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Abstract

Epilepsy is a prevalent neurological disorder marked by recurrent and unpredictable
seizures. In pediatric patients, early and accurate detection is critical to enabling timely
medical intervention and improving long-term health outcomes. This thesis presents the
development of an automated system for epileptic seizure detection in children using
machine learning techniques. The proposed approach leverages a one-dimensional convo-
lutional neural network (1D-CNN) model to analyse and classify CHB-MIT EEG data for
the detection of ictal events. The system demonstrates high performance, achieving an
accuracy of 97%, sensitivity of 97.03% and specificity of 96.83%. These results indicate
the model’s strong ability to distinguish between ictal and preictal states, with a low
false positive rate (3.17%) and false negative rate (2.97%). The results are promising and
highlight the potential of the proposed system in supporting pediatric seizure detection.

Keywords: Epilepsy, Seizure detection, Machine learning, CHB-MIT EEG Dataset,
Convolutional Neural Network, Intelligent system.

iv



Résumé

L’épilepsie est un trouble neurologique prévalent caractérisé par des crises récurrentes et
imprévisibles. Chez les patients pédiatriques, une détection précoce et précise est cruciale
pour permettre une intervention médicale rapide et améliorer les pronostics à long terme.
Ce mémoire présente le développement d’un système automatisé de détection des crises
d’épilepsie chez l’enfant utilisant des techniques d’apprentissage automatique. L’approche
proposée exploite un réseau de neurones convolutif unidimensionnel (1D-CNN) pour anal-
yser et classer les données EEG de la base CHB-MIT en vue d’identifier les états critiques
(ictaux). Le système démontre des performances élevées, atteignant 97% de précision,
97,03% de sensibilité et 96,83% de spécificité. Ces résultats indiquent une capacité ro-
buste du modèle à distinguer les états critiques des états pré-critiques (préictaux), avec
un taux de faux positifs (TFP) de 3,17% et un taux de faux négatifs (TFN) de 2,97%. Les
resultats sont prometteurs et soulignent le potentiel du système proposé pour soutenir la
detection des crises d’épilepsie chez les enfants.

Mots-clés: Épilepsie, Détection de crises, Apprentissage automatique, Base de Don-
nées EEG CHB-MIT, Réseau de neurones convolutif, Système intelligent.

v



i



Contents

list of tables iv

list of figures v

List of Abbreviations vii

General Introduction 1

1 Overview of Epileptic Seizure Detection 3
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Pediatric Epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Types of Seizures in Pediatric Patients . . . . . . . . . . . . . . . . 3

3 Seizure Detection: What and Why? . . . . . . . . . . . . . . . . . . . . . . 4
4 EEG in Pediatric Seizure Detection . . . . . . . . . . . . . . . . . . . . . . 5

4.1 EEG Placement and Channels (10–20 Electrode System) . . . . . . 5
4.2 Seizure Phases on EEG . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Physiological Indicators for Seizure Detection . . . . . . . . . . . . . . . . 7
6 Limitations of Manual EEG Review for seizure detection . . . . . . . . . . 7
7 Motivation for Machine Learning–Based Detection . . . . . . . . . . . . . . 8
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Techniques for the Detection of Epileptic Seizures in Children: A Com-
prehensive Review 9
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Overview of Key Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Evaluation Metrics for Epileptic Seizure Detection . . . . . . . . . . . . . . 12
4 Overview of AI Techniques in Epileptic Seizure Detection . . . . . . . . . . 14

4.1 Classical EEG-based Seizure Detection Methods . . . . . . . . . . . 14
4.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methodology and Implementation 26
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Mechanisms of CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 1D Convolutional Neural Network Architecture . . . . . . . . . . . 28

ii



3 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Used Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Data Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Training Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Used Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliographie 50

Webographie 51

iii



List of Tables

2.1 Overview of Key Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Summary of related works on epileptic seizure detection . . . . . . . . . . 23

3.1 CNN Training Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Summary of Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 40

iv



List of Figures

1.1 The 2017 International League Against Epilepsy classification of seizure
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 10–20 International system for Electrode Placement . . . . . . . . . . . . 5
1.3 Interictal, Preictal, Ictal and Post-ictal States of Seizures from 3 Channels;

Each recorded for 1 Hour . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Preictal State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Ictal State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Linear SVM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 An example of kNN classification task with k = 5. . . . . . . . . . . . . . . 19
2.4 Machine Learning vs. Deep Learning. . . . . . . . . . . . . . . . . . . . . . 20
2.5 A common DNN architecture with three input layers, four hidden layers,

and two output layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Basic CNN Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Long short-term memory unit architecture. . . . . . . . . . . . . . . . . . . 22

3.1 CNN layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Data Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Correlation Heatmap of EEG Channels . . . . . . . . . . . . . . . . . . . 31
3.5 Class Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Sequence Creation steps code . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Dataset shapes after splitting and reshaping . . . . . . . . . . . . . . . . . 33
3.8 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 The training and validation curves for accuracy over the training epochs. . 38
3.10 The training and validation curves for loss over the training epochs. . . . . 38
3.11 The training and validation curves for AUC over the training epochs. . . . 39
3.12 Classification report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.13 The ROC curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.14 Prediction confidence Distribution Plot. . . . . . . . . . . . . . . . . . . . . 41

v



List of Abbreviations

WHO World Health Organisation

SUDEP Sudden Unexpected Death in Epilepsy

EEG Electroencephalography

Ag/AgCl Silver/Silver Chloride

HR Heart Rate

EDA Electrodermal Activity

EMG Surface Electromyography

IEDs Interictal Epileptiform Discharges

ML Machine Learning

CHB-MIT Children’s Hospital Boston – Massachusetts Institute of Technology

TP True Positive

TN True Negative

FP False Positive

FN False Negative

FPR False Positive Rate

FNR False Negative Rate

AUC-ROC Area Under the Curve – Receiver Operating Characteristic

FA/h False Alarm Rate per Hour

DL Deep Learning

ApEn Approximate Entropy

FuzzyEn Fuzzy Entropy

DWT Discrete Wavelet Transform

SVM Support Vector Machine

RF Random Forest

vi



k-NN k-Nearest Neighbour

DNN Deep Neural Network

CNN Convolutional Neural Network

FBCSP Filter Bank Common Spatial Pattern

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

1D-CNN One-Dimensional Convolutional Neural Network

STFT Short-Time Fourier Transform

ReLU Rectified Linear Unit)

Adam Adaptive Moment Estimation

AUC Area Under the Curve

SSD Solid State Drive

TPU Tensor Processing Unit

RAM Random Access Memory

CSV Comma-Separated Values

NumPy Numerical Python

pandas Python Data Analysis Library

ROC Receiver Operating Characteristic

vii



General Introduction

Epilepsy is a health condition that mainly affects children and can cause seizures at any
time. These seizures come without warning and can be dangerous if they last a long time
or happen frequently. They affect a child’s daily life and may put their health and future
at risk. It is very important to find a way to detect seizures quickly and accurately so we
can help children in time and avoid complications.

Doctors usually use EEG signals to check the activity of the brain and detect seizures.
But looking at all these signals manually is hard and tiring, and it can lead to mistakes. To
solve this, many methods have been developed to help doctors find seizures automatically.
Some methods rely on classical techniques, while others use more advanced approaches
to improve the accuracy of detection.

Machine learning and deep learning methods have become a popular way to solve this
problem because they can learn directly from signals. Among these methods, Convolu-
tional Neural Networks (CNNs) are especially useful. They can find patterns in signals
that may be hard for a person to see. Instead of relying on manual feature selection,
a CNN model can automatically learn relevant features directly from raw signals. This
approach increases flexibility and reduces the risk of human bias.

The aim of this project is to develop a 1D Convolutional Neural Network (1D-CNN)
model for the automatic classification of seizure and non-seizure signals in children with
epilepsy. The approach is designed to be simple, accurate, and reliable. It focuses on
1D signals, which makes it faster and more efficient. The 1D-CNN model is trained and
tested on the CHB-MIT pediatric epilepsy database. The results show that this method
performs very well in distinguishing ictal (seizure) from preictal( before seizure) signals.
This could be a useful tool for doctors and health care providers to make decisions more
quickly and with greater confidence.

This document is divided into three main chapters:

• Chapter 1: Gives an overview of epilepsy, its effects on children, and the role of
EEG signals in detecting seizures. It also highlights the main problems with manual
detection and the need for automated methods.

• Chapter 2: Reviews related methods and techniques that have been used to identify
seizures in children. It covers classical methods and more recent techniques based
on deep learning, and points out their strong points and weaknesses.

• Chapter 3: Presents the methodology and implementation of the 1D-CNN approach
we propose. It describes the CHB-MIT dataset we used, the steps we followed to
prepare and split the data, the model architecture, the training process, and the
results obtained . Finally, it shows how well the model performs in distinguishing
ictal from preictal signals and highlights the main achievements of this approach.

1



Finally, the conclusion summarises the main results of this master thesis and suggests
future directions for improving the system.
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Chapter 1

Overview of Epileptic Seizure Detection

1 Introduction

Epilepsy is a common chronic neurological disorder defined by the World Health Organisa-
tion (WHO) as the occurrence of two or more unprovoked seizures. It affects an estimated
50 million people worldwide and an estimated 0.5–1% of children [W1][1]. Seizures are
paroxysmal manifestations of abnormal, excessive neuronal activity, leading to varying
motor, sensory or cognitive manifestations. A child with epilepsy can have problems with
cognition and learning above what is accounted for by chance. Early detection of seizures
in kids is therefore extremely crucial since ongoing uncontrolled seizures in an immature
brain can both impair cognition and normal development[W1][2]. A general overview of
epilepsy in children is presented, with a focus on how seizures can be recognised and
understood. The goal is to build a basic understanding of the different types of seizures
that affect children, how EEG is used in clinical practice to detect them, how electrodes
are placed using the 10–20 system, and how seizure phases appear in EEG recordings.
The explanation also includes other physiological signals that can support diagnosis, the
common methods used by doctors to read EEGs, and some of the challenges faced when
relying only on traditional approaches. This background helps prepare for a better un-
derstanding of how newer technologies, can support seizure detection more effectively.

2 Pediatric Epilepsy

2.1 Definition

“Pediatric epilepsy” refers broadly to epilepsies with onset in infancy, childhood or ado-
lescence. In practice, it is defined the same way as adult epilepsy: a neurological disorder
characterised by recurrent, unprovoked seizures that arise from abnormal, excessive elec-
trical discharges among neurons and manifest as brief episodes of involuntary movements
or altered consciousness[W1][3].

2.2 Types of Seizures in Pediatric Patients

Epileptic seizures in children can be broadly classified into focal, generalised, and unknown
onset seizures[4], each with distinct features and management considerations(figure 1.1
[4]).

3



CHAPTER 1. OVERVIEW OF EPILEPTIC SEIZURE DETECTION

• Focal seizures: originates in a specific brain region. It can occur with or with-
out impaired awareness. When awareness is preserved, they are referred to as focal
aware seizures, previously known as simple partial seizures, and often present with
localised motor or sensory symptoms. If consciousness is altered, they are termed fo-
cal impaired awareness seizures, formerly complex partial seizures, and may involve
automatisms such as lip-smacking or hand movements[5] [4].

• Generalized Seizures: Typically results in immediate loss of awareness. These
include generalised tonic–clonic seizures, which are characterised by an initial phase
of muscle stiffening followed by rhythmic jerking movements, and absence seizures,
which involve brief lapses in awareness often seen as staring spells in children. Other
forms include myoclonic seizures, marked by sudden, brief muscle jerks, and atonic
seizures, which cause a sudden loss of muscle tone leading to falls or head drops.
Tonic seizures involve sustained muscle contractions and are frequently observed
during sleep[5] [4].

• Seizures of Unknown Onset: These are seizures where the beginning is not
observed or cannot be determined—for example, events occurring during sleep or
unwitnessed episodes. They may later be reclassified as focal or generalised if more
information becomes available[5] [4].

Figure 1.1: The 2017 International League Against Epilepsy classification of seizure types.

3 Seizure Detection: What and Why?

An epileptic seizure is a transient episode of abnormal electrical activity in the brain.
Seizure detection refers to identifying such events from patient monitoring data (typically
EEG(section 4) signals), including the exact time of seizure onset, where possible, and
the type of seizure. In practice, detection means distinguishing the abnormal ictal EEG
(section 4) patterns of a seizure from normal activity. Automated detection systems aim
to provide reliable, objective records of each seizure’s frequency, duration, and type[6].
This automated documentation is critical because patient or caregiver seizure logs are
often incomplete; in fact, studies show that many seizures are not reported without such
devices [6][7]. In short, seizure detection systems scan EEG (section 4) (and sometimes
other physiological signals) to mark when an epileptic seizure begins and classify its char-
acteristics, producing accurate seizure counts that aid clinical care and research[6][8].
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CHAPTER 1. OVERVIEW OF EPILEPTIC SEIZURE DETECTION

Detecting seizures in real time is important for safety and medical management. Timely
alerts of seizure onset allow caregivers to intervene immediately (for example, by posi-
tioning the patient safely), which can greatly reduce the risk of falls, drowning, or other
trauma. Because people with epilepsy – especially children – have a greatly increased
risk of sudden unexpected death in epilepsy (SUDEP), seizure alarms may also help by
ensuring that convulsive seizures are not left unattended. In addition, automatic seizure
detection provides clinicians with precise seizure logs: objective records of seizure fre-
quency and type are essential for accurate diagnosis, treatment planning, and evaluation
of therapy effectiveness[6][7].

4 EEG in Pediatric Seizure Detection

Electroencephalography (EEG) is a non-invasive method that records the brain’s electri-
cal activity through electrodes on the scalp. Scalp EEG primarily measures the summed
postsynaptic potentials of large groups of cortical pyramidal neurons oriented perpendic-
ularly to the surface. The raw EEG trace plots voltage (on the vertical axis) over time
(horizontal axis) for each channel[9].

4.1 EEG Placement and Channels (10–20 Electrode System)

In pediatric EEG, the electrodes are placed on the scalp using the International 10-20
system. Typically, 21-256 electrodes made of silver/silver chloride (Ag/AgCl) are used.
One electrode serves as the reference, and another as the ground, ensuring that common-
mode interference is minimised [10]. These electrodes are placed in specific regions of
the scalp to measure electrical activity from different brain lobes. They are labeled by
brain region[11]: Fp (frontopolar), F (frontal), C (central), P (parietal), O (occipital),
T (temporal). Odd numbers denote left-sided electrodes and even numbers right-sided,
with midline positions labelled with “z” (e.g. Fz, Cz). Ear (A1, A2) ( figure 1.2[8]). This
placement allows clinicians to determine which parts of the brain are involved in seizure
activity [11][9].

Figure 1.2: 10–20 International system for Electrode Placement

4.2 Seizure Phases on EEG

A seizure is often divided into four phases[12](figure 1.3): the preictal, ictal, postictal,
and interictal periods.
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CHAPTER 1. OVERVIEW OF EPILEPTIC SEIZURE DETECTION

Figure 1.3: Interictal, Preictal, Ictal and Post-ictal States of Seizures from 3 Channels;
Each recorded for 1 Hour

• Preictal Phase: refers to the period leading up to the seizure(30 to 90 minutes
before)(figure 1.4[12]).

Figure 1.4: Preictal State.

• Ictal Phase: The ictal phase represents the period during which the seizure occurs.
On EEG, ictal activity is characterised by evolving rhythmic discharges that grow
in frequency and amplitude[13](figure 1.4[12]).
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CHAPTER 1. OVERVIEW OF EPILEPTIC SEIZURE DETECTION

Figure 1.5: Ictal State.

• Postictal Phase: the phase that follows the seizure. Marks the end of ictal elec-
trical activity on EEG, lasting between 5 and 30 minutes [14].

• Interictal Phase: is the period between seizures, during which the EEG may nev-
ertheless display epileptiform discharges, so the child is seizure-free in this phase[13].

5 Physiological Indicators for Seizure Detection

Beyond EEG, seizures induce characteristic changes in autonomic and motor physiology.
These indicators can be exploited by wearables and automated systems.

• Heart rate (HR) often increases during seizures; meta-analyses show that over
half of seizures cause a change in HR [7][15].

• Skin conductance (electrodermal activity EDA) rises when sympathetic arousal
increases sweating. Studies of wearable EDA sensors have noted sharp surges in skin
conductance at the onset of generalised seizures[15].

• Surface electromyography (EMG) detects muscle electrical signals through sur-
face electrodes, which are adhesive patches applied to the skin over the muscles [15].

• accelerometers/gyroscopes capture rhythmic shaking movements of convulsions.
Respiratory patterns also change during seizures. Many focal seizures can produce
central apnea or irregular breathing[16]

6 Limitations of Manual EEG Review for seizure de-
tection

Clinicians traditionally identify seizures by visually inspecting the scalp EEG for charac-
teristic waveforms. In practice, they look for interictal epileptiform discharges (IEDs),brief
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sharp waves or spike-and-wave complexes that occur between seizures and for ictal EEG
patterns, which are evolving rhythmic discharges appearing during a seizure[17][13]. For
example, an interictal spike typically has a pointed peak followed by a slower “negative”
after-wave, and is often asymmetric compared to the background rhythm. A focal spike
will produce a clear phase reversal (polarity inversion) between adjacent electrodes, in-
dicating the underlying source location[17]. In contrast, an ictal rhythm may begin as a
sudden build-up of rhythmic waves that change in amplitude or frequency over several
seconds, reflecting the spread of the seizure. Clinicians use these EEG features to confirm
and classify seizure activity[13].

Despite its clinical value, manual EEG interpretation has serious drawbacks. It is
extremely time-consuming and labour-intensive [18]. A single long-term EEG study may
last more than a day, and a neurologist must scan through many data channels, often
with only one or two seizures in the recording. In addition, visual interpretation remains
subjective. Even skilled experts can disagree: subtle normal variants or artefacts are
sometimes misread as epileptiform spikes. Such over-interpretation is common enough to
cause misdiagnosis; studies report that up to a quarter of patients referred to epilepsy
centres were ultimately found not to have epilepsy due to EEG overreading. In short,
reading EEGs by eye is an “art rather than a science”, and errors can occur. [17]. Con-
sequently, manual detection is not ideal for continuous monitoring outside the lab or for
real-time seizure detection.

7 Motivation for Machine Learning–Based Detection

The burdens of manual EEG review motivate for automated methods. Machine learning
(ML) offers a way to augment the neurologist by automatically scanning EEG for seizure
patterns. ML-based detectors can be trained on examples of interictal spikes and ictal
EEG so that they learn the complex features of pediatric seizures without needing explicit
programming. In effect, an ML algorithm could serve as a continuous “assistant” to flag
suspicious EEG activity. Such automated systems have already emerged as powerful
tools in EEG analysis[18] [19]. Overall, machine learning is seen as a way to overcome
the constraints of manual review and to support real-time, ambulatory seizure detection
in children, potentially alerting interventions or signalling clinicians as events happen.

8 Conclusion

Epilepsy in children is a chronic neurological condition where seizures happen without
warning. This chapter gave a general introduction to seizure detection by explaining how
seizures are recognised and why this is important in everyday medical care. Detecting
seizures properly helps keep children safe by allowing quick responses, and it also gives
doctors a clear picture of how often seizures happen and what kind they are. In children,
this is especially important, as early and accurate monitoring can support better develop-
ment and help avoid serious risks. The next chapter looks into how artificial intelligence
can be used to improve seizure detection.
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Chapter 2

Techniques for the Detection of
Epileptic Seizures in Children: A
Comprehensive Review

1 Introduction

Seizure disorders constitute a major cause of referral to pediatric neurology clinics, with
epilepsy syndromes especially prevalent in younger children [20]. Attacks in this popu-
lation often occur without warning and can range from brief electrical discharges to full
convulsive episodes [21]. EEG serves as a valuable tool, offering supportive evidence for
seizure classification [20], but noise and variability make it difficult to differentiate be-
tween ictal and preictal EEG patterns. Detecting seizures quickly and accurately can help
doctors or caregivers respond in time, reducing the risk of complications or harm, lessen-
ing the chances of morbidity or harm. In preparation for backing automated monitoring
devices, most studies cast the issue as a two-class classification problem: distinguishing
between ictal and preictal (or interictal) EEG states[22]. The sections that follow intro-
duce the main EEG datasets commonly used in seizure detection research, along with the
key metrics applied to evaluate model performance. An overview of artificial intelligence
techniques used in detecting epileptic seizures is also provided. Lastly, a review of related
work highlights existing methods and their outcomes, offering context for the current
study.

2 Overview of Key Datasets

Several datasets are commonly utilised in the study of epileptic seizure detection. They
differ in data modalities, acquisition protocols, patient populations, and accessibility.
These datasets serve as standard benchmarks in the field and are widely used for model
development, evaluation, and comparative analysis of detection techniques.

• Bonn: The Bonn EEG dataset, published in 2001 by Andrzejak et al.[23], contains
five sets of EEG recordings, each with 100 segments of 23.6 seconds. Sets A and B
were recorded from healthy subjects using surface EEG (eyes open and eyes closed).
Sets C, D, and E were recorded intracranially from epilepsy patients: set C from non-
epileptogenic zones, set D from the epileptogenic zone during seizure-free intervals,
and set E during seizures. All segments were selected for weak stationarity and are
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free of artifacts, providing a balanced and structured dataset for analysing brain
activity in different conditions[23].

• Freiburg Epilepsy (Invasive EEG): [W3] An earlier dataset (available via the Freiburg
Seizure Prediction project) comprising intracranial EEG from 21 epilepsy surgery
candidates . For each patient, there are “ictal” files containing seizures plus 50 min
of preictal EEG, and “interictal” files (24h) without seizures . Signals were recorded
at 256Hz from 128 intracranial contacts (grids, strips, depths). Unlike scalp EEG,
these invasive recordings have high signal quality from seizure foci. However, access
is limited (superseded by a purchasable database), and patient count is smaller[W3].

• CHB-MIT Scalp EEG: A widely-used public dataset (PhysioNet). It contains scalp
EEG from 23 pediatric patients with medically intractable epilepsy [W2]. Each pa-
tient was recorded over several days (anti-seizure drugs withdrawn) using 23 scalp
electrodes at 256Hz. The data include 173 seizure events across 916 hours of
EEG[24]. This dataset is heavily imbalanced: interictal (normal) EEG vastly out-
numbers ictal epochs.

• CHB-MIT Preprocessed EEG DatasetThe dataset is a preprocessed version of the
CHB-MIT Scalp EEG Database, made publicly available by Deepa and Ramesh
(2022)[25]. It is designed to support epileptic seizure detection and prediction using
machine learning and deep learning models. A total of 4096 seconds (approximately
68 minutes) of EEG data were extracted for both ictal (seizure) and preictal (pre-
seizure) states for each of the 24 patients. The final dataset is balanced, containing
equal durations of preictal and ictal data. It is provided in .csv format, which
simplifies data manipulation and model implementation. Several versions of the
dataset are available, including raw ictal and preictal files with 96 EEG channels,
reduced versions containing only 23 channels, and a consolidated file that includes
both classes with a binary outcome column where ’0’ denotes preictal and ’1’ denotes
ictal data[25].

Table 2.1 summarises commonly utilised datasets in epileptic seizure detection:
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Dataset Year Description Components Subjects Data Balance
Bonn [23] 2001 Contains

EEG seg-
ments from
both healthy
subjects
and epilepsy
patients in
different
brain states.

5 datasets (la-
belled A–E),
each with 100
single-channel
EEG segments
of 23.6 seconds
(173.61 Hz
sampling)

- Sets A
& B: 5
healthy
volunteers
- Sets C,
D & E: 5
epilepsy
patients

- Set A: Surface EEG
(eyes open)
- Set B: Surface EEG
(eyes closed)
- Set C: Intracranial
EEG from non-
epileptogenic zone
(seizure-free)
- Set D: Intracranial
EEG from epilepto-
genic zone (seizure-
free ) - Set E: Intracra-
nial EEG during ictal
(seizure) state. Each
set is balanced (100
segments).

Freiburg
Epilepsy
[W3]

2005
(dis-
con-
tin-
ued)

Invasive in-
tracranial
EEG from
Freiburg for
pre-surgical
epilepsy

Intracranial
EEG (grid/strip
electrodes,
128 channels,
256Hz)

21 adult
patients
(focal
epilepsy)

Ictal and interictal
data: ∼50min preictal
per ictal file, 24+
hours interictal per
patient

CHB-
MIT
Scalp
EEG[W2]

2010 Pediatric
long-term
EEG from
Children’s
Hospital
Boston
(CHB)

Scalp EEG (23
channels, 256Hz
sampling)

23 children
(1.5–22
years old)

Highly imbalanced:
few seizure segments
vs. much interictal
EEG

CHB-
MIT
Prepro-
cessed
[25]

2022 Preprocessed
CHB-MIT
EEG data
for seizure
detection and
prediction
using ML/DL
models; pro-
vided in .csv
format

5 files: ictal/pre-
ictal raw (96
ch), ictal/pre-
ictal (23 ch),
preprocessed
balanced (23
ch + label);
+ metadata
sheets and 278
segmented files

24 pe-
diatric
patients

Balanced (4096 sec-
onds each of preictal
and ictal data)

Table 2.1: Overview of Key Datasets.

The CHB-MIT Scalp EEG dataset is a widely used benchmark for pediatric seizure
detection. It is freely available and specifically collected from children with epilepsy, which
makes it especially relevant for research in this area. Many machine learning and deep
learning methods rely on CHB-MIT to train and evaluate seizure classification models.
Although there is a class imbalance since seizure events are rare compared to normal
EEGs, the dataset remains one of the largest public pediatric EEG collections, with
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recordings from 23 cases. Its frequent use in the literature highlights its importance, as
seen in many studies that cite it as the main data source [24]. For studies focusing on
ictal versus preictal classification, using a preprocessed version of CHB-MIT is especially
useful. This version provides balanced data for both classes, simplified in CSV format,
and is ready for use in machine learning or deep learning models without the need to
manually extract or annotate seizure segments.

3 Evaluation Metrics for Epileptic Seizure Detection

Evaluating the performance of a seizure detection model is an essential step to understand
how well the model works and whether it can be used in real-world applications. Several
metrics are used to measure how accurately the model can classify seizures and non-
seizures. These metrics are based on four main outcomes from the confusion matrix:

• True Positive (TP): The model correctly predicted a seizure (ictal period).

• True Negative (TN): The model correctly predicted a non-seizure (preictal or
interictal period).

• False Positive (FP): The model predicted a seizure, but it was actually a non-
seizure (false alarm).

• False Negative (FN): The model failed to detect a seizure and predicted a non-
seizure instead (missed seizure).

Confusion Matrix

Predicted: Non-Seizure Predicted: Seizure
Actual: Non-Seizure True Negative (TN) False Positive (FP)

Actual: Seizure False Negative (FN) True Positive (TP)

Table 2.2: Confusion Matrix.

Accuracy

Accuracy measures the proportion of total correct predictions made by the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

This metric shows how often the model is correct overall. However, accuracy alone is
not reliable when the dataset is imbalanced.

Recall (Sensitivity)

Recall, also called sensitivity or true positive rate, measures the model’s ability to detect
actual seizures.

Recall =
TP

TP + FN
(2.2)
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High recall means the model is good at detecting most seizures and is less likely to
miss them.

Precision

Precision measures how many of the predicted seizures are actual seizures.

Precision =
TP

TP + FP
(2.3)

High precision means the model generates fewer false alarms.

F1-Score

The F1-score is the harmonic mean of precision and recall. It balances both values and
is especially useful when the dataset is imbalanced.

F1_Score = 2× Precision × Recall
Precision + Recall

(2.4)

Specificity

Specificity is the true negative rate. It measures how well the model avoids false seizure
predictions.

Specificity =
TN

TN + FP
(2.5)

False Positive Rate (FPR)

This shows how often the model raises a false alarm.

FPR =
FP

FP + TN
(2.6)

False Negative Rate (FNR)

This shows how often the model misses a real seizure.

FNR =
FN

FN + TP
(2.7)

AUC-ROC (Area Under the Curve - Receiver Operating Charac-
teristic)

This score represents the model’s ability to distinguish between seizure and non-seizure
classes. It ranges from 0 to 1. A value close to 1 indicates good classification performance.
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False Alarm Rate per Hour (FA/h)

In seizure detection systems that work in real time, the false alarm rate per hour is
important. It is calculated as:

FA/h =
Number of False Alarms
Total Monitoring Hours

(2.8)

This metric helps evaluate the system’s reliability over time, especially for wearable
devices or long-term monitoring systems.

4 Overview of AI Techniques in Epileptic Seizure De-
tection

Epileptic seizure detection has been significantly advanced by intelligent systems powered
by artificial intelligence, enabling researchers to extract valuable insights from complex
neurological data and accurately anticipate seizure onset. This section presents widely
used AI techniques that have demonstrated effectiveness in modeling the dynamic patterns
of brain activity, with a specific focus on detecting seizures in pediatric patients.

4.1 Classical EEG-based Seizure Detection Methods

Traditional (non-ML, non-DL) epileptic seizure detection techniques use hand-designed
signal features and thresholds rather than learned models. Some examples are amplitude
thresholding, spectral (Fourier) analysis, entropy measures (e.g., approximate and fuzzy
entropy), and wavelet transforms. All of these methods compute a distinctive statistic on
EEG segments that tends to distinguish ictal (seizure) from interictal (non-seizure) states

• Amplitude thresholding:is a simple time-domain rule that flags EEG events when
the signal amplitude exceeds a set threshold. In practice, the mean or background
level of the EEG is first estimated (for example by averaging absolute amplitudes),
and any waveform with peak amplitude several times the background is considered a
spike or seizure activity. Ardalan et al. famously used a threshold of about four times
the baseline amplitude to identify epileptic spikes . In ictal EEG, large synchronous
discharges produce high-amplitude deflections, so amplitude thresholding tends to
capture those events while rejecting lower-voltage interictal background[26].

• Spectral analysis (Fourier power): converts EEG epochs into the frequency
domain to examine power at different frequencies . In essence, the Fast Fourier
transform (FFT) is applied to compute the power spectral density of each EEG
window. Seizures often produce characteristic spectral signatures (e.g. increased
power in slow-wave bands or emergence of rhythmic oscillations) that differ from the
interictal background. Classical Fourier-based detectors might, for example, com-
pute band-power ratios or identify peak frequencies that rise during seizures. (Be-
cause EEG is non-stationary, many approaches use short-window FFT or moving-
window spectrograms)[27]. Briefly, spectral features capture the redistribution of
EEG power that accompanies ictal onset, enabling discrimination of seizure epochs
by their frequency content.
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• Entropy measures: Quantify the irregularity or complexity of an EEG signal. Ap-
proximate entropy (ApEn) measures the predictability of a time series: it computes
the likelihood that similar waveform patterns remain similar on the next sample
[27]. Lower ApEn values indicate more regular (predictable) signals, whereas higher
ApEn reflects greater randomness. Because seizure EEG can be more ordered (e.g.
rhythmic spike-wave) or less predictable than interictal EEG, ApEn often changes
between states [27]. In practice one computes ApEn on sliding windows of the EEG;
ictal segments tend to have systematically different ApEn than background. Fuzzy
entropy (FuzzyEn) is a related concept that applies fuzzy set theory to quantify
sequence randomness. Like ApEn, FuzzyEn is higher when signal fluctuations are
more irregular. Xiang et al [28] showed that FuzzyEn values differ markedly between
seizure and non-seizure EEG.

• Wavelet analysis: rovides a multi-resolution time–frequency decomposition of
EEG signals. A wavelet transform uses basis functions that are localized in both
time and frequency [29] [30] . Unlike a fixed-window FFT, the discrete wavelet
transform (DWT) adaptively uses long windows at low frequencies and short win-
dows at high frequencies [30] . This allows transient epileptic patterns (which are
non-stationary) to be captured effectively. In practice, the EEG is decomposed
into several sub-bands by the wavelet filterbank, and features (such as sub-band
energy or entropy) are extracted from each band. Several studies have shown that
wavelet-based features are effective for seizure detection [29] . For instance, Faust
et al. applied DWT-denoising and feature extraction to EEG and reported that
the wavelet approach yielded very effective classification [31] . All in all, wavelet
analysis yields a rich time-frequency feature set that can distinguish ictal rhythmic
activity from background.

Despite their simplicity, these traditional methods can achieve high detection rates on
benchmark data.For example, Alotaiby et al. (2017) used a histogram-based threshold
method on multichannel scalp EEG and reported 97.1% sensitivity and 98.6% speci-
ficity in distinguishing ictal vs non-ictal segments. [32]. Hilbert–Huang transforms
and other adaptive spectral methods have likewise been explored: Oweis et al. uti-
lized Hilbert–Huang spectral amplitudes with statistical thresholds, yielding around 94%
accuracy and specificity of 96%.[33].An early single-channel statistical algorithm that fil-
tered and rectified the EEG signal and detected seizures via amplitude thresholds was
developed by Satirasethawong et al . it achieved about 88.5% sensitivity on CHB-MIT
data but still issued 0.18 false alarms per hour [34] . Such threshold-based detectors
are computationally cheap and easy to implement, but they have limited sensitivity in
noisy EEG and often generate many false positives in long-term recordings. Li et al.
(2018) combined fuzzy entropy and distribution entropy on short-term EEG epochs and
reported 92.8% accuracy (90.7% sensitivity, 96.0% specificity) for classifying ictal vs in-
terictal segments [35]. This shows that entropy features can be quite effective. However,
early entropy-based systems often depend sensitively on window length and can be com-
putationally expensive. Other studies using wavelet or spectral features similarly report
sensitivities and specificities typically well above 90% on public EEG databases [30] [28].
These results demonstrate that carefully chosen classical features can be very effective for
seizure detection. However, such methods usually require hand-tuning of parameters and
may be more sensitive to noise or patient variability than modern approaches.
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4.2 Machine learning

Machine learning (ML) is “a branch of computer science that aims to learn patterns
from data to improve performance at various tasks”[36]. In the context of EEG-based
seizure detection, ML methods ingest numerical features (e.g. summary statistics of EEG
segments) and build models to classify inputs into seizure vs. non-seizure states. A
typical ML process can be organized as a pipeline of stages transforming raw data into
predictions[37]. This pipeline usually includes steps such as data ingestion, preprocessing,
model training, and prediction. For example, one common description breaks the pipeline
into the following phases [37]:

• Data Ingestion:Raw data are collected and loaded into the system. For EEG,
this means acquiring and formatting the recorded signals. Any manipulations (e.g.
artifact removal) should be documented so that new data can pass through the same
process reproducibly .

• Preparation/Preprocessing: The collected data are cleaned and transformed to
make them suitable for modeling. This can include normalisation (scaling signals to
a common range), handling missing values or artifacts, and ensuring the test data
are processed in the same way as the training data.

• Training: A chosen learning algorithm is applied to the prepared training data
to generate a predictive model. This often involves splitting the data further into
a training set and a validation set. The model “learns” by adjusting its internal
parameters to fit the training data, typically by minimising an error or loss function
through optimization. During this phase, one often tries multiple algorithms and
tunes hyperparameters (settings not learned by the algorithm itself) to improve
performance.

• Prediction: Once the model is trained and tuned, it is used to make predictions on
new data. A held-out test set (data never used in training or validation) provides
an unbiased estimate of the model’s true performance .

Briefly stated, a seizure detection machine learning pipeline may involve the collection
of EEG data, its cleaning and formatting , splitting into training/validation/test sub-
sets, training and tuning a classifier, and then evaluating its accuracy on held-out EEG
recordings .

Key ML techniques, such as Support Vector Machine (SVM),Random Forest (RF) and
k-nearest neighbor (k-NN) are the more commonly used techniques in epileptic seizure
detection. The sub-sequent sections will provide brief descriptions of these most common
machine learning systems[38].

4.2.1 Support Vector Machine (SVM)

Support Vector Machines (SVMs) are supervised learning classifiers used for both classifi-
cation and regression tasks [39]. In essence, an SVM seeks the hyperplane that maximizes
the margin between two classes in the feature space. The support vectors (the training
samples closest to the decision boundary) uniquely determine this optimal hyperplane.
Formally, given training examples with labels yi ∈ +1,−1, the SVM solves a quadratic
optimization to maximize the margin subject to correct classification (with slack variables
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for non-separable data). Nonlinear separations are handled via the kernel trick, which im-
plicitly maps inputs into a higher-dimensional space (e.g. using radial-basis-function or
polynomial kernels) so that a linear separator exists [39] (Figure 2.1[40]) .

Figure 2.1: Linear SVM model .

In epileptic EEG analysis, SVMs have been widely adopted for seizure detection.
After preprocessing and feature extraction (e.g. wavelet or spectral features, statistical
measures), each EEG epoch is represented as a feature vector and fed to an SVM classifier.
The SVM then labels the segment as “seizure” or “non-seizure” by checking on which
side of the learned hyperplane it falls.Overall, the SVM’s margin-maximization principle
and kernel flexibility make it a powerful tool for automated seizure detection from EEG
[39][41]. However, it has the disadvantage of being sensitive to the kernel function used.
A good kernel must be chosen since it directly influences the model’s capacity to model
complicated relationships in the data. An unsuitable kernel will reduce performance and
make tuning more difficult.[42]

4.2.2 Random Forest (RF)

Random Forest (RF) is an ensemble learning method that builds a collection (“forest”)
of decision trees and aggregates their predictions. As Breiman describes [43], “random
forests are a combination of tree predictors such that each tree depends on a random vector
sampled independently and with the same distribution”. In practice, RF training proceeds
by bootstrap aggregating (bagging): for each tree, a random sample (with replacement)
of the training data is drawn. Each decision tree is then grown by recursively splitting
on features, but with an additional randomness: at each split, only a random subset of
the feature set is considered(figure 2.2[W4]). This decorrelates the trees. Finally, all trees
vote on the class label (majority vote for classification) for a new input. Steps of the
application of RF to EEG data are as follows:

• Training (Bootstrap Sampling):Draw a bootstrap sample from the EEG training
set.

• Tree Growing: Train a decision tree on that sample. At each node, select the best
split only among a random subset of features[44]. Continue splitting until a stopping
criterion (e.g. minimum node size) is reached.
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• Voting: Repeat for many trees. For a test EEG epoch, each tree outputs a class;
the RF outputs the class with the most votes. [44]

Figure 2.2: Random forest.

RF inherits the low bias of deep trees and reduces variance through averaging. It
is well-suited to high-dimensional data [44]. It also implicitly provides estimates of fea-
ture importance. Importantly, RF tends to be robust to noise and overfitting; Breiman
notes that RF error rates are “more robust with respect to noise” compared to some
alternatives[43]. In EEG seizure detection, Random Forest has been applied with success.
After extracting features (spectral band powers, entropy measures, etc.), the RF classifier
can capture complex, nonlinear patterns across multiple EEG channels. Overall, RF’s en-
semble mechanism provides high accuracy and generalization in seizure detection tasks,
making it a popular choice in recent literature [44],[41].

4.2.3 k-Nearest Neighbor (k-NN)

The k-Nearest Neighbor (k-NN) classifier is a simple, non-parametric method that makes
predictions based directly on the training data[45]. It operates under the principle of
instance-based learning: to classify a new sample, it finds the k closest training sam-
ples (neighbors) in feature space and assigns the most common class label among them.
Mathematically, given a test vector x, one computes a distance metric (usually Euclidean)
d(x, xi) to each training point xi, sorts the distances, and takes the majority vote of the
labels of the k nearest points. No explicit model is learned; the “learning” is simply storing
the training data[W6](Figure 2.3[46]).
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Figure 2.3: An example of kNN classification task with k = 5.

Key properties include: it is lazy (no training phase), and non-parametric (makes no
assumptions about data distribution)[45]. Typically, features are normalised beforehand
so that all dimensions contribute comparably. The choice of k (often small, e.g. 3 or 5) and
distance metric can be tuned via validation. Because k-NN uses local neighbourhoods, it
can capture complex decision boundaries but may suffer from high computation at test
time and sensitivity to irrelevant features[W5].

In epilepsy detection, k-NN has also been applied to classify EEG epochs. It is valued
for its simplicity and often high accuracy with well-chosen features:

• Feature Scaling:All EEG features are normalised (e.g. to unit range) to ensure fair
distance calculations[45].

• Distance Computation:For a test EEG segment, compute distance to every training
segment in feature space.

• Neighbor Selection:Identify the k closest training segments.

• Majority Vote: Assign the class label (seizure or not) that the majority of the k
neighbors possess.

Over the past five years, numerous studies have investigated the use of these techniques
for epileptic seizure detection.Ali et al. (2024) designed a Random Forest (RF) pipeline
on CHB-MIT dataset, explicitly addressing class imbalance and continuous “event” detec-
tion. In realistic testing on CHB-MIT, it achieved only 72.6–75.3% sensitivity(no accuracy
reported)[47]. The advantage of RF is interpretability and speed; it handles many features
easily. However, the study exposed a major limitation: sensitivity remained low in a re-
alistic setting, indicating many missed seizures despite post-processing – highlighting the
difficulty of class imbalance and inter-subject variability[47]. Hazarika et al. (2025)[48]
also used an RF classifier to detect seizures. In their patient-independent evaluation,
they found RF gave the best performance: “the random forest classifier outperforms other
options, with an accuracy of 97% and a sensitivity of 97.20%”.Raghu et al. (2020) devel-
oped an SVM-based detector using a novel “successive decomposition index” feature and
evaluated it on multiple databases including CHB-MIT. Using patient-independent train-
ing/test splits, they reported a sensitivity of 97.28% (with about 0.57 false alarms/hour
and 1.7s median detection delay) on CHB-MIT [49]. Similarly, Dastgoshadeh and Rabiei,
compared several classifiers on public EEG (Bonn) data: a least-squares SVM (LS-SVM)
model achieved 98% accuracy, on par with a Naïve Bayes baseline [50] . k-NN classifiers
have been used as baselines in several recent works. Dastgoshadeh and Rabiei extracted
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entropy features from Bonn EEG and evaluated k-NN among other methods . They found
k-NN yielded about 94.5% accuracy (with sensitivity 94.5%) [50]. Other CHB-MIT study
reported 93% sensitivity and 94% specificity using KNN [51]. These works highlight the
strengths of classical machine learning approaches and suggest avenues for future research
to refine and extend their performance within established accuracy bounds.

4.3 Deep Learning

Deep learning is a subfield of machine learning that entails the use of multi-layered neural
networks in, enabling the automatic learning of hierarchical representations from data.
In deep architectures, each successive layer learns increasingly abstract features, building
complex concepts out of simpler ones [52],[53]. This hierarchy of concepts allows deep
models to “understand the world” in terms of multiple levels of representation, as illus-
trated by Goodfellow et al.: “computers can learn from experience and understand the
world in terms of a hierarchy of concepts” [52]. In practice, deep learning models auto-
matically perform both feature extraction and classification within the same architecture,
a capability that distinguishes them from traditional machine learning methods, which
usually require manual feature engineering(Figure 2.4[54] ) [55], [53].

Figure 2.4: Machine Learning vs. Deep Learning.

By using many non-linear layers, deep models can approximate very complex func-
tions: for example, LeCun et al. describe deep networks as models “composed of multiple
processing layers to learn representations of data with multiple levels of abstraction” [53].
During training, these layers are adjusted via backpropagation to transform raw inputs
into output decisions, effectively learning domain-specific features and decision boundaries
without human-crafted filters [55], [56].

In epilepsy detection, for instance, Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs) (including LSTMs), and related deep architectures have been
systematically applied to seizure detection tasks[56].

4.3.1 Deep Neural Networks (DNN)

A deep neural network (DNN) typically refers to a feedforward multilayer perceptron
with several hidden layers. Each layer in a DNN consists of fully-connected neurons
that compute a weighted sum of inputs, followed by a non-linear activation (commonly
ReLU in modern networks) [53]. The architecture can be characterised as: input →
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(affine transform + ReLU) × L layers → softmax output(Figure 2.5[57]). Because every
neuron in layer L connects to all neurons in layer L−1, DNNs can learn complex nonlinear
mappings between inputs and outputs.

Figure 2.5: A common DNN architecture with three input layers, four hidden layers, and
two output layers.

In practice, DNNs are trained by backpropagation and gradient descent, adjusting all
weights to minimise a classification loss. The depth of the network (often 5–20 layers)
allows for hierarchical feature extraction, enabling the network to represent intricate input
patterns[53].

4.3.2 Convolutional Neural Networks (CNN)

A Convolutional Neural Network (CNN) is a deep learning model inspired by the animal
visual cortex, primarily used for processing data with a grid-like architecture, such as
images. CNNs are designed to automatically and adaptively learn spatial hierarchies of
features, from low to high-level patterns [58]. A CNN is composed of convolutional layers,
pooling layers, and fully-connected layers [59](Figure 2.6[60]). The main purpose of a
CNN is to automatically learn useful features from the input data using convolutional
layers made up of learnable filters, which act as feature extractors[58] .

Figure 2.6: Basic CNN Architecture.
.

CNNs have demonstrated effectiveness in tasks like face and object identification,
traffic sign detection, and self-driving cars. By minimising the number of parameters in
an ANN, developers and researchers are motivated to focus on larger models that can be
used to solve complicated tasks, which is impossible with traditional ANNs [58]. In EEG,
CNNs are used for decoding and visualising brain activity. They can reach accuracies
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comparable to Filter Bank Common Spatial Patterns (FBCSP) for decoding task-related
information from EEG and can learn to use spectral power modulations in alpha, beta,
and high gamma frequencies [61].

4.3.3 Long Short-Term Memory (LSTM) Networks

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN)
designed specifically to handle long-term temporal dependencies within sequential data.
In a vanilla RNN, the hidden state is propagated from one step to the next, but basic
RNNs suffer from short-term memory issues: they struggle to pass information through
long sequences and are susceptible to vanishing or exploding gradients during training
[62]. LSTM Cells solve this through an explicit memory cell and gates. Each LSTM unit
has three gates – input, forget, and output gates – that regulate the flow of information in
and out of the cell state(Figure 2.7[63]). Mathematically, these gates (sigmoid activations)
decide which information to retain or discard at each time step [63]. As Khan et al.
summarise, these gates “preserve the long sequence of necessary data, and throw away
the undesired ones,” enabling the network to maintain relevant context over extended
intervals [64], [63].

Figure 2.7: Long short-term memory unit architecture.

In effect, LSTM cells can learn to remember salient EEG patterns (e.g. onset of
rhythmic discharges) over many seconds or minutes, mitigating the limitations of simple
RNNs [64], [63].

Several recent studies have applied end-to-end neural networks to pediatric EEG for
seizure detection. For example, Qiu et al.(2023) used 2-second raw EEG windows and
a custom 1D-CNN on the CHB-MIT dataset. Using 10-fold cross-validation, the CNN
attained 97.09% accuracy[65]. Kaziha and Bonny(2020) applied a 2D CNN with 100
s windows and a 70/30 Train–Test Split, achieving 96.70% acccuracy [66] Shen et al.
(2023) applied a 2-second sliding window (overlap 1.35s) on raw CHB-MIT EEG, com-
puted short-time Fourier transforms (STFT), and fed the spectrograms into a pretrained
GoogleNet CNN. Their real-time system achieved 97.74% accuracy and 98.90% sensitiv-
ity [67]. Similarly, Ravi et al. (2024) proposed a 1D CNN + Bi-LSTM model in parallel
paths to capture spatial and temporal EEG features. Using 5-fold cross-validation on
CHB-MIT data, the model achieved about 95.9% accuracy, 97.2% sensitivity and 95.95%
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F1 [68]. Its advantage is strong feature extraction and temporal memory (via Bi-LSTM),
reducing false positives with no manual signal transformations. A limitation is moder-
ate complexity and reliance on large data; performance varies across patients. Lee et al.
(2024) developed a ResNet-152 + LSTM pipeline with supervised contrastive learning
for patient-adaptive detection. Evaluated on CHB-MIT, it attained 91.90% accuracy and
89.64% sensitivity [69] . This hybrid deep network is robust to variability by fine-tuning
on each subject, and the LSTM captures temporal context. However, its sensitivity was
lower than accuracy, suggesting missed detections, and the two-stage training is complex.
huang al. (2025) introduced a dual-attention ResNet + Bi-LSTM (STFFDA) model. On
CHB-MIT, single-patient tests gave 95.18% accuracy [70] and, in 3-class (normal/inter-
ictal/ictal) 10-fold cross-validation, 92.42% accuracy [70]. A purely feed-forward DNN
was trained on the Bonn dataset (23.6s EEG segments, class 1=seizure vs classes 2–5
non-seizure [71] )by khurshid et al(2024). With an 80/20 train/test split, this DNN (sev-
eral dense layers with ReLU/softmax) reached 97.0% accuracy [71].

Table 2.3 below summarises the main related works reviewed in this section, encom-
passing classical EEG-based approaches, machine learning algorithms, and deep learning
methods for epileptic seizure detection.

Table 2.3: Summary of related works on epileptic seizure detection

Category Reference Method Dataset Results Limitation

Classical
EEG-based
methods

Satirasethawong
et al. [34]

Amplitude
thresholding

CHB-MIT Sensitivity
88.5%, FA/h
0.18/h

High false alarms.
single-channel
only. Perfor-
mance drops with
noise.

Alotaiby et
al. [32]

histogram-
based thresh-
old method

CHB-MIT 97.1% sensi-
tivity ,98.6%
specificity

Limited Dataset
Diversity

Li et al. [35] Entropy mea-
sures (ApEn,
FuzzyEn)

Bonn Accuracy
92.8%,
Sensitivity
90.7%,96.0%
specificity

Limited to short
windows; not ro-
bust to long-term
EEG or patient
variability.

Oweis et al.
[33]

Hilbert–Huang
spectral am-
plitudes with
statistical
thresholds

CHB-MIT Accuracy
∼94%, speci-
ficity ∼95.2%

its tendency to
cause mode mix-
ing due to the en-
forced frequency
ordering of IMFs.

Machine
Learning

(ML)

Raghu et al.
[49]

SVM (SDI
feature)

CHB-MIT Sensitivity
97.28%, 0.57
FA/h 1.7s
delay

Moderate false
alarms : General-
isability was not
tested on other
datasets.

Hazarika et
al.[48]

Random For-
est

CHB-MIT Accuracy
97%, Sensi-
tivity 97.2%

Oversampling
may overfit;
tested on CHB-
MIT only.

Continued on next page
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Table 2.3 (continued)
Category Reference Method Dataset Results Limitation

Dastgoshadeh
& Rabiei [50]

Least-squares
SVM

Bonn Accuracy
98%

Not tested on
broader datasets;
possible over-
fitting to Bonn
EEG.

Dastgoshadeh
& Rabiei [50]

k-NN (en-
tropy fea-
tures)

Bonn Accuracy
≈94.5%

no real-time or
large dataset val-
idation.

Deep
Learning

(DL)

shen et al.[67] GoogLeNet
2D-CNN
(STFT)

CHB-MIT Accuracy
97.74%,
Sensitivity
98.90%

High false alarm
rate; no generali-
sation study.

Qiu et al.[65] Custom
1D-CNN

CHB-MIT Accuracy
97.09%

Window length
2s; no tests below
1s.

khurshid
et.[71]

Feedforward
DNN

Bonn Accuracy
97.0%

Long segments
(23.6s); no real-
time capability.

Ravi et al.[68] 1D CNN +
Bi-LSTM

CHB-MIT Accuracy
95.9% , sensi-
tivity 97.2%
& 95.95% F1

moderate com-
plexity and
reliance on large
data; perfor-
mance varies
across patients.

Lee et al.[69] ResNet-152 +
LSTM

CHB-MIT Accuracy
95.9% &
sensitivity
89.64%

sensitivity was
lower than accu-
racy,suggesting
missed detection.

Recent advances show that deep learning techniques are among the most effective
for detecting epileptic seizures from EEG data. Convolutional neural networks (CNNs),
in particular, have proven well suited to this task because they can capture both the
time-related patterns in multichannel EEG signals and the spatial relationships between
electrode channels. CNNs are able to automatically learn important spatial and temporal
features that traditional methods often miss, by building layered representations directly
from raw or lightly pre-processed EEG input. Deeper layers in these networks also help
reduce the impact of noise and artefacts by focusing on relevant patterns and filtering
out distractions. When properly trained, CNN models can adapt well to different patient
profiles and recording conditions, due to their ability to scale with larger and more complex
datasets. For these reasons, recent studies on seizure detection have consistently shown
that CNN-based approaches outperform classical machine learning models.

5 Conclusion

An overview of AI techniques for epileptic seizure detection was given in this chapter,
which contrasted deep learning architectures, machine learning techniques, and tradi-

24



CHAPTER 2. TECHNIQUES FOR THE DETECTION OF EPILEPTIC SEIZURES
IN CHILDREN: A COMPREHENSIVE REVIEW

tional signal processing methods. While classical and machine learning approaches remain
bound by manually constructed features and limited generalisability, deep learning, and
particularly CNNs, offer a powerful alternative by learning directly from raw data. CNNs
are highlighted in this review as a potentially useful basis for automated seizure detection
systems. One method has been selected for the suggested seizure detection system based
on these findings, which is explained in the following chapter.
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Chapter 3

Methodology and Implementation

1 Introduction

Detecting epileptic seizures from EEG signals is an important task in the field of biomedi-
cal signal processing. Deep learning techniques, especially Convolutional Neural Networks
(CNNs), have shown great results in this area. This chapter presents the development
of a seizure detection model using a one-dimensional Convolutional Neural Network (1D
CNN), trained on preprocessed EEG signals from the CHB-MIT scalp EEG dataset. The
focus is placed on proper handling of the data, thoughtful design of the CNN architecture,
and selection of a suitable training approach tailored to the characteristics of EEG signals.
Each step is carefully carried out to ensure the model performs well in detecting epileptic
seizures.

2 Proposed Model

2.1 Model selection

Epileptic seizure detection has traditionally relied on hand-crafted EEG features followed
by classical classifiers. In such pipelines, features are first extracted in the time or fre-
quency domain, then passed to a classifier for training and prediction. These systems
can be highly accurate but depend heavily on expert knowledge in both signal processing
and feature design, which may limit their generalisability across patients or recording
conditions [72]. Although these methods can achieve high accuracy, they require expert
design and may not generalise well to new patients or varying signal conditions. Deep
learning offers an end-to-end alternative: a convolutional neural network (CNN) can learn
relevant EEG features directly from raw data without manual engineering.CNNs offer a
compelling trade-off between accuracy and efficiency. They are particularly well suited to
capturing local temporal patterns in multichannel EEG data, while remaining computa-
tionally lighter than recurrent models like LSTMs. Some recent work shows that pure 1D
CNNs can match or even outperform more complex hybrid CNN-LSTM models for EEG-
based tasks [73].Compared to traditional approaches such as Support Vector Machines
(SVMs), CNNs avoid the need for fixed-size input formatting and eliminate manual fea-
ture computation, making them a better fit for real-time or streaming EEG applications.

Clinically, the model’s focus is not just on broad “seizure vs. non-seizure” classifica-
tion, but on distinguishing preictal (just before seizure) from ictal (during seizure) EEG,.
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Seizure detection research has emphasised that an alert just before clinical onset is most
useful, while warnings hours in advance often cause anxiety [74]. Therefore, training the
CNN model on these specific phases helps it learn features unique to the critical seizure
onset window, supporting faster and more meaningful responses.

2.2 Mechanisms of CNNs

Convolutional Neural Networks (CNNs) are composed of layers such as convolutional,
activation, pooling, flatten, and dense (fully connected) layers as shown in (Figure 3.1[75]).

Figure 3.1: CNN layers.

CNNs can be adapted to data in several ways, mainly distinguished by the dimension-
ality of the input and the convolution operations [52]:

• 1D CNN:Operates directly on raw 1D signals (such as time-series). It applies 1D
kernels along the length of the signals and learns patterns across all channels or
components.

• 2D CNN: Requires a 2D input. This often means converting the data into an
image-like format. 2D CNNs can capture spatial patterns but may require additional
processing to arrange the data appropriately.

• 3D CNN: Uses 3D kernels (e.g., time × height × width). 3D CNNs are more
common in video or medical imaging.

In the proposed model, a 1D CNN is applied, which allows the network to scan each
multichannel EEG segment over time [76] and identify patterns specific to preictal and
ictal states. In a typical 1D convolutional layer, the output at a given time position tis
computed as:

y(t) =
k−1∑
i=0

c−1∑
j=0

x(t+ i, j) · w(i, j),

where :

• x is the input signal with c channels,

• w is a kernel of size k
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The sums run over the kernel extent and input channels [52]. Including a bias term for
each filter, the number of parameters in a convolutional layer is:

k × c× nfilters + nfilters.

Following convolution, activation layers such as ReLU introduce non-linearity, while pool-
ing layers (e.g., max pooling) reduce the temporal resolution, helping the network gener-
alise better and reducing computation. A flatten layer is used to convert the final feature
maps into a 1D vector, which is then passed through one or more dense layers to make
the final classification [52].

2.3 1D Convolutional Neural Network Architecture

The proposed 1D Convolutional Neural Network (CNN) model is designed to classify
EEG signals into ictal and preictal categories. It processes time-series EEG segments
through successive layers for feature extraction, downsampling, and classification. Each
layer is described below with its mathematical operations, output shapes, and number of
parameters [77](Figure 3.2).

2.3.0.1 Input Layer
The input to the model is an EEG segment represented as a tensor I ∈ R60×23, where 60
denotes the number of time steps and 23 refers to EEG channels.

2.3.0.2 Conv1D Layer (32 filters, kernel size = 5, ReLU)
This layer applies 32 convolutional filters with a kernel size of 5 across the input:

Cj(i) =
5∑

u=1

23∑
k=1

I(i+ u− 1, k) ·Kk,j(u) + bj

where j = 1, . . . , 32 (filters), i = 1, . . . , 56 (valid output positions), and K are the
kernel weights. Each activation is passed through the ReLU function:

ReLU(Cj(i)) = max(0, Cj(i))

Output shape: (56× 32)
Trainable parameters: Each filter has 5 × 23 = 115 weights and 1 bias. Total

parameters:

(115× 32) + 32 = 3,712

2.3.0.3 MaxPooling1D Layer (pool size = 2)
This layer reduces the temporal resolution by selecting the maximum value over non-
overlapping windows of size 2:

Sj(i) = max {Cj(2i− 1), Cj(2i)}

Output shape: (28× 32)
Trainable parameters: 0 (non-trainable)
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2.3.0.4 Flatten Layer
The pooled feature maps are reshaped into a 1D vector:

f(k) = Sj(i), where k = i+ 28(j − 1)

Output shape: 896 (since 28× 32 = 896)
Trainable parameters: 0

2.3.0.5 Dense Layer (32 units, ReLU)
A fully connected layer maps the flattened input to a 32-dimensional vector:

zl =
896∑
k=1

Wlk · f(k) + cl, yl = max(0, zl)

Output shape: 32
Trainable parameters:

896× 32 + 32 = 28,704

2.3.0.6 Output Layer (1 unit, Sigmoid)
This layer produces the final prediction with a sigmoid activation:

zout =
32∑
l=1

Vl · yl + d, yout =
1

1 + e−zout

Output shape: 1 (binary classification)
Trainable parameters:

32× 1 + 1 = 33

2.3.0.7 Total Trainable Parameters

3,712 (Conv1D) + 28,704 (Dense) + 33 (Output) = 32,449

This model architecture is designed to efficiently extract both temporal and spatial
EEG features, enabling robust seizure detection using a relatively small number of pa-
rameters, making it suitable for real-time and embedded systems. Each layer contributes
as follows:

• Conv1D: Extracts local spatiotemporal EEG patterns.

• Pooling: Reduces dimensionality and provides temporal invariance.

• Dense layers: Combine learned features and output binary classification.
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Figure 3.2: Model summary

3 Dataset Description

3.1 Used Dataset

The dataset utilised in this study is the preprocessed CHB-MIT dataset published by
Deepa B. and Ramesh K. [25]. This version (available via IEEE Dataport [W7]) is a
balanced dataset (approximately equal total duration of preictal and ictal data), free
of redundant channels. By construction, this set no longer contains the overwhelming
amount of normal EEG from CHB-MIT; it focuses on the seizure events and their lead-
in. This distinction is clinically relevant because it allows the model to learn the subtle
changes that occur just before a seizure onset – knowledge that would be obscured if
all interictal data were lumped in as “no seizure.” In summary, the preprocessed dataset
provides clean, balanced, and precisely labelled preictal/ictal EEG with 2 million rows,
which suits our detection task as shown in (Figure 3.3).

Figure 3.3: Data Head
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3.2 Data Visualisation

To gain intuition about the data, several visualisations were generated. Figure 3.4 is a
correlation heatmap between all channel pairs, computed over several minutes of EEG.
High correlations among certain groups of electrodes is observed (e.g. nearby regions),
as expected due to volume conduction and common underlying sources. This spatial
structure justifies the model’s use of filters spanning multiple channels.

Figure 3.4: Correlation Heatmap of EEG Channels

Figure 3.5 displays the class distribution (count of windows) for preictal vs. ictal in
the dataset. Due to the preprocessing, the two classes are roughly balanced. These plots
confirm that the data are well-conditioned for training the CNN model and illustrate the
typical EEG patterns the network will see.
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Figure 3.5: Class Distribution

4 Implementation

4.1 Data Preparation

Data standardisation:
Before modelling, each EEG channel was standardised using a z-score (Standard-

Scaler). Z-score normalisation subtracts the mean and divides by the standard deviation
of each channel, ensuring zero-mean, unit-variance inputsusing the following equation[78]:

Xstd =
(X − µ)

σ
(3.1)

where:

• Xstd is the standardized data value,

• X is the original data value,

• µ is the mean of the data,

• σ is the standard deviation of the data.

This is appropriate for EEG because raw amplitudes can differ substantially between
channels and recordings. Without normalisation, large-amplitude channels would domi-
nate the learning. By scaling all channels comparably, the network can focus on patterns
rather than absolute voltage[25].

Sequence Creation: To prepare the data for training, overlapping windows were ex-
tracted from the continuous EEG recordings that included both preictal and ictal seg-
ments. Each window was 60 samples long. Given a sampling rate of 256 Hz, this means
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each window represents approximately 0.23 seconds of brain activity. A stride of 1 sample
was used, so the windows overlapped heavily, each new window shifted by just one sample.
This method ensures that very little information is lost between segments, making the
most of the available data. The label assigned to each window corresponds to the class
of its final sample. By sliding the window this way, a large number of training examples
were created, each carrying temporal information from the EEG. This overlap also helps
maintain the sequence continuity, which is important when working with time-dependent
signals like EEG[79]. The code in Figure 3.6 represents Sequence Creation steps:

Figure 3.6: Sequence Creation steps code

Data Splitting:
Once the EEG windows were prepared, the dataset was divided into training, valida-

tion, and test sets using a stratified approach. The split followed a 72%–18%–10% ratio,
where 72% of the windows were used for training, 18%for validation, and 10% for testing.
This corresponds to a typical 80/20 division between training and validation within the
non-test portion. Stratification was important to maintain the same balance of preictal
and ictal examples in each set [80], helping to ensure fair training and evaluation(Figure
3.7). To avoid any data leakage, the division was done at the window level in a way that
windows from the same seizure were not shared between different sets. This step is crucial
because EEG signals taken from the same seizure can have very similar patterns, which
might mislead the model during training or testing. By keeping test data completely
separate and ensuring no overlap with training windows, the model’s final performance
could be properly evaluated on genuinely new data[81].

Figure 3.7: Dataset shapes after splitting and reshaping

4.2 Training Configuration

The CNN was trained with:

• the Adam optimiser which adaptively tunes learning rates and often converges
faster [82].
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• loss function which is binary cross-entropy, defined as [83]:

L = − [y log(ŷ) + (1− y) log(1− ŷ)] (3.2)

where:

– y ∈ {0, 1} is the true label,

– ŷ ∈ (0, 1) is the predicted probability of the positive (ictal) class.

Minimising this loss function encourages the predicted probability ŷ to closely match
the actual class label y.

• batch size of 256 was used throughout the experiments. This size was chosen
because it is large enough to produce stable gradient estimates during training,
but still fits easily on standard modern hardware. Using a larger batch size helps
smooth out the noise in the gradient updates, which can make training faster and
more consistent. On the other hand, very small batch sizes may introduce too much
variability and make learning unstable [84]. The size of the dataset allowed the use
of this medium-large batch size without running into memory problems.
Two callbacks were included to improve generalisation and stability in the 20-epoch
training:

– EarlyStopping: If the validation loss fails to improve after a certain patience
(3 in this case), training is stopped. This prevents the network from overfitting
by continuing to learn from the training data when it’s no longer improving on
validation. As Hussein and Shareef note, this technique "stops training when
the validation loss stops improving", thus preventing the model from learning
noise in the training data[85]. In practice, training often finished well before
20 epochs, and early stopping made sure it did not continue unnecessarily,
reducing the risk of overfitting.

– ModelCheckpoint: The validation ROC–AUC (area under the ROC curve)
was tracked after each training epoch, and model weights were saved whenever
this score improved. This helped ensure that the best-performing version of the
model was kept, based on its ability to distinguish between seizure and non-
seizure cases. AUC is a suitable choice for this kind of binary classification
problem because it remains reliable even when the two classes (preictal and
ictal) are not perfectly balanced[86]. It gives a clearer picture of how well
the model can separate the two classes overall. Accuracy was also monitored
during training to give a general idea of how often the model was making the
correct prediction, but it was not used to decide which model to save.

The general training configuration is summarised in Table 3.1.
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Parameter Description
Optimizer Adam (adaptive learning rate optimizer)
Loss Function Binary Cross-Entropy (for ictal vs. preictal classifi-

cation)
Batch Size 256 (balances stability and efficiency)
Epochs Up to 20 (controlled by callbacks)
EarlyStopping Stops if validation loss doesn’t improve (prevents

overfitting)
Patient 3 epochs
ModelCheckpoint Saves best model based on validation AUC

Table 3.1: CNN Training Configuration

5 Environment

5.1 Hardware

The experiments were conducted using both a local machine and a cloud-based environ-
ment (Google Colab Pro), with the following specifications:

Local Machine Specifications

• Operating System: Windows 10 Professional

• Processor: Intel Celeron N4000 CPU @ 1.10GHz (2 cores)

• Memory: 16GB DDR4 RAM @ 2400 MHz

• Storage: Solid State Drive (SSD),256GB

• Graphics: Integrated Intel® UHD Graphics 600

Cloud Environment (Google Colab Pro)

• Plan: Google Colab Pro

• Runtime Type: Python 3 on Google Compute Engine backend

• Hardware Accelerator: v2-8 TPU

• Colab RAM: Approximately 35GB (High-RAM session)

• Colab Disk: Approximately 107GB

5.2 Used Libraries

• NumPy: is a basic Python library used for numerical and scientific computing. It
provides the ndarray object, which is an N-dimensional array for storing numbers.
NumPy also includes fast functions for doing math on these arrays, like element-
wise operations, linear algebra, Fourier transforms, and random number generation.
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Since it runs with fast C code in the background, it can handle large datasets
efficiently. Many other Python libraries use NumPy arrays as a base, which makes
it a core tool in data analysis[W8].

• pandas:is a free Python library that makes it easy to work with table-like data. Its
main data types are Series (1D) and DataFrame (2D), which help you load, clean,
and explore data quickly. You can read files like CSV or Excel, fix missing values,
and do basic calculations with just a few lines of code. Pandas is built on top of
NumPy and works well with other libraries like Matplotlib. It’s mostly used to
prepare and understand data before using it in machine learning or analysis[W9].

• Matplotlib:Matplotlib is a comprehensive Python library for creating graphs and
plots. It supports making a wide range of visualisations (such as line plots, bar
charts, scatter plots, histograms, and more), including both static and interactive
figures. Matplotlib can produce high-quality figures in multiple formats (PNG,
PDF, SVG, etc.) and is commonly used for data visualisation in scripts, Jupyter
notebooks, and applications. Its low-level commands and object-oriented interface
allow detailed customisation of plots, which is why many higher-level libraries (like
pandas and seaborn) use Matplotlib under the hood[W10].

• TensorFlow: TensorFlow is an open-source, end-to-end platform for machine learn-
ing, developed by Google. It provides a comprehensive set of tools and libraries for
building, training, and deploying machine learning models (especially deep neural
networks) across different environments (desktop, mobile, web, or cloud). In prac-
tice, TensorFlow simplifies workflows by offering high-level APIs (like Keras) and
automating many low-level details of model construction and training. TensorFlow
is widely used in data science and AI applications for tasks such as image recogni-
tion, natural language processing, and large-scale model training[W11].

• scikit-learn: A Python library offering tools for machine learning and statistical
modeling. It includes algorithms for classification, regression, clustering, and dimen-
sionality reduction, along with utilities for data preprocessing, model validation, and
hyperparameter tuning. Built on NumPy and SciPy[87].

• Seaborn: is a Python library for making nice-looking and useful graphs, built on
top of Matplotlib. It gives you a simple way to create complex charts that help you
understand patterns in your data. Seaborn is especially good for showing statistics
in a clear and visual way, making it easier to explore and explain your data[88].

6 Results and discussion

To properly evaluate the performance of the proposed 1D Convolutional Neural Network
(1D-CNN) for detecting epileptic seizures, we will use common evaluation metrics dis-
cussed in Chapter 2. These include accuracy, precision, recall, F1-score, false positive
rate, false negative rate, and AUC-ROC. These metrics help measure how well the model
can classify and detect seizures correctly.
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6.1 Results

The model was tested on unseen data to check how well it performs and how stable it is
when making new predictions.
The results are shown in 3.8 as a confusion matrix, which gives a clear picture of how
the model did in separating ictal and preictal cases. This helps to understand where the
model makes correct predictions and where it may still make mistakes.

Figure 3.8: Confusion matrix.

The final confusion matrix shows how well the model was able to classify preictal and
ictal states. It correctly identified 101,528 preictal examples and 101,744 ictal examples.
However, it also made some mistakes, misclassifying 3,324 preictal cases as ictal and 3,113
ictal cases as preictal. Overall, these results show that the model is performing well, with
a good balance in recognising both types of signals.

To understand how the model was learning before being tested, Figure 3.9 to Figure
3.11 show the training and validation curves for accuracy, loss, and AUC across all training
epochs. The accuracy curves for both training and validation increase steadily and stay
close to each other, suggesting that the model was learning well without overfitting. The
loss curves go down smoothly, and the validation loss closely follows the training loss,
showing good convergence. The AUC curves stay high and stable for both training and
validation, which means the model consistently learned to tell the difference between ictal
and preictal signals during training.
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Figure 3.9: The training and validation curves for accuracy over the training epochs.

Figure 3.10: The training and validation curves for loss over the training epochs.
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Figure 3.11: The training and validation curves for AUC over the training epochs.

To further evaluate the model’s performance, Figure 3.12 presents the classification
report, which shows precision, recall, F1-score, and overall accuracy for each class.

Figure 3.12: Classification report.

The following Table 3.2 summarises the performance metrics of the model.

39



CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Metric Value

Accuracy 97%

Sensitivity 97.03%

Specificity 96.83%

Precision 97%

F1-Score 97%

False Positive Rate (FPR) 3.17%

False Negative Rate (FNR) 2.97%

Table 3.2: Summary of Performance Metrics

The results shown in 3.2 and Figure 3.12 show that the proposed model achieves
strong performance in distinguishing between ictal and preictal states in pediatric epilepsy
cases. It reached an overall accuracy of 97%, showing that it can reliably classify EEG
signals linked to seizures. The model’s sensitivity was 97.03%, meaning it was able to cor-
rectly detect most seizure events, which is important to avoid missing any. Its specificity
was 96.83%, showing it also recognised non-seizure periods well and avoided sending too
many false alarms. With both precision and F1-score at 97%, the model showed balanced
and consistent performance. The low false positive rate (3.17%) and false negative rate
(2.97%) also suggest that the model handles challenging EEG data with good stability.

The model’s classification performance is also evaluated using the Receiver Operating
Characteristic (ROC) curve (Figure 3.13) and Prediction confidence Distribution Plot
(Figure 3.14).
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Figure 3.13: The ROC curve.

The curve shows how well the model separates seizure (ictal) and non-seizure (preictal)
cases. It compares the true positive rate with the false positive rate at different thresholds.
The shape of the curve shows that the model has strong performance, with high sensitivity
and low false alarms across various settings.

Figure 3.14: Prediction confidence Distribution Plot.

The plot shows how confident the model was when predicting whether a signal belongs
to the ictal class. The blue curve shows preictal samples, which mostly have low predicted
probabilities (close to 0), while the red curve shows ictal samples, which are mostly
predicted with high probabilities (close to 1). The two curves are clearly separated,
meaning the model can confidently tell the difference between the two classes. This
matches the good results seen in other metrics and confirms that the model makes reliable
predictions.
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7 Conclusion

This chapter presented the design and evaluation of a deep learning model for detecting
epileptic seizures in children using EEG signals. The model was based on a 1D-CNN
architecture and used carefully chosen preprocessing steps. It performed well in identifying
both preictal and ictal states, achieving high accuracy and strong results on the CHB-
MIT dataset. The model showed a good balance between key metrics like sensitivity,
precision, and F1-score. When compared to other models, it proved to be both effective
and reliable. Overall, the results highlight the value of lightweight deep learning models
for building small, real-time seizure monitoring systems, which can help make epilepsy
care more accessible and responsive.
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General conclusion

This work addressed the problem of automated epilepsy seizure detection in children using
1D Convolutional Neural Networks (1D-CNN). The main aim was to find a way to identify
seizures quickly and accurately from EEG signals, in order to help doctors and caregivers
respond in time and provide proper care.

This master thesis starts by introducing epilepsy, its effects on children, and the role of
EEG signals in detecting seizures. It then reviews related methods and techniques, from
classical approaches to more advanced deep learning methods. Finally, it presents the
implementation of a 1D-CNN model and demonstrates its effectiveness in distinguishing
ictal from preictal signals. Looking forward, future perspectives may include improving
the model by adding more data from different children to make it more robust and reliable.
Furthermore, trying other deep learning methods or adding additional information from
different signals may help to make the detection more accurate. There is also potential
for developing a real-time alarm system to help caregivers respond quickly when a seizure
starts, and for integrating this approach into a small, lightweight device that children can
wear in their daily lives.

In conclusion, this work highlights the ability of deep learning techniques, particularly
1D-CNN, to aid in the automatic detection of seizures in children. By proposing a sim-
ple and effective approach and identifying future research directions, this work aims to
contribute to improving the health and safety of children with epilepsy.
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