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Abstract

With the increasing spread of harmful species such as the pine processionary caterpillar
(Thaumetopoea pityocampa), which poses a threat to biodiversity and ecological balance, the
monitoring of forest health has become a critical concern. Traditional detection methods are

often expensive, time-consuming, and unsuitable for large-scale or real-time surveillance.

To overcome these limitations, an Al-based system is introduced that combines computer
vision techniques with geolocation. The system employs a YOLOvV11 object detection model
enhanced by the Multi-Scale Patch Analysis (MSPA) method, which improves the detection
of small or partially visible nests by generating image patches at multiple scales.

In addition to accurate nest detection, the system extracts GPS metadata from the captured
images when available to enable spatial localization. This allows for the visualization of
detected nests on an interactive map, supporting environmental monitoring and spatial

analysis.

Experimental results demonstrate high detection performance, achieving a mAP@0.5 of
98.4%. This integrated approach represents a promising solution for automated forest
surveillance and may be extended to applications in agriculture, ecology, and environmental

management.

Keywords: Automatic detection, Geolocation, Computer vision, YOLOv11, Forests,

Thaumetopoea pityocampa, Multi-Scale Patch Analysis (MSPA), Artificial Intelligence.
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Résume

Avec la propagation croissante d’espéces nuisibles telles que la chenille processionnaire du
pin (Thaumetopoea pityocampa), qui menace la biodiversité et I’équilibre écologique, la
surveillance de la santé des foréts devient une priorité. Les méthodes de détection
traditionnelles s’aveérent coliteuses, lentes et peu adaptées a une surveillance a grande échelle

ou en temps réel.

Pour pallier ces limitations, un systéeme intelligent basé sur la vision par ordinateur et
I’intelligence artificielle est proposé. Ce systeme repose sur le modele de détection
YOLOvV11, optimisé par la méthode Multi-Scale Patch Analysis (MSPA), qui améliore la
détection des nids de petite taille ou particllement visibles grace a la génération d’images en

sous-parties a différentes échelles.

En complément de la détection automatique, le systéeme exploite les métadonnées GPS
contenues dans les images capturées, lorsque celles-ci sont disponibles. Cela permet
d’associer chaque détection a une position géographique réelle et de visualiser les résultats sur

une carte interactive, facilitant I’analyse spatiale et la surveillance environnementale.

Les résultats expérimentaux montrent une performance élevée avec un mAP@0.5 de 98,4
%. Cette approche intégrée représente une solution prometteuse pour la surveillance
automatisée des foréts, avec des perspectives d’extension vers d’autres domaines tels que

I’agriculture et la gestion environnementale.

Mots-clés : Détection automatique, Vision par ordinateur, YOLOv11, Foréts, Thaumetopoea

pityocampa, Multi-Scale Patch Analysis (MSPA), Intelligence Atrtificielle.
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General Introduction

Forest ecosystems play a vital role in maintaining environmental balance,
preserving biodiversity and mitigating climate change. However, these vital
environments are under increasing threat from human activities and invasive species.
One of the most destructive insects for coniferous forests, particularly pine trees, is the
pine processionary caterpillar (Thaumetopoea pityocampa). Its larvae cause massive
defoliation by weakening trees and also pose a danger to human and animal health due

to their stinging hairs.

Traditionally, the detection of processionary nests was carried out manually by
forestry experts. While this method can be effective on a small scale, it is very time-
consuming and unsuitable for large-scale monitoring. The emergence of artificial
intelligence (Al) and computer vision (CV) has opened up the possibility of automated
solutions for environmental monitoring. Object detection models such as YOLO (You
Only Look Once) enable real-time detection and can effectively locate processionary

nests over large forest areas.

This thesis presents a deep learning based approach for detecting Thaumetopoea
pityocampa nests, using the YOLOv11 model. In order to overcome the difficulties
associated with detecting small or distant nests, a specific pre-processing method
called MSPA has been integrated. A customized dataset was created from annotated
images from various sources, including photos taken in the field using GPS-equipped
devices. This wealth of data, both in terms of quality and geography, enabled a more

detailed spatial analysis.

The final system was integrated into an interactive platform accessible to users,
whether they are forest rangers, researchers, or ordinary citizens, allowing them to
submit images or videos and view the results, including the location of nests on a map.
The model's performance was evaluated using several metrics and compared to that of

other state-of-the-art approaches.

Our goal is to contribute to forest health monitoring by demonstrating how
artificial intelligence can be used for sustainable environmental management,

particularly by facilitating early pest detection and promoting rapid intervention.



This thesis is organized as follows:
Chapter 1 : Introduction to Forest Health and Al Methodologies

This chapter discusses the importance of forest ecosystems and the threats they
face, with a particular focus on those caused by the pine processionary caterpillar
(Thaumetopoea pityocampa). It outlines the limitations of traditional nest detection
methods and puts forward artificial intelligence (Al) and computer vision as promising

solutions for monitoring forest health.
Chapter 2 : Deep Learning Approaches for PPM Nest Detection

It reviews deep learning models used for object detection, including YOLO,
SSD, and Faster R-CNN, with a focus on the YOLOv11 model adopted in this study. It
addresses the challenges of detecting small or distant nests and shows how current

models can effectively address them.
Chapter 3 : System Design and Model Development

It describes the system architecture and the dataset preparation process. It also
presents the multi-scale patch analysis (MSPA) technique, which improves detection
accuracy, details the collection, annotation, and preprocessing of data, as well as the
customization and training of the YOLOv11 model.

Chapter 4 : Implementation and Results

This chapter describes how the detection system has been implemented within
an interactive platform. The platform enables users to upload images or videos and
view detections on a map. The chapter also describes the development environment,
evaluation metrics, and experimental results. Comparisons are provided to demonstrate
the model's effectiveness ,and concludes with a discussion of the system's limitations

and potential future improvements, including integration with drones.



Chapter 1

Introduction to Forest Health
Monitoring and Al Approaches

1.1 Introduction

1.1.1 Forest health monitoring

Forest health monitoring enables landowners and forestry organizations to gain a deeper
understanding of the forest biome's condition and to detect potential threats, such as those that
could fuel wildfires. Effective monitoring should be capable of identifying changes that
indicate more serious issues, such as droughts or tree diseases, and alerting forest managers.
While many government-run programs track trends on a larger scale, local monitoring is often

conducted to better address immediate concerns [1].

Forest managers may be particularly concerned with the following key elements of forest
health:

= Tree density

= Tree species

- Treesize

= Tree health

= Acres under management
= Forest growth rate

= Ecosystem diversity

= Wildlife habitats

= Air quality



1.1.2 Methods of forest health monitoring

In general, there is no magic bullet when it comes to forest monitoring, forest managers

will use a variety of methods to guarantee a healthy forest. When combined, the following

techniques ought to produce reliable forest health monitoring.

Field inspections: As a sort of spot check, forest managers will physically spend time
in the forest gathering samples and documenting visual data to provide a more
comprehensive picture of the health of the forest. Since this approach depends on
managers, rangers, or wardens physically conducting inspections, it can be time
consuming and challengingto cover large areas, but it is useful for obtaining a detailed
look at the forest and identifying specific issues.

Aerial surveys: A forest manager can gain a good view over a large area by using
drones to examine the forest canopy ,they can gather data and are quite good at
mapping and surveying terrain when combined with infrared technology. Even though
aerial surveys are always improving, they are not as precise as being able to observe

something on foot.

Remote sensing technique: Although they are still in their infancy, remote
technologies like satellites for collectingforest data are advancing quickly. Although
remote sensing can swiftly cover wide regions and yield detailed information,it might
be costly and might not be able to identify some problems. Wireless sensor networks,
or loT sensors, are another remote method for monitoring forest health, but they are
frequently more useful. Using a long-range radio network,a network of sensors gathers
data on temperature, humidity, and natural gasses and transmits i nformation and
alerts inreal time. Because sensors requirerelatively little maintenance over a period of

10 to 15 years, forest health monitoring is now quick and easy [2].



1.2 Impact of Thaumetopoea pityocampa
1.2.1 Pine Processionary Moth Life Cycle

Thaumetopoea pityocampa, the pine processionary moth, is a pest that feeds on the needles
of pine trees, causing heavy defoliation. It is endemic to the Mediterranean and southern
Europe but has spread to other parts of the world. The larvae are well known for their

"processions™ when they move in lines to find suitable places for pupation.

Figure 1. 1: Thaumetopoea pityocampa [3]

The moth poses both ecological and economic threats by weakening trees and exposing them
to other pests and diseases. Adult moths have a lifespan of just one day during summer,
during which they mate and deposit eggs on pine trees. The caterpillars, hatched from these

eggs, begin consuming the needles of the trees during autumn.

In mid-January, they build impressive white silken nests, about the size of a football, in the
pine tree foliage and branches. There may be many nests in a single tree. The remainder of the
winter is spent in these nests high in the trees; they occupy the nests during the day and

venture out at night to feed on the needles [4].
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Figure 1. 2:Life cycle of PPM [5]

1.2.2 PPM Damage Symptoms

Pine processionary moth caterpillars feed on pine needles and some other species of conifer
trees, and in severe infestations cause severe defoliation of trees. This can stress the trees to
be more vulnerable to attack from other insects or disease, and to environmental stresses such
as flood or drought. PPM caterpillars have thousands of tiny hairs that carry an urticating, or
irritating, protein called thaumetopoein, which accounts for its scientific name. Upon contact
with humans and animals, these hairs can cause painful eye, skin and throat irritations and

rashes and, in some exceptional cases, allergic reactions.



Figure 1. 3:Human Reactions to Thaumetopoea pityocampa Hairs [6]

1.2.3 PPM Nest Characteristics

The most noticeable indication of the presence of pine processionary moth is the large,
white, silken nests that the Caterpillars spin high in the trees during January. They construct
these nests amongst the pine leaves and can grow as large as a football. These are the winter
refuges of the caterpillars, where they huddle together to keep warm and safe while still eating
and developing. The nests are generally placed at tip ends of branches, especially towards the
top canopy of the tree, and therefore seen from a distance but less easy to study up close [7].

Figure 1. 4:Pine Processionary Moth Nest [8]



1.2.4 Manual Detection Methods for PPM Nests

Traditional PPM infestation detection relies to a great extent on ground-level visual
surveys. Scanners walk along wooded areas, checking individual trees for signs of PPM
activity, such as the presence of silk nests constructed by wintering larvae. Such nests are
often found on the periphery parts of host plants, often at the top of branches in the higher
crown. While this method allows for direct observation, it is laborious and may not effectively
cover broad or heavily wooded areas [9].

1.2.5 Limitations and Challenges

Manual techniques of PPM infestations detection are confronted with several limitations.
They are extremely time-consuming and labor-intensive as people need to walk through the
forests to inspect every tree individually, especially in dense or large forests where the nests
are hard to find. The nests are habitually hidden deep in the trees or among the branches,
hence hard to find. Weather is also a problem rain, snow, or fog can make visibility and
inspection impossible. There is also the risk of human error, where the inspector might miss a
nest or get it wrong. Because the process is slow, infestations may spread significantly before

they are even noticed.

To overcome the many limitations of manual detection methods, researchers and
practitioners have increasingly turned to automated solutions powered by computer vision and
deep learning. These advanced technologies offer a scalable, accurate, and time-efficient
alternative to traditional inspection. By analyzing images captured from drones or ground-
based cameras, computer vision systems can rapidly detect pine processionary moth nests
with high precision, even in challenging environments or at great heights. This shift from
manual to automated methods represents a significant advancement in forest health
monitoring, enabling early detection, faster response, and more efficient management of PPM

infestations.



1.3 Computer Vision Introduction

1.3.1 Computer Vision Overview

Computer Vision is a field of Deep Learning and Artificial Intelligence where human
beings train computers to see and interpret the world they live in. While humans and animals
automatically solve vision as a problem even at a very young age, helping machines see and
interpret their surroundings through vision is a large unsolved problem. Limited view of the
human eye and the infinitely changing landscape of our dynamic world is what renders
Machine Vision challenging at its very core.

Human Vision System

bowl, oranges,
bBananas, lemons,
peaches

oooooooooooo

Input Sensing device Interpreting device Output

Figure 1. 5:Human vision system VS cv system [10]

1.3.2 Common Computer Vision Tasks

Computer vision assignments are basically making computers understand digital images
and also visual data from the actual world. This could involve extracting, processing, and
analyzing data from such types of inputs for decision-making. The past of machine vision
consisted of formalizing tough problems on a grand scale into well-liked solvable problem
statements. Splitting subjects into well-organized groups with nice naming conventions
helped researchers around the globe to identify problems and resolve them efficiently. Some
of the most common computer vision tasks in Al today include image classification, object

detection, and image segmentation, among others.



Classification Detection Segmentation

Figure 1. 6:The most common cv tasks [11]

Computer vision tasks Definition Common Models
Image classification tasks BLIP, ResNet,
Image Classification involve CV models classifying
images into user-defined
classes for various
applications. VGGNet
) ) While image classification Faster R-CNN,
Obj ec.t Dc?tectlon and categorizes an entire image, YOLO,
Localization object detection and
localization identify specific
objects in an image. SSD
Semantic segmentation tries to
label each pixel in an image FastFCN, DeepLab,
for a finer classification. The
Semantic Segmentation approach gains more
classification accuracy by
labeling the individual pixels U-Net
of an object.

Table 1. 1:Common Computer vision tasks
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1.4 Related Works

Ref Year Title Approach Data Type Dataset Accuracy/FPS Results
[12] 2023 Testing Early Object RGB UAV Custom YOLOV5 0.826 Best
Detection of detection using imagery dataset (presence/absence)  Performance
Pine YOLOV5 (forests in 0.696 with high-
Processionary and Faster Catalonia ) (per nest) altitude
Moth R-CNN, Faster RGB
(Thaumetopoea R-CNN: images
pityocampa) slightly
Nests Using lower
UAV-Based
Methods
[13] 2019 Detection Semantic RGB UAV Custom Accurate
and Mapping segmentation imagery dataset mapping
of Pine using U-Net Of nests
Processionary CNN
Moth Nests
in UAV Imagery
Using Semantic
Segmentation
[14] 2022 Eco-Friendly Object RGB UAV Custom / Detection
Fight Against detection using imagery dataset was robust
Thaumetopoea YOLOV5 and reliable
pityocampa
Infestations Suitable
in Pine for
Forests Using real-time
Deep Learning field deployment
on UAV Imagery
[15] 2023 Deep-Pest-Detector: CNN with RGB + Multimodal 97% Real-time
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Automated Detection RGB + Thermal Thermal dataset detection
and Localization image fusion UAV collected enabled
of Processionary imagery during by onboard
Moth Nests via field surveys drone
Aerial Drones processing
and DNN
[16] 2023 Palm Tree ResNet and RGB images Custom- high classification Effectively
collected
Disease Detection  transfer learning of palm dataset accuracy identified
Using Residual with Inception leaves palm leaf
Networks ResNet diseases using
deep learning
[17] 2020 VddNet: Vine Custom CNN Multispectral UAV- / High
collected precision
Disease Detection architecture and depth imagery in detecting
Network Based (VddNet) images and localizing
on Multispectral vine
Images and diseases
Depth Map
[18] 2023 Deep Learning- Deep CNN High-resolution ~ Custom high accuracy Accurate
Based model dataset and
Trees Disease for tree RGB images efficient
Recognition and leaf disease of tree classification
Classification classification leaves of leaf
diseases
[19] 2021 Automated YOLOv4 for RGB UAV Custom 90% Enabled early
Detection object imagery dataset
of Olive detection detection
Tree Diseases and of olive
Learning and classification diseases
Drone
Imagery
[20] 2020 Aerial Spectral CNN Hyperspectral Field data 85% Detected early
Imaging UAV from signs
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of ash

and CNNs for imagery European

Early Detection ash forests dieback

of Ash Dieback -Combined spectral

in Forests bands .
improvedclassificat
ion
accuracy
compared to
RGB-only
models

Table 1. 2:Overview of UAV-Based Deep Learning Methods for Tree Pest and Disease Detection

The review of related works highlights the growing shift toward automated approaches
powered by deep learning models integrated into UAV-based systems. Whether through
object detection, semantic segmentation, or multimodal image fusion, these methods are all
grounded in the principles of artificial intelligence. It is the advancements in Alparticularly in
machine learning (ML) and deep learning (DL)that have made forest monitoring and pest

detection faster, more accurate, and more adaptable to complex conditions.

1.5 Artificial Intelligence Overview

In today's world of rapidly developing technology, one must keep up with advancements in
artificial intelligence (Al), machine learning (ML), and deep learning (DL). As per Mark
Cuban, a famous American businessman and television personality: "Artificial Intelligence,
deep learning, machine learning whatever you're doing if you don't understand itlearn it.
Because otherwise, you're going to be a dinosaur within 3 years." This quote underscores the

importance of continual learning in these cutting-edge fields [21].

Artificial
Intelligence

A 4

Machine
Learning B

Deep is
Learning

Figure 1. 7:Al and Its Subdomains [21]
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As illustrated in Figure 1.8, the relationship between Artificial Intelligence (Al), Machine
Learning (ML), and Deep Learning (DL) is hierarchical. Al encompasses all techniques that
enable machines to mimic human intelligence. ML is a subset of Al focused on learning from
data, while DL is a further specialization of ML that leverages deep neural networks to solve

complex tasks.

1.5.1 Artificial Intelligence (Al)

Artificial intelligence, simply referred to as Al, is the process of providing data,
information, and human intelligence to machines. Artificial Intelligence's main goal is to
develop independent machines that can think and act like human beings. The machines can
replicate human behavior and carry out tasks through learning and problem solving. The

majority of the Al systems replicate natural intelligence to perform complex problems.

"Al doesn't have to be evil to destroy humanity — if Al has a goal and humanity just happens
in the way, it will destroy humanity as a matter of course without even thinking about it, no

hard feelings". Elon Musk, Technology Entrepreneur, and Investor[21].

e Types of Artificial Intelligence

» Reactive Machines: Such machines only react. These machines don't create
memories, and they don't utilize any experience from the past to make new

decisions.

» Limited Memory: The past serves as a guide for these machines, and there is

some information accumulated over time. The information utilized is short-term.

» Theory of Mind: These are systems that comprehend human emotions and their
influence on decision making. They are trained to adapt their behavior

accordingly.

» Self-awareness: These systems are programmed and designed to be self-aware.
They have knowledge of their own internal states, forecast other people's

emotions, and respond accordingly.
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1.5.2 Machine Learning (ML)

Is a field of Artificial Intelligence (Al) that addresses the improvement of Al systems'
accuracy using large amounts of data. The data can be in the form of images, messages,
documents, or even patterns of human behaviors. The ML algorithms take the data in an
attempt to predict or make decisions about future events. The broad types of machine learning

are supervised learning, unsupervised learning, and reinforcement learning.

e Types of Machine Learning

» Supervised learning: is the process where models are trained from labeled data
and inputs are associated with known outcomes. Supervised learning is often used
for classification and prediction activities, such as image recognition or spam

detection.

» Unsupervised learning: is using unlabeled data, and the model determines patterns
or groupings by itself. It's commonly used in clustering or dimension reduction, for

instance, customer segmentation.

V A
CLASSIFICATION
SUPERVISED 9 )
LEARNING
Develop predictive
maodel based on both )
input and output data
— = REGRESSION
MACHINE LEARNING )
UNSUPERVISED ——\
LEARNING
Group and interpret ﬁ CLUSTERING
dota based only \ )
on input data

Figure 1. 9:Comparing supervised and unsupervised learning [22]

» Reinforcement learning: relies on learning through interacting within an
environment. The model, or agent, receives reward or penalty based on its action and
learns to choose actions in order to maximize cumulative reward. It's commonly used

in robotics and playing games.
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Reinforcement Learning in ML
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Figure 1. 10:Reinforcement learning processing [23]

1.5.3 Deep Learning (DL)

DL is a specialized field of ML that enables artificial neural networks, multiply layers to
handle complicated tasks such as face recognition and autonomous driving in vehicles,
generate images, create videos, craft creative things, produce music and many other
applications. Deep Learning requires much greater computational power and custom hardware
to learn hierarchical and sophisticate features automatically from data compared to other

machine learning models, which require human supervision for feature identification.

e How Does Deep Learning Work?

. (Bias)
wl
(Inputs)

° (Summation function)
(Weights)

— f: -

ypmd

(Activation function)

Figure 1. 11:The main components of Deep Learning [24]
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> Input Layer and Weighted Sums: The input layer of the deep learning model
takes the input data. Each input has a weight, which signifies the importance of the
input in reaching the decision. The weights have typically random values assigned
to them at the beginning of the training. The inputs are multiplied by their
respective weights, and the products are summed up to provide each neuron with a
weighted sum.

» Activation Function: The weighted sum is fed to the activation function
subsequently. The activation function's job is to bring in non-linearity into the
network so that the network learns to learn complicated patterns in data. The
activation function also includes a bias in the weighted sum before it moves to the
next layer or the output layer. The bias enables the model to shift the activation
function so that it can make more accurate predictions. The function then
determines if the neuron is to fire or not, i.e., if the output should activate. The
sigmoid, ReLU (Rectified Linear Unit), and tanh (hyperbolic tangent) functions

are some of the common activation functions.

» Output Layer : After processing by the hidden layers (which can have multiple
neurons and activation functions), the model ends up at the output layer. The
output layer produces the predicted output of the model based on what has been

processed by the network.

» Comparison with Actual Output : After the network has made a prediction, the
predicted output is compared to the actual output (the actual value). This enables
the network to compute the error (or loss) of the prediction. The smaller the error,
the better the model.

» Back propagation and Weight Adjustment : Once the error has been computed,
the model then utilizes back propagation to alter the weights. Back propagation is
accomplished by feeding the error back through the network, beginning with the
output layer and moving toward the input layer. In this process, the model moves

the weights so that the error is minimized overall. Gradient descent is typically
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utilized for this purpose, where the weights are slowly moved by calculating the
gradient (or slope) of the loss function.

» Cost Function and Error Minimization: The cost function (or loss function) is
utilized to determine how far away the model's predictions are from the true
results. A common cost function is mean squared error (MSE) for a regression task
or cross-entropy loss for a classification task. The objective of model training is to
minimize the cost function by back propagating the update in the weights. As the
weights are updated over numerous iterations (epochs), the network improves in

generating the correct output, decreasing the error rate.

e Machine learning VS deep learning

Machine learning Deep learning
A subset of Al A subset of machine learning
Can train on smaller data sets Requires large amounts of data
Requires more human Learns on its own from
intervention to correct and learn environment and past mistakes
Shorter training and lower Longer training and higher
accuracy accuracy

. . . Makes non-linear, complex
Makes simple, linear correlations

correlations
. Need ialized GP
Can train on a CPU (central eees .a specta lz.e G U
. . (graphics processing unit) to
processing unit) train

Table 1. 3:Comparison between ML and DL [25]
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e Types of Deep Neural Networks

» Convolutional Neural Network (CNN) : is one of the deepest neural networks
that are most commonly utilized for image processing. CNN is made of four main
parts. They help the CNNs mimic how the human brain operates to recognize

patterns and features in images:

- Convolutional layers
= Rectified Linear Unit (ReLU for short)
= Pooling layers

= Fully connected layers

fc 3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A K_M
(s x 5) ken‘lel Max-Pooling (5 x 5) ken.lel Max-Pooling (with
valid padding (2x2) valid padding (2x2) dropout)
@0
91
0?2
INPUT nl channels nl channels n2 channels n2 channels E ‘ 9

(28x28x1) (24 x24 xn1) (12x12xn1) (8x8xn2) (4x4xn2)

OuUTPUT
n3 units

Figure 1. 12:Architecture of the CNNs applied to digit recognition [26]

» Recurrent Neural Network (RNN): Similar to the regular neural networks,
including feed forward neural networks and convolutional neural networks
(CNNSs), recurrent neural networks are trained from training data. They differ from
the rest because they possess "memory" since they draw from past inputs to

determine the current input and output.

While standard deep networks make predictions that inputs and outputs are
independent, recurrent neural network output relies on the previous elements of the
sequence. While future events would also be helpful when deciding on the output
of a particular sequence, unidirectional recurrent neural networks cannot

incorporate such events into their predictions.
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Recurrent Neural Network
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© @ Hidden Layers
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@ output Layer

Figure 1. 13:Simple Recurrent Neural Network architecture [27]

» Generative Adversarial Network (GAN) :
neural networks to create novel, synthetic data samples that are copies of existing
data. A GAN using a photograph can be utilized to create new pictures that seem
superficially real to the human observer. A Generative Adversarial Network

(GAN) has two neural networks, the Discriminator and the Generator, and they are

both trained at the same time under adversarial training.

Generator: It accepts random noise as input and generates data (e.g.,

are synthetic models that use two

image). Its objective is to generate data as real as possible.

Discriminator: This network uses the actual data and the data created by

the Generator as inputs and tries to discriminate between both. It produces

the probability that the provided data is real.

-

Update the Generator Model

Random
Input
Vector

Model

Generator

Fake

Generated
Example

Real
Example

Discriminator
Model

Binary
Classification
Real/Fake

-

Update the Discriminator Model

Figure 1. 14: GAN architecture [28]
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1.6 Conclusion

This Chapter outlined the necessity for monitoring of forest health, referring to the
ecological impact of Thaumetopoea pityocampa. It offered the potential of artificial
intelligence, and specifically computer vision, to enhance the efficiency and accuracy of
monitoring. Principles of basic Al, machine learning, and deep learning were also addressed

as background requirements for the techniques developed in subsequent chapters.
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Chapter 2

Deep Learning Approaches for PPM
nest detection

2.1 Introduction

Mediterranean and European forests are increasingly under threat from the pine
processionary moth (Thaumetopoea pityocampa), an exotic pest with severe defoliation
impact and allergenic action in humans and animals. Early and accurate detection of its nests
is crucial in order to guarantee effective pest control and forest protection. However,
traditional detection methods i.e. surveying by hand and remote sensing are often limited by

time, cost, and accuracy, particularly where nests are hidden or in the top canopy.

Recent advances in deep learning have opened up new potential for automated nest
detection through high accuracy image processing. Convolutional neural network (CNN)
architectures have proved most successful in object detection tasks, with the potential to be
achieved at faster, more scalable implementations. Among these, architectures like YOLO,
Faster R-CNN, and SSD have been successful in real-time detection scenarios. While several
new versions of YOLO, this study focuses on YOLOvV11 due to its balance between speed,

accuracy, and accessibility at the time of implementation.

2.2 Deep Learning for Object Detection

Obiject detection using deep learning provides a fast and accurate method to estimate the
object location in an image. Deep learning is a strong machine learning technique in which
the object detector learns automatically the image features required for object detection tasks.
Computer Vision Toolbox provides several object detection using deep learning techniques,
such as you only look once YOLOV2, YOLOV3, YOLOv4, YOLOX, RTMDet, and single
shot detection (SSD) [29].
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OBJECT DETECTION
ALGORITHM

Figure 2. 1:Using object detection to identify and locate vehicles. [30]

Two approaches exist for performing object detection using deep learning techniques:

» Use pretrained object detectors: This method involves utilizing pretrained
object detectors. Having been trained on vast datasets capable of recognizing
common objects people, vehicles or text in images without needing retraining. The
approach is particularly ideal for generic use cases with the requirement for rapid

deployment.

» Custom object detector: The second method is to create a custom object detector.
This is typically done by transfer learning, where the pre-trained network is
customized to perform for specific detection tasks. Through the fine-tuning of pre-
trained models, this method allows for the creation of highly specialized detectors
with reduced computation cost and time, as the underlying network is already
trained on large-scale image datasets. The method is particularly beneficial while
dealing with domain-specific objects that lie outside the domains of typical

datasets.

2.3 CNN Based Detection Architectures

Convolutional Neural Networks (CNNs) are now a necessity in modern object detection
applications due to their exceptional ability to learn spatial hierarchies and extract

meaningful features from images. For pine processionary moth (PPM) nests detection ,
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CNN-based architectures offer the ability to automatically detect patterns and structures in

nests, such as complex forest conditions.

Some of the most popular and utilized CNN-based object detectors include YOLO (You
Only Look Once), Faster R-CNN, and SSD (Single Shot MultiBox Detector), each offering
different strengths in terms of speed, accuracy and architecture.

2.3.1 YOLO (You Only Look Once)

You Only Look Once (YOLO) is one of the most recent, real-time object detection
algorithms that was introduced in 2015 by Joseph Redmon, Santosh Divvala, Ross
Girshick, and Ali Farhadi in their famous paper entitled You Only Look Once: Unified,
Real-Time Object Detection. The object detection problem is framed by the authors as a
regression problem rather than as a classification problem by dividing the bounding boxes
in the spatial manner and providing a probability to every detected image utilizing a single
CNN [31].

e Mechanism of the YOLO Algorithm

Yolo divides the image into a grid. For each grid, some values like class
probabilities and the bounding box parameters are calculated. The model works by
first dividing the input image into a grid of cells, and each cell will predict a
bounding box when the center of a bounding box falls within the cell. Each cell in
the grid estimates a bounding box with the X, y coordinate and width and height and

the confidence. Each class prediction also relies on each cell.
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S x S grid on input

Final detections

Class probability map

Figure 2. 2:YOLO object detection mechanism [32]

e YOLO architecture

YOLO resizes the input image to 448x448 before passing it through the convolutional
network. It starts with a 1x1 convolution that downsamples the number of channels
and subsequently utilizes a 3x3 convolution to yield a cuboidal output. The activation
function used throughout the network is ReLU, except for the final layer, which uses a
linear activation function. Additional techniques, including batch normalization and

dropout, are used to regularize the model and prevent overfitting.

IQ’L1 b 7 Xﬂxrﬁ

M W 0 1024 4096

]

Conv. Layer Conv. Layer  Conv. Loyers Conv. Loyers Conv. loyers  Conv. layers  Conn. Layer  Conn, Loyer

Tx7xb452 3x3x192 1x1x128 Tx1x256) 4 IxIx512 7., 3x3x1024
Maxpool Layer  Maoxpool Loyer 3x3x256 3x3x512 3x3x1024 3x3x1024
2242 2x242 1x1x256 1x1x512 3x3x1024
3x3x512 Ix3x1024 3x3x102442
Maxpool Loyer  Maxpool Layer
2x242 2242

The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

Figure 2. 3:YOLO Architecture [33]
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The Evolution of YOLO: From 2015 to 2024

The YOLO (You Only Look Once) series has undergone significant evolution
since its introduction in 2015, continuously improving in terms of speed, accuracy,
and architecture design. Each new version has addressed the limitations of its
predecessors and adapted to new object detection challenges.

YOLOVL1: Introduced a new approach to object detection by dividing an image into
an S x S grid. Each grid cell was responsible for detecting an object if the center of
the object fell within that cell. Each grid cell predicted B bounding boxes with a
confidence score that indicated how probable the existence of the object is and to
what extent the predicted box correctly describes the object (using loU —

Intersection over Union).

YOLOVvV1 handled overlapping boxes using Non-Maximum Suppression (NMS) to
eliminate less accurate predictions. It used a custom loss function for location, size,
confidence, and class probability to improve training performance.The model
demonstrated competitive results in terms of both accuracy and speed, as shown in

the following benchmarks:

e Normal YOLO: 63.4% mAP at 45 FPS
e Fast YOLO: 52.7% mAP at 155 FPS

While fast, YOLOvV1 was afflicted with drawbacks like low recall and localization

errors, which prompted subsequent versions upgrades.

YOLOv2 (YOLO9000): Was proposed in 2016, which is a significant
enhancement of YOLOv1. The name comes from its capability to recognize more
than 9000 classes of objects, a major improvement in accuracy and generalization.
It combines an existing detection dataset with a classification dataset, running joint
training based on the hierarchical structure of the two datasets, which is one of the
significant innovations of YOLO9000. The detection images do teach the model to
localize objects as well, but the classification images also make it learn a more

diverse set of words with more robustness [34].

26



Unlike two-stage detectors like Faster R-CNN, YOLOv2 uses single-stage
detection, which is much faster with not too much loss in accuracy. YOLOV2 passes
an input image through a deep convolutional neural network (CNN) and outputs

predictions decoded into bounding boxes.
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Figure 2. 4:predefined anchor boxes [35]

The figure shows predefined anchor boxes (the dotted lines) at each location in a
feature map and the refined location after offsets are applied. Matched boxes with a
class are in color.

YOLOV2 predicts these three attributes for each anchor box:

¢ Intersection over union (loU): Predicts the objectness score of each anchor
box.
e Anchor box offsets: Refine the anchor box position.

e Class probability: Predicts the class label assigned to each anchor box [36].

. YOLOvV3: Small changes, big impact. YOLOvV3 released in 2018 by Joseph
Redmon et al[37], brought a series of significant improvements over YOLOv2
(YOL0O9000). While YOLOvV2 was already a very successful model, YOLOvV3 has
further improved accuracy, speed and versatility, consolidating YOLOQO's position as

one of the most successful object detectors.

e Principal Architectural improvements: YOLOvV3 uses Darknet-53, which
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Is a deeper and more powerful network comprising 53 convolutional layers,
residual connections, and oversampling layers. This replaces the Darknet-19
network used in YOLOv2 and offers improved feature extraction
performance, particularly for detecting small objects. Despite being more
complex, it retains real-time processing capability.

Better Bounding Box Predictions: YOLOv3 improves bounding box
prediction by using logistic regression to estimate an objectness score for
each anchor box. This score indicates whether an anchor box overlaps a
ground truth box as much as possible (score = 1) or not (score = 0). Unlike
Faster R-CNN, which can assign several anchor boxes to a single object,
YOLOv3 assigns a single anchor box per object, which simplifies
calculations (with no loss of localization or confidence in the absence of a
match). [38]

Smarter Class Prediction:Unlike YOLOv2, which uses the softmax
function, YOLOV3 introduces independent logistic classifiers for each class.
This is useful for multi-label classification, where a box may belong to
several classes (for example, 'Person’ and ‘Football Player’), reflecting
complex real-world scenarios.

Multi-Scale Detection: YOLOv3 performs predictions at three different
scales in the network. This enables the model to more effectively detect
objects of various sizes large, medium and small by exploiting feature maps

from different layers of the network.

||L"Lw

Convolutional Convolutional Convolutional
Layers Layers Layers

L YOLO Detection Layer l

Figure 2. 5:Multi-scale Detection Architecture[37]
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4. YOLOv4: was unveiled in April 2020 by Alexey Bochkovskiy and his team,
representing a major breakthrough for the YOLO family of object detection models
[37]. The released version included significant architectural changes, while
continuing to operate in real-time detection.

e Architecture: YOLOv4 employed a three-part architecture of backbone,
neck, and head:

» Backbone: CSPDarknet53 , a convolutional neural network using Cross
Stage Partial Network (CSPNet) to improve gradient flow and feature
learning. [39]

» Neck: Used Spatial Pyramid Pooling (SPP) and Path Aggregation
Network (PANet), adaptations designed to improve multi-scale feature
extraction. [40]

» Head: Used YOLOV3's anchor-based detection mechanism for final

prediction.

Backbone Dense Prediction

r
|
|
|
|
|
|
|

Figure 2. 6:Yolov4 Architecture [41].

5. YOLOV5: In June 2020, Glenn Jocher released YOLOV5, marking a significant
milestone in the evolution of the YOLO family. Unlike its predecessors, which were
developed on the Darknet platform, YOLOV5 has been implemented in PyTorch,
which is more versatile and popular, making it more accessible to researchers and

developers [37]. Ultralytics maintains YOLOvV5, but there are no associated
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academic papers.

e Architecture: YOLOvV5's architecture retains the fundamental design
elements of previous YOLO versions while incorporating innovations that
improve efficiency and accuracy. The architecture consists of three main

parts:

> Backbone: YOLOV5 uses CSPDarknet53, a Cross Stage Partial (CSP)
version of the Darknet-53 backbone introduced in YOLOv4. This
architecture reduces computations by partially sharing layer gradients,

which increases learning potential while reducing overlearning.

> Neck: is composed of Path Aggregation Network (PAN) and Spatial
Pyramid Pooling (SPP) blocks, to improve multi-scale feature

extraction and detection of objects of various sizes.

> Head: uses convolutional layers to predict objectivity scores, class

probabilities and bounding boxes, thanks to an anchor-based approach.
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Figure 2. 7:Yolov5 Architecture[42]

. YOLOVS6: is a single-stage, industry-oriented object detection system based on
PyTorch. Key improvements over YOLOV5S in this version include a hardware-
optimized backbone and neck architecture, a refined decoupled head, and an

improved training strategy. YOLOV6 outperforms previous models in the YOLO
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series in terms of accuracy and speed, as confirmed by the COCO dataset.

While YOLOvV6-N achieved 1,234 FPS and 35.9% AP on an NVIDIA Tesla,
YOLOVG6-S set a new record with 43.3% AP at 869 FPS. Even higher accuracy was
achieved by YOLOV6-M and YOLOV6-L, with 49.5% and 52.3% AP respectively,
without compromising speed. [43] The architecture consists of three main parts:

» Backbone: uses a hardware-optimised architecture, often based on
EfficientRep, to improve speed and compactness while retaining good

feature extraction capabilities.

» The Neck is composed of a Rep-PAN (Replicated Path Aggregation
Network) and enables better multi-scale feature fusion, enhancing the
detection of objects of different sizes.

» The head of YOLOV6 is decoupled, separating the classification and

regression branches to improve accuracy and convergence during training.

o Efficient £
> s : decoupled head g
Cony Cony |

1

1

cls.
Efficient

: Repmmk — {iRepiiock 1 decoupled head -I::I‘PE
Cony ._J Conv ! .

} — |

- |

S ——
)

Efficient _|: o
e
decoupled head reg.

Figure 2. 8:YOLOV6 network architecture[44]

7. YOLOVT: Is one of the latest model in the sequence of YOLO models. YOLO
models are one-stage object detectors. Image frames get featurized inside a YOLO
model through a backbone. The features are blended and merged within the neck
and further forwarded to the head of the network YOLO predicts locations and
classes of objects where bounding boxes are to be drawn.YOLO does a post-
processing via non-maximum suppression (NMS) to come up with its final

prediction.
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Figure 2. 9:YOLOV6 network architecture[45]

8. YOLOV8: Was released by Ultralytics on January 10th, 2023, with cutting-edge
performance in speed and accuracy. Building on the advancements of previous
YOLO releases, YOLOVS introduced new features and optimizations that make it

an excellent choice for many object detection tasks across a wide range of tasks.
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Figure 2. 10:YOLOv8 Comparison with Other Versions verions [46]

e Key Features of YOLOVS:

» High-Level Backbone and Neck Architectures: YOLOvV8 employs state-
of-the-art backbone and neck architectures, resulting in improved feature
extraction and object detection performance.

» Anchor-free Split Ultralytics Head: YOLOv8 employs an anchor-free
split Ultralytics head, thereby providing better accuracy and a more
efficient detection process than anchor-based techniques.

» Optimized Speed-Accuracy Tradeoff: Focusing on attaining a best-case
speed-accuracy tradeoff, YOLOvV8 is suitable for real-time object

detection tasks in many areas of application.
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» Variety of Pre-trained Models: YOLOvV8 offers a range of pre-trained

models to meet various tasks and performance requirements, and it's

simple to locate the model that best suits your specific application.

Architecture: the YOLOvV8 architecture consists of three primary

components:
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Figure 2. 11:YOLOvV8 architecture [47]

» Backbone: This is a convolutional neural network (CNN) module whose

task is to extract important features from the input image. YOLOvV8
employs an adapted version of CSPDarknet53, which incorporates
Cross-Stage Partial (CSP) connections to enhance feature propagation
while reducing computational complexity, ultimately increasing model

accuracy.

Neck: Also referred to as the feature aggregation layer, the neck
combines feature maps of various stages within the backbone to allow
for efficient incorporation of multi-scale information. Unlike traditional
YOLO models of the Feature Pyramid Network (FPN) type, YOLOvV8
introduces the C2f module which effectively merges high-level semantic
features and low-level spatial information. The model has improved
performance in detecting small and densely packed objects using this

architecture.
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Head: YOLOV8 head is tasked with generating final predictions. It
consists of a number of detection layers that yield outputs in the shape of
bounding box coordinates, objectness scores, and class probabilities for
each grid cell in the feature map. These are then improved upon by post-
processing steps in an attempt to obtain the final detection outputs[48].

9. YOLOVvV11: At the YOLO Vision 2024 (YV24) conference, the newest advancement
in the YOLO (You Only Look Once) line of object detection was unveiled:

YOLOvV11. It expands on YOLOv1's original concepts by refining training protocols

and architectural design to increase precision, speed, and effectiveness. YOLOv11 can

accomplish a variety of computer vision tasks, including object detection,

classification, instance segmentation, pose estimation, and oriented object detection,

with enhanced feature extraction and reduced parameters, all while preserving high

computational efficiency and real-time performance[49].

Architecture: YOLOvV11 boasts a simplified architecture targeting high

accuracy and real-time processing. There are three essential components:

>

Backbone: accepts features from the input image with enhanced
convolutional layers. It introduces the C3k2 block, which is an enhanced
C3 and CSP bottleneck, and includes a C2PSA (Cross Stage Partial with
Spatial Attention) module for boosting spatial attention and detection

capability.

Neck: Merges multi-scale features from the backbone via upsampling
and concatenation. Feature fusion is optimized by applying C3k2 blocks
and the C2PSA attention mechanism, especially for small and occluded

object detection.

Head: Generates the final prediction (class labels and bounding boxes)
via a number of C3k2 and C3k blocks, which scale based on kernel size

and depth to optimize precision without compromising computational
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Backbone Neck

Head

Figure 2. 12:YOLOv11 architecture[50]

| Detect ]

Version Year Key Features Performance Impact

Unified architecture for real-time 03.4% mAP at 45 Pioneered real-time

YOLOvl | 2015 obiect detection FPS on PASCAL object detection with a
) VOC 2007 single neural network

Introduced batch normalization, 76.8% mAP at 67 Improved accuracy and
YOLOvV2 | 2016 | high-resolution classifiers, and FPS on PASCAL speed; expanded

anchor boxes VOC 2007 applicability

Used Darknet-53 backbone; multi- Enhanced detection of
YOLOv3 | 2018 | scale predictions; feature pyramid 57.9% AP on small objects and

v P ’ 24 COCO dataset . .

networks improved accuracy

vorows |0 | e e s sracsins | Bl
v . ’ v on COCO dataset aceutacy; Wicely adop

training in industry

Focused on ease of use; 50.4% AP at 140 User-friendly; facilitated
YOLOv5 | 2020 | implemented auto-learning FPS on COCO deployment in various

bounding box anchors dataset applications

Optimized for mobile devices; 43.1% AP at 120 Enabled real-time
YOLOv6 | 2022 | introduced efficient backbone and FPS on COCO detection on edge

neck designs dataset devices
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Version Year Key Features Performance Impact
Extended efficient layer 51.4% AP at 150 Achieved state-of-the-art
YOLOv7 | 2022 | aggregation networks; model FPS on COCO performance; efficient
scaling techniques dataset for various tasks
Incorporated transformer layers; 53.9% AP at 160 Improved handling of
YOLOv8 | 2023 | adaptive computation for dynamic FPS on COCO complex scenes and
scenes dataset occlusions
Introduced Generalized Efficient YOLOV9e variant
. . Enhanced accuracy and
YOLOVY | 2024 Layer Aggregation Network achieved 55.6% efficiency: suitable for
v (GELAN) and Programmable mAP with S8.1M | .~ ay’ Hoatio
Gradient Information (PGI) parameters PP
YOLOvVI10-S Reduced latency and
L . o ]
YOLOV10 | 2024 Advanced loss function; variants achleved.46.3 %0 parameter count.,
from nano to extra-large models APval with 2.49ms | adaptable to various
latency computational needs
Transformer-based backbone; 61.5% mAP at 60 Improved speed and
YOLOvI11 | 2024 | dynamic head design; NMS-free FPS with 40M accuracy; efficient for
training parameters real-time applications
Area Attention Module (A2); YOLOvVI2-Nano Combined attention
. . . o . . ]
YOLOv12 | 2025 Residual Efficient Layer achieved 40.6% mechanisms with speed;

Aggregation Networks (R-ELAN);
Flash Attention

mAP with 1.64ms
latency

effective in real-time
scenarios

Table 2. 1:YOLO Series — Comparison [51]

2.3.2 Faster R-CNN

Most of the latest models available today stem from the work produced by the Faster R-

CNN model. Faster R-CNN is an object detection model that classifies objects within an

image, draws bounding boxes around them, and identifies what those objects are. It

processes in two stages:
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governed by the Region Proposal Network (RPN).

Stage 1: Proposes possible areas in the image that might contain objects,




e Stage 2: Uses these proposed regions to predict the class of the object and

refines the bounding box to better fit the object.
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Figure 2. 13:Faster R-CNN Architechture [52]

2.3.3 SSD (Single Shot MultiBox Detector)

SSD is composed of two components: SSD head and backbone model. Backbone model
is usually a pre-trained image classification network as a feature extractor. It is usually a
network like ResNet trained on ImageNet with the last fully connected classification layer
discarded. This leaves a deep neural network that can capture semantic meaning of the
input image and also preserve the spatial organization of the image but at a lower
resolution. For ResNet34, the backbone produces a 256-channel 7x7 feature map for an
input image. The definitions of feature and feature map will be provided later. The SSD
head is just one or several convolutional layers added on top of this backbone and the
outputs are interpreted as the object classes and bounding boxes in the spatial location of

the final layers' activations.

In the figure below, the early layers (white boxes) are the backbone, the later layers (blue

boxes) are the SSD head
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Figure 2. 14:Architecture of a convolutional neural network with a SSD detector [53]

2.4 YOLOV11 for PPM Nest Detection

After studying several object detection architectures based on deep learning, YOLOv11
was selected as the starting model for the detection of Thaumetopea pityocampa (the pine
processionary caterpillar) nests. This choice is explained by YOLOv1l's advanced
capabilities for real-time detection and identification of small objects, as well as its efficient
anchorage-free architecture, which perfectly meets the specific challenges of ecological

image analysis.

Nests of Thaumetopea pityocampa (the pine processionary caterpillar) often appear as
small, dense and irregular formations on pine trees, frequently blending into the natural
texture of the environment. Variability in terms of size, shape and position requires an
architecture capable of efficiently extracting features at different scales, while being robust in
the face of visual complexity. YOLOv11's improved backbone, combined with its neck based
on the C2f structure, enables it to capture both high-level and low-level features, making it

particularly suited to the detection of these nests.

YOLOV11 also offers a good compromise between accuracy and inference speed, enabling
its potential use in real-time forest monitoring systems or devices deployed in the field.
Support for several variants of the model (YOLOv11, YOLOv11s, for example) enables

adaptation to suit available computing resources and performance requirements.
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Furthermore, YOLOv1l is both a technically powerful and practical tool for
environmental monitoring research thanks to its ability to generalize across different datasets
and the ongoing support of the Ultralytics ecosystem in terms of ease of training, testing and

integration into real-life use cases.

To ensure the effectiveness of the YOLOv11-based detection system, the choice of dataset
plays a crucial role. The model's performance heavily depends on the quality, diversity, and
annotation accuracy of the data used for training and evaluation. In the context of detecting
pine processionary moth nests, it is essential to provide images that reflect real-world
conditions, including various lighting, angles, and environmental complexity. A carefully
constructed dataset tailored to these challenges significantly enhances the model’s ability to

generalize and perform reliably in field applications.

2.5 Dataset

The dataset used in this study consists of two parts. The first data was accessed through
the Roboflow platform, which provides pre-labeled image datasets for computer vision
tasks. It contains images of pine processionary moth (Thaumetopea pityocampa) nests
captured in various forms of forests capes. They were taken from both aerial and ground-
level perspectives, under varying lighting conditions, and with varying backgrounds. The
dataset also includes both negative and positive examples images with and without nests
visible such that the model can distinguish real nests from similar visual features like pine
cones and branches. Annotations are provided in YOLO format, making the dataset

directly compatible with the YOLOV11 training pipeline.

The second dataset is a custom dataset captured by our team using a standard digital
camera. These images were taken during field visits in local forested areas, primarily for
real-world scenario-based testing and model validation. Further information about the data

collection process as well as field conditions are provided in Chapter 3.
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Figure 2. 16:The diversity of scenes and nest appearances in the dataset

2.6 Challenges in PPM Nest Detection

Detection of pine processionary moth (PPM) nests by deep learning methods is
confronted with several challenges, primarily due to the complexity of forest environments
and the nests themselves. These pose challenges for both model training and real-world

model application.
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Limited Availability of Large Data Sets

One of the largest challenges to develop accurate PPM nest detection models is the
absence of large, high-quality datasets. While there are sites that offer annotated and
curated image datasets for computer vision tasks, they do not contain the quantity
and diversity required to effectively train deep learning models. This limitation
prevents the model from being capable of generalizing well to different forest
conditions and types of nests.

Visual Similarity with Natural Elements

PPM nests tend to appear very similar to natural objects such as clumps of pine
needles, pine cones, or bright spots caused by sunlight. Same appearance
regarding the way they appear increases the chances that there will be false

positives or false negatives, especially in heavy forest cover.

Variation in Nest Appearance

Nests could be distinctly varying in shape, size, texture, and visibility depending
upon infestation age, light level, and the angle from which the image is captured.
Such variation makes it difficult for models to learn to generalize in all possible

cases..

Occlusion and Background Clutter
Nests in the majority of cases are partly occluded by leaves, branches, or other
forest elements. This occlusion, along with the variability and -cluttered

background, prevents the model from easily identifying nest structures.

Small Object Detection
Some nests are captured from a distance either by drone or camera making them
appear very small in the picture. The detection of such small objects is a known

limitation for most object detection models, especially outdoors.

Lighting and Weather Conditions
Environmental condition variability such as shadows, fog, rain, or harsh contrast
sunlight may cause both nests and surrounding trees to appear irregularly. These

inconsistencies make the detection even more difficult.
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2.7 Existing Research and Research Gaps

Advancements in deep learning have enabled researchers to develop pine processionary
moth (PPM) nest automatic detection systems. Several methodologies were explored in

various studies,whose results were found to be positive:

e Multi-Stream Convolutional Neural Networks: Jaber et al. (2021)[ 15] had put
forward a system that integrated RGB and thermal images, which were analyzed
through a two-channeled deep convolutional neural network. The system achieved a
mean accuracy of 97% in detection and allowed geo-localization of the nests to the

centimeter order.

e UAV-Based Forest Detection Using Deep Learning: Garcia et al. (2023)[12]
experimented with the UAV use and deep learning models, YOLO and Faster R-
CNN, on various types of forests in south Europe. They discovered that YOLO
outperforms Faster R-CNN with F1-measures 0.826 for presence/absence and 0.696

for single nest detection.

e Semantic Segmentation Methods: Akmci and Goktogan (2019) [13] utilized
semantic segmentation on UAV images for mapping and detection of PPM nests in
pine plantations. The method enabled the generation of spatiotemporal maps, thus
making it easier to carry out strategic planning in the management of PPM

infestation.

2.8 Conclusion

This chapter provided a general description of deep learning techniques employed in
detecting pine processionary moth (PPM) nests, i.e., the CNN-based architectures such as
YOLO, Faster R-CNN, and SSD. YOLOv11 was accorded special attention since it
possesses a newer architecture and was observed to be very proficient in real-time object
detection tasks. The datasets employed in this work were also described, commenting on

their range and relevance to the task.
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By going through previous work, it was evident that while deep learning-based models
have achieved promising results, there are issues primarily environmental variance, small
and distant targets, and insufficient availability of large, diverse datasets. Research
limitations were identified as far as model generalization, real-time performance, and

insufficient testing of recent model versions like YOLOv11 are concerned.
These observations lay the groundwork for the experimental method outlined in the

following chapter, where model training, data preprocessing, and measurement of

performance are elaborated on.
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Chapter 3

System Design and Model Development

3.1 Introduction

This chapter presents the applied design and development process of the intelligent system
for Thaumetopoea pityocampa nest detection. The focus is placed on the selection and
configuration of the most suitable deep learning model for the application, data preparation,
solving of specific detection issues, and integration of supporting technologies such as GPS-
based localization. The deployment leverages advanced computer vision and data
preprocessing techniques to enhance accuracy of detection, especially under adverse
conditions such as distant or small-sized nests. The decision made at this point was governed
by the goal of having a robust, scalable, and feasible solution for real-world forest health

monitoring use cases.

3.2 System Objectives

The main objective of the system is the automatic detection and localization of
Thaumetopoea pityocampa nests in forest environments using deep learning. To achieve this,

the system is designed with the following specific goals:

e High Detection Accuracy: Be able to identify nests of different shapes and sizes,

partially hidden or far away from the camera.

e Precise Localization: Use GPS metadata from the captured image to correlate

every detected nest with its geographical location

e Enhanced Detection Performance: Improve accuracy through preprocessing by

using Multi-Scale Patch Analysis (MPA), in case of small or faraway nests.
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3.3 YOLOvV11 Model Selection

YOLOvV11 was selected for detecting Thaumetopoea pityocampa nests due to its advanced
architecture, real-time performance, and adaptability to complex detection tasks. Its design

offers several key advantages:

e Best precision/efficiency compromise: YOLOvV11 offers higher precision than
YOLOv8m, while reducing the number of parameters by 22%, making it more

compact and faster. [54]

e Optimized real-time performance: with an inference time of just 2.4 ms on a
TensorRT FP16 GPU, YOLOv11n is among the fastest models in the series, well
ahead of YOLOWVS, v9 and v10.[49]

e Enriched architecture: YOLOvV11 incorporates new blocks such as C3k2, SPPF
and C2PSA, which enhance multi-layer feature extraction essential for the
detection of small and complex objects.

e Mature ecosystem for conservation: YOLOv11 benefits from a powerful
Ultralytics ecosystem, including experimental monitoring tools (e.g. DVCLive),
tutorials, multi-platform deployment and support for environmental tasks such as

species monitoring or pollution detection.[55]

3.4 Components of YOLOv11

As part of our application dedicated to the detection of Thaumetopoea pityocampa nests,
YOLOV11 offers a series of powerful, modular functionalities that perfectly meet the
requirements of precision, flexibility and integration. Available tools include:

e Oriented bounding boxes (-obb), useful for detecting nests that are tilted or
partially visible at non-standard angles.

e Pose estimation (-pose): in future versions, this feature could be used to isolate
the precise contours of nests instead of simple boxes.

e Instance segmentation (-seg): this functionality, which will be integrated in
future versions, will enable the precise contours of nests to be isolated instead of
simple boxes.

e Classical object detection is at the heart of our current approach to locating nests

with precision.
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e Classification (-cls): can be used to distinguish nest types or development stages.

YOLOV11 offers these tools in several sizes (nano, small, medium, large, x-large),
allowing adaptation to the resources available. Thanks to its easy integration with the
Ultralytics library and the Ultralytics HUB platform, the model can be trained, exported
and then efficiently deployed in our pipeline [56].

Model Size mAPval | Speed CPU Speed T4 Params | FLOPs
(pixels) | (50-95) ONNX (ms) | TensorRT10 (ms) M) (B)
YOLOvl1n |640 39.5 56.1+0.8 1.5+0.0 2.6 6.5
YOLOvlls [640 47.0 90.0+1.2 2.5+0.0 9.4 21.5
YOLOv11m 640 51.5 183.2+£2.0 4.7+0.1 20.1 68.0
YOLOvI111 640 53.4 238.6+1.4 6.2 +0.1 25.3 86.9
YOLOvl11x 640 54.7 462.8 £6.7 11.3+£0.2 56.9 194.9

Table 3. 1:YOLOV11 performance on COCO Object Detection

It provides better feature extraction with more accurate detail capture, higher accuracy

with fewer parameters, and faster processing rates (better real-time performance).

3.5 Overall System Architecture

The model follows a modular pipeline designed to detect and localize Thaumetopoea

pityocampa nests in field images. The main components are:
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Input Images Preprocessing Object Detection

with GPS
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Roboflow dataset, Multi-Scale Patch Extract
manual photographs Analysis, resizing, coordinates
normalization, from images,
etc. mapping
Output Results
L 4
Detected nest Extract coordinates
from images,
mapping

Figure 3. 1:System pipeline for the detection and localization of PPM nests (Source: Authors)

1. Input Images: There is two main sources a public dataset from Roboflow and

photos taken by hand which have GPS metadata.

2. Preprocessing: Before detecting nests, the images are preprocessed with techniques
like Multi-Scale Patch Analysis. This helps make small or distant nests easier to see.

it also includes other techniques likes resizing .

3. Nest Detection: Once the images are ready, they are passed through a YOLOv11-

based detection model, which detects the nests and draws boxes around them.

4. Visualization with GPS: If GPS metadata is there, the system grabs the location

data from the photos and maps where each nest is.

3.6 Dataset Description

The dataset used for this project consists of two primary sources, each selected to

support different stages of the system development process:

1. Training Dataset Roboflow:

The model was trained using a dataset sourced and annotated through the Roboflow
platform[61].This dataset includes a wide range of images of Thaumetopoea pityocampa
nests captured under varying environmental conditions. Roboflow's preprocessing,
augmentation, and export tools (e.g., for YOLO format) facilitated efficient preparation of

the training data.
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2. Testing Dataset Field Images (Personal Collection):

Field testing was conducted using images collected manually across three visits to
forested areas in the region of Guelma, specifically in Ain Ksoub, Roknia, and
Bouhmedene.

e During the first two visits, high-resolution images and videos were captured using a

professional camera to ensure image clarity for detection evaluation.

Figure 3. 2:Field Images Collection: Nest Samples and On-Site Work

e In the third visit, smartphones were used to collect images containing GPS
metadata, enabling geolocation of detections and validating the model's application

in spatial mapping.
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3. YOLOv11 Annotation Format :

YOLOV11 uses a straightforward annotation format that is an extension of what was

used with YOLOV11. For each image, there's a corresponding .txt file where each line

represents one object in the image. [58]

<class>» <center_x» <center_y> <width:> <height>

8@ B8.45859375 B.4921875 8.2109375 9.428125

Figure 3. 3:YOLOvV11 Annotation Format

Each line contains:

The class ID (a number starting from 0)
center_x: the horizontal center of the box
center_y: the vertical center

width: how wide the box is

height: how tall the box is

3.7 Dataset Preparation

The precision and preprocessing of the dataset play a critical role for high detection

accuracy. Several preprocessing and enhancement techniques were employed in this

project to address detection problems and improve model performance.

3.7.1 Small and Distant Nest Problems

Initial experiments with YOLOv11 on the raw data were disappointing for detecting
small or distant nests. These nests were not being detected due to their low resolution in
wide-angle forest scenes. The model achieved a mAP@0.5 of approximately 88.9% and a

precision of 90.7%,before applying MSPA, but nearly all the false negatives were in such

challenging cases.
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3.7.2 Multi-Scale Patch Analysis (MSPA)

To overcome the challenge of identifying small, distant nests, we adopted the Multi-
Scale Patch Analysis (MSPA) approach, which draws inspiration from techniques
employed in smart farming, as outlined in the article 'Smart Farming Solutions': Automated
Crop and Plantation Disease Detection' (ResearchGate, 2024) [59].

This method involves generating several image patches at different scales from each
original image and focusing on areas with a high probability of nest occurrence (e.g. tree
branches). Dividing the original high-resolution image into enlarged regions of interest
enables even very small or partially hidden nests to be captured with sufficient resolution
for reliable detection.

Patch generation
To create relevant patches from annotated images, we used a custom Python script that
follows several key steps. The main function responsible for this process is the

'generate_multi_scale_patches' function, which:

e loads images and their associated annotations in YOLO format using the
load_images_and_labels function.

e Analyzes the size of each annotated nest (bounding box) using the calculate_nest_size
function.

e Each nest is categorized as very small, small, medium, or large based on the area it
occupies relative to the image size.

e Extracts a square patch centered on each nest, whose size depends on the nest category:
» 320 x 320 pixels for medium-sized nests.

» 448 x 448 pixels for large nests.

e Extremely small nests, which occupy less than 0.5% of the image area, are ignored in
order to reduce noise and avoid introducing information that is of little use to the
model.

Re-annotation of Nests in Patches

After extracting the patches centred on the nests, it is crucial to adjust the annotations (or

'‘bounding boxes’) of the visible objects within each patch. This is because the original

coordinates are no longer valid for these partially extracted images. The

adjust_bounding_boxes function is used for this purpose.
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Therefore, all nest annotations visible within a patch must be recalculated relative to the
new patch size using a coordinate transformation, to ensure that the bounding boxes retain
their accuracy when the model is trained.

The formula used to convert the absolute coordinates of objects in the original image to the

normalized coordinates of the patch is as follows:

o ¥ new = (x original - x1) / patch_width
y_new = (y original - yl) / patch_height
w new = w original / patch_width
h_new = h_original / patch_height

Figure 3. 4:YOLO Coordinate Transformation for Image Patch

e (x1,yl, x2,y2) are the top-left and bottom-right coordinates of the patch in the original
image.
e The width and height of the patch:
» patch_w=x2-x1
» patch_ h=y2-yl
e The original object (nest) has absolute center (x_original, y original) and size

(w_original, h_original) in pixels.

meduim patches small pacthes

Original

Figure 3. 5:Example of Multi-Scale Patch Analysis (from personal dataset created)

By breaking the large images into overlapping and multi-scale windows, MSPA ensures
that even the smallest nests are presented to the model at sufficient resolution. This

significantly improves detection accuracy, especially for low-resolution targets or partially
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occulted nests in tall vegetation.

After applying MSPA, the model's mAP@0.5 improved from approximately 88.9% to
98.4%, and precision increased from 90.7% to 94.9%, demonstrating the method's potential
to mitigate false negative.

small - nid 1

Figure 3. 6:lllustration of Multi-Scale Patch Analysis (MSPA): Original Image and
Corresponding Zoomed Patches Author, from personal dataset created

3.7.3 Dataset Splitting and Augmentation

The initial dataset was sourced from Roboflow, where it was automatically divided into
training, validation, and testing sets in accordance with standard deep learning practices. To
enhance the model’s robustness to real-world conditions, data augmentation was performed

directly on Roboflow using its built-in parameters.

These adjustments (Figure 3.7) helped in simulating different real-life situations such as

changing lightings, positions, and sizes of objects.
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Preprocessing Auto-Orient: Applied
Resize: Stretch to 6406x648

Augmentations Outputs per training example: 3
Crop: 8% Minimum Zoom, 28% Maximum Zoom
Rotation: Betwesen -15° and +15°
Grayscale: Apply to 15% of images
Hue: Between -15° and +15°

Brightness: Between -15% and +15%

Figure 3. 7:Data Augmentation Parameters Used in Roboflow [60]

Rebalancing after MSPA

However, after applying the Multi-Scale Patch Analysis (MSPA) method, implemented
via the generate_multi_scale_patches function, a new version of the dataset was generated,
consisting of multi-scale patches extracted around the nests. This process led to an
imbalance: images containing multiple nests (or large nests) produced a large number of
patches, while others generated few. To correct this imbalance, a set of specific pre-

processing steps was applied:

e normalize_patch_distribution, which was used to limit the number of patches per
image by selecting only useful patches, in order to avoid over-representation of dense
scenes.

e The filter_useless_patches function was used to remove blurry, empty, or poorly
framed patches, i.e., those that do not contain any visible nests or cannot be used for
learning.

e augment_underrepresented_patches: to compensate for the under-representation of
certain images after the MSPA step, this function applied targeted local augmentations
(rotation, flip, brightness modification, etc.) only to patches from underrepresented
images. This restored a certain balance to the dataset in terms of image volume and

visual diversity.
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Final division of the dataset

After the multi-scale patch generation (MSPA), filtering, and targeted augmentation
steps, the final dataset was divided into two subsets: 80% for training and 20% for
validation. This division was performed randomly using a Python script. Unlike these sets,
the test set was not extracted from the main dataset, as the model testing phase was carried

out on a set of real images captured in the field (personal collection).

Original Dataset Generate Patches Reannotate Patches
Data Augmentation Data Split Dataset Balancing

Figure 3. 8:MSPA dataset preparation pipeline

3.8 Model Configuration and Training

3.8.1 Training Strategy

After the preparation of the dataset by merging normal images and multi-scale patches
the training is done by employing the YOLOv11 model optimized for small and distant
nest detection. The training process employed top techniques to achieve maximum

performance:

= Multi-Resolution Training
To improve generalization across images of varied quality and nest sizes, multi-
resolution training was used. This technique randomly changes the resolution of
input images during training, allowing the model to learn more effectively for nests

of different sizes and visibility.
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= Mosaic Augmentation During Training
Although core data augmentation was done initially via Roboflow, mosaic
augmentation was also utilized dynamically during training time. Mosaicing four
training images together, this technique augments context diversity and allows the

model to generalize to varied environments, such as cluttered forest settings.

3.8.2 Hyperparameters and Loss Function

e Hyperparameters

The selection of hyperparameters played a crucial role in the adjustment of performance of
the YOLOvV11 model for nest detection of Thaumetopoea pityocampa. Rather than fixed
values, the values of significant hyperparameters such as the number of epochs, batch size,
and learning rate were selected experimentally. Multiple training experiments using
different settings were conducted to allow us to view their impact on performance
parameters and convergence behavior. The final setup was selected based on the best

accuracy, training time, and regulation of overfitting.

The final configuration that yielded the optimal performance is the following:

Parameter Value Justification
Epochs 50 Moderate value providing enough learning cycles for the
enlarged dataset.
Image Size  |640 x 640 Balanced reso.luj[ion ensuring small nest detection with
reasonable training speed.
Batch Size |16 Fits within GPU memory while maintaining stable gradient
updates.
Devi CUDA Accelerated training performance and ability to handle larger
eviee (GPU) data efficiently.
Moc.lel YOLOVI1n Lightwc?ght model enabling faster experimentation with
Variant competitive accuracy.

Table 3. 2:Final YOLOv11 Training Configuration and Hyperparameters
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e Loss Functions
During training, the model converges to a composite loss function internally, as is
standard in YOLOvV11 but critical to mention:

» CloU (Complete Intersection over Union) Loss

Used for bounding box regression, this loss enhances accuracy by considering not only
the overlap area but also the center distance and aspect ratio between predicted and ground
truth boxes.

o train/box_loss: Decreased from approximately 2.05 to 0.55

o Vval/box_loss: Decreased from around 1.80 to 0.78

» Binary Cross Entropy (BCE) Loss
This loss is applied both to the objectness score and the classification of detected objects.
It performs effectively in binary and multi-label classification tasks, which are typical in
object detection.
o train/cls_loss: Dropped from over 2.0 to around 0.35

o val/cls_loss: Dropped from 1.3 to approximately 0.4

» Distribution Focal Loss (DFL)

Introduced in recent versions of YOLO, DFL improves the accuracy of predicted bounding
box coordinates by learning a distribution over discrete distance bins. It improves the

accuracy of localisation by refining how the model interprets object boundaries.

e Train/DFL loss: Decreased from 1.40 to 0.80.
o Val/DFL_Loss: Decreased from 1.35 to 0.95.
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Figure 3. 9:Loss Function Curves (Box, Cls, DFL) — Training and Validation

The steady and consistent decrease in the three loss functions (CloU, BCE, and DFL),
both for training and validation, indicates that the model is learning effectively. The
proximity of the values between the training and validation curves rules out any overfitting,
and the low final values indicate good generalization as well as accurate localization of

Thaumetopoea pityocampa nests. These results confirm the stability and robustness of the
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training process with YOLOV11 for this task.

3.8.3 Challenges Faced During Training

e Limited Dataset Size: Before applying the Multi-Scale Patch Analysis (MSPA)
strategy, the available dataset was relatively small. The small volume of data limited

the model's exposure to diverse nest conditions, with the potential for overfitting and

reduced generalization performance on new samples.

e Camouflaged Nests in Natural Backgrounds: Thaumetopoea pityocampa nests
merge with the environment due to the same textures and colors. Camouflage made the
model difficult to learn discriminative features. The issue was addressed by increasing

the resolution and diversity of training examples and adding augmentations to

familiarize the model with varying lighting, textures, and angles.
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Detection of Small and Far away Nests: One of the main issues was accurately
detecting nests that were either too far away or too small from the camera. These nests
lacked sufficient visual salience in full-resolution images. This was resolved by
utilizing the MSPA approach to generate high-resolution patches centered around the
potential nest areas, significantly improving detection rates.

Before MSPA After MSPA

Figure 3. 10:Impact of MSPA on Detection Performance

The left image shows the detection result without applying Multi-Scale Patch
Analysis (MSPA), the model failed to detect the distant and small nest. The right
image is the detection result after MSPA was applied, which the nest is detected
successfully. MSPA enhances detection by generating focused high-resolution

patches, especially for small or camouflaged objects.

Overfitting on Early Training: Due to the small size of the dataset in the initial
stages of training, the model was plagued by overfitting good performance on training
data but poor on validation or test data. This was countered with increasing the size of
the dataset with MSPA, applying data augmentation (e.g., Mosaic), and controlling
through dropout and early stopping.

Lack of Geolocation Data: None of the original photos included GPS metadata,
limiting the geolocation of recognized nests. Fieldwork was consequently conducted to
capture new photos using GPS enabled devices manually. While these images were not

used for training, they enriched the dataset for evaluation purposes and enabled
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geospatial analysis and visualization in the final phases of the project.

3.9 Geolocation and Mapping Integration

e GPS Metadata Extraction: The images captured in the field on mobile phones and
cameras also come with inherent GPS coordinates. Such metadata were downloaded

using EXIF parsing tools and stored along with detection outputs.

Route Sans Nom, Bouhamdane, Algeria

Figure 3. 11:GPS Metadata Extraction Example (bouhamdane Guelma)

Screenshot of an image taken with a GPS-enabled smartphone, showing

geolocation data in Google Photos. This information was crucial for associating

detected nests with their real-world coordinates.

Real-Time Mapping Potential: Inclusion of GPS coordinates allows geolocation of

nests discovered by the system. This will allow for future potential establishment of

real-time monitoring platforms where users can upload images and see the results

mapped on an interactive map instantly facilitating early warning and intervention.
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3.10 Conclusion

This chapter explained the design, setup, and training process for the YOLOv11 based
model to detect Thaumetopoea pityocampa nests. The training pipeline was designed with
consideration for the specific difficulties of this task, e.g., the initially small dataset, the

camouflage or distant appearance of nests, and lack of GPS metadata.

To enrich the dataset, the Multi-Scale Patch Analysis (MSPA) method was utilized,
producing zoomed patches of images around potential nesting areas. This significantly
increased the quantity and diversity of the training data. Hyperparameters were
experimentally tuned across multiple training iterations, with final values chosen . Along
with this, fieldwork was conducted to collect GPS tagged photos for geospatial analysis
and to provide a basis for future integration of 0T and real-time infestation mapping.

Together, this chapter set the technical foundations of the system, setting stage for

performance testing and results analysis in the next chapter.
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Chapter 4

Implementation and Results

4.1 Introduction

This chapter presents the practical implementation and results of the intelligent detection
system developed for monitoring Thaumetopoea pityocampa (pine processionary caterpillar)
nests using deep learning techniques. The goal of this system is to provide an effective and
accessible tool for the detection and management of infestations

The implementation was carried out using modern frameworks and tools. In addition to the
integration of the server-side model, a user-friendly platform has been developed in the form
of a website and mobile application. This platform enables users be they experts, forestry
officers or ordinary citizens to upload images or videos, view detection results, and even

display the geographical location of detected nests when GPS metadata is available.

The chapter begins with the development environment, detailing the hardware and software
tools used. Next, the system’'s complete workflow is presented. Particular attention is paid to
the impact of using the Multi-Scale Patch Analysis (MSPA) method, which has significantly

improved model performance, especially for detecting small or distant nests.

The system was evaluated using several metrics before and after the application of MSPA.
Finally, the results are discussed in detail. Tests were also carried out on real images captured
under natural conditions. Visual examples of detection results to provide a comprehensive

overview of the effectiveness and suitability of the proposed system.
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4.2 Development Environment

4.2.1 Hardware Environment

At the start of the project, model training was carried out on the Kaggle platform, which
offered sufficient resources to work with a small dataset (prior to the application of
MSPA). However, after the significant increase in data volume following the application
of the MSPA method, a more powerful hardware environment was required. Thus the
training was transferred to a high-performance machine which is located in the LabSTIC
laboratory at the University 8 May 1945 of Guelma. This machine is equipped with a
high-end GPU (NVIDIA), a multi-core processor and a large RAM capacity, enabling

faster and more efficient training.

4.2.2 Software Environment

e Python

Python is a high-level, interpreted, object-oriented programming language with dynamic
semantics. Its high-level data structures, combined with dynamic typing and dynamic
linking, make it very attractive for rapid application development, as well as for use as a
scripting or glue language to link existing components together. Python's simple, easy-to-
learn syntax emphasizes readability and therefore reduces the cost of program maintenance.
Python supports modules and packages, promoting program modularity and code reuse.
The Python interpreter and the extensive standard library are available free of charge in

source or binary form for all major platforms, and can be freely distributed.

Programmers often fall in love with Python because of the increased productivity it
offers. As there is no compile step, the edit-test-debug cycle is incredibly fast. Debugging
Python programs is easy: a bug or bad input will never cause a segmentation error.
Instead, when the interpreter discovers an error, it throws an exception. When the program
doesn't catch the exception, the interpreter prints a stack trace. A source-level debugger
allows you to inspect local and global variables, evaluate arbitrary expressions, set
breakpoints, browse code line by line, etc. The debugger is written in Python. The
debugger is written in Python itself, which testifies to Python's power of introspection. On
the other hand, the quickest way to debug a program is often to add a few print instructions
to the source code: the fast edit-test-debug cycle makes this simple approach very
effective.[61]
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oython’

Figure 4. 1:Python logo [62]

In this project, Python served as the primary language for all implementation aspects,
including data preprocessing, model training, integration with YOLOVS, and interfacing
with other software tools like Roboflow.

e Ultralytics

Ultralytics is a technology company that specialises in advanced computer vision
solutions, particularly real-time object detection using artificial intelligence. Founded by
Glenn Jocher, the company is best known for developing the popular YOLO (You Only
Look Once) series of object detection models, including YOLOvV5 and YOLOVS. These
models have become the industry standard and are widely used in academic research and

practical applications involving real-time detection tasks.

Ultralytics has significantly improved the accessibility and reproducibility of deep
learning—based object detection by providing an open-source, PyTorch-based framework
alongside comprehensive documentation and tools. YOLOv11 introduces advanced
capabilities, including instance segmentation, pose estimation and improved data handling,
as well as enhanced training performance. This makes it suitable for a broad range of

computer vision problems.[63]
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P ultralytics

YOLO

Figure 4. 2:Ultralytics logo [64]

This thesis used Ultralytics YOLOv11l as the main detection engine to identify
Thaumetopoea pityocampa nests. This is due to its high accuracy, its compatibility with
Roboflow datasets and its efficiency in processing high-resolution pre-processed images

generated using the MSPA (Multi-Scale Patch Analysis) technique.

e Roboflow

Roboflow is an easy-to-use cloud-based platform aimed at streamlining dataset creation
and preparation for computer vision projects. It facilitates efficient image structuring,
annotation and pre-processing as an individual or part of a team. Through integrated data
augmentation features (image rotation, flipping and color modification), Roboflow helps
to increase the diversity of datasets, which is central to training robust deep learning
models. It also exports data in other formats compatible with top frameworks such as
YOLO, TensorFlow and COCO.[65]

@ roboflow

Figure 4. 3:Roboflow logo[66]

in this project Roboflow is used in preparing the dataset used to train the YOLOvV11 object
detection model for this project. It orchestrated the whole process of data preparation from
human annotation through augmentation to get images ready for efficient training and

testing within the YOLOvV11 pipeline.
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e Kaggle

Kaggle is an interactive web platform that offers machine learning competitions in data
science. The platform provides free datasets, notebooks and tutorials that data scientists

need to carry out their machine learning projects. [67]

kaggle

Figure 4. 4:kaggle logo [68]

For this project, Kaggle was used during the early stages of model training, particularly
before applying the Multi-Scale Patch Analysis (MSPA) method.

4.3 System Workflow and Platform

e Overall Pipeline

Data capture

Upload to
platform

YOLOv11
model

Geolocalisation Nest detected

Figure 4. 5:Workflow of the PPM nests Detection System

1. Data capture: Images or videos are captured in the field using drones, smartphones or
digital cameras. This media may include GPS metadata, which allows each capture to be
located.
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2. Uploading to the platform: The captured files are then uploaded to the GreenGuard

platform. This step prepares the data for automatic processing.

3. Processing by the YOLOv11 model: The uploaded data is analysed by a YOLOv11
artificial intelligence model that has been specifically trained to detect pine processionary
caterpillar nests. The model identifies the nests and generates bounding boxes
accompanied by confidence scores.

4. Geolocation: If the images contain embedded GPS data, the system automatically

extracts it. This allows each detection to be associated with actual geographic coordinates.

5. Nest detection: The system displays the detection results, including:
» images annotated with the detected nests.

> confidence scores.

e User Platform

The system GreenGuard provides a user-friendly interface that can be accessed via a
web platform or a mobile application. Users upload images or videos captured by drones,
smartphones or cameras. Next, the system automatically detects nests and extracts GPS
coordinates if available to display the results . The interface includes visual overlays of

detected nests and interactive map views for geolocation.

Below are screenshots showing the home page of the platform and the step-by-step

process of how users interact with the system :
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Processionary

Detection

1. Open the

Platform The Pine Processionary

Understanding its impact and why early detection

is crucial,

Figure 4. 6:Step 1- Access the Interface

This screen shows the initial interface of the GreenGuard platform. The user accesses the
home page where they are welcomed with options to explore features or test the nest
detection model.

Processionary

Try the Detection Model Deloution

2.Click on
<Try the
model>

Upload an Image

Upload a Video

Figure 4. 7:Step 2 - Select the Option " Try the Model"

In this step, the user clicks on the “Try the Model” button to begin testing the YOLOv1 1-based

detection system. This option allows them to upload an image or video for analysis.
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3.Upload
an Image
or Video

pload a Video

Figure 4. 8:Step 3 - Upload an Image or Video

The user uploads a media file (image or video) captured via drone, smartphone, or camera.
The uploaded file may contain GPS metadata, which will be extracted automatically during

processing.

Nest detected+ Model
confidence and GPS
coordinates

Figure 4. 9:Step 4 — View Detection Results (Image + GPS Coordinates)

Once the media is uploaded and processed, the system displays the results directly on the
image. The detected nests are highlighted using bounding boxes, and the associated GPS

coordinates (if available) are shown.
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region, along with their GPS
“ coordinates.

Figure 4. 10:Step 5 - View Interactive Map of All Detections

In this step, the user accesses a dynamic map displaying all the processed images and their
corresponding detection coordinates. Each marker on the map represents a detection, and clicking

on a marker displays the associated image and details.

4.4 Model Training and Validation

4.4.1 Evaluation Metrics

For YOLO models evaluation metrics, the mAP50 measures are key indicators of
accuracy, showing how well the model is able to detect objects. Precision and recall
measures provide a more accurate assessment of the model's effectiveness, balancing out
false positives and missed detections. Consistently high values for these measures indicate

strong model performance in object detection tasks, and we explain them below.

» True Positive (TP):
A correct detection. The model predicts an object, and it actually exists in that location.
> False Positive (FP):
An incorrect detection. The model predicts an object where there is none (a wrong
detection).
> False Negative (FN):

A missed detection. An object exists in the image, but the model fails to detect it.

Precision : Measures how often a deep learning model like YOLO correctly predicts
positive instances. It is calculated by dividing the number of true positives (correct

detections) by the total number of predicted positives, which includes both true and false

69



positives. In object detection, this is often referred to as Precision (B), where “B” stands
for bounding boxes. A high precision indicates that the model effectively identifies

relevant objects while minimizing false detections.[73]

True Positives

Precision =
True Positives + False Positives

Figure 4. 11:1llustration of Precision in Object Detection [70]

Recall : Measures the ability of a deep learning model like YOLO to detect all relevant
objects in an image [71]. It reflects the completeness with which the model identifies
instances of the target class. Calculated as the ratio of true positives to the sum of true
positives and false negatives, it aims to minimize missed detections. In object detection, recall
(B) stands for bounding boxes. High recall indicates that the model is effective in capturing

most objects of interest, even if it also makes some incorrect predictions (false positives).[72]

True Positives

Recall =
True Positives + False Negatives

Figure 4. 12:1llustration of recall in Object Detection [73]

The mAP50 : (Mean Average Precision at a 0.5 Intersection over Union threshold) is a key
measure for evaluating the performance of an object detector model,”B” stands for bounding
boxes. It describes how the model succeeds in detecting and locating objects correctly to the

extent that the overlap between the predicted box and the actual box is at least 50%
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complete.[74]
In the context of YOLO, the mAPS50 is often referred to as the model's “accuracy”, as it

broadly reflects its ability to accurately predict the presence and position of target objects.

4.4.2 YOLOvV11 Architecture and Baseline Comparison

Prior to applying the Multi-Scale Patch Analysis (MSPA), we evaluated three variants of
the YOLOV11 architecture: YOLOv11ln, YOLOv11s and YOLOv11lm. The aim was to
identify the most promising baseline in terms of accuracy, generalisation and detection

performance.

Despite being the lightest model, YOLOv11n outperformed YOLOv11s and YOLOv11lm in
all major areas, including precision, recall, and mAP@50. It also demonstrated better
generalisation and handling of small targets. Although larger in architecture and
computational cost, YOLOv11s and YOLOv11m failed to achieve better results, particularly

struggling to detect small or distant nests.

Metric |[YOLOv11n|[YOLOv11s|YOLOvIIm
Precision 0.907 0.902 0.907
Recall 0.801 0.799 0.798
mAP@S0 0.889 0.864 0.868
mAP@50-95| 0.430 0.410 0.410
Fitness Score| 0.471 0.455 0.455

Table 4. 1:Comparison of YOLOv11 Architectures (n, s, m) Prior to MSPA

Based on these results, we selected YOLOv11n as the optimal foundation for further

enhancement using MSPA.
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4.4.3 Impact of Multi-Scale Patch Analysis (MSPA)

The Multi-Scale Patch Analysis (MSPA) technique was applied as a pre-processing step to
improve the model's ability to detect small or distant objects and for this case to detect pine
processionary caterpillar nests in high-resolution forest images. This method consists in
splitting images into overlapping patches at different scales before training, ensuring that even

small or distant nests become more prominent in the model’s receptive field.

Using MSPA enriched the dataset with localized image segments, enabling the model to
focus on finer details that are often overlooked in a global analysis. This approach
significantly improved detection accuracy, particularly in cases where nests were small, far
away, or difficult to distinguish from the background. A comparison of performance before
and after the application of MSPA revealed a significant improvement on several metrics:

» Precision increased , indicating fewer false positives.
» Recall improved, indicating better detection of true nests.

» MAPS50 increased, which is often considered an indicator of accuracy in YOLO,

indicating better localization and classification.

Metric Before MSPA| After MSPA|Improvement
Images 143 10,946 +10,803
Instances 208 39,915 +39,707
Precision 0.907 0.949 +0.042
Recall 0.801 0.948 +0.147
mAP50 0.889 0.984 +0.095
mAP50-95 0.430 0.824 +0.394

Table 4. 2:Comparison of YOLOv11 Performance Before and After Applying MSPA

4.4.4 Performance Visualization
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e Confusion Matrix

Confusion Matrix
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Figure 4. 13:Confusion Matrix Analysis

The confusion matrix shows how the model's predictions relate to the actual annotations. It
shows the following:

> True positives (TP): 38,487 instances of nests that were correctly detected.

> False positives (FP): 2,914 instances where the model predicted a nest, but it was actually

background.

> False negatives (FN): 1,428 real nests that were not detected by the model (predicted as
background).

The total number of errors (FN + FP = 4,342) is low compared to the total number of real
objects (39,915), indicating good overall performance.

The model correctly predicted 38,487 out of 39,915 real instances, showing high precision
and recall.
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e Performance Curves
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Figure 4. 14:Performance Metrics Across Epochs

» Precision (B): The precision curve starts at around 0.78, increases sharply during the
first 15-20 epochs and then stabilizes at approximately 0.95. This indicates that, over
time, the model reduces false positives, learning to make more accurate and confident
detections.

» Recall (B): Recall starts at around 0.65 and improves consistently throughout the
training process. It then plateaus just above 0.94, reflecting the model’s growing
capacity to identify the majority of actual nest instances with fewer missed detections
as training progresses.

» MAP50(B): The mAP@50 curve rises from around 0.72 to approximately 0.98. This
suggests that the model achieves very high detection accuracy when considering
moderately overlapping predictions.

> MAP50-95(B)

The mAP@50-95 curve starts at 0.40 and gradually increases to around 0.82. This
indicates strong performance even under stricter loU thresholds, confirming the

model’s generalization capability.
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All measures show significant improvement over the first 20-30 epochs and then reach a
stable point. This suggests that learning and convergence are effective and that there are no
visible signs of overfitting. Although training was extended to 143 epochs, the performance
measures stabilized at the 50 epochs, suggesting that this number of epochs is sufficient for
optimal learning. Earlier experiments involving 100 epochs revealed that the model began
to plateau without notable gains, which supports the idea that 50 epochs strike a balance
between learning time and performance.

e Analysis of labels
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Figure 4. 15:Label Analysis: Instance Count, Position, and Box Dimensions

This figure groups together several statistical visualizations of the annotations in the dataset
used after MSPA:
» Histogram of instances by class (top left): we can see that all annotated instances

belong to the “nest” class, which is consistent with our goal of targeted detection.

» Bounding box distribution (top right): the blue frames represent the relative positions
of the annotated boxes in the images. A concentration in the center suggests that nests
appear frequently in this region, which can be exploited by the model to improve its

predictions.
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» Spatial distribution (bottom left): the density graph shows the location of the centers of

the annotated boxes in the images. A central concentration is also visible.

» Width/height distribution (bottom right): this density map shows that the majority of
boxes have low widths and heights, confirming that nests are often small and require a
method like MSPA to detect them effectively.

4.5 Results and Comparison
4.5.1 Testing with Personal Images

In order to thoroughly evaluate the robustness and practical applicability of the
YOLOv11 + MSPA model, tests were conducted on two categories of image.
m  Field images taken with a professional camera

m  Smartphone images containing GPS metadata.

1. Detection on Personal Camera Images
These images were taken manually in the field using a professional camera, introducing

real-world variations such as lighting changes and natural obstacles .

Image Description

This image demonstrates the
model's ability to detect multiple
nests of different sizes,
validating the effectiveness of

the MSPA-enhanced YOLOv11.

GPS Coordinates not available

Confidence Levels: 77 .89%, 70.83%, 69.71%

Figure 4. 16:Detection of Multiple Nests with Varying Sizes

Shows the model’s robustness
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Description

in detecting very small and
remote nests that would
typically be missed by

standard detection systems.

GPS Coordinates not available

Confidence Levels: 72 65%

Figure 4. 17:Long-Range Detection of Isolated Tiny Nest

image, captured with a
camera in natural light, shows
a clearly visible nest

successfully detected by the

model.

GPS Coordinates not available

Confidence Levels: 80.09%

Figure 4. 18:Clear Detection of Visible Nest
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2. Detection on Smartphone Images with GPS Metadata

These images were captured using a smartphone equipped with GPS. The objective was to
validate both the nest detection accuracy and the extraction of geolocation data for mapping

purposes.

? Image Location

@ Latitude: 36.49446
@ Longitude: 7.13500
f, Nests detected: 2

Figure 4. 19:Example of a test image with embedded GPS coordinates — Test 1

Detection of a clearly visible nests. Coordinates: 36.49446° N, 7.13500° E. The detection
was accurate and the metadata was correctly parsed for visualization.

{ Image Location

@ Latitude: 36.49462
@ Longitude: 7.13471
f, Nests detected: 1

Figure 4. 20:Example of a test image with embedded GPS coordinates — Test 2
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Detection of a small, distant nest. Coordinates: 36.49462° N, 7.13471° E. The result
confirms the model's robustness and GPS metadata integration.

4.5.2 Comparison with Related Work

Ref. | Year Method Image Type Model Results
RGB UAV . YOLOVS5: mAP = 0.826
[11] 2023 YOLOVS, Faster (forests in Object (per im\a]l e), 0.696 (per
R-CNN . Detection P ge), & P
Catalonia) nest)

CNN with RGB |Multimodal UAV |Custom Deep

14 202 Precision: 979
[14] 023 + thermal fusion [imagery CNN recision: 97%
Precision: 95%, Recall:
0 YOLOvI1 A%,
ur vll +
2025 RGB UAV YOLOv11
Model MSPA v mAP50: 98%,

mAP50-95: 82%

Table 4. 3:Comparison of Object Detection Models for PPM Nest Detection

In the field of object detection, three major deep learning models are commonly used:
YOLO (You Only Look Once), Faster R-CNN, and SSD (Single Shot MultiBox
Detector). YOLO stands out among these for its ability to perform real-time detection
while maintaining a good balance between speed and accuracy. For our study, we opted
for a model from the YOLO family rather than Faster R-CNN, based on experimental

results and conclusions drawn from the literature.

In particular, article [11] demonstrated that YOLOV5 outperformed Faster R-CNN in
detecting pine processionary nests, achieving an mAP of 0.826 per image compared to
Faster R-CNN's 0.696. This observation led us to select YOLO models.

Our improved model, based on YOLOv11 combined with MSPA (Multi-Scale Patch
Analysis), achieved excellent results using only RGB images from UAVS. It achieved a
precision of 95%, a recall of 94% and an mAP50 of 98%, demonstrating good
generalisability, even for small or distant nests. For comparison, article[14] used a more

advanced model that combined thermal and RGB images, achieving a level of accuracy of
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97%. However, this difference is negligible, particularly since our model did not utilise
thermal data. Had we had access to multimodal images (RGB and thermal), our approach

could potentially have outperformed current models in terms of accuracy and robustness.

45.3 YOLOvV11vs YOLOvV8-YOLOvV12
e Comparison of YOLO Versions Before MSPA Application

Before applying the Multi-Scale Patch Analysis (MSPA) method, we carried out a series
of comparative tests to evaluate the performance of different versions of YOLO (from v8 to

v12) on our original dataset. The table below summarizes the results obtained:

Model |Precision (P)| Recall (R)| mAPS0| mAPS50-95 | Inference Time per Image
YOLOv8 |0.890 0.779 0.834 |0.411 2.1 ms
YOLOV9 |0.840 0.808 0.832 |0.408 16.6 ms
YOLOvV10 |0.835 0.760 0.826 |0.402 4.5 ms
YOLOV110.907 0.801 0.889 [0.430 2.3 ms
YOLOvI2 |0.858 0.822 0.850 (0.426 4.2 ms

Table 4. 4:Comparison of YOLO Versions Before Applying MSPA

» YOLOvV11 has the best accuracy (0.907) and mAP50 (0.889), while maintaining a fast
inference speed (2.3 ms).

» Although YOLOV12 has a slightly higher recall, its mAP is still lower than that of
YOLOvV11 making it less efficient overall.

» YOLOV9 has the longest inference time, which is not optimal for real-time
applications.

» Based on these findings, YOLOvV11 offers the best balance between accuracy,

performance and speed, justifying its initial choice.

e Post-MSPA: Final Model Selection for Training

Following the application of the MSPA method, our dataset has increased considerably

in size and quality, particularly with regard to the detection of small, distant nests.
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In view of this development, we decided to focus the training exclusively on YOLOv11 for

the following reasons:

» The large volume of data generated by MSPA requires a substantial amount of training
time.

» We had access to high-performance machines (at LabSTIC university of Guelma —
university resources), but efficient use of time was essential.

» YOLOvV11 had already proved superior to other YOLO versions in preliminary tests,
so there was no need to re-train all versions with MSPA.

We continued training with YOLOv11, adjusting the hyperparameters to obtain the
following final results:
Accuracy = 95%, recall = 94%, mAP50 = 98%, mAP50-95 = 82% and this only from
RGB images.
In comparison, work such as [14] using RGB + thermal fusion achieved an accuracy of
97%, demonstrating the competitiveness of our model. It is likely that with access to

thermal images, our model could have achieved even better results.

4.6 Discussion

The final results obtained using the improved YOLOv11 model combined with Multi-
Scale Patch Analysis (MSPA) method confirm the effectiveness of our detection pipeline.
The model performed excellently, achieving a mAP@50 of 0.984, a precision of 0.95, a
recall of 0.948 and an mMAP@50-95 of 0.824. These scores demonstrate the model's high
reliability in detecting Thaumetopoea pityocampa nests, including the smallest or partially

hidden ones, which are often overlooked by conventional models.

Compared to previous versions of YOLO (v8 to v12), YOLOv11 demonstrated the most
consistent and stable performance across all evaluation criteria. Although YOLOv12
achieves a similar mAP@50, it exhibits poorer generalisation and requires more training
time. YOLOvV8 and v9, on the other hand, struggled to detect small or distant nests, even

after data augmentation.
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Tests carried out on personal images taken in the field validated the model's robustness
in real-world conditions. Nests were successfully detected despite environmental

variations, such as shadows, changes in lighting, and complex backgrounds.

It is also important to note that training beyond 50 epochs did not result in any significant
improvements. In fact, initial tests with 100 epochs led to slight overfitting and inconsistent
results. Thus, 50 epochs were selected as the optimal point, ensuring a good balance

between training time, convergence, and generalization.

In summary, combining YOLOv11 with MSPA proved very effective and generalisable.
This approach provides a solid foundation for future enhancements, including real-time
integration on drones and integration with attention-based or segmentation modules to

enable even more precise detection in complex environments.

4.7 Perspectives

As a follow-up to this work, the GreenGuard prototype was presented to the Forest
Conservation Department. The system was well received by the managers and engineers in

attendance, who showed a keen interest in the proposed solution.

Figure 4. 21:Discussion Session with Forestry Engineers[75]

The meeting provided an opportunity to open a direct dialogue with stakeholders in the
field, gather relevant feedback and consider how the system could be adjusted to meet the
specific needs of the forestry sector. Among the prospects discussed were:

e Extending the approach to the detection of other environmental threats such as pests,
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diseases, and fires.
e Aswell as the integration of connected sensors (IoT) to improve the accuracy and
richness of the data collected in the field.

In the medium term, GreenGuard could evolve into a comprehensive, operational solution,
supported by local institutions and capable of being deployed on a large scale in Algerian
forests. This prototype thus provides a solid basis for further development, both
technologically (e.g real-time integration on drones) and structurally (partnerships, calls for
projects, fundraising).

4.8 Conclusion

The integration of YOLOvV11 with the Multi-Scale Patch Analysis (MSPA) method has
enabled us to design a high-performance, robust solution for the detection of
Thaumetopoea pityocampa nests. The results obtained in terms of precision, recall and
MAP testify to the maturity of the system, capable of effectively identifying even small or
partially concealed nests, generally ignored by conventional approaches. Experiments
carried out on personal images, captured in real-life conditions, have confirmed the

system's ability to generalize to complex and varied natural environments.

Beyond these encouraging performances, this approach opens up some interesting
prospects. A natural evolution of the system would be to integrate it into embedded
platforms, such as drones, for automated, real-time forest monitoring. In the longer term,
adapting the model to the detection of other types of biological threat, in both forest and
agricultural environments, could lead to a global solution for intelligent and sustainable

environmental monitoring.
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General conclusion

This thesis provided an integrative solution to forest health monitoring,paying
special attention to the identification of pine processionary moth (PPM) nests. It began by
emphasising the importance of forest ecosystems and the threats they face. Traditional
surveillance methods proved inadequate in scalability and efficiency, thus emphasizing the
need for smart, automated systems.

To overcome these limitations, a system was developed that utilises advanced visual
analysis techniques by combining the YOLOv11 detection model with the Multi-Scale
Patch Analysis (MSPA) technique. These developments significantly improved the
detection of small and distant nests at high accuracy and recall scores. The system was
deployed as a web and mobile platform offering detection and geolocation features to
support researchers, forest managers, and environmental monitoring officers.

Extensive tests and comparisons with existing models showing the solution's reliability,

speed, and suitability for practical field use.

In the near future, further work will focus on improving the system's adaptation
capabilities, including drone-based surveillance, enriching the dataset with even more
diverse examples, and rendering it offline-capable with minimal deployment.These future
enhancements will allow more efficient and sustainable strategies in forest surveillance and
ecosystem preservation.

This methodology can be extended beyond the detection of Thaumetopoea pityocampa to
include other ecological threats, such as different types of insect nests (e.g. Lymantria
dispar caterpillar tent nests) and signs of forest diseases (e.g. fungal infections, bark beetle

damage and needle discolouration).

More broadly, this research contributes to the growing use of artificial intelligence
to protect biodiversity and natural habitats. Combining data-driven approaches with real-
time monitoring tools makes it possible to develop early warning systems for forest health,

enabling faster, more sustainable responses to ecological threats.
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