 128

Dense 1 – – Sigmoid 1

Table III.1 – Layers of Wheat DDN1

III.5.1.3 DDN2 for Wheat : Disease Classification

The training pipeline of the second network (DDN2), responsible for diagnosing specific

wheat diseases, is illustrated in [Figure III.14].
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Figure III.14 – Wheat DDN2

III.5.1.4 Training of DDN2 for Wheat

This model is designed specifically to classify diseases into four different classes. It

processes all images provided by the user by resizing them to 255×255 pixels and applying

specific filters. The DDN2 model uses a Softmax activation function in the output layer.

It performs similar operations as the first model, sharing the same input and initial layers,

but differs in the number of classes it predicts. The full architecture of the first model

(DDN1), used for detecting whether a wheat leaf is healthy or diseased, this architecture

is detailed in [Figure III.14 ] and [Figure III.15].

Figure III.15 – Wheat DDN2 Architecture
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Layer Feature Map Size Kernel Size Stride Activation Output Shape

Input (255, 255, 3) - - - (255, 255, 3)

Conv2D (253, 253, 32) (3, 3) (1, 1) ReLU (253, 253, 32)

MaxPooling2D (126, 126, 32) (2, 2) (2, 2) - (126, 126, 32)

Conv2D (124, 124, 64) (3, 3) (1, 1) ReLU (124, 124, 64)

MaxPooling2D (62, 62, 64) (2, 2) (2, 2) - (62, 62, 64)

Conv2D (60, 60, 128) (3, 3) (1, 1) ReLU (60, 60, 128)

MaxPooling2D (30, 30, 128) (2, 2) (2, 2) - (30, 30, 128)

Conv2D (28, 28, 128) (3, 3) (1, 1) ReLU (28, 28, 128)

MaxPooling2D (14, 14, 128) (2, 2) (2, 2) - (14, 14, 128)

Flatten - - - - 25088

Dense 512 - - ReLU 512

Dropout - - - - 512

Dense 4 - - Softmax 4

Table III.2 – Layers of Wheat DDN2

III.5.2 Detection and Diagnosis of Maize Diseases

III.5.2.1 DDN1 for Maize : Healthy vs Diseased

The figure below [FigureIII.16] illustrates the training pipeline of the DDN1 model

designed to detect whether a wheat leaf is healthy or diseased.
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Figure III.16 – Maize DDN1

III.5.2.2 Training of DDN1 for Maize

The master network (DDN1) is responsible for detecting whether a maize leaf is healthy

or diseased. Each image provided by the user is resized to 224 × 224 pixels and preprocessed

using specific filters. It is then passed through a series of three convolutional blocks, each

consisting of a Conv2D layer followed by a MaxPooling2D layer, with an increasing number

of filters : 32, 64, and 128. After the final block, the extracted features are flattened and

passed to a Dense layer with a sigmoid activation function, producing a binary output : 0

for a healthy leaf and 1 for a diseased leaf. If the output is 0, the process stops. However,

if the output is 1, the system automatically activates the slave network (DDN2). This

architecture is detailed in [Figure III.17 ] and [TABLE III.3].
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Figure III.17 – Maize DDN1 Architecture

Layer Feature Map Size Kernel Size Stride Activation Output Shape

Input (224, 224, 3) - - - (224, 224, 3)

Conv2D (222, 222, 32) (3, 3) (1, 1) ReLU (222, 222, 32)

MaxPooling2D (111, 111, 32) (2, 2) (2, 2) - (111, 111, 32)

Dropout - - - - (111, 111, 32)

Conv2D (109, 109, 64) (3, 3) (1, 1) ReLU (109, 109, 64)

MaxPooling2D (54, 54, 64) (2, 2) (2, 2) - (54, 54, 64)

Dropout - - - - (54, 54, 64)

Conv2D (52, 52, 128) (3, 3) (1, 1) ReLU (52, 52, 128)

MaxPooling2D (26, 26, 128) (2, 2) (2, 2) - (26, 26, 128)

Dropout - - - - (26, 26, 128)

Flatten - - - - 86,528

Dense 128 - - ReLU 128

Dropout - - - - 128

Dense -1 - - Sigmoid 1 )

Table III.3 – Layers of Maize DDN1

III.5.2.3 DDN2 for Maize : Disease Classification

The training pipeline of the second network (DDN2), responsible for diagnosing specific

maize diseases, is illustrated in [Figure III.18]
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Figure III.18 – Maize DDN2

III.5.2.4 Training of DDN2 for Maize

This model is specifically designed to classify maize leaf diseases into three distinct

classes. It processes all input images by resizing them to 224×224 pixels and normalizing

their pixel values to ensure consistency during training and inference. The architecture is

inspired by a traditional CNN design, with progressively deeper convolutional layers for

hierarchical feature extraction. The model shares its input format and early convolutional

structure with the first detection model (DDN1), but it differs in the final classification

layer, where a Softmax activation is used to output probabilities across the three maize

disease categories. This architecture is detailed in [Figure III.19 ] and [TABLE III.4].
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Figure III.19 – Maize DDN2 Architecture

Layer Feature Map Size Kernel Size Stride Activation Output Shape

Input (224, 224, 3) - - - (224, 224, 3)

Conv2D (222, 222, 32) (3, 3) (1, 1) ReLU (222, 222, 32)

MaxPooling2D (111, 111, 32) (2, 2) (2, 2) - (111, 111, 32)

Conv2D (109, 109, 64) (3, 3) (1, 1) ReLU (109, 109, 64)

MaxPooling2D (54, 54, 64) (2, 2) (2, 2) - (54, 54, 64)

Conv2D (52, 52, 128) (3, 3) (1, 1) ReLU (52, 52, 128)

MaxPooling2D (26, 26, 128) (2, 2) (2, 2) - (26, 26, 128)

Conv2D (24, 24, 128) (3, 3) (1, 1) ReLU (24, 24, 128)

MaxPooling2D (12, 12, 128) (2, 2) (2, 2) - (12, 12, 128)

Flatten - - - - 18,432

Dense 512 - - ReLU 512

Dropout - - - - 512

Dense 3 - - Softmax 3 (disease classes)

Table III.4 – Layers of Maize DDN2

III.5.3 Detection and Diagnosis of Rice Diseases

III.5.3.1 DDN1 for Rice : Healthy vs Diseased

The figure below [FigureIII.20] illustrates the training pipeline of the DDN1 model

designed to detect whether a rice leaf is healthy or diseased.

54



CHAPTER III Conception

Figure III.20 – Rice DDN1

III.5.3.2 Training of DDN1 for Rice

The master network (DDN1) is responsible for detecting whether a rice leaf is healthy or

diseased. Each image provided by the user is resized to 224 × 224 pixels and preprocessed

using specific filters. It is then passed through a series of three convolutional blocks, each

consisting of a Conv2D layer followed by a MaxPooling2D layer, with an increasing number

of filters : 32, 64, and 128. After the final block, the extracted features are flattened and

passed to a Dense layer with a sigmoid activation function, producing a binary output : 0

for a healthy leaf and 1 for a diseased leaf. If the output is 0, the process stops. However,

if the output is 1, the system automatically activates the slave network (DDN2). This

architecture is detailed in [Figure III.21 ] and [TABLE III.5].

Figure III.21 – Rice DDN1 Architecture
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Layer Feature Map Size Kernel Size Stride Activation Output Shape

Input (224, 224, 3) - - - (224, 224, 3)

Conv2D (222, 222, 32) (3, 3) (1, 1) ReLU (222, 222, 32)

MaxPooling2D (111, 111, 32) (2, 2) (2, 2) - (111, 111, 32)

Dropout - - - - (111, 111, 32)

Conv2D (109, 109, 64) (3, 3) (1, 1) ReLU (109, 109, 64)

MaxPooling2D (54, 54, 64) (2, 2) (2, 2) - (54, 54, 64)

Dropout - - - - (54, 54, 64)

Conv2D (52, 52, 128) (3, 3) (1, 1) ReLU (52, 52, 128)

MaxPooling2D (26, 26, 128) (2, 2) (2, 2) - (26, 26, 128)

Dropout - - - - (26, 26, 128)

Flatten - - - - 86,528

Dense 128 - - ReLU 128

Dropout - - - - 128

Dense - 1 - - Sigmoid 1

Table III.5 – Layers of Rice DDN1

III.5.3.3 DDN2 for Rice : Disease Classification

The training pipeline of the second network (DDN2), responsible for diagnosing specific

rice diseases, is illustrated in [Figure III.22].
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Figure III.22 – Rice DDN2

III.5.3.4 Training of DDN2 for Rice

This model is designed to classify rice leaf diseases into four different classes. Each input

image is resized to 224 × 224 pixels and normalized to ensure consistent results. The model

uses a simple CNN structure with several Conv2D and MaxPooling2D layers to extract

features from the image. It shares the same input size and early layers as the first model

(DDN1), but the final layer is different. It uses a Softmax activation function to give the

probabilities of the four rice disease classes. This architecture is detailed in [Figure III.23

] and [TABLE III.6].

Figure III.23 – Rice DDN2 Architecture
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Layer Feature Map Size Kernel Size Stride Activation Output Shape

Input (224, 224, 3) - - - (224, 224, 3)

Conv2D (222, 222, 32) (3, 3) (1, 1) ReLU (222, 222, 32)

MaxPooling2D (111, 111, 32) (2, 2) (2, 2) - (111, 111, 32)

Conv2D (109, 109, 64) (3, 3) (1, 1) ReLU (109, 109, 64)

MaxPooling2D (54, 54, 64) (2, 2) (2, 2) - (54, 54, 64)

Conv2D (52, 52, 128) (3, 3) (1, 1) ReLU (52, 52, 128)

MaxPooling2D (26, 26, 128) (2, 2) (2, 2) - (26, 26, 128)

Conv2D (24, 24, 128) (3, 3) (1, 1) ReLU (24, 24, 128)

MaxPooling2D (12, 12, 128) (2, 2) (2, 2) - (12, 12, 128)

Flatten - - - - 18432

Dense 512 - - ReLU 512

Dropout - - - - 512

Dense 4 - - Softmax 4

Table III.6 – Layers of Rice DDN2

III.6 Conclusion

This chapter was centred on the description of our innovative system that automates

the task of identifying and diagnosing leaf diseases that affect different kinds of cereals.

The system is composed of mainly two stages : a first model which can be called the master

(the DDN1 in our case), responsible for recognizing the health or disease status of the leaf,

and the second model (The slave or DDN2) which can easily communicate with the DDN1

and then is used to identify the exact disease if the leaf is sick. In addition, we spoke

about the datasets that were unfolded in the domains of wheat, maize, and rice, and the

handling steps that varied from one to another like resizing, normalizing, and augmenting

the images to improve the training set. The following chapter will be the platform where

we not only evaluate the models but also present the results with an in-depth analysis.
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IMPLEMENTATION, TESTS AND RESULTS

IV.1 Introduction

In this chapter, we show the important parts of our work. Before, we prepared the data

and trained the models DDN1 and DDN2 for each cereal : wheat, maize, and rice. Now,

we will present the tools we used, the results for each model, and compare our models with

others. We will also explain how we made the web application and share screenshots of its

interface. At the end, we discuss the results, the strengths and weaknesses of our approach,

and ideas for future work.

IV.2 Hardware and Software Tools

IV.2.1 Hardware Tools

IV.2.1.1 Computing Station

At the University 8 Mai 1945, in the LAIG laboratory, our primary work was carried out

on a dedicated computer. The configuration of this machine included 32 GB of RAM, an

Intel i7 7th generation CPU, an NVIDIA GeForce GT 1050ti GPU with 2 GB of memory,

and the Windows 10 Pro operating system.[?]

IV.2.1.2 Personal Hardware

To control the Computing Station remotely and save backups, we used a personal

computer with :8 GB RAM, 512 GB SSD, Intel i7 8th generation CPU and Windows 11.
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IV.2.2 Software Tools

IV.2.2.1 PyCharm CE

is a software tool that helps developers write and manage Python code. It is an IDE

(Integrated Development Environment), which means it offers many features in one place.

These features include code checking, a visual debugger to find and fix errors, tools to

test programs, and support for version control systems like Git. PyCharm also allows the

development of web applications, especially with Django. It is created by JetBrains, a

company based in the Czech Republic.[?]

IV.2.2.2 Python

Python is a high-level programming language that is easy to understand and use. It

is popular among many developers because it is simple to learn and works well for many

types of projects. Python is also free to use and can run on different operating systems. In

our project, we used Python version 3.9, which works well with the libraries we needed.[?]

IV.2.3 Library Used

IV.2.3.1 TensorFlow

TensorFlow is a free and open-source tool created by Google. It is used to build and

run machine learning and deep learning models. It helps developers, data scientists, and

researchers create smart systems more easily, even for complex tasks like predictions and

data analysis.[?]

In our project, TensorFlow was used as the main framework to implement and

train the deep learning models DDN1 and DDN2.

IV.2.3.2 Keras

Keras is a free Python library used to build deep learning models. It was first a separate

tool but is now part of TensorFlow. Keras makes it easier to create neural networks by using

simple code. It lets you build models using layers like Dense and Dropout, and organize

them with Sequential models. Starting from TensorFlow version 2.16, a new version called

Keras 3 will be used by default, but the older version (Keras 2) can still be used.[?]

In our project, Keras was used to design and structure the CNN architectures

of both DDN1 and DDN2.

IV.2.3.3 OS module

OS is a built-in Python module that helps you work with the computer’s operating

system. It allows your Python program to create, delete, and manage folders and files.
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With the ”os” and ”os.path” modules, you can check what is inside a folder, find or change

the current folder, and do many other file-related tasks.[?]

In our project, the OS module was used to manage image directories and handle

file paths during preprocessing and model evaluation.

IV.2.3.4 OpenCV

OpenCV (Open Source Computer Vision Library) is a free tool used for computer vision

and machine learning. It was first made by Intel and is now managed by the OpenCV

community. OpenCV helps programmers work with images and videos — for example,

to detect objects, faces, or handwriting. It works with many programming languages like

Python, C++, and Java. OpenCV is often used with NumPy, which is good at doing fast

math with numbers and arrays. Together, they make it easier to process and understand

images.[?]

In our project, OpenCV was used to read, resize, and manipulate RGB images

before feeding them into the deep learning models.

IV.2.3.5 NumPy

NumPy is a basic and important Python library for scientific computing. It gives you

special tools to work with large sets of numbers, called arrays. NumPy also has many fast

functions to do math, logic, change shapes of arrays, sort data, select parts of arrays, read

and write files, and more. It can also do things like linear algebra, statistics, and random

simulations.[?]

In our project, NumPy was used for numerical operations on image data, in-

cluding array manipulation and normalization.

IV.2.3.6 Matplotlib

Matplotlib is a Python library used to create graphs and charts. It helps to show data

visually. You can use it together with other Python libraries like NumPy and SciPy for

scientific computing. Matplotlib also lets you add graphs into applications with different

tools like Tkinter, wxPython, Qt, or GTK.[?]

In our project, Matplotlib was used to visualize training history (loss and ac-

curacy curves) and display sample predictions.

IV.2.3.7 Flask

Flask is a lightweight web framework for Python. It helps you build web applications

quickly and easily. With Flask, you can create web pages, handle user requests, and connect

your Python programs to the internet. It is simple to use and good for small to medium

projects.[?]
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In our project, Flask was used as a backend service to deploy the trained

models and handle image upload, prediction, and response delivery to the user

interface.

IV.2.3.8 HTML, CSS, and JavaScript

HTML, CSS, and JavaScript were used to create the front end of the web app. -HTML

builds the structure of the pages.

-CSS makes the pages look nice (colors, fonts, layout).

-JavaScript adds interactivity, like buttons that work or images that change.

IV.3 Results

IV.3.1 Wheat Results

IV.3.1.1 Wheat DDN1

After testing and updating the Detection Diseases Network model for wheat, we got the

following results [Figure IV.1],[Figure IV.2] and [Figure IV.3] using these configurations :

-Optimizer : Adam

-Batch size : 32

-Epochs : 30

-Relu For all convolutional layers function except the output layer use Sigmoid.

We observe that the training accuracy [Figure IV.1] increases step by step with each epoch

and reaches around 98% at the end. This means the model is learning the training data

very well. The validation accuracy [Figure IV.1] also increases at first, but after about

5 epochs, it starts to go up and down. These small changes are normal and temporary.

Although it does not improve as smoothly as the training accuracy, it still shows good

learning. In the end, the validation accuracy reaches 90%, which is a good result. It shows

that the model can generalize well to new data.
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Figure IV.1 – Training and Validation Accuracy Curves for Wheat DDN1

The training loss [Figure IV.2] goes down step by step from a high value to almost

zero, which means the model is learning the training data well. The validation loss [Figure

IV.2] also goes down at first, but after a few epochs, it starts to change up and down. Even

though it stays higher than the training loss, it stays mostly stable, with a small increase

at the end.

Figure IV.2 – Training and Validation Loss Curves for Wheat DDN1

The model demonstrates strong performance in classifying healthy and not healthy ca-

tegories [Figure IV.3], with high accuracy observed for both. Furthermore, the low number

of false positives and false negatives indicates that the model achieves good precision and

recall across both classes.
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Figure IV.3 – Confusion Matrix for Wheat DDN1

IV.3.1.2 Wheat DDN2

After testing and updating the Diagnose Diseases Network model for wheat, we got the

following results [Figure IV.4],[Figure IV.5] and [Figure IV.6] using these configurations :

-Optimizer : Adam

-Batch size : 32

-Epochs : 50

-Relu For all convolutional layers function except the output layer use Softmax.

Both training and validation accuracy [Figure IV.4] begin at about 50% in the first epoch.

As training continues, both accuracies increase steadily with each epoch, eventually rea-

ching nearly 91%.

Figure IV.4 – Training and Validation Accuracy Curves for Wheat DDN2
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This graph [Figure IV.5] shows the model loss for both training and validation datasets

over 50 epochs. The training and validation loss drop significantly during the first 60% of

the epochs, then stabilize at low values, indicating effective learning and good performance

with minimal overfitting (around 0.08).

Figure IV.5 – Training and Validation Loss Curves for Wheat DDN2

The model shows high accuracy for all disease categories [Figure IV.6], with very few

misclassifications. The best accuracy is for Brown Rust at 99.39%, while Wheat Leaf Rust

has the lowest accuracy at 85.19%. Some Wheat Leaf Rust samples (7.41%) are incorrectly

classified as Brown Rust, and another 7.41% are mistaken for Septoria, likely because these

diseases look similar visually.
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Figure IV.6 – Confusion Matrix for Wheat DDN2

IV.3.2 Maize Results

IV.3.2.1 Maize DDN1

After testing and updating the Detection Diseases Network model for maize, we got the

following results [Figure IV.7],[Figure IV.8] and [Figure IV.9] using these configurations :

-Optimizer : Adam

-Batch size : 32

-Epochs : 30

-Relu For all convolutional layers function except the output layer use Sigmoid.

The training accuracy [Figure IV.7] increases rapidly and converges to 100%, while the

validation accuracy [Figure IV.7] remains stable around 0.99%. There is no obvious sign of

overfitting. Therefore, the model learns the training data well and generalizes correctly to

unseen data, with only a slight divergence between the two curves.
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Figure IV.7 – Training and Validation Accuracy Curves for maize DDN1

The training loss [Figure IV.8] drops quickly to 0%, while the validation loss [Figure

IV.8] remains stable around 0.05%. The two curves remain close without any sign of over-

fitting. Therefore, the model converges quickly with low loss, indicating good learning and

generalization.

Figure IV.8 – Training and Validation Loss Curves for Maize DDN1

For the ”Healthy” class, the model achieves perfect precision (100.00%). For the ”Not

Healthy” class, it reaches a precision of 99.35%, with only 0.65% error rate. Therefore, the

model is well performant, with very low overall error and excellent ability to distinguish
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between the two classes.

Figure IV.9 – Confusion Matrix for Maize DDN1

IV.3.2.2 Maize DDN2

After testing and updating the Diagnose Diseases Network model for maize, we got

the following results [Figure IV.10],[Figure IV.11] and [Figure IV.12] using these configu-

rations :

-Optimizer : Adam

-Batch size : 32

-Epochs : 50

-Relu For all convolutional layers function except the output layer use Softmax.

The training accuracy [Figure IV.10] increases steadily and converges around 90%, while

the validation accuracy [Figure IV.10] shows fluctuations but also stabilizes near 90%.

There is a slight divergence between the two curves, but no significant overfitting is obser-

ved.Therefore,the model learns effectively from the training data and generalizes reasonably

well to unseen data, with consistent performance across epochs.
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Figure IV.10 – Training and Validation Accuracy Curves for Maize DDN2

The training loss [Figure IV.11] decreases rapidly at first and then plateaus around

0.30, while the validation loss [Figure IV.11] follows a similar trend but remains slightly

higher. Both curves show some noise but maintain a stable pattern without signs of over-

fitting.Therefore,the model converges quickly with low loss, indicating good learning dy-

namics and effective generalization to validation data.

Figure IV.11 – Training and Validation Loss Curves for Maize DDN2

The model performs well overall[Figure IV.12], with high precision for each class, though

there are some notable misclassifications between ”Blight” and ”Gray Leaf Spot.
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Figure IV.12 – Confusion Matrix for Maize DDN2

IV.3.3 Rice Results

IV.3.3.1 Rice DDN1

After testing and updating the Detection Diseases Network model for Rice, we got the

following results [Figure IV.13],[Figure IV.14] and [Figure IV.15] using these configura-

tions :

-Optimizer : Adam

-Batch size : 32

-Epochs : 30

-Relu For all convolutional layers function except the output layer use Sigmoid.

The training accuracy [Figure IV.13] increases steadily and converges around 98%, while the

validation accuracy [Figure IV.13] shows fluctuations but also stabilizes near 98%. There

is a slight divergence between the two curves, but no significant overfitting is observed.

Therefore, the model learns effectively from the training data and generalizes reasonably

well to unseen data, with consistent performance across epochs.
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Figure IV.13 – Training and Validation Accuracy Curves for Rice DDN1

The training loss [Figure IV.14] decreases rapidly at first and then plateaus around 0.07,

while the validation loss [Figure IV.14] follows a similar trend but remains slightly higher.

Both curves show some noise but maintain a stable pattern without signs of overfitting.

Therefore, the model converges quickly with low loss, indicating good learning dynamics

and effective generalization to validation data.

Figure IV.14 – Training and Validation Loss Curves for Rice DDN1
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The model performs well [Figure IV.15], with high precision for both classes, indicating

strong classification capabilities.

Figure IV.15 – Confusion Matrix for Rice DDN1

IV.3.3.2 Rice DDN2

After testing and updating the Diagnose Diseases Network model for Rice, we got the

following results [Figure IV.16],[Figure IV.17] and [Figure IV.18] using these configura-

tions :

-Optimizer : Adam

-Batch size : 32

-Epochs : 50

-Relu For all convolutional layers function except the output layer use Softmax.

The training accuracy [Figure IV.16] increases steadily from 0.5 to around 0.9, while the

validation accuracy [Figure IV.16] shows fluctuations but stabilizes near 90%.
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Figure IV.16 – Training and Validation Accuracy Curves for Rice DDN2

The training loss [Figure IV.17] decreases rapidly from 1.2 to around 0.3, while the

validation loss [Figure IV.17] also decreases but remains slightly higher. Both curves show

a general downward trend, indicating effective learning and convergence.

Figure IV.17 – Training and Validation Loss Curves for Rice DDN2

The model achieves high precision for most classes [Figure IV.18], with strong diagonal

values indicating correct predictions. For example, ”Leaf Blast” has 97.71% accuracy, and

”Sheath Blight” has 95.43%. However, there are some misclassifications, such as ”Bacterial

Leaf Blight” being confused with ”Brown Spot” (1.14%) and vice versa.Therefore,the model

performs well overall, with high accuracy for the majority of classes, but there is room for

improvement in distinguishing between similar diseases like ”Bacterial Leaf Blight” and

”Brown Spot.”

73



CHAPTER IV Implementation, Tests and Results

Figure IV.18 – Confusion Matrix for Rice DDN2

IV.4 Comparison of Pretrained Models on Maize DDN2

All models were fine-tuned on a plant disease dataset after being pretrained on Image-

Net.

Model Accuracy Precision (avg) Recall (avg) F1-Score (avg) Best Class Performance Worst Class Performance

MobileNetV2 91% 0.91 0.91 0.91 Common Rust (97% F1) Blight (87% F1)

InceptionV3 88% 0.88 0.88 0.88 Common Rust (96% F1) Gray Leaf Spot (83% F1)

ResNet50 79% 0.80 0.79 0.78 Common Rust (94% F1) Blight (69% F1)

VGG16 89% 0.89 0.89 0.89 Common Rust (96% F1) Blight (85% F1)

VGG19 88% 0.87 0.87 0.87 Common Rust (94% F1) Blight (82% F1)

DDN2 M 90% 0.85 0.90 0.87 Common Rust (97% F1) Gray Leaf Spot (73% F1)

Table IV.1 – Comparison of Pretrained Models on Maize DDN2
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Figure IV.19 – Comparative Performance Analysis of Pretrained Models on Maize DDN2
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IV.5 Comparison of Pretrained Models on Rice DDN2

Model Accuracy Precision (avg) Recall (avg) F1-Score (avg) Best Class Performance Worst Class Performance

MobileNetV2 93% 0.93 0.92 0.92 Brown Spot (96% F1) Bacterial Leaf Blight (85% F1)

InceptionV3 90% 0.90 0.89 0.89 Rice Blast (94% F1) Sheath Blight (82% F1)

ResNet50 83% 0.84 0.83 0.83 Rice Blast (88% F1) False Smut (71% F1)

VGG16 91% 0.91 0.90 0.90 Rice Blast (95% F1) Bacterial Leaf Blight (84% F1)

VGG19 90% 0.89 0.89 0.89 Brown Spot (93% F1) False Smut (80% F1)

DDN2 R 96% 0.96 0.96 0.96 Sheath Blight (97% F1) Bacterial Leaf Blight (95% F1)

Table IV.2 – Comparison of Pretrained Models on Rice DDN2
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Figure IV.20 – Comparative Performance Analysis of Pretrained Models on Rice DDN2
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IV.6 Web Application of our System and Tests

IV.6.1 Web Application

Figure IV.21 – Home Page

Home Page : Welcome screen featuring cereal images, the ”AgriSense” logo,

and a ”Get Started” button to launch the app.

Figure IV.22 – About Page

About Page : Introduces AgriSense, its purpose, supported crops, and di-

seases, with icons for clear visual representation.
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Figure IV.23 – Detection Page

Detection Page : Allows users to choose a cereal (wheat, maize, rice) and

start disease detection with images and action buttons.

Figure IV.24 – Contact Page

Contact Page : Provides location, email, and social media links, with ack-

nowledgments of contributors and institutional affiliations.
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IV.6.2 Tests

Figure IV.25 – Cereal Disease Detection

Figure IV.26 – Wheat Disease Detection – Upload Image

Wheat Disease Detection – Upload Image : Users upload a wheat image

using the file input, ”Upload and Analyze” button starts the detection.
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Figure IV.27 – Wheat Disease Detection – Image Uploaded

Wheat Disease Detection – Image Uploaded : The selected wheat image and

filename are displayed ; users can proceed by clicking ”Upload and Analyze.”

Figure IV.28 – Wheat Disease Detection – Results

Wheat Disease Detection – Results : The app predicts Septoria with 93.45%

confidence, showing other diseases with lower scores in a results table.
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Figure IV.29 – Maize Disease Detection – Results

After uploading, the app identifies the maize as Healthy with a high confi-

dence of 99.90%.

Figure IV.30 – Rice Disease Detection – Upload Image

Rice Disease Detection – Upload Image : Users select and upload a rice

image using the file input, then click ”Upload and Analyze” to detect diseases.
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Figure IV.31 – Rice Disease Detection – Results

Rice Disease Detection – Results : The app detects Bacterial Leaf Blight

with 99.36% confidence, highlighting it and listing other diseases with low

scores.

IV.7 Conclusion

The proposed cereal disease detection system, AgriSense, demonstrates high accuracy

and practicality, making it well-suited for early diagnosis in precision agriculture. However,

real-time deployment remains a challenge due to image variability and potential hardware

limitations. Future work should focus on optimizing model performance across diverse field

conditions, improving inference speed on mobile devices, and expanding the dataset to

include more varieties and disease stages. Overcoming these limitations will be essential to

develop a robust, scalable, and field-ready solution for intelligent crop disease management.
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In this work, we presented AgriSense, an innovative system designed to address one of

the most pressing challenges in modern agriculture : the early detection of plant diseases.

Our system is built on a unique architecture that combines three sequential deep learning

models in a master-slave configuration. The first model acts as the ”master” determining

whether a leaf is healthy or infected. If an infection is detected, the second model, acting

as the ”slave” identifies the specific disease affecting the leaf. This sequential approach en-

sures both efficiency and accuracy, making AgriSense a reliable tool for farmers to quickly

diagnose and respond to crop health issues.

The system is capable of recognizing 11 critical diseases that affect wheat, maize, and rice

three of the world’s most important cereal crops. For wheat, AgriSense can detect brown

rust, yellow rust, septoria, and leaf rust. For maize, it identifies blight, common rust, and

gray leaf spot. Finally, for rice, the system recognizes bacterial leaf blight, brown spot,

leaf blast, and sheath blight. By focusing on these diseases, which are among the most

destructive for cereal crops, AgriSense provides a comprehensive solution tailored to the

needs of farmers growing these staples.

Overall, this work demonstrates how deep learning can be effectively applied to support

agriculture and mitigate the impact of leaf diseases on cereal production. Early detection

of diseases not only helps reduce crop losses but also promotes sustainable farming prac-

tices by minimizing the overuse of pesticides and other chemical treatments. Furthermore,

the accessibility of AgriSense through a user-friendly interface makes it a practical tool for

farmers, particularly in regions like Algeria where no similar solutions currently exist.

In future work, we plan to extend AgriSense to other cereal crops such as barley and sorg-

hum, incorporate additional disease types, and combine RGB with hyperspectral imaging

to enhance diagnostic precision and robustness.

By combining advanced technology with a focus on real-world agricultural challenges, Agri-

Sense has the potential to empower farmers, improve food security, and contribute to a

more resilient agricultural system. This project underscores the transformative role of arti-

84



CHAPTER IV General Conclusion

ficial intelligence in addressing global challenges and highlights the importance of continued

innovation in the field of precision agriculture.
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1 Project presentation

1.1 Project idea

AgriSense is a smart agriculture project that combines artificial intelligence and mobile
technology to help detect diseases in cereal crops.
The core of the project is a mobile application designed to assist farmers. With just a
photo taken from a smartphone, the app can tell if the plant is healthy or sick. If a disease
is detected, the app identifies the exact type of disease (such as brown rust, yellow rust,
leaf spot, etc.) using a deep learning model trained on a large number of plant images.
The idea came from real challenges faced by farmers:
difficulties in diagnosing crop diseases, delays in treatment, reduced yields, and overuse of
chemicals. AgriSense offers a quick, easy-to-use, and reliable solution that works directly
in the field — no technical skills required. The app uses two AI models:
The first model (DDN1) checks if the plant is healthy or infected.
The second model (DDN2) identifies the specific disease when an infection is found.
The user simply chooses the type of cereal (wheat, rice, or maize), takes or uploads a
photo, and the app shows a diagnosis with a confidence score.
While the app is mainly made for smartphones, the AI model can also be used on drones.
This could allow automatic image collection and analysis over large farming areas, offering
future possibilities for wide-scale crop monitoring from the air.

1.2 Value Proposition

1.2.1 Innovation

AgriSense brings a new and smart solution to modern agriculture. By combining artificial
intelligence with mobile technology, it changes how cereal crop diseases are detected.
Farmers can get a diagnosis directly in the field just by taking a photo. The system is
light and can be used both in a mobile app or installed on a drone, making precision
farming easy and accessible.

1.2.2 High Accuracy

AgriSense uses RGB images and deep learning models to detect crop diseases early and
with high accuracy. It works in two steps: first, it checks if the plant is healthy or sick,
then it identifies the exact disease. This two-level process helps improve treatments and
reduces crop loss.
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1.2.3 Reduced Crop Loss

By finding diseases at an early stage, AgriSense helps farmers avoid large yield losses.
Quick and targeted actions can protect the crops and stop the spread of infections.

1.2.4 Eco-Friendly Treatments

Because AgriSense shows exactly where the disease is, farmers can apply treatments
only where needed. This avoids overusing chemicals and supports more eco-friendly,
sustainable farming that is safer for people and nature.

1.2.5 Easy to Use

One of the main strengths of AgriSense is that it’s simple to use — no technical skills are
needed. The app works on any smartphone and only requires the user to take or upload a
photo of the plant. It’s also usable in rural areas where other tools might not be available.

1.2.6 Lower Costs

By reducing the need for lab tests and helping apply the right treatment at the right
place, AgriSense helps lower farming costs while still keeping crop quality high.

1.2.7 Reduced Risk

AgriSense lowers health and environmental risks by limiting the use of chemicals. Only
the affected areas are treated, which protects farmers, crops, and the environment.

1.3 Team Members

Hala Hamouchi: In charge of developing the AgriSense mobile application and imple-
menting the AI models (DDN1 and DDN2) used to detect and identify cereal crop diseases
from images.
Prof. Chemess Ennehar Benchereit: Project supervisor. She guides the scientific
work, supports the technical development, and ensures the project follows its research
goals and quality standards.

1.4 Project Objective

In the next five years, our goal is to be a top solution in smart farming by giving farmers
a simple and trusted tool that uses AI to detect cereal diseases early.
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1.5 Project Timeline

Phase 1st m 2nd m 3rd m 4th m 5th m 6th m 7th m 8th m
Preliminary research X X
AI model development
(DDN1 & DDN2)

X X

Mobile app develop-
ment

X X

Integration and field
testing

X

Pilot phase X X
Deployment X X
Marketing and promo-
tion

X X

Table 1: AgriSense project implementation schedule

2 Innovative Aspects

AgriSense brings a big change to farming by using artificial intelligence in a mobile app
to detect cereal crop diseases. Unlike traditional methods, which often depend on expert
knowledge or general chemical treatments, AgriSense offers a fast and accurate diagnosis
directly from a simple photo taken on-site.
This solution creates a new space in precision agriculture by making smart technology
easy to use, even in remote rural areas, without expensive tools or special skills.
Another key innovation is the system’s flexible design. The two AI models (DDN1 and
DDN2) can work inside a mobile app or be installed in a drone to scan large fields and
capture images automatically.
AgriSense is also built to improve over time. The system gets better with updates based
on user feedback and new technology. This helps it stay effective, adjust to new diseases,
and give reliable results in the long term.

3 Strategic market analysis

3.1 Market Overview

In Algeria, agriculture ranks as the third most important sector in the national economy.
It contributes around 12.4% to the country’s Gross Domestic Product (GDP), with an
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annual value estimated at 25 billion dollars. Over the past decade, the sector has main-
tained an average growth rate of 2.7%, meeting 73% of Algeria’s food requirements.
Smart agriculture is rapidly expanding, driven by the growing demand for innovative and
efficient technologies that boost productivity, reduce crop losses, and optimize resource
use. Among these technologies, artificial intelligence (AI) systems for plant disease detec-
tion have become essential. They provide farmers with quick, reliable, and user-friendly
diagnoses, helping them respond early and protect their crops more effectively.

3.1.1 Market Characteristics

a)Fast growth:
The smart agriculture market is growing quickly, especially because of the spread of
smartphones and the rise of AI technologies in rural areas.
b)Growing need for effective solutions:
Farmers are looking for tools that can quickly detect plant diseases, reduce unnecessary
treatments, and help them plan better actions.
c)Emerging technologies:
The combination of mobile apps, drones, and AI models is becoming a key part of modern
farming practices.

3.1.2 Key Market Segments

a)Small farmers:
They are interested in simple, low-cost, and easy-to-use solutions that work on smart-
phones without needing constant internet access.
b)Medium-sized farms:
They prefer technologies that can work with different types of cereal crops and offer de-
tailed health reports.
c)Large farms and agricultural cooperatives:
They look for full systems that combine mobile disease diagnosis, drone-based monitoring,
and large-scale treatment options.

3.2 Measuring Market Competition Intensity

The market for cereal disease detection using mobile AI tools is growing, with moderate
to high competition. Several companies and research groups are offering or developing
similar solutions.
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3.2.1 Main Competitors

a)Manual or expert diagnosis:
Farmers often rely on visual inspection or advice from local experts. These methods are
low-cost but can be slow and not always reliable.
b)Ground-based sensors:
Some systems use in-field sensors to monitor crops. While useful, they can be expensive,
complex to install, and less practical for small or medium farms.
c)Other AI-based mobile apps:
A few existing apps use artificial intelligence to detect plant diseases, but many focus on
specific crops or require complex user input. Some may also lack user-friendly interfaces
or precision.

3.2.2 Competitive Forces Analysis

a)Barriers to entry:
Developing an accurate and lightweight AI model that works well on mobile devices re-
quires advanced knowledge in deep learning and agriculture, along with real-world testing.
This limits easy entry for new competitors.
b)Customer expectations:
Farmers and agricultural organizations expect tools that are reliable, simple to use, and
cost-effective. They prefer solutions that provide clear results quickly and can be used
directly in the field.
c)Existing market rivalry:
Competitors are constantly improving their products by adding features, supporting more
crops, or increasing accuracy. To stay competitive, a solution like AgriSense must deliver
real value and practical benefits to users.

3.3 Marketing Strategy

To grow our user base and reach more farmers, AgriSense will offer different subscription
plans. Each plan is made for a specific type of user: small, medium, or large farms. Users
can choose between seasonal or yearly subscriptions.

3.3.1 Our Subscription Plans

a)Free Plan:
Price: 0 DZD per month
Crops: 1 crop
Limit: 5 images per month
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For: People who want to test the app or learn how it works

b)Single Plan:
Price: 700 DZD per month
Crops: 1 crop
Limit: Unlimited images for that crop
For: Small farmers who grow only one type of cereal

c)Standard Plan:
Price: 1,500 DZD per month
Crops: 2 crops
Limit: Unlimited images for each crop
For: Medium-sized farms

d)Premium Plan:
Price: 2,500 DZD per month
Crops: All crops
Limit: Unlimited images for all crops
For: Big farms, cooperatives, or agricultural institutions

If you choose a yearly subscription, you get 2 months free.

3.3.2 Communication Strategy

We want to make AgriSense known to more people. To do that, we will use simple and
effective ways to talk to farmers and partners.
a)Online Marketing:
-Create a clear and easy website with all information about the app, plans, and success
stories.
-Use Google search tools to help people find our website.
-Post on social media like Facebook and Instagram to show how the app works and share
offers.
b)Agriculture Events:
-Go to agriculture fairs and exhibitions to meet farmers and show the app.
-Do live demos to explain how AgriSense can help them detect diseases early.
c)Partnerships:
-Work with agriculture cooperatives and equipment sellers to spread our app.
-Give discounts or rewards to those who bring new users to AgriSense.
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3.3.3 Sales Strategies

We will use simple and smart ways to sell our solution to more users.
a)Promotional Offers:
-Give free trials or low-price tests to help users try the app.
-Offer discounts for long-term plans or group subscriptions (like cooperatives or farmer
groups).
b)Distribution Network:
-Work with local sellers and agriculture stores to promote and sell AgriSense.
-Build strong partnerships with trusted distributors.
c)After-Sales Service and Technical Support:
-Share online guides and training videos to help users understand and use the app. -Use
feedback surveys to ask users what they think and how we can improve the service.

3.3.4 Customer Analysis

Our potential customers include:
a)Individual farmers:
They want easy tools to check the condition of their crops, reduce losses, and improve
production.
b)Agricultural cooperatives:
They aim to give their members simple and useful solutions to spot crop problems and
take quick action, especially for different cereal types.
c)Agricultural service companies:
These companies use modern tools like AgriSense to provide accurate and professional
crop support for farmers.
d)Public institutions and NGOs:
They support sustainable farming and can use AgriSense to train farmers, monitor crop
health, and improve food security.

4 Production and Organization Plan

4.1 Production Process

The production of our AgriSense solution, based on a mobile application for visual crop
health check, includes the following steps:
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4.1.1 Software Development

a)Interface Design: We will create a simple, multilingual, and user-friendly interface
so that farmers can easily use the application.
b)Application Development: We will integrate trained artificial intelligence models
into the application to recognize signs of diseases on cereal crop images.
c)Compatibility Testing: We will make sure the application works well on different
Android smartphones, even without an internet connection.

4.1.2 AI Model Training

a)Image Collection and Labeling: We will use a dataset of images of cereal crops
(rice, wheat, maize) showing different types of diseases.
b)Model Training: We will develop lightweight CNN models and convert them into
.tflite format so they can run offline in the application.

4.1.3 Testing and Validation

a)Laboratory Testing: We will check the accuracy and speed of the application in a
controlled environment.
b)Field Testing: Farmers will use the application in real agricultural conditions to make
sure it works well in the field.

4.1.4 Launch and User Support

a)Application Release: We will publish the application on Android platforms and
distribute it through local partners.
b)Training and Help Materials: We will prepare online guides, video tutorials, and
local training sessions to help new users use the application effectively.

4.2 Required Resources and Materials

4.2.1 Hardware

-Android smartphones for testing.
-Servers for training the AI models.

4.2.2 Software Components

-AI Models: Lightweight models (.tflite) built into the application.
-Mobile System: Android application with a simple and multilingual interface.
-Local Database: Secure offline storage of results and history, no internet needed.
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4.3 Human Resources

4.3.1 Development Team

-AI Developers: Design and training of artificial intelligence models.
-Mobile Developers: Build the Android application that works without internet.
-UX/UI Designers: Create a simple, user-friendly interface.

4.3.2 Testing and Validation Team

-Field Technicians: Test the application directly in farms and real situations.
-Quality Assurance Specialists: Check performance and help fix problems.

4.3.3 Support and Training Team

-Agricultural Trainers: Help farmers, cooperatives, and institutions learn how to use
the application.
-Technical Support Staff: Provide assistance remotely and through local partners.

4.3.4 Coordination Team

-Project Manager: Manages the full development cycle and partnerships.
-Logistics Manager: Organizes field tests, equipment, and training sessions.
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5 Financial Study

5.1 Estimated Capital

Expense Item Estimated Cost
(USD)

Estimated Cost
(DZD) (1 USD =
130 DZD)

AI Model Development
Data collection and labeling 5,000 USD 700,000 DZD
Model training and testing 7,000 USD 980,000 DZD
Conversion to mobile format (.tflite) 3,000 USD 420,000 DZD
Mobile Application Development
Android application design and coding 10,000 USD 1,400,000 DZD
Multilingual interface 2,000 USD 280,000 DZD
Field Testing and Equipment
Test smartphones 4,000 USD 560,000 DZD
Field validation and technician fees 5,000 USD 700,000 DZD
Infrastructure and Tools
Cloud servers (training phase) 6,000 USD 840,000 DZD
Local database and storage system 2,000 USD 280,000 DZD
Training and User Support
User guides, videos, and workshops 3,000 USD 420,000 DZD
Technical support setup 2,000 USD 280,000 DZD
Marketing and Launch
Launch campaign 5,000 USD 700,000 DZD
Ads and promotions (online & offline) 4,000 USD 560,000 DZD
Miscellaneous and Operations
Admin, logistics, and legal 4,000 USD 560,000 DZD
Office tools and small equipment 2,000 USD 280,000 DZD
Total Estimated Capital 70,000 USD 9,800,000 DZD

Table 2: Estimated capital required for the AgriSense project
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5.2 Monthly Operating Costs

Expense Item Monthly Cost
(USD)

Monthly Cost
(DZD)

Human Resources

AI and mobile developers 6,000 USD 840,000 DZD

Technical support staff 2,000 USD 280,000 DZD

Training and community support 1,000 USD 140,000 DZD

Infrastructure and Tools

Server and cloud infrastructure 1,500 USD 210,000 DZD

Device maintenance and testing 800 USD 112,000 DZD

Marketing and Communication

Online campaigns and ads 1,000 USD 140,000 DZD

Community outreach and printing 500 USD 70,000 DZD

General and Administrative

Office rental 1,000 USD 140,000 DZD

Utilities and supplies 700 USD 98,000 DZD

Total Monthly Operating Cost 14,500 USD 2,030,000 DZD

Table 3: Monthly operating costs for the AgriSense project

5.3 Three-Year Financial Projections

Year Revenue
(USD)

Revenue
(DZD)

Costs
(USD)

Costs
(DZD)

Net
Profit
(USD)

Net Profit
(DZD)

1st Year 250,000 35,000,000 174,000 24,360,000 76,000 10,640,000

2nd Year 350,000 49,000,000 174,000 24,360,000 176,000 24,640,000

3rd Year 450,000 63,000,000 174,000 24,360,000 276,000 38,640,000

Total 1,050,000 147,000,000 522,000 73,080,000 528,000 73,920,000

Table 4: Three-year financial projections for the AgriSense project
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5.4 Financial Analysis

Aspect Details

Initial Investment Estimated at 70,000 USD / 9,800,000 DZD based on develop-
ment, training, equipment, marketing, and support needs.

Revenue and Prof-
itability

Revenues increase steadily each year. Thanks to optimized
operating costs, the project becomes profitable from the first
year, generating net profit of 76,000 USD (10.6 million DZD)
in Year 1.

Cost Optimization Operating expenses have been minimized through the use of
lightweight mobile models, local databases, and affordable in-
frastructure. This optimization contributes significantly to
early profitability.

Market Potential High potential in smart agriculture: strong demand for AI-
based crop disease detection tools, especially in rural and re-
mote areas. The multilingual offline mobile application allows
wide adoption. Gradual market expansion and subscription-
based services can improve financial performance over time.

Table 5: Financial analysis of the AgriSense project
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Figure 1: BUSINESS MODEL CANVAS
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