People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research
University of 8 Mai 45 Guelma
Faculty of Mathematics, Computer Science and Material Science

Computer Science Department

MASTER’S THESIS:

Branch: Computer Science

Option: Informatic System

Topic:

Leveraging Large Language Models For Automated Software

Vulnerability Detection and Analysis

Presented By:

BOUCENA Amina

In Front of The jury:

Dr. BENAMIRA Adel President
Pr. BENCHERIET Chemesse Ennahar Examiner
Dr. FERRAG Mohamed Amine Supervisor

June 2025

Abstract:

The growing integration of software across various sectors has amplified the urgency
to develop effective mechanisms for safeguarding systems against sophisticated
cyberattacks. This thesis investigates the application of modern artificial intelligence
specifically transformer-based models for improving software vulnerability detection.
The research focuses on designing intelligent algorithms capable of autonomously
analyzing source code and identifying subtle security flaws. It emphasizes automated
detection and fine-grained classification of vulnerabilities. Our methodology includes
constructing high-quality labeled datasets and training advanced models such as
BERT and RoBERTa to extract threat patterns and detect weaknesses at the line
level and across multiple vulnerability categories.

Experimental results show that transformer-based models significantly outperform
traditional methods in both detection accuracy and analysis efficiency. Moreover, the
practical deployment of our model in real-world scenarios confirms its utility in
supporting software security analysts. This work thus provides a meaningful
contribution to the field of cybersecurity, offering a scalable and robust solution to the

persistent challenges in securing modern software systems.

Keywords: Large Language Models (LLMs), Software Vulnerabilities, Cybersecurity,
Deep Learning, Code Analysis, Vulnerability Detection, Secure Software

Development

sk Al daladl 5y 5) e Uadl) Calidia (e Gl aladial 8 4y jiad) s sill gaf 3 S0 Gadle
L a3 63 Sl 03 Sl cBlaad) 138 8 5) shaiall) sl Cllangd) (e Aaai¥) 02a dlaad Allad
el i) GLaS) dadail))8 (el ¢ Y saall zilal dald g @ipall elilaaY) 1S3

e cdzdall &l padll e o jail) o GHAN daaa) Slaaladl) Jilad e 5)0l8 480 Cilae))l & aranal Ao Jaal) 5S35 5
83 sal) dalle Clly Cile sana dlae) e dndl dpngia ol i) paill dall Cayiaill y SR il e S i)
Jia Ladiita zilai Gy 535 o canlio JS5 Lebiiai s BERT sSROBERTa s s 3 hall Lilal) padaiuy da e
e saainal) Z3lall of ol il el Baseie Cliyial Gada s shad) (5 siae e Gl Caniall Ll
Jaadl 138 sy LS Julaill Aoy ol CalSI 80 Cua (e o) g dunliil) CudlaYL 20 i B siia 2000 (385 Y gl
iy Agma) Alaall Aakail & Sie Laalaic Y (3 skl dgay Las ¢Agdl g iy 8 Lgindad die #3laill o2 dllad
Omali ilanti dga) sal ae 5) shile 23 g @ A (e ¢l pad) Gl Jlae 8 dae 53 datlise Gl jall 228 235
8_mSl 4 galll 3laill Aalinall ol Figaall syl (LLMs)e aleill ¢ 5 pamd) (¥ cigma jall cl i)
uA(}“ QLJ;.A).J\)..3# s&\)ﬂ\ alis s@_;.q)..\j\ BM\ LM cé:\.uj\

Aomaal) 508l Jilat Gaead) abeill | Sl (a¥) | Rumapal) a3 5l i il el A palibal) cilaldl)
Yl lima ket | el Cais

Résumé

L’intégration croissante des logiciels dans divers secteurs a rendu essentielle la mise
en place de mécanismes efficaces pour protéger les systémes contre les
cyberattaques sophistiquées. Ce mémoire explore I'application de l'intelligence
artificielle moderne notamment les modéles basés sur les transformeurs pour
améliorer la détection des vulnérabilités logicielles.

Le travail vise a concevoir des algorithmes intelligents capables d’analyser
automatiquement le code source et d’identifier les failles de sécurité les plus subtiles.
Il met 'accent sur la détection automatisée et la classification fine des vulnérabilités.
La méthodologie adoptée repose sur la création de jeux de données étiquetés de
haute qualité, ainsi que sur I'entrainement de modéles avanceés tels que BERT et
RoBERTa pour détecter les schémas de menaces au niveau de la ligne de code et a
travers plusieurs catégories de vulnérabilités.

Les résultats expérimentaux démontrent que les modéles basés sur les
transformeurs surpassent largement les méthodes traditionnelles, tant en précision
qgu’en efficacité d’analyse. De plus, le déploiement du modéle dans un contexte réel
confirme sa pertinence pour les analystes en sécurité logicielle. Ce travail constitue
ainsi une contribution notable au domaine de la cybersécurité, en proposant une
solution robuste et évolutive face aux défis récurrents de la protection des systémes
logiciels modernes.

Mots-clés: Modéles de langage de grande taille (LLMs), vulnérabilités logicielles,
cybersécurité, apprentissage profond, analyse de code, détection de vulnérabilités,
développement logiciel sécurisé

Acknowledgement:

| thank Allah, the Most Merciful and Almighty, who guided and helped me complete
this work. | pray that this effort will be accepted and rewarded. May peace and
blessings be upon our beloved Prophet Muhammad, the best of all creation, and
upon his family and companions.

| would like to extend my heartfelt thanks to my supervisor, Mr. Ferrag, for his
invaluable guidance, continuous support, and insightful advice throughout every
stage of this thesis. His encouragement and expertise greatly contributed to the
quality and direction of this work. | am truly grateful for the opportunity to learn under
his supervision.

| am also deeply thankful to the members of the jury for accepting to evaluate this
work, and for their valuable time, observations, and constructive remarks.

My appreciation further goes to all the professors of the Computer Science
Department who enriched my academic journey with knowledge and inspiration.
Their dedication to teaching has left a lasting impact on my formation.

Dedication:

To the light of my life ...
To my beloved parents, who stood by me through every phase of my life.

Your unwavering emotional, and spiritual support has been the greatest blessing I've
ever known. Without your encouragement and prayers, none of this would have been
possible. This work is as much yours as it is mine.

To my brothers, whose presence was always a source of joy and strength. Your
smiles, laughter, and pride lifted me up and kept me going.

To my dear friends, and in particular Nor and Chaima, who have become an
inseparable part of my academic journey. From strangers to sisters, our friendship
blossomed during these university years and added warmth and meaning to every
step.

This work is dedicated to you all, with love and deep gratitude.

Content

172 aT=T = T 4o o [1 o 1 o] o TSR 1
2 4= o) =1 o0 PR 3
R R 1) Yo 18 o 1o o RS 3
1.2. Common Software Security VUINErabilities:cooiiiiiii e 3
1.3. Vulnerability Detection TEChNIQUES:ciiiiiiii e 11
1,31, StAtIC @NAIYSIS: ... et e e b e e e e e 11
1.3.2. DYNAMIC ANAIYSIS: .. oo ii it e e e e e et e e e e e aaaaaaaaaaaaaaaaaaaaaaaaas 12
1.3.3. FOrmal VerifiCatioN:ueiiiiiiie ettt e e st e e e e e s e e s enneee s 12
1.3.4. Al and Machine Learning(IML):coo i e e e 12

L 7 o] T [1] o o L PP UPRPP P 13
2. Chaptre D2.... ..ot e e e e e e e e e e e e ———— e e e e e e e t————eeeeeeaaara—raaaaeaanrarees 14
b T [(oo (U T3 1T o I PP EPP PSP PPRPR 14

2.2. Historical Timeline of Vulnerability Detection: ... 14

2.3. Machine Learning-Based Approaches: ...t 15

2.4. RNN-Based Vulnearbility DeteClion:ccooiiiiiiiiiiie e 16

2.5. Deep Learning MOEIS:ooiiiiiiii ettt 19

2.6. Transformer-Based MOUEIS:ueiiiiiiieieie et e e s e e e e e e nnnreeeee s 19
2.6.1. Code-oriented TranSfOrMErS:coiiiiiiiiiiee e e e e e e e e e 20

2.6.2. Fine-Grained Vulnerability Localization:ccccooieiiiiiiiii e, 20

2.6.3. Lightweight and Specialized Transformers:...........ccccoeeiiiiiiiei e 21

2.6.4. Decoder-Only MOEIS:cooiiiiiiiiieiii e et e e e e e e 21

2.7. Datasets and BeNChMaArks:cooii i 22

2.8. Benchmarks and Evaluation MEtriCS:cooiiiiiiiiii e 24

2.9. USE IN INAUSHIY: ...t e e e e e e e e e e e e e e e eaaaaaaaaaaaaaaaaeaaeaaaeaaaeanaas 25

D2 L = =1 (Yo BT o o S 26
D22t T T @ o o7 11 - T o PP 27

B O =T o] 1= 1 PR PP 28
B Tt R [11 o T T2 4o o SRS 28
3.2. Proposed LLM-Based Vulnerability DeteCtOr:oouiiiiiiiiiiiiee e 28
3.2.1. Overall System ArChiteCUIE:oii i 28
3.2.2. Data Acquisition and Labeling: ...t 29
3.2.2.1. Dataset Source: FOMMAI-V2oiiiiiiieiiee ettt e e e e 30

3.2.2.2. Labeling Methodology:coovviiiiiiiiiiieeeeeeeee s 30

3.2.2.3. Dataset CharacteristiCs:o 30

3.2.3. Preprocessing and Input Representation: ... 31
3.2.4. LLM Fine-Tuning Strategy:ccoouiiiiiiiie ettt 31
3.2.5. INfErenCe PIPEIINE:coo it 32

3.3. Experimental Setup and MethodolOgyccooiiiiiiiiii e 33
3.3.1. Dataset Preparation:c..eo it 33
3.3.2. Fine-Tuning ENVIFONMENT:ooiiii e 33
3.3.3. EValuation MEtriCS:ot 34

3.4. EXperimental RESUIS:oeeeeeeeeeee e 35
3.4.1. Training & Validation CUINVES:oooiiiiiiiiiiie et e 35
3.4.2. Test-Set PerfOrManCE:coiiiiiie ittt e e et e e e nnee e e e e 37
3.4.3. Confusion Matrix & Error ANalYSiS:c.ueeiiiiiiiiiiiiiee e 40
3.4.4. Comparison With BaseliNes:cccoiiiiiiiiii e e e e e e e e e e e e e e e e e e 45

T TR 9 1= o1 1 1= o) o SRR 48
3.5.1. Impact of Prompt Design and Context Length: ..o, 48
3.5.1.1. Prompting Strategies in Vulnerability Detection:ccooeiiiiinieeiee e, 48

3.5.2. Strengths and Limitations of LLM-Based Detection:ccocoviiiiiiinieee 49
3.5.2.0., SHIENGNTS: .. e e e sbaee e 49

R T T2 I 1411 - i o) o S 49

3.5.3. Scalability, Inference Latency & Resource Consumption:cccocceeeeeiieiiiiieeeeccecciieeeeen, 50

3.6. Chapter Summary and Future DIireCtioNS:ooiiiiiiiiiiiii e 51

3.6.1. Chapter SUMMAIY:ci ittt et e e et e e e e nbe e e e enbee e e eneee 51
N I SV (U] (=Y B (=T 11 o) [T TP 51
General Conclusion

.. 53
] o] oo i¢=1 o 1)25 PRSP 54

List of Tables

Table 1 :Recent Studies on Vulnerability Detection Using LLMSccooiiiiiiiiiiiii e, 26
Table 2 :BERT Training and Validation RESUISuuviiiiiiiiiiiiiiiieneee e, 35
Table 3 :RoBERTa Training and Validation RESUIRSouveiiiiiiiiiiiiiiiii e, 36
Table 4 :DeBERTa Training and Validation RESUIRScuveiiiiiiiiiiiiiiiii, 37
Table 5 :NeoBERT Training and Validation RESUIRSueviiiiiiiiiiiiiiiii e, 37
Table 6 :Classification Report for BERTooooiiiiiiiiie et 38
Table 7 :Classification Report for COdeBERToviiiiiiiiiiii e 38
Table 8 :Classification Report for ROBERTA...........ccoiiiiiiiiiiiiiec e 39
Table 9 :Classification Report for DEBERTA............coiiiiiiiiiiiiie e 39
Table 10 :Classification Report for NEOBERToviiiiiiiiie e 40
Table 11 :Test-Set Evaluation Results for Random Forest ... 45
Table 12 :Test-Set Evaluation Results for Logistic Regressioncccoieiiiiiiiiieninieee e, 46
Table 13 :Test-Set Evaluation Results for XGBOOStcooiiiiiiiiiii e 46
Table 14 :Test-Set Evaluation Results for Naive Bayescccooueiiiiiiiiiiiiee e 47
Table 15 :Test-Set Evaluation Results for SVC ... 47
Table 16 :Comparison of the Proposed Model with LLM Models and Traditional ML 48

Table 17 :Comparison of Prompt Styles and Context Lengths on BERT-Based Vulnerability
ClasSIfICALIONuveiiieee e e e e e e e e e e e e e e e et e e e e e e e aarrees 49

List of Figures

Figure 1 :lllustration of an Out-of-Bounds Write Vulnerability and Its Potential Consequences...... 4

Figure 2 :lllustration of a Type Confusion Vulnerability and Its Potential Consequences................ 5
Figure 3 : lllustration of an OS Command Injection Vulnerability and Its Consequences............... 6
Figure 4 :lllustration of a Code Injection Vulnerability via eval() and Its Consequences................. 6
Figure 5 : lllustration of an Insecure Deserialization Vulnerability and Its Potential Impact............ 7
Figure 6 :lllustration of a Path Traversal Vulnerability Leading to Unauthorized File Access.......... 8
Figure 7 :lllustration of a Missing Authentication for Critical Function Vulnerability 9
Figure 8 :lllustration of an SQL Injection Vulnerability Exploiting Unsanitized User Input............. 10
Figure 9 :lllustration of a Use-After-Free Vulnerability Leading to Memory Corruption 10

Figure 10 :lllustration of Command Injection via Unsanitized Input in Dynamically Constructed

T =Y | @0 1 0 =g o <50 S 11
Figure 11 :Timeline of key research milestones in vulnerability detection using static analysis,

machine learning, and formal methods (2004—2025).cccciiiiiieeieciiiieeeee e, 15
Figure 12 :Taxonomy of Machine Learning and Transformer-Based Models for Vulnerability

=] (= Tex 1T o PP POPPPPTTP 16
Figure 13 :Internal Architecture of the BLSTM-Based Classifier in VulDeePecker[25]................. 17
Figure 14 :Overview of the SySeVR Framework for Deep Learning-Based Vulnerability

1Y (=Y 1T] 12X PR 17
Figure 15 :Architecture of yVulDeePecker Training and Inference Phases[34]............cccccceeuunn.e. 18

Figure 16 :Overall System Architecture for Prompt-Based Vulnerability Classification using a
TranSfOrmMEr MOGEL e e e et e e e e e s s e e e e e e e snnseeeeaeeean 28

Figure 17 :Confusion Matrix of BERT on the Top 10 Most Frequent CWE Vulnerability Classes . 41
Figure 18 :Confusion Matrix of CodeBERT on the Top 10 Most Frequent CWE Vulnerability

Figure 19 :Confusion Matrix of RoBERTa on the Top 10 Most Frequent CWE Vulnerability
L0 = ST PP UTTUPRPPR 43

Figure 20 :Confusion Matrix of DeBERTa on the Top 10 Most Frequent CWE Vulnerability
L0 = ST PP UTTUPRPPR 44

Figure 21 :Confusion Matrix of NeoBERT on the Top 10 Most Frequent CWE Vulnerability
L0 =TT SRR 45

General introduction

In the modern digital era, software has become the backbone of nearly every
sector, from finance and healthcare to transportation, education, and communication.
Whether in smartphones, embedded systems, or complex cloud architectures,
software-driven systems are essential for running and maintaining daily operations.
However, the rapid expansion of software usage has also made it a primary target for
malicious attacks. Vulnerabilities in software code, especially when left undetected,
present serious security risks that can lead to data breaches, financial losses, and
compromise of critical infrastructures.

Traditionally, the detection of software vulnerabilities has relied heavily on
static analysis, dynamic testing, and manual code reviews. While these methods offer
some level of protection, they are often limited in scope and struggle to keep up with
the increasing complexity and size of modern codebases. Furthermore, static tools
may generate false positives, while dynamic methods often miss corner cases or
require extensive execution environments. As such, the software security community
has begun to explore more intelligent and scalable solutions.

Recent advancements in Artificial Intelligence (Al) and Natural Language
Processing (NLP) especially with the advent of Large Language Models (LLMs)have
opened up new possibilities for analyzing code as if it were a form of structured
language. Models like BERT, RoBERTa, and specialized variants like CodeBERT and
NeoBERT have demonstrated significant potential in understanding code semantics,
identifying patterns associated with vulnerabilities, and classifying code fragments
with high accuracy. These models, originally designed for human language
understanding, can be fine-tuned on code corpora to perform tasks such as
vulnerability detection, code summarization, and bug localization.

This thesis aims to leverage the capabilities of LLMs to build an effective
software vulnerability detection system. The core objective is to classify C source
code as either secure or vulnerable, and, in the case of vulnerability, identify the
specific type of vulnerability using a fine-tuned transformer-based model. To achieve
this, we compare different LLMs and prompting strategies, investigate the impact of
input context length, and assess the models' generalization capabilities.

The work is organized into three main chapters:

Chapter 1: lays the foundational concepts for this study. It begins with a formal
definition of software vulnerabilities and explores the most frequently occurring types,
based on established taxonomies such as CWE (Common Weakness Enumeration)
and KEV (Known Exploited Vulnerabilities). This chapter also discusses traditional
techniques for vulnerability detection, such as static analysis, dynamic analysis, and
symbolic execution, providing the necessary background to understand the
motivation for Al-based alternatives.

Chapter 2: provides a comprehensive review of the literature and technological
background relevant to our work. It traces the evolution of machine learning models
applied to software analysis from early neural architectures like RNNs and CNNs, to
modern transformer-based models. We discuss models pre-trained on code, such as
CodeBERT, GraphCodeBERT, and RoBERTa, and evaluate how they are adapted to
the domain of code intelligence. In addition, we present a survey of widely-used
datasets in vulnerability detection research, including Juliet, Draper, Devign,
VulDeePecker, and most notably, FormAl, which serves as the backbone for our
experimental setup. Finally, the chapter highlights previous research efforts in the
field, comparing methodologies and objectives to our own approach.

Chapter 3: introduces our proposed LLM-based detection system and provides a
detailed breakdown of the methodology. We start by preprocessing and filtering the
FormAl dataset, selecting the most frequent error types and cleaning the labels. We
then experiment with two different prompting strategies Prompt A, where the model is
asked a direct question (e.g., “What type of vulnerability is this code?”), and Prompt B,
a masked-language approach that lets the model predict the most likely completion of
a partially filled sentence. The chapter also examines the effect of input context
length, comparing the standard 512-token input to a truncated 128-token setup. We
conduct extensive experiments on multiple models including BERT, NeoBERT,
CodeBERT, and RoBERTa, and evaluate their performance using metrics such as
accuracy, precision, recall, F1-score, and confusion matrices. Additionally, the
chapter includes in-depth error analysis and visualizations to better understand
model behavior.

The thesis culminates in a general discussion where we assess the impact of
prompt design, model architecture, and input length on performance. We highlight the
strengths and limitations of using LLMs for vulnerability detection, such as their ability
to generalize across classes and their sensitivity to context size. We also address
resource-related considerations such as training time and memory usage, and
discuss practical deployment challenges like scalability, interpretability, and system
integration.

Finally, we summarize the key findings of our work and propose several future
directions for extending this research, including automatic prompt engineering,
integrating static analysis features, and adapting the system to real-world deployment
scenarios.

Chapter 01: Cybersecurity and Software Vulnerabilities

Chapter 01

Cybersecurity and

Software Vulnerabilies

1.1. Introduction:

Today, digital systems aren'’t just tools we use they’ve become a part of everything.
From the phone in your pocket to national infrastructure, software is now deeply
embedded in the way we live and work. And with this growing dependency comes a
bigger responsibility: cybersecurity is no longer optional it's essential. As systems get
more connected and more complex, they also become more exposed, and defending
them becomes more challenging than ever[1][2].

What we're seeing in recent research is a shift in mindset: security today isn’t just
about reacting to threats it's about staying ahead of them. It means spotting
vulnerabilities early, blocking attacks before they happen, and responding intelligently
when things go wrong. This proactive approach is more important than ever in a
world where systems are increasingly fast, distributed, and interdependent[3].

And the risks are real. We’ve already seen how a simple flaw can lead to major
damage. Take Slammer or Blaster for example two worms that infected over
200,000 systems in just a few hours by exploiting basic bugs [3]. And that was just
the beginning. Since then, threats have become faster, smarter, and much more
sophisticated. The Big-Vul dataset alone contains over 38,000 real vulnerabilities
found in C/C++ programs, each linked to known CVE identifiers a clear sign that
these flaws are not only common, but also dangerously persistent[4].

What’s even more worrying is the speed of modern attacks. Zero-day exploits which
take advantage of unknown flaws before anyone has time to patch them highlight
just how urgent it is to move from reactive defense to smarter, automated protection.
The truth is: traditional tools struggle. They rely on hard-coded rules, often
overwhelm developers with false positives, and don’t always keep up with the speed
of modern software development[5].

1.2. Common Software Security Vulnerabilities:

A software vulnerability can be defined as a flaw or weakness in a computer program
that may be exploited to compromise the confidentiality, integrity, or availability of a
system. Such vulnerabilities often arise due to programming errors, lack of input
validation, or misconfigurations. While some of these flaws may seem minor such as
neglecting to validate user input they can be leveraged in combination with other
weaknesses to facilitate serious attacks. These issues may result from rushed
development, insecure frameworks, or simple human oversight. Understanding the
nature and origins of software vulnerabilities is therefore essential in developing
secure and resilient code. In what follows, we will present a detailed overview of the
Top 10 most critical software vulnerabilities to provide context for the experimental
work that follows.

Chapter 01: Cybersecurity and Software Vulnerabilities

1.2.1. Out-of-bounds Write:

An Out-of-Bounds Write (OOB write) occurs when a program writes data beyond the
limits of an allocated buffer, leading to memory corruption. In kernel contexts, it is
formally modeled as a triplet (offset, length, value), capturing how far the write goes,
how many bytes are written, and what is written[6].

Figure 2 visually demonstrates how an Out-of-Bounds Write vulnerability occurs
when a program writes data outside the allocated bounds of a memory buffer. In this
example, user input ({AAAA}) is written into a buffer without appropriate boundary
checks. The program expects the buffer to handle a fixed amount of data (e.g.,
buffer[10]), but the input exceeds this limit, resulting in an overflow. The excess
data corrupts adjacent memory locations, potentially leading to arbitrary code
execution or system crashes. This kind of vulnerability is especially dangerous
because the overwritten memory may contain control data such as return addresses
or function pointers, making exploitation both feasible and impactful if no memory
validation mechanisms are in place.

boundary check

Writes beyond allocated
AAAA memory without

|

Input written to buffer

J2Y | ysera

— saduanbasuna a|qissod

Overflow

No boundary check — overfl

buffer{10]" — exceeded

Figure 1:lllustration of an Out-of-Bounds Write Vulnerability and Its Potential Consequences

1.2.2. Type Confusion:

Type confusion occurs when a program uses a resource (such as an object or
memory region) as though it were of a different type than it actually is. This mismatch
can allow an attacketo execute arbitrary code by manipulating object layouts or
invoking unintended functions[7].

Figure 2 illustrates the mechanism of a Type Confusion vulnerability, where an
attacker sends a crafted object with a falsified type annotation (e.g., type: B) to a
system expecting a different, safe type (e.g., Type A). The system receives this object
and, due to the absence of strict type validation, processes it as if it were of the
expected type. This leads to a mismatch between the actual and assumed object
structure. Consequently, unsafe operations may be performed on the misinterpreted
object. The vulnerability stems from treating incompatible memory representations as
equivalent, often resulting in logic errors, memory corruption, or even arbitrary code
execution particularly if the misused object contains executable data or references.

Chapter 01: Cybersecurity and Software Vulnerabilities

This figure highlights how type mismatches can lead to critical security breaches in
systems that process untrusted input without rigorous type checks.

User sends object with fake type
Results: logic error or code exec
"type - B (1] }
Dbject received by system
System ex ts safe fype

Expected Type:

Expected: Type A — Got: Type B
Processes object blindly

Actual Type: '-*a,,

Type mismatch detected

Unsafe operations on object

Figure 2:lllustration of a Type Confusion Vulnerability and Its Potential Consequences

1.2.3. OS Command Injection:

OS command injection vulnerabilities arise when input data is not properly validated
or sanitized and is passed directly into a command shell. This allows attackers to
execute arbitrary commands on the host operating system[8].

Figure 3 depicts the exploitation process of an OS Command Injection vulnerability,
where user-supplied input is unsafely incorporated into a system-level command. In
this example, the application dynamically constructs a shell command using input like
"127.0.0.1" and passes it to a system function such as system(command). Due to the
absence of input validation or sanitization, an attacker can manipulate the input to
inject arbitrary shell commands. These commands are interpreted and executed by
the operating system shell, often with elevated privileges if the application itself has
such rights. As shown in the figure, this can lead to arbitrary command execution,
allowing the attacker to access, modify, or delete system data, compromise the
server, or escalate privileges. This vulnerability is especially critical in web
applications where system calls are dynamically built from HTTP parameters or form
inputs.

Chapter 01: Cybersecurity and Software Vulnerabilities

Command runs on server with system privileges
User-provided input {potentially malicious)

input = "127.0.0.1"

_— f
Arbitrary Command Executio

Result: Arbitrary command execution

puewwos oy passed yndul Jasp
privileges

05 command runs with

system(command)

No sanitization

Application builds command using input 05 shell interprets the command string

Figure 3: lllustration of an OS Command Injection Vulnerability and Its Consequences
1.2.4. Code Injection:

Code injection vulnerabilities occur when untrusted input is used in code generation
or evaluation functions. Attackers exploit these flaws to inject and execute arbitrary
code, often through dynamically interpreted languages|8].

Figure 4 demonstrates a Code Injection vulnerability, specifically through unsafe use
of the eval() function. In this scenario, untrusted user input such as a Python string
containing executable code is directly passed into the eval() function without any
validation or sanitization. As a result, the application dynamically evaluates the input
as actual code. If the application runs with elevated privileges, this injected code is
executed in the system’s runtime environment, potentially leading to arbitrary code
execution or complete system compromise. This figure highlights the critical danger
of using eval() (or similar functions like exec() or Function() in JavaScript) with user-
controllable input, as it allows attackers to hijack application behavior and inject
malicious instructions into the execution flow.

Untrusted input from user Executes the code in runfime context

{input = "print{ Hacked!']" }

_
Malicious code runs in system

Result: Code execution or system compromise

IHaUCD apos ojul pajaalul yndu sasn
privileges

Executed with application

eval(inPUt) Mo sanitization — code
execution"

Application evaluates code from input Interpreter runs injected code

Figure 4:lllustration of a Code Injection Vulnerability via eval() and Its Consequences

Chapter 01: Cybersecurity and Software Vulnerabilities

1.2.5. Insecure Deserialization:

Insecure deserialization is a critical vulnerability that arises when applications
process serialized data from untrusted sources without performing proper validation.
By blindly trusting and deserializing such input, the application becomes vulnerable
to a range of attacks including arbitrary code execution, data manipulation, or
privilege escalation. Attackers can craft malicious objects containing embedded
payloads that exploit weaknesses in the deserialization logic[9].

Figure 5 illustrates how an Insecure Deserialization vulnerability can be exploited
when a server deserializes untrusted input without validating its type or content. In
this scenario, an attacker crafts a malicious serialized object (payload =
maliciousObject) and sends it to a vulnerable application. The server-side logic then
deserializes this tampered data blindly assuming it to be safe thereby inadvertently
instantiating attacker-controlled objects. This can lead to arbitrary code execution,
data tampering, or even privilege escalation, depending on the privileges of the
application process and the behavior of the deserialized object. The diagram
emphasizes the danger of using unsafe deserialization routines in systems that trust
user input, especially in languages like Java, Python, or PHP, where deserialization
mechanisms can invoke methods during object reconstruction.

Sends a tampered serislized object

payload = maliciou=sObject
Arbitrary code execution, data tamperin or

Tampered
Serialized Data __)
T S| e [s P ey Server-side
Processing

Deserializes input without validating type or content

Figure 5: lllustration of an Insecure Deserialization Vulnerability and Its Potential Impact

1.2.6. Directory Traversal:

Directory traversal is a critical security vulnerability that occurs when an application
improperly handles user-supplied input used to construct file paths. By injecting
directory traversal sequences such as ../, attackers can manipulate file path
references to access files and directories outside the intended scope of the
application. This vulnerability may allow unauthorized access to sensitive files,
including system configurations and user credentials[10].

Figure 6 demonstrates a Path Traversal vulnerability, where a web application
improperly trusts user input to construct file paths. In the illustrated scenario, the
attacker manipulates the input parameter (e.g., file=../../../../etc/passwd) to traverse
directories outside the intended scope. Since the application reads the file path
directly from user input without validating or sanitizing it, the attacker can exploit this

7

Chapter 01: Cybersecurity and Software Vulnerabilities

to access sensitive files on the server’s filesystem. The vulnerability arises when the
application concatenates user input with a base directory path and passes it to file
handling functions like open(). If no checks are in place to restrict access to
authorized directories, the result may be leakage of critical files (e.g., password files,
configuration files), leading to unauthorized disclosure, system compromise, or
further privilege escalation.

=

GET fview?file=_./../../..fetc/passwd
Sensitive file exposed to attacker

Reads file path directly from user inpu
File
IvarSvwww/html/ffiles/
fetc/passwd

Figure 6:lllustration of a Path Traversal Vulnerability Leading to Unauthorized File Access

1.2.7. Missing Authentication for Critical Function:

A Missing Authentication for Critical Function vulnerability occurs when a system fails
to require user authentication before granting access to functionalities that should be
restricted. This enables unauthenticated users to perform sensitive operations,
possibly leading to unauthorized actions or data exposure[11][12].

Figure 7 demonstrates a Missing Authentication for Critical Function vulnerability,
where a sensitive operation such as deleting a user account is exposed to
unauthenticated users. In this example, the application provides an endpoint (e.g.,
/delete-user?id=42) that performs a destructive action but does not enforce
authentication or authorization checks. An attacker can exploit this by crafting and
sending requests directly to the endpoint without needing to log in or prove their
identity. As shown in the figure, the server processes the unauthenticated request
and executes the operation, leading to unauthorized access and potential system
misuse. This vulnerability typically arises from poor access control design and can
have severe consequences, including privilege escalation, data loss, and service
disruption.

Chapter 01: Cybersecurity and Software Vulnerabilities

Wnsthentizsted reqiiest Server processes reguest without auth

/delete-user?d=42

Security risk: unauthorized function
executed

Unauthorized access to critical functionality

wiasis
sayara) jsanbal pajEsguayIneun

-
2
EE
25
g"
o 8
&=
5%
3
3=
=
I

Delete Account

No identity check applied

Critical function exposed
Missing authentication check

Figure 7:lllustration of a Missing Authentication for Critical Function Vulnerability

1.2.8. SQL injection:

SQL injection (SQLi) is a widely known yet persistently prevalent security vulnerability
in web applications. It arises when user-supplied input is directly incorporated into
SQL queries without proper validation or sanitization. This allows attackers to inject
specially crafted SQL code into the query string, potentially altering its logic and
bypassing authentication mechanisms. As a result, the database may execute
unauthorized commands, exposing sensitive information or allowing full access to
user data[13].

Figure 8 depicts an SQL Injection vulnerability, which occurs when untrusted input is
concatenated directly into a SQL query without proper validation or sanitization. In
this example, the application receives user input (e.g., from a login form) and embeds
it into a SQL statement meant to retrieve a specific user record. However, due to the
absence of input handling safeguards, an attacker can manipulate the input e.g.,
injecting ' OR 1=1 -- to alter the query logic. This results in the query returning the
entire user dataset rather than a single authenticated user, effectively bypassing
access controls. The figure highlights how such vulnerabilities can lead to
unauthorized access to sensitive data, authentication bypass, or even full database
compromise, depending on the privileges of the database user and the context of
execution.

Chapter 01: Cybersecurity and Software Vulnerabilities

Q
fan

User Input

~

Unsanitized

i - All user data retrieved
lnpt't Handllng u Database (no authentication triggered) et
(|| Rewmstul [———n s:::l Ed::ach
e dataset st

put handing

o
Application
Query SELECT * FROM users WHERE username = " OR 1=1--'
SELECT * FROM users Modified Query
WHERE usernane = Query logic altered
| (meu)) due to unsanitized input
-

Figure 8:lllustration of an SQL Injection Vulnerability Exploiting Unsanitized User Input
1.2.9. Use After Free:

Use-after-free refers to the act of referencing memory after it has been freed.
Exploiting such vulnerabilities may lead to program crashes, arbitrary code execution,
or privilege escalation[14].

Figure 9 illustrates a Use-After-Free vulnerability, a type of memory corruption bug
that occurs when a program continues to use a pointer to memory that has already
been deallocated. In this scenario, memory is first allocated for an object and later
released using free(object). However, the pointer referencing the released memory is
not cleared or updated, resulting in what is known as a dangling pointer. If this pointer
is subsequently used either unintentionally or via attacker control the program
accesses freed memory that may have been reassigned to other data, leading to
unpredictable behavior. As shown in the figure, this can result in corrupted memory
access, which may be exploited to execute arbitrary code, cause a system crash, or
leak sensitive information. This vulnerability is especially severe in low-level
languages like C or C++ that provide direct memory management.

. = Accesses freed memory (use after free)
Object allocated in memory

8 E Corrupted memory access
Object —
Created cm—
Risk: Code execution, crash, or data leak
1=
: 3
WG I
it
: z
f g
= Dandling Pointer
free(ObJECt) Memory reallocated to new [Memory Reuse)
data

Memory released Reused memory now contains attacker data

Figure 9:lllustration of a Use-After-Free Vulnerability Leading to Memory Corruption

10

Chapter 01: Cybersecurity and Software Vulnerabilities

1.2.10. Command Injection:

Command injection occurs when an attacker can inject system commands through
application input, exploiting flaws in command construction logic to execute arbitrary
commands[8].

Figure 10 depicts a Command Injection vulnerability, where user-supplied input is
concatenated into a system command without proper validation. In this scenario, the
application dynamically constructs a shell command (e.g., ping + user input) and
executes it using system-level functions. Due to the lack of input sanitization, an
attacker can manipulate the input to inject arbitrary commands, which are then
executed by the shell. As the figure shows, this can result in full system access,
remote code execution (RCE), or critical data loss, especially if the command is
executed with high privileges. This type of vulnerability is particularly dangerous in
web applications or scripts that call operating system utilities based on user input,
emphasizing the need for strict validation and use of safe APlIs.

User-provided command string Command executed on system

input ="127.0.0.1"

Critical |mpact full system access

Result: Commang |njecﬂor| — RCE or data loss

PUEWWOD WwapsAs
o} passed yndu Jasp

"
2
3
& E
@
L]
w E
£
ES
£a
=
3

it Nyt nel o
command = "ping " + input — —
Mo validation or sanitization

Command constructed dynamically Shell executes full command

Figure 10:lllustration of Command Injection via Unsanitized Input in Dynamically Constructed
Shell Commands

1.3. Vulnerability Detection Techniques:

1.3.1. Static analysis:

Static analysis refers to the examination of source code without executing the
program. It represents a fundamental and proactive approach to identifying security
vulnerabilities early in the software development lifecycle. By analyzing program
structure, control flow, and data propagation, static analysis tools can detect potential
flaws such as buffer overflows or improper input handling before the code is
deployed[15]. For example, the unguarded use of functions like strcpy() in C can be
flagged as a potential overflow condition[3]. These tools are valued for their speed,
scalability, and suitability for automation, making them especially effective in large-
scale codebases. However, they often produce a significant number of false positives,

11

Chapter 01: Cybersecurity and Software Vulnerabilities

which necessitates manual verification[16]. Studies by Wang and Guo (2021) and
Jovanovic et al. (2006) emphasize the effectiveness of static analysis when
integrated early in the development process, helping to prevent vulnerabilities from
reaching production systems [15][17].

1.3.2. Dynamic Analysis:

Dynamic analysis, unlike static analysis which examines code without execution,
adopts a more hands-on approach it runs the program and observes its behavior [18].
This makes it particularly effective for identifying vulnerabilities that manifest only
when the software is active and interacting with real input. One common technique is
fuzzing, where the tool injects unexpected or malformed data into the application to
observe whether it crashes, leaks memory, or behaves abnormally [19][20]. Another
effective method is runtime monitoring, which can detect issues such as use-after-
free bugs problems that are nearly impossible to identify through static inspection
alone [20]. A key strength of dynamic analysis is its ability to reveal how the software
behaves under real-world conditions [18]. However, this realism comes with tradeoffs:
it is more time-consuming, resource-intensive, and may still miss vulnerabilities if
some code paths are not executed during testing [18]. This limitation was effectively
discussed by Zheng and Zhang (2013), who emphasized the importance of path-
sensitive techniques to explore deeper and less obvious execution flows [18].

1.3.3. Formal Verification:

Formal verification takes the process a step further. It is not about scanning code or
running tests it involves mathematically proving that a program behaves exactly as
intended. This is achieved through techniques such as model checking and theorem
proving, which help ensure that the system satisfies specific properties under all
possible conditions. The key advantage is that when formal verification determines a
system to be secure, it offers a very high level of confidence in its correctness.
However, it is not a lightweight approach; it demands extensive knowledge of formal
logic and requires substantial computational resources, particularly for large or
complex systems[21].

Farahmandi and Alizadeh (2015) demonstrated that these techniques can be applied
even to low-level components such as arithmetic circuits, reinforcing that formal
methods are not merely theoretical they can be practical when applied appropriately
[21].

1.3.4. Al and Machine Learning(ML):

Machine learning is rapidly emerging as a critical component in the field of
vulnerability detection. Rather than relying solely on hardcoded rules, ML models
learn from large datasets containing both vulnerable and non-vulnerable code
samples [22]. These models are capable of identifying subtle patterns and
generalizing across diverse codebases [5]. Some are trained to detect vulnerabilities
directly from code syntax, while others rely on static or dynamic features as input [22].
In more advanced implementations, large language models (LLMs) are fine-tuned on
vulnerability-labeled datasets to not only detect but also repair insecure code [23].
According to Harzevili et al. (2023), the application of deep learning and LLMs

12

Chapter 01: Cybersecurity and Software Vulnerabilities

contributes to reducing false positives and improving detection accuracy, particularly
in cases where traditional tools are insufficient. Although these Al-driven approaches
are still evolving, they represent a promising direction for the automation of secure
software development [24].

1.4. Conclusion:

This chapter introduced the critical role of cybersecurity in modern systems and
explored the most common software vulnerabilities, including memory-based and
input-handling flaws. It also reviewed traditional detection methods static, dynamic,
and formal and highlighted their limitations. Finally, it emphasized the need for
intelligent, automated solutions to address evolving security challenges, setting the
stage for advanced techniques discussed in the next chapter.

13

Chapter 02:Language Models

Chaptre 02

Language Models

2.1. Introduction:

Over the past decade, software security has become increasingly complex as
software vulnerabilities have emerged among the most critical threats to digital
infrastructure. The widespread reliance on free open-source libraries, interconnected
computing environments, and persistent architectural patterns has expanded the
attack surface, making vulnerability detection a vital priority in cybersecurity domains
[25].

Traditional detection methods, such as static and dynamic analysis, have proven
effective in identifying well-defined vulnerabilitiesparticularly memory flaws in C/C++
programs. However, they struggle to detect newer vulnerabilities that are semantic in
nature and lack explicit signatures [2].

To address these limitations, machine learning (ML) and deep learning (DL)
techniques have emerged as promising alternatives. These models are capable of
learning complex patterns from large-scale security datasets, allowing them to detect
a wider range of vulnerabilities beyond manually encoded rules [26].

In particular, large language models (LLMs) such as BERT, CodeBERT, and GPT
have become leading tools in this field. With their ability to derive semantic
representations from source code, LLMs can gain deep contextual understanding of
syntax and logic, significantly advancing automated vulnerability detection [27].

2.2. Historical Timeline of Vulnerability Detection:

Over the years, vulnerability detection has advanced from traditional static analysis to
deep learning and LLM-based approaches. Zitser et al. (2004) highlighted the
limitations of static tools[3]. Li et al. (2018-2019) introduced VulDeePecker and
SySeVR, combining semantic analysis with deep models like BLSTM and BGRUI[25].
Zhou et al. (2019) proposed Devign using GNNs on code graphs[28]. Wang et al.
(2021) released CodeT5, a Transformer model for code understanding[29]. Recently,
Ferrag et al. (2023-2025) developed datasets and benchmarks like FormAl and
CASTLE, integrating LLMs with formal methods for improved accuracy[30].

14

Chapter 02:Language Models

Zitser et al Li et al Li et al Zhou et al Wang et al Ferrag et al
Proposed Released
Introduced SySeVR, Developed CodeTs, an Sz be i
:) S : CASTLE, and
First academic WVulDeePecker, combining Devign, a encoder- CREIE
benchmark of first deep syntactic + GGNMN-based decoder I =
ztatic analyzers; learning model semantic info approach using Transformer Sy Enethods
exposed their (BLSTM} for S {5eVCs) with — AST,DFG,and — model fie o i
limitations vulnerability BGRUs to CFG to detect supporting code benchrrr\arkinv
using real-world detection using improve vulnerabilities classification, for hih. i
C vulnerabilities. semantic code detection and from code translation, and accursc
gadgets. reduce false semantics. defect E 2
= R detection.
negatives. prediction.
2004 2018 2019 2019 2021 2023-
2025

Figure 11:Timeline of key research milestones in vulnerability detection using static analysis, machine
learning, and formal methods (2004—-2025).

2.3. Machine Learning-Based Approaches:

Machine learning (ML) techniques have been extensively used in vulnerability
detection due to their ability to learn patterns from labeled data and generalize to
unseen code fragments. These models reduce the dependence on manually crafted
rules and have achieved strong performance in various static code analysis tasks
[31].

2.3.1. Feature Engenering:

Traditional machine learning (ML) pipelines for source code analysis rely heavily on
hand-engineered features to represent code semantics and structure. Common
features include code metrics (e.g., cyclomatic complexity, code churn), token
frequency distributions, and structural information extracted from abstract syntax
trees (ASTs). Additional elements such as API calls, variable naming patterns, and
control flow structures are often selected to reduce feature dimensionality and
improve model generalization [32].

2.3.2. Classification Algorithms:

After extracting feature vectors, traditional ML approaches utilize various classifiers
such as Support Vector Machines (SVM), Random Forests, and Naive Bayes to
determine whether a code segment is safe or vulnerable [32].

15

Chapter 02:Language Models

Approaches For
Vulnerability Detation

I v)

RNN-Based Models Deep Learning Transformers- Based

s g | |

Fine-Grained Lightweight and
Vulnerability Specialized

¥
Code Oriented
Transformers ey d
| |
ﬁ% 1 l i ol

Decoder-Only
I

| &

VulDeePecker
SySeVR
pVulDeePecker
CNN
GNN

V|
NeoBERT
ModernBERT

Cod
LLaMA
Qwen2.5

CodeBERT
GraphCodeBERT
CodeT5

Figure 12:Taxonomy of Machine Learning and Transformer-Based Models for Vulnerability Detection

Figure 12 presents a taxonomy of machine learning-based models for software
vulnerability detection. The classification is organized into three main categories:
RNN-based models (e.g., VulDeePecker, SySeVR), deep learning models including
CNN and GNN architectures, and transformer-based models. The transformer
category is further subdivided into:

v' Code-oriented Transformers (e.g., CodeBERT, GraphCodeBERT)

v" Fine-grained vulnerability localization models (e.g., LineVul, CodeT5)

v Lightweight and specialized Transformers (e.g., NeoBERT, ModernBERT)
v" Decoder-only LLMs (e.g., Codex, Qwen2.5)

This hierarchical organization is based on architectural design and the detection
strategies employed by each model family.

2.4. RNN-Based Vulnearbility Detection:

Before the rise of transformer-based architectures, recurrent neural networks (RNNs)
were among the first deep learning models applied to automated software
vulnerability detection. Due to their sequential processing nature, RNNs were
particularly well-suited for analyzing code written in low-level programming languages
such as C and C++ [33].

2.4.1. VulDeePecker:

Introduced in 2018, VulDeePecker was the first deep learning-based system for
software vulnerability detection using a bidirectional LSTM (BLSTM) architecture. The
system introduced the concept of code gadgets, which are semantically connected
lines of code centered around API or library calls. These gadgets were transformed
into vector representations and fed into the neural network to classify vulnerable
patterns [25].

16

Chapter 02:Language Models

Output: learned BLSTM with parameters/
classification results

— — m— — —

Softmax layer

Dense layer
I
I
BLSTM layers |
I
J
1
Vectors |
J

Figure 13:Internal Architecture of the BLSTM-Based Classifier in VulDeePecker[25]

The architecture of the VulDeePecker system, as illustrated in the figure, processes
input vectors derived from code gadgets using stacked bidirectional LSTM (BLSTM)
layers. These layers capture both forward and backward semantic context within the
code. The resulting feature representations are then passed through a dense (fully
connected) layer, followed by a softmax layer that outputs a classification indicating
whether the code snippet is vulnerable or safe.

2.4.2. SySeVR:

SySeVR was introduced as an enhanced framework built upon VulDeePecker,
aiming to improve detection accuracy and reduce false negatives. It achieves this by
integrating both syntactic and semantic features of code into what are called
Semantically Enriched Vulnerability Candidates (SeVCs). These enriched
representations are processed using Bidirectional Gated Recurrent Units (BGRUSs),
which demonstrated superior performance in identifying diverse types of software
vulnerabilities [33].

Vulnerability s
Candidates) g':{‘;i'gﬂgg’ of SeVCs P

Target
programs

Detection phase

I |

I r——— |

Progranjs I SeVCs eep learning |

for learning 1™ S\,rvcl;s ISygtax— (Semantics- Vector 4 Training phase

| s B based H representation |
|
— I
I

I Vulnerabilities

Figure 14:0Overview of the SySeVR Framework for Deep Learning-Based Vulnerability Detection[33]

17

Chapter 02:Language Models

The SySeVR framework employs deep learning to detect software vulnerabilities
through a structured multi-stage process. Initially, syntax-based vulnerability
candidates (SyVCs) are extracted from source code. These are then enriched with
semantic information to form Semantically Enriched Vulnerability Candidates
(SeVCs). Once converted into vector representations, the SeVCs are fed into a deep
learning model typically based on bidirectional recurrent networks which has been
trained to identify patterns associated with code vulnerabilities.

2.4.3. yVulDeePecker:

pMVulDeePecker was introduced to extend the capabilities of VulDeePecker by
enabling multi-class vulnerability detection, rather than simple binary classification.
The system enhances the original architecture through the integration of attention
mechanisms and control-flow dependency tracking, allowing it to effectively capture
features that distinguish between 40 different types of vulnerabilities. It achieved an
impressive overall F1-score of 94.22%, significantly outperforming its predecessors in
both accuracy and classification granularity [34].

Input Output
| || Step |: generating code gadgets Step V: transforming normalized code Step VI: training vulnerability
from training programs gadgets and code attentions into detection model
vector represe ntations ;ﬁgl
Training Step II: labeling code gadgets P vectors Training glotid: feature
*rograms Code gadget Label Code gadgets: S fearming maclsl
Code mdget 1 0 Token | Weetor 1
Cobe aadet 3 : wehat_t * data; e Code
. data = NULL; = s AEncon | Training locakfeature
@ ; .
tacie learning model
| Step lll: normalizing code gadgets fM l
T G A trained
Cod i - . =
Step IV: generating code attentions | attentions Vector representation: Training feature-fusion model |H V'&'girgt?grl:\f
from normalized code gadgets | [V, v, v, v,] model
Parser Vector representation extractor Detector
(a) Training phase
| || Ll| Stepl:generating code gadgets
from target programs
5 1 Code
=k ’ gadget " r s
Target [Step IlI: normalizing code gadgets |4 Step V: transforming vedors and code Step VI Classifying the Code
PEOgTamS: normalized code gadgets and | 2ttention vectors| yegtar repre sentations using gadgets with
= = code attentions into vector the trained vulnerability "] vulnerability
Step |V generating code attentions representations detection model ty pes
from normalized code gadgets

Parser Vector representation extractor Detector

Figure 15:Architecture of yVulDeePecker Training and Inference Phases[34]

The complete architecture of the pVulDeePecker multi-class vulnerability detection
system is illustrated in Figure 15. The framework consists of two main stages:
training and inference.

During the training phase (top), code gadgets are extracted and standardized from
labeled programs. To capture local semantic features, attention vectors are
generated for each gadget. These vectors, along with the corresponding code tokens,
are converted into numerical embeddings. Three specialized sub-models are then
trained on these embeddings: a global-feature learner, a local-feature learner, and a
fusion model that combines both representations to improve classification
performance.

In the inference phase (bottom), the same processing pipeline is applied to unseen
code samples. The trained model assigns a specific vulnerability type based on CWE
identifiers to each code gadget, enabling fine-grained multi-class detection.

18

Chapter 02:Language Models

2.5. Deep Learning Models:

Deep learning has significantly reshaped the field of software vulnerability detection
by allowing models to learn directly from raw source code, eliminating the need for
manually engineered features. Unlike traditional machine learning approaches, deep
models utilize hierarchical abstraction layers to automatically capture complex
patterns associated with vulnerabilities.

Early research in this area explored the use of Convolutional Neural Networks (CNNs)
and Deep Neural Networks (DNNs) to extract meaningful feature representations
from source code. These models proved effective in identifying local patterns and
token-level structures.

More recent advancements introduced Graph Neural Networks (GNNs), which are
particularly well-suited for modeling the structural and semantic relationships
embedded in programming languages, such as control flow, data flow, and abstract
syntax trees.

2.5.1. CNN-Based Models:

Convolutional Neural Networks (CNNs) have been among the foundational deep
learning architectures applied to software vulnerability detection. These models are
particularly effective at capturing local patterns in code by processing structured input
such as syntactic or semantic representations. By applying convolutional filters over
code fragments, CNNs can identify fault-prone sections within functions and assist in
pinpointing areas likely to contain vulnerabilities [33][35].

2.5.2. Graph-Based Models:

One of the most impactful advancements in deep learning for software vulnerability
detection is the Devign model, proposed by Zhou et al. (2019). Devign leverages
Gated Graph Neural Networks (GGNNs) to process complex code structures. It
constructs a rich graph-based representation that integrates Abstract Syntax Trees
(ASTs), Control Flow Graphs (CFGs), and Data Flow Graphs (DFGs). This allows the
model to capture deeper semantic relationships compared to traditional sequence-
based approaches.

The architecture of Devign consists of three core components [28]:

» Graph Embedding Layer: Builds heterogeneous program graphs from code
elements.

> Recurrent Gated Graph Layers: Aggregate node-level information using gated
message passing.

» Convolution Module: Performs graph-level classification to detect vulnerabilities.

2.6. Transformer-Based Models:

19

Chapter 02:Language Models

Transformer-based language models have significantly transformed the field of
software vulnerability detection. By leveraging the self-attention mechanism, these
models offer an effective way to capture the global context of source code,
outperforming earlier methods based on recurrent and convolutional neural networks
in both accuracy and scalability [36].

2.6.1. Code-oriented Transformers:
2.6.1.1. CodeBERT:

CodeBERT is a transformer-based model designed for code representation learning.
It is pre-trained jointly on both natural language and source code from multiple
programming languages. Using the masked language modeling (MLM) obijective,
CodeBERT is capable of handling a wide range of tasks, including classification,
summarization, and security vulnerability detection. The model consists of 12
transformer encoder layers and learns bidirectional contextual embeddings to capture
rich semantic information from code [37].

2.6.1.2. GraphCodeBERT:

GraphCodeBERT is an extension of CodeBERT that integrates data flow graphs
(DFGs) into its training process. Through a graph-guided attention mechanism, the
model is able to capture both syntactic structure and semantic relationships within the
code. This enhancement enables GraphCodeBERT to better understand the dynamic
behavior of programs by modeling how data flows through variables and functions
during execution [37].

2.6.1.3. CodeT5:

CodeT5 is a Transformer-based model with an encoder-decoder architecture
specifically designed for understanding and generating source code. Unlike encoder-
only models (e.g., CodeBERT) or decoder-only models (e.g., CodeGPT), CodeT5
employs a unified text-to-text framework that allows it to handle a broader range of
tasks. These include automated code repair, summarization, translation, and
vulnerability classification.

A distinctive feature of CodeT5 is its identifier-aware pre-training strategy. In
addition to predicting masked segments of code, the model is trained to recognize
and recover key tokens such as variable and function names that often carry
important semantic meaning. This significantly enhances its ability to perform
tasks like clone detection and defect identification [38].

2.6.2. Fine-Grained Vulnerability Localization:
2.6.2.1. LineVul:

Many transformer-based models leverage self-attention mechanisms to assign
importance scores to individual tokens within the source code. These attention

20

Chapter 02:Language Models

weights can then be aggregated to infer which lines of code are most likely to contain
vulnerabilities. This approach not only enables fine-grained vulnerability localization
but also captures the surrounding semantic context of the software flaw [39].

2.6.3. Lightweight and Specialized Transformers:
2.6.3.1. NeoBERT:

NeoBERT is an enhanced variant of the original BERT model, incorporating
advanced optimization techniques such as Rotary Positional Encoding (RoPE) and
FlashAttention. These architectural improvements result in significantly faster
inference speed and reduced memory usage compared to models like ModernBERT.
As a result, NeoBERT is well-suited for deployment in production-level vulnerability
detection systems, where efficiency and scalability are critical [40].

2.6.3.2. ModernBERT:

ModernBERT is a lightweight and optimized version of the original BERT model,
designed to enhance both training and inference efficiency while maintaining
competitive classification accuracy. Although initially developed for natural language
processing tasks in the medical domain specifically for Japanese radiology reports its
architectural efficiency makes it a promising candidate for specialized applications
such as software vulnerability detection [41].

2.6.4. Decoder-Only Models:
2.6.4.1. Codex:

Codex, also known as code-davinci-002, is a decoder-only transformer model
developed by OpenAl and fine-tuned on large-scale code datasets collected from
open-source repositories such as GitHub. As a direct successor to GPT-3 and a
foundational model in the GPT-3.5 series, Codex supports a variety of code-centric
tasks, including secure code generation, bug repair, and automated documentation.

Through its hybrid training on both natural language and billions of lines of source
code, Codex enables more seamless interaction between programming intent and
machine output, effectively bridging the gap between human instructions and
executable code [42].

2.6.4.2. CodelLLaMA:

LLaMA (Large Language Model Meta Al) is a family of decoder-only transformer
models developed by Meta as open-weight alternatives to proprietary large language
models. These models offer scalable performance across a variety of natural
language understanding and generation tasks. The second generation, LLaMA 2,
includes models ranging from 7 billion to 70 billion parameters, and has rapidly
gained prominence in both academic research and industry applications.

Among the LLaMA derivatives, LLaMA Guard stands out for its focus on safety and

21

Chapter 02:Language Models

security. It is a fine-tuned version of LLaMA 2 specifically trained for safety alignment,
enabling it to classify and moderate both input prompts and model outputs based on
a structured safety taxonomy. This includes the detection of high-risk content such as
hate speech, violence, self-harm, and criminal intent making it particularly relevant for
secure Al deployment scenarios [43].

2.6.4.3. Qwen2.5-Coder:

Qwen2.5-Coder is a specialized variant of the Qwen2.5 model family, designed for
high-performance tasks related to source code, including code comprehension, bug
fixing, and code generation. The model is well-suited for multilingual development
environments, as it has been instruction-tuned using carefully curated datasets from
nearly 40 different programming languages.

The training pipeline for Qwen2.5-Coder includes the following key steps [44]:
» Extraction of algorithmic code snippets from GitHub

» Generation of synthetic instruction-response pairs using data from developer
Q&A forums

» Automated unit testing in a multilingual sandbox to validate correctness and
ensure high performance across languages

2.7. Datasets and Benchmarks:

2.7.1. Big-Vul:

The Big-Vul dataset is one of the largest publicly available resources for C/C++
vulnerability analysis. It includes 3,754 labeled vulnerabilities collected from 348
open-source projects, covering 4,432 code commits mapped to 91 different CWE
categories. Each record provides rich metadata, including the vulnerable function, the
corresponding patch, commit information, and CVE/CWE identifiers, as well as the
full code before and after the fix [45].

Big-Vul is particularly valuable due to its function-level granularity and inclusion of
both vulnerable and patched code versions. These characteristics make it ideal for
contrastive learning frameworks and fine-grained vulnerability localization models.

2.7.2. FormAl:

FormAl is a large-scale synthetic dataset specifically created for software
vulnerability detection. It was generated using GPT-3.5-turbo and subsequently
formally verified with ESBMC, ensuring logical consistency and correctness. The
dataset contains over 112,000 compilable C programs, with 197,800 labeled
vulnerabilities, each annotated with its corresponding CWE ID, line number, and
function name [46].

A key advantage of FormAl lies in its foundation on formal verification,

22

Chapter 02:Language Models

which significantly reduces the occurrence of false positives and ensures high-quality
ground-truth labeling. This makes it particularly effective for training models targeting
memory-related vulnerabilities and fine-grained classification tasks.

2.7.3. CASTLE:

CASTLE (CWE Automated Security Testing and Low-Level Evaluation) is a manually
curated benchmark composed of 250 compilable C micro-programs. Each test case
is mapped to a specific Common Weakness Enumeration (CWE) category, allowing
for line-level evaluation of both traditional static analysis tools and large language
models (LLMs) [36].

A notable contribution of this benchmark is the introduction of the CASTLE Score a
composite metric that evaluates detection performance across multiple dimensions,
including true positives, false positives, and the criticality level of CWEs.

Since CASTLE is based on formal verification, it offers high-quality ground-truth
labels and helps minimize labeling noise, making it highly suitable for evaluating
precision-critical vulnerability detection systems.

2.7.4. Limitations of Existing Datasets:

Despite their importance in advancing the field, many existing vulnerability detection
datasets suffer from critical limitations that reduce the reliability and generalizability of
trained models.

2.7.4.1. Synthetic Bias and Unrealistic Scenarios:

Artificial datasets, such as Juliet, are intentionally designed to include vulnerabilities
for the purpose of unit testing, making them less representative of real-world software
environments. This artificial structure can result in models that achieve strong
performance on benchmark evaluations but fail to generalize effectively to complex,
real-world codebases [36].

2.7.4.2. Severe Class Imbalance:

Most real-world datasets suffer from extreme class imbalance, containing a
disproportionately large number of non-vulnerable code samples. For instance,
Draper VDISC and Big-Vul include a significant portion of safe code, making it difficult
to train effective classifiers without applying techniques such as reweighting or
oversampling [47].

2.7.4.3. Labeling Noise and Static Analysis Dependence:

Some datasets rely on automated static analysis tools, such as Cppcheck and Clang,
to label vulnerabilities. While these tools are generally effective, they can introduce
false positives and labeling noise, especially in datasets like Draper VDISC and
SVCPA4C, where labels may reflect tool behavior rather than actual vulnerabilities [47].

23

Chapter 02:Language Models

2.7.4.4. Duplication and Data Leakage:

Many vulnerability datasets contain a significant amount of duplicated code, which
can result in data leakage between training and test sets. For example, Draper
VDISC was found to include over 26% near-duplicate functions even after applying
deduplication techniques, raising concerns about the validity of performance
evaluation [47].

2.8. Benchmarks and Evaluation Metrics:

Effective comparison of software vulnerability detection tools requires the use of
standardized benchmarks and clear performance metrics. In recent years, several
benchmarks have been introduced to enable consistent, reproducible, and realistic
evaluation of static analyzers, formal verification methods, and LLM-based models.

2.8.1.1. CASTLE Benchmark and Score:

The CASTLE benchmark is a manually curated micro-benchmark suite comprising
250 small C programs, each designed by cybersecurity experts to represent 25
distinct CWEs. Each sample is compilable and contains exactly one vulnerability or
none, which simplifies and standardizes the evaluation process [30].

To assess tool performance, CASTLE introduces the CASTLE Score, a
comprehensive metric defined as follows:

v' True Positives (TP): +5 points per correct vulnerability detection

v" True Negatives (TN): +2 points per correct identification of safe code

v' False Positives (FP): —=1 point per incorrect vulnerability detection

v" Bonus (B): Up to +5 additional points depending on the CWE'’s rank in the
[MITRE Top 25]

This scoring system penalizes noisy tools and rewards precision, particularly when
detecting high-risk CWEs [30].

2.8.1.2. MTEB: Massive Text Embedding Benchmark:

Although initially developed for evaluating text embeddings, the Massive Text
Embedding Benchmark (MTEB) has recently been extended to assess code models
across several tasks. These include:

» Semantic Code Search
> Code Summarization
» Code Retrieval

The English subset of MTEB comprises 7 tasks across 56 datasets, providing a
comprehensive testing ground for embedding quality. Evaluation is based on cosine

24

Chapter 02:Language Models

similarity between token-level embeddings, and high performance typically requires
contrastive fine-tuning [40].

2.8.1.3.Line-Level vs Function-Level Metrics:

Most existing datasets and models evaluate performance at the function level,
typically treating vulnerability detection as a binary classification problem (vulnerable
vs. safe). However, recent datasets and approaches such as LineVul and FormAl
support line-level classification, which offers more granular insights and is better
suited for real-world triage scenarios [36][48].

The most widely used evaluation metrics include [5]:
» Precision=TP /(TP + FP)
» Recall=TP /(TP + FN)

» F1-Score = 2 x (Precision x Recall) / (Precision + Recall)

> Accuracy = (TP + TN) / (TP + FP + TN + FN)

2.9. Use In Industry:

2.9.1. GitHub Copilot:

Powered by OpenAl's Codex, GitHub Copilot assists developers by offering real-time
code suggestions within their development environment. However, several studies
have shown that, without careful review, the generated code may introduce security
vulnerabilities [49].

2.9.2. Microsoft Security Copilot:

Microsoft's Security Copilot is the first generative Al solution designed specifically for
enterprise-level cybersecurity. It assists Security Operations Center (SOC) teams by
automating key tasks such as threat detection, malware code analysis, and incident
summarization, all powered by large language models (LLMs) *.

2.9.3. NIST Al RMF:

In July 2024, the National Institute of Standards and Technology (NIST) released a
specialized profile for Generative Al, emphasizing the need to incorporate Al
trustworthiness principles including explainability, robustness, and provenance into
secure software development practices [50].

thttps://aka.ms/CopilotForSecurity

25

Chapter 02:Language Models

2.9.4. SAST and LLM-Augmented Pipelines:

Recent solutions have started integrating Static Application Security Testing (SAST)
tools with large language models (LLMs) such as in the LSAST framework to
enhance vulnerability detection accuracy. In these setups, the LLM processes the
output of the SAST tool to identify potential vulnerability patterns that may have been
overlooked by traditional scanners [51].

2.10.Related Work:

Table 1 provides an overview of recent studies focused on vulnerability detection
using Large Language Models (LLMs). It summarizes the programming languages
targeted, the datasets used, the number of samples, the detection methods applied,
and whether the approaches support multiclass classification.

Name Year | Lang | Dataset Samples Method Multiclass
Tihanyi et | 2023 C FormAl 50,000 ESBMC Al Yes
al[52]
Sultan et | 2024 | C/C++ | Draper VDISC 24,492 LLM(DeLLNe NO
al[37] uN)
Zhanget | 2024 | C/C++ Real World 223 LLM Yes
al[53] Codes
Shestov et | 2024 | JAVA | Java Dataset / Finetuning NO
al[54] +LLM
Tamberg | 2025 | JAVA | Java Julit1.3 / LLM+Static Yes
et al[5] Tools
Ferraget | 2025 | C/C++ FormAl 243,075 Fine Tuned Yes
al[46] +FalconVulnBD Transformer
Dubniczky | 2025 C CASTLE 250 Formal Yes
Verification
et al[30] +prompted
LLMs

Table 1:Recent Studies on Vulnerability Detection Using LLMs

From this table, we observe a variety of approaches leveraging LLMs, sometimes in
combination with static analysis tools or formal verification techniques. The datasets

26

Chapter 02:Language Models

used differ significantly in scale and origin, ranging from synthetic benchmarks to
real-world code samples.

2.11. Conclusion :

This chapter reviewed key approaches in software vulnerability detection, from
traditional ML methods to advanced LLM-based models. It also examined benchmark
datasets and evaluation metrics, highlighting the trade-offs between precision,
coverage, and real-world applicability. These insights lay the groundwork for the
experimental analysis in Chapter 3.

27

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Chaptre 03

Design and Performance

Evaluation of an LLM-
Based Software
Vulnerability Detection
System

3.1. Introduction:

As software systems grow in size and complexity, detecting security vulnerabilities at
scale has become increasingly challenging. Traditional static and dynamic analysis
techniques, while effective to some extent, often struggle with scalability, adaptability,
and the accurate identification of subtle or novel vulnerability patterns. In response to
these limitations, Large Language Models (LLMs)—pretrained on massive corpora of
natural and programming languages—have emerged as powerful tools for semantic
code understanding and classification tasks.

The motivation behind this chapter stems from the potential of LLMs to generalize
across diverse vulnerability types, leverage contextual patterns in source code, and
reduce reliance on handcrafted rules or manually engineered features. By fine-tuning
transformer-based models such as BERT, CodeBERT, RoBERTa, DeBERTa, and
NeoBERT, we aim to assess their effectiveness in multi-class vulnerability detection
across real-world code samples.

This chapter outlines the experimental framework used to build and evaluate our
proposed LLM-based detection system. It details the dataset selection and
preprocessing pipeline, model training strategies, evaluation metrics, and comparison
with both traditional machine learning baselines and other transformer-based models.
The goal is to provide a comprehensive, reproducible, and fair assessment of LLMs
in the context of CWE-based vulnerability classification.

3.2. Proposed LLM-Based Vulnerability Detector:
3.2.1. Overall System Architecture:

uuuuu rward o - - o TR Safe
i ‘ 118 @
C Code Prompted| | |3 (GSSmuseese a Classification
C Code Result
Embedding o + Word Embedding & Vulnerability
veetsrs Inp Position #1 Positional Encoding] type

Figure 16:Overall System Architecture for Prompt-Based Vulnerability Classification using a

28

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Transformer Model

The overall architecture of the vulnerability detection system is designed to classify C
code snippets as either safe or containing a specific type of vulnerability. The system
leverages a pre-trained transformer-based language model (e.g., BERT) fine-tuned
for multi-class classification. The process involves several key components, as
illustrated in Figure 16.

Step 1: Input Preparation — Prompted C Code

The raw C code is first processed and optionally augmented with a natural language
prompt. This prompt is used to provide semantic guidance to the model. For example,
prompt formats like:

“What type of vulnerability is this?” (Prompt A)

are prepended to the source code, forming the final text input. This allows the model
to interpret the input in a more structured, question-aware context.

Step 2: Embedding and Encoding

The prompted code is tokenized and passed through an embedding layer, where
each token is converted into a dense vector representation. Positional encodings are
then added to retain sequence information.

The embedded sequence is then fed into the transformer encoder stack, composed
of multiple layers of:

v Multi-head self-attention
v Feed-forward neural networks
v Layer normalization and residual connections

This architecture allows the model to learn long-range dependencies within the code,
and understand control flow and data flow structures even across distant tokens.

Step 3: Classification

The output of the final encoder layer is pooled (typically using the [CLS] token
representation) and passed through a classification head (usually a dense layer with
softmax activation). The model predicts either:

» Safe — if the input contains no detectable vulnerability

» Vulnerable — if a wvulnerability is detected, the model outputs the type of
vulnerability (e.g., buffer overflow, NULL pointer dereference, etc.)

Step 4: Output Interpretation

The predicted label is interpreted as the final result. If vulnerable, the system
identifies the most probable vulnerability category based on its training classes.
Otherwise, the code is classified as safe.

3.2.2. Data Acquisition and Labeling:

29

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

3.2.2.1. Dataset Source: FormAl-v2

This study draws on the FormAl-v2 dataset a large-scale, high-quality benchmark
meticulously crafted for the task of software vulnerability detection. It contains a total
of 246,549 C-language code samples, each thoroughly annotated to reflect the
presence or absence of security flaws. These samples were generated using a
diverse set of advanced large language models (LLMs), including GPT-4, CodeLlama,
Gemini Pro, and Falcon. To ensure neutrality and prevent bias, generation prompts
followed a template-driven approach, deliberately avoiding the injection of known
vulnerabilities while preserving variation in coding patterns.

3.2.2.2. Labeling Methodology:

Vulnerability annotations were applied using ESBMC (Efficient SMT-Based Bounded
Model Checker), a formal verification tool that leverages symbolic model checking to
assess the correctness and safety of C programs. When a flaw is detected, ESBMC
outputs a counterexample trace a detailed execution path that confirms the violation.
This labeling strategy grounds the dataset in formal semantics, providing a reliable
and reproducible foundation for vulnerability classification.

Label Taxonomy: Safe vs. Vulnerable (CWE-Based)

Each sample in the dataset is assigned one of two primary labels:
v' Safe: No security violations detected.

v" Vulnerable: One or more security flaws identified.

For vulnerable samples, additional classification is provided using the Common
Weakness Enumeration (CWE) framework, encompassing 42 unique vulnerability
types. Representative examples include:

» CWE-476: Null Pointer Dereference
» CWE-787: Out-of-Bounds Write

» CWE-190: Integer Overflow

» CWE-120: Classic Buffer Overflow

Importantly, at least six of these CWE categories fall under the MITRE CWE Top 25,
reinforcing the dataset’s focus on high-impact, real-world vulnerabilities[54].

3.2.2.3. Dataset Characteristics:

» Total code samples: 246,549

» Vulnerable samples: ~63.47%

» Diversity: Some samples contain multiple CWE vulnerabilities
>

Common patterns: Pointer misuse and memory safety errors (e.g.,

30

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

buffer overflows, null dereferencing) dominate the distribution

Thanks to its scale, structured design, and formal rigor, FormAl-v2 serves as an ideal
benchmark for training and evaluating both LLM-driven detectors and traditional
machine learning models in the realm of secure code analysis.

3.2.3. Preprocessing and Input Representation:

To prepare the raw C source code samples for effective training and inference with
the BERT model, a structured preprocessing pipeline was implemented to ensure
compatibility with the model’s architecture while preserving the semantic integrity of
each input.

The process began by filtering the dataset to retain only labeled samples, discarding
entries with null or undefined values in the “Error type” column, as well as generic or
ambiguous labels that did not correspond to specific vulnerability classes. From the
cleaned dataset, a representative set of well-defined vulnerability types was selected
based on label prevalence, ensuring that each class had sufficient support to
contribute meaningfully to supervised learning and evaluation.

Each code snippet was then truncated to a maximum of 2,000 characters to fit within
the tokenization limits of transformer models while retaining key semantic content.
Following this, two distinct prompt formulations were designed to embed the source
code within natural language contexts, allowing the model to leverage both code
semantics and linguistic cues:

Prompt A:
Code:\n<code>\n\nQuestion: What type of vulnerability is this?

These prompted inputs were tokenized using the pretrained BERT tokenizer (bert-
base-uncased), with padding and truncation enabled, and a maximum sequence
length of 512 tokens applied. All inputs were processed in a function-agnostic manner,
meaning each snippet was treated as a standalone unit, enabling the model to focus
on localized patterns of vulnerability without segmenting the code by function or file.

Unlike purely supervised training with raw code tokens, this approach incorporated
prompt engineering to explicitly encode the classification task within the input text. By
integrating natural language cues into the input, the model was guided toward
contextual understanding of code vulnerabilities through language, rather than relying
solely on structural token patterns.

3.2.4. LLM Fine-Tuning Strategy:

All fine-tuning experiments were conducted using the Hugging Face Transformers
library (version 4.35.2), with PyTorch as the computational backend. Training and
evaluation were performed on Google Colab Pro utilizing an NVIDIAA100 GPU and a
high-memory runtime environment (~83 GB RAM), which enabled efficient
parallelization of batches and reduced training time.

31

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Input tokenization was performed using the pretrained BERT tokenizer, with each
sample truncated or padded to a maximum sequence length of 512 tokens.
Tokenization was applied consistently across both Prompt A and Prompt B variants,
preserving the structural integrity of code within a natural language context.

The training regime was standardized across all runs as follows:
Number of epochs: 3

Batch size: 16

Learning rate: 2e-5

Optimizer: AdamW (implicitly through Trainer)

Loss function: CrossEntropyLoss

Weight decay: 0.01

Warmup ratio: 0.1

Evaluation strategy: Per epoch using a stratified validation set

N N N N N N N NN

Mixed precision: Disabled (fp16 = False) to maintain numerical stability

To ensure fair representation across classes and avoid bias toward dominant labels,
a stratified 70/15/15 train-validation-test split was applied. Classes with fewer than
two samples were excluded prior to training to prevent instability during optimization.

No prompt engineering or instruction tuning was applied. The model was trained
directly on the tokenized input label pairs, enabling it to learn structural and semantic
mappings between code patterns and CWE identifiers.

This fine-tuning strategy allowed BERT to effectively adapt its pretrained knowledge
to the specific task of multi-class vulnerability classification, while preserving
generalization capabilities and minimizing overfitting across frequent and rare CWE
classes.

3.2.5. Inference Pipeline:

pipeline previously described, including prompt formatting, label encoding, and token
length normalization. Once prompted and tokenized, each test sample was passed
through the fine-tuned BERT classifier to obtain a raw logit vector representing the
model’s confidence over all predefined vulnerability categories.

These logits were subsequently processed using the softmax function to generate
normalized probability scores. The final prediction was selected using the argmax of
these probabilities, corresponding to the most likely CWE class or the “Safe” label.
No threshold calibration or abstention mechanism was applied, although such
strategies could be beneficial in security-sensitive deployments to reduce false
positives or support uncertain classifications.

32

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

To facilitate evaluation and interpretability, the predicted numerical labels were
decoded back to their original textual form using the fitted LabelEncoder. This
enabled consistent generation of confusion matrices and classification reports.
Additionally, the lightweight, prompt-based nature of the inference pipeline allows
seamless integration into real-world tools such as static analyzers or CI/CD pipelines
for automated vulnerability detection.

3.3. Experimental Setup and Methodology

3.3.1. Dataset Preparation:

To ensure efficient training and balanced evaluation, the dataset preparation process
involved multiple filtering and transformation steps. From the original FormAl-v2
dataset containing over 246,000 C code samples, only entries with non-null
vulnerability labels (i.e., valid entries in the "Error type" column) were retained. To
reduce computational demands while maintaining class diversity, a random 50%
sample of the labeled data was selected.

To address the issue of class imbalance, vulnerability classes with fewer than two
occurrences were removed. This step helped avoid instability during training and
ensured that each remaining class had sufficient representation. The top 9 most
frequent CWE classes were then identified, and combined with the “Safe” label to
form a 10-class classification task.

For all selected samples, the raw C code was truncated to 2,000 characters to
preserve core semantics while fitting within the input constraints of transformer
models. Each code sample was then processed using label encoding, where textual
labels (e.g., “CWE-787") were mapped to numerical class indices using
LabelEncoder. This allowed for efficient handling of class targets during training.

Finally, the dataset was split into 80% training and 10% validation and 10% test
subsets, using a stratified split to maintain the original class distribution across both
sets. This ensured that the model would be exposed to a representative sample of
each vulnerability type during both training and evaluation phases.

3.3.2. Fine-Tuning Environment:

All fine-tuning and training experiments were conducted on Google Colab Pro,
utilizing an NVIDIA A100 GPU with High-RAM (~83 GB). This setup provided
sufficient computational power and memory to support the large-scale fine-tuning of
Transformer-based models, including NeoBERT. All training was performed in full 32-
bit floating-point precision (fp16=False) to avoid instability or numerical errors during
learning.

The deep learning pipeline was implemented using the Hugging Face Transformers
library (v4.35.2) in conjunction with Accelerate (v0.25.0) and PyTorch as the backend.

33

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Tokenization was handled using the pretrained tokenizer of each model, including
NeoBERT’s tokenizer, which applies subword-level encoding compatible with the
architecture.

To maintain consistency and enable fair comparison across model architectures, we
applied the same fine-tuning configuration to all Transformer-based models, including
NeoBERT. The training regimen was as follows:

Batch size: 8

Learning rate: 2e-5

Epochs: 3

Loss function: CrossEntropyLoss

Data split: Stratified, to preserve class distribution across training and
validation folds

For traditional machine learning baselines (e.g., Support Vector Machines, Random
Forest, XGBoost), training was carried out using scikit-learn and XGBoost's GPU-
accelerated backend to minimize training time while ensuring consistent evaluation
under the same experimental conditions.

3.3.3. Evaluation Metrics:

To evaluate the effectiveness of the models, we employed a comprehensive suite of
classification metrics designed to capture both overall performance and class-specific
behavior:

Accuracy: Provided a high-level measure of performance by calculating the
proportion of correct predictions across all classes.

Precision, Recall, and F1-Score: These core metrics were particularly useful for
assessing model quality in the presence of class imbalance, helping quantify both
false positives and false negatives.

Macro-Averaging: Treated all vulnerability classes equally, regardless of frequency,
offering a balanced perspective on the model’s ability to generalize across both
common and rare CWE labels

Weighted (Micro) Averaging: Incorporated class distribution into the evaluation,
highlighting potential biases by placing more emphasis on frequently occurring
classes.

34

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Confusion Matrices: Generated for each model to visualize classification outcomes,
pinpoint misclassification trends, and identify specific CWE types that were frequently
confused.

Per-Class Metric Breakdown: Reported individual precision, recall, and F1-score for
each CWE class, allowing for a fine-grained analysis of detection strengths and
weaknesses.

Altogether, these evaluation criteria offered a robust and nuanced view of each
model’s classification capabilities, with a focus on fairness and consistency across a
diverse range of vulnerability categories.

For the traditional machine learning models we employed the same evaluation
framework to ensure consistency and comparability across model types. All
evaluations were conducted using the scikit-learn library.

Metrics such as accuracy, macro-averaged and weighted F1-scores, along with
confusion matrices, were computed to assess overall and class-specific performance.
To capture detailed per-class insights, we wused scikit-learn’s built-in
classification_report function.

Although these models were not subjected to fine-tuning in the same way as the
LLM-based systems, the evaluation protocol was kept uniform. This alignment
allowed for a fair and objective comparison between traditional approaches and
transformer-based architectures in terms of vulnerability detection capability.

3.4. Experimental Results:
3.4.1. Training & Validation Curves:

Interpretation of BERT Training and Validation Behavior:

BERT showed a clear learning trajectory across three epochs, with notable
reductions in both training and validation loss (0.7328 — 0.5627 and 0.7249 —
0.6622, respectively). Performance metrics improved steadily, as accuracy rose to
75.53% and F1 reached 0.7334. These results reflect a stable training process and
strong generalization, making BERT particularly suitable for capturing nuanced
patterns in vulnerability classification tasks.

Epoch Traiming Loss Validation Loss Accuracy F1

1 0.732800 0.724977 0.745434 0.703394
2 0.673000 0.670745 0.753538 0.720295
3 0.562700 0.662251 0.755264 0.733443

Table 2:BERT Training and Validation Results

35

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Interpretation of CodeBERT Training and Validation Behavior:

CodeBERT delivered a smooth and consistent optimization path, marked by a
substantial drop in training loss (0.7198 — 0.5447) and corresponding improvements
in validation loss. Accuracy climbed from 74.24% to 75.39%, while the F1 score
advanced to 0.7370. Its ability to incrementally enhance both precision and recall
across epochs highlights CodeBERT’s strong representational capabilities for code-
based vulnerability data.

Epoch Training Loss Validation Loss Accuracy F1

1 0.719800 0.718048 0742377 0.719334
2 0.646000 0.673305 0748015 0.720247
3 0.544700 0.668566 0753883 0.736993

Table 3:CodeBERT Training and Validation Results

Interpretation of RoOBERTa Training and Validation Behavior:

RoBERTa demonstrated gradual yet reliable improvement throughout training. The
loss curves showed healthy declines (training: 0.7596 — 0.5912; validation: 0.7674
— 0.6839), while accuracy and F1 metrics consistently moved upward. Although its
initial performance was lower than some peers, RoOBERTa narrowed the gap by the
final epoch, showcasing robust adaptability and learning efficiency over time.

Epoch Traiming Loss Validation Loss Accuracy F1

1 0759600 0.76737% 0729720 0.706399
2 0.668900 0701885 0.745369 0.714042
3 0.591200 0.683851 0.748015 0.729521

Table 3:RoBERTa Training and Validation Results

Table

Interpretation of DeBERTa Training and Validation Behavior:

DeBERTa stood out for its smooth convergence and well-aligned training dynamics.
Loss values decreased predictably across epochs, and evaluation scores improved
from 73.64% to 75.17% (accuracy) and from 0.7024 to 0.7305 (F1). The model
displayed dependable performance gains without signs of volatility, underscoring its
effectiveness in modeling both surface-level and contextual signals for vulnerability
detection.

36

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Epoch Training Loss Validation Less Accuracy F1

1 0.736800 0.749636 0.736394 0.702435
2 0.676700 0.682836 0.743643 0.714103
3 0.568700 0.656114 0751697 0.730455

Table 4:DeBERTa Training and Validation Results

Interpretation of NeoBERT Training and Validation Behavior:

NeoBERT displayed consistent and efficient learning progression, with the training
loss decreasing from 0.6950 to 0.5341, and the validation loss remaining low and
stable between 0.6970 and 0.6528, indicating no signs of overfitting. Throughout the
training epochs, the model’s accuracy improved from 74.36% to 75.08%, while the
F1-score increased from 0.7222 to 0.7369, reflecting balanced learning and robust
generalization. These stable trends highlight NeoBERT’s effectiveness in capturing
both structural and semantic patterns relevant to vulnerability detection.

Epoch Traimning Loss Validation Loss Accuracy F1

1 0.695000 0.696975 0.743643 0.722223
2 0.633400 0.652677 0.749971 0.726456

3 0.534100 0.652796 0.750892 0.736940

Table 5:NeoBERT Training and Validation Results

3.4.2. Test-Set Performance:

To evaluate model performance, we adopted a comprehensive set of classification
metrics, including accuracy, macro-averaged F1, weighted F1, and a per-class
breakdown.

BERT: The BERT model achieved a strong test-set accuracy of 76%, with a macro
F1-score of 0.46 and a weighted F1-score of 0.73. It demonstrated high effectiveness
on dominant classes such as buffer overflow on scanf (F1: 0.85) and NULL pointer
dereference (F1: 0.79), reflecting its strength in modeling frequent patterns. However,
performance declined notably on rare CWE types like ieee_div (F1: 0.19) and
overflow on add (F1: 0.22). The gap between macro and weighted F1 indicates a
class imbalance effect, where BERT performs best on well-represented vulnerabilities
but struggles with low-frequency or semantically subtle ones.

37

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

=h
=
1
(%
(n])
=]
5
m

precision support
37
58
44
38
39
51
81

244
92
144

arithmetic overflow on add

arithmetic overflow on floating-point ieee diwv
arithmetic overflow on floating-point ieee mul

arithmetic overflow on mul
arithmetic overflow on sub

e O 0 o

buffer overflow on fscanf

buffer overflow on scanf

dereference failure: NULL pointer
dereference failure: array bounds violated

]

78
13

o R~ R -~ -~ = = O = = R = R =

® ®

dereference failure: invalid pointer

accuracy
macro avg
weighted avg

Table 6:Classification Report for BERT

CodeBERT: CodeBERT delivered slightly stronger generalization, with a macro F1-
score of 0.47 and weighted F1 of 0.74, alongside a 75% accuracy. It achieved the
highest F1 on buffer overflow on scanf (0.86) and consistently strong results on
pointer-related errors such as array bounds violation (F1: 0.71). Its performance on
ieee_mul (F1: 0.26) and other arithmetic-related errors was slightly better than
RoBERTa and BERT, suggesting improved handling of numeric expressions. These
results confirm that CodeBERT benefits from its training on code-specific data,
offering more robust detection across structural patterns in C source code.

precision support

38
.22
48
42
.36
45
.82
AT
.69
.67

244
92
144

o
B

arithmetic overflow on add
arithmetic overflow on floating-point ieee diwv
arithmetic overflow on floating-point ieee mul
arithmetic overflow on mul
arithmetic overflow on sub

[I |

e S
=

)
s

o
B

]
=
]
i

e O O
ca

-]
.

[
I
)

™
L
o+
L

buffer overflow on fscanf

4]
[a)]

buffer overflow on scanf
dereference failure: NULL pointer

& &
=~
(Ts]

:S.'J'IJI'SJIS:I
= Ca WO
B

et |
iy

dereference failure: array bounds wviclated
dereference failure: invalid peinter

T OO 06
00 00 0 80 ad@

:S;
8

accuracy
macro avg
weighted avg

Table 7:Classification Report for CodeBERT

RoBERTa: RoBERTa yielded similar results to BERT, with an overall accuracy of
75%, macro F1-score of 0.46, and weighted F1-score of 0.73. It maintained high
predictive strength for CWE classes with larger support, such as buffer overflow on
scanf (F1: 0.84) and NULL pointer dereference (F1: 0.78). However, its performance
on underrepresented arithmetic overflow types remained limited, with F1-scores
dropping to as low as 0.19. This demonstrates that while RoBERTa is reliable for

38

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

standard cases, it shares similar vulnerabilities to BERT when confronted with rare or
ambiguous code structures.

o
i
1
A
[}
]
e
o

precision recall support
.37 a.1%
.58 a.12
<l a.24
.34
.48
438
.81
.76
.69
.66

244
92
144

arithmetic overflow on add
arithmetic overflow on floating-point ieee div

@@ ®
0

Ll
iy

arithmetic overflow on floating-point ieee_mul
arithmetic overflow on mul

=

MM
L

%3]

arithmetic overflow on sub

buffer overflow on fscanf

buffer overflow on scanf

dereference failure: NULL pointer
dereference failure: array bounds violated
dereference failure: invalid peointer

[+1]

[I I I.SI []
=]

a.
a.
a.
a.
a.
@.46
@.85
a.
a.
a.

]

accuracy
macro avg
weighted avg

Table 8:Classification Report for RoBERTa

DeBERTa: DeBERTa reached an accuracy of 75%, with macro F1 of 0.45 and
weighted F1 of 0.73. It performed comparably to other models on major vulnerability
types, particularly buffer overflow on scanf (F1: 0.85) and NULL pointer dereference
(F1: 0.77). Nonetheless, it exhibited a slightly steeper drop in performance on
arithmetic and floating-point errors, where F1-scores fell below 0.26 for most classes.
Despite its smooth training dynamics, the test-set results indicate DeBERTa may
require further tuning or context expansion to improve its sensitivity to rare CWE
categories.

precision recall fl-score support

a.16
a.13
a.11
a.28
8.18
8.38
a.98
a8.81
a.74
a.57

arithmetic overflow on add
arithmetic overflow on floating-point ieee div
arithmetic overflow on floating-point ieee_mul
arithmetic overflow on mul

Soo®

arithmetic overflow on sub

buffer overflow on fscanf

buffer overflow on scanf

dereference failure: MULL pointer
dereference failure: array bounds wiolated

:x: |.$|

=
20 200 800006

oo

dereference failure: invalid peinter

accuracy
macro avg
weighted avg

Table 9:Classification Report for DeBERTa

NeoBERT: NeoBERT achieved an accuracy of 75%, with a macro F1-score of 0.45
and a weighted F1-score of 0.74, placing it on par with other transformer-based
models. It showed strong performance on high-frequency vulnerability types such as

39

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

buffer overflow on scanf (F1: 0.85) and NULL pointer dereference (F1: 0.78),
indicating reliable learning on dominant CWE classes. However, similar to other
models, NeoBERT struggled with rare categories, particularly arithmetic overflows
and floating-point operations, where F1-scores remained around or below 0.30.
These results suggest that despite stable training behavior, further refinement—such
as data augmentation or enhanced architectural context—may be needed to improve
NeoBERT’s recall on underrepresented vulnerabilities.

precision recall fl-score

.36
HE]

.22
.14
.22
e
23
.58
-89
.58
e
e,

27
.28
.34
.34
i)

arithmetic overflow on add

arithmetic overflow on floating-point ieee diwv
arithmetic overflow on floating-point ieee mul
arithmetic overflow on mul .36

arithmetic overflow on sub

buffer overflow on fscanf

buffer overflow on scanf

dereference failure: NULL pointer
dereference failure: array bounds violated

dereference failure: invalid pointer

.51

AT

[I~~~ I -~ - - -~ R
L= O IO < = R = O = = T« = Y -

8
a
a.
a
a.
a
a.
a
a.
a

.67

=

aCcuracy

o=

macro avg
weighted avg

x>

Table 10:Classification Report for NeoBERT
3.4.3. Confusion Matrix & Error Analysis:

BERT: The confusion matrix of the BERT model reveals notable patterns of
misclassification among semantically related CWE categories. While the model
achieved strong diagonal values for high-frequency classes like “buffer overflow on
scanf’ (3870 correctly predicted instances) and “dereference failure: NULL pointer”
(1264), it also showed systematic confusion in several areas.

Arithmetic overflows were especially prone to mutual misclassification. For instance,
instances of “arithmetic overflow on add” were often confused with “arithmetic
overflow on sub” (134 misclassifications) and “NULL pointer dereference” (30
misclassifications), highlighting difficulties in distinguishing numerical operations with
similar syntax patterns. Similarly, floating-point operations, such as ieee_mul and
ieee_div, were occasionally mislabeled as generic arithmetic overflows or misrouted
toward “buffer overflow on scanf’, likely due to token overlap.

Pointer-related vulnerabilities, such as “dereference failure: invalid pointer”, were
frequently confused with “NULL pointer dereference” (117 times), and vice versa.
This pattern suggests a challenge in recognizing subtle semantic cues, especially in
snippets lacking strong contextual anchors like type annotations or initialization status.

In rare cases, misclassifications spilled over between logically distant classes. For
example, “buffer overflow on fscanf’ was wrongly identified as “scanf’ (17 times) or
even “NULL pointer dereference”, indicating that shallow surface features may
mislead the model in lower-frequency classes.

40

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Overall, while BERT demonstrated strong discrimination power on dominant
vulnerabilities, its errors expose persistent challenges in separating closely related
CWE types. These findings underline the need for context-aware representations and
potentially integrating static code analysis cues to reduce ambiguity in edge cases.

Confusion Matrix - BERT

arithmetic overflow on add 38 o o El 11 o 134 12 10 30 .

arithmetic overflow on floating-point ieee_div o 1 3 3 o 1 69 2 2 1

3000
arithmetic overflow on floating-point ieee_mul 4 0 2 26 1 o o 114 o o 1

arithmetic overflow on mul 4 9 1 o 35 6 5 86 17 as 3 2500

arithmetic overflow on sub - 16 3 o 9 as 1 180 11 30 10
- 2000

Actual

buffer overflo

- 1500
buffer overflow on scanf - 24 o 30 21 39 12 147 81 32

dereference failure: NULL pointer 1 1 o 1 1 5 175 1264 114 16

scanf - 1 1 o a 1T 35 17 6 8 1

- 1000

dereference failure: array bounds violated o 2 o 6 El ° 115 151 937 63

dereference failure: invalid pointer 4 15 1 o 3 3 1 40 16 117 303

Predicted

Figure 17:Confusion Matrix of BERT on the Top 10 Most Frequent CWE Vulnerability Classes

CodeBERT: The confusion matrix of CodeBERT reveals generally strong
performance on frequent vulnerability classes, but also points to notable confusion
between closely related categories. As expected, “buffer overflow on scanf’ yielded
the highest correct predictions (3819 instances), followed by “NULL pointer
dereference” (1270 correct predictions), confirming the model's effectiveness on
dominant classes.

However, arithmetic-related errors continued to show high inter-class
misclassification. For example, “arithmetic overflow on add” was frequently mistaken
for “sub” (120 times) and “invalid pointer” (33 times), indicating semantic overlap in
low-level arithmetic expressions. Similarly, “floating-point ieee_mul” saw significant
misrouting toward “buffer overflow on scanf’ (112 instances), reflecting a trend where
low-confidence samples drift toward over-represented labels.

In pointer-related errors, “invalid pointer dereference” was misclassified as “NULL
pointer’ 118 times, while “array bounds violation” had 153 false positives as “NULL
pointer” and 103 as “scanf’, reinforcing the model’s struggle to distinguish subtle
memory access patterns when syntactic cues are ambiguous.

Overall, despite strong overall classification metrics, CodeBERT’s confusion matrix
exposes weaknesses in separating semantically similar classes and suggests a
tendency toward overgeneralization in the presence of limited context. Improvements
could focus on enhancing code-level structural understanding or leveraging
control/data flow features to reduce these ambiguities.

41

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Confusion Matrix - CodeBERT

arithmetic overflow on add - 48 [} o 8 14 [} 120 11 10 33 3500

arithmetic overflow on floating-point ieee_div 4 0 13 2 2 [1 69 o 4 1
3000

arithmetic overflow on floating-point ieee_mul 4 0) 29 o [} [112 o 1 T

arithmetic overflow on mul ¥ 1 0 a4 10 3 79 25 35 3 2300

arithmetic overflow on sub o 17 3 o El 67 1 159 11 29 9
- 2000

Actual

buffer overflow on fscanf - 1 1 a 3 1 32 19 7 k] 1

- 1500
buffer overflow on scanf | 27 1 30 25 76 16 154 83 25

dereference failure: NULL pointer 1 1 2 o 3 3 6 160 1270 118 17 _ 1000

dereference failure: array bounds violated 4 0 L o 10 16 7 103 153 955 a7

- 500

dereference failure: invalid pointer 4 25 2 a 2 -} 1 36 16 139 275

Predicted

Figure 18:Confusion Matrix of CodeBERT on the Top 10 Most Frequent CWE Vulnerability Classes

RoBERTa: The confusion matrix of ROBERTa reveals misclassification trends similar
to BERT, particularly in semantically adjacent classes. Despite RoBERTa’s improved
accuracy on several major vulnerability types, certain weaknesses persist in
differentiating overlapping CWE categories.

The model excelled at classifying “buffer overflow on scanf’, with 3802 correct
predictions, and “NULL pointer dereference” with 1266 correct. However, it also
frequently misclassified pointer dereference errors, such as ‘“invalid pointer
dereference”, which was wrongly predicted as “NULL pointer” (137 times), and vice
versa. This pattern reflects difficulty in discerning contextual differences when pointer
types or memory regions are under-specified.

Arithmetic-related vulnerabilities also posed a challenge. For example, “arithmetic
overflow on add” was confused with “sub” (128 times), while “ieee_mul” was often
misinterpreted as a generic overflow type or routed to “buffer overflow on scanf’.
Such errors stem from shared lexical patterns and limited arithmetic differentiation in
short code snippets.

RoBERTa also exhibited leakage of predictions into high-frequency classes.
Misclassifications into “buffer overflow on scanf’ appeared from nearly all other
categories, showing a bias toward dominant labels in ambiguous scenarios.

In summary, while RoBERTa performed reliably on dominant CWE types, its
confusion matrix exposes challenges in differentiating between structurally or
semantically similar vulnerabilities. These findings point to the need for integrating

42

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

richer code semantics or control-flow context during training to reduce class
confusion.

Confusion Matrix - RoBERTa

arithmetic overflow on add 46 o o 8 6 1 128 10 8 37 3500

arithmetic overflow on floating-point ieee_div 1 11 A 2 0 1 72 1 2 1
3000

arithmetic overflow on floating-point ieee_mul4 0 ! 35 0 0 0 106 3 o S

. 2500
arithmetic overflow on mul+4 8 2 o 36 5 2 82 29 a0 3

arithmetic overflow on sub - 18 1 o 7 55 2 177 8 28 9
- 2000

Actual

buffer overflow on fscanf - 1 1 o 3 1 32 21 6 8 1

- 1500
buffer overflow on scanf | 29 3 a4 29 50 14 158 92 37

dereference failure: NULL pointer o = o 6 1 6 168 1266 113 16 _ 1000

dereference failure: array bounds violated o 3 o 10 15 6 112 168 939 a1

- 500

dereference failure: invalid pointer 1 20 2 o 4 3 2 31 21 137 279

Predicted

Figure 19:Confusion Matrix of RoBERTa on the Top 10 Most Frequent CWE Vulnerability Classes

DeBERTa: DeBERTa demonstrated strong accuracy on high-frequency vulnerability
classes but continued to exhibit confusion in semantically overlapping categories.
The model correctly identified 3827 instances of “buffer overflow on scanf’ and 1277
for “NULL pointer dereference”, affirming its robust performance on dominant CWE
labels.

Nonetheless, the matrix shows consistent misclassifications between arithmetic-
related overflows. For example, “arithmetic overflow on add” was mistakenly labeled
as “sub” 130 times and as “invalid pointer dereference” 35 times. Similarly, “floating-
point ieee_mul” had over 125 false positives into “scanf’, suggesting that token-level
similarity and limited contextual cues led the model to collapse rare types into more
frequent categories.

In pointer-related vulnerabilities, “invalid pointer dereference” was misclassified as
“‘NULL pointer” 137 times, and vice versa. The high confusion rates in this group
suggest limitations in distinguishing between similar dereference failure modes
without deeper control-flow awareness.

Moreover, low-confidence predictions tended to default into the overrepresented
class “buffer overflow on scanf’, reinforcing a model bias toward high-support
categories under ambiguity.

In conclusion, DeBERTa proved effective for major vulnerability classes but still faced
ambiguity when distinguishing semantically similar CWE types. Addressing these
issues may require incorporating richer code structure representations or training with
contrastive strategies to better separate close-category features.

43

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Confusion Matrix - DeBERTa

arithmetic overflow on add 38 o o =] 14 o 130 12 7 35 3500

arithmetic overflow on floating-point ieee_div o 12 2 a o & 68 1 = 1
3000

arithmetic overflow on floating-point ieee_mul { 0 2 16 o o o 125 o o 1

arithmetic overflow on mul+ 8 2 o a1 8 3 78 27 38 2

arithmetic overflow on sub 4 11 3 [6 55 o 173 10 39 8
2000

Actual

buffer overflow on fscanf 1 1 [3 T 28 23 8 8 1

dereference failure: NULL pointer 1 1 o 3 o 6 151 1277 122 17 _ 1000

dereference failure: array bounds violated 1 2 o ° 8 s 120 150 954 a3

dereference failure: invalid pointer 4 12 2 o a a 1 36 18 137 285

Predicted

Figure 20:Confusion Matrix of DeBERTa on the Top 10 Most Frequent CWE Vulnerability Classes

NeoBERT: NeoBERT maintained strong classification performance on dominant
vulnerability types while continuing to face challenges in distinguishing semantically
similar CWE classes. According to the updated confusion matrix, the model correctly
identified 3775 instances of “buffer overflow on scanf’ and 1269 instances of “NULL
pointer dereference”, confirming its robustness on frequent patterns.

However, arithmetic overflows remained a consistent source of misclassification. For
example, “arithmetic overflow on sub” was often mislabeled as “add” (117 times) and
“scanf’ (29 times). Similar confusion appeared in floating-point operations, such as
“‘ieee_mul”, which was incorrectly predicted as “scanf’ over 100 times. These trends
highlight the model’'s difficulty in separating low-frequency categories that share
lexical and structural patterns.

In the pointer-related group, “invalid pointer dereference” was misclassified as “NULL
pointer” in 145 cases, reinforcing the pattern of overlap observed across models like
BERT and DeBERTa. Additionally, there was a consistent funneling of ambiguous
samples into high-frequency classes, especially “buffer overflow on scanf’, indicating
a prediction bias caused by class imbalance.

Despite these challenges, NeoBERT’s overall confusion profile remains stable and in
line with other LLM-based classifiers. Its performance suggests that while the model
captures dominant classes effectively, improvements such as class-aware training
strategies or enhanced code context modeling could reduce confusion across
semantically adjacent vulnerabilities.

44

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Confusion Matrix - NeoBERT

arithmelic overflow on add + 54 1 o El 13 o 117 13 El 30 3200

arithmetic overflow on floating point icee_div o o 13 a 4 o 6 66 o 3 5
3000

arithmetic overflow on floating-point ieee_mul - o 3 31 o o o 108 o 1 1

2500
arithmetic overflow on mul - el 1 o 52 r 3 IE 24 34 3

arithmetic overflow on sub - 22 5 o 1s 71 [142 13 33 6
- 2000

Actual

buffer overflow on fscanf 1 1 o 3 T 37 1s ° 7 o

1s00
buffer overflow on scant 4 34 3 XY 29 79 19 3775 166 a7 25

dereference failure: NULL pointer 4 3 3 o 8 o < 153 1269 118 18 - 1000

dereference failure: array bounds violated - > a o 19 1s E 27 143 260 a7
- 500

dereference failure: invalid pointer | 228 = o & 2 1 24 16 1as 264

Predicted

Figure 21:Confusion Matrix of NeoBERT on the Top 10 Most Frequent CWE Vulnerability Classes

3.4.4. Comparison with Baselines:

This section compares traditional machine learning models and large language
models (LLMs) for multi-class software vulnerability detection. Table 16 summarizes
their performance using key metrics: accuracy, macro F1, and weighted F1. This
evaluation highlights how well each model handles class diversity and reveals their
respective strengths and limitations.

Random Forest Classifier:

Vectorization: TF-IDF (char-level, n-gram 3-6).

Hyperparameters: 100 estimators (trees), default settings.

Accuracy F1 Score (Macro) F1 Score (Weighted)

0.6301 0.1436 0.6071

Table 11:Test-Set Evaluation Results for Random Forest

Random Forest demonstrated solid performance in terms of accuracy and weighted
F1-score, indicating that it was effective at capturing patterns within the more
frequent vulnerability classes. However, its relatively low macro F1-score reveals a
limitation: the model struggled to generalize across less represented (rare) CWE
categories, suggesting a performance bias toward dominant classes in the dataset.

Logistic Regression:

45

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Vectorization: TF-IDF (char-level, n-gram 3-5).

Hyperparameters: solver='saga’, max_iter=300, tol=1e-3, parallel CPU execution.

Accuracy F1 Score (Macro) F1 Score (Weighted)

0.6552 0.0221 0.5881

Table 12:Test-Set Evaluation Results for Logistic Regression

Logistic Regression achieved the second-highest accuracy among all evaluated
models, yet it recorded the lowest macro F1-score, highlighting a pronounced bias
toward majority classes. This result suggests that while the model handled frequent
vulnerabilities reasonably well, it exhibited minimal predictive capability for rare or
nuanced CWE categories. The poor generalization indicates that a linear decision
boundary was inadequate for capturing the complex semantic patterns inherent in
source code vulnerabilities.

XGBoost:
Vectorization: TF-IDF (char-level, n-gram 3-5), max_features=3000.

Hyperparameters: GPU-accelerated config with n_estimators=200, max_depth=6,
learning_rate=0.1, gamma=1, tree_method="gpu_hist".

Accuracy F1 Score (Macro) F1 Score (Weighted)

0.2663 0.0034 0.1839

Table 13:Test-Set Evaluation Results for XGBoost

XGBoost, despite being GPU-accelerated and configured with 200 decision trees,
showed notably poor performance on this dataset. Both its macro and weighted F1-
scores were among the lowest, indicating either severe overfitting or limited
generalization capability likely influenced by class imbalance or suboptimal
hyperparameter settings. The model struggled to make consistent predictions across
most CWE categories, highlighting its sensitivity to the dataset's skewed label
distribution and structural complexity.

Naive Bayes:
Vectorization: TF-IDF (char-level, n-gram 3-5), max_features=800.

Hyperparameters: alpha=0.1 (MultinomialNB).

46

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Accuracy F1 Score (Macro) F1 Score (Weighted)

D.5855 0.0294 0.529

Table 14:Test-Set Evaluation Results for Naive Bayes

Naive Bayes served as a fast and lightweight baseline, offering minimal
computational overhead. Although it achieved an accuracy slightly above 58%, its
macro and weighted F1-scores were notably low. The model's performance was
hindered by its strong feature independence assumption, which fails to account for
the structural and contextual dependencies present in source code. Given the
complexity of programming syntax and semantics, this limitation significantly
impacted its ability to detect diverse and subtle vulnerability patterns.

LinearSVC:
Vectorization: TF-IDF (char-level, n-gram 3-5), max_features=800.

Hyperparameters: C=1.0, max_iter=1000, dual=False.

Accuracy F1 Score (Macro) F1 Score (Weighted)

0.6628 0.0644 0.591

Table 15:Test-Set Evaluation Results for SVC

Linear SVM achieved the highest overall accuracy among the traditional machine
learning models. It also recorded the second-best macro F1-score, following Random
Forest, which indicates a relatively stronger capacity to handle class imbalance.
Nonetheless, its performance remained limited on rare CWE classes, as reflected in
the confusion matrix, where several minority categories were consistently
misclassified. Despite this shortcoming, Linear SVM emerged as the most balanced
baseline within the traditional model group, offering a solid trade-off between
generalization and class-specific sensitivity.

Task ML Type Model Metric
Accuracy Macro Weighted

Random 0.6301 0.1436 0.6071

Forest
Logistic 0.6552 0.0221 0.5881

Regression

Traditional ML Naive Baise 0.5855 0.0294 0.529
Linear 0.6628 0.0644 0.591

47

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Multiclass SVC
Classification

XGBoost 0.2663 0.0034 0.1839

BERT 0.76 0.46 0.73

CodeBERT 0.75 0.47 0.74

LLMs RoBERTa 0.75 0.46 0.73

DeBERTa 0.75 0.45 0.73

NeoBERT 0.75 0.48 0.74

Table 16:Comparison of the Proposed Model with LLM Models and Traditional ML

3.5. Discussion

3.5.1. Impact of Prompt Design and Context Length:
3.5.1.1. Prompting Strategies in Vulnerability Detection:

To evaluate the impact of prompt formulation on the classification performance of
Large Language Models (LLMs), two different styles were explored: a question-based
prompt (Prompt A) and a completion-based prompt (Prompt B).

Prompt A was designed to guide the model in a direct and explicit way, much like
asking a question to a human expert. It mimics a typical interaction where the model
is clearly instructed to determine the type of vulnerability in a given code snippet. This
prompt encourages the model to focus on answering a specific question based on
the context provided.

In contrast, Prompt B was structured to give the impression that the model is
completing or continuing a sentence. Rather than explicitly asking for a classification,
the prompt leads the model to infer the type of vulnerability as part of a logical
continuation. This strategy encourages the model to "think" in a more natural
classification setting, without direct instructions.

The comparison between these two prompts aimed to uncover whether the LLM
benefits more from an explicitly framed question or from an implicit, sentence-
completion formulation. This investigation provides practical insight into how prompt
phrasing may affect model behavior in downstream classification tasks related to
software security.

Model Variant Prompt Max Accuracy F1-Macro F1-
Style length Weighted
Baseline None 512 0.76 0.46 0.73
Prompt A Question- 512 0.75 0.47 0.73
Based

48

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

Prompt A Question- 128 0.73 0.36 0.70
Based

Prompt B Completion- | 512 0.75 0.46 0.73
Style

Prompt B Completion- | 128 0.73 0.36 0.70
Style

Table 17:Comparison of Prompt Styles and Context Lengths on BERT-Based Vulnerability
Classification

The results in Table 17 demonstrate that Prompt A provides a slight improvement in
macro-level performance, while Prompt B vyields similar results to the baseline.
Reducing the context length to 128 tokens consistently led to lower performance
across all metrics, highlighting the importance of full input context.

3.5.2. Strengths and Limitations of LLM-Based Detection:

Throughout the experiments, BERT-based models were evaluated under multiple
configurations, including prompt design variations and input context lengths. These
configurations revealed both the strengths and limitations of using large language
models (LLMs) for software vulnerability detection.

3.5.2.1. Strenghts:

> Good Generalization on Well-Represented Classes: Across all configurations, the
models performed consistently well on high-support classes such as "buffer
overflow on scanf" and "dereference failure: NULL pointer", achieving F1-scores
above 0.75. This shows that LLMs can effectively learn and generalize when
sufficient examples are available.

> Robust Performance Without Prompting: Surprisingly, the baseline model (without
any prompt) achieved the highest accuracy (0.76) and matched the best F1-
weighted score (0.73), indicating that BERT is capable of learning complex
vulnerability patterns directly from raw code without requiring additional natural
language context.

> Slight Gains in Macro F1 With Prompt A: Prompt A, designed as a question (“What
type of vulnerability is this?”), led to a small improvement in macro F1 (from 0.43
to 0.44), showing potential benefits in helping the model focus more evenly
across rare classes.

3.5.2.2. Limitation:

> Prompt Effect Is Marginal: Despite expectations, prompt design did not significantly
boost performance. Prompt B in particular, which used a completion-style format,

49

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

resulted in little to no improvement over the baseline. This suggests that in fine-
tuned setups, prompts may not meaningfully influence model decisions.

> Strong Sensitivity to Input Truncation: Reducing the input context to 128 tokens
consistently harmed performance across all prompts. Both macro F1 and
accuracy dropped, indicating that the model needs full code context to detect
vulnerabilities reliably. Shorter inputs likely truncate important control or data flow
logic.

> Difficulty with Rare Vulnerabilities: All configurations struggled with
underrepresented classes, such as "arithmetic overflow on floating-point
operations", which had F1-scores below 0.25 regardless of prompt usage. This
highlights the model’s limitation in dealing with class imbalance.

> Interpretability and Resource Demands: \While not directly measured in this study,
LLMs like BERT are computationally expensive and lack interpretability by default.
Understanding why a classification was made requires external explainability
tools, which limits trust and deployment in security-critical environments.

3.5.3. Scalability, Inference Latency & Resource Consumption:

Large Language Models (LLMs) like BERT and NeoBERT offer strong
performance for vulnerability classification tasks. However, this comes at the
cost of increased resource demands, training time, and deployment complexity,
especially in real-world systems.

» Scalability: LLMs are scalable in terms of learning—they can generalize across
many vulnerability types without the need for task-specific architectures. However,
from an operational standpoint, scalability is constrained by computational limits.
For instance, increasing the input context size (e.g., using max_length=512)
leads to significantly higher memory usage and longer training time.

> Inference Latency: One key observation is that inference latency varies depending
on the model architecture and the GPU used. For example, using the NVIDIA
A100 GPU, we observed:

v' BERT completed training in approximately 1.5 hours.
v NeoBERT required around 4.5 hours under the same conditions.

v' This substantial time difference illustrates how architectural complexity
impacts inference time—even on high-end hardware.

v Reducing max_length to 128 tokens helped improve speed and lower
memory usage, but also led to a slight drop in performance, particularly for
classes that depend on longer code contexts to be correctly classified.

» Resource Consumption:

50

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

VRAM Usage: Memory consumption increased with input length and number of
classes. Models often required 10-12 GB of GPU memory.

Training Time: Training time varied depending on the model. NeoBERT was
consistently slower and heavier than BERT.

3.6. Chapter Summary and Future Directions:

3.6.1. Chapter Summary:

This chapter presented a comprehensive experimental evaluation of various models
for software vulnerability detection, with a focus on both traditional machine learning
classifiers and large language models (LLMs). We explored the performance of
models such as Random Forest, SVM, and XGBoost, as well as pre-trained
transformers including BERT, NeoBERT , RoBERTa, and CodeBERT. These models
were assessed using a stratified subset of the FormAl dataset, filtered to include only
the most frequent vulnerability or error types.

Key experimental dimensions included:

v" Training and validation dynamics, visualized through learning curves,
v' Evaluation on unseen test data, including confusion matrices,

v" Impact of prompt-based input formatting (Prompt A vs Prompt B),
v

Effect of varying context length (max_length) on classification accuracy and
model efficiency.

The results revealed that LLMs outperform traditional models in capturing code
semantics, especially when augmented with carefully designed prompts. However,
prompt design and input truncation (via max_length) significantly influenced detection
quality. Prompt A (explicit question-style) generally yielded stronger results than
Prompt B (masked-style continuation), though results varied across specific classes.

In addition to raw performance, we analyzed each model’s scalability, inference
latency, and resource footprint, finding that while BERT-based models offer better
accuracy, they incur higher computational costs, particularly on longer sequences or
larger batch sizes.

3.6.2. Future Directions:

» Prompt Optimization: One practical direction to boost model performance without
changing

51

Chapter 03:Design and Performance Evaluation of an LLM- Based Software
Vulnerability Detection System

» Deployment Optimization: To make the system feasible for deployment in low-
resource environments (e.g., edge devices or servers without GPUs), model
optimization techniques such as:

Knowledge Distillation (transferring knowledge from a large model to a smaller one),
and Quantization (reducing the numerical precision of weights to decrease size and
computational load), can be employed. These techniques help reduce inference
latency and resource consumption, making LLM-based detection practical for real-
time or large-scale scenarios

> Explainability and Developer Interaction: To increase trust and usability,
especially for security

analysts and developers, it is important to include explanation mechanisms.
Techniques like attention visualization, token attribution, or saliency maps can help
users understand why a certain vulnerability label was predicted, leading to more
informed debugging and better human-Al collaboration.

52

General Conclusion

This work has highlighted the remarkable potential of Large Language Models (LLMs)
for automating software wvulnerability detection. Through a comprehensive and
methodologically sound experimental framework, we evaluated multiple transformer-
based models including BERT, CodeBERT, and NeoBERT alongside different prompt
formulations and input context lengths. The results consistently demonstrated that
LLMs significantly outperform traditional machine learning approaches such as
Random Forest and SVM, particularly in terms of their ability to understand code
semantics and manage multi-class classification tasks.

Several key findings emerged from this study:

Explicit prompts (Prompt A) which directly ask the model a clear question consistently
produced better performance than implicit completions (Prompt B).

Reducing input context length from 512 to 128 tokens resulted in a noticeable decline
in accuracy and generalization, confirming the importance of rich contextual
information for effective code understanding.

Reducing input context length from 512 to 128 tokens resulted in a noticeable decline
in accuracy and generalization, confirming the importance of rich contextual
information for effective code understanding.

Model performance remains sensitive to class imbalance, especially with
underrepresented vulnerability types, highlighting a common challenge in real-world
datasets.

Beyond these findings, this thesis opens multiple promising research avenues:

The integration of static analysis features such as control-flow or data-flow insights
could help enrich the model’s input representation and improve its decision-making.

Automatic prompt engineering using optimization algorithms or reinforcement
learning could further enhance performance without the need to modify model
architecture.

In conclusion, this research establishes LLM-based detection as a significant step
forward toward more intelligent, robust, and explainable software vulnerability
analysis systems. With further optimization and real-world integration, such systems
have the potential to play a vital role in building more secure and resilient software
ecosystems.

53

Bibliography:

[1] Xu, H., Wang, S, Li, N., Wang, K., Zhao, Y., Chen, K, ... & Wang, H. (2024). Large language models for
cyber security: A systematic literature review. arXiv preprint arXiv:2405.04760.

[2] Yigit, Y., Ferrag, M. A., Ghanem, M. C., Sarker, |. H., Maglaras, L. A., Chrysoulas, C., ... & Janicke, H.
(2025). Generative ai and lims for critical infrastructure protection: evaluation benchmarks, agentic ai,
challenges, and opportunities. Sensors, 25(6), 1666.

[3] Zitser, M., Lippmann, R., & Leek, T. (2004, October). Testing static analysis tools using exploitable buffer
overflows from open source code. In Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering (pp. 97-106).

[4] Fan, J., Li, Y., Wang, S., & Nguyen, T. N. (2020, June). AC/C++ code vulnerability dataset with code
changes and CVE summaries. In Proceedings of the 17th international conference on mining software
repositories (pp. 508-512).

[5] Tamberg, K., & Bahsi, H. (2025). Harnessing large language models for software vulnerability detection:
A comprehensive benchmarking study. IEEE Access.

[6] Chen, W., Zou, X., Li, G., & Qian, Z. (2020). {KOOBE}: Towards facilitating exploit generation of kernel
{Out-Of-Bounds} write vulnerabilities. In 29th USENIX security symposium (USENIX security 20) (pp. 1093-
1110).

[7] Badoux, N., Toffalini, F., Jeon, Y., & Payer, M. (2025). Type++: prohibiting type confusion with inline
type information. NDSS.

[8] Noman, H. A., & Abu-Sharkh, O. M. (2023). Code injection attacks in wireless-based Internet of Things
(IoT): A comprehensive review and practical implementations. Sensors, 23(13), 6067.

[9] Verma, A. (2023). Insecure Deserialization Detection in Python.

[10] Lee, Y. T., Vijayakumar, H., Qian, Z., & Jaeger, T. (2024). Static detection of filesystem vulnerabilities
in android systems. arXiv preprint arXiv:2407.11279.

[11] Majdinasab, V., Bishop, M. J., Rasheed, S., Moradidakhel, A., Tahir, A., & Khomh, F. (2024, March).
Assessing the Security of GitHub Copilot's Generated Code-A Targeted Replication Study. In 2024 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 435-444).
IEEE.

[12] Piskachev, G., Petrasch, T., Spath, J., & Bodden, E. (2020). AuthCheck: Program-state analysis for
access-control vulnerabilities. In Formal Methods. FM 2019 International Workshops: Porto, Portugal,
October 7-11, 2019, Revised Selected Papers, Part Il 3 (pp. 557-572). Springer International Publishing.
[13] Abirami, J., Devakunchari, R., & Valliyammai, C. (2015, December). A top web security vulnerability
SQL injection attack—Survey. In 2015 Seventh International Conference on Advanced Computing

(ICoAC) (pp. 1-9). IEEE.

[14] Van Der Kouwe, E., Nigade, V., & Giuffrida, C. (2017, April). Dangsan: Scalable use-after-free
detection. In Proceedings of the Twelfth European Conference on Computer Systems (pp. 405-419).

[15] Cheng, X., Wang, H., Hua, J., Xu, G., & Sui, Y. (2021). Deepwukong: Statically detecting software
vulnerabilities using deep graph neural network. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(3), 1-33.

[16] Arusoaie, A., Ciobaca, S., Craciun, V., Gavrilut, D., & Lucanu, D. (2017, September). A comparison of
open-source static analysis tools for vulnerability detection in c/c++ code. In 2017 19th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) (pp. 161-168). IEEE.
[17] Jovanovic, N., Kruegel, C., & Kirda, E. (2006, May). Pixy: A static analysis tool for detecting web
application vulnerabilities. In 2006 IEEE Symposium on Security and Privacy (S&P'06) (pp. 6-pp). IEEE.
[18] zZheng, Y., & Zhang, X. (2013, May). Path sensitive static analysis of web applications for remote code
execution vulnerability detection. In 2013 35th International Conference on Software Engineering

(ICSE) (pp. 652-661). IEEE.

[19] Ferrag, M. A., Alwahedi, F., Battah, A., Cherif, B., Mechri, A., Tihanyi, N., ... & Debbah, M. (2025).
Generative Al in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities. Internet
of Things and Cyber-Physical Systems.

[20] Feist, J., Mounier, L., Bardin, S., David, R., & Potet, M. L. (2016, December). Finding the needle in the
heap: combining static analysis and dynamic symbolic execution to trigger use-after-free. In Proceedings of
the 6th Workshop on Software Security, Protection, and Reverse Engineering (pp. 1-12).

54

[21] Farahmandi, F., & Alizadeh, B. (2015). Grébner basis based formal verification of large arithmetic
circuits using gaussian elimination and cone-based polynomial extraction. Microprocessors and
Microsystems, 39(2), 83-96.

[22] Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta, L. R., Rangamani, A., ... & Lazovich, T.
(2018). Automated software vulnerability detection with machine learning. arXiv preprint arXiv:1803.04497.
[23] Zhou, X., Cao, S., Sun, X., & Lo, D. (2024). Large language model for vulnerability detection and
repair: Literature review and the road ahead. ACM Transactions on Software Engineering and Methodology.
[24] Harzevili, N. S., Belle, A. B., Wang, J., Wang, S., Ming, Z., & Nagappan, N. (2023). A survey on
automated software vulnerability detection using machine learning and deep learning. arXiv preprint
arXiv:2306.11673.

[25] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., ... & Zhong, Y. (2018). Vuldeepecker: A deep
learning-based system for vulnerability detection. arXiv preprint arXiv:1801.01681.

[26] Cheng, X., Wang, H., Hua, J., Xu, G., & Sui, Y. (2021). Deepwukong: Statically detecting software
vulnerabilities using deep graph neural network. ACM Transactions on Software Engineering and
Methodology (TOSEM,), 30(3), 1-33.

[27] Tihanyi, N., Bisztray, T., Ferrag, M. A., Cherif, B., Dubniczky, R. A., Jain, R., & Cordeiro, L. C. (2025).
Vulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A
Comprehensive Overview. arXiv preprint arXiv:2503.10784.

[28] Zhou, Y., Liu, S., Siow, J., Du, X., & Liu, Y. (2019). Devign: Effective vulnerability identification by
learning comprehensive program semantics via graph neural networks. Advances in neural information
processing systems, 32.

[29] Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859.

[30] Dubniczky, R. A., Horvat, K. Z., Bisztray, T., Ferrag, M. A., Cordeiro, L. C., & Tihanyi, N. (2025).
Castle: Benchmarking dataset for static code analyzers and lims towards cwe detection. arXiv preprint
arXiv:2503.09433.

[31] Harzevili, N. S., Belle, A. B., Wang, J., Wang, S., Ming, Z., & Nagappan, N. (2023). A survey on
automated software vulnerability detection using machine learning and deep learning. arXiv preprint
arXiv:2306.11673.

[32] Wartschinski, L., Noller, Y., Vogel, T., Kehrer, T., & Grunske, L. (2022). VUDENC: vulnerability
detection with deep learning on a natural codebase for Python. Information and Software Technology, 144,
106809.

[33] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z. (2021). Sysevr: A framework for using deep learning
to detect software vulnerabilities. IEEE Transactions on Dependable and Secure Computing, 19(4), 2244-
2258.

[34] Zou, D., Wang, S., Xu, S., Li, Z., & Jin, H. (2019). $imu $ p VulDeePecker: A Deep Learning-Based
System for Multiclass Vulnerability Detection. IEEE Transactions on Dependable and Secure

Computing, 18(5), 2224-2236.

[35] Wartschinski, L., Noller, Y., Vogel, T., Kehrer, T., & Grunske, L. (2022). VUDENC: vulnerability
detection with deep learning on a natural codebase for Python. Information and Software Technology, 144,
106809

[36] Ferrag, M. A., Alwahedi, F., Battah, A., Cherif, B., Mechri, A., & Tihanyi, N. (2024). Generative ai and
large language models for cyber security: All insights you need. Available at SSRN 4853709.

[37] Sultan, M. F., Karim, T., Shaon, M. S. H., Wardat, M., & Akter, M. S. (2024). Enhanced LLM-Based
Framework for Predicting Null Pointer Dereference in Source Code. arXiv preprint arXiv:2412.00216.

[38] Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859.

[39] Mahbub, P., & Rahman, M. M. (2024, March). Predicting line-level defects by capturing code contexts
with hierarchical transformers. In 2024 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 308-319). IEEE.

[40] Breton, L. L., Fournier, Q., Mezouar, M. E., & Chandar, S. (2025). NeoBERT: A Next-Generation
BERT. arXiv preprint arXiv:2502.19587.

[41] Yamagishi, Y., Kikuchi, T., Hanaoka, S., Yoshikawa, T., & Abe, O. (2025). ModernBERT is More
Efficient than Conventional BERT for Chest CT Findings Classification in Japanese Radiology

Reports. arXiv preprint arXiv:2503.05060.

[42] Ye, J., Chen, X., Xu, N., Zu, C., Shao, Z., Liu, S., ... & Huang, X. (2023). A comprehensive capability
analysis of gpt-3 and gpt-3.5 series models. arXiv preprint arXiv:2303.10420.

[43] Inan, H., Upasani, K., Chi, J., Rungta, R., lyer, K., Mao, Y., ... & Khabsa, M. (2023). Llama guard: LIm-
based input-output safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674.

55

[44] Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., ... & Qiu, Z. (2024). Qwen2. 5 technical
report. arXiv preprint arXiv:2412.15115.

[45] Fan, J., Li, Y., Wang, S., & Nguyen, T. N. (2020, June). AC/C++ code vulnerability dataset with code
changes and CVE summaries. In Proceedings of the 17th international conference on mining software
repositories (pp. 508-512).

[46] Ferrag, M. A, Battah, A., Tihanyi, N., Jain, R., Maimut, D., Alwahedi, F., ... & Cordeiro, L. C. (2025).
SecureFalcon: Are we there yet in automated software vulnerability detection with LLMs?. IEEE
Transactions on Software Engineering.

[47] Grahn, D., & Zhang, J. (2021). An analysis of C/C++ datasets for machine learning-assisted software
vulnerability detection. In Proceedings of the Conference on Applied Machine Learning for Information
Security, 2021.

[48] Tihanyi, N., Bisztray, T., Jain, R., Ferrag, M. A., Cordeiro, L. C., & Mavroeidis, V. (2023, December).
The formai dataset: Generative ai in software security through the lens of formal verification. In Proceedings
of the 19th International Conference on Predictive Models and Data Analytics in Software Engineering (pp.
33-43).

[49] Tihanyi, N., Bisztray, T., Ferrag, M. A., Jain, R., & Cordeiro, L. C. (2025). How secure is Al-generated
code: a large-scale comparison of large language models. Empirical Software Engineering, 30(2), 1-42.
[50] Al, N. (2024). Artificial intelligence risk management framework: Generative artificial intelligence profile.
[51] Keltek, M., Hu, R., Sani, M. F., & Li, Z. (2024). LSAST--Enhancing Cybersecurity through LLM-
supported Static Application Security Testing. arXiv preprint arXiv:2409.15735.

[52] Tihanyi, N., Jain, R., Charalambous, Y., Ferrag, M. A, Sun, Y., & Cordeiro, L. C. (2023). A new era in
software security: Towards self-healing software via large language models and formal verification. arXiv
preprint arXiv:2305.14752.

[53] Zhang, L., Zou, Q., Singhal, A., Sun, X., & Liu, P. (2024, June). Evaluating Large Language Models for
Real-World Vulnerability Repair in C/C++ Code. In Proceedings of the 10th ACM International Workshop on
Security and Privacy Analytics (pp. 49-58).

[54] Shestov, A., Levichev, R., Mussabayev, R., Maslov, E., Cheshkov, A., & Zadorozhny, P. Finetuning
Large Language Models for Vulnerability Detection. arXiv 2024. arXiv preprint arXiv:2401.17010.

[55] Tihanyi, N., Bisztray, T., Ferrag, M. A., Jain, R., & Cordeiro, L. C. (2024). Do neutral prompts produce
insecure code? formai-v2 dataset: Labelling vulnerabilities in code generated by large language

models. arXiv preprint arXiv:2404.18353.

56

