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Abstract 

 
With the increasing spread of harmful species such as the pine processionary caterpillar 

(Thaumetopoea pityocampa), which poses a threat to biodiversity and ecological balance, the 

monitoring of forest health has become a critical concern. Traditional detection methods are 

often expensive, time-consuming, and unsuitable for large-scale or real-time surveillance. 

 

To overcome these limitations, an AI-based system is introduced that combines computer 

vision techniques with geolocation. The system employs a YOLOv11 object detection model 

enhanced by the Multi-Scale Patch Analysis (MSPA) method, which improves the detection 

of small or partially visible nests by generating image patches at multiple scales. 

 

In addition to accurate nest detection, the system extracts GPS metadata from the captured 

images when available to enable spatial localization. This allows for the visualization of 

detected nests on an interactive map, supporting environmental monitoring and spatial 

analysis. 

 

Experimental results demonstrate high detection performance, achieving a mAP@0.5 of 

98.4%. This integrated approach represents a promising solution for automated forest 

surveillance and may be extended to applications in agriculture, ecology, and environmental 

management. 

 

 

Keywords: Automatic detection, Geolocation, Computer vision, YOLOv11, Forests, 

Thaumetopoea pityocampa, Multi-Scale Patch Analysis (MSPA), Artificial Intelligence.  



 

 

Résumé 

 
 

Avec la propagation croissante d’espèces nuisibles telles que la chenille processionnaire du 

pin (Thaumetopoea pityocampa), qui menace la biodiversité et l’équilibre écologique, la 

surveillance de la santé des forêts devient une priorité. Les méthodes de détection 

traditionnelles s’avèrent coûteuses, lentes et peu adaptées à une surveillance à grande échelle 

ou en temps réel. 

 

Pour pallier ces limitations, un système intelligent basé sur la vision par ordinateur et 

l’intelligence artificielle est proposé. Ce système repose sur le modèle de détection 

YOLOv11, optimisé par la méthode Multi-Scale Patch Analysis (MSPA), qui améliore la 

détection des nids de petite taille ou partiellement visibles grâce à la génération d’images en 

sous-parties à différentes échelles. 

 

En complément de la détection automatique, le système exploite les métadonnées GPS 

contenues dans les images capturées, lorsque celles-ci sont disponibles. Cela permet 

d’associer chaque détection à une position géographique réelle et de visualiser les résultats sur 

une carte interactive, facilitant l’analyse spatiale et la surveillance environnementale. 

 

Les résultats expérimentaux montrent une performance élevée avec un mAP@0.5 de 98,4 

%. Cette approche intégrée représente une solution prometteuse pour la surveillance 

automatisée des forêts, avec des perspectives d’extension vers d’autres domaines tels que 

l’agriculture et la gestion environnementale. 

 

Mots-clés : Détection automatique, Vision par ordinateur, YOLOv11, Forêts, Thaumetopoea 

pityocampa, Multi-Scale Patch Analysis (MSPA), Intelligence Artificielle. 

 

 

  



 

 :الملخص

 
 

 processionnaire (Thaumetopoea يرقة دودة الصنوبرمع الانتشار المتزايد للأنواع الضارة مثل   

pityocampa) .والتي تشُكّل تهديداً للتنوع البيولوجي والتوازن البيئي، أصبحت مراقبة صحة الغابات أولوية بيئية ملحّة ،

 .لوقت الحقيقيتعُتبر الطرق التقليدية للكشف عن هذه الآفات مكلفة وبطيئة وغير ملائمة للرصد الواسع النطاق أو في ا

 

ل تلقائي. تم اقتراح نظام ذكي يعتمد على تقنيات الرؤية الحاسوبية والذكاء الاصطناعي لرصد أعشاش هذه الآفة بشك  

مح بتوليد ، والتي تس(MSPA) المحسّن باستخدام تقنية تحليل البقع متعددة المقاييس YOLOv11 يعتمد النظام على نموذج

 .ة، مما يحُسّن اكتشاف الأعشاش الصغيرة أو الظاهرة جزئياًصور فرعية على مقاييس مختلف

 

ها، لربط كل المدمجة في الصور الملتقطة، عند توفر (GPS) كما يستفيد هذا النظام من بيانات تحديد الموقع الجغرافي  

ظهرت أ .لبيئيةمتابعة اكشف بموقع جغرافي دقيق. يتم بعد ذلك عرض النتائج على خريطة تفاعلية تسهّل التحليل المكاني وال

ا للمراقبة ٪. وتعُدّ هذه المقاربة حلاً واعدً 98.4حوالي  (mAP@0.5) التجارب دقة أداء عالية، حيث بلغ متوسط الدقة

 .الآلية للغابات، مع إمكانية توسيع استخدامها لتشمل مجالات أخرى مثل الزراعة وإدارة البيئة

 

 :الكلمات المفتاحية

 Thaumetopoea ، الغابات، يرقة الصنوبرYOLOv11ديد الموقع، الرؤية الحاسوبية، الكشف التلقائي، تح

pityocampaتحليل البقع متعددة المقاييس ، (MSPA)الذكاء الاصطناعي ، 
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General Introduction 

 
Forest ecosystems play a vital role in maintaining environmental balance, 

preserving biodiversity and mitigating climate change. However, these vital 

environments are under increasing threat from human activities and invasive species. 

One of the most destructive insects for coniferous forests, particularly pine trees, is the 

pine processionary caterpillar (Thaumetopoea pityocampa). Its larvae cause massive 

defoliation by weakening trees and also pose a danger to human and animal health due 

to their stinging hairs. 

Traditionally, the detection of processionary nests was carried out manually by 

forestry experts. While this method can be effective on a small scale, it is very time-

consuming and unsuitable for large-scale monitoring. The emergence of artificial 

intelligence (AI) and computer vision (CV) has opened up the possibility of automated 

solutions for environmental monitoring. Object detection models such as YOLO (You 

Only Look Once) enable real-time detection and can effectively locate processionary 

nests over large forest areas. 

This thesis presents a deep learning based approach for detecting Thaumetopoea 

pityocampa nests, using the YOLOv11 model. In order to overcome the difficulties 

associated with detecting small or distant nests, a specific pre-processing method 

called MSPA has been integrated. A customized dataset was created from annotated 

images from various sources, including photos taken in the field using GPS-equipped 

devices. This wealth of data, both in terms of quality and geography, enabled a more 

detailed spatial analysis. 

The final system was integrated into an interactive platform accessible to users, 

whether they are forest rangers, researchers, or ordinary citizens, allowing them to 

submit images or videos and view the results, including the location of nests on a map. 

The model's performance was evaluated using several metrics and compared to that of 

other state-of-the-art approaches. 

Our goal is to contribute to forest health monitoring by demonstrating how 

artificial intelligence can be used for sustainable environmental management, 

particularly by facilitating early pest detection and promoting rapid intervention. 
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This thesis is organized as follows: 

Chapter 1 : Introduction to Forest Health and AI Methodologies 

This chapter discusses the importance of forest ecosystems and the threats they 

face, with a particular focus on those caused by the pine processionary caterpillar 

(Thaumetopoea pityocampa). It outlines the limitations of traditional nest detection 

methods and puts forward artificial intelligence (AI) and computer vision as promising 

solutions for monitoring forest health. 

Chapter 2 : Deep Learning Approaches for PPM Nest Detection 

It reviews deep learning models used for object detection, including YOLO, 

SSD, and Faster R-CNN, with a focus on the YOLOv11 model adopted in this study. It 

addresses the challenges of detecting small or distant nests and shows how current 

models can effectively address them. 

Chapter 3 : System Design and Model Development 

It describes the system architecture and the dataset preparation process. It also 

presents the multi-scale patch analysis (MSPA) technique, which improves detection 

accuracy, details the collection, annotation, and preprocessing of data, as well as the 

customization and training of the YOLOv11 model. 

Chapter 4 : Implementation and Results 

This chapter describes how the detection system has been implemented within 

an interactive platform. The platform enables users to upload images or videos and 

view detections on a map. The chapter also describes the development environment, 

evaluation metrics, and experimental results. Comparisons are provided to demonstrate 

the model's effectiveness ,and concludes with a discussion of the system's limitations 

and potential future improvements, including integration with drones. 
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Chapter 1 

 

Introduction to Forest Health 

Monitoring and AI Approaches 

 
1.1 Introduction 

 
1.1.1 Forest health monitoring 

 

Forest health monitoring enables landowners and forestry organizations to gain a deeper 

understanding of the forest biome's condition and to detect potential threats, such as those that 

could fuel wildfires. Effective monitoring should be capable of identifying changes that 

indicate more serious issues, such as droughts or tree diseases, and alerting forest managers. 

While many government-run programs track trends on a larger scale, local monitoring is often 

conducted to better address immediate concerns [1]. 

Forest managers may be particularly concerned with the following key elements of forest 

health: 

• Tree density 

• Tree species 

• Tree size 

• Tree health 

• Acres under management 

• Forest growth rate 

• Ecosystem diversity 

• Wildlife habitats 

• Air quality 
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1.1.2  Methods of forest health monitoring 

 
In general, there is no magic bullet when it comes to forest monitoring, forest managers 

will use a variety of methods to guarantee a healthy forest. When combined, the following 

techniques ought to produce reliable forest health monitoring. 

 

 Field inspections: As a sort of spot check, forest managers will physically spend time 

in the forest gathering samples and documenting visual data to provide a more 

comprehensive picture of the health of the forest. Since this approach depends on 

managers, rangers, or wardens physically conducting inspections, it can be time 

consuming and challengingto cover large areas, but it is useful for obtaining a detailed 

look at the forest and identifying specific issues. 

 

 Aerial surveys: A forest manager can gain a good view over a large area by using 

drones to examine the forest canopy ,they can gather data and are quite good at 

mapping and surveying terrain when combined with infrared technology. Even though 

aerial surveys are always improving, they are not as precise as being able to observe 

something on foot. 

 

 Remote sensing technique: Although they are still in their infancy, remote 

technologies like satellites for collectingforest data are advancing quickly. Although 

remote sensing can swiftly cover wide regions and yield detailed information,it might 

be costly and might not be able to identify some problems. Wireless sensor networks, 

or IoT sensors, are another remote method for monitoring forest health, but they are 

frequently more useful. Using a long-range radio network,a network of sensors gathers 

data on temperature, humidity, and natural gasses and transmits i nformation and 

alerts inreal time. Because sensors requirerelatively little maintenance over a period of 

10 to 15 years, forest health monitoring is now quick and easy [2]. 

 

 

 

 

 



5 
 

1.2 Impact of Thaumetopoea pityocampa 
 

1.2.1 Pine Processionary Moth Life Cycle 

 
Thaumetopoea pityocampa, the pine processionary moth, is a pest that feeds on the needles 

of pine trees, causing heavy defoliation. It is endemic to the Mediterranean and southern 

Europe but has spread to other parts of the world. The larvae are well known for their 

"processions" when they move in lines to find suitable places for pupation. 

 

 
 

Figure 1. 1:Thaumetopoea pityocampa [3] 

 

The moth poses both ecological and economic threats by weakening trees and exposing them 

to other pests and diseases. Adult moths have a lifespan of just one day during summer, 

during which they mate and deposit eggs on pine trees. The caterpillars, hatched from these 

eggs, begin consuming the needles of the trees during autumn. 

 

In mid-January, they build impressive white silken nests, about the size of a football, in the 

pine tree foliage and branches. There may be many nests in a single tree. The remainder of the 

winter is spent in these nests high in the trees; they occupy the nests during the day and 

venture out at night to feed on the needles [4]. 
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Figure 1. 2:Life cycle of PPM [5] 

 

 
1.2.2  PPM Damage Symptoms 

 
Pine processionary moth caterpillars feed on pine needles and some other species of conifer 

trees, and in severe infestations cause severe defoliation of trees. This can stress the trees to 

be more vulnerable to attack from other insects or disease, and to environmental stresses such 

as flood or drought. PPM caterpillars have thousands of tiny hairs that carry an urticating, or 

irritating, protein called thaumetopoein, which accounts for its scientific name. Upon contact 

with humans and animals, these hairs can cause painful eye, skin and throat irritations and 

rashes and, in some exceptional cases, allergic reactions. 
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Figure 1. 3:Human Reactions to Thaumetopoea pityocampa Hairs [6] 

 

1.2.3 PPM Nest Characteristics 

 
The most noticeable indication of the presence of pine processionary moth is the large, 

white, silken nests that the Caterpillars spin high in the trees during January. They construct 

these nests amongst the pine leaves and can grow as large as a football. These are the winter 

refuges of the caterpillars, where they huddle together to keep warm and safe while still eating 

and developing. The nests are generally placed at tip ends of branches, especially towards the 

top canopy of the tree, and therefore seen from a distance but less easy to study up close [7]. 

 

 

 

Figure 1. 4:Pine Processionary Moth Nest [8] 
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1.2.4 Manual Detection Methods for PPM Nests 

 

Traditional PPM infestation detection relies to a great extent on ground-level visual 

surveys. Scanners walk along wooded areas, checking individual trees for signs of PPM 

activity, such as the presence of silk nests constructed by wintering larvae. Such nests are 

often found on the periphery parts of host plants, often at the top of branches in the higher 

crown. While this method allows for direct observation, it is laborious and may not effectively 

cover broad or heavily wooded areas [9].  

 

1.2.5 Limitations and Challenges 

 

Manual techniques of PPM infestations detection are confronted with several limitations. 

They are extremely  time-consuming and labor-intensive as people need to walk through the 

forests to inspect every tree individually, especially in dense or large forests where the nests 

are hard to find. The nests are habitually hidden deep in the trees or among the branches, 

hence hard to find. Weather is also a problem rain, snow, or fog can make visibility and 

inspection impossible. There is also the risk of human error, where the inspector might miss a 

nest or get it wrong. Because the process is slow, infestations may spread significantly before 

they are even noticed. 

 

To overcome the many limitations of manual detection methods, researchers and 

practitioners have increasingly turned to automated solutions powered by computer vision and 

deep learning. These advanced technologies offer a scalable, accurate, and time-efficient 

alternative to traditional inspection. By analyzing images captured from drones or ground-

based cameras, computer vision systems can rapidly detect pine processionary moth nests 

with high precision, even in challenging environments or at great heights. This shift from 

manual to automated methods represents a significant advancement in forest health 

monitoring, enabling early detection, faster response, and more efficient management of PPM 

infestations. 

 

 

 

 



9 
 

1.3 Computer Vision Introduction 

1.3.1 Computer Vision Overview 

Computer Vision is a field of Deep Learning and Artificial Intelligence where human 

beings train computers to see and interpret the world they live in. While humans and animals 

automatically solve vision as a problem even at a very young age, helping machines see and 

interpret their surroundings through vision is a large unsolved problem. Limited view of the 

human eye and the infinitely changing landscape of our dynamic world is what renders 

Machine Vision challenging at its very core. 

 

 

 

Figure 1. 5:Human vision system VS cv system [10] 

  

1.3.2 Common Computer Vision Tasks 

Computer vision assignments are basically making computers understand digital images 

and also visual data from the actual world. This could involve extracting, processing, and 

analyzing data from such types of inputs for decision-making. The past of machine vision 

consisted of formalizing tough problems on a grand scale into well-liked solvable problem 

statements. Splitting subjects into well-organized groups with nice naming conventions 

helped researchers around the globe to identify problems and resolve them efficiently. Some 

of the most common computer vision tasks in AI today include image classification, object 

detection, and image segmentation, among others. 
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Figure 1. 6:The most common cv tasks [11] 

 

Computer vision tasks Definition Common Models 

Image Classification 

 

Image classification tasks 

involve CV models classifying 

images into user-defined 

classes for various 

applications. 

 

BLIP, ResNet, 

 

VGGNet 

 

Object Detection and 

Localization 

 

While image classification 

categorizes an entire image, 

object detection and 

localization identify specific 

objects in an image. 

 

Faster R-CNN, 

YOLO, 

 

SSD 

 

Semantic Segmentation 

Semantic segmentation tries to 

label each pixel in an image 

for a finer classification. The 

approach gains more 

classification accuracy by 

labeling the individual pixels 

of an object. 

FastFCN, DeepLab,  

 

U-Net 

 

Table 1. 1:Common Computer vision tasks 
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1.4 Related Works 
 
 

       
 

Ref Year Title Approach Data Type  Dataset Accuracy/FPS Results 

[12 ] 2023 Testing Early Object RGB UAV Custom YOLOv5 0.826 Best 

  
Detection of detection using imagery dataset (presence/absence) 

performance 

  
Pine YOLOv5  (forests in 0.696 

with high- 

  
Processionary and Faster  Catalonia ) (per nest) 

altitude 

  
Moth R-CNN,   Faster 

RGB 

  (Thaumetopoea    R-CNN: images 

  
pityocampa) 

  
 slightly 

 

  Nests Using    lower  

  
UAV-Based 

 

  
  

 

    Methods   
  

 

 

 

    
 

  

[ 13] 2019 Detection Semantic RGB UAV Custom   Accurate 

  and Mapping segmentation imagery    dataset    mapping 

  
of Pine using U-Net  

 
 

  Of nests 

  
Processionary 

   CNN 
 

   

  
Moth Nests 

 
 

   

  
in UAV Imagery 

 
 

   

  Using Semantic 

Segmentation 

     

 

  

 

 
 

[15 ] 2023 Deep-Pest-Detector: CNN with RGB + Multimodal 97% Real-time 

[ 14] 2022 Eco-Friendly Object RGB UAV   Custom / Detection 

  
Fight Against detection using imagery dataset  

was robust 

  
Thaumetopoea YOLOv5    

and reliable 

  
pityocampa     

 

  Infestations     Suitable 

  
in Pine  

 
  

for 

  
Forests Using 

  
  

real-time 

  
Deep Learning 

  
  

field deployment 

  
on UAV Imagery 
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Automated Detection RGB + Thermal Thermal 

   dataset 
 

detection   

  
and Localization image fusion UAV 

   collected 
 

 enabled  

  
of Processionary 

 
imagery 

   during  by onboard 

  
Moth Nests  via 

 
 

   field surveys  drone 

  Aerial Drones     processing 

  
and DNN 

     

 
[16 ] 2023 Palm Tree ResNet and RGB images Custom-

collected 

high classification Effectively 

  Disease Detection transfer learning of palm dataset accuracy identified 

  
Using Residual with Inception    leaves   

palm leaf 

  
Networks ResNet    

diseases using 

  
     

deep learning 

 

[ 17] 2020 VddNet: Vine Custom CNN Multispectral UAV-

collected 

/ High 

precision 
  

Disease Detection architecture and depth 
   imagery 

 
in detecting   

  Network Based (VddNet) images   and localizing  

  
on Multispectral 

 
 

  vine 

  
Images and 

 
 

  diseases 

  
Depth Map 

 
 

   
 

        

        

[ 18] 2023 Deep Learning- 

Based 

Deep CNN 

 model 

High-resolution Custom 

dataset 

high accuracy Accurate 

and 

  
Trees Disease for tree RGB images 

 
 

efficient 

  
Recognition and leaf disease of tree 

 
 

classification 

  Classification  classification   leaves   of leaf 

  
 

 
 

  diseases 

 
[19 ] 2021 Automated  

Detection 

YOLOv4 for 

 object 

RGB UAV 

imagery 

Custom 

dataset 

90% Enabled early 

  
of Olive detection  

 
 

detection 

  Tree Diseases and    of olive 

  
Learning and 

 classification   
 

  diseases 

  Drone      

  
Imagery 

 
 

   
 

        

 
[ 20] 2020 Aerial Spectral 

Imaging 

CNN Hyperspectral 

UAV 

Field data 

from 

85% Detected early 

signs 
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and CNNs for  imagery European  

of ash 

  
Early Detection   ash forests  

dieback 

  of Ash Dieback     -Combined spectral 

  
in Forests     

bands 
improvedclassificat
ion 

accuracy 

compared to 

RGB-only 

models 
 

Table 1. 2:Overview of UAV-Based Deep Learning Methods for Tree Pest and Disease Detection 

 

The review of related works highlights the growing shift toward automated approaches 

powered by deep learning models integrated into UAV-based systems. Whether through 

object detection, semantic segmentation, or multimodal image fusion, these methods are all 

grounded in the principles of artificial intelligence. It is the advancements in AIparticularly in 

machine learning (ML) and deep learning (DL)that have made forest monitoring and pest 

detection faster, more accurate, and more adaptable to complex conditions. 

1.5 Artificial Intelligence Overview 
 

In today's world of rapidly developing technology, one must keep up with advancements in 

artificial intelligence (AI), machine learning (ML), and deep learning (DL). As per Mark 

Cuban, a famous American businessman and television personality: "Artificial Intelligence, 

deep learning, machine learning  whatever you're doing if you don't understand it  learn it. 

Because otherwise, you're going to be a dinosaur within 3 years." This quote underscores the 

importance of continual learning in these cutting-edge fields [21].  

 
 

 
Figure 1. 7:AI and Its Subdomains [21] 



14 
 

 

As illustrated in Figure 1.8, the relationship between Artificial Intelligence (AI), Machine 

Learning (ML), and Deep Learning (DL) is hierarchical. AI encompasses all techniques that 

enable machines to mimic human intelligence. ML is a subset of AI focused on learning from 

data, while DL is a further specialization of ML that leverages deep neural networks to solve 

complex tasks. 

 

1.5.1 Artificial Intelligence (AI) 
 

Artificial intelligence, simply referred to as AI, is the process of providing data, 

information, and human intelligence to machines. Artificial Intelligence's main goal is to 

develop independent machines that can think and act like human beings. The machines can 

replicate human behavior and carry out tasks through learning and problem solving. The 

majority of the AI systems replicate natural intelligence to perform complex problems. 

"AI doesn't have to be evil to destroy humanity – if AI has a goal and humanity just happens 

in the way, it will destroy humanity as a matter of course without even thinking about it, no 

hard feelings". Elon Musk, Technology Entrepreneur, and Investor[21]. 

 

 Types of Artificial Intelligence 

 

 Reactive Machines: Such machines only react. These machines don't create 

memories, and they don't utilize any experience from the past to make new 

decisions. 

 Limited Memory: The past serves as a guide for these machines, and there is 

some information accumulated over time. The information utilized is short-term. 

 Theory of Mind: These are systems that comprehend human emotions and their 

influence on decision making. They are trained to adapt their behavior 

accordingly. 

 Self-awareness: These systems are programmed and designed to be self-aware. 

They have knowledge of their own internal states, forecast other people's 

emotions, and respond accordingly. 
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1.5.2 Machine Learning (ML) 

 

Is a field of Artificial Intelligence (AI) that addresses the improvement of AI systems' 

accuracy using large amounts of data. The data can be in the form of images, messages, 

documents, or even patterns of human behaviors. The ML algorithms take the data in an 

attempt to predict or make decisions about future events. The broad types of machine learning 

are supervised learning, unsupervised learning, and reinforcement learning. 

 

 Types of Machine Learning 

 

 Supervised learning: is the process where models are trained from labeled data 

and inputs are associated with known outcomes. Supervised learning is often used 

for classification and prediction activities, such as image recognition or spam 

detection.  

 Unsupervised learning: is using unlabeled data, and the model determines patterns 

or groupings by itself. It's commonly used in clustering or dimension reduction, for 

instance, customer segmentation. 

 

 
 

Figure 1. 9:Comparing supervised and unsupervised learning [22] 

 

 

 Reinforcement learning: relies on learning through interacting within an 

environment. The model, or agent, receives reward or penalty based on its action and 

learns to choose actions in order to maximize cumulative reward. It's commonly used 

in robotics and playing games. 
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Figure 1. 10:Reinforcement learning processing [23] 

 

1.5.3 Deep Learning (DL) 

 

DL is a specialized field of ML that enables artificial neural networks, multiply layers to 

handle complicated tasks such as face recognition and autonomous driving in vehicles, 

generate images, create videos, craft creative things, produce music and many other 

applications. Deep Learning requires much greater computational power and custom hardware 

to learn hierarchical and sophisticate features automatically from data compared to other 

machine learning models, which require human supervision for feature identification. 

 

 How Does Deep Learning Work? 
 

 
Figure 1. 11:The main components of Deep Learning [24] 
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 Input Layer and Weighted Sums: The input layer of the deep learning model 

takes the input data. Each input has a weight, which signifies the importance of the 

input in reaching the decision. The weights have typically random values assigned 

to them at the beginning of the training. The inputs are multiplied by their 

respective weights, and the products are summed up to provide each neuron with a 

weighted sum. 

 

 Activation Function: The weighted sum is fed to the activation function 

subsequently. The activation function's job is to bring in non-linearity into the 

network so that the network learns to learn complicated patterns in data. The 

activation function also includes a bias in the weighted sum before it moves to the 

next layer or the output layer. The bias enables the model to shift the activation 

function so that it can make more accurate predictions. The function then 

determines if the neuron is to fire or not, i.e., if the output should activate. The 

sigmoid, ReLU (Rectified Linear Unit), and tanh (hyperbolic tangent) functions 

are some of the common activation functions. 

 

 Output Layer : After processing by the hidden layers (which can have multiple 

neurons and activation functions), the model ends up  at the output layer. The 

output layer produces the predicted output of the model based on what has been 

processed by the network. 

 

 Comparison with Actual Output : After the network has made a prediction, the 

predicted output is compared to the actual output (the actual value). This enables 

the network to compute the error (or loss) of the prediction. The smaller the error, 

the better the model. 

 

 Back propagation and Weight Adjustment : Once the error has been computed, 

the model then utilizes back propagation to alter the weights. Back propagation is 

accomplished by feeding the error back through the network, beginning with the 

output layer and moving toward the input layer. In this process, the model moves 

the weights so that the error is minimized overall. Gradient descent is typically 
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utilized for this purpose, where the weights are slowly moved by calculating the 

gradient (or slope) of the loss function. 

 

 Cost Function and Error Minimization: The cost function (or loss function) is 

utilized to determine how far away the model's predictions are from the true 

results. A common cost function is mean squared error (MSE) for a regression task 

or cross-entropy loss for a classification task. The objective of model training is to 

minimize the cost function by back propagating the update in the weights. As the 

weights are updated over numerous iterations (epochs), the network improves in 

generating the correct output, decreasing the error rate. 

 

 Machine learning VS deep learning 
 

 

Machine learning Deep learning 

A subset of AI A subset of machine learning 

Can train on smaller data sets Requires large amounts of data 

Requires more human 

intervention to correct and learn 

Learns on its own from 

environment and past mistakes 

Shorter training and lower 

accuracy 

Longer training and higher 

accuracy 

Makes simple, linear correlations 
Makes non-linear, complex 

correlations 

Can train on a CPU (central 

processing unit) 

Needs a specialized GPU 

(graphics processing unit) to 

train 

 

Table 1. 3:Comparison between ML and DL [25] 
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 Types of Deep Neural Networks 
 

 Convolutional Neural Network (CNN) : is one of the deepest neural networks 

that are most commonly utilized for image processing. CNN is made of four main 

parts. They help the CNNs mimic how the human brain operates to recognize 

patterns and features in images: 

• Convolutional layers 

• Rectified Linear Unit (ReLU for short) 

• Pooling layers 

• Fully connected layers 

 

 
Figure 1. 12:Architecture of the CNNs applied to digit recognition [26] 

 

 Recurrent Neural Network (RNN): Similar to the regular neural networks, 

including feed forward neural networks and convolutional neural networks 

(CNNs), recurrent neural networks are trained from training data. They differ from 

the rest because they possess "memory" since they draw from past inputs to 

determine the current input and output. 

 

While standard deep networks make predictions that inputs and outputs are 

independent, recurrent neural network output relies on the previous elements of the 

sequence. While future events would also be helpful when deciding on the output 

of a particular sequence, unidirectional recurrent neural networks cannot 

incorporate such events into their predictions.  
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Figure 1. 13:Simple Recurrent Neural Network architecture [27] 

 

 Generative Adversarial Network (GAN) : are synthetic models that use two 

neural networks to create novel, synthetic data samples that are copies of existing 

data. A GAN using a photograph can be utilized to create new pictures that seem 

superficially real to the human observer. A Generative Adversarial Network 

(GAN) has two neural networks, the Discriminator and the Generator, and they are 

both trained at the same time under adversarial training. 

• Generator: It accepts random noise as input and generates data (e.g., 

image). Its objective is to generate data as real as possible. 

• Discriminator: This network uses the actual data and the data created by 

the Generator as inputs and tries to discriminate between both. It produces 

the probability that the provided data is real.  

 

 
Figure 1. 14: GAN architecture [28] 
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1.6 Conclusion 
 

This Chapter outlined the necessity for monitoring of forest health, referring to the 

ecological impact of Thaumetopoea pityocampa. It offered the potential of artificial 

intelligence, and specifically computer vision, to enhance the efficiency and accuracy of 

monitoring. Principles of basic AI, machine learning, and deep learning were also addressed 

as background requirements for the techniques developed in subsequent chapters. 
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Chapter 2 
 

Deep Learning Approaches for PPM 

nest detection 
 
 

2.1 Introduction 
 

Mediterranean and European forests are increasingly under threat from the pine 

processionary moth (Thaumetopoea pityocampa), an exotic pest with severe defoliation 

impact and allergenic action in humans and animals. Early and accurate detection of its nests 

is crucial in order to guarantee effective pest control and forest protection. However, 

traditional detection methods i.e. surveying by hand and remote sensing are often limited by 

time, cost, and accuracy, particularly where nests are hidden or in the top canopy. 

 

Recent advances in deep learning have opened up new potential for automated nest 

detection through high accuracy image processing. Convolutional neural network (CNN) 

architectures have proved most successful in object detection tasks, with the potential to be 

achieved at faster, more scalable implementations. Among these, architectures like YOLO, 

Faster R-CNN, and SSD have been successful in real-time detection scenarios. While several 

new versions of YOLO, this study focuses on YOLOv11 due to its balance between speed, 

accuracy, and accessibility at the time of implementation. 

 

 

2.2 Deep Learning for Object Detection 
 

Object detection using deep learning provides a fast and accurate method to estimate the 

object location in an image. Deep learning is a strong machine learning technique in which 

the object detector learns automatically the image features required for object detection tasks. 

Computer Vision Toolbox provides several object detection using deep learning techniques, 

such as you only look once YOLOv2, YOLOv3, YOLOv4, YOLOX, RTMDet, and single 

shot detection (SSD) [29]. 
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Figure 2. 1:Using object detection to identify and locate vehicles. [30] 

 

Two approaches exist for performing object detection using deep learning techniques: 

 Use pretrained object detectors: This method involves utilizing pretrained 

object detectors. Having been trained on vast datasets capable of recognizing 

common objects people, vehicles or text in images without needing retraining. The 

approach is particularly ideal for generic use cases with the requirement for rapid 

deployment. 

 

 Custom object detector: The second method is to create a custom object detector. 

This is typically done by transfer learning, where the pre-trained network is 

customized to perform for specific detection tasks. Through the fine-tuning of pre-

trained models, this method allows for the creation of highly specialized detectors 

with reduced computation cost and time, as the underlying network is already 

trained on large-scale image datasets. The method is particularly beneficial while 

dealing with domain-specific objects that lie outside the domains of typical 

datasets. 

 

2.3 CNN Based Detection Architectures 
 

Convolutional Neural Networks (CNNs) are now a necessity in modern object detection 

applications due to their exceptional ability to learn spatial hierarchies and extract 

meaningful features  from images. For pine processionary moth (PPM) nests detection , 
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CNN-based architectures offer the ability to automatically detect patterns and structures in 

nests, such as complex forest conditions.  

 

Some of the most popular and utilized CNN-based object detectors include YOLO (You 

Only Look Once), Faster R-CNN, and SSD (Single Shot MultiBox Detector), each offering 

different strengths in terms of speed, accuracy and architecture. 

 

2.3.1 YOLO (You Only Look Once) 
 

You Only Look Once (YOLO) is one of the most recent, real-time object detection 

algorithms that was introduced in 2015 by Joseph Redmon, Santosh Divvala, Ross 

Girshick, and Ali Farhadi in their famous paper entitled You Only Look Once: Unified, 

Real-Time Object Detection. The object detection problem is framed by the authors as a 

regression problem rather than as a classification problem by dividing the bounding boxes 

in the spatial manner and providing a probability to every detected image utilizing a single 

CNN [31].  

 

 Mechanism of the YOLO Algorithm 

Yolo divides the image into a grid. For each grid, some values like class 

probabilities and the bounding box parameters are calculated. The model works by 

first dividing the input image into a grid of cells, and each cell will predict a 

bounding box when the center of a bounding box falls within the cell. Each cell in 

the grid estimates a bounding box with the x, y coordinate and width and height and 

the confidence. Each class prediction also relies on each cell. 
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Figure 2. 2:YOLO object detection mechanism [32] 

 

 YOLO architecture  

YOLO resizes the input image to 448×448 before passing it through the convolutional 

network. It starts with a 1×1 convolution that downsamples the number of channels 

and subsequently utilizes a 3×3 convolution to yield a cuboidal output. The activation 

function used throughout the network is ReLU, except for the final layer, which uses a 

linear activation function. Additional techniques, including batch normalization and 

dropout, are used to regularize the model and prevent overfitting. 

 
Figure 2. 3:YOLO Architecture [33] 

 

 
 



26 
 

 The Evolution of YOLO: From 2015 to 2024  

The YOLO (You Only Look Once) series has undergone significant evolution 

since its introduction in 2015, continuously improving in terms of speed, accuracy, 

and architecture design. Each new version has addressed the limitations of its 

predecessors and adapted to new object detection challenges. 

 

1. YOLOv1: Introduced a new approach to object detection by dividing an image into 

an S × S grid. Each grid cell was responsible for detecting an object if the center of 

the object fell within that cell. Each grid cell predicted B bounding boxes with a 

confidence score that indicated how probable the existence of the object is and to 

what extent the predicted box correctly describes the object (using IoU – 

Intersection over Union).  

 

YOLOv1 handled overlapping boxes using Non-Maximum Suppression (NMS) to 

eliminate less accurate predictions. It used a custom loss function for location, size, 

confidence, and class probability to improve training performance.The model 

demonstrated competitive results in terms of both accuracy and speed, as shown in 

the following benchmarks: 

 

 Normal YOLO: 63.4% mAP at 45 FPS 

 Fast YOLO: 52.7% mAP at 155 FPS 

 

While fast, YOLOv1 was afflicted with drawbacks like low recall and localization 

errors, which prompted subsequent versions upgrades. 

 

2. YOLOv2 (YOLO9000): Was proposed in 2016, which is a significant 

enhancement of YOLOv1. The name comes from its capability to recognize more 

than 9000 classes of objects, a major improvement in accuracy and generalization. 

It combines an existing detection dataset with a classification dataset, running joint 

training based on the hierarchical structure of the two datasets, which is one of the 

significant innovations of YOLO9000. The detection images do teach the model to 

localize objects as well, but the classification images also make it learn a more 

diverse set of words with more robustness [34]. 
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Unlike two-stage detectors like Faster R-CNN, YOLOv2 uses single-stage 

detection, which is much faster with not too much loss in accuracy. YOLOv2 passes 

an input image through a deep convolutional neural network (CNN) and outputs 

predictions decoded into bounding boxes. 

 

 
 

Figure 2. 4:predefined anchor boxes [35] 

 

The figure shows predefined anchor boxes (the dotted lines) at each location in a 

feature map and the refined location after offsets are applied. Matched boxes with a 

class are in color. 

YOLOv2 predicts these three attributes for each anchor box: 

 

 Intersection over union (IoU): Predicts the objectness score of each anchor 

box. 

 Anchor box offsets: Refine the anchor box position. 

 Class probability: Predicts the class label assigned to each anchor box [36]. 

 

 

3. YOLOv3: Small changes, big impact. YOLOv3 released in 2018 by Joseph 

Redmon et al[37], brought a series of significant improvements over YOLOv2 

(YOLO9000). While YOLOv2 was already a very successful model, YOLOv3 has 

further improved accuracy, speed and versatility, consolidating YOLO's position as 

one of the most successful object detectors.  

 

 Principal Architectural improvements: YOLOv3 uses Darknet-53, which 
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is a deeper and more powerful network comprising 53 convolutional layers, 

residual connections, and oversampling layers. This replaces the Darknet-19 

network used in YOLOv2 and offers improved feature extraction 

performance, particularly for detecting small objects. Despite being more 

complex, it retains real-time processing capability. 

 

 Better Bounding Box Predictions: YOLOv3 improves bounding box 

prediction by using logistic regression to estimate an objectness score for 

each anchor box. This score indicates whether an anchor box overlaps a 

ground truth box as much as possible (score = 1) or not (score = 0). Unlike 

Faster R-CNN, which can assign several anchor boxes to a single object, 

YOLOv3 assigns a single anchor box per object, which simplifies 

calculations (with no loss of localization or confidence in the absence of a 

match). [38] 

 Smarter Class Prediction:Unlike YOLOv2, which uses the softmax 

function, YOLOv3 introduces independent logistic classifiers for each class. 

This is useful for multi-label classification, where a box may belong to 

several classes (for example, 'Person' and 'Football Player'), reflecting 

complex real-world scenarios. 

 Multi-Scale Detection: YOLOv3 performs predictions at three different 

scales in the network. This enables the model to more effectively detect 

objects of various sizes large, medium and small  by exploiting feature maps 

from different layers of the network. 

 

 
 

Figure 2. 5:Multi-scale Detection Architecture[37] 
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4. YOLOv4: was unveiled in April 2020 by Alexey Bochkovskiy and his team, 

representing a major breakthrough for the YOLO family of object detection models 

[37]. The released version included significant architectural changes, while 

continuing to operate in real-time detection. 

 Architecture: YOLOv4 employed a three-part architecture of backbone, 

neck, and head: 

 

 Backbone: CSPDarknet53 , a convolutional neural network using Cross 

Stage Partial Network (CSPNet) to improve gradient flow and feature 

learning. [39] 

 Neck: Used Spatial Pyramid Pooling (SPP) and Path Aggregation 

Network (PANet), adaptations designed to improve multi-scale feature 

extraction. [40] 

 Head: Used YOLOv3's anchor-based detection mechanism for final 

prediction. 

 

 
 

Figure 2. 6:Yolov4 Architecture [41]. 

 
5. YOLOv5: In June 2020, Glenn Jocher released YOLOv5, marking a significant 

milestone in the evolution of the YOLO family. Unlike its predecessors, which were 

developed on the Darknet platform, YOLOv5 has been implemented in PyTorch, 

which is more versatile and popular, making it more accessible to researchers and 

developers [37]. Ultralytics maintains YOLOv5, but there are no associated 
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academic papers. 

 

 Architecture: YOLOv5's architecture retains the fundamental design 

elements of previous YOLO versions while incorporating innovations that 

improve efficiency and accuracy. The architecture consists of three main 

parts: 

 

 Backbone: YOLOv5 uses CSPDarknet53, a Cross Stage Partial (CSP) 

version of the Darknet-53 backbone introduced in YOLOv4. This 

architecture reduces computations by partially sharing layer gradients, 

which increases learning potential while reducing overlearning. 

 

 Neck: is composed of Path Aggregation Network (PAN) and Spatial 

Pyramid Pooling (SPP) blocks, to improve multi-scale feature 

extraction and detection of objects of various sizes. 

 

 Head: uses convolutional layers to predict objectivity scores, class 

probabilities and bounding boxes, thanks to an anchor-based approach. 

 
 

Figure 2. 7:Yolov5 Architecture[42] 

 

6. YOLOv6: is a single-stage, industry-oriented object detection system based on 

PyTorch. Key improvements over YOLOv5 in this version include a hardware-

optimized backbone and neck architecture, a refined decoupled head, and an 

improved training strategy. YOLOv6 outperforms previous models in the YOLO 
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series in terms of accuracy and speed, as confirmed by the COCO dataset. 

While YOLOv6-N achieved 1,234 FPS and 35.9% AP on an NVIDIA Tesla, 

YOLOv6-S set a new record with 43.3% AP at 869 FPS. Even higher accuracy was 

achieved by YOLOv6-M and YOLOv6-L, with 49.5% and 52.3% AP respectively, 

without compromising speed. [43] The architecture consists of three main parts: 

 

 Backbone: uses a hardware-optimised architecture, often based on 

EfficientRep, to improve speed and compactness while retaining good 

feature extraction capabilities. 

 

 The Neck is composed of a Rep-PAN (Replicated Path Aggregation 

Network) and enables better multi-scale feature fusion, enhancing the 

detection of objects of different sizes. 

 

 The head of YOLOv6 is decoupled, separating the classification and 

regression branches to improve accuracy and convergence during training. 

 
Figure 2. 8:YOLOv6 network architecture[44] 

 

7. YOLOv7: Is one of the latest model in the sequence of YOLO models. YOLO 

models are one-stage object detectors. Image frames get featurized inside a YOLO 

model through a backbone. The features are blended and merged within the neck 

and further forwarded to the head of the network YOLO predicts locations and 

classes of objects where bounding boxes are to be drawn.YOLO does a post-

processing via non-maximum suppression (NMS) to come up with its final 

prediction. 
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Figure 2. 9:YOLOv6 network architecture[45] 

 

8. YOLOv8: Was released by Ultralytics on January 10th, 2023, with cutting-edge 

performance in speed and accuracy. Building on the advancements of previous 

YOLO releases, YOLOv8 introduced new features and optimizations that make it 

an excellent choice for many object detection tasks across a wide range of tasks. 

 

 
Figure 2. 10:YOLOv8 Comparison with Other Versions verions [46] 

 

 Key Features of YOLOv8: 

 

 High-Level Backbone and Neck Architectures: YOLOv8 employs state-

of-the-art backbone and neck architectures, resulting in improved feature 

extraction and object detection performance. 

 Anchor-free Split Ultralytics Head: YOLOv8 employs an anchor-free 

split Ultralytics head, thereby providing better accuracy and a more 

efficient detection process than anchor-based techniques. 

 Optimized Speed-Accuracy Tradeoff: Focusing on attaining a best-case 

speed-accuracy tradeoff, YOLOv8 is suitable for real-time object 

detection tasks in many areas of application. 
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 Variety of Pre-trained Models: YOLOv8 offers a range of pre-trained 

models to meet various tasks and performance requirements, and it's 

simple to locate the model that best suits your specific application. 

 

 Architecture: the YOLOv8 architecture consists of three primary 

components: 

 

 
Figure 2. 11:YOLOv8 architecture [47] 

 

 

 Backbone: This is a convolutional neural network (CNN) module whose 

task is to extract important features from the input image. YOLOv8 

employs an adapted version of CSPDarknet53, which incorporates 

Cross-Stage Partial (CSP) connections to enhance feature propagation 

while reducing computational complexity, ultimately increasing model 

accuracy. 

 

 Neck: Also referred to as the feature aggregation layer, the neck 

combines feature maps of various stages within the backbone to allow 

for efficient incorporation of multi-scale information. Unlike traditional 

YOLO models of the Feature Pyramid Network (FPN) type, YOLOv8 

introduces the C2f module which effectively merges high-level semantic 

features and low-level spatial information. The model has improved 

performance in detecting small and densely packed objects using this 

architecture. 
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 Head: YOLOv8 head is tasked with generating final predictions. It 

consists of a number of detection layers that yield outputs in the shape of 

bounding box coordinates, objectness scores, and class probabilities for 

each grid cell in the feature map. These are then improved upon by post-

processing steps in an attempt to obtain the final detection outputs[48]. 

 

9. YOLOv11: At the YOLO Vision 2024 (YV24) conference, the newest advancement 

in the YOLO (You Only Look Once) line of object detection was unveiled: 

YOLOv11. It expands on YOLOv1's original concepts by refining training protocols 

and architectural design to increase precision, speed, and effectiveness. YOLOv11 can 

accomplish a variety of computer vision tasks, including object detection, 

classification, instance segmentation, pose estimation, and oriented object detection, 

with enhanced feature extraction and reduced parameters, all while preserving high 

computational efficiency and real-time performance[49].  

 

 Architecture: YOLOv11 boasts a simplified architecture targeting high 

accuracy and real-time processing. There are three essential components: 

 

 Backbone: accepts features from the input image with enhanced 

convolutional layers. It introduces the C3k2 block, which is an enhanced 

C3 and CSP bottleneck, and includes a C2PSA (Cross Stage Partial with 

Spatial Attention) module for boosting spatial attention and detection 

capability. 

 

 Neck: Merges multi-scale features from the backbone via upsampling 

and concatenation. Feature fusion is optimized by applying C3k2 blocks 

and the C2PSA attention mechanism, especially for small and occluded 

object detection. 

 

 Head: Generates the final prediction (class labels and bounding boxes) 

via a number of C3k2 and C3k blocks, which scale based on kernel size 

and depth to optimize precision without compromising computational 
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efficiency. 

 

 
 

Figure 2. 12:YOLOv11 architecture[50] 

 

  

Version Year Key Features Performance Impact 

YOLOv1 2015 
Unified architecture for real-time 

object detection 

63.4% mAP at 45 

FPS on PASCAL 

VOC 2007 

Pioneered real-time 

object detection with a 

single neural network 

YOLOv2 2016 

Introduced batch normalization, 

high-resolution classifiers, and 

anchor boxes 

76.8% mAP at 67 

FPS on PASCAL 

VOC 2007 

Improved accuracy and 

speed; expanded 

applicability 

YOLOv3 2018 

Used Darknet-53 backbone; multi-

scale predictions; feature pyramid 

networks 

57.9% AP on 

COCO dataset 

Enhanced detection of 

small objects and 

improved accuracy 

YOLOv4 2020 

CSPDarknet53 backbone; mosaic 

data augmentation; self-adversarial 

training 

43.5% AP at 65 FPS 

on COCO dataset 

Balanced speed and 

accuracy; widely adopted 

in industry 

YOLOv5 2020 

Focused on ease of use; 

implemented auto-learning 

bounding box anchors 

50.4% AP at 140 

FPS on COCO 

dataset 

User-friendly; facilitated 

deployment in various 

applications 

YOLOv6 2022 

Optimized for mobile devices; 

introduced efficient backbone and 

neck designs 

43.1% AP at 120 

FPS on COCO 

dataset 

Enabled real-time 

detection on edge 

devices 
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Version Year Key Features Performance Impact 

YOLOv7 2022 

Extended efficient layer 

aggregation networks; model 

scaling techniques 

51.4% AP at 150 

FPS on COCO 

dataset 

Achieved state-of-the-art 

performance; efficient 

for various tasks 

YOLOv8 2023 

Incorporated transformer layers; 

adaptive computation for dynamic 

scenes 

53.9% AP at 160 

FPS on COCO 

dataset 

Improved handling of 

complex scenes and 

occlusions 

YOLOv9 2024 

Introduced Generalized Efficient 

Layer Aggregation Network 

(GELAN) and Programmable 

Gradient Information (PGI) 

YOLOv9e variant 

achieved 55.6% 

mAP with 58.1M 

parameters 

Enhanced accuracy and 

efficiency; suitable for 

diverse applications 

YOLOv10 2024 
Advanced loss function; variants 

from nano to extra-large models 

YOLOv10-S 

achieved 46.3% 

APval with 2.49ms 

latency 

Reduced latency and 

parameter count; 

adaptable to various 

computational needs 

YOLOv11 2024 

Transformer-based backbone; 

dynamic head design; NMS-free 

training 

61.5% mAP at 60 

FPS with 40M 

parameters 

Improved speed and 

accuracy; efficient for 

real-time applications 

YOLOv12 2025 

Area Attention Module (A2); 

Residual Efficient Layer 

Aggregation Networks (R-ELAN); 

Flash Attention 

YOLOv12-Nano 

achieved 40.6% 

mAP with 1.64ms 

latency 

Combined attention 

mechanisms with speed; 

effective in real-time 

scenarios 

 

Table 2. 1:YOLO Series – Comparison [51] 

 

2.3.2 Faster R-CNN 
 

Most of the latest models available today stem from the work produced by the Faster R-

CNN model. Faster R-CNN is an object detection model that classifies objects within an 

image, draws bounding boxes around them, and identifies what those objects are. It 

processes in two stages: 

 

 Stage 1: Proposes possible areas in the image that might contain objects, 

governed by the Region Proposal Network (RPN). 
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 Stage 2: Uses these proposed regions to predict the class of the object and 

refines the bounding box to better fit the object. 

 

 
 

Figure 2. 13:Faster R-CNN Architechture [52] 

 

2.3.3 SSD (Single Shot MultiBox Detector) 
 

SSD is composed of two components: SSD head and backbone model. Backbone model 

is usually a pre-trained image classification network as a feature extractor. It is usually a 

network like ResNet trained on ImageNet with the last fully connected classification layer 

discarded. This leaves a deep neural network that can capture semantic meaning of the 

input image and also preserve the spatial organization of the image but at a lower 

resolution. For ResNet34, the backbone produces a 256-channel 7×7 feature map for an 

input image. The definitions of feature and feature map will be provided later. The SSD 

head is just one or several convolutional layers added on top of this backbone and the 

outputs are interpreted as the object classes and bounding boxes in the spatial location of 

the final layers' activations. 

 

In the figure below, the early layers (white boxes) are the backbone, the later layers (blue 

boxes) are the SSD head 
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Figure 2. 14:Architecture of a convolutional neural network with a SSD detector [53] 

 

2.4 YOLOv11 for PPM Nest Detection 
 

After studying several object detection architectures based on deep learning, YOLOv11 

was selected as the starting model for the detection of Thaumetopea pityocampa (the pine 

processionary caterpillar) nests. This choice is explained by YOLOv11's advanced 

capabilities for real-time detection and identification of small objects, as well as its efficient 

anchorage-free architecture, which perfectly meets the specific challenges of ecological 

image analysis. 

 

Nests of Thaumetopea pityocampa (the pine processionary caterpillar) often appear as 

small, dense and irregular formations on pine trees, frequently blending into the natural 

texture of the environment. Variability in terms of size, shape and position requires an 

architecture capable of efficiently extracting features at different scales, while being robust in 

the face of visual complexity. YOLOv11's improved backbone, combined with its neck based 

on the C2f structure, enables it to capture both high-level and low-level features, making it 

particularly suited to the detection of these nests. 

 

YOLOv11 also offers a good compromise between accuracy and inference speed, enabling 

its potential use in real-time forest monitoring systems or devices deployed in the field. 

Support for several variants of the model (YOLOv11, YOLOv11s, for example) enables 

adaptation to suit available computing resources and performance requirements. 
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Furthermore, YOLOv11 is both a technically powerful and practical tool for 

environmental monitoring research thanks to its ability to generalize across different datasets 

and the ongoing support of the Ultralytics ecosystem in terms of ease of training, testing and 

integration into real-life use cases. 

 

To ensure the effectiveness of the YOLOv11-based detection system, the choice of dataset 

plays a crucial role. The model's performance heavily depends on the quality, diversity, and 

annotation accuracy of the data used for training and evaluation. In the context of detecting 

pine processionary moth nests, it is essential to provide images that reflect real-world 

conditions, including various lighting, angles, and environmental complexity. A carefully 

constructed dataset tailored to these challenges significantly enhances the model’s ability to 

generalize and perform reliably in field applications. 

 

2.5 Dataset 
 

The dataset used in this study consists of two parts. The first data was accessed through 

the Roboflow platform, which provides pre-labeled image datasets for computer vision 

tasks. It contains images of pine processionary moth (Thaumetopea pityocampa) nests 

captured in various forms of forests capes. They were taken from both aerial and ground-

level perspectives, under varying lighting conditions, and with varying backgrounds. The 

dataset also includes both negative and positive examples images with and without nests 

visible such that the model can distinguish real nests from similar visual features like pine 

cones and branches. Annotations are provided in YOLO format, making the dataset 

directly compatible with the YOLOv11 training pipeline. 

 

The second dataset is a custom dataset captured by our team using a standard digital 

camera. These images were taken during field visits in local forested areas, primarily for 

real-world scenario-based testing and model validation. Further information about the data 

collection process as well as field conditions are provided in Chapter 3. 
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Figure 2. 15:Labeled image showing bounding boxes around PPM nests 

 

 

 
 

Figure 2. 16:The diversity of scenes and nest appearances in the dataset 

 

2.6 Challenges in PPM Nest Detection 
 

Detection of pine processionary moth (PPM) nests by deep learning methods is 

confronted with several challenges, primarily due to the complexity of forest environments 

and the nests themselves. These pose challenges for both model training and real-world 

model application. 

 



41 
 

 Limited Availability of Large Data Sets 

One of the largest challenges to develop accurate PPM nest detection models is the 

absence of large, high-quality datasets. While there are sites that offer annotated and 

curated image datasets for computer vision tasks, they do not contain the quantity 

and diversity required to effectively train deep learning models. This limitation 

prevents the model from being capable of generalizing well to different forest 

conditions and types of nests. 

 Visual Similarity with Natural Elements 

PPM nests tend to appear very similar to natural objects such as clumps of pine 

needles, pine cones, or bright spots caused by sunlight. Same appearance 

regarding the way they appear increases the chances that there will be false 

positives or false negatives, especially in heavy forest cover. 

 

 Variation in Nest Appearance 

Nests could be distinctly varying in shape, size, texture, and visibility depending 

upon infestation age, light level, and the angle from which the image is captured. 

Such variation makes it difficult for models to learn to generalize in all possible 

cases.. 

 

 Occlusion and Background Clutter 

Nests in the majority of cases are partly occluded by leaves, branches, or other 

forest elements. This occlusion, along with the variability and cluttered 

background, prevents the model from easily identifying nest structures. 

 

 Small Object Detection 

Some nests are captured from a distance either by drone or camera making them 

appear very small in the picture. The detection of such small objects is a known 

limitation for most object detection models, especially outdoors. 

 

 Lighting and Weather Conditions 

Environmental condition variability such as shadows, fog, rain, or harsh contrast 

sunlight may cause both nests and surrounding trees to appear irregularly. These 

inconsistencies make the detection even more difficult. 
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2.7  Existing Research and Research Gaps 

Advancements in deep learning  have enabled researchers to develop pine processionary 

moth (PPM) nest automatic detection systems. Several methodologies were explored in 

various studies,whose results were found to be positive: 

 

 Multi-Stream Convolutional Neural Networks: Jaber et al. (2021)[ 15] had put 

forward a system that integrated RGB and thermal images, which were analyzed 

through a two-channeled deep convolutional neural network. The system achieved a 

mean accuracy of 97% in detection and allowed geo-localization of the nests to the 

centimeter order.  

 

 UAV-Based Forest Detection Using Deep Learning: Garcia et al. (2023)[12] 

experimented with the UAV use and deep learning models, YOLO and Faster R-

CNN, on various types of forests in south Europe. They discovered that YOLO 

outperforms Faster R-CNN with F1-measures 0.826 for presence/absence and 0.696 

for single nest detection. 

 

 Semantic Segmentation Methods: Akıncı and Göktoǧan (2019) [13] utilized 

semantic segmentation on UAV images for mapping and detection of PPM nests in 

pine plantations. The method enabled the generation of spatiotemporal maps, thus 

making it easier to carry out strategic planning in the management of PPM 

infestation. 

 

 

 

2.8 Conclusion 
 

This chapter provided a general description of deep learning techniques employed in 

detecting pine processionary moth (PPM) nests, i.e., the CNN-based architectures such as 

YOLO, Faster R-CNN, and SSD. YOLOv11 was accorded special attention since it 

possesses a newer architecture and was observed to be very proficient in real-time object 

detection tasks. The datasets employed in this work were also described, commenting on 

their range and relevance to the task. 
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By going through previous work, it was evident that while deep learning-based models 

have achieved promising results, there are issues primarily environmental variance, small 

and distant targets, and insufficient availability of large, diverse datasets. Research 

limitations were identified as far as model generalization, real-time performance, and 

insufficient testing of recent model versions like YOLOv11 are concerned. 

 

These observations lay the groundwork for the experimental method outlined in the 

following chapter, where model training, data preprocessing, and measurement of 

performance are elaborated on. 
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Chapter 3 

 

System Design and Model Development 

 

3.1 Introduction 
 

This chapter presents the applied design and development process of the intelligent system 

for Thaumetopoea pityocampa nest detection. The focus is placed on the selection and 

configuration of the most suitable deep learning model for the application, data preparation, 

solving of specific detection issues, and integration of supporting technologies such as GPS-

based localization. The deployment leverages advanced computer vision and data 

preprocessing techniques to enhance accuracy of detection, especially under adverse 

conditions such as distant or small-sized nests. The decision made at this point was governed 

by the goal of having a robust, scalable, and feasible solution for real-world forest health 

monitoring use cases. 

 

3.2 System Objectives 

 

The main objective of the system is the automatic detection and localization of 

Thaumetopoea pityocampa nests in forest environments using deep learning. To achieve this, 

the system is designed with the following specific goals: 

 

 High Detection Accuracy: Be able to identify nests of different shapes and sizes, 

partially hidden or far away from the camera. 

 Precise Localization: Use GPS metadata from the captured image to correlate 

every detected nest with its geographical location 

 Enhanced Detection Performance: Improve accuracy through preprocessing by 

using Multi-Scale Patch Analysis (MPA), in case of small or faraway nests. 
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3.3 YOLOv11 Model Selection 
 

YOLOv11 was selected for detecting Thaumetopoea pityocampa nests due to its advanced 

architecture, real-time performance, and adaptability to complex detection tasks. Its design 

offers several key advantages: 

 Best precision/efficiency compromise: YOLOv11 offers higher precision than 

YOLOv8m, while reducing the number of parameters by 22%, making it more 

compact and faster. [54]                   

 Optimized real-time performance: with an inference time of just ≈2.4 ms on a 

TensorRT FP16 GPU, YOLOv11n is among the fastest models in the series, well 

ahead of YOLOv8, v9 and v10.[49]   

 Enriched architecture: YOLOv11 incorporates new blocks such as C3k2, SPPF 

and C2PSA, which enhance multi-layer feature extraction essential for the 

detection of small and complex objects. 

 Mature ecosystem for conservation: YOLOv11 benefits from a powerful 

Ultralytics ecosystem, including experimental monitoring tools (e.g. DVCLive), 

tutorials, multi-platform deployment and support for environmental tasks such as 

species monitoring or pollution detection.[55] 

 

3.4 Components of YOLOv11 
 

As part of our application dedicated to the detection of Thaumetopoea pityocampa nests, 

YOLOv11 offers a series of powerful, modular functionalities that perfectly meet the 

requirements of precision, flexibility and integration. Available tools include: 

 Oriented bounding boxes (-obb), useful for detecting nests that are tilted or 

partially visible at non-standard angles. 

 Pose estimation (-pose): in future versions, this feature could be used to isolate 

the precise contours of nests instead of simple boxes. 

 Instance segmentation (-seg): this functionality, which will be integrated in 

future versions, will enable the precise contours of nests to be isolated instead of 

simple boxes. 

 Classical object detection is at the heart of our current approach to locating nests 

with precision. 
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 Classification (-cls): can be used to distinguish nest types or development stages. 

 

YOLOv11 offers these tools in several sizes (nano, small, medium, large, x-large), 

allowing adaptation to the resources available. Thanks to its easy integration with the 

Ultralytics library and the Ultralytics HUB platform, the model can be trained, exported 

and then efficiently deployed in our pipeline [56]. 

 

Model 
Size 

(pixels) 

mAPval 

(50-95) 

Speed CPU 

ONNX (ms) 

Speed T4 

TensorRT10 (ms) 

Params 

(M) 

FLOPs 

(B) 

YOLOv11n 640 39.5 56.1 ± 0.8 1.5 ± 0.0 2.6 6.5 

YOLOv11s 640 47.0 90.0 ± 1.2 2.5 ± 0.0 9.4 21.5 

YOLOv11m 640 51.5 183.2 ± 2.0 4.7 ± 0.1 20.1 68.0 

YOLOv11l 640 53.4 238.6 ± 1.4 6.2 ± 0.1 25.3 86.9 

YOLOv11x 640 54.7 462.8 ± 6.7 11.3 ± 0.2 56.9 194.9 

 

Table 3. 1:YOLOv11 performance on COCO Object Detection 

 

It provides better feature extraction with more accurate detail capture, higher accuracy 

with fewer parameters, and faster processing rates (better real-time performance). 

 

3.5 Overall System Architecture 
 

The model follows a modular pipeline designed to detect and localize Thaumetopoea 

pityocampa nests in field images. The main components are: 
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Figure 3. 1:System pipeline for the detection and localization of PPM nests (Source: Authors) 

 

1. Input Images: There is two main sources a public dataset from Roboflow and 

photos taken by hand which have GPS metadata. 

2. Preprocessing: Before detecting nests, the images are preprocessed with techniques 

like Multi-Scale Patch Analysis. This helps make small or distant nests easier to see. 

it also includes other techniques likes resizing . 

3. Nest Detection: Once the images are ready, they are passed through a YOLOv11-

based detection model, which detects the nests and draws boxes around them. 

4. Visualization with GPS: If GPS metadata is there, the system grabs the location 

data from the photos and maps where each nest is. 

 

3.6 Dataset Description 
 

The dataset used for this project consists of two primary sources, each selected to 

support different stages of the system development process: 

1. Training Dataset Roboflow: 

The model was trained using a dataset sourced and annotated through the Roboflow 

platform[61].This dataset includes a wide range of images of Thaumetopoea pityocampa 

nests captured under varying environmental conditions. Roboflow's preprocessing, 

augmentation, and export tools (e.g., for YOLO format) facilitated efficient preparation of 

the training data. 
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2. Testing Dataset Field Images (Personal Collection): 

Field testing was conducted using images collected manually across three visits to 

forested areas in the region of Guelma, specifically in Aïn Ksoub, Roknia, and 

Bouhmedene. 

 During the first two visits, high-resolution images and videos were captured using a 

professional camera to ensure image clarity for detection evaluation. 

 

 

 

Figure 3. 2:Field Images Collection: Nest Samples and On-Site Work 

 
 

 In the third visit, smartphones were used to collect images containing GPS 

metadata, enabling geolocation of detections and validating the model's application 

in spatial mapping. 
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3. YOLOv11 Annotation Format : 

YOLOv11 uses a straightforward annotation format that is an extension of what was 

used with YOLOv11. For each image, there's a corresponding .txt file where each line 

represents one object in the image. [58] 

 

 
 

Figure 3. 3:YOLOv11 Annotation Format 

 

Each line contains: 

• The class ID (a number starting from 0) 

• center_x: the horizontal center of the box 

• center_y: the vertical center 

• width: how wide the box is  

• height: how tall the box is 

 

3.7 Dataset Preparation 
 

The precision and preprocessing of the dataset play a critical role for high detection 

accuracy. Several preprocessing and enhancement techniques were employed in this 

project to address detection problems and improve model performance. 

 

3.7.1 Small and Distant Nest Problems 
 

Initial experiments with YOLOv11 on the raw data were disappointing for detecting 

small or distant nests. These nests were not being detected due to their low resolution in 

wide-angle forest scenes. The model achieved a mAP@0.5 of approximately 88.9% and a 

precision of 90.7%,before applying MSPA, but nearly all the false negatives were in such 

challenging cases. 
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3.7.2 Multi-Scale Patch Analysis (MSPA) 

 

To overcome the challenge of identifying small, distant nests, we adopted the Multi-

Scale Patch Analysis (MSPA) approach, which draws inspiration from techniques 

employed in smart farming, as outlined in the article 'Smart Farming Solutions': Automated 

Crop and Plantation Disease Detection' (ResearchGate, 2024) [59]. 

 

This method involves generating several image patches at different scales from each 

original image and focusing on areas with a high probability of nest occurrence (e.g. tree 

branches). Dividing the original high-resolution image into enlarged regions of interest 

enables even very small or partially hidden nests to be captured with sufficient resolution 

for reliable detection. 

 

Patch generation 

To create relevant patches from annotated images, we used a custom Python script that 

follows several key steps. The main function responsible for this process is the 

'generate_multi_scale_patches' function, which: 

 loads images and their associated annotations in YOLO format using the 

load_images_and_labels function. 

 Analyzes the size of each annotated nest (bounding box) using the calculate_nest_size 

function. 

 Each nest is categorized as very small, small, medium, or large based on the area it 

occupies relative to the image size. 

 Extracts a square patch centered on each nest, whose size depends on the nest category: 

 320 × 320 pixels for medium-sized nests. 

 448 × 448 pixels for large nests. 

 Extremely small nests, which occupy less than 0.5% of the image area, are ignored in 

order to reduce noise and avoid introducing information that is of little use to the 

model. 

Re-annotation of Nests in Patches 

After extracting the patches centred on the nests, it is crucial to adjust the annotations (or 

'bounding boxes') of the visible objects within each patch. This is because the original 

coordinates are no longer valid for these partially extracted images. The 

adjust_bounding_boxes function is used for this purpose. 
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Therefore, all nest annotations visible within a patch must be recalculated relative to the 

new patch size using a coordinate transformation, to ensure that the bounding boxes retain 

their accuracy when the model is trained. 

The formula used to convert the absolute coordinates of objects in the original image to the 

normalized coordinates of the patch is as follows: 

 

 

Figure 3. 4:YOLO Coordinate Transformation for Image Patch 

 

 (x1, y1, x2, y2) are the top-left and bottom-right coordinates of the patch in the original 

image. 

 The width and height of the patch: 

 patch_w = x2 - x1 

 patch_h = y2 - y1 

 The original object (nest) has absolute center (x_original, y_original) and size 

(w_original, h_original) in pixels. 

 

 

Figure 3. 5:Example of Multi-Scale Patch Analysis (from personal dataset created) 

 

By breaking the large images into overlapping and multi-scale windows, MSPA ensures 

that even the smallest nests are presented to the model at sufficient resolution. This 

significantly improves detection accuracy, especially for low-resolution targets or partially 
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occulted nests in tall vegetation. 

     

After applying MSPA, the model's mAP@0.5 improved from approximately 88.9% to 

98.4%, and precision increased from 90.7% to 94.9%, demonstrating the method's potential 

to mitigate false negative. 

 

 

 

Figure 3. 6:Illustration of Multi-Scale Patch Analysis (MSPA): Original Image and 

Corresponding Zoomed Patches Author, from personal dataset created 

 

3.7.3 Dataset Splitting and Augmentation 
 

The initial dataset was sourced from Roboflow, where it was automatically divided into 

training, validation, and testing sets in accordance with standard deep learning practices. To 

enhance the model’s robustness to real-world conditions, data augmentation was performed 

directly on Roboflow using its built-in parameters. 

 

These adjustments (Figure 3.7) helped in simulating different real-life situations such as 

changing lightings, positions, and sizes of objects. 
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Figure 3. 7:Data Augmentation Parameters Used in Roboflow [60] 

 

 

Rebalancing after MSPA 

However, after applying the Multi-Scale Patch Analysis (MSPA) method, implemented 

via the generate_multi_scale_patches function, a new version of the dataset was generated, 

consisting of multi-scale patches extracted around the nests. This process led to an 

imbalance: images containing multiple nests (or large nests) produced a large number of 

patches, while others generated few. To correct this imbalance, a set of specific pre-

processing steps was applied: 

 

 normalize_patch_distribution, which was used to limit the number of patches per 

image by selecting only useful patches, in order to avoid over-representation of dense 

scenes. 

 The filter_useless_patches function was used to remove blurry, empty, or poorly 

framed patches, i.e., those that do not contain any visible nests or cannot be used for 

learning. 

 augment_underrepresented_patches: to compensate for the under-representation of 

certain images after the MSPA step, this function applied targeted local augmentations 

(rotation, flip, brightness modification, etc.) only to patches from underrepresented 

images. This restored a certain balance to the dataset in terms of image volume and 

visual diversity. 
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Final division of the dataset 

After the multi-scale patch generation (MSPA), filtering, and targeted augmentation 

steps, the final dataset was divided into two subsets: 80% for training and 20% for 

validation. This division was performed randomly using a Python script. Unlike these sets, 

the test set was not extracted from the main dataset, as the model testing phase was carried 

out on a set of real images captured in the field (personal collection). 

 

 

 
 

Figure 3. 8:MSPA dataset preparation pipeline 

 

 

3.8  Model Configuration and Training 
 

3.8.1 Training Strategy 

 
After the preparation of the dataset by merging normal images and multi-scale patches 

the training is done by employing the YOLOv11 model optimized for small and distant 

nest detection. The training process employed top techniques to achieve maximum 

performance: 

 

• Multi-Resolution Training 

To improve generalization across images of varied quality and nest sizes, multi-

resolution training was used. This technique randomly changes the resolution of 

input images during training, allowing the model to learn more effectively for nests 

of different sizes and visibility. 
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• Mosaic Augmentation During Training 

Although core data augmentation was done initially via Roboflow, mosaic 

augmentation was also utilized dynamically during training time. Mosaicing four 

training images together, this technique augments context diversity and allows the 

model to generalize to varied environments, such as cluttered forest settings. 

 

3.8.2 Hyperparameters and Loss Function 

 

 Hyperparameters 

The selection of hyperparameters played a crucial role in the adjustment of performance of 

the YOLOv11 model for nest detection of Thaumetopoea pityocampa. Rather than fixed 

values, the values of significant hyperparameters such as the number of epochs, batch size, 

and learning rate were selected experimentally. Multiple training experiments using 

different settings were conducted to allow us to view their impact on performance 

parameters and convergence behavior. The final setup was selected based on the best 

accuracy, training time, and regulation of overfitting. 

The final configuration that yielded the optimal performance is the following: 

 

Parameter Value Justification 

Epochs 50 
Moderate value providing enough learning cycles for the 

enlarged dataset. 

Image Size 640 × 640 
Balanced resolution ensuring small nest detection with 

reasonable training speed. 

Batch Size 16 
Fits within GPU memory while maintaining stable gradient 

updates. 

Device 
CUDA 

(GPU) 

Accelerated training performance and ability to handle larger 

data efficiently. 

Model 

Variant 
YOLOv11n 

Lightweight model enabling faster experimentation with 

competitive accuracy. 

 

Table 3. 2:Final YOLOv11 Training Configuration and Hyperparameters 
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 Loss Functions 

During training, the model converges to a composite loss function internally, as is 

standard in YOLOv11 but critical to mention: 

 

 CIoU (Complete Intersection over Union) Loss 

Used for bounding box regression, this loss enhances accuracy by considering not only 

the overlap area but also the center distance and aspect ratio between predicted and ground 

truth boxes. 

 train/box_loss: Decreased from approximately 2.05 to 0.55 

 val/box_loss: Decreased from around 1.80 to 0.78 

 

 Binary Cross Entropy (BCE) Loss 

This loss is applied both to the objectness score and the classification of detected objects. 

It performs effectively in binary and multi-label classification tasks, which are typical in 

object detection. 

 train/cls_loss: Dropped from over 2.0 to around 0.35 

 val/cls_loss: Dropped from 1.3 to approximately 0.4 

 

 Distribution Focal Loss (DFL) 

Introduced in recent versions of YOLO, DFL improves the accuracy of predicted bounding 

box coordinates by learning a distribution over discrete distance bins. It improves the 

accuracy of localisation by refining how the model interprets object boundaries. 

 Train/DFL loss: Decreased from 1.40 to 0.80. 

 Val/DFL_Loss: Decreased from 1.35 to 0.95. 
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Figure 3. 9:Loss Function Curves (Box, Cls, DFL) – Training and Validation 

 

The steady and consistent decrease in the three loss functions (CIoU, BCE, and DFL), 

both for training and validation, indicates that the model is learning effectively. The 

proximity of the values between the training and validation curves rules out any overfitting, 

and the low final values indicate good generalization as well as accurate localization of 

Thaumetopoea pityocampa nests. These results confirm the stability and robustness of the 

training process with YOLOv11 for this task. 

 

 

3.8.3 Challenges Faced During Training 

 

 Limited Dataset Size: Before applying the Multi-Scale Patch Analysis (MSPA) 

strategy, the available dataset was relatively small. The small volume of data limited 

the model's exposure to diverse nest conditions, with the potential for overfitting and 

reduced generalization performance on new samples. 

 

 Camouflaged Nests in Natural Backgrounds: Thaumetopoea pityocampa nests 

merge with the environment due to the same textures and colors. Camouflage made the 

model difficult to learn discriminative features. The issue was addressed by increasing 

the resolution and diversity of training examples and adding augmentations to 

familiarize the model with varying lighting, textures, and angles. 
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 Detection of Small and Far away Nests: One of the main issues was accurately 

detecting nests that were either too far away or too small from the camera. These nests 

lacked sufficient visual salience in full-resolution images. This was resolved by 

utilizing the MSPA approach to generate high-resolution patches centered around the 

potential nest areas, significantly improving detection rates. 

 

 
Before MSPA                                                        After MSPA 

 

Figure 3. 10:Impact of MSPA on Detection Performance 

 

The left image shows the detection result without applying Multi-Scale Patch 

Analysis (MSPA), the model failed to detect the distant and small nest. The right 

image is the detection result after MSPA was applied, which the nest is detected 

successfully. MSPA enhances detection by generating focused high-resolution 

patches, especially for small or camouflaged objects. 

 

 Overfitting on Early Training: Due to the small size of the dataset in the initial 

stages of training, the model was plagued by overfitting good performance on training 

data but poor on validation or test data. This was countered with increasing the size of 

the dataset with MSPA, applying data augmentation (e.g., Mosaic), and controlling 

through dropout and early stopping. 

 

 Lack of Geolocation Data: None of the original photos included GPS metadata, 

limiting the geolocation of recognized nests. Fieldwork was consequently conducted to 

capture new photos using GPS enabled devices manually. While these images were not 

used for training, they enriched the dataset for evaluation purposes and enabled 
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geospatial analysis and visualization in the final phases of the project. 

 

3.9 Geolocation and Mapping Integration 

 

 GPS Metadata Extraction: The images captured in the field on mobile phones and 

cameras also come with inherent GPS coordinates. Such metadata were downloaded 

using EXIF parsing tools and stored along with detection outputs. 

 

 
 

Figure 3. 11:GPS Metadata Extraction Example (bouhamdane Guelma) 

 

Screenshot of an image taken with a GPS-enabled smartphone, showing 

geolocation data in Google Photos. This information was crucial for associating 

detected nests with their real-world coordinates. 

 

 Real-Time Mapping Potential: Inclusion of GPS coordinates allows geolocation of 

nests discovered by the system. This will allow for future potential establishment of 

real-time monitoring platforms where users can upload images and see the results 

mapped on an interactive map instantly facilitating early warning and intervention. 
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3.10 Conclusion 
 

This chapter explained the design, setup, and training process for the YOLOv11 based 

model to detect Thaumetopoea pityocampa nests. The training pipeline was designed with 

consideration for the specific difficulties of this task, e.g., the initially small dataset, the 

camouflage or distant appearance of nests, and lack of GPS metadata. 

 

  To enrich the dataset, the Multi-Scale Patch Analysis (MSPA) method was utilized, 

producing zoomed patches of images around potential nesting areas. This significantly 

increased the quantity and diversity of the training data. Hyperparameters were 

experimentally tuned across multiple training iterations, with final values chosen . Along 

with this, fieldwork was conducted to collect GPS tagged photos for geospatial analysis 

and to provide a basis for future integration of IoT and real-time infestation mapping. 

 

  Together, this chapter set the technical foundations of the system, setting stage for 

performance testing and results analysis in the next chapter. 
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Chapter 4 

 

Implementation and Results 
 

 

4.1 Introduction 
 

This chapter presents the practical implementation and results of the intelligent detection 

system developed for monitoring Thaumetopoea pityocampa (pine processionary caterpillar) 

nests using deep learning techniques. The goal of this system is to provide an effective and 

accessible tool for the detection and management of infestations 

 

  The implementation was carried out using modern frameworks and tools. In addition to the 

integration of the server-side model, a user-friendly platform has been developed in the form 

of a website and mobile application. This platform enables users be they experts, forestry 

officers or ordinary citizens to upload images or videos, view detection results, and even 

display the geographical location of detected nests when GPS metadata is available. 

 

  The chapter begins with the development environment, detailing the hardware and software 

tools used. Next, the system's complete workflow is presented. Particular attention is paid to 

the impact of using the Multi-Scale Patch Analysis (MSPA) method, which has significantly 

improved model performance, especially for detecting small or distant nests. 

 

  The system was evaluated using several metrics before and after the application of MSPA. 

Finally, the results are discussed in detail. Tests were also carried out on real images captured 

under natural conditions. Visual examples of detection results to provide a comprehensive 

overview of the effectiveness and suitability of the proposed system. 
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4.2 Development Environment 
 

4.2.1 Hardware Environment 
 

At the start of the project, model training was carried out on the Kaggle platform, which 

offered sufficient resources to work with a small dataset (prior to the application of 

MSPA). However, after the significant increase in data volume following the application 

of the MSPA method, a more powerful hardware environment was required. Thus the 

training was transferred to a high-performance machine which is located in the LabSTIC 

laboratory at the University 8 May 1945 of Guelma. This machine is equipped with a 

high-end GPU (NVIDIA), a multi-core processor and a large RAM capacity, enabling 

faster and more efficient training. 

 

4.2.2 Software Environment 
 

 Python 

Python is a high-level, interpreted, object-oriented programming language with dynamic 

semantics. Its high-level data structures, combined with dynamic typing and dynamic 

linking, make it very attractive for rapid application development, as well as for use as a 

scripting or glue language to link existing components together. Python's simple, easy-to-

learn syntax emphasizes readability and therefore reduces the cost of program maintenance. 

Python supports modules and packages, promoting program modularity and code reuse. 

The Python interpreter and the extensive standard library are available free of charge in 

source or binary form for all major platforms, and can be freely distributed.  

 

Programmers often fall in love with Python because of the increased productivity it 

offers. As there is no compile step, the edit-test-debug cycle is incredibly fast. Debugging 

Python programs is easy: a bug or bad input will never cause a segmentation error. 

Instead, when the interpreter discovers an error, it throws an exception. When the program 

doesn't catch the exception, the interpreter prints a stack trace. A source-level debugger 

allows you to inspect local and global variables, evaluate arbitrary expressions, set 

breakpoints, browse code line by line, etc. The debugger is written in Python. The 

debugger is written in Python itself, which testifies to Python's power of introspection. On 

the other hand, the quickest way to debug a program is often to add a few print instructions 

to the source code: the fast edit-test-debug cycle makes this simple approach very 

effective.[61] 
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Figure 4. 1:Python logo [62] 

 

In this project, Python served as the primary language for all implementation aspects, 

including data preprocessing, model training, integration with YOLOv8, and interfacing 

with other software tools like Roboflow. 

 

 Ultralytics  

 

Ultralytics is a technology company that specialises in advanced computer vision 

solutions, particularly real-time object detection using artificial intelligence. Founded by 

Glenn Jocher, the company is best known for developing the popular YOLO (You Only 

Look Once) series of object detection models, including YOLOv5 and YOLOv8. These 

models have become the industry standard and are widely used in academic research and 

practical applications involving real-time detection tasks. 

 

  Ultralytics has significantly improved the accessibility and reproducibility of deep 

learning–based object detection by providing an open-source, PyTorch-based framework 

alongside comprehensive documentation and tools. YOLOv11 introduces advanced 

capabilities, including instance segmentation, pose estimation and improved data handling, 

as well as enhanced training performance. This makes it suitable for a broad range of 

computer vision problems.[63] 
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Figure 4. 2:Ultralytics logo [64] 

 

 

This thesis used Ultralytics YOLOv11 as the main detection engine to identify 

Thaumetopoea pityocampa nests. This is due to its high accuracy, its compatibility with 

Roboflow datasets and its efficiency in processing high-resolution pre-processed images 

generated using the MSPA (Multi-Scale Patch Analysis) technique. 

 

 Roboflow  

 

Roboflow is an easy-to-use cloud-based platform aimed at streamlining dataset creation 

and preparation for computer vision projects. It facilitates efficient image structuring, 

annotation and pre-processing as an individual or part of a team. Through integrated data 

augmentation features (image rotation, flipping and color modification), Roboflow helps 

to increase the diversity of datasets, which is central to training robust deep learning 

models. It also exports data in other formats compatible with top frameworks such as 

YOLO, TensorFlow and COCO.[65] 

 

 
Figure 4. 3:Roboflow logo[66] 

 

in this project Roboflow is used in preparing the dataset used to train the YOLOv11 object 

detection model for this project. It orchestrated the whole process of data preparation from 

human annotation through augmentation to get images ready for efficient training and 

testing within the YOLOv11 pipeline. 
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 Kaggle  

 

Kaggle is an interactive web platform that offers machine learning competitions in data 

science. The platform provides free datasets, notebooks and tutorials that data scientists 

need to carry out their machine learning projects. [67]  

 

 
 

Figure 4. 4:kaggle logo [68] 

For this project, Kaggle was used during the early stages of model training, particularly 

before applying the Multi-Scale Patch Analysis (MSPA) method. 

 

 

4.3 System Workflow and Platform 
 

 Overall Pipeline 

 

 
Figure 4. 5:Workflow of the PPM nests Detection System 

1. Data capture: Images or videos are captured in the field using drones, smartphones or 

digital cameras. This media may include GPS metadata, which allows each capture to be 

located. 
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2. Uploading to the platform: The captured files are then uploaded to the GreenGuard 

platform. This step prepares the data for automatic processing. 

 

3. Processing by the YOLOv11 model: The uploaded data is analysed by a YOLOv11 

artificial intelligence model that has been specifically trained to detect pine processionary 

caterpillar nests. The model identifies the nests and generates bounding boxes 

accompanied by confidence scores. 

 

4. Geolocation: If the images contain embedded GPS data, the system automatically 

extracts it. This allows each detection to be associated with actual geographic coordinates. 

 

5. Nest detection: The system displays the detection results, including: 

 images annotated with the detected nests. 

 confidence scores. 

 

  User Platform 

 

The system GreenGuard provides a user-friendly interface that can be accessed via a 

web platform or a mobile application. Users upload images or videos captured by drones, 

smartphones or cameras. Next, the system automatically detects nests and extracts GPS 

coordinates if available to display the results . The interface includes visual overlays of 

detected nests and interactive map views for geolocation. 

 

  Below are screenshots showing the home page of the platform and the step-by-step 

process of how users interact with the system : 
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Figure 4. 6:Step 1- Access the Interface 

 

This screen shows the initial interface of the GreenGuard platform. The user accesses the 

home page where they are welcomed with options to explore features or test the nest 

detection model. 

 
 

Figure 4. 7:Step 2 - Select the Option "Try the Model" 

 

In this step, the user clicks on the “Try the Model” button to begin testing the YOLOv11-based 

detection system. This option allows them to upload an image or video for analysis. 
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Figure 4. 8:Step 3 - Upload an Image or Video 

 

The user uploads a media file (image or video) captured via drone, smartphone, or camera. 

The uploaded file may contain GPS metadata, which will be extracted automatically during 

processing.  

 
 

Figure 4. 9:Step 4 – View Detection Results (Image + GPS Coordinates) 
 
 

Once the media is uploaded and processed, the system displays the results directly on the 

image. The detected nests are highlighted using bounding boxes, and the associated GPS 

coordinates (if available) are shown.  
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Figure 4. 10:Step 5 - View Interactive Map of All Detections 

 

In this step, the user accesses a dynamic map displaying all the processed images and their 

corresponding detection coordinates. Each marker on the map represents a detection, and clicking 

on a marker displays the associated image and details.  

 

 

4.4 Model Training and Validation 
 

4.4.1  Evaluation Metrics 
 

For YOLO models evaluation metrics, the mAP50 measures are key indicators of 

accuracy, showing how well the model is able to detect objects. Precision and recall 

measures provide a more accurate assessment of the model's effectiveness, balancing out 

false positives and missed detections. Consistently high values for these measures indicate 

strong model performance in object detection tasks, and we explain them below. 

 True Positive (TP): 

A correct detection. The model predicts an object, and it actually exists in that location. 

 False Positive (FP): 

An incorrect detection. The model predicts an object where there is none (a wrong 

detection). 

 False Negative (FN): 

A missed detection. An object exists in the image, but the model fails to detect it. 

Precision : Measures how often a deep learning model like YOLO correctly predicts 

positive instances. It is calculated by dividing the number of true positives (correct 

detections) by the total number of predicted positives, which includes both true and false 
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positives. In object detection, this is often referred to as Precision (B), where “B” stands 

for bounding boxes. A high precision indicates that the model effectively identifies 

relevant objects while minimizing false detections.[73]  

 

 
 

Figure 4. 11:Illustration of Precision in Object Detection [70] 

 

Recall : Measures the ability of a deep learning model like YOLO to detect all relevant 

objects in an image [71]. It reflects the completeness with which the model identifies 

instances of the target class. Calculated as the ratio of true positives to the sum of true 

positives and false negatives, it aims to minimize missed detections. In object detection, recall 

(B) stands for bounding boxes. High recall indicates that the model is effective in capturing 

most objects of interest, even if it also makes some incorrect predictions (false positives).[72]  

 

 
 

Figure 4. 12:Illustration of recall in Object Detection [73] 

 

 

The mAP50 : (Mean Average Precision at a 0.5 Intersection over Union threshold) is a key 

measure for evaluating the performance of an object detector model,“B” stands for bounding 

boxes. It describes how the model succeeds in detecting and locating objects correctly to the 

extent that the overlap between the predicted box and the actual box is at least 50% 
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complete.[74] 

In the context of YOLO, the mAP50 is often referred to as the model's “accuracy”, as it 

broadly reflects its ability to accurately predict the presence and position of target objects. 

 

 

4.4.2  YOLOv11 Architecture and Baseline Comparison 
 

Prior to applying the Multi-Scale Patch Analysis (MSPA), we evaluated three variants of 

the YOLOv11 architecture: YOLOv11n, YOLOv11s and YOLOv11m. The aim was to 

identify the most promising baseline in terms of accuracy, generalisation and detection 

performance. 

 

   Despite being the lightest model, YOLOv11n outperformed YOLOv11s and YOLOv11m in 

all major areas, including precision, recall, and mAP@50. It also demonstrated better 

generalisation and handling of small targets. Although larger in architecture and 

computational cost, YOLOv11s and YOLOv11m failed to achieve better results, particularly 

struggling to detect small or distant nests. 

 

 

Metric YOLOv11n YOLOv11s YOLOv11m 

Precision 0.907 0.902 0.907 

Recall 0.801 0.799 0.798 

mAP@50 0.889 0.864 0.868 

mAP@50–95 0.430 0.410 0.410 

Fitness Score 0.471 0.455 0.455 

 

Table 4. 1:Comparison of YOLOv11 Architectures (n, s, m) Prior to MSPA 

 

Based on these results, we selected YOLOv11n as the optimal foundation for further 

enhancement using MSPA. 
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4.4.3  Impact of Multi-Scale Patch Analysis (MSPA) 
 

The Multi-Scale Patch Analysis (MSPA) technique was applied as a pre-processing step to 

improve the model's ability to detect small or distant objects and for this case to detect pine 

processionary caterpillar nests in high-resolution forest images. This method consists in 

splitting images into overlapping patches at different scales before training, ensuring that even 

small or distant nests become more prominent in the model’s receptive field. 

 

  Using MSPA enriched the dataset with localized image segments, enabling the model to 

focus on finer details that are often overlooked in a global analysis. This approach 

significantly improved detection accuracy, particularly in cases where nests were small, far 

away, or difficult to distinguish from the background. A comparison of performance before 

and after the application of MSPA revealed a significant improvement on several metrics: 

 Precision increased , indicating fewer false positives. 

 Recall improved, indicating better detection of true nests. 

 MAP50 increased, which is often considered an indicator of accuracy in YOLO, 

indicating better localization and classification.  

Metric Before MSPA After MSPA Improvement 

Images 143 10,946 +10,803 

Instances 208 39,915 +39,707 

Precision 0.907 0.949 +0.042 

Recall 0.801 0.948 +0.147 

mAP50 0.889 0.984 +0.095 

mAP50–95 0.430 0.824 +0.394 

 

Table 4. 2:Comparison of YOLOv11 Performance Before and After Applying MSPA 

 

 

4.4.4  Performance Visualization 
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 Confusion Matrix 

 
 

Figure 4. 13:Confusion Matrix Analysis 

 

 

The confusion matrix shows how the model's predictions relate to the actual annotations. It 

shows the following: 

 True positives (TP): 38,487 instances of nests that were correctly detected. 

 False positives (FP): 2,914 instances where the model predicted a nest, but it was actually 

background. 

 False negatives (FN): 1,428 real nests that were not detected by the model (predicted as 

background). 

 

The total number of errors (FN + FP = 4,342) is low compared to the total number of real 

objects (39,915), indicating good overall performance. 

The model correctly predicted 38,487 out of 39,915 real instances, showing high precision 

and recall. 
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 Performance Curves 

 

 
 

Figure 4. 14:Performance Metrics Across Epochs 

 

 

 Precision (B): The precision curve starts at around 0.78, increases sharply during the 

first 15–20 epochs and then stabilizes at approximately 0.95. This indicates that, over 

time, the model reduces false positives, learning to make more accurate and confident 

detections. 

 Recall (B): Recall starts at around 0.65 and improves consistently throughout the 

training process. It then plateaus just above 0.94, reflecting the model’s growing 

capacity to identify the majority of actual nest instances with fewer missed detections 

as training progresses. 

 MAP50(B): The mAP@50 curve rises from around 0.72 to approximately 0.98. This 

suggests that the model achieves very high detection accuracy when considering 

moderately overlapping predictions. 

 MAP50-95(B) 

The mAP@50–95 curve starts at 0.40 and gradually increases to around 0.82. This 

indicates strong performance even under stricter IoU thresholds, confirming the 

model’s generalization capability. 
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All measures show significant improvement over the first 20–30 epochs and then reach a 

stable point. This suggests that learning and convergence are effective and that there are no 

visible signs of overfitting. Although training was extended to 143 epochs, the performance 

measures stabilized at the 50 epochs, suggesting that this number of epochs is sufficient for 

optimal learning. Earlier experiments involving 100 epochs revealed that the model began 

to plateau without notable gains, which supports the idea that 50 epochs strike a balance 

between learning time and performance. 

 

 Analysis of labels 

 

 
 

Figure 4. 15:Label Analysis: Instance Count, Position, and Box Dimensions 

 

This figure groups together several statistical visualizations of the annotations in the dataset 

used after MSPA: 

 Histogram of instances by class (top left): we can see that all annotated instances 

belong to the “nest” class, which is consistent with our goal of targeted detection. 

 

 Bounding box distribution (top right): the blue frames represent the relative positions 

of the annotated boxes in the images. A concentration in the center suggests that nests 

appear frequently in this region, which can be exploited by the model to improve its 

predictions. 
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 Spatial distribution (bottom left): the density graph shows the location of the centers of 

the annotated boxes in the images. A central concentration is also visible. 

 

 Width/height distribution (bottom right): this density map shows that the majority of 

boxes have low widths and heights, confirming that nests are often small and require a 

method like MSPA to detect them effectively. 

 

4.5 Results and Comparison 
 

4.5.1  Testing with Personal Images 

 
In order to thoroughly evaluate the robustness and practical applicability of the 

YOLOv11 + MSPA model, tests were conducted on two categories of image. 

 

 Field images taken with a professional camera 

 Smartphone images containing GPS metadata. 

 

1. Detection on Personal Camera Images 

These images were taken manually in the field using a professional camera, introducing 

real-world variations such as lighting changes and natural obstacles . 

Image Description 

 

 

Figure 4. 16:Detection of Multiple Nests with Varying Sizes 

 

This image demonstrates the 

model's ability to detect multiple 

nests of different sizes, 

validating the effectiveness of 

the MSPA-enhanced YOLOv11. 

 Shows the model’s robustness 
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Image Description 

 

Figure 4. 17:Long-Range Detection of Isolated Tiny Nest 

 

in detecting very small and 

remote nests that would 

typically be missed by 

standard detection systems. 

 

 

Figure 4. 18:Clear Detection of Visible Nest 

 

 

image, captured with a 

camera in natural light, shows 

a clearly visible nest 

successfully detected by the 

model. 
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2. Detection on Smartphone Images with GPS Metadata 

These images were captured using a smartphone equipped with GPS. The objective was to 

validate both the nest detection accuracy and the extraction of geolocation data for mapping 

purposes. 

 

 
 

Figure 4. 19:Example of a test image with embedded GPS coordinates – Test 1 

 

Detection of a clearly visible nests. Coordinates: 36.49446° N, 7.13500° E. The detection 

was accurate and the metadata was correctly parsed for visualization. 

 

 

 

 
 

Figure 4. 20:Example of a test image with embedded GPS coordinates – Test 2 
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Detection of a small, distant nest. Coordinates: 36.49462° N, 7.13471° E. The result 

confirms the model's robustness and GPS metadata integration. 

 

 

4.5.2  Comparison with Related Work 
 

Ref. Year Method Image Type Model Results 

[11] 2023 
YOLOv5, Faster 

R-CNN 

RGB UAV 

(forests in 

Catalonia) 

Object 

Detection 

YOLOv5: mAP = 0.826 

(per image), 0.696 (per 

nest) 

[14] 2023 
CNN with RGB 

+ thermal fusion 

Multimodal UAV 

imagery 

Custom Deep 

CNN 
Precision: 97% 

Our 

Model 
2025 

YOLOv11 + 

MSPA 
RGB UAV  YOLOv11 

Precision: 95%, Recall: 

94%, 

mAP50: 98%,  

mAP50–95: 82% 

 

Table 4. 3:Comparison of Object Detection Models for PPM Nest Detection 

 

In the field of object detection, three major deep learning models are commonly used: 

YOLO (You Only Look Once), Faster R-CNN, and SSD (Single Shot MultiBox 

Detector). YOLO stands out among these for its ability to perform real-time detection 

while maintaining a good balance between speed and accuracy. For our study, we opted 

for a model from the YOLO family rather than Faster R-CNN, based on experimental 

results and conclusions drawn from the literature. 

 

 In particular, article [11] demonstrated that YOLOv5 outperformed Faster R-CNN in 

detecting pine processionary nests, achieving an mAP of 0.826 per image compared to 

Faster R-CNN's 0.696. This observation led us to select YOLO models. 

Our improved model, based on YOLOv11 combined with MSPA (Multi-Scale Patch 

Analysis), achieved excellent results using only RGB images from UAVs. It achieved a 

precision of 95%, a recall of 94% and an mAP50 of 98%, demonstrating good 

generalisability, even for small or distant nests. For comparison, article[14] used a more 

advanced model that combined thermal and RGB images, achieving a level of accuracy of 
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97%. However, this difference is negligible, particularly since our model did not utilise 

thermal data. Had we had access to multimodal images (RGB and thermal), our approach 

could potentially have outperformed current models in terms of accuracy and robustness. 

 

4.5.3  YOLOv11 vs YOLOv8–YOLOv12 
 

 Comparison of YOLO Versions Before MSPA Application 

 

Before applying the Multi-Scale Patch Analysis (MSPA) method, we carried out a series 

of comparative tests to evaluate the performance of different versions of YOLO (from v8 to 

v12) on our original dataset. The table below summarizes the results obtained: 

 

Model Precision (P) Recall (R) mAP50 mAP50–95 Inference Time per Image 

YOLOv8 0.890 0.779 0.834 0.411 2.1 ms 

YOLOv9 0.840 0.808 0.832 0.408 16.6 ms 

YOLOv10 0.835 0.760 0.826 0.402 4.5 ms 

YOLOv11 0.907 0.801 0.889 0.430 2.3 ms 

YOLOv12 0.858 0.822 0.850 0.426 4.2 ms 

Table 4. 4:Comparison of YOLO Versions Before Applying MSPA 

 YOLOv11 has the best accuracy (0.907) and mAP50 (0.889), while maintaining a fast 

inference speed (2.3 ms). 

 Although YOLOv12 has a slightly higher recall, its mAP is still lower than that of 

YOLOv11 making it less efficient overall. 

 YOLOv9 has the longest inference time, which is not optimal for real-time 

applications. 

 Based on these findings, YOLOv11 offers the best balance between accuracy, 

performance and speed, justifying its initial choice. 

 

 Post-MSPA: Final Model Selection for Training 

 

Following the application of the MSPA method, our dataset has increased considerably 

in size and quality, particularly with regard to the detection of small, distant nests. 
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In view of this development, we decided to focus the training exclusively on YOLOv11 for 

the following reasons: 

 

 The large volume of data generated by MSPA requires a substantial amount of training 

time. 

 We had access to high-performance machines (at LabSTIC university of Guelma – 

university resources), but efficient use of time was essential. 

 YOLOv11 had already proved superior to other YOLO versions in preliminary tests, 

so there was no need to re-train all versions with MSPA. 

 

We continued training with YOLOv11, adjusting the hyperparameters to obtain the 

following final results: 

Accuracy = 95%, recall = 94%, mAP50 = 98%, mAP50-95 = 82%  and this only from 

RGB images. 

 In comparison, work such as [14] using RGB + thermal fusion achieved an accuracy of 

97%, demonstrating the competitiveness of our model. It is likely that with access to 

thermal images, our model could have achieved even better results. 

 

 

4.6 Discussion 
 

The final results obtained using the improved YOLOv11 model combined with Multi-

Scale Patch Analysis (MSPA) method confirm the effectiveness of our detection pipeline. 

The model performed excellently, achieving a mAP@50 of 0.984, a precision of 0.95, a 

recall of 0.948 and an mAP@50–95 of 0.824. These scores demonstrate the model's high 

reliability in detecting Thaumetopoea pityocampa nests, including the smallest or partially 

hidden ones, which are often overlooked by conventional models. 

 

  Compared to previous versions of YOLO (v8 to v12), YOLOv11 demonstrated the most 

consistent and stable performance across all evaluation criteria. Although YOLOv12 

achieves a similar mAP@50, it exhibits poorer generalisation and requires more training 

time. YOLOv8 and v9, on the other hand, struggled to detect small or distant nests, even 

after data augmentation. 
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Tests carried out on personal images taken in the field validated the model's robustness 

in real-world conditions. Nests were successfully detected despite environmental 

variations, such as shadows, changes in lighting, and complex backgrounds. 

 

  It is also important to note that training beyond 50 epochs did not result in any significant 

improvements. In fact, initial tests with 100 epochs led to slight overfitting and inconsistent 

results. Thus, 50 epochs were selected as the optimal point, ensuring a good balance 

between training time, convergence, and generalization. 

 

  In summary, combining YOLOv11 with MSPA proved very effective and generalisable. 

This approach provides a solid foundation for future enhancements, including real-time 

integration on drones and integration with attention-based or segmentation modules to 

enable even more precise detection in complex environments. 

 

4.7 Perspectives 
 

As a follow-up to this work, the GreenGuard prototype was presented to the Forest 

Conservation Department. The system was well received by the managers and engineers in 

attendance, who showed a keen interest in the proposed solution. 

 

 
 

Figure 4. 21:Discussion Session with Forestry Engineers[75] 

 

The meeting provided an opportunity to open a direct dialogue with stakeholders in the 

field, gather relevant feedback and consider how the system could be adjusted to meet the 

specific needs of the forestry sector. Among the prospects discussed were: 

 Extending the approach to the detection of other environmental threats such as pests, 
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diseases, and fires. 

 As well as the integration of connected sensors (IoT) to improve the accuracy and 

richness of the data collected in the field. 

In the medium term, GreenGuard could evolve into a comprehensive, operational solution, 

supported by local institutions and capable of being deployed on a large scale in Algerian 

forests. This prototype thus provides a solid basis for further development, both 

technologically (e.g real-time integration on drones) and structurally (partnerships, calls for 

projects, fundraising). 

 

 

4.8  Conclusion 
 

The integration of YOLOv11 with the Multi-Scale Patch Analysis (MSPA) method has 

enabled us to design a high-performance, robust solution for the detection of 

Thaumetopoea pityocampa nests. The results obtained in terms of precision, recall and 

mAP testify to the maturity of the system, capable of effectively identifying even small or 

partially concealed nests, generally ignored by conventional approaches. Experiments 

carried out on personal images, captured in real-life conditions, have confirmed the 

system's ability to generalize to complex and varied natural environments. 

 

  Beyond these encouraging performances, this approach opens up some interesting 

prospects. A natural evolution of the system would be to integrate it into embedded 

platforms, such as drones, for automated, real-time forest monitoring. In the longer term, 

adapting the model to the detection of other types of biological threat, in both forest and 

agricultural environments, could lead to a global solution for intelligent and sustainable 

environmental monitoring. 
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General conclusion  

 

 
This thesis provided an integrative solution to forest health monitoring,paying 

special attention to the identification of pine processionary moth (PPM) nests. It began by 

emphasising the importance of forest ecosystems and the threats they face. Traditional 

surveillance methods proved inadequate in scalability and efficiency, thus emphasizing the 

need for smart, automated systems. 

To overcome these limitations, a system was developed that utilises advanced visual 

analysis techniques by combining the YOLOv11 detection model with the Multi-Scale 

Patch Analysis (MSPA) technique. These developments significantly improved the 

detection of small and distant nests at high accuracy and recall scores. The system was 

deployed as a web and mobile platform offering detection and geolocation features to 

support researchers, forest managers, and environmental monitoring officers. 

Extensive tests and comparisons with existing models showing the solution's reliability, 

speed, and suitability for practical field use.  

In the near future, further work will focus on improving the system's adaptation 

capabilities, including drone-based surveillance, enriching the dataset with even more 

diverse examples, and rendering it offline-capable with minimal deployment.These future 

enhancements will allow more efficient and sustainable strategies in forest surveillance and 

ecosystem preservation. 

This methodology can be extended beyond the detection of Thaumetopoea pityocampa to 

include other ecological threats, such as different types of insect nests (e.g. Lymantria 

dispar caterpillar tent nests) and signs of forest diseases (e.g. fungal infections, bark beetle 

damage and needle discolouration). 

More broadly, this research contributes to the growing use of artificial intelligence 

to protect biodiversity and natural habitats. Combining data-driven approaches with real-

time monitoring tools makes it possible to develop early warning systems for forest health, 

enabling faster, more sustainable responses to ecological threats. 
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