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Abstract

The rapid expansion of online learning platforms has enabled students to express
themselves freely through comments, offering valuable insights into their educa-
tional experiences.

The objective of this work is to propose an automatic sentiment analysis ap-
proach applied to learners’ comments, in order to determine whether the expressed
sentiments are positive, negative, or neutral.

To achieve this, a preprocessing phase was carried out, including text cleaning,
tokenization, and automatic labeling of comments using the TextBlob library. The
annotated data was then used to train an LSTM (Long Short-Term Memory)
model, a recurrent neural network architecture particularly well suited for natural
language processing.

The proposed approach was validated using a dataset collected from the Mark
My Professor platform, which contains over 5,200 reviews written by learners about
their courses and instructors. Mark My Professor is a platform dedicated to the
evaluation of teachers and educational content by students.

The proposed model was evaluated using performance metrics such as accu-
racy, confusion matrix, recall, and F1 score. The results obtained show promising
potential, but improvements are still needed, particularly due to the data imbal-
ance that may have affected the model’s learning process.

Keywords: Online learning, Sentiment analysis, TextBlob, LSTM, Artificial
intelligence, Natural language processing, Classification, Student feedback.
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Résumé

L’essor des plateformes d’apprentissage en ligne a permis aux étudiants de s’exprimer
librement à travers des commentaires, offrant ainsi une source précieuse d’informations
sur leur expérience pédagogique.

L’objectif de ce travail est de proposer une approche automatique d’analyse
des sentiments appliquée aux commentaires des apprenants, afin de déterminer si
les sentiments exprimés sont positifs, négatifs ou neutres.

Pour cela, une phase de prétraitement a été mise en œuvre, incluant le nettoy-
age des textes, la tokenisation, ainsi que l’étiquetage automatique des commen-
taires à l’aide de la bibliothèque TextBlob. Les données ainsi annotées ont ensuite
servi à l’entraînement d’un modèle de type LSTM (Long Short-Term Memory), une
architecture de réseau de neurones récurrent particulièrement adaptée au traite-
ment du langage naturel.

L’approche proposée a été validée à l’aide d’une base de données recueillie
sur la plateforme Mark My Professor, qui regroupe plus de 5 200 avis rédigés
par des apprenants sur leurs cours et enseignants. Mark My Professor est une
plateforme dédiée à l’évaluation des enseignants et des contenus pédagogiques par
les étudiants.

L’évaluation du modèle proposé a été réalisée à l’aide d’indicateurs de perfor-
mance tels que la précision, la matrice de confusion et le rappel et le F1 score. Les
performances obtenues montrent un potentiel intéressant, mais des améliorations
restent nécessaires, notamment en raison avec le déséquilibre des données qui a pu
affecter l’apprentissage du modèle.

Mots clés :Apprentissage en ligne, Analyse des sentiments, TextBlob, LSTM,
Intelligence artificielle, Traitement du langage naturel, Classification, Commen-
taires étudiants.
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اिऻڪٌۘ
وڣݠ ؇ᆙᆘ اܳٺأܹ٭گ؇ت، ఈః༠ل ݆݁ ل۰ ොຳݠ ଫଃاܳٺأٴ ݆݁ اܳޚఈఃب ඔ൹ܝஓ஄ ሒᇭ ሒᇃوଫଐܳـܝ৕৑ا اܳٺأܹࡗࡲ ݁ٷݱ؇ت ازد۱؇ر ݿ؇۱ܾ

اܳٺأܹ٭݄٭۰. ܾዛኞر؇෠ູ ۋިل గጻዧأߺࠊ݁؇ت ஓஇ٭ٷً؇ ݁ݱڎراً
إذا ؇݁ ොູڎࢴࣖ ዛኞڎف ،ඔ൹గఒٺأৎ৊ا ّأܹ٭گ؇ت আॻ༟ لޚُٴݑّ ਵލ؇؜ৎ৊ا ܳٺ༲ܹ٭ܭ ሒᇿآ ዛኡھ اڢଫଐاح ሌᇿإ اܳأ݄ܭ ۱ڍا ዛኗڎف

ො੼؇ࢴࣖة. أو ݿܹٴ٭۰ ،۰ਃಸ؇෠ຬإ ؇ዛዊ؜ ଫّଊأৎ৊ا ਵލ؇؜ৎ৊ا ೑಻Ⴄ၍
ً؇৕৑ݪ؇ڣ۰ (Tokenization)، واܳٺ۠ݞف۰ اܳٷݱިص، ਍ಾޙ٭ژ ᆙᆍܹب ۳ஓ஄٭ڎل۰ ᄭᄥ༡ਵਦ ਍ಾڰ٭ڍ ቕቆ ،ዻዧذ وܳٺۜگ٭ݑ
ೞಱܳٺڎر ዻዧذ ًأڎ اৎ৊ݱٷڰ۰ اܳٴ٭؇َ؇ت اݿٺ༱ُڎ݁ب وڢڎ TextBlob. ݁ܝٺٴ۰ ً؇ݿٺ༱ڎام ይዧٺأܹ٭گ؇ت ሒᆶ؇اܳٺܹگ اܳٺݱྡྷ٭ژ ሌᇿإ
اৎ৊ݱ۰݄݄ اৎ৊ٺଲ୍رة اܳأݱྟ٭۰ اܳލٴႤၽت ݆݁ ྲྀྡྷ٭۰ ሒሃو اৎ৊ڎى)، ᄭᄥل واܳޚި اܳگݱଫଃة (اᄳᄟاாணة LSTM َިع ݆݁ ஓ஁ިذج

اܳޚٴ٭أ٭۰. اይዧ؞۰ ۰੊أ؇ࠍৎ৊ ۊݱ٭ݱً؇
My Mark ݁ٷݱ۰ ݆݁ ᆇᅹأ۳؇ ቕቆ ਃಸ؇َ؇ت ڢ؇༟ڎة ً؇ݿٺ༱ڎام اৎ৊گଫଐح اዛዊܳھ ڣأ؇ܳ٭۰ ݆݁ اܳٺۜگݑ ᆇᅦܹ٭۰ ஓ஄ب
۱ڍه وّأُڎ .ܾዛኤودورا ܾዛኤࣕأݿ؇ࣁ ۋިل اܳޚఈఃب ؇ዛ዇܋ٺ ّگ٭ࡗࡲ 5200 ݆݁ ଫ଒أ܋ আॻ༟ ොູٺިي มฆܳوا Professor،

اܳޚܹٴ۰. ޗݠف ݆݁ اଫଐًܳިي وا௱௯௫ٺިى ا৙৑ݿ؇ࣁࣕة ܳٺگ٭ࡗࡲ ෛ੼ݱݱ۰ اৎ৊ٷݱ۰
وا৖৑ݿ༥ଫଐ؇ع ا৖৑ܳٺٴ؇س، و݁ݱڰިڣ۰ (Accuracy)، اᄴᄟڢ۰ ݁ټܭ أداء ݁ޝ๤ཇات ً؇ݿٺ༱ڎام اৎ৊گଫଐح اࡺ࢕ࢦިذج ّگ٭ࡗࡲ ቕቆ
૭૖ྟص ۊݱިݬً؇ ،ඔ൹ٺۜފይዧ ৖ً৑؇෠੼ ۱ٷ؇ك أن ৖৑إ وا༟ڎاً، ً أداء ا௱௯௫گگ۰ ༇຀؇اܳٷٺ أޖ۳ݠت وڢڎ F1. ۰༥ودر (Recall)،

اࡺ࢕ࢦިذج. ّأ޺޾ ۏިدة আॻ༟ أߜߵ ڢڎ لܝިن ڢڎ اᄳᄟي ਵਦ৙৑ا اܳٴ٭؇َ؇ت، ّިازن ༟ڎم
۰੊݁أ؇ࠍ ،ሒᇼ؇ݬޚٷ৖৑ا اႤ၍ᄳᄟء LSTM، TextBlob، ،ਵލ؇؜ৎ৊ا ොູܹ٭ܭ ،ሒᇃوଫଐܳـܝ৕৑ا اܳٺأܹࡗࡲ اिऻء׫ոؼמ١: اڤոஈ࿦࿮ت

اܳޚఈఃب. ّأܹ٭گ؇ت اܳٺݱྡྷ٭ژ، اܳޚٴ٭أ٭۰، اይዧ؞۰
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General Introduction

In recent years, the shift from traditional classroom instruction to digital formats
has made online learning a central component of modern education systems. By
offering flexibility, accessibility, and personalized learning experiences, e-learning
environments allow learners to engage with educational content anytime and any-
where. This trend has been accelerated by technological advancements and global
health challenges, further emphasizing the importance of integrating digital tools
into pedagogical practices (Bond et al., 2020).

With in these digital environments, the analysis of learners’ emotions and sen-
timents plays an increasingly critical role. Identifying how students feel about
the content, the learning platform, or their instructors provides valuable insights
into their overall learning experience. Research has demonstrated that accounting
for emotional states significantly enhances emotional engagement, motivation, and
even academic achievement (D’Mello and Graesser, 2012) and (Ocumpaugh et al.,
2015). Emotionally aware systems can help tailor content, prevent disengagement,
and create more supportive learning environments.

In this context, the present work proposes an automated sentiment analysis
approach applied to student feedback collected from an online course evaluation
platform. The goal is to develop a model capable of classifying learners’ comments
into three sentiment categories: positive, negative, or neutral. Our approach in-
volves two main phases: first, automatic sentiment labeling using the TextBlob
library; then, training a neural network model based on the Long Short-Term
Memory (LSTM) architecture, which is well-suited for handling sequential text
data. To evaluate our system, we used a dataset collected from the Mark My Pro-
fessor website, which includes over 5,200 reviews written by students about their
courses and instructors (Bouacida, 2018).

This thesis is organized into four chapters. The first chapter presents the
theoretical foundations of sentiment analysis, including its application areas and
common methodologies in natural language processing (NLP). The second chapter
introduces neural networks, with a focus on the LSTM model and its effectiveness
for text-based classification tasks. The third chapter details the design of the
system, from data preprocessing to model architecture. Finally, the fourth chapter

11



presents the implementation and evaluation, including experimental results and
performance analysis.
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Chapter 1

Sentiment analysis

1.1 Introduction
The exponential growth of textual data produced through digital platforms—
ranging from product reviews and social media to student evaluations—has made
it increasingly important to extract and understand user sentiment. Sentiment
Analysis (SA), a subfield of Natural Language Processing (NLP) and Artificial In-
telligence (AI), is dedicated to identifying and categorizing opinions and emotions
within textual content (Liu, 2020).

In the education sector, sentiment analysis has become a valuable tool for
gaining insights into students’ learning experiences. Student feedback provides
a unique and often underutilized perspective on teaching quality and classroom
engagement. By analyzing this feedback, educational institutions can make in-
formed decisions to improve learning outcomes and adapt pedagogical strategies
(Zhou and Ye, 2023),(Bhagat et al., 2024) Early approaches to sentiment analy-
sis often relied on traditional machine learning techniques such as Naive Bayes,
Support Vector Machines (SVM), and ensemble classifiers (Mabunda et al., 2021).
While effective to a degree, these models faced challenges in handling complex
language patterns and context. The advent of deep learning has brought a signifi-
cant leap in sentiment analysis capabilities. Models such as Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) networks have demon-
strated superior performance in capturing syntactic and semantic relationships in
text (Nguyen et al., 2018)(Sangeetha and Prabha, 2021) .

More recently, attention mechanisms have emerged as a powerful enhance-
ment to deep learning architectures. Multi-head attention, in particular, allows
the model to focus on different parts of a sentence simultaneously, leading to more
accurate and interpretable predictions. Studies have shown that LSTM models in-
tegrated with multi-head attention outperform other configurations in educational
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sentiment classification tasks (Bhagat et al., 2024).
This chapter presents an overview of sentiment analysis and its applications,

particularly in the context of education.

1.2 Definition and Scope of Sentiment Analysis
1.2.1 What is Sentiment Analysis
Sentiment Analysis, often referred to as opinion mining, is a branch of Natural
Language Processing (NLP) that focuses on identifying and interpreting the emo-
tional tone behind written content. Its primary objective is to classify text into
sentiment categories such as positive, negative, or neutral(Liu, 2020). In more
advanced use cases, sentiment analysis can also detect subtler emotional nuances
or focus on specific aspects or features mentioned in the text.

As the volume of digital content continues to grow, sentiment analysis has be-
come increasingly important across domains including marketing, politics, health-
care, and education. Within academic environments, it is particularly useful for
analyzing students’ written feedback to evaluate the quality of instruction, identify
areas for improvement, and support data-driven decision-making (Zhou and Ye,
2023),(Bhagat et al., 2024).

The process of sentiment analysis generally involves several key stages: pre-
processing the text to remove noise, transforming the textual data into numerical
features, and then applying machine learning or deep learning algorithms to per-
form classification. Traditional lexicon-based approaches rely on sentiment dictio-
naries, while modern techniques employ advanced models such as LSTM networks
and transformer-based architectures to better understand context and semantic
relationships (Nguyen et al., 2018).

Sentiment analysis can be categorized into different levels:

Document-Level Sentiment Analysis :

Document-level sentiment analysis focuses on determining the overall emo-
tional tone or opinion expressed throughout an entire document. It assumes the
text conveys a single dominant sentiment, typically applicable to user reviews,
articles, or feedback where only one opinion is being communicated. This level
is useful when the goal is to capture the general attitude of the author without
diving into finer details(Balaji et al., 2017).

Sentence-Level Sentiment Analysis :
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This approach examines individual sentences to identify their specific sentiment,
categorizing each as positive, negative, or neutral. It is beneficial in cases where
different parts of a text may express varying sentiments. Sentence-level analysis
provides more precision than document-level, allowing for a better understanding
of mixed opinions within the same content(Balaji et al., 2017).

Aspect-Level Sentiment Analysis :

Aspect-level sentiment analysis delves deeper by identifying sentiments related
to particular attributes or features mentioned in a text. Instead of analyzing the
entire sentence or document, it focuses on evaluating the sentiment towards spe-
cific topics (e.g., “interface”, “content quality”). This level is especially valuable in
feedback where users may like some aspects but dislike others(Balaji et al., 2017).

Word-Level Sentiment Analysis :

At the word level, the analysis aims to detect the emotional value carried by
individual words or terms. This granularity helps build sentiment lexicons and
enhances machine learning models by recognizing context-sensitive sentiment ex-
pressions. It also serves as a foundation for more complex levels of sentiment
analysis(Balaji et al., 2017).

1.2.2 Subjectivity vs. Objectivity in Text
A key concept in sentiment analysis is the ability to distinguish between subjective
and objective language. This distinction is vital because sentiment classification
mainly targets subjective content, which reflects personal opinions, emotions, or
attitudes. On the other hand, objective language presents factual information
without expressing any personal feelings(Liu, 2020).

Subjective statements typically contain evaluative or emotional expressions,
such as ”The professor was inspiring,” which shows the speaker’s personal view-
point. In contrast, an objective sentence like ”The course had ten sessions” simply
conveys information without emotional context.

In the context of education, particularly when analyzing student feedback,
this differentiation becomes more complex. Student responses often contain both
factual details and emotional impressions. According to Zhou and Ye (Zhou and
Ye, 2023), student feedback tends to be rich in subjective expressions that highlight
satisfaction, frustration, or suggestions for improvement, making it an ideal source
for sentiment analysis.
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Earlier sentiment analysis systems faced challenges in filtering out objective
content, which often led to reduced accuracy. However, the development of more
sophisticated models such as LSTM and attention-based neural networks has en-
hanced the ability to capture contextual meaning and better separate subjective
elements from factual ones(Bhagat et al., 2024),(Sangeetha and Prabha, 2021).

Nguyen et al.(Nguyen et al., 2018) note that preprocessing techniques that
identify and minimize objective content can lead to improved classification perfor-
mance. In doing so, models focus more on the emotionally charged parts of the
text, leading to more accurate sentiment predictions.

Many recent frameworks include subjectivity detection as a preliminary step
in the sentiment analysis pipeline. This approach helps filter out neutral content,
allowing the classifier to better focus on the emotional tone of the text. In edu-
cational datasets, where comments may range from neutral observations to highly
opinionated feedback, this step becomes particularly useful.

In conclusion, the ability to effectively distinguish between subjective and ob-
jective text is a crucial step in building reliable sentiment analysis systems, espe-
cially in domains such as education, where user-generated feedback may include a
wide variety of expression styles and tones.

1.2.3 Types of Sentiment Analysis
Sentiment analysis can be implemented at various levels of detail, depending on
the specific goals of the analysis and the structure of the data. The most commonly
used types include binary classification, multiclass classification, and aspect-based
sentiment analysis (ABSA). Each type offers different levels of insight into user
opinions and emotional expressions.

Binary Sentiment Classification
The binary approach to sentiment analysis is one of the simplest forms, aiming
to label text as either positive or negative. This method has been widely applied
in areas such as customer reviews or feedback analysis, where the objective is to
understand whether overall sentiment is favorable or not(Liu, 2020). While this
method is computationally efficient and straightforward to implement, it often fails
to capture neutral expressions or more complex emotional tones.

Multi-Class Sentiment Classification
To address the limitations of binary models, multiclass sentiment classification in-
cludes additional sentiment categories, often incorporating a neutral class. Some
models even extend this further to cover emotional states such as joy, anger, or
sadness. This form of classification provides a more comprehensive view of the
emotional landscape in textual data. For example, Bhagat et al.(Bhagat et al.,
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2024) used a three-way sentiment classifier, positive, negative, and neutral, to
analyze student feedback and demonstrated that multiclass models offer better
granularity when interpreting educational data.

Aspect-Based Sentiment Analysis (ABSA)
Aspect-Based Sentiment Analysis goes beyond simply identifying the overall senti-
ment by focusing on specific targets or topics within a text. It enables the detection
of sentiments related to individual components of a service or experience. For in-
stance, in a student comment such as ”The course was well-structured, but the
assignments were overwhelming,” ABSA would differentiate between the senti-
ment toward the course structure (positive) and the assignments (negative). As
Zhou and Ye(Zhou and Ye, 2023) point out, this approach is particularly useful in
analyzing complex feedback where multiple aspects are evaluated simultaneously.

The increasing complexity of natural language has prompted the adoption of
advanced models such as LSTM with attention mechanisms and Transformer-
based architectures. These techniques allow models to understand the context of
each word and better associate sentiment with the appropriate aspect or emotion
(Nguyen et al., 2018),(Sangeetha and Prabha, 2021).Consequently, both multi-
class and aspect-based approaches benefit significantly from such modern deep
learning enhancements.
In summary, the choice of sentiment analysis type depends on the desired depth
of insight. While binary models are useful for quick evaluations, multi-class and
aspect-based methods provide a more detailed understanding, especially in do-
mains such as education where opinions are diverse and multifaceted.

1.3 Applications of Sentiment Analysis
1.3.1 Applications of Sentiment Analysis in Business and

Marketing
In the commercial landscape, sentiment analysis plays a central role in helping
businesses interpret customer opinions and adapt their strategies accordingly.
With the growth of social media, e-commerce platforms, and review sites, compa-
nies have access to an abundance of user-generated content. Analyzing this data
allows them to track brand reputation, evaluate customer satisfaction, and guide
product development with greater precision(Liu, 2020).

One of the key business applications is brand perception monitoring. By an-
alyzing sentiments from online platforms like Twitter, Amazon, or TripAdvisor,
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organizations can gauge how their products or services are being received in real-
time. Positive or negative trends in sentiment can influence branding strategies,
marketing campaigns, and public relations efforts. As noted by Zhou and Ye.(Zhou
and Ye, 2023), the ability to quickly respond to emerging sentiment patterns gives
companies a competitive advantage in maintaining their public image.

Another crucial area is product and service improvement. Sentiment analysis
allows businesses to pinpoint which features customers praise and which ones draw
criticism. This is where aspect-based sentiment analysis (ABSA) becomes partic-
ularly effective—it helps link emotions and evaluations to specific product com-
ponents, such as usability, pricing, or customer support(Sangeetha and Prabha,
2021). These insights enable product teams to prioritize enhancements that align
with customer expectations.

In addition, competitive analysis can be enriched through sentiment mining.
By examining customer reviews and social media posts about rival brands, com-
panies can better understand market gaps and consumer pain points. Nguyen et
al.(Nguyen et al., 2018) emphasized how deep learning models can help extract
subtle insights from comparative statements, allowing firms to tailor their offerings
and position themselves strategically.

Sentiment analysis also enhances customer relationship management (CRM).
For instance, integrating sentiment-aware tools into customer support systems
allows agents to prioritize and handle emotionally sensitive interactions more ef-
fectively. Machine learning-based classification systems can flag negative or urgent
queries, enabling faster and more empathetic responses(Bhagat et al., 2024).

Finally, marketing analytics increasingly rely on sentiment insights to assess the
impact of campaigns. Real-time tracking of audience reactions enables dynamic
adjustments to advertising content and communication strategies. This respon-
siveness leads to better alignment between brand messaging and public sentiment,
improving overall campaign effectiveness(Mabunda et al., 2021).

1.3.2 In Education (Feedback Analysis)
In the education sector, sentiment analysis has become a powerful tool to bet-
ter understand students’ learning experiences and perceptions of teaching qual-
ity. Academic institutions increasingly collect large volumes of student feedback
through course evaluations, online learning platforms, and institutional surveys.
Manually analyzing this data is not only time-consuming but also lacks objectivity
and scalability. Sentiment analysis provides a scalable, automated way to extract
insights from this feedback and guide data-driven decision-making (Zhou and Ye,
2023),(Bhagat et al., 2024).
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Student comments often contain nuanced expressions of satisfaction, frustra-
tion, or constructive criticism. By applying sentiment classification techniques,
educational administrators can detect positive and negative trends related to teach-
ing methods, course materials, classroom engagement, or learning environments.
For instance, Bhagat et al.(Bhagat et al., 2024)demonstrated the effectiveness of
a multi-head attention-based LSTM model in accurately classifying student senti-
ments into positive, neutral, and negative categories across thousands of feedback
samples.

Moreover, aspect-based sentiment analysis (ABSA) is especially valuable in
education, as it allows systems to identify sentiments related to specific aspects
of a course—such as the instructor’s clarity, course content relevance, assessment
methods, or workload. This finer level of analysis enables educators to focus on
what matters most to students and make targeted improvements (Sangeetha and
Prabha, 2021),(Nguyen et al., 2018).

Studies such as those by Mabunda et al(Mabunda et al., 2021) and Sindhu
et al.(Sindhu et al., 2019) have shown that sentiment analysis can reveal hidden
patterns in feedback that may not be obvious through simple rating scales. These
insights support continuous teaching improvement, personalized learning, and en-
hanced student satisfaction. Furthermore, integrating real-time sentiment analysis
into e-learning platforms allows for adaptive responses, such as recommending re-
sources or alerting instructors when negative trends emerge(Capuano et al., 2021).

1.3.3 In Social Media and Politics
Social media platforms like Twitter, Facebook, and Reddit have become rich
sources of public opinion, where users express their views on a wide range of topics,
including political events, public policies, and social issues. Sentiment analysis in
social media enables researchers, marketers, and policymakers to monitor public
sentiment at scale and in real-time (Liu, 2020),(Zhou and Ye, 2023).

In politics, sentiment analysis is widely used to track public reactions to speeches,
debates, campaigns, or legislation. It helps political analysts gauge the popularity
of candidates, measure approval or disapproval of policies, and identify influential
issues during elections. For example, Altrabsheh et al.(Altrabsheh et al., 2014)
highlighted the value of real-time sentiment tracking in political decision-making
and public communication.

Social media sentiment analysis has also been used to detect public mood
during crises, such as pandemics or social movements. By analyzing emotional
tone, governments and organizations can respond more effectively to public con-
cerns, reduce misinformation, and tailor communication strategies(Singh et al.,
2020),(Onan, 2021) .
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One of the major challenges in this context is dealing with informal language,
sarcasm, slang, and rapidly changing trends. However, advanced deep learn-
ing models such as CNNs, LSTMs, and transformers with attention mechanisms
have significantly improved accuracy in understanding sentiment in short, noisy
texts(Nguyen et al., 2018) and (Sangeetha and Prabha, 2021).

Overall, sentiment analysis in social media and politics allows for deeper un-
derstanding of collective emotions, supports public engagement strategies, and
facilitates better governance through timely feedback interpretation.

1.4 Sentiment Analysis Approaches
1.4.1 Lexicon-Based Approaches
Lexicon-based sentiment analysis is one of the earliest and most interpretable
techniques used to determine the sentiment polarity of a text. This approach relies
on a predefined set of words—referred to as a sentiment lexicon—where each word
is associated with a sentiment value, typically positive, negative, or neutral(Liu,
2020). The core idea is to identify sentiment-bearing words in a given text and
use their assigned polarity to determine the overall sentiment.

There are two main strategies in lexicon-based analysis:
Dictionary-based methods, which use manually or semi-automatically cu-

rated lists of sentiment words (e.g., SentiWordNet, AFINN, or the NRC lexicon).
Corpus-based methods, which expand sentiment lexicons based on their

contextual use in a large dataset, often by analyzing word co-occurrence patterns.

Lexicon-based methods are widely used due to their simplicity, transparency,
and domain-independence. They do not require labeled training data and are par-
ticularly useful in scenarios where data annotation is scarce or expensive. However,
these methods often struggle with contextual ambiguity, sarcasm, negation han-
dling, and domain-specific language, which can significantly impact performance(Zhou
and Ye, 2023).

In educational sentiment analysis, some early works applied lexicon-based ap-
proaches to student comments but faced limitations in capturing subtle emotions
and aspect-specific sentiments. Aung and Myo(Aung and Myo, 2017), for instance,
employed a lexicon-based method to classify student sentiments but did not eval-
uate the model using standard metrics, highlighting a common challenge with this
approach. Similarly, Rani and Kumar(Rani and Kumar, 2017) proposed a rule-
based sentiment system for teaching and learning improvement, but their model
lacked adaptability to dynamic language use.
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While lexicon-based approaches are less effective than machine learning or
deep learning techniques in complex and context-rich datasets, they still provide
valuable baselines and are often used in hybrid models to improve overall system
performance(Sangeetha and Prabha, 2021).

1.4.2 Machine Learning-Based Approaches
Machine learning (ML) techniques have been widely used in sentiment analysis to
classify text based on labeled training data. These approaches rely on extracting
numerical features from text and feeding them into supervised algorithms that
learn to distinguish between different sentiment classes, such as positive, negative,
or neutral(Liu, 2020).

Common classifiers in this category include Support Vector Machines (SVM),
Naive Bayes (NB), Decision Trees (DT), Random Forests (RF), and Logistic
Regression (LR). These models typically use feature representation techniques
like Bag of Words (BoW) or TF-IDF (Term Frequency–Inverse Document Fre-
quency) to convert textual data into vectors that capture word frequencies or
importance(Pacol and Palaoag, 2021).

ML-based approaches offer advantages such as fast training times, interpretabil-
ity, and modularity, making them suitable for real-time or large-scale applications.
However, they often struggle with complex language structures, such as sarcasm
or idioms, and perform poorly when the dataset is small or imbalanced(Zhou and
Ye, 2023).

In the context of education, several studies have utilized ML models to classify
sentiments in student feedback. For example, Mabunda et al.(Mabunda et al.,
2021) employed random forest and SVM classifiers to evaluate teaching quality
from student comments. Similarly, Lalata et al. (Lalata et al., 2019) applied en-
semble learning to enhance performance, showing that combining multiple learners
improves robustness over single models.

Despite their popularity, ML models rely heavily on manual feature engineering
and require extensive preprocessing. Their performance often serves as a baseline
when compared to more advanced deep learning approaches.

1.4.3 Deep Learning-Based Approaches
Deep learning (DL) has revolutionized sentiment analysis by enabling models to
automatically learn hierarchical representations of text from raw data. Unlike
traditional ML models, deep learning architectures such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)—including Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRU)—can capture both
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syntactic and semantic patterns in sequences (Nguyen et al., 2018) ,(Sangeetha
and Prabha, 2021).

LSTM, in particular, has proven effective in handling long-range dependencies,
making it suitable for analyzing long comments or reviews. CNNs are often used
to extract local features in text and have been applied successfully in hybrid DL
models. Recent innovations include the use of attention mechanisms, which al-
low models to focus on the most relevant parts of the input sequence. Bhagat et
al.(Bhagat et al., 2024) showed that combining LSTM with multi-head attention
significantly improves classification accuracy in student feedback analysis, achiev-
ing over 95% accuracy on their dataset.

Capuano et al.(Capuano et al., 2021) also demonstrated the effectiveness of
attention-based hierarchical RNNs for analyzing MOOC forum posts. Their ap-
proach enabled more accurate detection of emotions and opinions in educational
discussions, providing actionable insights for instructors and administrators.

DL models require large amounts of labeled data and computational resources
but often outperform traditional ML approaches in terms of accuracy, generaliza-
tion, and context-awareness.

1.4.4 Hybrid Methods
Hybrid approaches combine the strengths of machine learning, deep learning, and
lexicon-based techniques to enhance sentiment analysis performance. These sys-
tems often aim to balance efficiency, accuracy, and interpretability, especially in
domains like education where data characteristics can vary widely.

One common hybrid strategy is to combine lexicon-based scoring with ML
classifiers. For example, sentiment scores from a predefined lexicon can be used as
features in an ML model to improve prediction quality. Another strategy integrates
BoW or TF-IDF features with deep learning outputs, allowing the model to capture
both shallow and deep patterns.

Studies by Sindhu et al.(Sindhu et al., 2019) and Sangeetha et Prabha (Sangeetha
and Prabha, 2021) explored fusion models that combine attention mechanisms,
word embeddings, and traditional classifiers, showing enhanced results for teach-
ing evaluation and student feedback classification.

Bhagat et al.(Bhagat et al., 2024)implemented a hybrid framework combining
ensemble classifiers, CNN-LSTM, single-head attention, and multi-head attention,
comparing their performance across multiple datasets. Their findings confirmed
that hybrid models outperform standalone ones, particularly when dealing with
real-world feedback that contains both structured and unstructured content.

These hybrid methods are increasingly being adopted in educational analytics,
marketing, and healthcare domains, as they provide flexibility and adaptability
across languages, platforms, and contexts.
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1.5 Text Preprocessing Techniques
Text preprocessing is a crucial step in sentiment analysis pipelines, especially when
working with raw, unstructured data such as user reviews, social media posts, or
student feedback. The quality of preprocessing directly influences the accuracy
and performance of machine learning and deep learning models. This section out-
lines and discusses essential preprocessing techniques used in sentiment analysis,
supported by recent research.

Figure 1.1: The methodology used for proposed models (Bhagat et al., 2024)

1.5.1 Tokenization
Tokenization is the process of dividing a text into individual units called tokens,
which may represent words, characters, or subwords. This is often the first step
in text preprocessing. Tokenization helps models interpret sentences as structured
sequences, making them suitable for vectorization and further analysis(Liu, 2020).
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For example, the sentence ”The course was excellent.” would be tokenized
as [“The”, “course”, “was”, “excellent”, “.”]. Tokenization can be rule-based,
language-specific, or subword-based (as used in models like BERT). According to
Nguyen et al.(Nguyen et al., 2018), accurate tokenization is especially important
in student feedback, where informal language and punctuation are common.

Advanced tokenization methods such as Byte-Pair Encoding (BPE) or Word-
Piece are now commonly used in transformer models, offering robustness for un-
known or rare words(Onan, 2021).

1.5.2 Stopword Removal
Stopwords are commonly used words in a language (e.g., the, is, and, was) that
do not contribute significant semantic value to the text. Removing them reduces
noise and dimensionality in the data(Pacol and Palaoag, 2021).

In sentiment analysis, however, care must be taken, as some stopwords may
carry subtle sentiment depending on context. For example, words like not or never
significantly impact sentiment polarity. Zhou and Ye (Zhou and Ye, 2023) note
that improper stopword removal can lead to loss of sentiment-bearing information,
particularly in educational datasets where negations are frequent.

Therefore, some models apply custom stopword lists, or avoid stopword removal
altogether, especially in deep learning models where context is learned automati-
cally.

1.5.3 Lemmatization and Stemming
Both lemmatization and stemming aim to reduce words to their base or root form:

Stemming uses crude heuristics to remove word suffixes (e.g., learning →
learn), sometimes leading to non-dictionary forms.

Lemmatization, by contrast, uses vocabulary and morphological analysis to
return dictionary root forms (e.g., better → good).

Stemming is faster but less accurate; lemmatization is more linguistically cor-
rect but computationally intensive. According to Mabunda et al.(Mabunda et al.,
2021), lemmatization improves classification performance in feedback analysis tasks
by reducing vocabulary size without sacrificing semantic precision.

Bhagat et al.(Bhagat et al., 2024)highlight that lemmatization is particularly
effective in pretraining deep models like LSTM or attention networks, where se-
mantically correct roots enhance contextual embeddings.
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1.5.4 Text Normalization
Text normalization involves converting text into a consistent format to reduce
variations caused by capitalization, punctuation, or informal writing. It typically
includes:

• Lowercasing all text.
• Removing special characters, emojis, or numbers.
• Expanding contractions (e.g., can’t → cannot).
• Handling spelling variations or slang (e.g., u → you).
This step is especially critical in social media or student-generated content,

where language is often informal and inconsistent. Capuano et al.(Capuano et al.,
2021) emphasized that normalization improves sentiment detection in MOOCs
where students use diverse writing styles.

Advanced normalization may also include spell correction or phonetic match-
ing, as explored by Sindhu et al.(Sindhu et al., 2019), who worked with noisy
student feedback data.

1.5.5 Dealing with Imbalanced Data
n real-world sentiment datasets, especially in education, class imbalance is a com-
mon issue—for instance, there may be more positive comments than negative or
neutral ones. This imbalance can lead to biased models that perform poorly on
minority classes (e.g., negative sentiment).

To address this, several techniques are used:

• Oversampling (e.g., SMOTE) and undersampling to balance class distribution(Sangeetha
and Prabha, 2021).

• Class weighting in loss functions during training (especially in deep learning).
• Data augmentation strategies such as synonym replacement, back-translation,

or paraphrasing(Nguyen et al., 2018).

Bhagat et al.(Bhagat et al., 2024)adopted balanced datasets by selectively sam-
pling equal proportions of sentiments, ensuring robust model performance across
all classes. Similarly, Onan (Onan, 2021)demonstrated that class-balancing signif-
icantly improved F1-scores in sentiment classification for MOOC evaluations.

Handling imbalance is essential for building fair and generalizable models, par-
ticularly when sentiment analysis is used in decision-making contexts like educa-
tion or public policy.
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1.6 Feature Extraction and Representation
The transformation of raw textual input into structured numerical features is a
fundamental step in sentiment analysis. Since most machine learning and deep
learning models cannot directly process text, this step ensures that language is
converted into a format that models can learn from. Over time, feature extraction
techniques have progressed from basic count-based models to advanced embeddings
that capture semantic relationships and contextual meaning.

1.6.1 Bag of Words (BoW)
The Bag of Words model is a traditional and straightforward method that repre-
sents text by converting it into a vector of word frequencies. It counts how often
each word appears in a document while disregarding grammar, context, and word
order.

Although simplistic, BoW has shown usefulness in foundational sentiment anal-
ysis models. In educational research, Pacol and Palaoag (Pacol and Palaoag, 2021)
applied BoW alongside machine learning algorithms and observed decent perfor-
mance in analyzing student evaluations. However, this approach can lead to very
large and sparse feature matrices and lacks the ability to understand meaning or
similarity between words(Zhou and Ye, 2023).

1.6.2 Term Frequency–Inverse Document Frequency (TF-
IDF)

TF-IDF is an improvement over BoW that assigns higher importance to words
that are frequent in a single document but rare across the entire dataset. This
helps reduce the impact of commonly occurring but less informative terms.

Nguyen et al.(Nguyen et al., 2018) applied TF-IDF in sentiment classifica-
tion of Vietnamese student feedback and reported notable gains in accuracy over
BoW. Similarly, Mabunda et al.(Mabunda et al., 2021)combined TF-IDF with tra-
ditional classifiers and showed that it improved their system’s ability to identify
both positive and negative sentiments in student-generated text.

1.6.3 Word Embeddings (Word2Vec, GloVe, FastText)
Word embeddings represent words as dense, continuous vectors in a multi-dimensional
space. Unlike BoW or TF-IDF, which rely on frequency, embeddings capture
meaning based on how words appear in context. Words with similar usage pat-
terns are mapped to nearby points in the vector space.

Among the most widely used embeddings:
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• Word2Vec captures word meaning using skip-gram and CBOW architectures.
• GloVe builds vectors from global co-occurrence statistics.
• FastText enhances Word2Vec by including subword information, making it

effective for noisy or morphologically complex texts.
Sangeetha and Prabha(Sangeetha and Prabha, 2021) reported that FastText

embeddings significantly improved sentiment classification of student feedback by
capturing informal language patterns. Bhagat et al. (Bhagat et al., 2024) also
integrated Word2Vec with LSTM networks and attention mechanisms, achieving
high accuracy on educational datasets.

1.6.4 Contextual Embeddings (e.g., BERT)
While traditional embeddings generate a single vector per word, contextual em-
beddings such as those produced by BERT adapt the vector representation based
on the word’s surrounding context. This allows the model to differentiate between
multiple meanings of the same word depending on usage.

For instance, the word ”grade” in ”I got a good grade” versus ”The slope’s
grade is steep” would have different embeddings in BERT. Onan (Onan, 2021)
leveraged BERT to analyze sentiment in MOOC evaluations and found it especially
useful in capturing subtle variations in tone. Capuano et al.(Capuano et al., 2021)
used attention-based architectures with contextual embeddings to examine student
forum discussions, leading to enhanced interpretability and precision.

Contextual embeddings have quickly become the preferred approach in senti-
ment analysis tasks involving complex or informal text, despite their higher com-
putational requirements.

1.7 Classification Models for Sentiment Analysis
1.7.1 Traditional Models (SVM, Naive Bayes, Random For-

est)
Traditional machine learning algorithms have played a foundational role in the
development of sentiment analysis systems. These models rely on feature-based
representations—such as Bag of Words or TF-IDF—and use statistical learning
to assign sentiment labels (e.g., positive, negative, or neutral) based on patterns
found in labeled training data. While they have limitations in handling complex
linguistic nuances, traditional models remain widely used due to their simplicity,
speed, and interpretability, especially in low-resource settings.

• Support Vector Machines (SVM)
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Support Vector Machines (SVM) are among the most popular classifiers in
sentiment analysis due to their high accuracy and ability to generalize well in
high-dimensional spaces. SVM works by identifying the optimal hyperplane that
separates different sentiment classes with the maximum margin.

In the work by Nguyen et al.(Nguyen et al., 2018) , SVM was used as a base-
line for classifying Vietnamese student comments. When combined with TF-IDF
features, the model achieved satisfactory results, although deep learning mod-
els eventually outperformed it. Similarly, Pacol and Palaoag(Pacol and Palaoag,
2021) used SVM to classify student feedback and observed strong performance,
especially when data was clean and well-preprocessed.

SVM is particularly effective when the dataset is balanced and when feature
selection is carefully performed. However, its performance may degrade with large,
noisy, or highly imbalanced datasets unless proper tuning or kernel optimization
is applied (Zhou and Ye, 2023).

• Naive Bayes (NB)
Naive Bayes is a probabilistic classifier based on Bayes’ theorem. It assumes

feature independence, which rarely holds in natural language but still performs
surprisingly well in many text classification tasks, including sentiment analysis.

In the study by Mabunda et al.(Mabunda et al., 2021), Naive Bayes was evalu-
ated alongside SVM and Random Forest for classifying textual feedback from stu-
dents. While it had faster training times and performed well on smaller datasets,
its accuracy was lower compared to SVM and ensemble methods.

Rani and Kumar(Rani and Kumar, 2017)also applied a Naive Bayes-based
approach in developing a sentiment analysis system for evaluating teaching quality.
They noted that the model’s simplicity and speed made it a good choice for real-
time applications, but it often failed to capture complex patterns due to its strong
independence assumption.

Despite its limitations, Naive Bayes is still favored in scenarios where compu-
tational efficiency is critical and labeled data is limited.

• Random Forest (RF)
Random Forest is an ensemble learning technique that combines multiple de-

cision trees to produce more accurate and stable predictions. It is particularly
effective in handling high-dimensional data and noisy features.

Mabunda et al.(Mabunda et al., 2021) found that Random Forest outperformed
both SVM and Naive Bayes in classifying student feedback data. The model
showed robustness to outliers and required less feature scaling. Similarly, Lalata
et al.(Lalata et al., 2019) +reported improved sentiment classification when using
ensemble methods like Random Forest over single classifiers.
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One major advantage of Random Forest is its ability to handle imbalanced
datasets better than most standalone classifiers, especially when paired with sam-
pling strategies or feature weighting.

1.7.2 Deep Learning Models (CNN, LSTM, Bi-LSTM, GRU)
Deep learning models offer enhanced textual representation by automatically learn-
ing relevant features from sequences of words. Unlike traditional approaches that
depend on handcrafted feature engineering, deep neural networks are capable of
capturing semantic, syntactic, and temporal relationships in text data.

• Convolutional Neural Networks (CNN)
Although originally developed for image processing, CNNs have also proven ef-

fective in capturing local patterns in text, such as in short phrases or expressions.
In a study by Nguyen et al.(Nguyen et al., 2018), a CNN-LSTM hybrid model was
applied to student comment datasets and delivered competitive results. However,
it was outperformed by attention-enhanced LSTM models.

• Long Short-Term Memory (LSTM)
LSTM networks are designed to process sequential data while retaining long-

term dependencies. Their memory cell architecture allows them to model context
effectively within text. According to Bhagat et al.(Bhagat et al., 2024), an LSTM
model combined with a multi-head attention layer achieved an impressive 95.56%
accuracy in classifying student comments. This hybrid architecture outperformed
other models, particularly when dealing with lengthy and complex sentences.

• Bidirectional LSTM (Bi-LSTM)
Bi-LSTM processes sequences in both forward and backward directions, en-

hancing contextual understanding. Sangeetha and Prabha (Sangeetha and Prabha,
2021) integrated Bi-LSTM with attention mechanisms to analyze student feedback,
which resulted in improved detection of aspect-specific sentiments.

• Gated Recurrent Units (GRU)
GRUs are a streamlined variant of LSTM that maintain comparable perfor-

mance with reduced computational complexity. Though less frequently used in
the reviewed literature, Capuano et al.(Capuano et al., 2021)demonstrated the
GRU’s effectiveness in educational settings, such as MOOC forums, particularly
when combined with hierarchical attention mechanisms.
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1.7.3 Attention Mechanisms
Attention mechanisms have revolutionized the field of Natural Language Process-
ing by allowing models to focus on the most informative parts of a text rather
than treating all words equally. Various types of attention have emerged, ranging
from simple attention layers to advanced architectures like Transformers.

• Basic Attention
Simple attention assigns varying weights to different parts of the input, help-

ing the model concentrate on more sentiment-rich words. Sangeetha and Prabha
(Sangeetha and Prabha, 2021) showed that integrating this mechanism into a
Bi-LSTM improved the model’s ability to recognize subtle emotional cues in edu-
cational feedback.

• Self-Attention
Self-attention enables each word to weigh its relationship with all other words

in a sequence, making it particularly powerful for capturing global dependencies.
Capuano et al.(Capuano et al., 2021)used hierarchical self-attention to process
online forum discussions, enhancing the model’s understanding of discourse-level
sentiment.

• Multi-Head Attention
This advanced mechanism, central to Transformer architectures, processes mul-

tiple attention distributions in parallel. Bhagat et al. (Bhagat et al., 2024) demon-
strated that incorporating multi-head attention with an LSTM significantly im-
proved performance, especially in handling lengthy and ambiguous student re-
sponses.

1.8 Evaluation Metrics
Evaluating sentiment analysis models requires appropriate metrics that reflect both
the model’s predictive performance and its ability to handle imbalanced data or
subtle sentiment nuances. Several standard metrics are used, each offering different
perspectives on the model’s performance.

• Accuracy
Accuracy is one of the most frequently used evaluation metrics, especially in

balanced datasets. It measures the ratio of correctly predicted instances to the
total number of predictions made. While simple and intuitive, accuracy can be
misleading in imbalanced datasets where one class dominates(Wang et al., 2020).
Accuracy is most informative when classes are equally represented, but may over-
estimate performance in skewed sentiment distributions(Zhang et al., 2018).

• Precision, Recall, and F1-Score
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• To overcome the limitations of accuracy in imbalanced datasets, precision,
recall, and F1-score provide a more nuanced view:

• Precision measures how many of the instances predicted as positive are ac-
tually correct.

• Recall (or Sensitivity) evaluates how many actual positive cases were cor-
rectly identified.

• F1-score is the harmonic mean of precision and recall, balancing both con-
cerns.

These metrics are especially useful in multi-class or fine-grained sentiment clas-
sification tasks, where false positives and false negatives carry different weights(Liu,
2012), (Medhat et al., 2014).

For example, in student feedback analysis, high recall ensures that all neg-
ative comments are identified, while precision ensures those flagged are truly
problematic(Sindhu et al., 2019).

• Confusion Matrix
The confusion matrix is a tabular representation of predicted vs. actual classes.

It helps to identify the types of errors made by the classifier—false positives, false
negatives, true positives, and true negatives—providing deeper insight into model
performance(Rana and Cheah, 2016).

It is especially helpful when evaluating multi-class sentiment models, such as
positive, neutral, and negative sentiment classes (Behera et al., 2021).

• ROC Curve and AUC Score
The Receiver Operating Characteristic (ROC) curve plots the true positive rate

against the false positive rate at various thresholds. The Area Under the Curve
(AUC) summarizes this curve into a single value, representing the model’s ability
to distinguish between classes.

AUC is often favored in binary sentiment classification tasks where model dis-
crimination is crucial, especially in medical or finance-related text analytics(Liu,
2012).

1.9 Challenges in Sentiment Analysis
Although sentiment analysis has advanced significantly with the integration of
deep learning and linguistic techniques, various challenges continue to impact the
reliability and generalizability of models. These challenges are especially promi-
nent in real-world applications like educational feedback, social media interactions,
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and multilingual communication. This section outlines four major obstacles fre-
quently discussed in the literature.

1.9.1 Detecting Sarcasm and Irony
Sarcasm and irony are particularly difficult to detect in sentiment classification
because the literal meaning of a sentence often contradicts its intended sentiment.
For instance, the expression “Oh, wonderful, another pop quiz!” could appear
positive to a model relying on surface-level sentiment words, even though the
actual meaning is negative.

Standard machine learning models, including many neural networks, often mis-
interpret such cases due to the lack of contextual or pragmatic understanding.
Zhang et al.(Zhang et al., 2018) and Cambria et al.(Cambria et al., 2017) em-
phasize that sarcasm often requires not only linguistic context but also external
knowledge, speaker intent, or social cues. Recent work incorporating context-
aware models and external knowledge bases shows promise, but this remains a
major area of ongoing research.

1.9.2 Multilingual and Code-Switching Complexity
Most sentiment analysis systems are developed in English, yet multilingual con-
tent and code-switching—the practice of mixing two or more languages within a
sentence—are common in global user data. For example, phrases like “C’est trop
cool ce movie” pose difficulties for language-specific models.

According to Wang et al.(Wang et al., 2020) and Onan (Onan, 2021), multilin-
gual and mixed-language data disrupt common preprocessing tasks like tokeniza-
tion and word vectorization. Traditional models and monolingual embeddings
often fail to manage such variation effectively. Although multilingual transformer
models (e.g., mBERT) and translation-based approaches are increasingly adopted,
they still struggle with preserving language-specific nuances and cultural sentiment
expressions.

1.9.3 Domain-Specific Dependency
A frequent issue in sentiment analysis is domain dependency, where a model trained
on one type of text (e.g., product reviews) performs poorly on another domain (e.g.,
student feedback or political commentary). Words can carry different sentiments
depending on context; for example, “cold” could be negative in a food review but
neutral in a weather-related sentence.

As reported by Sindhu et al.(Sindhu et al., 2019) and Zhou Ye (Zhou and
Ye, 2023), domain-specific models in education perform significantly better than
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general-purpose ones. To mitigate domain shift, researchers employ domain adap-
tation, such as fine-tuning pre-trained models on in-domain datasets or leveraging
domain-specific embedding.

1.9.4 Class Imbalance in Sentiment Datasets
Many real-world sentiment datasets are imbalanced, meaning that one sentiment
class—typically positive—is far more represented than others. This imbalance
causes models to be biased toward the dominant class, reducing their ability to
identify minority sentiments such as negative or neutral feedback.

To address this, Bhagat et al.(Bhagat et al., 2024)and Sangeetha and Prabha(Sangeetha
and Prabha, 2021)explored methods like oversampling, undersampling, and class-
weighting during training. They also experimented with data augmentation and
synthetic data generation to balance sentiment classes. While these techniques
improve performance, they can also introduce noise or lead to overfitting if not
implemented properly.

1.10 Conclusion
Understanding sentiments and opinions conveyed through text has become increas-
ingly important across various fields. This chapter provided an overview of the
fundamental stages of sentiment analysis, including text cleaning, feature repre-
sentation, and the application of classification models. Although the integration of
deep learning techniques and attention-based architectures has led to significant
performance improvements, several issues—such as detecting sarcasm, handling
multilingual content, and addressing domain-specific variations—persist. Ongoing
research is vital to develop more adaptable and context-sensitive models capable
of functioning effectively in real-world scenarios.
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Chapter 2

Sentiment analysis with Long
Short Term Memory LSTM

2.1 Introduction
Long Short-Term Memory (LSTM) is a powerful deep learning architecture de-
signed to model sequential data and has become a cornerstone in the field of senti-
ment analysis(Hochreiter and Schmidhuber, 1997). As a variant of Recurrent Neu-
ral Networks (RNNs), LSTM was developed to overcome the limitations of tradi-
tional RNNs, particularly the vanishing and exploding gradient problems(Nguyen
et al., 2018). What makes LSTM unique is its ability to retain long-term depen-
dencies and contextual information over time, which is especially valuable when
analyzing human language—where the meaning of a word often depends on the
words that precede it(Murthy et al., 2020) & (Behera et al., 2021).

In sentiment analysis, where the objective is to detect the emotional tone be-
hind text data, capturing the flow and structure of language is essential. LSTM
achieves this through its memory cells and gating mechanisms (input, forget, and
output gates), which allow the model to selectively store and update information
across a sequence(Behera et al., 2021) & (Nguyen et al., 2018). This capability
has made LSTM particularly effective for tasks like classifying opinions in social
media posts, product reviews, and student feedback(Hochreiter and Schmidhuber,
1997).

In recent years, LSTM has outperformed many traditional machine learning
techniques, showing remarkable accuracy in recognizing nuanced sentiments, even
in complex or lengthy sentences. Its flexibility to be integrated with other models,
such as CNNs or SVMs, further expands its potential in real-world applications
(Behera et al., 2021). This chapter provides an in-depth exploration of how LSTM
is applied to sentiment analysis, its architectural components, strengths, limita-
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tions, and its overall impact on understanding subjective text data(Behera et al.,
2021) & (Nguyen et al., 2018).

2.2 Introducing recurrent neural networks (RNN)
Recurrent Neural Networks (RNNs) form a category of neural networks specifi-
cally designed for processing sequential data. Unlike traditional networks, they
feature recurrent connections that allow them to retain and integrate contextual
information over extended periods(Sherstinsky, 2020).

Figure 2.1: The recurrent neural network.

2.2.1 Mathematical operation
At each time step t, the RNN receives an input Xt and combines it with the
previous hidden state Ht−1 to produce a new hidden state Ht. This process is
described by the following equation(Schmidt, 2019):

Ht = φh (XtWxh +Ht−1Whh + bh) (2.1)

• Xt : Input vector at time t.

• Ht−1 : Previous hidden state (memory of past inputs).

• Wxh : Weight matrix connecting the input to the hidden state.

• Whh : Weight matrix connecting the previous hidden state to the new one.
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• bh : Bias term.

• φh : Activation function (typically tanh or sigmoid).

Next, the hidden state Ht is used to produce an output Ot through an additional
layer, as described by the following equation(Schmidt, 2019):

Ot = φo (HtWho + bo) (2.2)
From a depth perspective, neural networks that consist of more than one non-

linear hidden layer are commonly classified as deep neural networks (DNNs). On
the other hand, those with just a single nonlinear hidden layer—like the one de-
picted in Figure 2.2—are generally referred to as shallow neural networks (Gao
et al., 2019).

Figure 2.2: An example of an ANN

The weights W12 and W23 scale the outputs from the previous layers, while
the element-wise activation functions fh and fo in the hidden and output layers
perform nonlinear transformations. The network as a whole defines a composite
function:

o = fo(W23 fh(W12 i)) (2.3)
Given a training dataset {i, t}, the goal of training an artificial neural network

(ANN) is to approximate the mapping between input i and target t by adjusting
the weights W12 and W23 to best fit this composite function(Bengio et al., 1994).
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Similar to traditional neural networks, the training process of a recurrent neural
network (RNN) relies on the backpropagation of error. However, because RNNs
process data sequentially, gradient calculations must account not only for the cur-
rent state but also for past states in the sequence. This temporal dependency can
result in an exponential decay of gradient values, especially when they are smaller
than one. This issue, known as the vanishing gradient problem, poses a significant
challenge for learning long-term dependencies in sequential data(Cherif, 2022).

In response to this limitation, Hochreiter and Schmidhuber (1997) introduced
the Long Short-Term Memory (LSTM) network. This model is built upon a dis-
tinctive internal architecture that includes specialized components known as gates.
These gates serve to regulate how information is stored, retained, and passed along
through time steps, enabling the network to handle long sequential data more
effectively(Hochreiter and Schmidhuber, 1997).

2.2.2 Fundamental Problem of Traditional RNNs
Challenges of RNNs with Long-Term Dependencies:
Recurrent neural networks face significant challenges when handling long-term
temporal dependencies. One of their primary limitations is the difficulty in prop-
agating error signals across time steps during the learning process. This time-
dependent backpropagation can lead to a sharp decline in gradient values when
weights are small, or conversely, to an overwhelming increase in gradient values
when weights are large. Such fluctuations severely hinder the learning process,
especially when it comes to memorizing information over extended time periods.
Research by Hochreiter in 1991 revealed that these instabilities make it nearly im-
possible to learn long-term relationships when the time gap between an input and
its corresponding output becomes too large (Hochreiter and Schmidhuber, 1997).

LSTM it’s A Robust Solution to the Issue In response to the challenges faced
by traditional recurrent networks, Hochreiter and Schmidhuber introduced a novel
architecture in 1997, known as Long Short-Term Memory (LSTM). This advanced
model was developed to maintain a consistent error flow throughout the learning
process, preventing both vanishing and exploding gradients. The core of this
architecture is the memory cell, a crucial element designed to store information over
extended periods. This memory cell is supported by a stable recurrent connection,
referred to as the Constant Error Carousel (CEC), which has a fixed weight of
1. This setup enables the retention of information over time without any loss
(Hochreiter and Schmidhuber, 1997).
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2.3 Long Short Term Memory (LSTM)
The Long Short-Term Memory (LSTM) architecture is a refined variant of re-
current neural networks (RNNs), specifically developed to address the difficulty
of capturing long-term dependencies in sequential data. Traditional RNNs often
struggle with either vanishing or exploding gradients during training, making it
hard to retain information across extended sequences. LSTM addresses this issue
through a unique structural design that ensures a stable propagation of error sig-
nals via its memory cells, enabling the model to effectively learn from long-range
temporal patterns.(Houdt et al., 2020)

A standard LSTM unit contains a memory cell that preserves its internal state
across time steps. This cell is controlled by a set of multiplicative gates—namely
the input gate, forget gate, and output gate. These gates manage how informa-
tion is handled within the cell by determining what should be added to memory,
what should be discarded, and what should be output to affect the network’s
predictions.(Houdt et al., 2020)

An LSTM network is composed of a sequence of interconnected memory blocks.
Each block has a sophisticated internal structure that enables it to retain, dis-
card, or update information depending on the input data sequence it receives
(Moukodouma et al., 2024) .LSTM networks are well-suited for learning from long
sequences, even when important information is spread across many time steps.
They maintain reliable and consistent memory over time. In contrast to conven-
tional RNNs, which face challenges when dealing with extended delays between
inputs and outputs, LSTMs are capable of capturing long-term temporal depen-
dencies. This is largely due to their internal structure known as the Constant Error
Carousel (CEC), which ensures a stable flow of gradients by preventing them from
either vanishing or exploding. This feature enables the model to preserve infor-
mation for longer durations. Because of this capability, LSTMs are widely used in
applications that require understanding long-range dependencies, such as speech
recognition, machine translation, and the analysis of time series data(Houdt et al.,
2020).

2.3.1 LSTM Architecture
The Long Short-Term Memory (LSTM) network is a refined variant of recurrent
neural networks (RNNs), specifically designed to overcome the challenges con-
ventional RNNs face when modeling long-term dependencies. At the core of the
LSTM lies a memory cell that preserves information across time steps, controlled
by three nonlinear gates—input, forget, and output—that govern how information
is stored, discarded, or exposed (Mahadevaswamy and Swathi, 2023).
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There are four layers instead of just one, and they interact in a very unique
manner. The recurring module in LSTM is illustrated in Figure 2.3.

Figure 2.3: Recurring module in LSTM

The cell state, typically illustrated as the horizontal flow at the top of the
LSTM unit, functions somewhat like a conveyor belt. It moves along with min-
imal linear transformations, allowing information to flow relatively unchanged.
However, LSTMs can selectively update this state by adding or removing content
through components known as gates. These gates incorporate a combination of
sigmoid and tanh activations along with element-wise multiplication to manage
the information flow. An LSTM cell includes three primary gates: the input gate,
the forget gate, and the output gate (Yu et al., 2019).

Figure 2.5 illustrates the structure of a standard LSTM block, highlighting its
components such as the gates, input signal x(t), output y(t), activation functions,
and peephole connections. The block’s output is fed back into its own input as
well as into each of the gates through recurrent connections.(Houdt et al., 2020)
At each time step t, the LSTM block processes the current input xt, the previous
hidden state yt−1, and the previous cell state ct−1. These components interact
through key operations we will see it(Houdt et al., 2020).

Each LSTM unit includes:

• A memory cell ct that stores long-term information, The memory cell plays
a central role in the functioning of LSTM networks. It is designed to store
information over long durations and is controlled by multiplicative gates that
regulate the flow of data. One of its key advantages is its ability to maintain

39



a consistent error signal, which helps prevent the vanishing or exploding
gradient problems typically encountered in standard RNNs. This stability
is enabled by a fixed recurrent connection known as the Constant Error
Carousel (CEC), which allows error signals to be carried across time steps
without diminishing(Houdt et al., 2020).

ct = tanh(Wcxt + Ucht−1 + bc) (2.4)

Figure 2.4: Memory cell (Qixuan, 2024)

• Three gates:
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Figure 2.5: Architecture of a typical vanilla LSTM block(Houdt et al., 2020).

– Input gate (it)
– Forget gate (ft)
– Output gate (ot)

Input Gate: Controls how much of the new information flows into the
memory cell:

it = σ(Wixt + Uiht−1 + bi) (2.5)

Forget Gate: Determines which part of the previous memory should be
discarded:

ft = σ(Wfxt + Ufht−1 + bf ) (2.6)
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Figure 2.6: Forget Gate(Qixuan, 2024)

Output Gate: Regulates which part of the cell state is exposed as output:

ot = σ(Woxt + Uoht−1 + bo) (2.7)

Figure 2.7: Output Gate(Qixuan, 2024)
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• A hidden state (ht) used as the unit’s output,Computes the final hidden
state based on the cell state and output gate.

ht = ot ◦ tanh(ct) (2.8)

Where:

• xt : Input vector at time step t.

• ht−1 : Hidden state from the previous time step.

• ct−1 : Cell state from the previous time step.

• ct : Candidate cell state.

• ht : Current hidden state (also output).

• it : Input gate activation vector.

• ft : Forget gate activation vector.

• ot : Output gate activation vector.

• W∗, U∗ : Weight matrices for input and recurrent connections.

• b∗ : Bias vectors.

• σ : Sigmoid activation function.

• tanh : Hyperbolic tangent activation function.

• ◦ : Element-wise (Hadamard) product.

2.4 Sentiment Analysis Using LSTM
A sentiment analysis model leveraging Long Short-Term Memory (LSTM) net-
works is introduced to interpret textual data, such as student feedback in E-
learning environments. As a specialized form of Recurrent Neural Network (RNN),
LSTM is well-suited for identifying long-range dependencies in sequential text. It
addresses the shortcomings of conventional RNNs by incorporating memory cells,
which are regulated by three types of gates—input, forget, and output—that man-
age how information is stored, discarded, and accessed. The model processes the
input through a pipeline involving data cleaning, tokenization, label encoding, and
word embedding. These embeddings convert text into dense vectors that capture

43



semantic meaning. Once the data is prepared, LSTM layers are used to learn
temporal features, followed by a dense output layer with a SoftMax function to
classify the sentiments. Performance improves with additional training epochs,
reaching accuracy levels above 99% after ten iterations. This demonstrates the
LSTM’s strength in handling sentiment analysis tasks, particularly when working
with large-scale and unstructured textual content (Murthy et al., 2020).

2.4.1 Steps in Sentiment Analysis Using LSTM
Data Preprocessing

Data preprocessing marks the first phase in sentiment analysis using LSTM. Ini-
tially, the text data is cleaned by converting it to lowercase and removing un-
necessary punctuation. Following this, the text is broken down into smaller units
(tokens) such as words or subwords. Each token is then assigned a unique integer
value through encoding. Word embeddings are generated to represent words as
dense vectors, which capture their semantic meanings. This transformation allows
the model to better understand the relationships between words, facilitating more
efficient text processing.(Murthy et al., 2020).

Model Input:

The preprocessed text is transformed into a sequence of word embeddings. Each
word in the sentence is represented by a vector that encapsulates its semantic
meaning. These sequences of embeddings are then passed into the LSTM network,
maintaining the structure and order of words in the sentence. This sequential pro-
cessing enables the LSTM model to interpret information in a manner similar
to how humans understand sentences by considering the entire context.(Murthy
et al., 2020).

LSTM Processing

LSTM networks are designed to handle sequential data like sentences by using
memory cells that preserve information across time steps. The network utilizes
three gates: the input gate, which controls the flow of information into the mem-
ory cell; the forget gate, which determines what information is discarded; and the
output gate, which dictates the output based on the stored information. These
gates work together to enable the LSTM to learn dependencies and store relevant
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information throughout the sequence.(Murthy et al., 2020).

Sentiment Prediction

After processing the sequence, LSTM produces a hidden state at each time step,
which represents the accumulated knowledge. The final hidden state, which en-
codes the entire context of the sequence, is passed through a SoftMax function
to predict the sentiment. Based on the output from SoftMax, the model classifies
the sentiment as positive, negative, or neutral, with the probability distribution
indicating the confidence in each class.(Murthy et al., 2020).

Training

The LSTM model is trained using backpropagation through time (BPTT), adjust-
ing its parameters to minimize the error between predicted and actual sentiment
labels. Optimization techniques such as gradient descent are used to update the
model’s weights iteratively, allowing the network to capture the complex patterns
and relationships present in the data.(Murthy et al., 2020).

Classification

Once trained, the model can classify unseen text. The output of the SoftMax layer
provides a probability distribution across the sentiment classes (positive, negative,
or neutral). The sentiment with the highest probability is selected as the final
classification. This process enables the LSTM model to make accurate predictions
based on the contextual and sequential nature of the text.(Murthy et al., 2020).

2.5 Conclusion
In summary, the LSTM model has proven to be a highly effective approach for
sentiment analysis, particularly for analyzing large, sequential text data. Its ar-
chitecture, which is designed to retain long-term dependencies, makes it especially
useful for understanding sentence context, a critical element for accurate sentiment
classification. By processing text sequentially, LSTM models are capable of detect-
ing subtle emotions within more intricate feedback, such as that found in product
reviews or educational comments. However, despite its advantages, LSTM models
present challenges, including high computational costs and difficulties with rare
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or highly contextual errors. Nevertheless, with ongoing advances in deep learning
and the availability of large datasets, LSTM remains a key tool in sentiment anal-
ysis, providing valuable insights that can influence business strategies, educational
improvements, and more.
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Chapter 3

Design

3.1 Introduction
This chapter presents the design of a sentiment analysis system whose main ob-
jective is to automatically analyze student comments using a deep learning model,
specifically a Long Short-Term Memory (LSTM) neural network. The system aims
to classify comments into three sentiment categories: positive, negative, and neu-
tral.

3.2 Architecture of the Proposed Approach
The system employs a modular framework encompassing the entire processing
pipeline, from data ingestion to sentiment prediction and evaluation.

3.2.1 Module Overview
• Data Acquisition:Retrieving Excel files stored on Google Drive.

• Text Preprocessing: Standardizing and cleaning input text through tok-
enization and normalization.

• Automatic Annotation: Leveraging lexicon-based methods (TextBlob)
for sentiment labeling.

• Dataset Balancing:Ensuring uniform distribution across sentiment cate-
gories.
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• Model Training: Building and training an LSTM-based classification model.

• Evaluation and Reporting:Measuring performance using standard clas-
sification metrics.

The proposed approach integrates classical Natural Language Processing (NLP)
techniques with deep learning to form a robust sentiment analysis pipeline. Ini-
tially, student feedback comments are collected and preprocessed to normalize the
text. The comments are then automatically labeled using a lexicon-based method
(TextBlob), which estimates the polarity of each statement. To enhance model
fairness, class balancing is applied to equalize the representation of each sentiment
category.

Following this, the text data is tokenized and transformed into padded se-
quences of integers, preparing it for ingestion by a bidirectional LSTM network.
The model learns contextual representations of sequences by processing them in
both forward and backward directions, allowing it to capture intricate linguistic
patterns. The output is fed into dense layers for final sentiment classification.

Model training is conducted using an optimized configuration with early stop-
ping to prevent overfitting. Finally, evaluation is performed using accuracy, preci-
sion, recall, and F1-score to assess model performance across all sentiment classes.
The architecture of the proposed model is illustrated in Figure 3.1.
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Figure 3.1: Architecture of proposed network used

3.3 Approach Description
3.3.1 Text Preprocessing
Text preprocessing is a fundamental step in preparing raw textual data for machine
learning and deep learning. It transforms unstructured comments into clean, con-
sistent text suitable for analysis. Below, we provide detailed explanations of each
substep, along with illustrative examples. Preprocessing is a crucial step in any
natural language processing pipeline. Its goal is to clean and normalize the input
text, ensuring it is suitable for downstream machine learning and deep learning
tasks. The steps followed during pre-processing are illustrated in Figure 3.2.
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Figure 3.2: Architecture of Preprocessing

Cleaning Student Comments

This stage involves removing extraneous symbols and normalizing the case of char-
acters.
Example:
Original: ”This COURSE is amazing!!! 100% recommended :)”
Cleaned: ”this course is amazing recommended”
The raw text data is cleaned by removing unwanted elements such as:

• Punctuation marks and special symbols

• Numerical digits

• Uppercase letters (converted to lowercase)

• Stopwords (optional, for some experiments)
This step helps standardize the comments and reduce noise.

Tokenization

Tokenization is the process of splitting text into meaningful units—tokens—such
as words or subwords. This enables the transformation of text into sequences that
models can process.
Steps:
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• Use of a Keras Tokenizer to assign a unique integer index to each word.

• Construction of a vocabulary dictionary.

Example 1:
Cleaned Text: ”i loved the platform recommended”
Tokens: [”i”, ”loved”, ”the”, ”platform”, ”recommended”] Token IDs: [2, 15, 5, 46,
98] Tokenization splits text into individual words (tokens) that can be mapped to
integers.
Example 2:
Cleaned Text: ”this course is amazing recommended”
Tokens: [”this”, ”course”, ”is”, ”amazing”, ”recommended”] Token IDs: [1, 23, 5,
102, 87]
After cleaning, the text is split into individual tokens (words or subwords). Each
token is mapped to an integer using a tokenizer, which creates a vocabulary dic-
tionary based on frequency.

Padding

Neural networks require inputs of uniform shape. Padding ensures that all se-
quences have the same length.
Steps

• Determine the maximum sequence length in the dataset.

• Add zeros to shorter sequences until they match the maximum length.

Example 1:
Token Sequence: [2, 15, 5, 46, 98]
Max Sequence Length: 7
Padded Sequence: [2, 15, 5, 46, 98, 0, 0]
All sequences are padded to ensure equal length input for the model.
Example 2: Original Token IDs: [1, 23, 5, 102, 87]
Padded (max length = 7): [1, 23, 5, 102, 87, 0, 0]
Since neural networks require input sequences of uniform length, all tokenized
sequences are padded with zeros to match the length of the longest comment in
the dataset.

3.3.2 Labeling the dataset
The proposed sentiment analysis framework integrates a lexicon-based annotation
strategy with a deep learning classification model to enhance the reliability of
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sentiment predictions. Initially, the raw textual data undergoes a comprehensive
preprocessing phase, including the removal of user tags, hyperlinks, punctuation,
and numerals, followed by lowercasing, stopword elimination, and optional stem-
ming or lemmatization.

Once cleaned, each text sample is passed through TextBlob, a rule-based sen-
timent analyzer that computes a polarity score ranging from – 1 to +1.
TextBlob is a high-level natural language processing (NLP) library for Python
that simplifies the implementation of various text analysis tasks, including part-
of-speech tagging, noun phrase extraction, text classification, translation, and no-
tably, sentiment analysis. It is built on top of more complex NLP toolkits such
as NLTK and Pattern, offering a user-friendly API that allows developers and re-
searchers to perform powerful text operations with minimal code.

Based on predefined thresholds (e.g., polarity > 0.1 as positive, < – 0.1 as
negative, and in between as neutral), sentiment labels are automatically assigned.

These generated labels are then used to train a Long Short-Term Memory
(LSTM) neural network, which is well-suited for handling sequential data due to
its ability to retain contextual information over time. The text inputs are tokenized
and transformed into padded sequences, then mapped into a dense vector space
using an embedding layer.

The LSTM model learns to capture semantic patterns and sentiment cues from
the input sequences, using the TextBlob-provided labels as supervisory signals.

This hybrid methodology effectively addresses inconsistencies found in manu-
ally annotated datasets, reduces subjective bias, and leads to improved classifica-
tion performance.

By combining automated lexicon-based annotation with data-driven learning,
the system offers a scalable and robust solution for sentiment analysis tasks (Al-
jedaani et al., 2022).

3.3.3 Training
In this project, we implemented a deep learning model based on a Bidirectional
Long Short-Term Memory (BiLSTM) architecture to perform sentiment analysis
on student comments. The model was designed to process and classify text data
into three sentiment categories: positive, negative, and neutral. It begins with
an embedding layer that converts each word into a dense vector representation,
limited to the top 10,000 most frequent words in the corpus. This is followed by a
Bidirectional LSTM layer with 128 units, which captures contextual information
from both directions of the sequence. To reduce overfitting, dropout layers were
added after the LSTM (0.5) and dense (0.3) layers. A fully connected dense layer
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with 64 neurons and ReLU activation is included before the output layer, which
uses a softmax activation function to return probabilities for the three sentiment
classes. The model was compiled using the Adam optimizer and trained with cat-
egorical crossentropy as the loss function. Early stopping was applied to monitor
the validation loss and stop training if no improvement was observed for two con-
secutive epochs. The dataset was split into 80% training and 20% testing subsets,
and training was performed over a maximum of 16 epochs with a batch size of 16.

3.3.4 Decision
LSTM networks are particularly effective for handling sequential data due to their
ability to maintain memory over long input sequences. This makes them well-
suited for analyzing the context and structure of natural language. The LSTM
model design consists of the following components:

• Embedding Layer: Converts token indices into dense vectors of dimension
128.

• Bidirectional LSTM: Captures both forward and backward dependencies
in the sequence.

• GlobalMaxPooling1D: Selects the most salient features from LSTM out-
puts.

• Dense Layers: Facilitates the final sentiment classification via a softmax
output.

The layer-by-layer architecture of the LSTM model is illustrated in Figure 3.3.
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Figure 3.3: LSTM framework of sentiment analysis(Khan et al., 2022).

3.4 Conclusion
The proposed system illustrates the design of a deep learning pipeline for senti-
ment analysis, tailored to educational comments. Leveraging LSTM architecture
and automatic labeling, the framework enables efficient classification and lays the
groundwork for further refinement using more sophisticated models such as CNN-
LSTM or transformer-based networks.
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Chapter 4

Implementation

4.1 Introduction
After detailing the proposed approach in the previous chapter, this section presents
the practical implementation of our sentiment analysis system. It describes the
technical environment, the tools used, and the various stages involved in trans-
forming the conceptual design into an operational model. The main objective
remains the classification of learner comments collected from e-learning platforms
based on their emotional polarity, using a deep learning architecture built around
Long Short-Term Memory (LSTM) networks.

The first part of this chapter outlines the development environment, including
the programming frameworks, software libraries, and hardware configuration. The
second part focuses on the implementation of the data processing pipeline — from
preprocessing and automatic labeling to feature extraction and model training.
Finally, we present the evaluation of the trained model on real-world data, along
with performance metrics that allow us to assess its effectiveness.

4.2 Environment
4.2.1 Cloud-Based Development Platform: Google Colab-

oratory
Google Colaboratory, commonly known as Google Colab, is a cloud-based pro-
gramming platform developed by Google Research. It allows users to write and
execute Python code directly from a web browser, without requiring any local con-
figuration or installation. Colab offers an interactive notebook environment similar
to Jupyter, enriched with features for collaboration, such as sharing notebooks via
Google Drive and enabling real-time edits by multiple users (Naik, 2023).
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One of Colab’s main advantages is its free access to powerful hardware acceler-
ators, including GPUs and TPUs, which are essential for training deep learn-
ing models efficiently. This makes it an ideal tool for students, researchers,
and developers working on machine learning and data analysis tasks. More-
over, Colab comes preloaded with popular Python libraries such as TensorFlow,
Keras, and scikit-learn, reducing setup time and allowing rapid development and
experimentation.(Naik, 2023)

Figure 4.1 presents the interface of Colab.

Figure 4.1: Colab interface

Colab is especially suitable for tasks involving data science, natural language
processing, and deep learning. One of its major advantages is its free access to
hardware acceleration, including Graphics Processing Units (GPUs) and Tensor
Processing Units (TPUs), which are essential for training complex neural networks
such as LSTMs.

From a technical standpoint, Colab provides the following features:
Python Code Execution: Users can run code in separate cells, visualize

output inline, and interactively debug or modify blocks of logic.
Collaboration and Sharing: Notebooks can be easily shared via Google

Drive, with permissions for viewing or editing, enabling real-time teamwork.
Pre-installed Libraries: Colab comes with a wide range of libraries com-

monly used in machine learning, such as TensorFlow, scikit-learn, Pandas, NumPy,
Matplotlib, and NLTK.

Visualization Tools: Interactive graphs and charts can be generated directly
within the notebook using tools such as Matplotlib and Seaborn.

Custom Environment Support: Users can install additional Python pack-
ages as needed using pip commands within the notebook environment.
Google Colab served as the ideal development platform for the implementation
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and testing of our LSTM-based sentiment analysis system, providing both com-
putational efficiency and development flexibility.

4.3 Programming Language: Python
Python is a high-level, interpreted programming language widely used in the fields
of artificial intelligence, data science, and natural language processing. Its readable
syntax, extensive community support, and large ecosystem of libraries make it
particularly well-suited for academic and industrial research.

In this project, Python served as the primary language for implementing the
entire sentiment analysis system. It enabled seamless integration of data processing
modules (via Pandas and NLTK), automatic labeling (via TextBlob), and deep
learning model development (via TensorFlow and Keras). Python’s flexibility and
compatibility with cloud platforms like Google Colab make it a preferred choice
for machine learning practitioners and researchers worldwide (Naik, 2023).

Python’s extensive support for scientific computing—through libraries such
as NumPy and Pandas—makes it particularly well-suited for data preprocessing.
Moreover, the availability of frameworks like TensorFlow, Keras, and NLTK facil-
itates the implementation of complex natural language processing workflows and
neural network architectures such as LSTM.

Given these advantages, Python was selected as the core language to implement
the various components of our system: from data cleaning and sentiment labeling
to model training and evaluation.

4.4 Libraries and Frameworks Used
The implementation of our sentiment analysis system required a range of libraries
that support both natural language processing and deep learning. Each library
played a specific role in building and training the model, preprocessing the data,
or evaluating the results.

4.4.1 Pandas
Pandas is a core open-source Python library designed specifically for data manip-
ulation and statistical analysis. It provides flexible and powerful data structures
such as Series (one-dimensional) and DataFrames (two-dimensional) which allow
for efficient handling, filtering, and transformation of structured data.

Originally developed for financial data processing, pandas has since become a
foundational tool in data science workflows. It supports a wide range of operations,
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including reading and writing data from various formats (CSV, Excel, JSON),
handling missing values, grouping and aggregating data, and integrating seamlessly
with numerical libraries such as NumPy and visualization libraries like Matplotlib.

In the context of this project, pandas was used to load the dataset of learner
comments, normalize text fields, label sentiment categories, and prepare the in-
put structure required for subsequent processing by the machine learning model
(McKinney, 2011).

4.4.2 NumPy
NumPy (Numerical Python) is a fundamental Python library for numerical com-
puting, and it forms the core of scientific and machine learning ecosystems in
Python. It provides a high-performance multidimensional array object, known as
ndarray, along with a suite of functions to perform efficient mathematical opera-
tions on large datasets.

Originally introduced and detailed in Travis Oliphant’s Guide to NumPy, the
library was designed to extend Python with the capabilities of performing array-
based computing efficiently. It supports vectorized operations, linear algebra rou-
tines, Fourier transforms, and advanced random number generation—all of which
are essential in data science and machine learning workflows.

In the context of this project, NumPy was employed to support matrix oper-
ations, transform textual data into numerical formats, and manage arrays during
model training and preprocessing. Its tight integration with other libraries such
as Pandas, TensorFlow, and scikit-learn makes it an indispensable tool for imple-
menting robust and scalable analytical systems (Oliphant, 2006).

4.4.3 NLTK (Natural Language Toolkit)
The Natural Language Toolkit (NLTK) is a comprehensive suite of Python libraries
and educational resources developed to facilitate the teaching and implementation
of natural language processing (NLP) techniques. First introduced by Bird, Loper,
and Klein, NLTK was designed both as a research tool and as a pedagogical
platform for students and practitioners in computational linguistics.

NLTK provides modular and well-documented interfaces to over 50 corpora
and lexical resources such as WordNet, as well as a wide variety of text processing
libraries for classification, tokenization, stemming, lemmatization, part-of-speech
tagging, parsing, and semantic reasoning.

In this project, NLTK was essential for preprocessing learner comments. It
enabled tasks such as tokenizing text into words, removing French stopwords,
and applying lemmatization to normalize textual data before it was passed to the
sentiment analysis model. Due to its extensibility and multilingual support, NLTK
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remains one of the most widely used libraries in NLP research and education (Bird
et al., 2006).

4.4.4 TextBlob
TextBlob is a high-level natural language processing library built on top of NLTK
and Pattern. It offers a simple and intuitive API for performing common text pro-
cessing tasks such as tokenization, part-of-speech tagging, noun phrase extraction,
translation, and—most notably—sentiment analysis. In sentiment classification,
TextBlob calculates two primary scores:

• Polarity, which ranges from -1 (completely negative) to +1 (completely
positive),

• Subjectivity, which measures the degree of personal opinion versus factual
information.

One of the main advantages of TextBlob is its ease of integration into sentiment
analysis pipelines, especially for quick prototyping and semi-supervised classifica-
tion. It uses a rule-based sentiment lexicon to assess the emotional content of a
given sentence or document.

In the context of this project, TextBlob was used to automatically label learner
comments with sentiment classes (positive, negative, neutral), based on their po-
larity scores. This enabled the generation of training data for the LSTM model
without requiring manual annotation (Illia et al., 2021).

4.4.5 scikit-learn
scikit-learn is an open-source Python library designed for efficient implementation
of machine learning algorithms and tools. Built on top of NumPy, SciPy, and
matplotlib, it provides a consistent interface for a wide variety of supervised and
unsupervised learning tasks.

scikit-learn includes modules for classification, regression, clustering, dimen-
sionality reduction, model selection, and preprocessing. In the context of natural
language processing (NLP) and sentiment analysis, it is particularly valuable for:

• Feature extraction techniques like Bag of Words (BoW) and TF-IDF

• Splitting datasets into training and test subsets

• Computing class weights to handle imbalanced data

• Evaluating models using metrics such as accuracy, precision, recall, and F1-
score
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Although originally not designed for deep learning, scikit-learn integrates seam-
lessly with libraries such as TensorFlow and Keras, providing a robust preprocess-
ing and evaluation toolkit.

In our project, scikit-learn was used to extract textual features, manage data
splits, compute balanced class weights, and generate detailed classification reports
for evaluating the LSTM model’s performance (Pölsterl, 2020).

4.4.6 TensorFlow and Keras
TensorFlow is an open-source deep learning framework developed by Google, de-
signed to facilitate the construction, training, and deployment of machine learning
models at scale. It offers a highly flexible architecture for numerical computation,
supporting both low-level operations and high-level APIs.

Keras, integrated as the official high-level API of TensorFlow since version 2.0,
provides a simplified and user-friendly interface for building and training neural
networks. It abstracts much of the complexity of TensorFlow while preserving the
ability to customize and optimize model behavior.

Together, TensorFlow and Keras allow for the implementation of complex mod-
els such as Long Short-Term Memory (LSTM) networks, which are particularly
suited for processing and analyzing sequential data like text. Their extensive sup-
port for GPU acceleration, automatic differentiation, and modular design makes
them ideal for sentiment analysis tasks in natural language processing (NLP).

In our project, TensorFlow and Keras were used to define a bidirectional LSTM
architecture. The model was trained on sequences of learner comments and op-
timized using categorical crossentropy. The training process was monitored with
early stopping and evaluated using accuracy and classification metrics. The inte-
gration of these two libraries enabled efficient and scalable model development in
a cloud-based environment like Google Colab (Grattarola and Alippi, 2021).

4.4.7 Matplotlib
Matplotlib is a widely used open-source Python library designed for creating static,
interactive, and animated visualizations. Originally developed to mimic the plot-
ting capabilities of MATLAB, it has become a foundational tool for scientific com-
puting and data visualization in Python.

The core of Matplotlib is its pyplot module, which provides a high-level in-
terface for generating a wide range of plots, including line graphs, bar charts,
scatter plots, histograms, and heatmaps. Its flexible architecture also allows for
fine-grained control over plot elements such as axes, labels, legends, and colors,
making it suitable for producing publication-quality figures.
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In the context of this project, Matplotlib was used to visualize key training
metrics of the LSTM model, such as accuracy and loss over training epochs. These
plots provided valuable insights into the model’s learning behavior and helped
identify issues such as overfitting or underfitting during development(Tosi, 2009).

4.5 The dataset
4.5.1 Dataset Description
The dataset employed in this study consists of textual feedback collected from
the Mark My Professor platform, which contains over 5,200 reviews written by
learners about their courses and instructors Bouacida (2018). Mark My Professor
is a platform dedicated to the evaluation of teachers and educational content by
students.

The learners’ comments are extracted from a file named dataE.xlsx, which was
initially stored in a compressed archive (DATASETS.zip) on Google Drive. Each
entry in the dataset corresponds to a comment written in English by a student
on an online learning platform. These comments reflect the learners’ experiences,
opinions, or perceptions regarding different aspects of digital education.

Upon loading, the dataset was processed to standardize column names and
extract the relevant text column (e.g., comment, commentaire, or similar). The
raw comments underwent a cleaning phase, which involved removing punctuation,
numeric values, hyperlinks, and user mentions, as well as converting all text to
lowercase. This step ensures uniformity in the input data before further analysis.

Since the dataset originally lacked sentiment labels, a lexicon-based approach
using the TextBlob library was applied to automatically assign sentiment cate-
gories. Each comment received a sentiment score (polarity) from TextBlob, which
was then mapped to one of three classes:

Positive if polarity > 0.1
Negative if polarity < -0.1
Neutral otherwise
This annotated dataset was then used to train a deep learning model. For

that purpose, the textual data was tokenized using a Keras Tokenizer (with a
vocabulary size of 10,000), converted into sequences of integers, and padded to
equal length. The resulting inputs were paired with one-hot encoded sentiment
labels to form the features (X) and targets (y) of the model.

In total, the dataset contains approximately 5000 student comments, and it is
evenly distributed across the three sentiment classes, as shown by the bar chart
generated in the exploratory phase. The final labeled version was exported to a
CSV file (dataE-labellisee.csv) for reuse and evaluation.
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4.5.2 Distribution of the dataset
To assess the performance of the proposed LSTM-based sentiment analysis model,
the dataset was divided into three distinct subsets using a two-step stratified sam-
pling approach. Initially, 10% of the data was set aside as a test set, ensuring it
remained unseen during training and validation. The remaining 90% was then fur-
ther split into 80% for training and 10% for validation. This resulted in an overall
distribution of approximately 80% training, 10% validation, and 10% testing.

This division was implemented using the train_test_split() function from
Scikit-learn, ensuring randomness while maintaining class balance. The detailed
breakdown of this split is presented in Table 4.1.

Subset Percentage Approx. Count Purpose
Training Set 80% ∼ 4160 Model fitting
Validation Set 10% ∼ 520 Parameter tuning
Test Set 10% ∼ 520 Final evaluation

Table 4.1: Dataset split: training, validation and test sets

Purpose of Dataset Splitting
To ensure a reliable evaluation of the sentiment analysis model, the dataset

was divided into three distinct subsets, each serving a specific function:
• Training Set (80%) “Model fitting”:

– Used to train the LSTM model by updating its internal weights.
– The model learns to associate student comments with the correct sen-

timent labels.
– These data are seen repeatedly during the training epochs.

• Validation Set (10%) “Parameter tuning”:

– Used to monitor the model’s performance during training.
– Helps tune hyperparameters (e.g., number of epochs, dropout rate).
– Plays a key role in detecting overfitting.

• Test Set (10%): “Final evaluation”

– Reserved for the final evaluation after training is complete.
– Provides an unbiased estimate of model performance on unseen data.
– Performance metrics such as accuracy, precision, recall, and F1-score

are computed on this set.
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4.5.3 Distribution of sentiments in the dataset
Table 4.2 and Figure 4.2 provides a detailed overview of this distribution.

Sentiment Class Number of Comments
Positive (1) 2691
Neutral (2) 2048
Negative (0) 608

Table 4.2: Distribution of comments by sentiment class.

Figure 4.2: distribution of sentiment classes.
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4.6 Training and Testing
This section outlines the training and evaluation process of the sentiment classifi-
cation model. The dataset, composed of student comments, was first preprocessed
and annotated automatically using TextBlob, a lexicon-based tool that assigns
polarity scores to text. Based on these scores, comments were labeled as positive,
negative, or neutral.

The core architecture employs a Bidirectional Long Short-Term Memory (Bi-
LSTM) neural network, chosen for its ability to retain context in both forward
and backward directions, making it well-suited for sequence modeling tasks like
sentiment analysis. To ensure a balanced evaluation, the dataset was divided into
three subsets: 80% for training, 10% for validation, and 10% for testing.

Each comment was tokenized and padded to a fixed length, then passed through
an embedding layer to capture semantic relationships. The training process was
guided by two key hyperparameters:

Batch Size: Defines the number of samples processed before the model’s in-
ternal parameters are updated. A batch size of 16 was selected to balance memory
usage and convergence speed.

Epochs: Represents the number of complete passes through the training
dataset. The model was trained for up to 20 epochs, with early stopping enabled
to prevent overfitting once the validation loss stopped improving.

The model’s learning behavior was monitored using graphical plots of training
and validation accuracy. Final performance was evaluated using a classification
report and a confusion matrix (Figure 4.3), highlighting the model’s predictive ca-
pability across the three sentiment categories. In the final training run, the model
achieved a training accuracy of approximately 94% and a validation accuracy of
around 74%, indicating a strong but not overfitted learning behavior (Figure 4.4).

Accuracy Type Value
Training Accuracy 94%

Validation Accuracy 74%

Table 4.3: Accuracy results obtained during the different phases of the learning
process.
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Figure 4.3: confusion matrix.
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Figure 4.4: Train Accuracy and Validation Accuracy.

4.7 Obtained Results
In this section, we present the outcomes obtained using the LSTM model on the
dataset composed of student comments. To evaluate the performance of the clas-
sifier, we relied on standard machine learning metrics based on the following fun-
damental concepts:

• True Positive (TP): Cases where the model correctly predicts a given class
(e.g., Positive) and the actual label is the same.

• True Negative (TN): Cases where the model correctly predicts a class is
not present (e.g., Not Positive) and the actual label confirms this.

• False Positive (FP): Instances where the model incorrectly predicts a class
when it is not actually present.

• False Negative (FN): Instances where the model fails to predict the actual
class and instead assigns a different one.

Using these indicators, we computed the following performance metrics:

• Accuracy: Represents the proportion of correct predictions made by the
model across all data.
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• Recall: Measures the model’s ability to identify all relevant instances of a
specific class.

• F1-Score: A harmonic mean of precision and recall, providing a balance
between the two.

These evaluation metrics are presented in Equations 4.1, 4.2, 4.3, and 4.4, respec-
tively.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall = TP

TP + FN
(4.3)

F1-Score = 2 · Precision · Recall
Precision + Recall =

2TP

2TP + FP + FN
(4.4)

The table Table 4.4 shows a summary of the LSTM model’s performance in
terms of training and testing accuracy, as well as performance metrics for each
class.

Algorithm Accuracy Precision Recall F1-Score
LSTM 0.7495 0.74 0.75 0.74

Table 4.4: Results of the LSTM classifier on the test set

The results obtained, with an accuracy of around 70%, can be largely ex-
plained by the imbalanced distribution of sentiments in the dataset. Specifically,
the dataset includes 2,692 comments expressing positive sentiments, 2,048 neutral
comments, and only 608 negative ones. This significant imbalance—particularly
the underrepresentation of negative comments—has affected the model’s learning
process, making it less effective at detecting negative sentiments. Therefore, the
model’s performance could be significantly improved by addressing the imbalance
among the sentiment classes in the training data.

67



General Conclusion

In today’s digital age, online learning platforms have become a fundamental com-
ponent of modern education. As students increasingly turn to these environments
for accessible and flexible learning, understanding their emotional engagement has
emerged as a key factor in maintaining motivation and reducing dropout rates.

Sentiment analysis plays a key role in online learning environments, as it helps
to better understand learners’ feelings, identify their needs, and improve both
instructional content and teaching methods accordingly. By giving learners a voice
through the analysis of their comments, it becomes possible to adapt educational
strategies to enhance their engagement and success.

In this context, this work proposed an automatic sentiment analysis approach
based on an LSTM model, capable of effectively processing textual sequences. Fol-
lowing a preprocessing and data annotation phase, the model was trained on a real
dataset collected from the Mark My Professor platform. The results obtained are
promising, despite certain limitations, particularly those related to the imbalance
of sentiment classes within the data. This observation opens up opportunities for
improvement, notably through resampling techniques or the integration of more
balanced datasets.

Thus, this study highlights the relevance of artificial intelligence techniques—
particularly recurrent neural networks—for automatically extracting valuable in-
sights into learners’ experiences in digital learning environments.

Based on the results achieved, it can be concluded that the main objectives of
this research have been successfully achieved.
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