
Democratic and Popular Republic of Algeria

Ministry of Higher Education and Scientific Research.

University of May8,1945-Guelma-

Faculty of Mathematics, Computer Science, and Material Sciences

Department of Computer Science

Theme:

Master’s Thesis

Field: Computer Science

Option: ICT/CS

 Smart Monitoring of Forest and Agricultural Health Using AI and IoT

 Case of Thaumetopoea pityocampa Nest Detection

Presented by: Aya AMIRI ,Amani DOUAFER

Jury members:

 President:

 Supervisor: Dr. KhaledHALIMI

 Examiner:

 Examiner:

June 2025

Acknowledgments

First and foremost, we express our heartfelt gratitude to Allah, whose blessings and

guidance have enabled us to undertake and complete this work.

We extend our sincere thanks to our supervisor, Mr. Halimi Khaled, for his invaluable

guidance, continuous support, and insightful advice throughout this project. Choosing to

work under his supervision once again was a deliberate and rewarding decision.

We also wish to thank Mr. Abdelaziz Benkirat, Director of the Professional Pole, for his

encouragement and involvement, as well as all the faculty members of the Computer Science

Department, whose dedication and expertise greatly contributed to our academic journey.

Our appreciation goes as well to Mr. Karim Amiri for his essential assistance during the

fieldwork phase of this study.

To all those who supported and believed in us throughout this experience, we are sincerely

grateful.

Dedications

In the name of Allah, the Most Gracious, the Most Merciful.

✧All praise is due to Allah, who granted me strength, patience, and guidance throughout this

journey.

✧To my grandfather, You believed in me long before I believed in myself.

You're not here to see it, but I carried your love and pride with me every step of the way.

Your favorite grandchild — Youyou — did it.

✧To my parents, Hacene and Karina, Your sacrifices and prayers shaped every step of this

path. If I shine today, it’s because of you.

✧To my sister Ines, Thank you for being my constant joy and support.

✧To my dear grandmother, Your prayers have always been my shield. Your love, my quiet

strength.

✧To my uncle, You’ve been like a second father to me. Your support has meant the world.

✧To Imen, My childhood friend and forever bestie, thank you for growing with me and

always believing in me.

✧To Amani, My partner through every challenge, we started together, and we finish

together. I couldn’t imagine doing this without you.

Aya Amiri

Dedications

❀To acknowledge the invisible is the first step toward true gratitude❀

First and foremost, all praise is due to Allah, who granted me the

strength, patience, and success to reach this stage of my academic

path.

❀I dedicate this thesis to everyone who values knowledge. I am truly grateful to be

surrounded by outstanding individuals in their fields who constantly encourage learning.

❀To my mother, my first teacher, the reason I fell in love with mathematics, and my

inspiration.

❀To my father, a true lover of knowledge, who still studies to this day. Your dedication and

excellence are unmatched.

❀To my sister, the distinguished doctor, always the first, always the example.

❀To Aya, my right hand, whose presence, support, and collaboration were essential to the

completion of this work.

Amani Douafer

Abstract

With the increasing spread of harmful species such as the pine processionary caterpillar

(Thaumetopoea pityocampa), which poses a threat to biodiversity and ecological balance, the

monitoring of forest health has become a critical concern. Traditional detection methods are

often expensive, time-consuming, and unsuitable for large-scale or real-time surveillance.

To overcome these limitations, an AI-based system is introduced that combines computer

vision techniques with geolocation. The system employs a YOLOv11 object detection model

enhanced by the Multi-Scale Patch Analysis (MSPA) method, which improves the detection

of small or partially visible nests by generating image patches at multiple scales.

In addition to accurate nest detection, the system extracts GPS metadata from the captured

images when available to enable spatial localization. This allows for the visualization of

detected nests on an interactive map, supporting environmental monitoring and spatial

analysis.

Experimental results demonstrate high detection performance, achieving a mAP@0.5 of

98.4%. This integrated approach represents a promising solution for automated forest

surveillance and may be extended to applications in agriculture, ecology, and environmental

management.

Keywords: Automatic detection, Geolocation, Computer vision, YOLOv11, Forests,

Thaumetopoea pityocampa, Multi-Scale Patch Analysis (MSPA), Artificial Intelligence.

Résumé

Avec la propagation croissante d’espèces nuisibles telles que la chenille processionnaire du

pin (Thaumetopoea pityocampa), qui menace la biodiversité et l’équilibre écologique, la

surveillance de la santé des forêts devient une priorité. Les méthodes de détection

traditionnelles s’avèrent coûteuses, lentes et peu adaptées à une surveillance à grande échelle

ou en temps réel.

Pour pallier ces limitations, un système intelligent basé sur la vision par ordinateur et

l’intelligence artificielle est proposé. Ce système repose sur le modèle de détection

YOLOv11, optimisé par la méthode Multi-Scale Patch Analysis (MSPA), qui améliore la

détection des nids de petite taille ou partiellement visibles grâce à la génération d’images en

sous-parties à différentes échelles.

En complément de la détection automatique, le système exploite les métadonnées GPS

contenues dans les images capturées, lorsque celles-ci sont disponibles. Cela permet

d’associer chaque détection à une position géographique réelle et de visualiser les résultats sur

une carte interactive, facilitant l’analyse spatiale et la surveillance environnementale.

Les résultats expérimentaux montrent une performance élevée avec un mAP@0.5 de 98,4

%. Cette approche intégrée représente une solution prometteuse pour la surveillance

automatisée des forêts, avec des perspectives d’extension vers d’autres domaines tels que

l’agriculture et la gestion environnementale.

Mots-clés : Détection automatique, Vision par ordinateur, YOLOv11, Forêts, Thaumetopoea

pityocampa, Multi-Scale Patch Analysis (MSPA), Intelligence Artificielle.

 :الملخص

 processionnaire (Thaumetopoea يرقة دودة الصنوبرمع الانتشار المتزايد للأنواع الضارة مثل

pityocampa) .والتي تشُكّل تهديداً للتنوع البيولوجي والتوازن البيئي، أصبحت مراقبة صحة الغابات أولوية بيئية ملحّة ،

 .لوقت الحقيقيتعُتبر الطرق التقليدية للكشف عن هذه الآفات مكلفة وبطيئة وغير ملائمة للرصد الواسع النطاق أو في ا

ل تلقائي. تم اقتراح نظام ذكي يعتمد على تقنيات الرؤية الحاسوبية والذكاء الاصطناعي لرصد أعشاش هذه الآفة بشك

مح بتوليد ، والتي تس(MSPA) المحسّن باستخدام تقنية تحليل البقع متعددة المقاييس YOLOv11 يعتمد النظام على نموذج

 .ة، مما يحُسّن اكتشاف الأعشاش الصغيرة أو الظاهرة جزئياًصور فرعية على مقاييس مختلف

ها، لربط كل المدمجة في الصور الملتقطة، عند توفر (GPS) كما يستفيد هذا النظام من بيانات تحديد الموقع الجغرافي

ظهرت أ .لبيئيةمتابعة اكشف بموقع جغرافي دقيق. يتم بعد ذلك عرض النتائج على خريطة تفاعلية تسهّل التحليل المكاني وال

ا للمراقبة ٪. وتعُدّ هذه المقاربة حلاً واعدً 98.4حوالي (mAP@0.5) التجارب دقة أداء عالية، حيث بلغ متوسط الدقة

 .الآلية للغابات، مع إمكانية توسيع استخدامها لتشمل مجالات أخرى مثل الزراعة وإدارة البيئة

 :الكلمات المفتاحية

 Thaumetopoea ، الغابات، يرقة الصنوبرYOLOv11ديد الموقع، الرؤية الحاسوبية، الكشف التلقائي، تح

pityocampaتحليل البقع متعددة المقاييس ، (MSPA)الذكاء الاصطناعي ،

Contents

Contents ...

List of Figures...

List of Tables ..

General Introduction .. 1

Chapter 1 ... 3

Introduction to Forest Health Monitoring and AI Approaches.. 3

1.1 Introduction ..3

 1.1.1 Forest health monitoring ..3

 1.1.2 Methods of forest health monitoring .. 4

1.2 Impact of Thaumetopoea pityocampa ..5

 1.2.1 Pine Processionary Moth Life Cycle ..5

 1.2.2 PPM Damage Symptoms ..6

 1.2.3 PPM Nest Characteristics ..7

 1.2.4 Manual Detection Methods for PPM Nests ..8

 1.2.5 Limitations and Challenges ..8

1.3 Computer Vision Introduction ...9

 1.3.1 Computer Vision Overview ...9

 1.3.2 Common Computer Vision Tasks ..9

1.4 Related Works .. 11

1.5 Artificial Intelligence Overview .. 13

 1.5.1 Artificial Intelligence (AI) ... 14

 1.5.2 Machine Learning (ML) .. 15

 1.5.3 Deep Learning (DL) .. 16

1.6 Conclusion .. 21

Chapter 2 ... 22

Deep Learning Approaches for PPM ... 22

2.1 Introduction .. 22

2.2 Deep Learning for Object Detection .. 22

2.3 CNN Based Detection Architectures.. 23

 2.3.1 YOLO (You Only Look Once) .. 24

 2.3.2 Faster R-CNN ... 36

 2.3.3 SSD (Single Shot MultiBox Detector) ... 37

2.4 YOLOv11 for PPM Nest Detection ... 38

2.5 Dataset ... 39

2.6 Challenges in PPM Nest Detection .. 40

2.7 Existing Research and Research Gaps ... 42

2.8 Conclusion ... 42

Chapter 3 ... 44

System Design and Model Development ... 44

3.1 Introduction .. 44

3.2 System Objectives ... 44

3.3 YOLOv11 Model Selection ... 45

3.4 Components of YOLOv11 .. 45

3.5 Overall System Architecture.. 46

3.6 Dataset Description ... 47

3.7 Dataset Preparation ... 49

 3.7.1 Small and Distant Nest Problems ... 49

 3.7.2 Multi-Scale Patch Analysis (MSPA) .. 50

 3.7.3 Dataset Splitting and Augmentation ... 52

3.8 Model Configuration and Training .. 54

 3.8.1 Training Strategy ... 54

 3.8.2 Hyperparameters and Loss Function……………………………………………………….55

 3.8.3 Challenges Faced During Training ... 57

 3.10 Conclusion .. 60

Chapter 4 ... 61

Implementation and Results .. 61

4.1 Introduction .. 61

4.2 Development Environment .. 62

 4.2.1 Hardware Environment .. 62

 4.2.2 Software Environment ... 62

4.3 System Workflow and Platform .. 65

4.4 Model Training and Validation ... 69

 4.4.1 Evaluation Metrics.. 69

 4.4.2 YOLOv11 Architecture and Baseline Comparison .. 71

 4.4.3 Impact of Multi-Scale Patch Analysis (MSPA) ... 72

 4.4.4 Performance Visualization .. 72

4.5 Results and Comparison .. 76

 4.5.1 Testing with Personal Images ... 76

 4.5.2 Comparison with Related Work ... 79

 4.5.3 YOLOv11 vs YOLOv8–YOLOv12 ... 80

4.6 Discussion ... 81

4.7 Perspectives ... 82

4.8 Conclusion .. 83

General conclusion ... 84

List of Figures

Figure 1. 1:Thaumetopoea pityocampa [3] ..5
Figure 1. 2:Life cycle of PPM [5] ...6
Figure 1. 3:Human Reactions to Thaumetopoea pityocampa Hairs [6]7
Figure 1. 4:Pine Processionary Moth Nest [8] ...7
Figure 1. 5:Human vision system VS cv system [10] ..9
Figure 1. 6:The most common cv tasks [11].. 10
Figure 1. 7:AI and Its Subdomains [21] .. 13
Figure 1. 8:Comparing supervised and unsupervised learning [22] .. 15
Figure 1. 9:Reinforcement learning processing [23] .. 16
Figure 1. 10:The main components of Deep Learning [24] ... 16
Figure 1. 11:Architecture of the CNNs applied to digit recognition [26] 19
Figure 1. 12:Simple Recurrent Neural Network architecture [27] .. 20
Figure 1. 13: GAN architecture [28] ... 20

Figure 2. 1:Using object detection to identify and locate vehicles. [30] 23
Figure 2. 2:YOLO object detection mechanism [32] ... 25
Figure 2. 3:YOLO Architecture [33] ... 25
Figure 2. 4:predefined anchor boxes [35] .. 27
Figure 2. 5:Multi-scale Detection Architecture[37] ... 28
Figure 2. 6:Yolov4 Architecture [41]. ... 29
Figure 2. 7:Yolov5 Architecture[42] ... 30
Figure 2. 8:YOLOv6 network architecture[44] ... 31
Figure 2. 9:YOLOv6 network architecture[45] ... 32
Figure 2. 10:YOLOv8 Comparison with Other Versions verions [46] 32
Figure 2. 11:YOLOv8 architecture [47] .. 33
Figure 2. 12:YOLOv11 architecture[50] ... 35
Figure 2. 13:Faster R-CNN Architechture [52] ... 37
Figure 2. 14:Architecture of a convolutional neural network with a SSD detector [53] 38
Figure 2. 15:Labeled image showing bounding boxes around PPM nests 40
Figure 2. 16:The diversity of scenes and nest appearances in the dataset 40

Figure 3. 1:System pipeline for the detection and localization of PPM nests (Source: Authors)

 ... 47
Figure 3. 2:Field Images Collection: Nest Samples and On-Site Work 48
Figure 3. 3:YOLOv11 Annotation Format .. 49
Figure 3. 4:YOLO Coordinate Transformation for Image Patch .. 51
Figure 3. 5:Example of Multi-Scale Patch Analysis (from personal dataset created) 51
Figure 3. 6:Illustration of Multi-Scale Patch Analysis (MSPA): Original Image and

Corresponding Zoomed Patches Author, from personal dataset created................................. 52
Figure 3. 7:Data Augmentation Parameters Used in Roboflow [64] 53
Figure 3. 8:MSPA dataset preparation pipeline ... 54
Figure 3. 9:Loss Function Curves (Box, Cls, DFL) – Training and Validation 57
Figure 3. 10:Impact of MSPA on Detection Performance.. 58
Figure 3. 11:GPS Metadata Extraction Example (bouhamdane Guelma) 59

Figure 4. 1:Python logo [62] ... 63
Figure 4. 2:Ultralytics logo [64] .. 64
Figure 4. 3:Roboflow logo[66] ... 64
Figure 4. 4:kaggle logo [68] .. 65
Figure 4. 5:Workflow of the PPM nests Detection System .. 65
Figure 4. 6:Step 1- Access the Interface .. 67
Figure 4. 7:Step 2 - Select the Option "Try the Model" ... 67
Figure 4. 8:Step 3 - Upload an Image or Video ... 68
Figure 4. 9:Step 4 – View Detection Results (Image + GPS Coordinates) 68
Figure 4. 10:Step 5 - View Interactive Map of All Detections ... 69
Figure 4. 11:Illustration of Precision in Object Detection [70] .. 70
Figure 4. 12:Illustration of recall in Object Detection [73] .. 70
Figure 4. 13:Confusion Matrix Analysis ... 73
Figure 4. 14:Performance Metrics Across Epochs ... 74
Figure 4. 15:Label Analysis: Instance Count, Position, and Box Dimensions 75
Figure 4. 16:Detection of Multiple Nests with Varying Sizes .. 76
Figure 4. 17:Long-Range Detection of Isolated Tiny Nest .. 77
Figure 4. 18:Clear Detection of Visible Nest ... 77
Figure 4. 19:Example of a test image with embedded GPS coordinates – Test 1 78
Figure 4. 20:Example of a test image with embedded GPS coordinates – Test 2 78
Figure 4. 21:Discussion Session with Forestry Engineers[75] ... 82

List of Tables

Table 1. 1:Common Computer vision tasks ... 10
Table 1. 2:Overview of UAV-Based Deep Learning Methods for Tree Pest and Disease

Detection .. 13
Table 1. 3:Comparison between ML and DL [25] ... 18

Table 2. 1:YOLO Series – Comparison [51] ... 36

Table 3. 1:YOLOv11 performance on COCO Object Detection .. 46
Table 3. 2:Final YOLOv11 Training Configuration and Hyperparameters 55

Table 4. 1:Comparison of YOLOv11 Architectures (n, s, m) Prior to MSPA 71
Table 4. 2:Comparison of YOLOv11 Performance Before and After Applying MSPA 72
Table 4. 3:Comparison of Object Detection Models for PPM Nest Detection 79
Table 4. 4:Comparison of YOLO Versions Before Applying MSPA 80

1

General Introduction

Forest ecosystems play a vital role in maintaining environmental balance,

preserving biodiversity and mitigating climate change. However, these vital

environments are under increasing threat from human activities and invasive species.

One of the most destructive insects for coniferous forests, particularly pine trees, is the

pine processionary caterpillar (Thaumetopoea pityocampa). Its larvae cause massive

defoliation by weakening trees and also pose a danger to human and animal health due

to their stinging hairs.

Traditionally, the detection of processionary nests was carried out manually by

forestry experts. While this method can be effective on a small scale, it is very time-

consuming and unsuitable for large-scale monitoring. The emergence of artificial

intelligence (AI) and computer vision (CV) has opened up the possibility of automated

solutions for environmental monitoring. Object detection models such as YOLO (You

Only Look Once) enable real-time detection and can effectively locate processionary

nests over large forest areas.

This thesis presents a deep learning based approach for detecting Thaumetopoea

pityocampa nests, using the YOLOv11 model. In order to overcome the difficulties

associated with detecting small or distant nests, a specific pre-processing method

called MSPA has been integrated. A customized dataset was created from annotated

images from various sources, including photos taken in the field using GPS-equipped

devices. This wealth of data, both in terms of quality and geography, enabled a more

detailed spatial analysis.

The final system was integrated into an interactive platform accessible to users,

whether they are forest rangers, researchers, or ordinary citizens, allowing them to

submit images or videos and view the results, including the location of nests on a map.

The model's performance was evaluated using several metrics and compared to that of

other state-of-the-art approaches.

Our goal is to contribute to forest health monitoring by demonstrating how

artificial intelligence can be used for sustainable environmental management,

particularly by facilitating early pest detection and promoting rapid intervention.

2

This thesis is organized as follows:

Chapter 1 : Introduction to Forest Health and AI Methodologies

This chapter discusses the importance of forest ecosystems and the threats they

face, with a particular focus on those caused by the pine processionary caterpillar

(Thaumetopoea pityocampa). It outlines the limitations of traditional nest detection

methods and puts forward artificial intelligence (AI) and computer vision as promising

solutions for monitoring forest health.

Chapter 2 : Deep Learning Approaches for PPM Nest Detection

It reviews deep learning models used for object detection, including YOLO,

SSD, and Faster R-CNN, with a focus on the YOLOv11 model adopted in this study. It

addresses the challenges of detecting small or distant nests and shows how current

models can effectively address them.

Chapter 3 : System Design and Model Development

It describes the system architecture and the dataset preparation process. It also

presents the multi-scale patch analysis (MSPA) technique, which improves detection

accuracy, details the collection, annotation, and preprocessing of data, as well as the

customization and training of the YOLOv11 model.

Chapter 4 : Implementation and Results

This chapter describes how the detection system has been implemented within

an interactive platform. The platform enables users to upload images or videos and

view detections on a map. The chapter also describes the development environment,

evaluation metrics, and experimental results. Comparisons are provided to demonstrate

the model's effectiveness ,and concludes with a discussion of the system's limitations

and potential future improvements, including integration with drones.

3

Chapter 1

Introduction to Forest Health

Monitoring and AI Approaches

1.1 Introduction

1.1.1 Forest health monitoring

Forest health monitoring enables landowners and forestry organizations to gain a deeper

understanding of the forest biome's condition and to detect potential threats, such as those that

could fuel wildfires. Effective monitoring should be capable of identifying changes that

indicate more serious issues, such as droughts or tree diseases, and alerting forest managers.

While many government-run programs track trends on a larger scale, local monitoring is often

conducted to better address immediate concerns [1].

Forest managers may be particularly concerned with the following key elements of forest

health:

• Tree density

• Tree species

• Tree size

• Tree health

• Acres under management

• Forest growth rate

• Ecosystem diversity

• Wildlife habitats

• Air quality

4

1.1.2 Methods of forest health monitoring

In general, there is no magic bullet when it comes to forest monitoring, forest managers

will use a variety of methods to guarantee a healthy forest. When combined, the following

techniques ought to produce reliable forest health monitoring.

 Field inspections: As a sort of spot check, forest managers will physically spend time

in the forest gathering samples and documenting visual data to provide a more

comprehensive picture of the health of the forest. Since this approach depends on

managers, rangers, or wardens physically conducting inspections, it can be time

consuming and challengingto cover large areas, but it is useful for obtaining a detailed

look at the forest and identifying specific issues.

 Aerial surveys: A forest manager can gain a good view over a large area by using

drones to examine the forest canopy ,they can gather data and are quite good at

mapping and surveying terrain when combined with infrared technology. Even though

aerial surveys are always improving, they are not as precise as being able to observe

something on foot.

 Remote sensing technique: Although they are still in their infancy, remote

technologies like satellites for collectingforest data are advancing quickly. Although

remote sensing can swiftly cover wide regions and yield detailed information,it might

be costly and might not be able to identify some problems. Wireless sensor networks,

or IoT sensors, are another remote method for monitoring forest health, but they are

frequently more useful. Using a long-range radio network,a network of sensors gathers

data on temperature, humidity, and natural gasses and transmits i nformation and

alerts inreal time. Because sensors requirerelatively little maintenance over a period of

10 to 15 years, forest health monitoring is now quick and easy [2].

5

1.2 Impact of Thaumetopoea pityocampa

1.2.1 Pine Processionary Moth Life Cycle

Thaumetopoea pityocampa, the pine processionary moth, is a pest that feeds on the needles

of pine trees, causing heavy defoliation. It is endemic to the Mediterranean and southern

Europe but has spread to other parts of the world. The larvae are well known for their

"processions" when they move in lines to find suitable places for pupation.

Figure 1. 1:Thaumetopoea pityocampa [3]

The moth poses both ecological and economic threats by weakening trees and exposing them

to other pests and diseases. Adult moths have a lifespan of just one day during summer,

during which they mate and deposit eggs on pine trees. The caterpillars, hatched from these

eggs, begin consuming the needles of the trees during autumn.

In mid-January, they build impressive white silken nests, about the size of a football, in the

pine tree foliage and branches. There may be many nests in a single tree. The remainder of the

winter is spent in these nests high in the trees; they occupy the nests during the day and

venture out at night to feed on the needles [4].

6

Figure 1. 2:Life cycle of PPM [5]

1.2.2 PPM Damage Symptoms

Pine processionary moth caterpillars feed on pine needles and some other species of conifer

trees, and in severe infestations cause severe defoliation of trees. This can stress the trees to

be more vulnerable to attack from other insects or disease, and to environmental stresses such

as flood or drought. PPM caterpillars have thousands of tiny hairs that carry an urticating, or

irritating, protein called thaumetopoein, which accounts for its scientific name. Upon contact

with humans and animals, these hairs can cause painful eye, skin and throat irritations and

rashes and, in some exceptional cases, allergic reactions.

7

Figure 1. 3:Human Reactions to Thaumetopoea pityocampa Hairs [6]

1.2.3 PPM Nest Characteristics

The most noticeable indication of the presence of pine processionary moth is the large,

white, silken nests that the Caterpillars spin high in the trees during January. They construct

these nests amongst the pine leaves and can grow as large as a football. These are the winter

refuges of the caterpillars, where they huddle together to keep warm and safe while still eating

and developing. The nests are generally placed at tip ends of branches, especially towards the

top canopy of the tree, and therefore seen from a distance but less easy to study up close [7].

Figure 1. 4:Pine Processionary Moth Nest [8]

8

1.2.4 Manual Detection Methods for PPM Nests

Traditional PPM infestation detection relies to a great extent on ground-level visual

surveys. Scanners walk along wooded areas, checking individual trees for signs of PPM

activity, such as the presence of silk nests constructed by wintering larvae. Such nests are

often found on the periphery parts of host plants, often at the top of branches in the higher

crown. While this method allows for direct observation, it is laborious and may not effectively

cover broad or heavily wooded areas [9].

1.2.5 Limitations and Challenges

Manual techniques of PPM infestations detection are confronted with several limitations.

They are extremely time-consuming and labor-intensive as people need to walk through the

forests to inspect every tree individually, especially in dense or large forests where the nests

are hard to find. The nests are habitually hidden deep in the trees or among the branches,

hence hard to find. Weather is also a problem rain, snow, or fog can make visibility and

inspection impossible. There is also the risk of human error, where the inspector might miss a

nest or get it wrong. Because the process is slow, infestations may spread significantly before

they are even noticed.

To overcome the many limitations of manual detection methods, researchers and

practitioners have increasingly turned to automated solutions powered by computer vision and

deep learning. These advanced technologies offer a scalable, accurate, and time-efficient

alternative to traditional inspection. By analyzing images captured from drones or ground-

based cameras, computer vision systems can rapidly detect pine processionary moth nests

with high precision, even in challenging environments or at great heights. This shift from

manual to automated methods represents a significant advancement in forest health

monitoring, enabling early detection, faster response, and more efficient management of PPM

infestations.

9

1.3 Computer Vision Introduction

1.3.1 Computer Vision Overview

Computer Vision is a field of Deep Learning and Artificial Intelligence where human

beings train computers to see and interpret the world they live in. While humans and animals

automatically solve vision as a problem even at a very young age, helping machines see and

interpret their surroundings through vision is a large unsolved problem. Limited view of the

human eye and the infinitely changing landscape of our dynamic world is what renders

Machine Vision challenging at its very core.

Figure 1. 5:Human vision system VS cv system [10]

1.3.2 Common Computer Vision Tasks

Computer vision assignments are basically making computers understand digital images

and also visual data from the actual world. This could involve extracting, processing, and

analyzing data from such types of inputs for decision-making. The past of machine vision

consisted of formalizing tough problems on a grand scale into well-liked solvable problem

statements. Splitting subjects into well-organized groups with nice naming conventions

helped researchers around the globe to identify problems and resolve them efficiently. Some

of the most common computer vision tasks in AI today include image classification, object

detection, and image segmentation, among others.

10

Figure 1. 6:The most common cv tasks [11]

Computer vision tasks Definition Common Models

Image Classification

Image classification tasks

involve CV models classifying

images into user-defined

classes for various

applications.

BLIP, ResNet,

VGGNet

Object Detection and

Localization

While image classification

categorizes an entire image,

object detection and

localization identify specific

objects in an image.

Faster R-CNN,

YOLO,

SSD

Semantic Segmentation

Semantic segmentation tries to

label each pixel in an image

for a finer classification. The

approach gains more

classification accuracy by

labeling the individual pixels

of an object.

FastFCN, DeepLab,

U-Net

Table 1. 1:Common Computer vision tasks

11

1.4 Related Works

Ref Year Title Approach Data Type Dataset Accuracy/FPS Results

[12] 2023 Testing Early Object RGB UAV Custom YOLOv5 0.826 Best

Detection of detection using imagery dataset (presence/absence)

performance

Pine YOLOv5 (forests in 0.696

with high-

Processionary and Faster Catalonia) (per nest)

altitude

Moth R-CNN, Faster

RGB

 (Thaumetopoea R-CNN: images

pityocampa)

 slightly

 Nests Using lower

UAV-Based

 Methods

[13] 2019 Detection Semantic RGB UAV Custom Accurate

 and Mapping segmentation imagery dataset mapping

of Pine using U-Net

 Of nests

Processionary

 CNN

Moth Nests

in UAV Imagery

 Using Semantic

Segmentation

[15] 2023 Deep-Pest-Detector: CNN with RGB + Multimodal 97% Real-time

[14] 2022 Eco-Friendly Object RGB UAV Custom / Detection

Fight Against detection using imagery dataset

was robust

Thaumetopoea YOLOv5

and reliable

pityocampa

 Infestations Suitable

in Pine

for

Forests Using

real-time

Deep Learning

field deployment

on UAV Imagery

12

Automated Detection RGB + Thermal Thermal

 dataset

detection

and Localization image fusion UAV

 collected

 enabled

of Processionary

imagery

 during by onboard

Moth Nests via

 field surveys drone

 Aerial Drones processing

and DNN

[16] 2023 Palm Tree ResNet and RGB images Custom-

collected

high classification Effectively

 Disease Detection transfer learning of palm dataset accuracy identified

Using Residual with Inception leaves

palm leaf

Networks ResNet

diseases using

deep learning

[17] 2020 VddNet: Vine Custom CNN Multispectral UAV-

collected

/ High

precision

Disease Detection architecture and depth
 imagery

in detecting

 Network Based (VddNet) images and localizing

on Multispectral

 vine

Images and

 diseases

Depth Map

[18] 2023 Deep Learning-

Based

Deep CNN

 model

High-resolution Custom

dataset

high accuracy Accurate

and

Trees Disease for tree RGB images

efficient

Recognition and leaf disease of tree

classification

 Classification classification leaves of leaf

 diseases

[19] 2021 Automated

Detection

YOLOv4 for

 object

RGB UAV

imagery

Custom

dataset

90% Enabled early

of Olive detection

detection

 Tree Diseases and of olive

Learning and

 classification

 diseases

 Drone

Imagery

[20] 2020 Aerial Spectral

Imaging

CNN Hyperspectral

UAV

Field data

from

85% Detected early

signs

13

and CNNs for imagery European

of ash

Early Detection ash forests

dieback

 of Ash Dieback -Combined spectral

in Forests

bands
improvedclassificat
ion

accuracy

compared to

RGB-only

models

Table 1. 2:Overview of UAV-Based Deep Learning Methods for Tree Pest and Disease Detection

The review of related works highlights the growing shift toward automated approaches

powered by deep learning models integrated into UAV-based systems. Whether through

object detection, semantic segmentation, or multimodal image fusion, these methods are all

grounded in the principles of artificial intelligence. It is the advancements in AIparticularly in

machine learning (ML) and deep learning (DL)that have made forest monitoring and pest

detection faster, more accurate, and more adaptable to complex conditions.

1.5 Artificial Intelligence Overview

In today's world of rapidly developing technology, one must keep up with advancements in

artificial intelligence (AI), machine learning (ML), and deep learning (DL). As per Mark

Cuban, a famous American businessman and television personality: "Artificial Intelligence,

deep learning, machine learning  whatever you're doing if you don't understand it  learn it.

Because otherwise, you're going to be a dinosaur within 3 years." This quote underscores the

importance of continual learning in these cutting-edge fields [21].

Figure 1. 7:AI and Its Subdomains [21]

14

As illustrated in Figure 1.8, the relationship between Artificial Intelligence (AI), Machine

Learning (ML), and Deep Learning (DL) is hierarchical. AI encompasses all techniques that

enable machines to mimic human intelligence. ML is a subset of AI focused on learning from

data, while DL is a further specialization of ML that leverages deep neural networks to solve

complex tasks.

1.5.1 Artificial Intelligence (AI)

Artificial intelligence, simply referred to as AI, is the process of providing data,

information, and human intelligence to machines. Artificial Intelligence's main goal is to

develop independent machines that can think and act like human beings. The machines can

replicate human behavior and carry out tasks through learning and problem solving. The

majority of the AI systems replicate natural intelligence to perform complex problems.

"AI doesn't have to be evil to destroy humanity – if AI has a goal and humanity just happens

in the way, it will destroy humanity as a matter of course without even thinking about it, no

hard feelings". Elon Musk, Technology Entrepreneur, and Investor[21].

 Types of Artificial Intelligence

 Reactive Machines: Such machines only react. These machines don't create

memories, and they don't utilize any experience from the past to make new

decisions.

 Limited Memory: The past serves as a guide for these machines, and there is

some information accumulated over time. The information utilized is short-term.

 Theory of Mind: These are systems that comprehend human emotions and their

influence on decision making. They are trained to adapt their behavior

accordingly.

 Self-awareness: These systems are programmed and designed to be self-aware.

They have knowledge of their own internal states, forecast other people's

emotions, and respond accordingly.

15

1.5.2 Machine Learning (ML)

Is a field of Artificial Intelligence (AI) that addresses the improvement of AI systems'

accuracy using large amounts of data. The data can be in the form of images, messages,

documents, or even patterns of human behaviors. The ML algorithms take the data in an

attempt to predict or make decisions about future events. The broad types of machine learning

are supervised learning, unsupervised learning, and reinforcement learning.

 Types of Machine Learning

 Supervised learning: is the process where models are trained from labeled data

and inputs are associated with known outcomes. Supervised learning is often used

for classification and prediction activities, such as image recognition or spam

detection.

 Unsupervised learning: is using unlabeled data, and the model determines patterns

or groupings by itself. It's commonly used in clustering or dimension reduction, for

instance, customer segmentation.

Figure 1. 9:Comparing supervised and unsupervised learning [22]

 Reinforcement learning: relies on learning through interacting within an

environment. The model, or agent, receives reward or penalty based on its action and

learns to choose actions in order to maximize cumulative reward. It's commonly used

in robotics and playing games.

16

Figure 1. 10:Reinforcement learning processing [23]

1.5.3 Deep Learning (DL)

DL is a specialized field of ML that enables artificial neural networks, multiply layers to

handle complicated tasks such as face recognition and autonomous driving in vehicles,

generate images, create videos, craft creative things, produce music and many other

applications. Deep Learning requires much greater computational power and custom hardware

to learn hierarchical and sophisticate features automatically from data compared to other

machine learning models, which require human supervision for feature identification.

 How Does Deep Learning Work?

Figure 1. 11:The main components of Deep Learning [24]

17

 Input Layer and Weighted Sums: The input layer of the deep learning model

takes the input data. Each input has a weight, which signifies the importance of the

input in reaching the decision. The weights have typically random values assigned

to them at the beginning of the training. The inputs are multiplied by their

respective weights, and the products are summed up to provide each neuron with a

weighted sum.

 Activation Function: The weighted sum is fed to the activation function

subsequently. The activation function's job is to bring in non-linearity into the

network so that the network learns to learn complicated patterns in data. The

activation function also includes a bias in the weighted sum before it moves to the

next layer or the output layer. The bias enables the model to shift the activation

function so that it can make more accurate predictions. The function then

determines if the neuron is to fire or not, i.e., if the output should activate. The

sigmoid, ReLU (Rectified Linear Unit), and tanh (hyperbolic tangent) functions

are some of the common activation functions.

 Output Layer : After processing by the hidden layers (which can have multiple

neurons and activation functions), the model ends up at the output layer. The

output layer produces the predicted output of the model based on what has been

processed by the network.

 Comparison with Actual Output : After the network has made a prediction, the

predicted output is compared to the actual output (the actual value). This enables

the network to compute the error (or loss) of the prediction. The smaller the error,

the better the model.

 Back propagation and Weight Adjustment : Once the error has been computed,

the model then utilizes back propagation to alter the weights. Back propagation is

accomplished by feeding the error back through the network, beginning with the

output layer and moving toward the input layer. In this process, the model moves

the weights so that the error is minimized overall. Gradient descent is typically

18

utilized for this purpose, where the weights are slowly moved by calculating the

gradient (or slope) of the loss function.

 Cost Function and Error Minimization: The cost function (or loss function) is

utilized to determine how far away the model's predictions are from the true

results. A common cost function is mean squared error (MSE) for a regression task

or cross-entropy loss for a classification task. The objective of model training is to

minimize the cost function by back propagating the update in the weights. As the

weights are updated over numerous iterations (epochs), the network improves in

generating the correct output, decreasing the error rate.

 Machine learning VS deep learning

Machine learning Deep learning

A subset of AI A subset of machine learning

Can train on smaller data sets Requires large amounts of data

Requires more human

intervention to correct and learn

Learns on its own from

environment and past mistakes

Shorter training and lower

accuracy

Longer training and higher

accuracy

Makes simple, linear correlations
Makes non-linear, complex

correlations

Can train on a CPU (central

processing unit)

Needs a specialized GPU

(graphics processing unit) to

train

Table 1. 3:Comparison between ML and DL [25]

19

 Types of Deep Neural Networks

 Convolutional Neural Network (CNN) : is one of the deepest neural networks

that are most commonly utilized for image processing. CNN is made of four main

parts. They help the CNNs mimic how the human brain operates to recognize

patterns and features in images:

• Convolutional layers

• Rectified Linear Unit (ReLU for short)

• Pooling layers

• Fully connected layers

Figure 1. 12:Architecture of the CNNs applied to digit recognition [26]

 Recurrent Neural Network (RNN): Similar to the regular neural networks,

including feed forward neural networks and convolutional neural networks

(CNNs), recurrent neural networks are trained from training data. They differ from

the rest because they possess "memory" since they draw from past inputs to

determine the current input and output.

While standard deep networks make predictions that inputs and outputs are

independent, recurrent neural network output relies on the previous elements of the

sequence. While future events would also be helpful when deciding on the output

of a particular sequence, unidirectional recurrent neural networks cannot

incorporate such events into their predictions.

20

Figure 1. 13:Simple Recurrent Neural Network architecture [27]

 Generative Adversarial Network (GAN) : are synthetic models that use two

neural networks to create novel, synthetic data samples that are copies of existing

data. A GAN using a photograph can be utilized to create new pictures that seem

superficially real to the human observer. A Generative Adversarial Network

(GAN) has two neural networks, the Discriminator and the Generator, and they are

both trained at the same time under adversarial training.

• Generator: It accepts random noise as input and generates data (e.g.,

image). Its objective is to generate data as real as possible.

• Discriminator: This network uses the actual data and the data created by

the Generator as inputs and tries to discriminate between both. It produces

the probability that the provided data is real.

Figure 1. 14: GAN architecture [28]

21

1.6 Conclusion

This Chapter outlined the necessity for monitoring of forest health, referring to the

ecological impact of Thaumetopoea pityocampa. It offered the potential of artificial

intelligence, and specifically computer vision, to enhance the efficiency and accuracy of

monitoring. Principles of basic AI, machine learning, and deep learning were also addressed

as background requirements for the techniques developed in subsequent chapters.

22

Chapter 2

Deep Learning Approaches for PPM

nest detection

2.1 Introduction

Mediterranean and European forests are increasingly under threat from the pine

processionary moth (Thaumetopoea pityocampa), an exotic pest with severe defoliation

impact and allergenic action in humans and animals. Early and accurate detection of its nests

is crucial in order to guarantee effective pest control and forest protection. However,

traditional detection methods i.e. surveying by hand and remote sensing are often limited by

time, cost, and accuracy, particularly where nests are hidden or in the top canopy.

Recent advances in deep learning have opened up new potential for automated nest

detection through high accuracy image processing. Convolutional neural network (CNN)

architectures have proved most successful in object detection tasks, with the potential to be

achieved at faster, more scalable implementations. Among these, architectures like YOLO,

Faster R-CNN, and SSD have been successful in real-time detection scenarios. While several

new versions of YOLO, this study focuses on YOLOv11 due to its balance between speed,

accuracy, and accessibility at the time of implementation.

2.2 Deep Learning for Object Detection

Object detection using deep learning provides a fast and accurate method to estimate the

object location in an image. Deep learning is a strong machine learning technique in which

the object detector learns automatically the image features required for object detection tasks.

Computer Vision Toolbox provides several object detection using deep learning techniques,

such as you only look once YOLOv2, YOLOv3, YOLOv4, YOLOX, RTMDet, and single

shot detection (SSD) [29].

23

Figure 2. 1:Using object detection to identify and locate vehicles. [30]

Two approaches exist for performing object detection using deep learning techniques:

 Use pretrained object detectors: This method involves utilizing pretrained

object detectors. Having been trained on vast datasets capable of recognizing

common objects people, vehicles or text in images without needing retraining. The

approach is particularly ideal for generic use cases with the requirement for rapid

deployment.

 Custom object detector: The second method is to create a custom object detector.

This is typically done by transfer learning, where the pre-trained network is

customized to perform for specific detection tasks. Through the fine-tuning of pre-

trained models, this method allows for the creation of highly specialized detectors

with reduced computation cost and time, as the underlying network is already

trained on large-scale image datasets. The method is particularly beneficial while

dealing with domain-specific objects that lie outside the domains of typical

datasets.

2.3 CNN Based Detection Architectures

Convolutional Neural Networks (CNNs) are now a necessity in modern object detection

applications due to their exceptional ability to learn spatial hierarchies and extract

meaningful features from images. For pine processionary moth (PPM) nests detection ,

24

CNN-based architectures offer the ability to automatically detect patterns and structures in

nests, such as complex forest conditions.

Some of the most popular and utilized CNN-based object detectors include YOLO (You

Only Look Once), Faster R-CNN, and SSD (Single Shot MultiBox Detector), each offering

different strengths in terms of speed, accuracy and architecture.

2.3.1 YOLO (You Only Look Once)

You Only Look Once (YOLO) is one of the most recent, real-time object detection

algorithms that was introduced in 2015 by Joseph Redmon, Santosh Divvala, Ross

Girshick, and Ali Farhadi in their famous paper entitled You Only Look Once: Unified,

Real-Time Object Detection. The object detection problem is framed by the authors as a

regression problem rather than as a classification problem by dividing the bounding boxes

in the spatial manner and providing a probability to every detected image utilizing a single

CNN [31].

 Mechanism of the YOLO Algorithm

Yolo divides the image into a grid. For each grid, some values like class

probabilities and the bounding box parameters are calculated. The model works by

first dividing the input image into a grid of cells, and each cell will predict a

bounding box when the center of a bounding box falls within the cell. Each cell in

the grid estimates a bounding box with the x, y coordinate and width and height and

the confidence. Each class prediction also relies on each cell.

25

Figure 2. 2:YOLO object detection mechanism [32]

 YOLO architecture

YOLO resizes the input image to 448×448 before passing it through the convolutional

network. It starts with a 1×1 convolution that downsamples the number of channels

and subsequently utilizes a 3×3 convolution to yield a cuboidal output. The activation

function used throughout the network is ReLU, except for the final layer, which uses a

linear activation function. Additional techniques, including batch normalization and

dropout, are used to regularize the model and prevent overfitting.

Figure 2. 3:YOLO Architecture [33]

26

 The Evolution of YOLO: From 2015 to 2024

The YOLO (You Only Look Once) series has undergone significant evolution

since its introduction in 2015, continuously improving in terms of speed, accuracy,

and architecture design. Each new version has addressed the limitations of its

predecessors and adapted to new object detection challenges.

1. YOLOv1: Introduced a new approach to object detection by dividing an image into

an S × S grid. Each grid cell was responsible for detecting an object if the center of

the object fell within that cell. Each grid cell predicted B bounding boxes with a

confidence score that indicated how probable the existence of the object is and to

what extent the predicted box correctly describes the object (using IoU –

Intersection over Union).

YOLOv1 handled overlapping boxes using Non-Maximum Suppression (NMS) to

eliminate less accurate predictions. It used a custom loss function for location, size,

confidence, and class probability to improve training performance.The model

demonstrated competitive results in terms of both accuracy and speed, as shown in

the following benchmarks:

 Normal YOLO: 63.4% mAP at 45 FPS

 Fast YOLO: 52.7% mAP at 155 FPS

While fast, YOLOv1 was afflicted with drawbacks like low recall and localization

errors, which prompted subsequent versions upgrades.

2. YOLOv2 (YOLO9000): Was proposed in 2016, which is a significant

enhancement of YOLOv1. The name comes from its capability to recognize more

than 9000 classes of objects, a major improvement in accuracy and generalization.

It combines an existing detection dataset with a classification dataset, running joint

training based on the hierarchical structure of the two datasets, which is one of the

significant innovations of YOLO9000. The detection images do teach the model to

localize objects as well, but the classification images also make it learn a more

diverse set of words with more robustness [34].

27

Unlike two-stage detectors like Faster R-CNN, YOLOv2 uses single-stage

detection, which is much faster with not too much loss in accuracy. YOLOv2 passes

an input image through a deep convolutional neural network (CNN) and outputs

predictions decoded into bounding boxes.

Figure 2. 4:predefined anchor boxes [35]

The figure shows predefined anchor boxes (the dotted lines) at each location in a

feature map and the refined location after offsets are applied. Matched boxes with a

class are in color.

YOLOv2 predicts these three attributes for each anchor box:

 Intersection over union (IoU): Predicts the objectness score of each anchor

box.

 Anchor box offsets: Refine the anchor box position.

 Class probability: Predicts the class label assigned to each anchor box [36].

3. YOLOv3: Small changes, big impact. YOLOv3 released in 2018 by Joseph

Redmon et al[37], brought a series of significant improvements over YOLOv2

(YOLO9000). While YOLOv2 was already a very successful model, YOLOv3 has

further improved accuracy, speed and versatility, consolidating YOLO's position as

one of the most successful object detectors.

 Principal Architectural improvements: YOLOv3 uses Darknet-53, which

28

is a deeper and more powerful network comprising 53 convolutional layers,

residual connections, and oversampling layers. This replaces the Darknet-19

network used in YOLOv2 and offers improved feature extraction

performance, particularly for detecting small objects. Despite being more

complex, it retains real-time processing capability.

 Better Bounding Box Predictions: YOLOv3 improves bounding box

prediction by using logistic regression to estimate an objectness score for

each anchor box. This score indicates whether an anchor box overlaps a

ground truth box as much as possible (score = 1) or not (score = 0). Unlike

Faster R-CNN, which can assign several anchor boxes to a single object,

YOLOv3 assigns a single anchor box per object, which simplifies

calculations (with no loss of localization or confidence in the absence of a

match). [38]

 Smarter Class Prediction:Unlike YOLOv2, which uses the softmax

function, YOLOv3 introduces independent logistic classifiers for each class.

This is useful for multi-label classification, where a box may belong to

several classes (for example, 'Person' and 'Football Player'), reflecting

complex real-world scenarios.

 Multi-Scale Detection: YOLOv3 performs predictions at three different

scales in the network. This enables the model to more effectively detect

objects of various sizes large, medium and small by exploiting feature maps

from different layers of the network.

Figure 2. 5:Multi-scale Detection Architecture[37]

29

4. YOLOv4: was unveiled in April 2020 by Alexey Bochkovskiy and his team,

representing a major breakthrough for the YOLO family of object detection models

[37]. The released version included significant architectural changes, while

continuing to operate in real-time detection.

 Architecture: YOLOv4 employed a three-part architecture of backbone,

neck, and head:

 Backbone: CSPDarknet53 , a convolutional neural network using Cross

Stage Partial Network (CSPNet) to improve gradient flow and feature

learning. [39]

 Neck: Used Spatial Pyramid Pooling (SPP) and Path Aggregation

Network (PANet), adaptations designed to improve multi-scale feature

extraction. [40]

 Head: Used YOLOv3's anchor-based detection mechanism for final

prediction.

Figure 2. 6:Yolov4 Architecture [41].

5. YOLOv5: In June 2020, Glenn Jocher released YOLOv5, marking a significant

milestone in the evolution of the YOLO family. Unlike its predecessors, which were

developed on the Darknet platform, YOLOv5 has been implemented in PyTorch,

which is more versatile and popular, making it more accessible to researchers and

developers [37]. Ultralytics maintains YOLOv5, but there are no associated

30

academic papers.

 Architecture: YOLOv5's architecture retains the fundamental design

elements of previous YOLO versions while incorporating innovations that

improve efficiency and accuracy. The architecture consists of three main

parts:

 Backbone: YOLOv5 uses CSPDarknet53, a Cross Stage Partial (CSP)

version of the Darknet-53 backbone introduced in YOLOv4. This

architecture reduces computations by partially sharing layer gradients,

which increases learning potential while reducing overlearning.

 Neck: is composed of Path Aggregation Network (PAN) and Spatial

Pyramid Pooling (SPP) blocks, to improve multi-scale feature

extraction and detection of objects of various sizes.

 Head: uses convolutional layers to predict objectivity scores, class

probabilities and bounding boxes, thanks to an anchor-based approach.

Figure 2. 7:Yolov5 Architecture[42]

6. YOLOv6: is a single-stage, industry-oriented object detection system based on

PyTorch. Key improvements over YOLOv5 in this version include a hardware-

optimized backbone and neck architecture, a refined decoupled head, and an

improved training strategy. YOLOv6 outperforms previous models in the YOLO

31

series in terms of accuracy and speed, as confirmed by the COCO dataset.

While YOLOv6-N achieved 1,234 FPS and 35.9% AP on an NVIDIA Tesla,

YOLOv6-S set a new record with 43.3% AP at 869 FPS. Even higher accuracy was

achieved by YOLOv6-M and YOLOv6-L, with 49.5% and 52.3% AP respectively,

without compromising speed. [43] The architecture consists of three main parts:

 Backbone: uses a hardware-optimised architecture, often based on

EfficientRep, to improve speed and compactness while retaining good

feature extraction capabilities.

 The Neck is composed of a Rep-PAN (Replicated Path Aggregation

Network) and enables better multi-scale feature fusion, enhancing the

detection of objects of different sizes.

 The head of YOLOv6 is decoupled, separating the classification and

regression branches to improve accuracy and convergence during training.

Figure 2. 8:YOLOv6 network architecture[44]

7. YOLOv7: Is one of the latest model in the sequence of YOLO models. YOLO

models are one-stage object detectors. Image frames get featurized inside a YOLO

model through a backbone. The features are blended and merged within the neck

and further forwarded to the head of the network YOLO predicts locations and

classes of objects where bounding boxes are to be drawn.YOLO does a post-

processing via non-maximum suppression (NMS) to come up with its final

prediction.

32

Figure 2. 9:YOLOv6 network architecture[45]

8. YOLOv8: Was released by Ultralytics on January 10th, 2023, with cutting-edge

performance in speed and accuracy. Building on the advancements of previous

YOLO releases, YOLOv8 introduced new features and optimizations that make it

an excellent choice for many object detection tasks across a wide range of tasks.

Figure 2. 10:YOLOv8 Comparison with Other Versions verions [46]

 Key Features of YOLOv8:

 High-Level Backbone and Neck Architectures: YOLOv8 employs state-

of-the-art backbone and neck architectures, resulting in improved feature

extraction and object detection performance.

 Anchor-free Split Ultralytics Head: YOLOv8 employs an anchor-free

split Ultralytics head, thereby providing better accuracy and a more

efficient detection process than anchor-based techniques.

 Optimized Speed-Accuracy Tradeoff: Focusing on attaining a best-case

speed-accuracy tradeoff, YOLOv8 is suitable for real-time object

detection tasks in many areas of application.

33

 Variety of Pre-trained Models: YOLOv8 offers a range of pre-trained

models to meet various tasks and performance requirements, and it's

simple to locate the model that best suits your specific application.

 Architecture: the YOLOv8 architecture consists of three primary

components:

Figure 2. 11:YOLOv8 architecture [47]

 Backbone: This is a convolutional neural network (CNN) module whose

task is to extract important features from the input image. YOLOv8

employs an adapted version of CSPDarknet53, which incorporates

Cross-Stage Partial (CSP) connections to enhance feature propagation

while reducing computational complexity, ultimately increasing model

accuracy.

 Neck: Also referred to as the feature aggregation layer, the neck

combines feature maps of various stages within the backbone to allow

for efficient incorporation of multi-scale information. Unlike traditional

YOLO models of the Feature Pyramid Network (FPN) type, YOLOv8

introduces the C2f module which effectively merges high-level semantic

features and low-level spatial information. The model has improved

performance in detecting small and densely packed objects using this

architecture.

34

 Head: YOLOv8 head is tasked with generating final predictions. It

consists of a number of detection layers that yield outputs in the shape of

bounding box coordinates, objectness scores, and class probabilities for

each grid cell in the feature map. These are then improved upon by post-

processing steps in an attempt to obtain the final detection outputs[48].

9. YOLOv11: At the YOLO Vision 2024 (YV24) conference, the newest advancement

in the YOLO (You Only Look Once) line of object detection was unveiled:

YOLOv11. It expands on YOLOv1's original concepts by refining training protocols

and architectural design to increase precision, speed, and effectiveness. YOLOv11 can

accomplish a variety of computer vision tasks, including object detection,

classification, instance segmentation, pose estimation, and oriented object detection,

with enhanced feature extraction and reduced parameters, all while preserving high

computational efficiency and real-time performance[49].

 Architecture: YOLOv11 boasts a simplified architecture targeting high

accuracy and real-time processing. There are three essential components:

 Backbone: accepts features from the input image with enhanced

convolutional layers. It introduces the C3k2 block, which is an enhanced

C3 and CSP bottleneck, and includes a C2PSA (Cross Stage Partial with

Spatial Attention) module for boosting spatial attention and detection

capability.

 Neck: Merges multi-scale features from the backbone via upsampling

and concatenation. Feature fusion is optimized by applying C3k2 blocks

and the C2PSA attention mechanism, especially for small and occluded

object detection.

 Head: Generates the final prediction (class labels and bounding boxes)

via a number of C3k2 and C3k blocks, which scale based on kernel size

and depth to optimize precision without compromising computational

35

efficiency.

Figure 2. 12:YOLOv11 architecture[50]

Version Year Key Features Performance Impact

YOLOv1 2015
Unified architecture for real-time

object detection

63.4% mAP at 45

FPS on PASCAL

VOC 2007

Pioneered real-time

object detection with a

single neural network

YOLOv2 2016

Introduced batch normalization,

high-resolution classifiers, and

anchor boxes

76.8% mAP at 67

FPS on PASCAL

VOC 2007

Improved accuracy and

speed; expanded

applicability

YOLOv3 2018

Used Darknet-53 backbone; multi-

scale predictions; feature pyramid

networks

57.9% AP on

COCO dataset

Enhanced detection of

small objects and

improved accuracy

YOLOv4 2020

CSPDarknet53 backbone; mosaic

data augmentation; self-adversarial

training

43.5% AP at 65 FPS

on COCO dataset

Balanced speed and

accuracy; widely adopted

in industry

YOLOv5 2020

Focused on ease of use;

implemented auto-learning

bounding box anchors

50.4% AP at 140

FPS on COCO

dataset

User-friendly; facilitated

deployment in various

applications

YOLOv6 2022

Optimized for mobile devices;

introduced efficient backbone and

neck designs

43.1% AP at 120

FPS on COCO

dataset

Enabled real-time

detection on edge

devices

36

Version Year Key Features Performance Impact

YOLOv7 2022

Extended efficient layer

aggregation networks; model

scaling techniques

51.4% AP at 150

FPS on COCO

dataset

Achieved state-of-the-art

performance; efficient

for various tasks

YOLOv8 2023

Incorporated transformer layers;

adaptive computation for dynamic

scenes

53.9% AP at 160

FPS on COCO

dataset

Improved handling of

complex scenes and

occlusions

YOLOv9 2024

Introduced Generalized Efficient

Layer Aggregation Network

(GELAN) and Programmable

Gradient Information (PGI)

YOLOv9e variant

achieved 55.6%

mAP with 58.1M

parameters

Enhanced accuracy and

efficiency; suitable for

diverse applications

YOLOv10 2024
Advanced loss function; variants

from nano to extra-large models

YOLOv10-S

achieved 46.3%

APval with 2.49ms

latency

Reduced latency and

parameter count;

adaptable to various

computational needs

YOLOv11 2024

Transformer-based backbone;

dynamic head design; NMS-free

training

61.5% mAP at 60

FPS with 40M

parameters

Improved speed and

accuracy; efficient for

real-time applications

YOLOv12 2025

Area Attention Module (A2);

Residual Efficient Layer

Aggregation Networks (R-ELAN);

Flash Attention

YOLOv12-Nano

achieved 40.6%

mAP with 1.64ms

latency

Combined attention

mechanisms with speed;

effective in real-time

scenarios

Table 2. 1:YOLO Series – Comparison [51]

2.3.2 Faster R-CNN

Most of the latest models available today stem from the work produced by the Faster R-

CNN model. Faster R-CNN is an object detection model that classifies objects within an

image, draws bounding boxes around them, and identifies what those objects are. It

processes in two stages:

 Stage 1: Proposes possible areas in the image that might contain objects,

governed by the Region Proposal Network (RPN).

37

 Stage 2: Uses these proposed regions to predict the class of the object and

refines the bounding box to better fit the object.

Figure 2. 13:Faster R-CNN Architechture [52]

2.3.3 SSD (Single Shot MultiBox Detector)

SSD is composed of two components: SSD head and backbone model. Backbone model

is usually a pre-trained image classification network as a feature extractor. It is usually a

network like ResNet trained on ImageNet with the last fully connected classification layer

discarded. This leaves a deep neural network that can capture semantic meaning of the

input image and also preserve the spatial organization of the image but at a lower

resolution. For ResNet34, the backbone produces a 256-channel 7×7 feature map for an

input image. The definitions of feature and feature map will be provided later. The SSD

head is just one or several convolutional layers added on top of this backbone and the

outputs are interpreted as the object classes and bounding boxes in the spatial location of

the final layers' activations.

In the figure below, the early layers (white boxes) are the backbone, the later layers (blue

boxes) are the SSD head

38

Figure 2. 14:Architecture of a convolutional neural network with a SSD detector [53]

2.4 YOLOv11 for PPM Nest Detection

After studying several object detection architectures based on deep learning, YOLOv11

was selected as the starting model for the detection of Thaumetopea pityocampa (the pine

processionary caterpillar) nests. This choice is explained by YOLOv11's advanced

capabilities for real-time detection and identification of small objects, as well as its efficient

anchorage-free architecture, which perfectly meets the specific challenges of ecological

image analysis.

Nests of Thaumetopea pityocampa (the pine processionary caterpillar) often appear as

small, dense and irregular formations on pine trees, frequently blending into the natural

texture of the environment. Variability in terms of size, shape and position requires an

architecture capable of efficiently extracting features at different scales, while being robust in

the face of visual complexity. YOLOv11's improved backbone, combined with its neck based

on the C2f structure, enables it to capture both high-level and low-level features, making it

particularly suited to the detection of these nests.

YOLOv11 also offers a good compromise between accuracy and inference speed, enabling

its potential use in real-time forest monitoring systems or devices deployed in the field.

Support for several variants of the model (YOLOv11, YOLOv11s, for example) enables

adaptation to suit available computing resources and performance requirements.

39

Furthermore, YOLOv11 is both a technically powerful and practical tool for

environmental monitoring research thanks to its ability to generalize across different datasets

and the ongoing support of the Ultralytics ecosystem in terms of ease of training, testing and

integration into real-life use cases.

To ensure the effectiveness of the YOLOv11-based detection system, the choice of dataset

plays a crucial role. The model's performance heavily depends on the quality, diversity, and

annotation accuracy of the data used for training and evaluation. In the context of detecting

pine processionary moth nests, it is essential to provide images that reflect real-world

conditions, including various lighting, angles, and environmental complexity. A carefully

constructed dataset tailored to these challenges significantly enhances the model’s ability to

generalize and perform reliably in field applications.

2.5 Dataset

The dataset used in this study consists of two parts. The first data was accessed through

the Roboflow platform, which provides pre-labeled image datasets for computer vision

tasks. It contains images of pine processionary moth (Thaumetopea pityocampa) nests

captured in various forms of forests capes. They were taken from both aerial and ground-

level perspectives, under varying lighting conditions, and with varying backgrounds. The

dataset also includes both negative and positive examples images with and without nests

visible such that the model can distinguish real nests from similar visual features like pine

cones and branches. Annotations are provided in YOLO format, making the dataset

directly compatible with the YOLOv11 training pipeline.

The second dataset is a custom dataset captured by our team using a standard digital

camera. These images were taken during field visits in local forested areas, primarily for

real-world scenario-based testing and model validation. Further information about the data

collection process as well as field conditions are provided in Chapter 3.

40

Figure 2. 15:Labeled image showing bounding boxes around PPM nests

Figure 2. 16:The diversity of scenes and nest appearances in the dataset

2.6 Challenges in PPM Nest Detection

Detection of pine processionary moth (PPM) nests by deep learning methods is

confronted with several challenges, primarily due to the complexity of forest environments

and the nests themselves. These pose challenges for both model training and real-world

model application.

41

 Limited Availability of Large Data Sets

One of the largest challenges to develop accurate PPM nest detection models is the

absence of large, high-quality datasets. While there are sites that offer annotated and

curated image datasets for computer vision tasks, they do not contain the quantity

and diversity required to effectively train deep learning models. This limitation

prevents the model from being capable of generalizing well to different forest

conditions and types of nests.

 Visual Similarity with Natural Elements

PPM nests tend to appear very similar to natural objects such as clumps of pine

needles, pine cones, or bright spots caused by sunlight. Same appearance

regarding the way they appear increases the chances that there will be false

positives or false negatives, especially in heavy forest cover.

 Variation in Nest Appearance

Nests could be distinctly varying in shape, size, texture, and visibility depending

upon infestation age, light level, and the angle from which the image is captured.

Such variation makes it difficult for models to learn to generalize in all possible

cases..

 Occlusion and Background Clutter

Nests in the majority of cases are partly occluded by leaves, branches, or other

forest elements. This occlusion, along with the variability and cluttered

background, prevents the model from easily identifying nest structures.

 Small Object Detection

Some nests are captured from a distance either by drone or camera making them

appear very small in the picture. The detection of such small objects is a known

limitation for most object detection models, especially outdoors.

 Lighting and Weather Conditions

Environmental condition variability such as shadows, fog, rain, or harsh contrast

sunlight may cause both nests and surrounding trees to appear irregularly. These

inconsistencies make the detection even more difficult.

42

2.7 Existing Research and Research Gaps

Advancements in deep learning have enabled researchers to develop pine processionary

moth (PPM) nest automatic detection systems. Several methodologies were explored in

various studies,whose results were found to be positive:

 Multi-Stream Convolutional Neural Networks: Jaber et al. (2021)[15] had put

forward a system that integrated RGB and thermal images, which were analyzed

through a two-channeled deep convolutional neural network. The system achieved a

mean accuracy of 97% in detection and allowed geo-localization of the nests to the

centimeter order.

 UAV-Based Forest Detection Using Deep Learning: Garcia et al. (2023)[12]

experimented with the UAV use and deep learning models, YOLO and Faster R-

CNN, on various types of forests in south Europe. They discovered that YOLO

outperforms Faster R-CNN with F1-measures 0.826 for presence/absence and 0.696

for single nest detection.

 Semantic Segmentation Methods: Akıncı and Göktoǧan (2019) [13] utilized

semantic segmentation on UAV images for mapping and detection of PPM nests in

pine plantations. The method enabled the generation of spatiotemporal maps, thus

making it easier to carry out strategic planning in the management of PPM

infestation.

2.8 Conclusion

This chapter provided a general description of deep learning techniques employed in

detecting pine processionary moth (PPM) nests, i.e., the CNN-based architectures such as

YOLO, Faster R-CNN, and SSD. YOLOv11 was accorded special attention since it

possesses a newer architecture and was observed to be very proficient in real-time object

detection tasks. The datasets employed in this work were also described, commenting on

their range and relevance to the task.

43

By going through previous work, it was evident that while deep learning-based models

have achieved promising results, there are issues primarily environmental variance, small

and distant targets, and insufficient availability of large, diverse datasets. Research

limitations were identified as far as model generalization, real-time performance, and

insufficient testing of recent model versions like YOLOv11 are concerned.

These observations lay the groundwork for the experimental method outlined in the

following chapter, where model training, data preprocessing, and measurement of

performance are elaborated on.

44

Chapter 3

System Design and Model Development

3.1 Introduction

This chapter presents the applied design and development process of the intelligent system

for Thaumetopoea pityocampa nest detection. The focus is placed on the selection and

configuration of the most suitable deep learning model for the application, data preparation,

solving of specific detection issues, and integration of supporting technologies such as GPS-

based localization. The deployment leverages advanced computer vision and data

preprocessing techniques to enhance accuracy of detection, especially under adverse

conditions such as distant or small-sized nests. The decision made at this point was governed

by the goal of having a robust, scalable, and feasible solution for real-world forest health

monitoring use cases.

3.2 System Objectives

The main objective of the system is the automatic detection and localization of

Thaumetopoea pityocampa nests in forest environments using deep learning. To achieve this,

the system is designed with the following specific goals:

 High Detection Accuracy: Be able to identify nests of different shapes and sizes,

partially hidden or far away from the camera.

 Precise Localization: Use GPS metadata from the captured image to correlate

every detected nest with its geographical location

 Enhanced Detection Performance: Improve accuracy through preprocessing by

using Multi-Scale Patch Analysis (MPA), in case of small or faraway nests.

45

3.3 YOLOv11 Model Selection

YOLOv11 was selected for detecting Thaumetopoea pityocampa nests due to its advanced

architecture, real-time performance, and adaptability to complex detection tasks. Its design

offers several key advantages:

 Best precision/efficiency compromise: YOLOv11 offers higher precision than

YOLOv8m, while reducing the number of parameters by 22%, making it more

compact and faster. [54]

 Optimized real-time performance: with an inference time of just ≈2.4 ms on a

TensorRT FP16 GPU, YOLOv11n is among the fastest models in the series, well

ahead of YOLOv8, v9 and v10.[49]

 Enriched architecture: YOLOv11 incorporates new blocks such as C3k2, SPPF

and C2PSA, which enhance multi-layer feature extraction essential for the

detection of small and complex objects.

 Mature ecosystem for conservation: YOLOv11 benefits from a powerful

Ultralytics ecosystem, including experimental monitoring tools (e.g. DVCLive),

tutorials, multi-platform deployment and support for environmental tasks such as

species monitoring or pollution detection.[55]

3.4 Components of YOLOv11

As part of our application dedicated to the detection of Thaumetopoea pityocampa nests,

YOLOv11 offers a series of powerful, modular functionalities that perfectly meet the

requirements of precision, flexibility and integration. Available tools include:

 Oriented bounding boxes (-obb), useful for detecting nests that are tilted or

partially visible at non-standard angles.

 Pose estimation (-pose): in future versions, this feature could be used to isolate

the precise contours of nests instead of simple boxes.

 Instance segmentation (-seg): this functionality, which will be integrated in

future versions, will enable the precise contours of nests to be isolated instead of

simple boxes.

 Classical object detection is at the heart of our current approach to locating nests

with precision.

46

 Classification (-cls): can be used to distinguish nest types or development stages.

YOLOv11 offers these tools in several sizes (nano, small, medium, large, x-large),

allowing adaptation to the resources available. Thanks to its easy integration with the

Ultralytics library and the Ultralytics HUB platform, the model can be trained, exported

and then efficiently deployed in our pipeline [56].

Model
Size

(pixels)

mAPval

(50-95)

Speed CPU

ONNX (ms)

Speed T4

TensorRT10 (ms)

Params

(M)

FLOPs

(B)

YOLOv11n 640 39.5 56.1 ± 0.8 1.5 ± 0.0 2.6 6.5

YOLOv11s 640 47.0 90.0 ± 1.2 2.5 ± 0.0 9.4 21.5

YOLOv11m 640 51.5 183.2 ± 2.0 4.7 ± 0.1 20.1 68.0

YOLOv11l 640 53.4 238.6 ± 1.4 6.2 ± 0.1 25.3 86.9

YOLOv11x 640 54.7 462.8 ± 6.7 11.3 ± 0.2 56.9 194.9

Table 3. 1:YOLOv11 performance on COCO Object Detection

It provides better feature extraction with more accurate detail capture, higher accuracy

with fewer parameters, and faster processing rates (better real-time performance).

3.5 Overall System Architecture

The model follows a modular pipeline designed to detect and localize Thaumetopoea

pityocampa nests in field images. The main components are:

47

Figure 3. 1:System pipeline for the detection and localization of PPM nests (Source: Authors)

1. Input Images: There is two main sources a public dataset from Roboflow and

photos taken by hand which have GPS metadata.

2. Preprocessing: Before detecting nests, the images are preprocessed with techniques

like Multi-Scale Patch Analysis. This helps make small or distant nests easier to see.

it also includes other techniques likes resizing .

3. Nest Detection: Once the images are ready, they are passed through a YOLOv11-

based detection model, which detects the nests and draws boxes around them.

4. Visualization with GPS: If GPS metadata is there, the system grabs the location

data from the photos and maps where each nest is.

3.6 Dataset Description

The dataset used for this project consists of two primary sources, each selected to

support different stages of the system development process:

1. Training Dataset Roboflow:

The model was trained using a dataset sourced and annotated through the Roboflow

platform[61].This dataset includes a wide range of images of Thaumetopoea pityocampa

nests captured under varying environmental conditions. Roboflow's preprocessing,

augmentation, and export tools (e.g., for YOLO format) facilitated efficient preparation of

the training data.

48

2. Testing Dataset Field Images (Personal Collection):

Field testing was conducted using images collected manually across three visits to

forested areas in the region of Guelma, specifically in Aïn Ksoub, Roknia, and

Bouhmedene.

 During the first two visits, high-resolution images and videos were captured using a

professional camera to ensure image clarity for detection evaluation.

Figure 3. 2:Field Images Collection: Nest Samples and On-Site Work

 In the third visit, smartphones were used to collect images containing GPS

metadata, enabling geolocation of detections and validating the model's application

in spatial mapping.

49

3. YOLOv11 Annotation Format :

YOLOv11 uses a straightforward annotation format that is an extension of what was

used with YOLOv11. For each image, there's a corresponding .txt file where each line

represents one object in the image. [58]

Figure 3. 3:YOLOv11 Annotation Format

Each line contains:

• The class ID (a number starting from 0)

• center_x: the horizontal center of the box

• center_y: the vertical center

• width: how wide the box is

• height: how tall the box is

3.7 Dataset Preparation

The precision and preprocessing of the dataset play a critical role for high detection

accuracy. Several preprocessing and enhancement techniques were employed in this

project to address detection problems and improve model performance.

3.7.1 Small and Distant Nest Problems

Initial experiments with YOLOv11 on the raw data were disappointing for detecting

small or distant nests. These nests were not being detected due to their low resolution in

wide-angle forest scenes. The model achieved a mAP@0.5 of approximately 88.9% and a

precision of 90.7%,before applying MSPA, but nearly all the false negatives were in such

challenging cases.

50

3.7.2 Multi-Scale Patch Analysis (MSPA)

To overcome the challenge of identifying small, distant nests, we adopted the Multi-

Scale Patch Analysis (MSPA) approach, which draws inspiration from techniques

employed in smart farming, as outlined in the article 'Smart Farming Solutions': Automated

Crop and Plantation Disease Detection' (ResearchGate, 2024) [59].

This method involves generating several image patches at different scales from each

original image and focusing on areas with a high probability of nest occurrence (e.g. tree

branches). Dividing the original high-resolution image into enlarged regions of interest

enables even very small or partially hidden nests to be captured with sufficient resolution

for reliable detection.

Patch generation

To create relevant patches from annotated images, we used a custom Python script that

follows several key steps. The main function responsible for this process is the

'generate_multi_scale_patches' function, which:

 loads images and their associated annotations in YOLO format using the

load_images_and_labels function.

 Analyzes the size of each annotated nest (bounding box) using the calculate_nest_size

function.

 Each nest is categorized as very small, small, medium, or large based on the area it

occupies relative to the image size.

 Extracts a square patch centered on each nest, whose size depends on the nest category:

 320 × 320 pixels for medium-sized nests.

 448 × 448 pixels for large nests.

 Extremely small nests, which occupy less than 0.5% of the image area, are ignored in

order to reduce noise and avoid introducing information that is of little use to the

model.

Re-annotation of Nests in Patches

After extracting the patches centred on the nests, it is crucial to adjust the annotations (or

'bounding boxes') of the visible objects within each patch. This is because the original

coordinates are no longer valid for these partially extracted images. The

adjust_bounding_boxes function is used for this purpose.

51

Therefore, all nest annotations visible within a patch must be recalculated relative to the

new patch size using a coordinate transformation, to ensure that the bounding boxes retain

their accuracy when the model is trained.

The formula used to convert the absolute coordinates of objects in the original image to the

normalized coordinates of the patch is as follows:

Figure 3. 4:YOLO Coordinate Transformation for Image Patch

 (x1, y1, x2, y2) are the top-left and bottom-right coordinates of the patch in the original

image.

 The width and height of the patch:

 patch_w = x2 - x1

 patch_h = y2 - y1

 The original object (nest) has absolute center (x_original, y_original) and size

(w_original, h_original) in pixels.

Figure 3. 5:Example of Multi-Scale Patch Analysis (from personal dataset created)

By breaking the large images into overlapping and multi-scale windows, MSPA ensures

that even the smallest nests are presented to the model at sufficient resolution. This

significantly improves detection accuracy, especially for low-resolution targets or partially

52

occulted nests in tall vegetation.

After applying MSPA, the model's mAP@0.5 improved from approximately 88.9% to

98.4%, and precision increased from 90.7% to 94.9%, demonstrating the method's potential

to mitigate false negative.

Figure 3. 6:Illustration of Multi-Scale Patch Analysis (MSPA): Original Image and

Corresponding Zoomed Patches Author, from personal dataset created

3.7.3 Dataset Splitting and Augmentation

The initial dataset was sourced from Roboflow, where it was automatically divided into

training, validation, and testing sets in accordance with standard deep learning practices. To

enhance the model’s robustness to real-world conditions, data augmentation was performed

directly on Roboflow using its built-in parameters.

These adjustments (Figure 3.7) helped in simulating different real-life situations such as

changing lightings, positions, and sizes of objects.

53

Figure 3. 7:Data Augmentation Parameters Used in Roboflow [60]

Rebalancing after MSPA

However, after applying the Multi-Scale Patch Analysis (MSPA) method, implemented

via the generate_multi_scale_patches function, a new version of the dataset was generated,

consisting of multi-scale patches extracted around the nests. This process led to an

imbalance: images containing multiple nests (or large nests) produced a large number of

patches, while others generated few. To correct this imbalance, a set of specific pre-

processing steps was applied:

 normalize_patch_distribution, which was used to limit the number of patches per

image by selecting only useful patches, in order to avoid over-representation of dense

scenes.

 The filter_useless_patches function was used to remove blurry, empty, or poorly

framed patches, i.e., those that do not contain any visible nests or cannot be used for

learning.

 augment_underrepresented_patches: to compensate for the under-representation of

certain images after the MSPA step, this function applied targeted local augmentations

(rotation, flip, brightness modification, etc.) only to patches from underrepresented

images. This restored a certain balance to the dataset in terms of image volume and

visual diversity.

54

Final division of the dataset

After the multi-scale patch generation (MSPA), filtering, and targeted augmentation

steps, the final dataset was divided into two subsets: 80% for training and 20% for

validation. This division was performed randomly using a Python script. Unlike these sets,

the test set was not extracted from the main dataset, as the model testing phase was carried

out on a set of real images captured in the field (personal collection).

Figure 3. 8:MSPA dataset preparation pipeline

3.8 Model Configuration and Training

3.8.1 Training Strategy

After the preparation of the dataset by merging normal images and multi-scale patches

the training is done by employing the YOLOv11 model optimized for small and distant

nest detection. The training process employed top techniques to achieve maximum

performance:

• Multi-Resolution Training

To improve generalization across images of varied quality and nest sizes, multi-

resolution training was used. This technique randomly changes the resolution of

input images during training, allowing the model to learn more effectively for nests

of different sizes and visibility.

55

• Mosaic Augmentation During Training

Although core data augmentation was done initially via Roboflow, mosaic

augmentation was also utilized dynamically during training time. Mosaicing four

training images together, this technique augments context diversity and allows the

model to generalize to varied environments, such as cluttered forest settings.

3.8.2 Hyperparameters and Loss Function

 Hyperparameters

The selection of hyperparameters played a crucial role in the adjustment of performance of

the YOLOv11 model for nest detection of Thaumetopoea pityocampa. Rather than fixed

values, the values of significant hyperparameters such as the number of epochs, batch size,

and learning rate were selected experimentally. Multiple training experiments using

different settings were conducted to allow us to view their impact on performance

parameters and convergence behavior. The final setup was selected based on the best

accuracy, training time, and regulation of overfitting.

The final configuration that yielded the optimal performance is the following:

Parameter Value Justification

Epochs 50
Moderate value providing enough learning cycles for the

enlarged dataset.

Image Size 640 × 640
Balanced resolution ensuring small nest detection with

reasonable training speed.

Batch Size 16
Fits within GPU memory while maintaining stable gradient

updates.

Device
CUDA

(GPU)

Accelerated training performance and ability to handle larger

data efficiently.

Model

Variant
YOLOv11n

Lightweight model enabling faster experimentation with

competitive accuracy.

Table 3. 2:Final YOLOv11 Training Configuration and Hyperparameters

56

 Loss Functions

During training, the model converges to a composite loss function internally, as is

standard in YOLOv11 but critical to mention:

 CIoU (Complete Intersection over Union) Loss

Used for bounding box regression, this loss enhances accuracy by considering not only

the overlap area but also the center distance and aspect ratio between predicted and ground

truth boxes.

 train/box_loss: Decreased from approximately 2.05 to 0.55

 val/box_loss: Decreased from around 1.80 to 0.78

 Binary Cross Entropy (BCE) Loss

This loss is applied both to the objectness score and the classification of detected objects.

It performs effectively in binary and multi-label classification tasks, which are typical in

object detection.

 train/cls_loss: Dropped from over 2.0 to around 0.35

 val/cls_loss: Dropped from 1.3 to approximately 0.4

 Distribution Focal Loss (DFL)

Introduced in recent versions of YOLO, DFL improves the accuracy of predicted bounding

box coordinates by learning a distribution over discrete distance bins. It improves the

accuracy of localisation by refining how the model interprets object boundaries.

 Train/DFL loss: Decreased from 1.40 to 0.80.

 Val/DFL_Loss: Decreased from 1.35 to 0.95.

57

Figure 3. 9:Loss Function Curves (Box, Cls, DFL) – Training and Validation

The steady and consistent decrease in the three loss functions (CIoU, BCE, and DFL),

both for training and validation, indicates that the model is learning effectively. The

proximity of the values between the training and validation curves rules out any overfitting,

and the low final values indicate good generalization as well as accurate localization of

Thaumetopoea pityocampa nests. These results confirm the stability and robustness of the

training process with YOLOv11 for this task.

3.8.3 Challenges Faced During Training

 Limited Dataset Size: Before applying the Multi-Scale Patch Analysis (MSPA)

strategy, the available dataset was relatively small. The small volume of data limited

the model's exposure to diverse nest conditions, with the potential for overfitting and

reduced generalization performance on new samples.

 Camouflaged Nests in Natural Backgrounds: Thaumetopoea pityocampa nests

merge with the environment due to the same textures and colors. Camouflage made the

model difficult to learn discriminative features. The issue was addressed by increasing

the resolution and diversity of training examples and adding augmentations to

familiarize the model with varying lighting, textures, and angles.

58

 Detection of Small and Far away Nests: One of the main issues was accurately

detecting nests that were either too far away or too small from the camera. These nests

lacked sufficient visual salience in full-resolution images. This was resolved by

utilizing the MSPA approach to generate high-resolution patches centered around the

potential nest areas, significantly improving detection rates.

Before MSPA After MSPA

Figure 3. 10:Impact of MSPA on Detection Performance

The left image shows the detection result without applying Multi-Scale Patch

Analysis (MSPA), the model failed to detect the distant and small nest. The right

image is the detection result after MSPA was applied, which the nest is detected

successfully. MSPA enhances detection by generating focused high-resolution

patches, especially for small or camouflaged objects.

 Overfitting on Early Training: Due to the small size of the dataset in the initial

stages of training, the model was plagued by overfitting good performance on training

data but poor on validation or test data. This was countered with increasing the size of

the dataset with MSPA, applying data augmentation (e.g., Mosaic), and controlling

through dropout and early stopping.

 Lack of Geolocation Data: None of the original photos included GPS metadata,

limiting the geolocation of recognized nests. Fieldwork was consequently conducted to

capture new photos using GPS enabled devices manually. While these images were not

used for training, they enriched the dataset for evaluation purposes and enabled

59

geospatial analysis and visualization in the final phases of the project.

3.9 Geolocation and Mapping Integration

 GPS Metadata Extraction: The images captured in the field on mobile phones and

cameras also come with inherent GPS coordinates. Such metadata were downloaded

using EXIF parsing tools and stored along with detection outputs.

Figure 3. 11:GPS Metadata Extraction Example (bouhamdane Guelma)

Screenshot of an image taken with a GPS-enabled smartphone, showing

geolocation data in Google Photos. This information was crucial for associating

detected nests with their real-world coordinates.

 Real-Time Mapping Potential: Inclusion of GPS coordinates allows geolocation of

nests discovered by the system. This will allow for future potential establishment of

real-time monitoring platforms where users can upload images and see the results

mapped on an interactive map instantly facilitating early warning and intervention.

60

3.10 Conclusion

This chapter explained the design, setup, and training process for the YOLOv11 based

model to detect Thaumetopoea pityocampa nests. The training pipeline was designed with

consideration for the specific difficulties of this task, e.g., the initially small dataset, the

camouflage or distant appearance of nests, and lack of GPS metadata.

 To enrich the dataset, the Multi-Scale Patch Analysis (MSPA) method was utilized,

producing zoomed patches of images around potential nesting areas. This significantly

increased the quantity and diversity of the training data. Hyperparameters were

experimentally tuned across multiple training iterations, with final values chosen . Along

with this, fieldwork was conducted to collect GPS tagged photos for geospatial analysis

and to provide a basis for future integration of IoT and real-time infestation mapping.

 Together, this chapter set the technical foundations of the system, setting stage for

performance testing and results analysis in the next chapter.

61

Chapter 4

Implementation and Results

4.1 Introduction

This chapter presents the practical implementation and results of the intelligent detection

system developed for monitoring Thaumetopoea pityocampa (pine processionary caterpillar)

nests using deep learning techniques. The goal of this system is to provide an effective and

accessible tool for the detection and management of infestations

 The implementation was carried out using modern frameworks and tools. In addition to the

integration of the server-side model, a user-friendly platform has been developed in the form

of a website and mobile application. This platform enables users be they experts, forestry

officers or ordinary citizens to upload images or videos, view detection results, and even

display the geographical location of detected nests when GPS metadata is available.

 The chapter begins with the development environment, detailing the hardware and software

tools used. Next, the system's complete workflow is presented. Particular attention is paid to

the impact of using the Multi-Scale Patch Analysis (MSPA) method, which has significantly

improved model performance, especially for detecting small or distant nests.

 The system was evaluated using several metrics before and after the application of MSPA.

Finally, the results are discussed in detail. Tests were also carried out on real images captured

under natural conditions. Visual examples of detection results to provide a comprehensive

overview of the effectiveness and suitability of the proposed system.

62

4.2 Development Environment

4.2.1 Hardware Environment

At the start of the project, model training was carried out on the Kaggle platform, which

offered sufficient resources to work with a small dataset (prior to the application of

MSPA). However, after the significant increase in data volume following the application

of the MSPA method, a more powerful hardware environment was required. Thus the

training was transferred to a high-performance machine which is located in the LabSTIC

laboratory at the University 8 May 1945 of Guelma. This machine is equipped with a

high-end GPU (NVIDIA), a multi-core processor and a large RAM capacity, enabling

faster and more efficient training.

4.2.2 Software Environment

 Python

Python is a high-level, interpreted, object-oriented programming language with dynamic

semantics. Its high-level data structures, combined with dynamic typing and dynamic

linking, make it very attractive for rapid application development, as well as for use as a

scripting or glue language to link existing components together. Python's simple, easy-to-

learn syntax emphasizes readability and therefore reduces the cost of program maintenance.

Python supports modules and packages, promoting program modularity and code reuse.

The Python interpreter and the extensive standard library are available free of charge in

source or binary form for all major platforms, and can be freely distributed.

Programmers often fall in love with Python because of the increased productivity it

offers. As there is no compile step, the edit-test-debug cycle is incredibly fast. Debugging

Python programs is easy: a bug or bad input will never cause a segmentation error.

Instead, when the interpreter discovers an error, it throws an exception. When the program

doesn't catch the exception, the interpreter prints a stack trace. A source-level debugger

allows you to inspect local and global variables, evaluate arbitrary expressions, set

breakpoints, browse code line by line, etc. The debugger is written in Python. The

debugger is written in Python itself, which testifies to Python's power of introspection. On

the other hand, the quickest way to debug a program is often to add a few print instructions

to the source code: the fast edit-test-debug cycle makes this simple approach very

effective.[61]

63

Figure 4. 1:Python logo [62]

In this project, Python served as the primary language for all implementation aspects,

including data preprocessing, model training, integration with YOLOv8, and interfacing

with other software tools like Roboflow.

 Ultralytics

Ultralytics is a technology company that specialises in advanced computer vision

solutions, particularly real-time object detection using artificial intelligence. Founded by

Glenn Jocher, the company is best known for developing the popular YOLO (You Only

Look Once) series of object detection models, including YOLOv5 and YOLOv8. These

models have become the industry standard and are widely used in academic research and

practical applications involving real-time detection tasks.

 Ultralytics has significantly improved the accessibility and reproducibility of deep

learning–based object detection by providing an open-source, PyTorch-based framework

alongside comprehensive documentation and tools. YOLOv11 introduces advanced

capabilities, including instance segmentation, pose estimation and improved data handling,

as well as enhanced training performance. This makes it suitable for a broad range of

computer vision problems.[63]

64

Figure 4. 2:Ultralytics logo [64]

This thesis used Ultralytics YOLOv11 as the main detection engine to identify

Thaumetopoea pityocampa nests. This is due to its high accuracy, its compatibility with

Roboflow datasets and its efficiency in processing high-resolution pre-processed images

generated using the MSPA (Multi-Scale Patch Analysis) technique.

 Roboflow

Roboflow is an easy-to-use cloud-based platform aimed at streamlining dataset creation

and preparation for computer vision projects. It facilitates efficient image structuring,

annotation and pre-processing as an individual or part of a team. Through integrated data

augmentation features (image rotation, flipping and color modification), Roboflow helps

to increase the diversity of datasets, which is central to training robust deep learning

models. It also exports data in other formats compatible with top frameworks such as

YOLO, TensorFlow and COCO.[65]

Figure 4. 3:Roboflow logo[66]

in this project Roboflow is used in preparing the dataset used to train the YOLOv11 object

detection model for this project. It orchestrated the whole process of data preparation from

human annotation through augmentation to get images ready for efficient training and

testing within the YOLOv11 pipeline.

65

 Kaggle

Kaggle is an interactive web platform that offers machine learning competitions in data

science. The platform provides free datasets, notebooks and tutorials that data scientists

need to carry out their machine learning projects. [67]

Figure 4. 4:kaggle logo [68]

For this project, Kaggle was used during the early stages of model training, particularly

before applying the Multi-Scale Patch Analysis (MSPA) method.

4.3 System Workflow and Platform

 Overall Pipeline

Figure 4. 5:Workflow of the PPM nests Detection System

1. Data capture: Images or videos are captured in the field using drones, smartphones or

digital cameras. This media may include GPS metadata, which allows each capture to be

located.

66

2. Uploading to the platform: The captured files are then uploaded to the GreenGuard

platform. This step prepares the data for automatic processing.

3. Processing by the YOLOv11 model: The uploaded data is analysed by a YOLOv11

artificial intelligence model that has been specifically trained to detect pine processionary

caterpillar nests. The model identifies the nests and generates bounding boxes

accompanied by confidence scores.

4. Geolocation: If the images contain embedded GPS data, the system automatically

extracts it. This allows each detection to be associated with actual geographic coordinates.

5. Nest detection: The system displays the detection results, including:

 images annotated with the detected nests.

 confidence scores.

 User Platform

The system GreenGuard provides a user-friendly interface that can be accessed via a

web platform or a mobile application. Users upload images or videos captured by drones,

smartphones or cameras. Next, the system automatically detects nests and extracts GPS

coordinates if available to display the results . The interface includes visual overlays of

detected nests and interactive map views for geolocation.

 Below are screenshots showing the home page of the platform and the step-by-step

process of how users interact with the system :

67

Figure 4. 6:Step 1- Access the Interface

This screen shows the initial interface of the GreenGuard platform. The user accesses the

home page where they are welcomed with options to explore features or test the nest

detection model.

Figure 4. 7:Step 2 - Select the Option "Try the Model"

In this step, the user clicks on the “Try the Model” button to begin testing the YOLOv11-based

detection system. This option allows them to upload an image or video for analysis.

68

Figure 4. 8:Step 3 - Upload an Image or Video

The user uploads a media file (image or video) captured via drone, smartphone, or camera.

The uploaded file may contain GPS metadata, which will be extracted automatically during

processing.

Figure 4. 9:Step 4 – View Detection Results (Image + GPS Coordinates)

Once the media is uploaded and processed, the system displays the results directly on the

image. The detected nests are highlighted using bounding boxes, and the associated GPS

coordinates (if available) are shown.

69

Figure 4. 10:Step 5 - View Interactive Map of All Detections

In this step, the user accesses a dynamic map displaying all the processed images and their

corresponding detection coordinates. Each marker on the map represents a detection, and clicking

on a marker displays the associated image and details.

4.4 Model Training and Validation

4.4.1 Evaluation Metrics

For YOLO models evaluation metrics, the mAP50 measures are key indicators of

accuracy, showing how well the model is able to detect objects. Precision and recall

measures provide a more accurate assessment of the model's effectiveness, balancing out

false positives and missed detections. Consistently high values for these measures indicate

strong model performance in object detection tasks, and we explain them below.

 True Positive (TP):

A correct detection. The model predicts an object, and it actually exists in that location.

 False Positive (FP):

An incorrect detection. The model predicts an object where there is none (a wrong

detection).

 False Negative (FN):

A missed detection. An object exists in the image, but the model fails to detect it.

Precision : Measures how often a deep learning model like YOLO correctly predicts

positive instances. It is calculated by dividing the number of true positives (correct

detections) by the total number of predicted positives, which includes both true and false

70

positives. In object detection, this is often referred to as Precision (B), where “B” stands

for bounding boxes. A high precision indicates that the model effectively identifies

relevant objects while minimizing false detections.[73]

Figure 4. 11:Illustration of Precision in Object Detection [70]

Recall : Measures the ability of a deep learning model like YOLO to detect all relevant

objects in an image [71]. It reflects the completeness with which the model identifies

instances of the target class. Calculated as the ratio of true positives to the sum of true

positives and false negatives, it aims to minimize missed detections. In object detection, recall

(B) stands for bounding boxes. High recall indicates that the model is effective in capturing

most objects of interest, even if it also makes some incorrect predictions (false positives).[72]

Figure 4. 12:Illustration of recall in Object Detection [73]

The mAP50 : (Mean Average Precision at a 0.5 Intersection over Union threshold) is a key

measure for evaluating the performance of an object detector model,“B” stands for bounding

boxes. It describes how the model succeeds in detecting and locating objects correctly to the

extent that the overlap between the predicted box and the actual box is at least 50%

71

complete.[74]

In the context of YOLO, the mAP50 is often referred to as the model's “accuracy”, as it

broadly reflects its ability to accurately predict the presence and position of target objects.

4.4.2 YOLOv11 Architecture and Baseline Comparison

Prior to applying the Multi-Scale Patch Analysis (MSPA), we evaluated three variants of

the YOLOv11 architecture: YOLOv11n, YOLOv11s and YOLOv11m. The aim was to

identify the most promising baseline in terms of accuracy, generalisation and detection

performance.

 Despite being the lightest model, YOLOv11n outperformed YOLOv11s and YOLOv11m in

all major areas, including precision, recall, and mAP@50. It also demonstrated better

generalisation and handling of small targets. Although larger in architecture and

computational cost, YOLOv11s and YOLOv11m failed to achieve better results, particularly

struggling to detect small or distant nests.

Metric YOLOv11n YOLOv11s YOLOv11m

Precision 0.907 0.902 0.907

Recall 0.801 0.799 0.798

mAP@50 0.889 0.864 0.868

mAP@50–95 0.430 0.410 0.410

Fitness Score 0.471 0.455 0.455

Table 4. 1:Comparison of YOLOv11 Architectures (n, s, m) Prior to MSPA

Based on these results, we selected YOLOv11n as the optimal foundation for further

enhancement using MSPA.

72

4.4.3 Impact of Multi-Scale Patch Analysis (MSPA)

The Multi-Scale Patch Analysis (MSPA) technique was applied as a pre-processing step to

improve the model's ability to detect small or distant objects and for this case to detect pine

processionary caterpillar nests in high-resolution forest images. This method consists in

splitting images into overlapping patches at different scales before training, ensuring that even

small or distant nests become more prominent in the model’s receptive field.

 Using MSPA enriched the dataset with localized image segments, enabling the model to

focus on finer details that are often overlooked in a global analysis. This approach

significantly improved detection accuracy, particularly in cases where nests were small, far

away, or difficult to distinguish from the background. A comparison of performance before

and after the application of MSPA revealed a significant improvement on several metrics:

 Precision increased , indicating fewer false positives.

 Recall improved, indicating better detection of true nests.

 MAP50 increased, which is often considered an indicator of accuracy in YOLO,

indicating better localization and classification.

Metric Before MSPA After MSPA Improvement

Images 143 10,946 +10,803

Instances 208 39,915 +39,707

Precision 0.907 0.949 +0.042

Recall 0.801 0.948 +0.147

mAP50 0.889 0.984 +0.095

mAP50–95 0.430 0.824 +0.394

Table 4. 2:Comparison of YOLOv11 Performance Before and After Applying MSPA

4.4.4 Performance Visualization

73

 Confusion Matrix

Figure 4. 13:Confusion Matrix Analysis

The confusion matrix shows how the model's predictions relate to the actual annotations. It

shows the following:

 True positives (TP): 38,487 instances of nests that were correctly detected.

 False positives (FP): 2,914 instances where the model predicted a nest, but it was actually

background.

 False negatives (FN): 1,428 real nests that were not detected by the model (predicted as

background).

The total number of errors (FN + FP = 4,342) is low compared to the total number of real

objects (39,915), indicating good overall performance.

The model correctly predicted 38,487 out of 39,915 real instances, showing high precision

and recall.

74

 Performance Curves

Figure 4. 14:Performance Metrics Across Epochs

 Precision (B): The precision curve starts at around 0.78, increases sharply during the

first 15–20 epochs and then stabilizes at approximately 0.95. This indicates that, over

time, the model reduces false positives, learning to make more accurate and confident

detections.

 Recall (B): Recall starts at around 0.65 and improves consistently throughout the

training process. It then plateaus just above 0.94, reflecting the model’s growing

capacity to identify the majority of actual nest instances with fewer missed detections

as training progresses.

 MAP50(B): The mAP@50 curve rises from around 0.72 to approximately 0.98. This

suggests that the model achieves very high detection accuracy when considering

moderately overlapping predictions.

 MAP50-95(B)

The mAP@50–95 curve starts at 0.40 and gradually increases to around 0.82. This

indicates strong performance even under stricter IoU thresholds, confirming the

model’s generalization capability.

75

All measures show significant improvement over the first 20–30 epochs and then reach a

stable point. This suggests that learning and convergence are effective and that there are no

visible signs of overfitting. Although training was extended to 143 epochs, the performance

measures stabilized at the 50 epochs, suggesting that this number of epochs is sufficient for

optimal learning. Earlier experiments involving 100 epochs revealed that the model began

to plateau without notable gains, which supports the idea that 50 epochs strike a balance

between learning time and performance.

 Analysis of labels

Figure 4. 15:Label Analysis: Instance Count, Position, and Box Dimensions

This figure groups together several statistical visualizations of the annotations in the dataset

used after MSPA:

 Histogram of instances by class (top left): we can see that all annotated instances

belong to the “nest” class, which is consistent with our goal of targeted detection.

 Bounding box distribution (top right): the blue frames represent the relative positions

of the annotated boxes in the images. A concentration in the center suggests that nests

appear frequently in this region, which can be exploited by the model to improve its

predictions.

76

 Spatial distribution (bottom left): the density graph shows the location of the centers of

the annotated boxes in the images. A central concentration is also visible.

 Width/height distribution (bottom right): this density map shows that the majority of

boxes have low widths and heights, confirming that nests are often small and require a

method like MSPA to detect them effectively.

4.5 Results and Comparison

4.5.1 Testing with Personal Images

In order to thoroughly evaluate the robustness and practical applicability of the

YOLOv11 + MSPA model, tests were conducted on two categories of image.

 Field images taken with a professional camera

 Smartphone images containing GPS metadata.

1. Detection on Personal Camera Images

These images were taken manually in the field using a professional camera, introducing

real-world variations such as lighting changes and natural obstacles .

Image Description

Figure 4. 16:Detection of Multiple Nests with Varying Sizes

This image demonstrates the

model's ability to detect multiple

nests of different sizes,

validating the effectiveness of

the MSPA-enhanced YOLOv11.

 Shows the model’s robustness

77

Image Description

Figure 4. 17:Long-Range Detection of Isolated Tiny Nest

in detecting very small and

remote nests that would

typically be missed by

standard detection systems.

Figure 4. 18:Clear Detection of Visible Nest

image, captured with a

camera in natural light, shows

a clearly visible nest

successfully detected by the

model.

78

2. Detection on Smartphone Images with GPS Metadata

These images were captured using a smartphone equipped with GPS. The objective was to

validate both the nest detection accuracy and the extraction of geolocation data for mapping

purposes.

Figure 4. 19:Example of a test image with embedded GPS coordinates – Test 1

Detection of a clearly visible nests. Coordinates: 36.49446° N, 7.13500° E. The detection

was accurate and the metadata was correctly parsed for visualization.

Figure 4. 20:Example of a test image with embedded GPS coordinates – Test 2

79

Detection of a small, distant nest. Coordinates: 36.49462° N, 7.13471° E. The result

confirms the model's robustness and GPS metadata integration.

4.5.2 Comparison with Related Work

Ref. Year Method Image Type Model Results

[11] 2023
YOLOv5, Faster

R-CNN

RGB UAV

(forests in

Catalonia)

Object

Detection

YOLOv5: mAP = 0.826

(per image), 0.696 (per

nest)

[14] 2023
CNN with RGB

+ thermal fusion

Multimodal UAV

imagery

Custom Deep

CNN
Precision: 97%

Our

Model
2025

YOLOv11 +

MSPA
RGB UAV YOLOv11

Precision: 95%, Recall:

94%,

mAP50: 98%,

mAP50–95: 82%

Table 4. 3:Comparison of Object Detection Models for PPM Nest Detection

In the field of object detection, three major deep learning models are commonly used:

YOLO (You Only Look Once), Faster R-CNN, and SSD (Single Shot MultiBox

Detector). YOLO stands out among these for its ability to perform real-time detection

while maintaining a good balance between speed and accuracy. For our study, we opted

for a model from the YOLO family rather than Faster R-CNN, based on experimental

results and conclusions drawn from the literature.

 In particular, article [11] demonstrated that YOLOv5 outperformed Faster R-CNN in

detecting pine processionary nests, achieving an mAP of 0.826 per image compared to

Faster R-CNN's 0.696. This observation led us to select YOLO models.

Our improved model, based on YOLOv11 combined with MSPA (Multi-Scale Patch

Analysis), achieved excellent results using only RGB images from UAVs. It achieved a

precision of 95%, a recall of 94% and an mAP50 of 98%, demonstrating good

generalisability, even for small or distant nests. For comparison, article[14] used a more

advanced model that combined thermal and RGB images, achieving a level of accuracy of

80

97%. However, this difference is negligible, particularly since our model did not utilise

thermal data. Had we had access to multimodal images (RGB and thermal), our approach

could potentially have outperformed current models in terms of accuracy and robustness.

4.5.3 YOLOv11 vs YOLOv8–YOLOv12

 Comparison of YOLO Versions Before MSPA Application

Before applying the Multi-Scale Patch Analysis (MSPA) method, we carried out a series

of comparative tests to evaluate the performance of different versions of YOLO (from v8 to

v12) on our original dataset. The table below summarizes the results obtained:

Model Precision (P) Recall (R) mAP50 mAP50–95 Inference Time per Image

YOLOv8 0.890 0.779 0.834 0.411 2.1 ms

YOLOv9 0.840 0.808 0.832 0.408 16.6 ms

YOLOv10 0.835 0.760 0.826 0.402 4.5 ms

YOLOv11 0.907 0.801 0.889 0.430 2.3 ms

YOLOv12 0.858 0.822 0.850 0.426 4.2 ms

Table 4. 4:Comparison of YOLO Versions Before Applying MSPA

 YOLOv11 has the best accuracy (0.907) and mAP50 (0.889), while maintaining a fast

inference speed (2.3 ms).

 Although YOLOv12 has a slightly higher recall, its mAP is still lower than that of

YOLOv11 making it less efficient overall.

 YOLOv9 has the longest inference time, which is not optimal for real-time

applications.

 Based on these findings, YOLOv11 offers the best balance between accuracy,

performance and speed, justifying its initial choice.

 Post-MSPA: Final Model Selection for Training

Following the application of the MSPA method, our dataset has increased considerably

in size and quality, particularly with regard to the detection of small, distant nests.

81

In view of this development, we decided to focus the training exclusively on YOLOv11 for

the following reasons:

 The large volume of data generated by MSPA requires a substantial amount of training

time.

 We had access to high-performance machines (at LabSTIC university of Guelma –

university resources), but efficient use of time was essential.

 YOLOv11 had already proved superior to other YOLO versions in preliminary tests,

so there was no need to re-train all versions with MSPA.

We continued training with YOLOv11, adjusting the hyperparameters to obtain the

following final results:

Accuracy = 95%, recall = 94%, mAP50 = 98%, mAP50-95 = 82% and this only from

RGB images.

 In comparison, work such as [14] using RGB + thermal fusion achieved an accuracy of

97%, demonstrating the competitiveness of our model. It is likely that with access to

thermal images, our model could have achieved even better results.

4.6 Discussion

The final results obtained using the improved YOLOv11 model combined with Multi-

Scale Patch Analysis (MSPA) method confirm the effectiveness of our detection pipeline.

The model performed excellently, achieving a mAP@50 of 0.984, a precision of 0.95, a

recall of 0.948 and an mAP@50–95 of 0.824. These scores demonstrate the model's high

reliability in detecting Thaumetopoea pityocampa nests, including the smallest or partially

hidden ones, which are often overlooked by conventional models.

 Compared to previous versions of YOLO (v8 to v12), YOLOv11 demonstrated the most

consistent and stable performance across all evaluation criteria. Although YOLOv12

achieves a similar mAP@50, it exhibits poorer generalisation and requires more training

time. YOLOv8 and v9, on the other hand, struggled to detect small or distant nests, even

after data augmentation.

82

Tests carried out on personal images taken in the field validated the model's robustness

in real-world conditions. Nests were successfully detected despite environmental

variations, such as shadows, changes in lighting, and complex backgrounds.

 It is also important to note that training beyond 50 epochs did not result in any significant

improvements. In fact, initial tests with 100 epochs led to slight overfitting and inconsistent

results. Thus, 50 epochs were selected as the optimal point, ensuring a good balance

between training time, convergence, and generalization.

 In summary, combining YOLOv11 with MSPA proved very effective and generalisable.

This approach provides a solid foundation for future enhancements, including real-time

integration on drones and integration with attention-based or segmentation modules to

enable even more precise detection in complex environments.

4.7 Perspectives

As a follow-up to this work, the GreenGuard prototype was presented to the Forest

Conservation Department. The system was well received by the managers and engineers in

attendance, who showed a keen interest in the proposed solution.

Figure 4. 21:Discussion Session with Forestry Engineers[75]

The meeting provided an opportunity to open a direct dialogue with stakeholders in the

field, gather relevant feedback and consider how the system could be adjusted to meet the

specific needs of the forestry sector. Among the prospects discussed were:

 Extending the approach to the detection of other environmental threats such as pests,

83

diseases, and fires.

 As well as the integration of connected sensors (IoT) to improve the accuracy and

richness of the data collected in the field.

In the medium term, GreenGuard could evolve into a comprehensive, operational solution,

supported by local institutions and capable of being deployed on a large scale in Algerian

forests. This prototype thus provides a solid basis for further development, both

technologically (e.g real-time integration on drones) and structurally (partnerships, calls for

projects, fundraising).

4.8 Conclusion

The integration of YOLOv11 with the Multi-Scale Patch Analysis (MSPA) method has

enabled us to design a high-performance, robust solution for the detection of

Thaumetopoea pityocampa nests. The results obtained in terms of precision, recall and

mAP testify to the maturity of the system, capable of effectively identifying even small or

partially concealed nests, generally ignored by conventional approaches. Experiments

carried out on personal images, captured in real-life conditions, have confirmed the

system's ability to generalize to complex and varied natural environments.

 Beyond these encouraging performances, this approach opens up some interesting

prospects. A natural evolution of the system would be to integrate it into embedded

platforms, such as drones, for automated, real-time forest monitoring. In the longer term,

adapting the model to the detection of other types of biological threat, in both forest and

agricultural environments, could lead to a global solution for intelligent and sustainable

environmental monitoring.

84

General conclusion

This thesis provided an integrative solution to forest health monitoring,paying

special attention to the identification of pine processionary moth (PPM) nests. It began by

emphasising the importance of forest ecosystems and the threats they face. Traditional

surveillance methods proved inadequate in scalability and efficiency, thus emphasizing the

need for smart, automated systems.

To overcome these limitations, a system was developed that utilises advanced visual

analysis techniques by combining the YOLOv11 detection model with the Multi-Scale

Patch Analysis (MSPA) technique. These developments significantly improved the

detection of small and distant nests at high accuracy and recall scores. The system was

deployed as a web and mobile platform offering detection and geolocation features to

support researchers, forest managers, and environmental monitoring officers.

Extensive tests and comparisons with existing models showing the solution's reliability,

speed, and suitability for practical field use.

In the near future, further work will focus on improving the system's adaptation

capabilities, including drone-based surveillance, enriching the dataset with even more

diverse examples, and rendering it offline-capable with minimal deployment.These future

enhancements will allow more efficient and sustainable strategies in forest surveillance and

ecosystem preservation.

This methodology can be extended beyond the detection of Thaumetopoea pityocampa to

include other ecological threats, such as different types of insect nests (e.g. Lymantria

dispar caterpillar tent nests) and signs of forest diseases (e.g. fungal infections, bark beetle

damage and needle discolouration).

More broadly, this research contributes to the growing use of artificial intelligence

to protect biodiversity and natural habitats. Combining data-driven approaches with real-

time monitoring tools makes it possible to develop early warning systems for forest health,

enabling faster, more sustainable responses to ecological threats.

85

Bibliography

[4] ScienceDirect, “Factors affecting pine processionary moth (Thaumetopoea pityocampa)

incidence in Mediterranean pine stands: A multiscale approach,”. Available:

https://www.sciencedirect.com/science/article/pii/S0378112722007228.

[8] ScienceDirect, “When insect pests build their own thermal niche: The hot nest of the pine

processionary moth,”. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0306456521001145.

[9] ResearchGate, “Testing early detection of pine processionary moth Thaumetopoea

pityocampa nests using UAV-based methods,”. Available:

https://www.researchgate.net/publication/370883294_Testing_early_detection_of_pine_proce

ssionary_moth_Thaumetopoea_pityocampa_nests_using_UAV-based_methods.

[11] University of Pennsylvania, “Weighted Training for Cross-Task Learning,”. Available:

https://cogcomp.seas.upenn.edu/files/presentations/CCHRS22_presentation.pdf.

[12] ScienceDirect, “Testing early detection of pine processionary moth Thaumetopoea

pityocampa nests using UAV-based methods,”. Available:

https://www.sciencedirect.com/org/science/article/pii/S1619003323000208.

[13] ResearchGate, “Detection and Mapping of Pine Processionary Moth Nests in UAV

Imagery of Pine Forests Using Semantic Segmentation,”. Available:

https://www.researchgate.net/publication/337272857_Detection_and_Mapping_of_Pine_Proc

essionary_Moth_Nests_in_UAV_Imagery_of_Pine_Forests_Using_Semantic_Segmentation.

[14] IEEE Xplore, “An Eco-Friendly Fight Against Thaumetopoea Pityocampa Infestations in

Pine Forests Using Deep Learning on UAV Imagery,”. Available:

https://ieeexplore.ieee.org/document/9925556.

[15] ResearchGate, “Deep-Pest-Detector: Automated Detection and Localization of

Processionary Moth Nests on Pine Trees via Aerial Drones and Deep Neural Networks,”.

Available: https://www.researchgate.net/publication/359880854_Deep-Pest-

https://www.researchgate.net/publication/370883294_Testing_early_detection_of_pine_processionary_moth_Thaumetopoea_pityocampa_nests_using_UAV-based_methods
https://www.researchgate.net/publication/370883294_Testing_early_detection_of_pine_processionary_moth_Thaumetopoea_pityocampa_nests_using_UAV-based_methods
https://cogcomp.seas.upenn.edu/files/presentations/CCHRS22_presentation.pdf.
https://www.researchgate.net/publication/337272857_Detection_and_Mapping_of_Pine_Processionary_Moth_Nests_in_UAV_Imagery_of_Pine_Forests_Using_Semantic_Segmentation.
https://www.researchgate.net/publication/337272857_Detection_and_Mapping_of_Pine_Processionary_Moth_Nests_in_UAV_Imagery_of_Pine_Forests_Using_Semantic_Segmentation.

86

Detector_Automated_Detection_and_Localization_of_Processionary_Moth_Nests_on_Pine_

Trees_via_Aerial_Drones_and_Deep_Neural_Networks.

[16] PubMed Central, “Palm tree disease detection and classification using residual network

and transfer learning of inception ResNet,”. Available:

https://pmc.ncbi.nlm.nih.gov/articles/PMC9980777/.

[17] MDPI, “VddNet: Vine Disease Detection Network Based on Multispectral Images and

Depth Map,”. Available: https://www.mdpi.com/2072-4292/12/20/3305.

[18] TechScience, “Deep Learning-Based Trees Disease Recognition and Classification Using

Hyperspectral Data,”. Available: https://www.techscience.com/cmc/v77n1/54449/html.

[19] MDPI, “MobiRes-Net: A Hybrid Deep Learning Model for Detecting and Classifying

Olive Leaf Diseases,”. Available: https://www.mdpi.com/2076-3417/12/20/10278.

[20] PubMed Central, “Precision Detection and Assessment of Ash Death and Decline

Caused by the Emerald Ash Borer Using Drones and Deep Learning,”. Available:

https://pmc.ncbi.nlm.nih.gov/articles/PMC9964414/.

[37] arXiv, “YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their

application in the agricultural domain,”. Available: https://arxiv.org/html/2406.10139v1.

[46]43 arXiv, “YOLOv6 Preprint,”. Available:

https://arxiv.org/html/2412.13006v1#:~:text=YOLOv6%20is%20a%20PyTorch%2Dbased.

[52]49 arXiv, “YOLOv11: An Overview of the Key Architectural Enhancements,”.

Available: https://arxiv.org/html/2410.17725v1.

[63]59 ResearchGate, “Smart Farming Solutions: Automated Crop and Plantation Disease

Detection,”. Available:

https://www.researchgate.net/publication/385554956_Smart_Farming_Solutions_Automated_

Crop_and_Plantation_Disease_Detection.

87

Webography

[1] Dryad.net, “Forest health monitoring explained,”. Available:

https://www.dryad.net/post/forest-health-monitoring-explained. [Accessed: march. 20, 2025].

[2] U.S. Forest Service, “Forest Health Protection Monitoring,”. Available:

https://www.fs.usda.gov/science-technology/forest-health-protection/monitoring. [Accessed:

march. 20, 2025].

[3] The Independent, “Import controls reviewed after highly destructive pine tree pest found

in UK,”. Available: https://www.independent.co.uk/climate-change/news/defra-woodland-

trust-england-france-europe-b2060824.html. [Accessed: march. 20, 2025].

[5] Jardin Sostenible, “La lucha contra la procesionaria del pino,”. Available:

https://jardinsostenible.eu/en/la-lucha-contra-la-procesionaria-del-pino. [Accessed: march.

21, 2025].

[6] Pharma-Domicile, “Urticaire à cause des chenilles processionnaires,”. Available:

https://www.pharma-domicile.be/actualites/urticaire-a-cause-des-chenilles-processionnaires-

que-faire-pour-me-soulager. [Accessed: march. 21, 2025].

[7]Forest Research, “Pine processionary moth (Thaumetopoea pityocampa)”. Available:

https://www.forestresearch.gov.uk/tools-and-resources/fthr/pest-and-disease-resources/pine-

processionary-moth-thaumetopoea-pityocampa/?utm_source=chatgpt.com [Accessed: march.

21, 2025].

[10] V7 Labs, “What is computer vision,”. Available: https://www.v7labs.com/blog/what-is-

computer-vision. [Accessed: march. 22, 2025].

[21] Simplilearn, “https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/ai-vs-

machine-learning-vs-deep-learning,”. Available:

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/ai-vs-machine-learning-

vs-deep-learning. [Accessed: march. 27, 2025].

88

[22] DataCamp, “What is Machine Learning,”. Available:

https://www.datacamp.com/blog/what-is-machine-learning. [Accessed: march. 28, 2025].

[23] TechVidvan, “Reinforcement Learning Tutorial,”. Available:

https://techvidvan.com/tutorials/reinforcement-learning/. [Accessed: march. 28, 2025].

[24] Towards AI, “Unboxing Weights & Biases,”. Available:

https://pub.towardsai.net/unboxing-weights-biases-loss-hone-in-on-deep-learning-

523e659eac80. [Accessed: march. 28, 2025].

[25] Coursera, “Deep Learning vs. Machine Learning,”. Available:

https://www.coursera.org/articles/ai-vs-deep-learning-vs-machine-learning-beginners-guide.

[Accessed: march. 29, 2025].

[26] DataCamp, “An Introduction to Convolutional Neural Networks (CNNs),”. Available:

https://www.datacamp.com/tutorial/introduction-to-convolutional-neural-networks-cnns.

[Accessed: march. 30, 2025].

[27] DataAspirant, “How RNN Works,”. Available: https://dataaspirant.com/how-recurrent-

neural-network-rnn-works/. [Accessed: march. 30, 2025].

[28] Medium, “Generative Adversarial Networks,”. Available:

https://medium.com/@marcodelpra/generative-adversarial-networks-dba10e1b4424.

[Accessed: march. 30, 2025].

[29] MathWorks, “Getting Started with Object Detection Using Deep Learning,”. Available:

https://www.mathworks.com/help/vision/ug/getting-started-with-object-detection-using-deep-

learning.html. [Accessed: march. 30, 2025].

[30] MathWorks, “Object Detection Overview,”. Available:

https://www.mathworks.com/discovery/object-detection.html. [Accessed: april. 5, 2025].

[31] DataCamp, “YOLO Object Detection Explained,”. Available:

https://www.datacamp.com/blog/yolo-object-detection-explained. [Accessed: april. 5, 2025].

89

[32] Medium, “Faster R-CNN vs YOLO vs SSD Object Detection Algorithms,”. Available:

https://medium.com/ibm-data-ai/faster-r-cnn-vs-yolo-vs-ssd-object-detection-algorithms-

18badb0e02dc. [Accessed: april. 5, 2025].

[33] V7 Labs, “YOLO Object Detection,”. Available: https://www.v7labs.com/blog/yolo-

object-detection. [Accessed: april. 6, 2025].

[34] Viso.ai, “YOLO Explained,”. Available: https://viso.ai/computer-vision/yolo-explained/.

[Accessed: april. 7, 2025].

[35] Ultralytics, “Benefits of Ultralytics YOLO11 Being Anchor-Free,”. Available:

https://www.ultralytics.com/ar/blog/benefits-ultralytics-yolo11-being-anchor-free-detector.

[Accessed: april. 7, 2025].

[36] MathWorks, “Getting Started with YOLO v2,”. Available:

https://www.mathworks.com/help/vision/ug/getting-started-with-yolo-v2.html. [Accessed:

april. 7, 2025].

[38] DataCamp, “YOLO Object Detection Explained,”. Available:

https://www.datacamp.com/blog/yolo-object-detection-explained. [Accessed: april. 9, 2025].

[39] Viso.ai, “YOLO Explained,”. Available: https://viso.ai/computer-vision/yolo-explained/.

[Accessed: april. 9, 2025].

[40] Ultralytics, “Benefits of Ultralytics YOLO11 Being Anchor-Free,”. Available:

https://www.ultralytics.com/ar/blog/benefits-ultralytics-yolo11-being-anchor-free-detector.

[Accessed: april. 10, 2025].

[41] Viso.ai, “YOLOv4 Overview,”. Available: https://viso.ai/deep-learning/yolov4/.

[Accessed: april. 10, 2025].

90

[42] GitHub, “Ultralytics YOLOv5 Issues,”. Available:

https://github.com/ultralytics/yolov5/issues/280. [Accessed: april. 11, 2025].

[44] ResearchGate, “YOLOv6 Network Architecture,”. Available:

https://www.researchgate.net/figure/YOLOv6-network-architecture_fig2_374632617.

[Accessed: april. 12, 2025].

[45] Roboflow, “YOLOv7 Breakdown,”. Available: https://blog.roboflow.com/yolov7-

breakdown/. [Accessed: april. 13, 2025].

[46] Ultralytics, “YOLOv8 Documentation,”. Available:

https://docs.ultralytics.com/models/yolov8/#overview. [Accessed: april. 15, 2025].

[47] ResearchGate, “YOLOv8 Detailed Architecture,”. Available:

https://www.researchgate.net/figure/Detailed-architecture-of-YOLOv8-showcasing-the-

backbone-networks-multiple-convolutional_fig3_385510373. [Accessed: april. 15, 2025].

[48] YOLOv8.org, “YOLOv8 Architecture,”. Available: https://yolov8.org/yolov8-

architecture/. [Accessed: april. 15, 2025].

[50] Medium, “YOLOv11 Architecture Explained: Next-Level Object Detection with

Enhanced Speed and Accuracy,”. Available: https://medium.com/@nikhil-rao-20/yolov11-

explained-next-level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71.

[Accessed: april. 15,2025].

[51] Lightly.ai, “YOLO and Active Learning,”. Available: https://www.lightly.ai/blog/yolo.

[Accessed: april. 16, 2025].

[52] Medium, “Understanding and Implementing Faster R-CNN,”. Available:

https://medium.com/@RobuRishabh/understanding-and-implementing-faster-r-cnn-

248f7b25ff96. [Accessed: april. 17, 2025].

[53] ArcGIS Developers, “How SSD Works,”. Available:

https://developers.arcgis.com/python/latest/guide/how-ssd-works/. [Accessed: april. 18,

2025].

91

[54] Ultralytics, “Ultralytics YOLO11 Has Arrived,”. Available:

https://www.ultralytics.com/blog/ultralytics-yolo11-has-arrived-redefine-whats-possible-in-ai.

[Accessed: april. 25, 2025].

[55] Ultralytics, “YOLO11 and Computer Vision for Environmental Conservation,”.

Available: https://www.ultralytics.com/blog/ultralytics-yolo11-and-computer-vision-for-

environmental-conservation. [Accessed: april. 26, 2025].

[56] Viso.ai, “YOLOv11: Components and Explanation,”. Available: https://viso.ai/computer-

vision/yolov11/#components-of-yolov11. [Accessed: april. 27, 2025].

[57] Roboflow. “Nids de chenilles”. Available: https://universe.roboflow.com/caterpillar-

ifizj/nids-de-chenilles/dataset/5/download. [Accessed: april. 27, 2025].

[58] Roboflow, “YOLOv11 PyTorch Format,”. Available:

https://roboflow.com/formats/yolov11-pytorch-txt. [Accessed: april. 28, 2025].

[60] Roboflow, “Nids de Chenilles Dataset,”. Available:

https://universe.roboflow.com/caterpillar-ifizj/nids-de-chenilles/dataset/5. [Accessed: april.

29, 2025].

[61] Python.org, “Welcome to Python.org,”. Available: https://www.python.org. [Accessed:

april. 29, 2025].

[62] Logos-world.net, “Python Logo,”. Available: https://logos-world.net/python-logo/.

[Accessed: april. 29, 2025].

[63] Ultralytics, “Documentation en Français,”. Available: https://docs.ultralytics.com/fr/.

[Accessed: may. 4, 2025].

[64] MWC Barcelona, “Ultralytics Exhibitor Page,”. Available:

https://www.mwcbarcelona.com/exhibitors/30643-ultralytics. [Accessed: may. 5, 2025].

92

[65] Roboflow Docs, “Roboflow Documentation,”. Available: https://docs.roboflow.com/.

[Accessed: may. 5, 2025].

[66] Roboflow Security, “Security Portal,”. Available: https://security.roboflow.com/.

[Accessed: may. 6, 2025].

[67] DataScientest, “Kaggle: Tout ce qu’il faut savoir,”. Available:

https://datascientest.com/kaggle-tout-ce-quil-a-savoir-sur-cette-plateforme. [Accessed: may.

6, 2025].

[68] Kaggle, “Brand Guidelines,”. Available: https://www.kaggle.com/brand-guidelines.

[Accessed: may. 7, 2025].

[69] Kaggle, “Getting Started Discussion,”. Available:

https://www.kaggle.com/discussions/getting-started/523677. [Accessed: may. 8, 2025].

[70] EvidentlyAI, “Precision, Recall, Accuracy Explained,”. Available:

https://www.evidentlyai.com/classification-metrics/accuracy-precision-recall#what-is-

precision. [Accessed: may. 15, 2025].

[71] Ultralytics, “YOLO Performance Metrics: Class-wise Metrics,”. Available:

https://docs.ultralytics.com/fr/guides/yolo-performance-metrics/#class-wise-metrics.

[Accessed: may. 20, 2025].

[72] Kaggle, “Getting Started Discussion,”. Available:

https://www.kaggle.com/discussions/getting-started/523677. [Accessed: may. 20, 2025].

[73] EvidentlyAI, “Precision, Recall, Accuracy Explained,”. Available:

https://www.evidentlyai.com/classification-metrics/accuracy-precision-recall#what-is-recall.

[Accessed: june. 1, 2025].

[74] Ultralytics, “YOLO Performance Metrics: Class-wise Metrics,”. Available:

https://docs.ultralytics.com/fr/guides/yolo-performance-metrics/#class-wise-metrics.

[Accessed: june. 1, 2025].

93

[75] Facebook, Available:

https://www.facebook.com/100064700888209/posts/pfbid03462W8R8VZX1SvJDqv8oVJjXs

a7YKzbUNmAGQTDbJ2pK98DwBYBAjL6YHh6h68yRkl/?app=fbl. [Accessed: june. 10,

2025].

	Democratic and Popular Republic of Algeria
	Ministry of Higher Education and Scientific Research.
	University of May8,1945-Guelma-
	Faculty of Mathematics, Computer Science, and Material Sciences
	Department of Computer Science
	Theme:
	Smart Monitoring of Forest and Agricultural Health Using AI and IoT
	Case of Thaumetopoea pityocampa Nest Detection
	Jury members:
	June 2025
	Contents
	List of Figures
	List of Tables
	General Introduction
	Chapter 1
	Introduction to Forest Health Monitoring and AI Approaches
	1.1 Introduction
	1.1.1 Forest health monitoring

	1.1.2 Methods of forest health monitoring
	1.2 Impact of Thaumetopoea pityocampa
	1.2.1 Pine Processionary Moth Life Cycle
	Thaumetopoea pityocampa, the pine processionary moth, is a pest that feeds on the needles of pine trees, causing heavy defoliation. It is endemic to the Mediterranean and southern Europe but has spread to other parts of the world. The larvae are well ...
	The moth poses both ecological and economic threats by weakening trees and exposing them to other pests and diseases. Adult moths have a lifespan of just one day during summer, during which they mate and deposit eggs on pine trees. The caterpillars, h...
	In mid-January, they build impressive white silken nests, about the size of a football, in the pine tree foliage and branches. There may be many nests in a single tree. The remainder of the winter is spent in these nests high in the trees; they occupy...
	1.2.2 PPM Damage Symptoms
	Pine processionary moth caterpillars feed on pine needles and some other species of conifer trees, and in severe infestations cause severe defoliation of trees. This can stress the trees to be more vulnerable to attack from other insects or disease, a...
	1.2.3 PPM Nest Characteristics
	1.2.4 Manual Detection Methods for PPM Nests
	Traditional PPM infestation detection relies to a great extent on ground-level visual surveys. Scanners walk along wooded areas, checking individual trees for signs of PPM activity, such as the presence of silk nests constructed by wintering larvae. S...
	1.2.5 Limitations and Challenges

	1.3 Computer Vision Introduction
	1.3.1 Computer Vision Overview
	1.3.2 Common Computer Vision Tasks

	1.4 Related Works
	1.5 Artificial Intelligence Overview
	1.5.1 Artificial Intelligence (AI)
	1.5.2 Machine Learning (ML)
	1.5.3 Deep Learning (DL)

	1.6 Conclusion
	This Chapter outlined the necessity for monitoring of forest health, referring to the ecological impact of Thaumetopoea pityocampa. It offered the potential of artificial intelligence, and specifically computer vision, to enhance the efficiency and ac...

	Chapter 2
	Deep Learning Approaches for PPM
	nest detection
	2.1 Introduction
	Mediterranean and European forests are increasingly under threat from the pine processionary moth (Thaumetopoea pityocampa), an exotic pest with severe defoliation impact and allergenic action in humans and animals. Early and accurate detection of its...
	Recent advances in deep learning have opened up new potential for automated nest detection through high accuracy image processing. Convolutional neural network (CNN) architectures have proved most successful in object detection tasks, with the potenti...
	2.2 Deep Learning for Object Detection
	2.3 CNN Based Detection Architectures
	2.3.1 YOLO (You Only Look Once)
	2.3.2 Faster R-CNN
	2.3.3 SSD (Single Shot MultiBox Detector)

	2.4 YOLOv11 for PPM Nest Detection
	2.5 Dataset
	The dataset used in this study consists of two parts. The first data was accessed through the Roboflow platform, which provides pre-labeled image datasets for computer vision tasks. It contains images of pine processionary moth (Thaumetopea pityocampa...
	The second dataset is a custom dataset captured by our team using a standard digital camera. These images were taken during field visits in local forested areas, primarily for real-world scenario-based testing and model validation. Further information...
	2.6 Challenges in PPM Nest Detection
	 Visual Similarity with Natural Elements
	PPM nests tend to appear very similar to natural objects such as clumps of pine needles, pine cones, or bright spots caused by sunlight. Same appearance regarding the way they appear increases the chances that there will be false positives or false ne...
	 Variation in Nest Appearance
	Nests could be distinctly varying in shape, size, texture, and visibility depending upon infestation age, light level, and the angle from which the image is captured. Such variation makes it difficult for models to learn to generalize in all possible ...
	 Occlusion and Background Clutter
	Nests in the majority of cases are partly occluded by leaves, branches, or other forest elements. This occlusion, along with the variability and cluttered background, prevents the model from easily identifying nest structures.
	 Small Object Detection
	Some nests are captured from a distance either by drone or camera making them appear very small in the picture. The detection of such small objects is a known limitation for most object detection models, especially outdoors.
	 Lighting and Weather Conditions
	Environmental condition variability such as shadows, fog, rain, or harsh contrast sunlight may cause both nests and surrounding trees to appear irregularly. These inconsistencies make the detection even more difficult.

	2.7 Existing Research and Research Gaps
	2.8 Conclusion
	Chapter 3
	System Design and Model Development
	3.1 Introduction
	This chapter presents the applied design and development process of the intelligent system for Thaumetopoea pityocampa nest detection. The focus is placed on the selection and configuration of the most suitable deep learning model for the application,...
	3.2 System Objectives
	3.3 YOLOv11 Model Selection
	YOLOv11 was selected for detecting Thaumetopoea pityocampa nests due to its advanced architecture, real-time performance, and adaptability to complex detection tasks. Its design offers several key advantages:
	3.4 Components of YOLOv11
	3.5 Overall System Architecture
	3.6 Dataset Description
	3.7 Dataset Preparation
	The precision and preprocessing of the dataset play a critical role for high detection accuracy. Several preprocessing and enhancement techniques were employed in this project to address detection problems and improve model performance.
	3.7.1 Small and Distant Nest Problems
	3.7.2 Multi-Scale Patch Analysis (MSPA)
	3.7.3 Dataset Splitting and Augmentation

	3.8 Model Configuration and Training
	3.8.1 Training Strategy
	3.8.3 Challenges Faced During Training

	3.10 Conclusion

	Chapter 4
	Implementation and Results
	4.1 Introduction
	This chapter presents the practical implementation and results of the intelligent detection system developed for monitoring Thaumetopoea pityocampa (pine processionary caterpillar) nests using deep learning techniques. The goal of this system is to pr...
	4.2 Development Environment
	4.2.1 Hardware Environment
	4.2.2 Software Environment

	4.3 System Workflow and Platform
	4.4 Model Training and Validation
	4.4.1 Evaluation Metrics
	4.4.2 YOLOv11 Architecture and Baseline Comparison
	4.4.3 Impact of Multi-Scale Patch Analysis (MSPA)
	4.4.4 Performance Visualization

	4.5 Results and Comparison
	4.5.1 Testing with Personal Images
	In order to thoroughly evaluate the robustness and practical applicability of the YOLOv11 + MSPA model, tests were conducted on two categories of image.
	2. Detection on Smartphone Images with GPS Metadata
	4.5.2 Comparison with Related Work
	4.5.3 YOLOv11 vs YOLOv8–YOLOv12
	4.6 Discussion

	4.7 Perspectives
	4.8 Conclusion

	General conclusion

