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Abstract

Chronic Kidney Disease (CKD) is a major global health concern, often developing silently
until reaching advanced stages, which makes early prediction vital for timely medical interven-
tion. This research addresses the challenge of predicting CKD onset six months in advance
by leveraging both laboratory and clinical data sources. While most existing models either
rely on clinical datasets lacking biological markers or laboratory datasets with limited size and
availability, our work proposes a hybrid approach to combine the strengths of both.

We first trained a Deep Neural Network (DNN) on the UCI laboratory-oriented dataset to
detect CKD using biological parameters. This model was then used as a feature extractor in
a transfer learning strategy applied to the NHIRD clinical dataset, which contains extensive
claims data but lacks laboratory indicators. Our goal was to assess the impact of incorporating
learned biological patterns into clinical prediction tasks.

The proposed transfer learning-based model demonstrated strong performance, particularly
in terms of recall, achieving a true positive rate of 92% for predicting CKD six months before
clinical onset. These results confirm the added value of integrating laboratory-derived knowl-
edge into large-scale clinical prediction systems, and highlight the feasibility of using such
models for real-world healthcare applications, especially in contexts where lab data is scarce.

Key words : Chronic Kidney Disease, Early prediction, Clinical data, Laboratory pa-
rameters, Transfer Learning
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Résumé

La maladie rénale chronique (MRC) constitue un problème majeur de santé publique à l’échelle
mondiale, évoluant souvent de manière silencieuse jusqu’à des stades avancés, rendant ainsi la
prédiction précoce essentielle pour permettre une intervention médicale efficace. Ce travail de
recherche s’attaque à la problématique de la prédiction de l’apparition de la MRC six mois
à l’avance en exploitant à la fois des données biologiques et cliniques. Alors que la plupart
des approches existantes se basent soit sur des données cliniques dépourvues de marqueurs
biologiques, soit sur des jeux de données biologiques de taille limitée, notre étude propose une
approche hybride qui combine les avantages des deux types de données.

Nous avons d’abord entrâıné un réseau de neurones profond (DNN) sur le jeu de données
UCI, orienté laboratoire, afin de détecter la MRC à partir de paramètres biologiques. Ce modèle
a ensuite été utilisé comme extracteur de caractéristiques dans une stratégie d’apprentissage par
transfert appliquée au jeu de données NHIRD, basé sur des données cliniques et administratives
mais dépourvu de marqueurs biologiques. L’objectif était d’évaluer l’impact de l’intégration
des connaissances issues des données biologiques dans des tâches de prédiction cliniques.

Le modèle proposé, basé sur l’apprentissage par transfert, a montré de très bonnes per-
formances, notamment en termes de rappel, avec un taux de vrais positifs de 92% pour la
prédiction de la MRC six mois avant sa manifestation clinique. Ces résultats confirment la
valeur ajoutée de l’intégration des connaissances biologiques dans les systèmes de prédiction
clinique à grande échelle, et soulignent la faisabilité de leur utilisation dans des contextes réels,
en particulier lorsque les données biologiques sont rares.

Mots clés : Maladie rénale chronique, Prédiction précoce, Données cliniques, Paramètres
de laboratoire, Apprentissage par transfert
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Résumé 4
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General Introduction

General context

Chronic Kidney Disease (CKD) is a growing global public health concern, affecting approxi-
mately 10% of the world’s population [27]. In 2017, an estimated 843.6 million individuals were
living with CKD worldwide. The disease poses severe clinical, social, and economic burdens
due to its progressive and irreversible nature, often culminating in End-Stage Kidney Disease
(ESKD) that requires dialysis or kidney transplantation.

In Algeria, the situation is particularly concerning. In the southeastern regions, the crude
incidence of treated stage 5 CKD reached 75 cases per million inhabitants in 2017, while be-
tween 2015 and 2018, the prevalence of ESKD in Sidi Bel Abbes was reported at 805.57 cases
per million inhabitants [8]. The increasing demand for renal replacement therapies puts ad-
ditional strain on already limited healthcare resources, especially in low- and middle-income
countries.

Recent advances in Artificial Intelligence (AI)—and more specifically, deep learning—have
demonstrated considerable promise in supporting early detection and risk prediction of chronic
diseases. In the context of CKD, AI-based tools offer a valuable opportunity to identify high-
risk patients earlier, enabling preventive care and better clinical outcomes.

Problem statement and motivation
Chronic Kidney Disease (CKD) is a progressive and often asymptomatic condition that can
remain undetected until it reaches advanced stages, where treatment options are limited and
costly. This late diagnosis reduces the chances for early intervention, increases the burden on
healthcare systems, and leads to poorer patient outcomes.
Given this silent progression, there is a growing need to predict CKD early, assess individual
risk levels, and enable preventive strategies. Predictive models based on patient data—whether
biological or clinical—can support healthcare professionals in identifying at-risk individuals be-
fore symptoms appear, thus enabling more timely care and improved quality of life.
However, the development of such models faces a critical challenge: healthcare data comes
from diverse sources. In many cases, only clinical or administrative data (e.g., medical history,
prescriptions, comorbidities) is available. In other contexts, biological data from laboratory
tests (e.g., creatinine, albumin, eGFR) may be accessible. Each type of data brings different
insights, and their integration is essential to improve the reliability and precision of prediction
tools.
This issue was also observed during a professional internship conducted in the nephrology
department of Oued Zenati, Guelma hospital, where discussions with experts and specialists



highlighted the importance of using both clinical and biological data in CKD risk evaluation.
Experts stressed that focusing on just one type of data limits the ability to accurately detect
or predict the disease, especially in early stages.
This motivates the need to explore AI-based methods that are capable of leveraging multi-
source medical data for reliable and scalable CKD prediction, even in contexts with incomplete
or non-standardized information.

Objectives
The primary objective of this thesis is to explore the use of deep learning techniques to
enhance the early prediction of Chronic Kidney Disease (CKD). Specifically, the research
seeks to investigate how different types of medical data—biological (laboratory) versus clin-
ical (administrative/claims-based)—influence the performance and applicability of predictive
models. This work aims to:

• Assess the effectiveness of deep learning methods in predicting CKD at early stages.

• Explore how data-driven models can be designed to predict CKD onset or progression
based on patient-level information.

• Compare and analyze the predictive value of biological features (e.g., creatinine, eGFR,
albumin) versus clinical features (e.g., comorbidities, medications).

• Explore the feasibility of transferring knowledge learned from laboratory-based models to
models operating on clinical data, in contexts where lab data are scarce.

• Assess the impact of data diversity on prediction performance—namely, how different
types of data (clinical, biological, or combined) contribute to model accuracy and appli-
cability.

• Contribute to the development of intelligent tools capable of supporting healthcare pro-
fessionals in decision-making and risk assessment for CKD.

• Support healthcare providers with an AI-powered tool that enables early risk assessment,
even in data-limited environments.

Main contributions
The main contributions of this work are:
1. Development of a transfer learning strategy that bridges laboratory-based and clinical data
sources to improve CKD prediction performance.
2. Demonstration of the feasibility of leveraging administrative health data for CKD forecasting
in the absence of lab tests.
3. Provision of a hybrid deep learning model combining feature extraction and classification
capabilities to deliver scalable and personalized prediction.
4. Providing an AI-powered tool aimed at supporting doctors in early detection and manage-
ment of CKD.

Thesis outline
This thesis is organized into the following chapters:



Chapter 1 - State of the art : Provides an overview of Chronic Kidney Disease,
including its stages, diagnostic parameters, and epidemiology. It also reviews key machine
learning and deep learning methods used in CKD prediction, and summarizes existing work
and datasets.

Chapter 2 - Methodology, Materials and Implementation : Describes the proposed
approach, including system architecture, data sources, preprocessing steps, model design, and
transfer learning process. The results of each step are presented and analyzed to assess the
performance of the predictive framework.



Chapter 1

State of the art

1.1 Introduction

Chronic kidney disease (CKD) is a major contributor to global morbidity and mortality from
non-communicable diseases (NCDs). Addressing CKD is critical to achieve the United Nations’
Sustainable Development Goal (SDG) Target 3.4, which aims to reduce premature mortality
from NCDs by one-third by 2030 through prevention and treatment [W1].

In Algeria, CKD poses a significant public health challenge. According to Professor Hind
Arzour, a nephrology expert at Mustapha Pacha Hospital (Algiers), an estimated 2 to 3 million
Algerian adults are at risk of developing CKD. While national prevalence data remains limited,
studies from high-income countries (e.g., the USA, Canada, the UK, and France) suggest an
average CKD prevalence of 1–3 % in the general population, highlighting the need for improved
surveillance and intervention strategies [W2].

In this chapter, we present an overview of Chronic Kidney Disease, including its risk factors
and clinical characteristics. We will also explore machine learning techniques used for CKD
prediction, describe the datasets commonly used in this context, outline evaluation metrics for
predictive models, and provide a synthesis of key related research studies.

1.2 Presentation of CKD

Chronic Kidney Disease (CKD) figure 1.1 [W3] is defined as a progressive loss of kidney function
that persists for three months or more, regardless of the underlying cause. It is characterized by
structural or functional abnormalities of the kidneys, with implications for health. CKD often
leads, in its most advanced stages, to the need for renal replacement therapy such as dialysis
or kidney transplantation [W4].
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Figure 1.1: Healthy kidney vs Diseased kidney [W3].

The kidneys play a vital role in maintaining overall health. They are responsible for fil-
tering waste products, toxins, and excess fluids from the blood, regulating electrolyte balance,
controlling blood pressure, producing hormones that affect red blood cell production, and main-
taining bone and mineral health. When kidney function declines, these essential processes are
disrupted. In the early stages of CKD, most individuals remain asymptomatic, but as the dis-
ease progresses, waste products accumulate in the blood, leading to symptoms such as fatigue,
nausea, swelling, and poor appetite. CKD is also associated with complications such as hyper-
tension, anemia, bone disorders, cardiovascular disease, and neurological impairments. These
complications often progress silently and may culminate in end-stage renal disease (ESRD),
which can occur suddenly and without prior warning.

The diagnosis and staging of CKD primarily rely on two key biomarkers: the estimated
glomerular filtration rate (eGFR) and albuminuria.

• Glomerular Filtration Rate (eGFR) : eGFR estimates how effectively the kidneys
filter blood. A persistently low eGFR (< 60 mL/min/1.73m2 for >= 3 months) indicates
impaired kidney function.

• Albumin-to-Creatinine Ratio (ACR) : Healthy kidneys excrete minimal protein.
Elevated urinary albumin (albuminuria) signals kidney damage. ACR, measured in a
spot urine sample, quantifies albumin (mg) relative to creatinine (g) and is the preferred
screening method for CKD [W5].

The KDIGO (Kidney Disease Improving globcal outcomes) guidelines classify CKD pro-
gression into: 6 stages based on eGFR (from G1: normal/high eGFR to G5: kidney failure)
(figure 1.2 [W6]), and 3 stages based on proteinuria (A1–A3) to reflect albuminuria severity
[60].

We present below the classification based on eGFR :
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Stages GFR value Classification

I > 90 Normal or High

II 60-89 Slightly decreased

III A 45-59 Mild to moderately decreased

III B 30-44 Moderately to severely dereased

IV 15-29 Severely decreased

V < 15 Kidney failure

Table 1.1: CKD progression stages

Figure 1.2: CKD Classifiaction based on eGFR [W6].

The following table 1.2 present the classification based on albuminuria.

Category 24-Hour Albuminuria
mg/24 h

ACR value Classification

A1 < 30 < 30 Normal to discrete

A2 30-300 30-300 Moderate

A3 > 300 > 300 Severe

Table 1.2: CKD albuminuria stages
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1.2.1 The importance of prediction in CKD management

The effective management of Chronic Kidney Disease (CKD) aims not only to prevent or
delay its progression to end-stage renal disease (ESRD), but also to control complications
associated with declining kidney function, preserve the patient’s quality of life, and ensure
timely preparation for renal replacement therapies such as dialysis or kidney transplantation
[4].

CKD often develops silently and remains asymptomatic in its early stages, with clinical
symptoms typically appearing only in stages 4 or 5. This asymptomatic nature makes the
disease difficult to detect early, and contributes to the underestimation of its true incidence
and prevalence. Early recognition is therefore crucial, it serves as the first and most essential
step toward effective treatment. Identifying the early signs of CKD enables prompt diagnosis
and timely intervention, which can significantly slow disease progression and reduce long-term
complications [W4].

Because kidney injury is irreversible and disease progression can vary significantly between
individuals, early prediction and risk stratification are essential. Predictive models allow clini-
cians to identify high-risk patients before severe damage occurs, and to personalize management
strategies accordingly [31].

Key Benefits of Early Prediction in CKD Management

• Prevention of disease progression: Enables timely lifestyle and clinical interventions
(e.g., blood pressure and glucose control) to preserve kidney function and delay the onset
of ESRD.

• Reduction in morbidity and mortality: Allows for earlier detection and management
of complications such as cardiovascular disease, one of the main causes of death in CKD
patients.

• Improved Quality of Life: Helps patients avoid severe symptoms of advanced CKD,
such as fatigue, fluid overload, and cognitive decline, thereby maintaining daily function-
ing and well-being.

• Optimized Clinical Planning: Facilitates early nephrologist referral and planning for
renal replacement therapy (e.g., timely vascular access or transplant listing).

• Safer Medication Management: Enables dose adjustment of renally cleared medica-
tions and reduces exposure to nephrotoxic agents.

• Cost-Effectiveness: Reduces the economic burden on healthcare systems by avoiding
the high costs associated with late-stage dialysis and transplantation.

• Support for Risk Stratification: Helps identify and monitor patients with a poor
prognosis, allowing clinicians to prioritize interventions for those at greatest risk.

Predictive approaches are vital for transforming CKD care from reactive to proactive, offer-
ing clinical, economic, and societal advantages that make early detection and risk assessment
central to modern kidney disease management.
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1.2.2 Key parameters for CKD prediction

Accurate prediction of Chronic Kidney Disease (CKD) progression requires a comprehensive
evaluation of various health indicators, including clinical assessments, biological markers, and
associated risk factors. These parameters support early detection, risk stratification, and timely
intervention. Depending on their nature, the indicators may be derived from clinical evaluations
or laboratory measurements [60].

In the literature, some studies further classify risk factors into two subgroups: non-modifiable
risk factors, such as age, gender, and ethnicity, which cannot be changed but provide impor-
tant background risk context; and modifiable risk factors, including systolic and diastolic blood
pressure, proteinuria, and glycemic control, which can be influenced by lifestyle changes or
medical interventions [55]. This distinction is essential, as it helps clinicians focus preventive
efforts on factors that can be altered to slow the progression of CKD.

In this work, we adopt a classification into three main categories: biological parameters,
clinical parameters, and associated risk factors. This organization facilitates a structured as-
sessment of kidney function, the identification of early warning signs, and the estimation of the
risk of disease progression.

1.2.3 Clinical Parameters

Clinical parameters are derived from patient history, physical examinations, and non-invasive
tests. They provide immediate insights into a patient’s health status and potential CKD pro-
gression [29].

1. Blood Pressure (Hypertension): Elevated blood pressure is both a cause and consequence
of CKD. Persistent hypertension accelerates kidney damage by increasing glomerular
pressure.

2. Diabetes Mellitus : A leading cause of CKD, diabetes induced hyperglycemia damages
nephrons, leading to decreased filtration efficiency.

3. Age: Advancing age is associated with a natural decline in glomerular filtration rate
(GFR), increasing CKD risk.

4. Body Mass Index (BMI): obesity is a clinical condition often linked to hypertension and
diabetes, both of which increase CKD risk.

5. Anemia: Common in CKD due to decreased erythropoietin production, resulting in fa-
tigue and reduced oxygen transport.

Other clinical factors may include edema/fluid retention, cardivascular disease, ...

1.2.4 Biological Parameters

Biological parameters are obtained through laboratory tests and provide quantitative measures
of kidney function and damage [60], [W4].

1. Serum Creatinine: A waste product filtered by the kidneys; elevated levels indicate im-
paired kidney function.
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2. Estimated Glomerular Filtration Rate (eGFR): Calculated using serum creatinine, age,
sex, and race; eGFR is a key indicator of kidney function.

3. Albuminuria (Albumin-to-Creatinine Ratio - ACR): The presence of albumin in urine
signifies glomerular damage and is a predictor of CKD progression.

4. Hemoglobin Levels : Anemia is common in CKD due to decreased erythropoietin produc-
tion; low hemoglobin levels can indicate disease severity.

5. Specific Gravity of Urine: Reflects urine concentration ability; abnormalities may suggest
tubular dysfunction.

6. Electrolytes : Abnormal levels of potassium, phosphorus, and calcium are frequent in
advanced CKD.

7. Blood Urea Nitrogen (BUN): Elevated BUN levels are often observed in patients with
reduced kidney clearance capacity.

This list of biological markers is non-exhaustive; these parameters represent the most im-
pactful indicators of kidney function.

1.2.5 Associated Risk Factors

These are conditions or behaviors that increase the likelihood of developing or accelerating
CKD [60]), [W4].

1. Family History of Kidney Disease: Genetic predisposition plays a role in CKD suscepti-
bility.

2. Use of Nephrotoxic Medications : Prolonged use of certain drugs (e.g., NSAIDs) can harm
kidney function.

3. Physical Inactivity : Sedentary lifestyle is linked to obesity, diabetes, and hypertension,
all of which are CKD risk factors.

4. Smoking : Tobacco use contributes to vascular damage and worsens kidney outcomes.

5. Race/Ethnicity : Certain populations (e.g., African descent) have higher CKD prevalence
due to genetic and socio-economic factors.

1.3 ML techniques used in prediction

Traditional Machine Learning (ML) methods continue to be widely employed in medical pre-
diction studies, often demonstrating robust predictive performance, particularly when dealing
with structured datasets [30]. The Support Vector Machines (SVM) [24] [36], Random Forest
(RF) [51] [43], Decision Trees (DT) [35] [40], Logistic Regression [42] [20], K-Nearest Neigh-
bors (KNN) [5] [39], Näıve Bayes [25] [48], and Gradient Boosting (GB) [50] / XGBoost [32]
/ AdaBoost [61] are broadly applied across various medical domains, including the predic-
tion and diagnosis of leptospirosis [56], CKD, heart disease [30], Alzheimer’s disease, diabetes,
hypertension, melanoma, stroke [1], oncology, neurology, and COVID-19 [26].
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Deep Learning (DL) models represent a significant advancement over traditional ML meth-
ods, consistently demonstrating superior performance, particularly in the analysis of complex
medical images and time-series data (temporal data) [30]. Artificial Neural Networks (ANN)
[46] [34] [19], Convolutional Neural Networks (CNN) [53] [58] [41], Recurrent Neural Networks
(RNN) [14] [11], Long Short-Term Memory (LSTM) [38] [7] / Gated Recurrent Unit (GRU) [57]
[44], Transformers [33] [28] [47], Deep Belief Networks (DBN) [3] [45], and Multilayer Perceptron
(MLP) [9] [13], most of them were used with time-series data.

For CKD, both traditional ML algorithms and deep learning architectures have been ap-
plied, demonstrating significant potential for early detection and prognosis. The following table
shows different algorithms used for different fields in medical prediction.

Model class Model Fields

Neural Networks Feedforward NN/multilayer per-
ceptron (MLP), Convolutional NN
(CNN), Recurrent NN and long
short-term memory NN (RNN),
Auto-encoder, Extreme learning
machine

CKD, Heart Disease, Oc-
cupational pneumoconiosis,
Colorectal cancer, diabetic
blood glucose prediction,
Covid-19, Diabetes mellitus,
incident heart failure,

Tree algorithms Random Forest, Extreme gradient
boosting (XGBoost), Decision tree,
Gradient boosting machine, Bagged
decision trees, Extremely randomized
trees, Light gradient boosting ma-
chine, Adaptive boosting machine,
Categorical boost

Heart Disease, breast can-
cer, Liver disease, diabetes
mellitus, CKD, Lung cancer

Support vector
machines

Support vector machines, Genetic
algorithm based on SVM, Particle
swarm optimization SVM, Simulated
annealing particle swarm optimization
SVM

Heart Disease, Strok, lung
cancer, CKD

Logistic Regres-
sion

Logistic regression, LASSO logistic
regression, Ridge logistic regression,
Elastic net logistic regression

Heart Disease, CKD
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Others k-Nearest neighbors (kNN), Gaus-
sian Näıve Bayes, Ensemble model,
Linear regression, (Adaptive) Neuro-
fuzzy Inference System, Partial Least
Square Regression, Hidden Markov
Model (HMM), k-Means, Cox re-
gression, Hierarchical clustering, Ge-
netic programming, Linear discrimi-
nant analysis (LDA), Markov decision
process (MDP), Hierarchical cluster-
ing

Diabetes mellitus, Heart
Disease, Lung cancer, CKD

Table 1.3: Machine Learning techniques for medical pre-
diction.

1.4 Available datasets

The development of predictive models for Chronic Kidney Disease (CKD) relies heavily on
the availability of quality datasets. However, publicly accessible datasets specific to CKD are
limited, particularly those encompassing comprehensive laboratory and imaging data. The
datasets commonly utilized in CKD research can be broadly categorized into numerical (struc-
tured) data and imaging data. Numerical datasets include clinical and laboratory measure-
ments, while imaging datasets comprise modalities like ultrasound, MRI and CT scans [23]
[2] [W7]. This section focuses on prominent numerical datasets employed in CKD prediction
studies.

1.4.1 The UCI dataset

The UCI (UC Irvine Machine Learning Repository) Chronic Kidney Disease dataset [W8] is
the most widely used resources in CKD prediction research [6] [10] [22]. It comprises 400
instances with 24 features, including demographic, clinical, and laboratory variables. The
dataset contains 250 instances labeled as CKD and 150 as non-CKD. Its accessibility and
inclusion of laboratory-oriented data make it a popular choice for developing and benchmarking
machine learning models.

1.4.2 The NHIRD dataset

Another commonly used dataset is the Taiwan National Health Insurance Research Database
(NHIRD) [W9] is a comprehensive claims-based database encompassing health records of over
23 million individuals in Taiwan. It includes extensive clinical data such as diagnoses, pre-
scriptions, and procedures. Although access to NHIRD is restricted, it has been employed
in several studies to develop predictive models for CKD, particularly focusing on forecasting
disease occurrence 6 to 12 months in advance. For instance, a study utilized a cohort of 18,000
CKD patients and 72,000 non-CKD individuals to train models incorporating demographic,
comorbidity, and medication data [52] [29].
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1.4.3 UAE Hostpital dataset

Another dataset used in CKD prediction research was collected from 544 patients admitted to
Tawam Hospital in Al-Ain City, Abu Dhabi, United Arab Emirates, between January and De-
cember 2008 [W10]. This dataset includes various clinical and laboratory parameters. It was
employed in a study investigating explainable machine learning models for CKD prediction,
emphasizing the importance of model interpretability in clinical settings [17].

Table 1.4 gives a summary of the three datasets’ usage. While several datasets are available
for CKD prediction [54], the UCI Chronic Kidney Disease dataset remains the most utilized
due to its accessibility and comprehensive laboratory data. The NHIRD offers a vast repository
of clinical information, albeit with access restrictions, and the UAE hospital dataset provides
valuable insights into CKD prediction in a specific regional context. The limited number of
publicly available datasets underscores the need for more open-access resources to advance
research in CKD prediction.

Dataset Datatype Strengths Limitation
UCI Laboratory Standardized Biomarkers Small sample size

NHIRD Clinical Longitudinal, large scale No lab data, access restricted
UAE Laboratory&Clinical Regional diversity Limited laboratory features (8)

Table 1.4: Available datasets details

1.5 Evaluation metrics

The goal of internal validation is to evaluate the predictive performance of an AI-based model
using data that were not involved in training but originate from the same population and setting.
This process ensures that the model is not simply overfitting the training data. Performance
metrics used during internal validation are specifically designed to assess how reliably the model
can predict future events within that context.

The performance of an AI-based prediction model should be evaluated through two key
aspects: discrimination and calibration. Discrimination measures the model’s ability to distin-
guish between individuals with and without the outcome. Calibration assesses how closely the
predicted probabilities align with the actual outcomes [12].

True positives (TP, the cases predicted 1 and the actual output was also 1), false positives
(FP, the cases predicted 1 and the actual output was 0), True negatives (TN, the cases pre-
dicted 0 and the actual output was 0) and false negatives (FN, the cases predicted 0 and the
actual output was 1) are used to calculate several useful metrics for evaluating models. Which
evaluation metrics are most meaningful depends on the specific model and the specific task,
the cost of different misclassifications, and whether the dataset is balanced or imbalanced.

In this section, we discuss the most widely used evaluation metrics for assessing discrimi-
nation in AI-based prediction models in healthcare [12].
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Accuracy

Accuracy is the proportion of all classifications that were correct, whether positive or negative.
It is mathematically defined as:

Accuracy =
Correctclassifications

Totalclassifications
=

TP + TN

TP + TN + FP + FN

Even it’s simple and very popular, it’s not always the best metric to use, because accuracy
simplifies things too much, that’s why we need to look at other metrics more detailed like
precision and recall.

Recall

The true positive rate (TPR), or the proportion of all actual positives that were classified
correctly as positives, is also known as recall. Recall is mathematically defined as:

Recall =
Correctlyclassifiedactualpositives

Allactualpositives
=

TP

TP + FN

Out of everything that was positive, how many of them the model was able to capture.

Precision

Precision is the proportion of all the model’s positive classifications that are actually positive.
It is mathematically defined as:

Precision =
Correctlyclassifiedpositive

Everythingclassifiedpositive
=

TP

TP + FP

Out of everything the model labeled as positive, how many of them were actually positive.

F1-Score

The F1 score can be interpreted as a harmonic mean of the precision and recall. It is mathe-
matically defined as:

F1 =
2 ∗ TP

2 ∗ TP + FP + FN

An F1 score reaches its best value at 1 and worst score at 0. The relative contribution of
precision and recall to the F1 score are equal.

AUC-ROC

The previous set of model metrics, all calculated at a single classification threshold value. But
if we want to evaluate a model’s quality across all possible thresholds, we need the ROC curve.

The ROC (Receiver-operating characteristic) graph summarizes all the confusion matrices
produced by each threshold, by comparing True Positive rate with False Positive rate.

The AUC (Area Under Curve) makes it easy to compare one ROC curve to another. The
following figure represent ROC and AUC of two hypothetical models. The curve on the right,
with a greater AUC, represents the better of the two models.
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Figure 1.3: ROC and AUC of two hypothetical models.

ROC curves make it easy to identify the best threshold for making a decision, and the AUC
can help to decide which categorization method is better.

Metrics discucssion

Precision and Recall are fundamentally different from AUC-ROC; they offer complemen-
tary perspectives on evaluating model performance. While AUC-ROC summarizes the trade-off
between the true positive rate and false positive rate across thresholds, Precision and Recall
provide more focused insight, especially in imbalanced medical datasets like those involving
Chronic Kidney Disease (CKD).

When dealing with CKD cases, Recall is often considered the most critical metric. It en-
sures that the model successfully identifies as many true CKD cases as possible, minimizing
false negatives. This is especially important in medical applications, where missing even a sin-
gle positive case can have serious health consequences. In contrast, Precision focuses on how
many of the predicted CKD cases are actually correct, helping to reduce false positives.

In healthcare, and particularly for CKD detection, Recall is typically prioritized over Preci-
sion, as early detection and intervention are vital. However, Precision also remains important
to avoid overburdening medical professionals with too many false alarms.

In situations where the dataset is imbalanced—with significantly more non-CKD than CKD
samples—AUC-ROC becomes a more robust evaluation metric than accuracy, as accuracy may
be misleading. In such cases, Precision is also more reliable than the false positive rate, as
it is not affected by the large number of true negatives. This is particularly relevant in our
study, where the dataset reflects a real-world population in which CKD cases are relatively rare.

In our work, accurately identifying all CKD-positive samples is a critical goal. To achieve
this, we may choose to lower the classification threshold to favor higher Recall, even at the
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cost of generating more false positives. This strategy ensures that at-risk individuals are not
missed, which is essential for early intervention and public health management.

1.6 Summary of related work

To conduct a comprehensive review of the use of machine learning (ML) and deep learning
(DL) techniques in the prediction of Chronic Kidney Disease (CKD), we carried out a struc-
tured search on the Mendeley database using the query: “Chronic Kidney Disease prediction
based ML.”

This initial search returned 2,377 research papers. We first filtered the results to retain
only scientific journal articles, reducing the number to 1,691. Then, we applied a publication
date filter to include only articles published between 2020 and 2024, yielding 1,617 articles. To
ensure accessibility, we further narrowed the selection to open access publications, resulting in
152 articles.

These remaining papers were then sorted by citation count, and the top 50 most cited arti-
cles were shortlisted. After reviewing the abstracts, introductions, and conclusions, we selected
20 studies that were most relevant to our research.

Following a thorough reading and critical evaluation of these selected works, we identified a
core subset that is highly relevant to our specific area of interest in CKD prediction using ML
and DL techniques. This subset is summarized in Table 1.5.

Work FS tech-
nique

Algorithms Dataset Dataset
issues (solu-
tion)

Metrics

[22] filter feature
selection
approach

ANN, Ad-
aBoost, DT,
XGBoost,
CatBoost,
KNN, RF,
GB, Stcoh
GB, LGBM,
Extra Tree,
SVM, HML

UCI dataset -Missing Val-
ues (KNN)
-Unbalanced
(Stratified
folds)

ACC = 0.983
PREC = 0.98
REC = 0.98
F1 = 0.98 For
XGboost
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[6] chi-square
test (Chi2),
recursive
feature elimi-
nation (RFE),
and mutual
information.

pretrained DL
models with
SVM as the
metalearner
model

UCI dataset None ACC = 0.996

[17] fruit fly op-
timization
algorithm
(FFOA),
improved
teacher-
learner-based
optimization
(ITLBO),
correlation-
based feature
selection
(CFS), and
the Apriori
algorithm.

Logistic Re-
gression (LR),
Random For-
est (RF),
Decision Tree
(DT), Näıve
Bayes (NB),
and Extreme
Gradient
Boosting
(XGBoost)

UAE dataset irrelevant or
redundant
features (FS)

AUC of
0.9689 and
an accuracy
of 93.29% for
XGBoost

[16] None logistic re-
gression,
decision tree,
XGBoost,
RF, SVM,
AdaBoost, CS
AdaBoost

UCI Dataset -Missing val-
ues (mean
imputation
technique)
-Unbalanced
(biasing the
weighting
technique)

ACC = 0.993
for 6m 0.992
for 12m For
ensemble
model

[10] Correlation-
based, Wrap-
per method,
LASSO re-
gression

ANN, C5.0,
CHAMID,
logistic re-
gression,
LSVM with
penalty L1
and with
penalty L2,
Random Tree

UCI Dataset -Missing
values ()
-Unbalanced
(SMOTE)

ACC =
98.86 REC =
100% PRE =
96.67% AUC
= 100% F-
ME = 98.3%
GINI = 0.99
For LSVM L2
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[29] LightGBM Logistic re-
gression,
decision tree,
RF, CNN,
BLSTM,
LightGBM

90,000 in-
stances of the
NHIRD

None AUROC =
0.957 for 6m
0.954 for 12m
For CNN

[52] none CNN, LSTM,
Deep ensem-
ble model
(CNN +
LSTM
+ LSTM-
BLSTM)

90,000 in-
stances of the
NHIRD

none ACC = 0.993
for 6m 0.992
for 12m For
ensemble
model

[59] None Gradient
Boosting Ma-
chine (GBM)

De-identified
electronic
health records
(EHRs) of
14,039 adult
patients
with type 2
diabetes

None AUC : At
year 2 since
diabetes on-
set: 0.83 , At
year 3: 0.78
, At year 4:
0.82

[15] None Logistic Re-
gression,
XGBoost,
Stochastic
Gradient De-
scent classifier

23,948 in-
stances from
NHIRD
dataset

None AUC = 0.77
for LR

Table 1.5: Related works

Since the datasets are divided into clinical and laboratory data, we can classify the previous
studies into clinical-oriented studies and biological-oriented studies.

Laboratory-oriented studies

Several studies used laboratory-oriented datasets to develop CKD predictive models. The work
in [22], Islam et al. applicate a collection of 12 prediction models on “UCI dataset”, with the
greatest performance were for the XgBoost classifier. The features selection was discovered that
hemoglobin, albumin, and specific gravity had the biggest impact when it comes to predicting
CKD. In order to increase model’s generalization performance, a significant amount of a more
sophisticated data will be used for training the model in the future.

The feature selection of the UCI dataset positive impact was improved on the performance
of the various classifiers on [16]. CKD screening time and cost was saved thanks to the few
clinical test attributes identified (18 out of 24) and needed for the diagnosis. The IG technique
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ranked albumin, hemoglobin, packed cell volume, red blood cell count, and serum creatinine as
the most informative features. Giving more attention to the minority class, AdaBoost trained
with the reduced feature set achieved the best classification performance. This predictive model
could be applied to more imbalanced medical datasets. The use of reduced feature set decreases
the computational cost of training the models, which performed better than those trained with
the complete feature set.

Seven machine learning models and one deep learning model were combined with three
feature selection technique and the UCI dataset in [10]. The LASSO regression was the best
FS technique, where the six most important features were rbc, pc, al, ba, su and pcc. But
it has been shown that LASSO regression with SMOTE outperform the LASSO regression
without SMOTE. Among classic ML technics, the LSVM with penalty L2 using SMOTE with
full features gave the best performance, the LVSM also outperform all the 6 others when it
comes to SMOTE with LASSO’s selected features. It has been noted that deep neural network
achieved the highest accuracy of 99.6, the DNN gave strong result and important features were
extracted by itself.

The study [17] utilized feature selection techniques such as FFOA, CFS, and ITLBO to
enhance model performance by identifying relevant clinical attributes. Multiple algorithms
including LR, RF, DT, NB, and notably XGBoost were evaluated, with XGBoost achieving
the highest accuracy (93.29%) and AUC (0.9689). The dataset consisted of clinical and demo-
graphic data from 544 patients at Tawam Hospital in UAE, with feature selection addressing
issues like redundancy and overfitting. Model performance was assessed using accuracy and
AUC metrics, highlighting XGBoost as a highly effective and interpretable model for CKD
prediction.

Clinically-oriented studies

On another hand, some studies tried to predict CKD using clinical-oriented datasets.In [29], the
tree-based LightGBM model is used because of his ability to capture complex relationship on
large features space, to see that the most prominent features was diabetes mellitus, age, gout,
and use of sulfonamides and angiotensin. Wherein the aim was predicting CKD 6–12 months in
advance using 90,000 instances of “the NHIRD dataset”. Among the machine learning models,
deep neural networks (CNN and BLSTM) chosen because they took advantage of temporal
information, and outperformed the classical models. The CNN model performed best for the 6-
month and 12-month predictions. In term of computing, these models could be efficiently used
in resource management because they were not very large and complex. For the application of
such models into clinical practice dealing with individual patients, the feature set would have
to be expanded to include laboratory measurementsand possibly lifestyle information, which
falls within the scope of future work.

CNN, LSTM and a deep ensemble model are the three predictive models proposed in the
research [52] for CKD prediction within 6 or 12 months earlier based on medication, demo-
graphic, and comorbidity data of two different public benchmark datasets obtained from Tai-
wan’s NHIRD, where one of this method advantages is that it does not need laboratory data
as related studies in this field. The Ensemble model fuses three base deep learning classifiers
(CNN, LSTM, and LSTM-BLSTM) using the majority voting technique. The authors choose
the Ensemble learning algorithms, because ML research has shown that combining the output
of several individual classifiers can reduce generalization errors and perform better in many
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applications than individual deep learning classifiers, and are able to extract features without
human’s intervention. This study used the research [29] as a comparative paper, and the pro-
posed model performed better. This ensemble model needs more memory storage and longer
learning time than deep learning models which requires more memory and learning time than
traditional machine learning techniques. Laboratory data is needed for clinical validation, they
plan to test the robustness of their developed models against datasets based on patient labo-
ratory data collected from various sources. There are a lack of previously unknown features in
the dataset, where the risk factors for this disease, such as a family history of kidney failure,
hypertension, and diabetes, were not determined.

The study [59] evaluated the performance of the proposed Landmark-Boosting model for
predicting 1-year diabetic kidney disease (DKD) risk in patients with type 2 diabetes, achiev-
ing high discrimination and calibration across multiple landmark times. Specifically, the model
reached an AUROC of 0.83 at year 2, indicating excellent predictive ability, and maintained
strong performance at years 3 and 4 with AUROCs of 0.78 and 0.82, respectively. It also
demonstrated superior sensitivity (83%) and specificity (78%) compared to other temporal
models, while maintaining good calibration as reflected by favorable observed-to-expected risk
ratios. The model effectively integrated longitudinal electronic health record data, adapting
dynamically over time to improve risk stratification, and outperformed other approaches in
both discrimination and calibration metrics across the study period.

Dovgan et Al. [15] appliyed machine learning algorithms such as Logistic Regression, XG-
Boost, and SGD to predict the need for renal replacement therapy within 12 months in CKD
patients, based solely on diagnoses and comorbidities from Taiwan’s NHIRD dataset. The
dataset included over 19,000 patients diagnosed between 1998 and 2011, but lacked laboratory
and personal characteristic data, which posed limitations. The researchers applied different
feature extraction methods but did not perform feature selection or dimensionality reduction
in the best models, achieving an AUC of approximately 0.77. Despite dataset limitations and
potential biases, the models demonstrated promising predictive performance, supporting their
potential use for healthcare planning in resource-limited settings.

While numerous studies have explored CKD prediction using either laboratory-oriented or
clinical-oriented datasets, few have addressed the challenge of combining insights from both
sources to enhance early diagnosis and risk assessment in resource-constrained settings. Most
laboratory-based studies leverage rich biological parameters to train highly accurate models but
suffer from limited sample sizes and generalizability. Conversely, studies utilizing large-scale
clinical datasets like Taiwan’s NHIRD demonstrate high performance at the population level
but lack critical laboratory measurements required for individualized decision-making.

Our proposed work addresses this gap through a novel transfer learning approach. We aim
to bridge the divide between laboratory and clinical data by first training a robust deep learning
model on the UCI CKD dataset, which contains rich biological markers such as serum creatinine,
hemoglobin, and albumin. This model is then used as a feature extractor, transferring its
learned representations to a second model trained on the NHIRD dataset, which includes large-
scale clinical records (demographic, comorbidity, and medication data) but lacks laboratory
data.
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1.7 Conclusion

Chronic Kidney Disease (CKD) represents a growing global health concern, characterized by
its asymptomatic onset and progressive nature. Early detection and risk assessment are crucial
for slowing disease progression, optimizing treatment strategies, and reducing the economic
and societal burden associated with end-stage renal failure. In this context, artificial intelli-
gence—particularly machine learning (ML) and deep learning (DL) approaches—offers promis-
ing avenues for enhancing CKD prediction.

This chapter presented a comprehensive overview of CKD, including its clinical definition,
stages, diagnostic parameters, and key risk factors. We then explored the types of data used
in predictive modeling, distinguishing between biological/laboratory data and clinical/claims-
based records. The availability and characteristics of major CKD datasets were discussed,
highlighting their strengths and limitations in both research and real-world applications.

We also reviewed a broad range of recent studies applying ML and DL techniques to CKD
prediction. These works revealed valuable insights into effective algorithms, feature selection
strategies, and performance metrics. While many studies achieve high accuracy using labora-
tory data, others have demonstrated scalable solutions using clinical data alone. However, a
persistent gap remains: integrating the predictive power of laboratory data with the accessibil-
ity and scale of clinical datasets.

This observation motivates the approach proposed in this thesis: to investigate the effec-
tiveness of transfer learning from a laboratory-based dataset (UCI) to a large clinical dataset
(NHIRD), aiming to build a hybrid model that supports early and accurate CKD prediction
across diverse healthcare environments.

In the following chapter, we present the methodology, materials, and implementation details
of our proposed solution, including system architecture, preprocessing steps, model design, and
evaluation procedures.



Chapter 2

Methodology, Materials and
Implementation

2.1 Introduction

After reviewing the theoretical foundations and related studies on CKD prediction, this chap-
ter presents the proposed approach, which relies on a transfer learning strategy. The goal is
to leverage a deep learning model trained on a laboratory-oriented dataset (UCI) to enhance
prediction capabilities on a large-scale clinical dataset (NHIRD) that lacks biological markers.
This approach aims to bridge the gap between detailed but limited lab data and scalable clinical
data, enabling more robust and generalizable CKD prediction.

This chapter details the methodology adopted throughout the study, including system de-
sign, data preparation, model development, and implementation. It is organized to first intro-
duce the overall system architecture, followed by descriptions of the data sources, preprocessing
steps, feature selection, base model training, and the transfer learning process. Each step is
explained alongside its implementation outcomes.

2.2 Problematic and motivation

Chronic Kidney Disease (CKD) is a ”silent” condition, often remaining asymptomatic until
irreversible damage occurs [37]. Early detection is critical to slow its progression and pre-
vent complications such as transplantation, dialysis, or death. However, traditional reliance on
biological laboratory tests—such as estimated glomerular filtration rate (eGFR) and albumin-
uria—poses several challenges:

• Limited accessibility: Laboratory data are often unavailable in large-scale administrative
health databases limiting their use for population-wide screening and early detection
strategies.

• Delayed diagnosis: In clinical settings, patients may not undergo routine laboratory test-
ing until symptoms manifest, resulting in missed opportunities for early intervention.

In response to these limitations, claims-based datasets like NHIRD have been increasingly
used to train predictive models for CKD onset using features such as comorbidities and med-

30
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ication histories [29]. These models have demonstrated strong performance at the population
level, confirming the potential of clinical data for large-scale forecasting. However, these works
[29] acknowledge that claims data alone are sufficient for epidemiological forecasting, but that
integrating laboratory markers remains essential for clinical decision-making and patient-level
management. This emphasizes the complementary value of biological markers for fine-grained,
individual-level assessment.

This context underscores a key research motivation: to explore how combining clinical and
biological data may enhance the clinical utility of CKD prediction models. Specifically, there
is a need to investigate whether leveraging both types of data—via approaches such as transfer
learning—can enable scalable, risk-sensitive tools that serve both broad health monitoring and
individualized care. By evaluating this hybrid strategy, the aim is not only to build adaptable
predictive systems but also to assess the added value of each data source in different clinical
scenarios.

2.3 Objectives

The main objective of this study is to develop a deep learning–based approach for the early
detection and risk assessment of Chronic Kidney Disease (CKD) by leveraging both biological
laboratory data and clinical data from multiple sources.

Specifically, this work aims to:

• Build a predictive model using biological parameters to identify CKD cases from laboratory-
based data,

• Apply transfer learning to adapt the biological model for use with clinical and claims-
based data.

• Assess the ability of clinical data to support CKD prediction in the absence of laboratory
results.

• Investigate the combined impact of integrating both data types on CKD risk assessment
and prediction.

• Provide a framework that supports scalable and individualized prediction of CKD in
different healthcare contexts.

2.4 Proposed approach

To address the challenge of early detection and prediction of Chronic Kidney Disease (CKD),
we propose a deep learning–based approach that leverages both biological and clinical data
sources. The method combines two distinct datasets through a transfer learning framework:
a base model is first trained on biological parameters from the UCI CKD dataset, then its
learned representations are transferred to a new model built on clinical and administrative
data from the NHIRD dataset. This hybrid approach enables the use of laboratory-specific
insights even in environments where lab data are unavailable, thus improving the adaptability
of the prediction system across various healthcare settings.
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2.4.1 System architecture

The overall system architecture is illustrated in 2.1. It outlines the two-stage training process
and data flow used in our study. The pipeline begins with the preprocessing and feature selection
steps applied separately to the UCI and NHIRD datasets. A deep learning model is first trained
on the UCI dataset using laboratory data, and the resulting base model is then used as a
feature extractor. In the second phase, this extracted representation is transferred to initialize
the NHIRD model, which is subsequently trained on clinical and medication-based features to
perform CKD risk prediction. This diagram presents a modular view of each component in the
pipeline, from data preprocessing to final prediction.

• Step 1: Preprocess and expand features in the UCI dataset

• Step 2: Train a DNN (base model) on UCI for CKD detection

• Step 3: Save and reuse the UCI model by extracting learned representations

• Step 4: Apply preprocessing and feature selection on NHIRD

• Step 5: Build a new DNN model on NHIRD, initialized with transferred features

• Step 6: Predict CKD risk based on NHIRD data
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Figure 2.1: System architecture
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2.4.2 Data sources description

This study is based on two distinct datasets that provide complementary types of information
for Chronic Kidney Disease (CKD) prediction. The first dataset, derived from laboratory
measurements, enables the development of a baseline model based on biological markers. The
second dataset consists of large-scale administrative and clinical data, allowing for extended
prediction via transfer learning. These datasets are described below.

UCI dataset

The first dataset used in this study was obtained from the University of California Irvine (UCI)
Machine Learning Repository [49]. It is commonly used in CKD prediction studies due to its
accessibility and the nature of its features, which reflect typical laboratory test results that can
be collected within a short clinical observation period (approximately two months).

The dataset contains 400 patient records, of which 250 are labeled as positive for CKD and
150 as negative. It includes 24 features, comprising 13 categorical attributes and 11 numeric
ones, along with a binary class label: 1 indicating the presence of CKD; 0 indicating its absence.
This dataset serves as the foundation for training the base model focused on biological data.

Table 2.1 provides a detailed breakdown of the categorical and numerical features.

Table 2.1: UCI Dataset Variables Description

Name Role Type Description Units Missing
Values

age Feature Integer Age year yes
bp Feature Integer blood pressure mm/Hg yes
sg Feature Categorical specific gravity yes
al Feature Categorical albumin yes
su Feature Categorical sugar yes
rbc Feature Binary red blood cells yes
pc Feature Binary pus cell yes
pcc Feature Binary pus cell clumps yes
ba Feature Binary bacteria yes
bgr Feature Integer blood glucose random mgs/dl yes
bu Feature Integer blood urea mgs/dl yes
sc Feature Continuous serum creatinine mgs/dl yes
sod Feature Integer sodium mEq/L yes
pot Feature Continuous potassium mEq/L yes
hemo Feature Continuous hemoglobin gms yes
pcv Feature Integer packed cell volume yes
wbcc Feature Integer white blood cell count cells/cmm yes
rbcc Feature Continuous red blood cell count millions/cmm yes
htn Feature Binary hypertension yes
dm Feature Binary diabetes mellitus yes
cad Feature Binary coronary artery disease yes

Continued on next page
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Name Role Type Description Units Missing
Values

appet Feature Binary appetite yes
pe Feature Binary pedal edema yes
ane Feature Binary anemia yes
class Target Binary ckd or not ckd no

NHIRD dataset

The second dataset used in this study is clinically oriented and was obtained from Taiwan’s
National Health Insurance Research Database (NHIRD) [W9]. The NHIRD is a large-scale
administrative claims database that includes electronic health records (EHRs) of over 99%
of Taiwan’s population, covering longitudinal data such as patient demographics, diagnoses,
prescriptions, and medical procedures from 1997 to 2012.

This rich dataset enables researchers to perform population-level studies on various chronic
diseases, including CKD. The NHIRD offers access to multiple data types for approved research,
including:

• Sampling datasets ( 2 million patients),

• Disease-specific databases, and

• Full-population datasets.

In the work of [29], the sampling dataset was used to generate three distinct data represen-
tations:
1. Aggregated format (used in our work).
2. Monthly temporal sequences, and
3. Quarterly temporal sequences.

For the aggregated data that we use in this study, the temporal dimension was discarded
by summing the total occurrences of each comorbidity and medication code across a predefined
observation window. As a result, each patient is represented as a fixed-length feature vector,
where each feature corresponds to the frequency of a comorbidity or a prescribed medication,
along with demographic information such as age and sex.
The final processed dataset contains 1504 features, including diagnosis codes (ICD-9), med-
ication codes (ATC), and basic demographic attributes. In our work, we use the 6-month
aggregated version of this dataset, which includes clinical records of patients over a six-month
observation window before CKD diagnosis or a matched index date.
Table 2.2 provides a detailed description of the variables used from the NHIRD dataset and
figure 2.2 presents a fragment of this dataset.
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Table 2.2: NHIRD Dataset Variables Description

Variable
Name

Role Type Description Units Missing
Values

age Feature Numerical Age year No
gender Feature Categorical Gender 0/1 No
Diagnosis Feature Numerical ICD-9 based fre-

quencies of visits
with a diagnosis

Number of
diagnoses

No

Medication Feature Numerical ATC-based fre-
quencies of pre-
scriptions

no

CKD Target Categorical ckd or not ckd No

Figure 2.2: NHIRD dataset fragment

2.4.3 Preprocessing pipeline

UCI Dataset Preprocessing

The following figure 2.3 illustrates the preprocessing pipeline applied to the UCI dataset. This
dataset presents several challenges, notably the presence of missing values. To address this,
missing values in numerical features were imputed using the median strategy, while missing
values in categorical features were handled using the most frequent value strategy.
The class distribution consists of 150 CKD instances and 250 non-CKD instances, which did not
require any balancing techniques due to the relatively small imbalance. Categorical variables
were encoded using one-hot encoding, generating 24 additional binary features, resulting in a
total of 48 features for model training.
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Figure 2.3: UCI dataset preprocessing pipeline

NHIRD Dataset Preprocessing

Unlike the UCI dataset, the NHIRD dataset does not suffer from missing values. However,
it presents a significant class imbalance, with a disproportionately high number of non-CKD
samples compared to CKD cases. This issue can be addressed using class weighting during
model training.
The preprocessing pipeline begins by removing irrelevant or outlier data, such as the ID column
and instances where the patient’s age exceeds 100. Additionally, the dataset contains numerous
zero-variance features—columns in which all observations have the same value, resulting in no
variability. Such features do not contribute to model learning and may increase complexity.
To address this, a zero-variance selector was applied, reducing the number of features by ap-
proximately 100. The following figure2.4 illustrates the preprocessing steps performed on the
NHIRD dataset.
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Figure 2.4: NHIRD dataset preprocessing pipeline

2.4.4 Feature selection

For the UCI dataset, the feature space is relatively limited, with only 24 original attributes.
Therefore, applying feature selection to reduce dimensionality is not necessary. Additionally,
since the model trained on this dataset will serve as a base model for transfer learning, it is
preferable to retain as many informative features as possible. This ensures greater representa-
tion capacity and improves the generalization potential of the learned model.

In contrast, the NHIRD dataset has a much larger feature space—initially composed of
1,505 features. To identify the most relevant attributes and reduce this dimensionality to 48
features (to match the UCI feature extractor input size), we applied several feature selection
methods.
Before performing advanced feature selection, we first removed zero-variance features using the
VarianceThreshold technique. This preprocessing step eliminates features with the same value
across all samples, reducing the number of features from 1,505 to approximately 1,400.
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Subsequently, we applied different feature selection methods, including Mutual Information
(MI), ANOVA (F-test), and LightGBM-based importance ranking. All three approaches pro-
duced comparable sets of top features, with slight variations in importance scores.
After evaluating the stability and interpretability of the results, the Mutual Information-based
selection was chosen to generate the final 48-feature set used in the transfer learning process.

Mutual information

This method involves using the mutual information classifier Algorithme to select features with
the highest mutual information (MI) with the target variable.

Diabetes mellitus, Essential hypertension, Gout, Disorders of lipoid metabolism, and Chronic
glomerulonephritis are the most prominent comorbidities. The most prominent medications are
Sulfonamides, Sulfonylureas, Angiotensin II receptor blockers (ARBs), Biguanides and Dihy-
dropyridine derivatives.

The following table show the most prominent features sorted by MI score.

Table 2.3: Top Features by Importance

Feature Details Importance Score

250 Diabetes mellitus 0.022190
C03CA Sulfonamides 0.017595
A10BB Sulfonylureas 0.017444
C09CA Angiotensin II receptor blockers 0.015826
A10BA Biguanides 0.015363
C08CA Dihydropyridine derivatives 0.015337
401 Essential hypertension 0.013846
274 Gout 0.013058
272 Disorders of lipoid metabolism 0.012767
M04AA Preparations inhibiting uric acid production 0.011156

This feature selection method was adopted to create the training and testing subsets used
to train the NHIRD-based model, as illustrated in figure 2.5 The method’s ability to capture
linear relationships was a key reason for its selection. Its effectiveness is further supported
by the resulting feature set, which aligns well with established medical knowledge and was
validated by a hospital nephrologist.
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Figure 2.5: Feature Selection process to creat train subset

2.4.5 Model training on UCI CKD

Our base model, trained on the laboratory-oriented UCI dataset, is a simple Deep Neural Net-
work (DNN) designed to predict the presence or absence of Chronic Kidney Disease (CKD).
Before selecting this architecture, several machine learning models were implemented and eval-
uated. The DNN demonstrated the best performance while maintaining simplicity and gener-
alizability, making it well-suited for transfer learning.
The model architecture consists of three dense (fully connected) layers interleaved with two
dropout layers to prevent overfitting.
The following table presents a summary of the model’s architecture and parameter details.
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Table 2.4: The architecture of the UCI DNN model

Layer (type) Output Shape Parameters

dense27 (Dense) (None, 16) 784
dropout7 (Dropout) (None, 16) 0
dense28 (Dense) (None, 8) 136
dropout8 (Dropout) (None, 8) 0
dense29 (Dense) (None, 1) 9
Total params: 931
Trainable params: 929
Non-trainable params: 0
Optimizer params: 2

The base model trained on the UCI dataset demonstrated strong performance, particularly
in detecting early stages of CKD. This effectiveness motivated its use as a feature extractor in
our transfer learning approach for the NHIRD model.
The following table presents the performance metrics of the UCI-based DNN model.

Model Accuracy Precision Recall
UCI-DNN 0.9812 0.9901 0.9800

Table 2.5: Results for the UCI data

2.4.6 Transfer learning strategy

Transfer learning [18] [21]is the improvement of learning on new task throught the transfer
of knowledge from a related task, that has already been learned. Taking a real-life example,
learning to ride a bicycle is very difficult and requires learning from scratch how to maintain
balance, how to steer the wheel. Once learning how to ride the bicycle, learning how to ride
a motorcycle will not be difficult, and it will not be necessary to learn from scratch how to
maintain balance and other skills, where riding bicycle skills are transferred, and learning how
to ride a motorcycle now is easier.

In the machine learning context, transfer learning is a technique that enable algorithms to
learn a new task by using pre-trained models. The following figure shows the transfer learning
steps.
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Figure 2.6: Transfer Learning

To transition from early-stage detection of CKD to predicting its onset six months in ad-
vance, we applied a transfer learning strategy using our pre-trained DNN model built on the
UCI dataset. The original model, designed for binary classification of CKD based on laboratory
data, demonstrated strong capability in early detection. However, our goal is now to specialize
this model to forecast CKD progression ahead of time using clinical data from the NHIRD
dataset.

In transfer learning, the approach depends on how similar the source and target tasks are.
When the tasks are closely related—as in our case—we typically remove only the output layer
of the pre-trained model and retain the rest of the architecture. We then append new layers,
including a new output layer, to adapt the model to the target task. Since our new objective
(predicting CKD six months before occurrence) is highly similar to the original task (early
detection), we opted to keep all layers except the final one, which we replaced with a new
classifier adapted to the prediction task.

The rationale behind this is rooted in how deep learning models work: the deeper the layer,
the more abstract the features it captures. Therefore, the intermediate layers of the UCI model
are likely to encode useful high-level representations of CKD progression. However, the final
output layer of the original model was specifically trained to detect current CKD status—not
future risk. By removing it and fine-tuning the rest of the model, we allow the new layers to
learn how to leverage these extracted features for forward-looking prediction.

We chose transfer learning over training a model from scratch on NHIRD data because
NHIRD lacks laboratory biomarkers, which are essential for building a rich feature space.
Transfer learning helps bridge this gap by reusing the knowledge learned from lab-based data
and adapting it to clinical-only data.
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In our implementation, we first imported the UCI-trained model as a base model. We then
extracted all layers except the output layer to form what we refer to as a feature extractor. This
sub-model was integrated into the architecture of the NHIRD model. Finally, we appended new
layers and fine-tuned the full model, allowing the transferred knowledge to adapt to the clinical
prediction task.

A code example of how the feature extractor was defined is shown in the following figure.

Figure 2.7: Feature Extractor creating code

2.4.7 Evaluation protocol

We split the NHIRD dataset into 80% for training and 20% for testing. From the training set,
we generated 72 batches, each containing 400 samples, in order to train 72 distinct models.
Each of these models was then evaluated on the entire test set to assess generalization perfor-
mance.

After training, we analyzed the classification reports of all models. Any model that misclas-
sified samples from the NOCKD class was excluded from further consideration. As a result,
only five models were retained for final evaluation.

To select the best-performing model, we used the Area Under the Receiver Operating Char-
acteristic Curve (AUC-ROC) as our primary metric. This metric illustrates the trade-off be-
tween Recall (True Positive Rate or Sensitivity) and Precision (or Specificity) across various
classification thresholds. Given the imbalance in the dataset, we prioritized Precision over the
False Positive Rate in our evaluations.

Figure 2.8 presents the AUC-PR plots for the top five models trained on the 6-month pre-
diction task. Among them, three models achieved an equal AUC-PR score of 0.43. From these,
we selected the model with the highest Recall score (0.92, batch 15) as the best-performing
model for the final prediction task.
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Figure 2.8: ROC and PR curves of best 6 months models.

The following table presents the Accuracy, Recall, and AUC scores of the best model for
the 6-month prediction task. In this experiment, we compared four models:

1. Transfer Learning – DNN-based: A Deep Neural Network (DNN) was trained on the
UCI dataset, and its learned feature extractor was reused for prediction on the NHIRD dataset
using a DNN architecture.

2. Transfer Learning – CNN-based: A Convolutional Neural Network (CNN) was trained
on the UCI dataset, and its feature extractor was transferred for prediction on the NHIRD
dataset using a CNN architecture.

3. From Scratch – DNN-based: A DNN model trained directly on the NHIRD dataset
without any transfer learning.

4. From Scratch – CNN-based: A CNN model trained directly on the NHIRD dataset
without transfer learning.

This comparison aims to evaluate the effectiveness of transfer learning by comparing models
that benefit from prior knowledge (learned from laboratory data) against those trained solely
on clinical data.

Type Model Accuracy Recall AUC

With TL
DNN 0.39 0.92 0.73
CNN 0.57 0.80 0.74

Without TL
DNN 0.71 0.59 0.74
CNN 0.78 0.44 0.73

Table 2.6: Results for 6 months prediction data
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Figure 2.9: Confusion Matrix of the 6 months model.

Study Model Accuracy Recall AUC

Our model
DNN 0.39 0.92 0.73
CNN 0.57 0.80 0.74

[29]
LR 0.73 0.66 0.76
RF 0.72 0.65 0.76
DT 0.73 0.62 0.74

Table 2.7: Results comparison with the work of [29].

2.5 Discussion

Our proposed model demonstrated strong potential in detecting Chronic Kidney Disease (CKD)
cases, particularly through its high Recall value of 0.92, indicating that 92% of actual CKD
cases were correctly identified. This high True Positive Rate (TPR) is a significant strength,
especially in the context of class-imbalanced datasets, where false negatives (i.e., undetected
CKD cases) are far more costly than false positives. In clinical settings, missing a CKD case
could delay diagnosis and treatment—hence, prioritizing Recall is both justified and essential.

However, as expected in recall-optimized models, this came at the cost of lower Precision,
meaning that a higher proportion of the predicted CKD cases were false positives. This is a
common trade-off in imbalanced classification tasks and reflects the reality that over-predicting
CKD is less harmful than missing it. The use of balanced batches and class weighting (with a
doubled penalty for misclassifying CKD cases) contributed to this recall-focused behavior.
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Although the AUC-ROC score reached 0.73, suggesting moderate overall discrimination, it
may overestimate performance in imbalanced settings. This is because the ROC curve relies
on the False Positive Rate (FPR), which is impacted by the large number of True Negatives
(TN), making FPR appear lower than it truly is. In contrast, the AUC-PR score provided a
more realistic view of performance under class imbalance, revealing challenges in maintaining
high precision while preserving recall. This insight confirms our decision to prioritize AUC-PR
and Recall over AUC-ROC and Accuracy.

Notably, the transfer learning (TL) strategy enhanced the model’s ability to detect CKD
cases, compared to models trained from scratch. This was observed in both Recall and Accuracy
improvements. Despite the absence of laboratory data in the NHIRD dataset, the transfer of
knowledge from the biologically rich UCI dataset allowed our model to make more clinically
informed predictions, validating the added value of transfer learning in bridging the data-type
gap.

Another strength lies in the model simplicity: our architectures (DNN) were not overly deep
or computationally expensive, which makes them deployable in real-world clinical environments.
While we did not exploit temporal features in the NHIRD dataset, we compensated through
smart feature selection and cross-domain transfer learning.

When compared to prior work, such as the study in [29], which relies on clinical features
using 6-month aggregated data, our method achieved superior Recall scores, reinforcing the
idea that transfer learning can compensate for the lack of lab data.

This work shows that prioritizing high recall, even at the cost of precision, is an effective
strategy for CKD screening tools, especially when deployed for patients already flagged as
clinically suspicious. This minimizes missed diagnoses, aligning well with the practical needs
of nephrology departments.

2.6 AI web-Application for CKD Prediction

RenalGuardian is the name of the web application that we have developed to use multu-source
data based on transfer learning for CKD prediction.
Firstly, we used Html, Css and JavaScript in the front-end side to provide users a friendly
interface. The back-end side was based on the Python programming language, which provide
us the ability to use the Flask library to link the interfaces, and to load the NHIRD model to
use it to generate predictions, as it is trained and saved using the same programming language.

The figure 2.10 present the main page, which provide details about our system, and several
buttons to explore the whole website.



Methodology, Materials and Implementation

Figure 2.10: The main page.

As soon as the user clicks the Get Started button, he will be redirected to the login/signup
page to finish login or registration process as shown in the figure 2.11.

Figure 2.11: The login/signup page.

Once connected, we provide a dashboard contains many important information (figure 2.12).
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Figure 2.12: The dashboard interface.

2.6.1 Prediction scenario

The core of our system involves using transfer learning from biological data to demographic
and clinical data to generate a prediction probability. Firstly, The user must provide the
demographic data, include the name, age, sex and other information. Then, adding clinical
data is an easy and clear process, the user can add as many as possible comorbidities with the
corresponding number of diagnoses, the same thing for the medications.
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Figure 2.13: Adding demographic information.

Figure 2.14: Adding clinical information.

After filling the two forms sections, and when clicking on Predict button, our TL-NHIRD
model receive the patient data from the front-end form, generate a prediction probability,
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then send the probabilty back to the front-end to display prediction results. Based on this
probability, we classify the case as Low Risk, Normal Risk, or High Risk.

Figure 2.15: Prediction results.

2.6.2 Detection scenario

A similar process will be used by the user to get CKD current stage based on Age, clinical,
and laboratory data. Two forms section must be filled, to finally get the probability of being
an early stage CKD patient or NOT.
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Figure 2.16: Adding demographic information.

Figure 2.17: Adding clinical and biological information.
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Finaly, results page will contain a probability of being CKD patient, and we calculate the
eGFR value using the MDRD equation, and we detect the stage basing on the eGFR value.
Additionally, the results page contains the details provided, some clinical recommendations,
and some useful buttons.

Figure 2.18: Early Detection results.

2.7 Conclusion

This chapter presented the methodology, data sources, and technical implementation under-
pinning our approach to early CKD prediction. We began by discussing the motivation behind
leveraging both biological and clinical data and outlined our system architecture designed to
bridge the gap between laboratory-rich datasets and administrative claims data.

We introduced the two main datasets used in our study—the UCI laboratory dataset and
the NHIRD clinical dataset—detailing their characteristics, preprocessing pipelines, and chal-
lenges. Feature selection techniques were applied to reduce dimensionality and improve model
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efficiency, particularly for the NHIRD dataset.

Our approach included training a base model using a Deep Neural Network (DNN) on the
UCI dataset, which served as a foundation for transfer learning. The knowledge learned from
laboratory-based prediction was transferred to a DNN-based model trained on the NHIRD
dataset to predict CKD occurrence six months in advance.

We also developed and presented an AI-based application integrating these models, aimed at
assisting healthcare professionals in detecting and predicting CKD. This tool is designed to sup-
port clinical decision-making through user-friendly interfaces and actionable prediction outputs.

Through careful model design, batch processing, and evaluation, we implemented and fine-
tuned multiple models. The use of transfer learning demonstrated its potential in enhancing
CKD prediction performance, especially in data-limited clinical environments.



General Conclusion

Chronic Kidney Disease (CKD) represents a growing global health concern, characterized by
its silent progression and serious complications in late stages, including end-stage renal disease
(ESRD). The socio-economic and medical impact of CKD is profound—ranging from the fi-
nancial burden of dialysis and transplantation to the deterioration of patient quality of life and
increased mortality. Consequently, early prediction and risk stratification have become critical
to reducing morbidity, improving care delivery, and optimizing healthcare resources.

Despite advancements in machine learning (ML) for medical prediction, the field of CKD
prediction still faces important challenges—primarily due to fragmentation in data sources. On
one hand, large-scale clinical and claims datasets (e.g., Taiwan’s NHIRD) offer wide popula-
tion coverage but lack essential laboratory biomarkers required for accurate clinical decision-
making. On the other hand, laboratory-oriented datasets (e.g., the UCI CKD dataset) provide
high-resolution biological data but are limited in size and scope, restricting their generalizability.

To address this gap, our research proposes a hybrid machine learning framework based
on Transfer Learning (TL). The key idea was to leverage the diagnostic power of laboratory
data—by training a base Deep Neural Network (DNN) on the UCI dataset—and transfer the
learned knowledge to enhance prediction on the NHIRD clinical dataset, which is more scalable
but lacks lab values. This integration allows us to simulate the benefits of biological markers
in settings where such data is unavailable.

Our experiments confirmed the effectiveness of this cross-domain knowledge transfer, par-
ticularly in improving the recall score, which reached 92% in the 6-months-ahead prediction
task. High recall is essential in medical contexts, where failing to identify a patient at risk
(false negatives) can have life-threatening consequences. Although the model faces challenges
in precision due to class imbalance, the high sensitivity ensures that potential CKD patients
are identified early for further clinical evaluation.

Moreover, this work contributes methodologically by:
- Demonstrating a practical pipeline that combines data preprocessing, feature selection,

and TL.

- Proposing an efficient model architecture with reduced computational complexity.

- Validating the model with domain experts through scenario-based evaluation.

From an applied perspective, our approach offers a scalable solution for healthcare providers
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to monitor at-risk populations, especially in low-resource environments where lab testing is
limited. It also paves the way for future systems that dynamically integrate both clinical and
biological streams of data.



Perspectives

To further enhance the clinical applicability and predictive performance of our CKD prediction
system, several strategic directions are envisioned:

First, we plan to refine the transfer learning strategy by incorporating embedding tech-
niques. Rather than directly transferring model weights, we aim to extract and transfer low-
dimensional, meaningful representations (embeddings) of both clinical and laboratory features.
This approach may capture more abstract and generalizable relationships between data modal-
ities, potentially improving the adaptability and robustness of our model across diverse health-
care datasets.

Second, to overcome the “black-box” nature of deep neural networks and increase clini-
cian confidence, we intend to integrate Explainable AI (XAI) methods. These techniques will
help uncover the key contributing factors behind each prediction, offering clinicians clear, in-
terpretable insights into why a specific patient is classified as high-risk. This transparency is
critical for fostering trust and supporting clinical decision-making.

Finally, recognizing that CKD risk factors and disease progression vary significantly across
patient populations, we aim to develop tailored models for specific subgroups. These subgroup-
specific models—targeting, for example, diabetic patients, hypertensive individuals, or elderly
populations—will allow for more precise predictions, improve early detection within vulnerable
cohorts, and support more targeted preventive care and resource planning.
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Abdul. Machine learning prediction models for chronic kidney disease using national health
insurance claim data in taiwan. In Healthcare, volume 9, page 546. MDPI, 2021.

[30] Raman Kumar, Sarvesh Garg, Rupinder Kaur, MGM Johar, Sehijpal Singh, Soumya V
Menon, Pulkit Kumar, Ali Mohammed Hadi, Shams Abbass Hasson, and Jasmina
Lozanović. A comprehensive review of machine learning for heart disease prediction:
challenges, trends, ethical considerations, and future directions. Frontiers in Artificial
Intelligence, 8:1583459, 2025.

[31] Nuo Lei, Xianlong Zhang, Mengting Wei, Beini Lao, Xueyi Xu, Min Zhang, Huifen Chen,
Yanmin Xu, Bingqing Xia, Dingjun Zhang, et al. Machine learning algorithms’ accuracy
in predicting kidney disease progression: a systematic review and meta-analysis. BMC
Medical Informatics and Decision Making, 22(1):205, 2022.

[32] Shenglong Li and Xiaojing Zhang. Research on orthopedic auxiliary classification and
prediction model based on xgboost algorithm. Neural Computing and Applications,
32(7):1971–1979, 2020.

[33] Yikuan Li, Mohammad Mamouei, Gholamreza Salimi-Khorshidi, Shishir Rao, Abdelaali
Hassaine, Dexter Canoy, Thomas Lukasiewicz, and Kazem Rahimi. Hi-behrt: hierarchi-
cal transformer-based model for accurate prediction of clinical events using multimodal
longitudinal electronic health records. IEEE journal of biomedical and health informatics,
27(2):1106–1117, 2022.



BIBLIOGRAPHY

[34] He-Ren Lou, Xin Wang, Ya Gao, and Qiang Zeng. Comparison of arima model, dnn model
and lstm model in predicting disease burden of occupational pneumoconiosis in tianjin,
china. BMC Public Health, 22(1):2167, 2022.

[35] Srabanti Maji and Srishti Arora. Decision tree algorithms for prediction of heart disease.
In Information and Communication Technology for Competitive Strategies: Proceedings of
Third International Conference on ICTCS 2017, pages 447–454. Springer, 2019.

[36] P Manimaran, R Vignesh, B Vignesh, and G Thilak. Enhanced prediction of lung cancer
stages using svm and medical imaging. In 2025 International Conference on Electronics
and Renewable Systems (ICEARS), pages 1334–1338. IEEE, 2025.

[37] MedlinePlus. Vital signs. https://medlineplus.gov/ency/article/002217.htm, 2024.
Accessed: 2025-05-01.

[38] Lu Men, Noyan Ilk, Xinlin Tang, and Yuan Liu. Multi-disease prediction using lstm
recurrent neural networks. Expert Systems with Applications, 177:114905, 2021.

[39] K Moon and A Jetawat. Predicting lung cancer with k-nearest neighbors (knn): A com-
putational approach. Indian J. Sci. Technol, 17(21):2199–2206, 2024.

[40] Nazmun Nahar and Ferdous Ara. Liver disease prediction by using different decision tree
techniques. International Journal of Data Mining & Knowledge Management Process,
8(2):01–09, 2018.

[41] K Nirmala, K Saruladha, and Kenenisa Dekeba. Investigations of cnn for medical
image analysis for illness prediction. Computational Intelligence and Neuroscience,
2022(1):7968200, 2022.

[42] Simon Nusinovici, Yih Chung Tham, Marco Yu Chak Yan, Daniel Shu Wei Ting, Jialiang
Li, Charumathi Sabanayagam, Tien Yin Wong, and Ching-Yu Cheng. Logistic regression
was as good as machine learning for predicting major chronic diseases. Journal of clinical
epidemiology, 122:56–69, 2020.

[43] Madhumita Pal and Smita Parija. Prediction of heart diseases using random forest. In
Journal of Physics: Conference Series, volume 1817, page 012009. IOP Publishing, 2021.

[44] M Pavithra, K Saruladha, and K Sathyabama. Gru based deep learning model for prognosis
prediction of disease progression. In 2019 3rd International Conference on Computing
Methodologies and Communication (ICCMC), pages 840–844. IEEE, 2019.

[45] P Prabhu and S Selvabharathi. Deep belief neural network model for prediction of di-
abetes mellitus. In 2019 3rd international conference on imaging, signal processing and
communication (ICISPC), pages 138–142. IEEE, 2019.

[46] P Ramprakash, R Sarumathi, R Mowriya, and S Nithyavishnupriya. Heart disease predic-
tion using deep neural network. In 2020 international conference on inventive computation
technologies (ICICT), pages 666–670. IEEE, 2020.

https://medlineplus.gov/ency/article/002217.htm


BIBLIOGRAPHY

[47] Shishir Rao, Yikuan Li, Rema Ramakrishnan, Abdelaali Hassaine, Dexter Canoy, John
Cleland, Thomas Lukasiewicz, Gholamreza Salimi-Khorshidi, and Kazem Rahimi. An
explainable transformer-based deep learning model for the prediction of incident heart
failure. IEEE journal of biomedical and health informatics, 26(7):3362–3372, 2022.

[48] Anjan Nikhil Repaka, Sai Deepak Ravikanti, and Ramya G Franklin. Design and imple-
menting heart disease prediction using naives bayesian. In 2019 3rd International confer-
ence on trends in electronics and informatics (ICOEI), pages 292–297. IEEE, 2019.

[49] Soundarapandian P. Rubini, L. and P. Eswaran. Chronic Kidney Disease. UCI Machine
Learning Repository, 2015. DOI: https://doi.org/10.24432/C5G020.

[50] Derara Duba Rufo, Taye Girma Debelee, Achim Ibenthal, and Worku Gachena Negera.
Diagnosis of diabetes mellitus using gradient boosting machine (lightgbm). Diagnostics,
11(9):1714, 2021.

[51] NS Safia. Prediction of breast cancer through random forest. Current Medical Imaging,
19(10):1144–1155, 2023.

[52] Dina Saif, Amany M Sarhan, and Nada M Elshennawy. Deep-kidney: an effective deep
learning framework for chronic kidney disease prediction. Health Information Science and
Systems, 12(1):3, 2023.

[53] Ahmad Waleed Salehi, Shakir Khan, Gaurav Gupta, Bayan Ibrahimm Alabduallah, Abrar
Almjally, Hadeel Alsolai, Tamanna Siddiqui, and Adel Mellit. A study of cnn and trans-
fer learning in medical imaging: Advantages, challenges, future scope. Sustainability,
15(7):5930, 2023.

[54] Hadrien Salem, Sarah Ben Othman, Marc Broucqsault, and Slim Hammadi. Combining
convolution and involution for the early prediction of chronic kidney disease. In Interna-
tional Conference on Computational Science, pages 255–269. Springer, 2024.

[55] Francesco Sanmarchi, Claudio Fanconi, Davide Golinelli, Davide Gori, Tina Hernandez-
Boussard, and Angelo Capodici. Predict, diagnose, and treat chronic kidney disease with
machine learning: a systematic literature review. Journal of nephrology, 36(4):1101–1117,
2023.

[56] Suhila Sawesi, Arya Jadhav, and Bushra Rashrash. Machine learning and deep learning
techniques for prediction and diagnosis of leptospirosis: Systematic literature review. JMIR
Medical Informatics, 13:e67859, 2025.

[57] Farah Shahid, Aneela Zameer, and Muhammad Muneeb. Predictions for covid-19 with
deep learning models of lstm, gru and bi-lstm. Chaos, Solitons & Fractals, 140:110212,
2020.

[58] VirenViraj Shankar, Varun Kumar, Umesh Devagade, Vinay Karanth, and K Rohitaksha.
Heart disease prediction using cnn algorithm. SN Computer Science, 1(3):170, 2020.



BIBLIOGRAPHY

[59] Xing Song, Lemuel R Waitman, SL Alan, David C Robbins, Yong Hu, Mei Liu, et al. Lon-
gitudinal risk prediction of chronic kidney disease in diabetic patients using a temporal-
enhanced gradient boosting machine: retrospective cohort study. JMIR medical informat-
ics, 8(1):e15510, 2020.

[60] Paul E Stevens, Sofia B Ahmed, Juan Jesus Carrero, Bethany Foster, Anna Francis,
Rasheeda K Hall, Will G Herrington, Guy Hill, Lesley A Inker, Rümeyza Kazancıoğlu,
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PROJECT PRESENTATION

CKD is a state of progressive loss of kidney function,
ultimately resulting in the need for renal replacement
therapy, such as dialysis or transplantation. It is an
unsuspected disease because it most often develops
silently. A late diagnosis of this asymptomatic
disease will lead to serious and costly complications.
Most of the CKD population resides in the earlier
asymptomatic stages (1-3).

Problematic

Annual direct costs per patient skyrocket as CKD advances,
placing immense strain on health economies. The cost of
end-stage treatments like dialysis is orders of magnitude

higher than managing early-stage disease.

PROJECT IDEA
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PROJECT PRESENTATION

The financial burden of CKD escalates as the disease
progresses. Early detection is important and may allow
many advantages. Experts need intelligent tools to
predict and assess risks for early intervention and
preventive care, where traditional diagnostic methods
are limited in their ability to predict CKD. Early detection
is not just clinically beneficial; it’s economically essential
for sustainable healthcare systems.

Solution

RenalGuardian is an AI-based application that can
anticipate the risks of the onset of the disease to
prevent late detection, slow disease progression,
preserve kidney function, and generate long-term
cost savings for both patients and healthcare
systems. The end user will be the domain expert
(nephrologist), where we will provide an easy-to-
use interface that can help him manage the
values ​​and observe the results.

PROJECT IDEA



It makes the work of
experts and the
support easier

PROJECT PRESENTATION
SUGGESTED VALUE

Enhanced Clinical
Decision Support

Less damage may
not require

hospitalization

Less
hospitalization

An economic benefit
for the country's
health system by
reducing health

costs

Financial profit

improves patients'
quality of life and
extends healthy

longevity

Preserving Patient
Health

AI's ability to identify
individuals at risk for

CKD significantly earlier
than traditional methods

Early & Precise Risk
Detection



PROJECT PRESENTATION

A computer science student, he has
medical experience through a

diabetes diagnosis and treatment
project, aiming to expand his medical

projects by implementing machine
learning techniques.

GUETTAF Ilyas

WORKING TEAM

OBJECTIVES
Short and Mid-Term

Train and test a machine learning model that will be the core of RenalGuardian.
Launsh RenalGuardian after developping.
Making collaborations.

Long Term
Collection of more data to create a more generalizable model.
Clinical Validation.
Going beyond the boundaries of an application; an AI powred clinic.



Firstly, we start with searching
and analyzing studies, collect
required data to develop our
machine learning model, after
desining a prototype, we present
our prototype to the experts,
specifically nephrologists, and
refine it using experts feedbacks
and reviews.

Then, we develop our system,
and present it, aiming to obtain
more feedbacks that will be the
base of our system optimization.

Finaly, after refine our system
and optimize it, and as it is
desgned for a sensitive domain,
scenario-based evaluations and
expert-centered validation phase
are key steps to ensure the
system meets key clinical criteria
without requiring access to real-
time patient data or undergoing
clinical trials at this stage.

PROJECT PRESENTATION
IMPLEMENTATION
SCHEDULE

PHASE 1
Research, Market
Analysis and Data
Collection

PHASE 2
Developement

PHASE 3
Initial Test and
Feedbacks

PHASE 4
Optimizations
Feedbacks-based 

PHASE 5
Final Testing And
Scenario-based validation

PHASE 6
Launching
RenalGuardian
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INNOVATIVE ASPECTS

NATURE OF
INNOVATIONS
The innovation involves combining different data sources (health insurance data
and laboratory records) to extract the best disease prediction features. We
compare two different machine learning models: one that relies only on non-
laboratory data, and the other that relies on laboratory data, which helps
understand the extent to which expensive tests can be replaced by models based
on easily accessible data. RenalGuardian offers a system that helps and assists
healthcare and health insurance platforms, allowing Clinical and identifying the
groups most vulnerable to infection. Dual-layer model : detection + prediction.

Identify complexe and cashed risk factors that traditional methods can
not easily detect, using Deep learning capacities.

IA for predictive health systems : ML and DL

FILEDS OF
INNOVATION

UI/UX Designe

Introduces real-time ckd detection and prediction capabilities, allowing
experts to detect and respond to disease at his early stages. This approach
protects individuals more effectively and prevent disease to progress.

E-Health : Real-Time CKD Prediction

Embodying ideas and continuous refinement of the system interface to
be more agreeable and easy to use.



RenalGuardian Buisness Model Canvas 0

Revenue Streams

Key
Partnerships

Key
Activities

Value
Propositions

Customer
Segments

Key Resources Channels

Cost Structure

Customer
Relationships

Doctors
Patients
Hospitals
Clinics

Doctors
          Decision help
Patients
          Stats following
          Alerts 
Hospitals & Clinics
          Orienting patients
          Avoiding Dialyze

          
       

Website 
Social Media
Conferences
Word of mouth

Trust
Maintenance
Friendly use

Premium subscription
Membership program

Website 
Doctors / knowledge
Brand

Plateform development
Sales and marketing
Instant responses

Clinics and hospitals
Doctors
Investors

Data collection
Development
Legal/insurance

STRATEGIC MARKET
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STRATEGIC MARKET
ANALYSIS

Including Hospitals and Insurance Companies,
RenalGuardian provides healthcare professionals
with clear, actionable, and data-driven insights at
the point of care, empowering them to make more
informed and personalized management decisions
for at-risk individuals. Our targeting of state
institutions is driven by economic reasons, as the
cost of dialysis and transplantations is high.

Government agencies

Another parralel market is private clinics and
diagnostic centers. Traditional methods are still
used, RenalGuardian will provide a decision support
system, as well as patient monitoring and
management system. Collaborations with such
agencies allow us to benefit from their experiences
to make a more robust system.

Private agencies

MARKET SEGMENT



STRATEGIC MARKET
ANALYSIS

In the national level, we can only find traditional
systems that rely on medical examinations alone,
but they are expensive and may not be available to
all patients .

National Level

Many innovative companies are already leveraging AI
for early disease detection. AinnovaTech is an AI
platform to forecast kidney function deterioration
and recommend intervention timing. HEALWELL AI
are deploying an AI "clinical co-pilot" technologies
for early detection of chronic diseases, including
CKD. Also, The licensing agreement between Aptar
Digital Health and AstraZeneca aims to enhance
patient outcomes through the early detection of
hard-to-detect diseases like chronic kidney disease.

International Level

MEASURING COMPETITION
INTENSITY



STRATEGIC MARKET
ANALYSIS

A free trial periods to attract entreprises and
convince them to buy our product.

Free trial 

Social media is one of the most strong market
places. Also, offering official accounts make it easy
for us to be more professional.

Social Media Power

MARKETING STRATEGIES

Participing in events allow us to present our product
in front of investors, and make collaborations. 

Partnership and events

One of the strongest strategies, based on our
employers capacities to present our product.

Word of mouth

Offering our product to hospitals or clinics for first
use, this will make RenalGuardian recommanded.

Pilot hospitals



PRODUCTION AND
ORGANIZATION PLAN

PRODUCTION PROCESS
IDENTIFY REQUIREMENTS AND PLANING

Identifying needs and tools used in medical sector, by
collaborating with experts from hospitals and clinics.

SYSTEM PROTOTYPING AND ARCHITECTURE

Designing a User Interface to explain prediction scenario, and
developing a detailed system architecture. 

RENALGUARDIAN DEVELOOPEMENT
create a responsive and user-friendly interface, linked to our
machine learning model, both providing several services.

TESTING

Unit Testing, integration testing, and user acceptance testing.

DEPLOYMENT AND APPLICATION LAUNCHING

Deploy the application on secure production environment.

MONITORING AND MAINTENANCE

Launching RenalGuardian

1

2

3

4

5

6



PRODUCTION AND
ORGANIZATION PLAN

THE MAIN SUPPLIERS

Data & Clinical Partnerships
Medical Data Providers: 
Establishing strong relationships with hospitals, clinics, and research
institutions to access patient health records to validate our ML model's
performance within the Algerian population.

Clinical Validation & Medical Expertise:
Expert’s deep knowledge is needed for feature engineering, RenalGuardian
clinical validation and integration into Algerian hospitals and clinics.

Technology & AI Development Tools
Cloud Computing
Our AI-based application require relying on cloud service providers for
scalability and data security.

Specialized Software and Development Tools
A robust Database Management System is crucial to manage data, as equal
as Development and Collaboration Tools, which are essential for the
engineering team

Regulatory Compliance and Legal Expertise
Data Privacy and Healthcare Law Specialists
Accordinge to Law No. 18-07, legal counsel specializing in healthcare IT and
data privacy will ensure RenalGuardian handles sensitive information legally
and ethically



PRODUCTION AND
ORGANIZATION PLAN

JOB POSITIONS
Lead AI/ML & Data Engineer
This crucial role designs, develops, and optimizes the core AI models for CKD
prediction. They are also responsible for establishing robust data pipelines,
ensuring data quality, and managing the machine learning operations (MLOps)
lifecycle from data ingestion to model deployment and monitoring. This role
combines the core AI expertise with the foundational data infrastructure work.

Full-Stack Software Developer
Responsible for building both the user-facing application (frontend) and the
server-side logic (backend) that connects the AI models to the end-users. This
includes developing secure APIs, managing databases, and creating intuitive
interfaces for clinicians and potentially patients. They ensure the seamless
functionality and user interaction of the entire platform.

Clinical AI & Data Validation Specialist
A bridge between medical expertise and technical development. This specialist
provides critical clinical insights, aids in interpreting and validating medical
datasets, ensures the AI model's outputs are clinically meaningful and safe, and
helps integrate the application into real-world healthcare workflows. Their input is
vital for the product's medical accuracy and adoption.

Product & UX Lead
Defines the product vision, strategy, and roadmap. This role is responsible for
understanding user needs (clinicians, patients) through research, translating those
needs into clear product requirements, and overseeing the user experience (UX)
design to ensure the application is intuitive and effective. They drive what gets built
and why.

Regulatory Affairs Manager
Essential for navigating the complex landscape of medical device regulations. This
manager ensures the application complies with all relevant national (e.g., Algerian
ANPP) and international (e.g., EU AI Act, FDA) standards. They are responsible for
preparing and managing all necessary documentation and submissions for product
approval and market access.



PRODUCTION AND
ORGANIZATION PLAN

This partner is vital for strategic alignment, market access,
and large-scale adoption. He set healthcare policies, control
national budgets, and can facilitate regulatory pathways and
national-level integration for RenalGuardian within the public
health system.

Government Agencies (ministries of health)

hese partners bring scientific credibility, deep medical
expertise, and access to valuable data for rigorous
validation. They are crucial for conducting independent
clinical trials, ensuring the AI's efficacy and safety, and
fostering a strong evidence base for our technology.

Research Institutions

KEY PARTNERS

These partners offer agility for early adoption, direct patient
interaction, and real-world testing grounds. They are essential
for demonstrating the practical value of RenalGuardian in
diverse clinical settings, gathering immediate user feedback,
and supporting initial market penetration.

Private agencies



Knowing how to distinguish between costs and expenses is important when
managing a business or its accounting. Understanding the differences
between the two will help us ensure effective financial management at
RenalGuardian.

A cost is an amount paid to acquire an asset, this include fixed and variable
costs. On the contrary, an expense is not an one-time payment,  it is an
amount paid regularly towards ongoing business operations.

Our initial year's expenses are dominated by personnel, foundational
investments, and operating overheads, totaling approximately 190,080,000
DA

FINANCIAL PLAN
COSTS AND CHARGES

Personnel Expenses
62.7%

Initial Investments
25.1%

Variable Overhead
8.1%



Job Position
Number of
Positions

Total Annual (DA)

Lead AI/ML & Data
Engineer

1 6,000,000

Full-Stack Software
Developer

1 4,800,000

Clinical AI & Data
Validation Specialist

1 5,000,000

Product & UX Lead 1 5,500,000

Regulatory Affairs
Manager

1 5,200,000

Total Personnel Cost 5 26,500,000

Year 1 Year 2 Year 3 Year 4 Year 5

26,500,000 26,603,000 33,410,000 38,106,000 39,096,000

FINANCIAL PLAN
PROJECTIONS
Our most significant investment will be in top-tier talent. This table outlines
the estimated annual compensation for core roles.

This table outlines the estimated total annual compensation for our team
over five years.



Expense
Category

Year 1 Year 2 Year 3

Office Rent &
Utilities

3,240,000 3,337,200 3,437,316

Core Software
Licenses

1,350,000 1,390,500 1,432,215

Insurance &
Legal Retainer

4,725,000 4,866,750 5,012,753

Regulatory
Compliance
Maintenance

1,350,000 1,390,500 1,432,215

Total Fixed
Overheads

10,665,000 10,984,950 11,314,499

FINANCIAL PLAN
STATEMENT OF
OVERHEADS

Fixed Overheads

These costs remain relatively constant regardless of activity levels,
projected with a modest annual increase.



FINANCIAL PLAN
STATEMENT OF
OVERHEADS

Expense
Category

Year 1 Year 2 Year 3

Cloud
Infrastructure

(scaling)
6,750,000 8,100,000 9,450,000

Data
Acquisition/Lice
nsing (ongoing)

4,050,000 4,860,000 5,670,000

Marketing &
Sales Activities 5,400,000 6,480,000 7,560,000

Professional
Services (ad-

hoc)
2,700,000 3,240,000 3,780,000

Travel &
Conferences 2,025,000 2,430,000 2,835,000

Total Variable
Overheads 20,925,000 25,110,000 29,295,000

Variable Overheads
These costs fluctuate with business activity, such as user adoption and data
processing volume, scaling proportionally with growth.



FINANCIAL PLAN
THE
INVESTMENTS
STATEMENT 

Investment Category Estimated Cost (DA)

Initial R&D Infrastructure Setup (specialized
software)

6,750,000

Initial Large-Scale Data Purchase/Licensing 13,500,000

Regulatory Certification & Filing Fees 10,125,000

Legal Fees (Incorporation, IP, early contracts) 5,400,000

Product Design & Prototyping Tools 2,025,000

Working Capital Buffer 27,000,000

Total Initial Investments 64,800,000

These represent one-time or upfront costs necessary to get the product off
the ground and achieve initial regulatory milestones. The majority of these
are concentrated in Year 1.



FINANCIAL PLAN
STATEMENT OF
ACTIFS &
PASSIFS

Investment Category Estimated Cost (DA)

Liquidity (Cash & Bank Balance) 40,000,000

Equipment and Software (Fixed Assets) 6,750,000

Software Development (Intangible Asset) 50,000,000

Customer receivables (Accounts Receivable -
from early revenue) 5,000,000

Total Actifs 101,750,000

Investment Category Estimated Cost (DA)

Accounts Payable 5,000,000

Salaries and Accrued Expenses 2,000,000

Shareholder Equity - reflects initial funding net
of losses 94,750,000

Total Passifs & Equity 101,750,000

This simplified snapshot provides an overview of the company's financial
position at the end of the first year, reflecting initial funding, investments,
and operational activities.



FINANCIAL PLAN
PROJECTED
ANNUAL
REVENUE

Year 1 Year 2 Year 3

13,500,000 94,500,000 337,500,000

Our revenue model will focus on recurring subscriptions and value-based
pricing, aligning our success with improved patient outcomes and
healthcare cost savings. We project significant growth as adoption scales.

Our projections show exponential growth driven by increasing market
penetration and the compelling value proposition of early CKD prediction.



RENALGUARDIAN
PROTOTYPE V-0 

Figure 1 : The login page

Figure 2 : The dashboard

Getting started



RENALGUARDIAN
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Figure 3 : Demographic Informations

Figure 4 : Laboratory Informations

Detection Scenario
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Figure 5 : Detection results

Detection Scenario
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Figure 6 : Demographic Informations

Figure 7 : Laboratory Informations

Prediction Scenario
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Figure 8 : The prediction results

Prediction Scenario
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Figure 9 : The main page

Figure 10 : The login page

Getting started
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Figure 11 : Adding demographic information

Detection scenario

Figure 12 : Adding laboratory information
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Detection scenario

Figure 13 : Detection Results
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Figure 14 : Adding demographic information

Figure 15 : Adding clinical information

Prediction scenario



RENALGUARDIAN
FINAL
PROTOTYPE 

Prediction scenario

Figure 16 : Predictions Results
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