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Abstract 
Radiological reports play an essential role in the diagnostic process, particularly for 

thoracic pathologies visible on chest X-rays. The manual preparation of these reports by 

radiologists is a demanding, time-consuming task that is subject to subjective variations. 

The emergence of deep learning offers promising prospects for automating this task and 

improving clinical productivity. 

In this work, we propose an automatic radiology report generation system based on 

a hybrid deep learning architecture. The system integrates a pre-trained convolutional 

neural network (EfficientNetB0) for visual feature extraction, coupled with a Transformer-

based decoder for diagnostic text generation. The model is trained on the Indiana 

University Chest X-ray database, after structured pre-processing of the images and text 

reports. In order to improve the linguistic consistency and terminological accuracy of the 

reports generated, a post-processing phase is introduced, based on the BioGPT model, 

which specialises in the biomedical field. This step improves the fluidity, readability and 

clinical accuracy of the reports produced. 

The experimental results obtained demonstrate the effectiveness of the system. The 

BLEU-4 score increased from 0.4191 (LSTM model) to 0.8286 (Transformer model with 

BioGPT), while the BERTScore reached 0.9628, reflecting strong semantic similarity with 

the reference reports. These performances confirm the potential of the proposed approach 

to assist radiologists and improve the quality of AI-assisted diagnoses. 

Keywords: Radiology report generation, encoder-decoder architecture, deep learning, 

CNN-Transformer, EfficientNetB0, Transformer decoder, BioGPT, chest X-rays, natural 

language processing 
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Résumé  
Les rapports radiologiques jouent un rôle essentiel dans le processus de diagnostic, 

en particulier pour les pathologies thoraciques visibles sur les radiographies du thorax. La 

préparation manuelle de ces rapports par les radiologues est une tâche exigeante, longue et 

sujette à des variations subjectives. L'émergence de l'apprentissage profond offre des 

perspectives prometteuses pour automatiser cette tâche et améliorer la productivité 

clinique. 

Dans ce travail, nous proposons un système de génération automatique de rapports 

de radiologie basé sur une architecture hybride d'apprentissage profond. Le système intègre 

un réseau neuronal convolutionnel pré-entraîné (EfficientNetB0) pour l'extraction des 

caractéristiques visuelles, couplé à un décodeur basé sur Transformer pour la génération 

de texte diagnostique. Le modèle est entraîné sur la base de données de radiographie 

thoracique de l'Université de l'Indiana, après un prétraitement structuré des images et des 

rapports textuels. Afin d'améliorer la cohérence linguistique et la précision terminologique 

des rapports générés, une phase de post-traitement est introduite, basée sur le modèle 

BioGPT, spécialisé dans le domaine biomédical. Cette étape améliore la fluidité, la lisibilité 

et la précision clinique des rapports produits. 

Les résultats expérimentaux obtenus démontrent l'efficacité du système. Le score 

BLEU-4 est passé de 0,4191 (modèle LSTM) à 0,8286 (modèle Transformer avec 

BioGPT), tandis que le score BERTS a atteint 0,9628, reflétant une forte similarité 

sémantique avec les rapports de référence. Ces performances confirment le potentiel de 

l'approche proposée pour aider les radiologues et améliorer la qualité des diagnostics 

assistés par l'IA. 

Mots-clés Génération de rapports radiologiques, architecture codeur-décodeur, 

apprentissage profond, CNN-Transformateur, EfficientNetB0, décodeur transformateur, 

BioGPT, radiographies du thorax, traitement du langage naturel. 
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 الملخص 
تلعب تقارير الأشعة دورًا أساسياً في عملية التشخيص، خاصةً بالنسبة للأمراض الصدرية التي تظهر في 

الأشعة السينية للصدر. ويعُد الإعداد اليدوي لهذه التقارير من قبل أخصائيي الأشعة مهمة شاقة وتستغرق وقتاً طويلاً  

 .واعدة لإعداد هذه المهمة آلياً وتحسين الإنتاجية العياديةوتخضع لتغيرات ذاتية. يوفر ظهور التعلم العميق آفاقاً 

آلياً لإعداد تقارير الأشعة يعتمد على بنية التعلم العميق الهجين. يدمج النظام   في هذا العمل، نقترح نظاماً 

إلى جانب وحدة فك ترميز   (EfficientNetB0) شبكة عصبية تلافيفية مدربة مسبقاً المرئية،  الميزات  لاستخراج 

 Indiana University لتوليد النص التشخيصي. تم تدريب النموذج على قاعدة بيانات جامعةقائمة على المحول  

للأشعة السينية للصدر، بعد المعالجة المسبقة المنظمة للصور والتقارير النصية. ومن أجل تحسين التناسق اللغوي  

نموذج إلى  استنادًا  المعالجة،  بعد  ما  مرحلة  إدخال  يتم  إنشاؤها،  تم  التي  للتقارير  المصطلحات  ،  BioGPT ودقة 

القراءة والدقة الإكلينيكية   السلاسة وسهولة  الخطوة على تحسين  الحيوي. تعمل هذه  الطبي  المجال  المتخصص في 

 .للتقارير التي يتم إنتاجها

  0.4191من    BLEU-4تظُهر النتائج التجريبية التي تم الحصول عليها فعالية النظام. وارتفعت درجة    .

، BERTScore 0.9628(، في حين بلغت درجة  BioGPT)نموذج المحول مع    0.8286( إلى  LSTM)نموذج  

مما يعكس تشابهًا دلاليًا قوياً مع التقارير المرجعية. يؤكد هذا الأداء إمكانات النهج المقترح لمساعدة أخصائيي الأشعة  

 وتحسين جودة التشخيص بمساعدة الذكاء الاصطناعي

المفتاحية الشعاعية، :الكلمات  التقارير  والفك، توليد  التشفير  بنية  العميق   ،  ،  CNN-Transformer  ،    التعلم 

EfficientNetB0 ،Transformer Decoder ،BioGPT ،اللغة الطبيعية معالجة ، صور الأشعة السينية للصدر 
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General introduction  

Radiology plays a fundamental role in modern clinical diagnosis, providing vital 

visual information to support medical decision-making. Among various imaging 

modalities, chest X-rays are the most frequently used due to their low cost, non-invasive 

nature, and diagnostic importance in detecting thoracic pathologies such as pneumonia, 

cardiomegaly, tuberculosis, and pulmonary edema. However, the interpretation and 

reporting of these images require significant expertise and time from radiologists, who are 

often overwhelmed by the growing volume of imaging data in clinical workflows. 

Despite advances in digital health, radiology reports are typically generated 

manually by experts after a detailed visual analysis of X-ray images. This process is not 

only labor-intensive but also susceptible to inter-observer variability and reporting 

inconsistencies. In regions with limited access to trained radiologists, the quality and 

timeliness of radiological assessments are further compromised. These limitations have 

motivated the development of intelligent systems capable of automating the generation of 

diagnostic reports directly from medical images. 

Artificial intelligence (AI), particularly deep learning, has shown remarkable 

progress in various medical image analysis tasks. Encoder-decoder architectures—

comprising convolutional neural networks (CNNs) for image feature extraction and 

recurrent or transformer-based models for text generation—have been successfully applied 

to medical image captioning. However, generating accurate and clinically coherent 

radiology reports remains a challenging task due to several factors. These include the 

complexity and variability of medical language, the need for domain-specific knowledge, 

and the scarcity of large, high-quality annotated datasets. 

In In this context, our work addresses this issue by proposing a system for 

automatically generating radiological reports from chest X-rays. The approach we have 

developed is based on a hybrid architecture combining a pre-trained visual encoder 

(EfficientNetB0) with a Transformer-type decoder to produce diagnostic text. To improve 

the linguistic quality and clinical accuracy of the reports, a post-processing module is 

integrated, based on the BioGPT biomedical language model, trained to correct and refine 

the texts generated. 

This work is structured into four chapters, preceded by a general introduction and 

followed by a general conclusion. 

The first chapter is devoted to the field of thoracic radiology. It presents the basics 

of medical imaging, the types of pathologies that can be detected by radiography, the 

formats of clinical reports, and the databases available for training AI systems in this field. 
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The second chapter introduces the foundations of artificial intelligence and deep 

learning. It details convolutional neural networks, sequential decoders (LSTM, 

Transformer), and biomedical language models such as BioGPT. A review of recent 

approaches to generating medical reports is also presented. 

The third chapter describes our methodology. It describes the proposed pipeline, 

from data pre-processing to the design of the CNN-Transformer architecture, including 

tokenisation, image normalisation and model input formats. 

Finally, the fourth chapter deals with the practical implementation of the system, 

model training, performance evaluation using metrics such as BLEU, ROUGE-L, 

METEOR and BERTScore, and analysis of the results. This chapter also discusses the 

limitations identified and suggests possible improvements. 

. 
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Chapter I: Image Captioning Task 

1. Introduction 
The automatic generation of descriptive text from visual content, known as image 

captioning, represents a compelling interdisciplinary challenge at the intersection of 

computer vision and natural language processing. Over the past decade, natural image 

captioning (NIC) has achieved remarkable progress, fueled by the development of 

powerful deep learning architectures and large-scale annotated datasets. However, the 

extension of these techniques to the medical domain introduces unique complexities that 

go far beyond those encountered in general image captioning. Medical image captioning, 

particularly for diagnostic purposes, demands the generation of clinically accurate, 

coherent, and contextually grounded radiology reports—tasks which require not only 

visual understanding but also domain-specific biomedical reasoning. This chapter provides 

a comprehensive overview of the progression from traditional NIC techniques to 

contemporary radiology report generation methods. It presents a detailed survey of publicly 

available medical imaging datasets, explores the evolution of model architectures from 

retrieval-based systems to Transformer-based decoders, and critically examines both 

generic and radiology-aware evaluation metrics designed to assess the clinical validity of 

generated reports. 

2. Natural Image Captioning 
The automatic generation of image captions is a complex challenge at the 

intersection of computer vision (CV) and natural language processing (NLP). It requires a 

detailed understanding of the visual content of an image, as well as the ability to describe 

its objects, attributes and relationships in a fluid human language. While natural image 

captioning (NIC) uses a common vocabulary, medical image captioning (MIC) requires 

specialist knowledge and biomedical terminology that is often unfamiliar to the general 

public. 
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Natural image captioning, the task of automatically generating descriptive 

sentences for images, has seen significant advancements (Pan et al., 2024). Over the past 

few years, a wide range of approaches have been proposed to address this challenge. 

A dominant architectural approach in image captioning is the encoder-decoder 

framework. These methods commonly employ a CNN as the encoder to extract visual 

features from the input image and an RNN as the decoder to generate the corresponding 

textual description(Pan et al., 2024). The Show-Tell model is a foundational example of 

this end-to-end neural network approach, where CNN-extracted image features are fed into 

an LSTM to produce captions(Vinyals et al., 2015). 

Inspired by the human visual system, numerous methods have integrated attention 

mechanisms into the encoder-decoder framework. (Vinyals et al., 2015),(You et al., 2016) 

and (Lu et al., 2017). These attention mechanisms enable the model to automatically focus 

on the most relevant parts of the image while generating the caption(Pan et al., 2024). For 

instance, Lu et al. introduced an adaptive attention model that dynamically adjusts its focus 

between visual cues and the language model. (Lu et al., 2017). Similarly, (Anderson et al., 

2018)proposed a combined bottom-up and top-down attention mechanism that computes 

attention at the level of objects and salient regions. Other research efforts have focused on 

improving the individual components of the captioning model(Pan et al., 2024). To 

enhance the image encoder, some methods explicitly model the relationships between 

different visual regions using Graph Convolutional Networks (GCNs) or scene graphs. (X. 

Yang et al., 2019; Yao et al., 2018). For improving the text decoder, hierarchical RNNs 

have been developed for paragraph generation, and novel attention mechanisms like the X-

Linear attention block have been introduced to better utilize visual information. (Pan et al., 

2020)The Transformer model, known for its powerful representation capabilities, has also 

been adopted as a replacement for RNNs in the text decoder. (Vaswani et al., 

2023)Furthermore, Reinforcement Learning techniques have been applied to directly 

optimize non-differentiable captioning evaluation metrics(S. Liu et al., 2017; Pasunuru & 

Bansal, 2017, 2017).  

Figure 1: Exemple of caption generation from image (Hutchison et al., 2010) 
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While these advances in image annotation have been made, applying these methods 

directly to medical report generation often results in reduced performance. Pan, Y. et al. 

Generation of thoracic radiology reports based on multiscale feature fusion. This is 

primarily due to the unique characteristics and challenges associated with generating 

radiology reports.  

3. Medical Image Diagnostic Captioning 
The automated generation of a diagnosis from the study of one or more medical 

images of a patient is known as a diagnostic legend (DC)(Pavlopoulos et al., 2021). A 

medical report is nothing more than a factual, in-depth account of the important findings 

from medical imaging, drawn up by a professional (Monshi et al., 2020). The generation 

of these diagnostic reports is often considered to be a monotonous operation that can be 

automated(Yin et al., 2019). 

 

Figure 2: Example of a normal finding in radiology report from the MIMIC-CXR 

Dataset (A. E. W. Johnson et al., 2019) 
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4. Datasets for Radiology Report Generation 
  Systems for generating radiology reports based on deep learning depend 

significantly on extensive, labeled collections of medical images and their associated 

textual descriptions. Presented here is a summary of the key datasets, organized into 

families and extensions, along with other significant corpora. 

4.1. Indiana University X-ray Dataset (IU-Xray):  

The IU-Xray dataset (also called Open-i dataset), published in 2016, is among the 

first and most frequently utilized public datasets for research on generating radiology 

reports. It includes chest X-rays in both frontal and lateral perspectives from 3,955 patients, 

yielding 7,470 images. Every image is associated with a structured report composed in 

English, featuring sections like “Findings” and “Impression.” The dataset is especially 

useful for training and assessing models focused on generating reports at the sentence level. 

Its small dimensions and superior annotations render it a remarkable benchmark for proof-

of-concept research(Demner-Fushman et al., 2016).  

4.2. MIMIC-CXR Dataset Collection 

The MIMIC-CXR dataset is a large-scale, resource widely used for training and 

evaluating deep learning models in radiology report generation. It contains hundreds of 

thousands of chest X-ray images paired with free-text reports. Its scale, diversity, and 

clinical depth make it a cornerstone for model development in this field. 

4.2.1. Medical Information Mart for Intensive Care CXR (MIMIC-CXR):  

MIMIC-CXR, released in 2019, is an extensive, anonymized dataset with 227,827 

radiological examinations and 377,110 chest X-ray images from 65,379 individuals. It 

comprises both front and side perspectives, as well as English-written free-text reports. The 

dataset can be accessed under a limited access license for authorized researchers. It is 

commonly utilized in both classification and report creation activities(A. E. W. Johnson et 

al., 2019).  

4.2.2. Medical Information Mart for Intensive Care - Annotated Biomedical 

Mention(MIMIC-ABM):  

An extension of MIMIC-CXR, the MIMIC-ABM (Annotated Biomedical Mention) 

dataset was made available in 2020. It includes 38,551 entries labeled with biomedical 

entities to assist in entity recognition and relation extraction. While the number of patients 

isn't given, it aids in tasks such as medical named entity recognition (NER) and enhances 

the quality of visual-semantic embeddings(Ni et al., 2020). 

4.2.3. Chest ImaGenome:  

Launched in 2021, Chest ImaGenome expands on MIMIC-CXR by offering 

detailed image-level annotations for 242,072 frontal CXR images. These annotations 
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encompass spatial entities and connections, rendering the dataset valuable for training 

attention-driven and grounding models. (Wu et al., n.d.). 

4.2.4. Chest X-Ray Pro (CXR-PRO):  

Released in 2022, CXR-PRO is yet another limited-access extension of MIMIC-

CXR. It includes 374,139 examinations from 65,379 individuals, preserving both frontal 

and lateral perspectives. It aims to minimize hallucinations by eliminating nonexistent 

earlier references in reports(Ramesh et al., 2022).  

4.3. Multi-Source CXR Dataset Series 

The Multi-Source CXR datasets were introduced to increase the robustness and 

generalizability of radiology models. By integrating images from diverse clinical settings 

and temporal contexts, they enable models to better handle variability across patient 

populations and institutions. These datasets are particularly valuable for longitudinal and 

comparative studies. 

4.3.1. Multi-Source Chest X-ray (MS-CXR) 

The MS-CXR dataset, launched in 2022, is a limited collection of chest X-rays 

sourced from various origin points. It consists of 1,047 frontal photographs from 851 

individuals. Reports are in English and encompass diverse clinical settings(Boecking et al., 

2022). 

4.3.2. Multi-Source Chest X-ray – Temporal (MS-CXR-T)  

MS-CXR-T, released in 2023, builds upon MS-CXR by incorporating a temporal 

aspect, comprising 1,326 frontal images from 800 different patients. It is especially 

beneficial for time-related reasoning and detecting changes in radiology(Bannur et al., 

2023).. 

4.4. Other Datasets 

Several additional datasets complement the main collections by offering unique 

features such as different imaging modalities, languages, or regional healthcare contexts. 

These resources, though often smaller or restricted in access, support cross-lingual research 

and broaden the applicability of automated report generation across global healthcare 

systems. 

• PadChest: is a restricted dataset published in 2019. It covers frontal and lateral 

CXRs from 67,625 patients, with 109,931 exams and 160,868 images. It is in 

Spanish (Bustos et al., 2020). 

• Chinese Hospital Chest X-ray (CH-Xray): is a private dataset published in 2022, 

comprising frontal CXRs from 11,049 patients. It contains 11,049 images in 

Chinese (H. Zhao et al., 2021). 
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• Chinese Cross-institutional Chest X-ray (CX-CXR): is a restricted dataset 

published in 2018. It contains CXRs in frontal and lateral views of 33,236 patients 

for a total of 45,598 images. Reports are in Chinese (F. Wang et al., 2021). 

• COVID-19 CT Report Dataset (COV-CTR): is a public dataset published in 

2022. It contains axial CTs of 728 patients with as many images, in English (M. Li 

et al., 2023). 

• Japanese Liver CT (JLiverCT): is a private dataset published in 2023. It contains 

axial CTs of 1,083 patients with the same number of images. Data in Japanese 

(Nishino et al., 2022). 

• CT Radiology Annotated for Text and Entity Extraction(CT-RATE): is a 

public dataset published in 2024. It contains axial CTs from 21,304 patients, with 

25,692 examinations and 50,188 images. The reports are in English (Hamamci et 

al., 2025). 

Dataset Year Patients Images / 

Exams 

Views Language Access 

IU-Xray 2016 3,955 7,470 Frontal/Lateral English Public 

MIMIC-CXR 2019 65,379 377,110 / 

227,827 

Frontal/Lateral English Restricted 

MIMIC-

ABM 

2020 — 38,551 

reports 

— English Restricted 

Chest 

ImaGenome 

2021 — 242,072 Frontal English Restricted 

CXR-PRO 2022 65,379 374,139 

exams 

Frontal/Lateral English Restricted 

MS-CXR 2022 851 1,047 Frontal English Restricted 

MS-CXR-T 2023 800 1,326 Frontal English Restricted 

PadChest 2019 67,625 160,868 Frontal/Lateral Spanish Restricted 

CH-Xray 2022 11,049 11,049 Frontal Chinese Private 

CX-CXR 2018 33,236 45,598 Frontal/Lateral Chinese Restricted 

COV-CTR 2022 728 728 Axial CT English Public 

JLiverCT 2023 1,083 1,083 Axial CT Japanese Private 
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CT-RATE 2024 21,304 50,188 / 

25,692 

Axial CT English Public 

Table 1: Summary Of The Available Datasets For Radiology Report Generation. 

5. Methods 
A wide range of methods have been developed for radiology report generation, 

evolving from rule-based systems to modern deep learning architectures. It can be 

categorized these approaches based on their design philosophy and underlying 

mechanisms. The progression reflects the increasing complexity and sophistication 

required for accurate clinical text generation. 

5.1. Early Approaches 

Early systems relied on hand-crafted rules, retrieval techniques, and template-based 

generation to produce diagnostic descriptions. While limited in flexibility and scalability, 

these approaches laid the groundwork for automated report generation. They remain useful 

for well-structured tasks with constrained vocabularies. 

5.1.1. Retrieval-based Methods 

Retrieval-based methods generate an image caption based on the analysis of similar 

images extracted from a database. According to established rules, the final caption 

corresponds to the closest image or to a combination of the best k-captions 

identified(Ayesha et al., 2021). 

5.1.2. Template-based Methods  

Template-based approaches use predefined structures with empty slots to be filled in, 

enabling captions to be generated in a syntactically and semantically controlled way. The 

method begins by detecting a set of visual descriptors. These concepts are then combined 

into complete sentences using specific sentence templates or grammatical rules(Y. Yang et 

al., 2011). 

5.2. Generative Approaches 

Generative methods leverage neural networks to learn the mapping between visual 

inputs and textual outputs. Architectures such as encoder-decoder models and attention 

mechanisms have enabled more expressive and context-aware report generation. These 

approaches support end-to-end learning from large-scale datasets. 

5.2.1. Encoder-Decoder Architectures 

Encoder-decoder (ED) architectures learn to extract features end-to-end. The 

encoder, often implemented as a convolutional neural network (CNN), extracts visual 

features from the image, which are then used by a language model (LM) to generate 

syntactically and semantically correct sentences(Sutskever et al., 2014). 
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5.2.2. Compositional Architectures  

Compositional approaches are based on the assembly of several functional 

modules, trained separately. An image is first processed by a convolutional neural network 

(CNN) to extract visual features. These representations are then used by a language model 

(LM) to generate a set of candidate descriptions, which are re-evaluated and re-ranked 

using a deep multimodal similarity model. The best evaluated description is selected as the 

image caption(Reale-Nosei et al., 2024). 

5.2.3. Attention-based Architectures 

Encoder–Decoder and compositional methods generally overlook the spatial 

structure of the input image, generating captions based on the image as a whole. Attention-

based approaches, however, dynamically focus on specific regions during caption 

generation, allowing for a more detailed and accurate description(Reale-Nosei et al., 2024).  

5.2.4. Dense image captioning 

While encoder-decoder and compositional methods generate captions by 

considering the image as a whole, and attention-based methods focus selectively on regions 

before merging them into a single output, both approaches ultimately produce a single 

overall description. This mono-captioning strategy can be subjective and insufficient to 

fully capture complex scenes. Dense captioning offers an alternative by producing multiple 

region-specific captions(Reale-Nosei et al., 2024). 

 One of the first models that implemented this idea was DenseCap, which uses a 

CNN for feature extraction, a dense region suggestion layer to determine regions of 

interest, and a language model (often an LSTM) to generate individual captions for each 

region(J. Johnson et al., 2016). 

5.3. Hybrid Methods 

Hybrid approaches combine the strengths of retrieval, template, and generative 

techniques to improve accuracy and adaptability. They offer a flexible framework that 

balances structure with creativity, making them particularly effective for medical domains 

where factual correctness is critical. These models aim to minimize errors while preserving 

clinical utility. 

5.3.1. Template-based and Generative Models 

In the field of caption generation for medical images, a promising approach is to 

combine template-based and generative methods. Given that medical reports often follow 

a fixed structure, template-based approaches initially seem well-adapted for Diagnostic 

Captioning (DC). However, their lack of flexibility can limit their applicability across 

diverse diagnostic scenarios. To overcome this, several studies have proposed hybrid 

approaches that combine the reliability of templates with the adaptability of generative 

models. For example, Gill et al. showed that the generation of context-specific frontal 
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images x-ray of the pelvis to detect hip fractures - a well-defined task - can be effectively 

managed using only two templates. In their approach, images are coded using a dense 

network and categorized as either positive or negative for fractures. For positive cases, an 

LSTM with an attention mechanism fills in the appropriate fields in the predefined 

template(Gale et al., 2019). 

5.3.2. Retrieval-based and Generative Models 

The advantages and disadvantages of retrieval-based models have been explored 

extensively. Similar to hybrid template-based strategies, retrieval-based approaches can be 

combined with generative models to better adapt previously generated reports to new 

imaging data. This combination alleviates some of the strict limitations seen in pure 

template-based approaches by offering the ability to generalize to unseen cases(Beddiar et 

al., 2023). 

 Furthermore, some studies have proposed using Reinforcement Learning (RL) to 

dynamically decide whether to reuse an existing report or create a new one from scratch(C. 

Y. Li et al., 2018; Xiong et al., 2019). 

6. Language Evaluation Metrics 
Human evaluations of machine translation are extensive but costly. They can take 

months to complete and involve human labor that cannot be reused. For this reason, the 

researchers have created the language evaluation metrics to assess the generated text which 

are simple to use and faster. 

6.1. Natural Language Generation Evaluation Methods 

To assess the quality of generated reports, researchers have adopted a variety of 

automatic evaluation metrics from natural language generation. These include n-gram 

overlap measures like BLEU and METEOR, as well as embedding-based scores such as 

BERTScore. Each metric offers different insights into linguistic quality and semantic 

fidelity. 

6.1.1. Bilingual Evaluation Understudy (BLEU) 

BLEU is a metric that evaluates the quality of the generated text by measuring the 

n-gram overlap between candidate and reference sentences, without the need for precise 

positional alignment. To discourage very short outputs, this metric includes a brevity 

penalty (BP) that penalizes captions that are shorter than the reference. A BLEU scores 

closer to 1 indicates better performance. BLEU-n is commonly used to specify the number 

of words considered in an n-gram comparison(Papineni et al., 2001). 

The standard formula for the BLEU score for a corpus is : 
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𝐵𝐿𝐸𝑈 = 𝐵𝑃 × 𝑒𝑥𝑝 (∑ 𝑤𝑛 𝑙𝑜𝑔 𝑝𝑛

𝑁

𝑛=1

) 

With 

• 𝑝𝑛 is the modified accuracy of the n-grams (with saturation according to 

maximum occurrences) 

• 𝑤𝑛 is the weight of each n-gram (classically 𝑤𝑛 =
1

𝑁
, 𝑤𝑖𝑡ℎ 𝑁 = 4) 

• 𝐵𝑃 is the brevity penalty, calculated as follows: 

𝐵𝜌 = {
1                 𝑖𝑓 𝑐 > 𝑟

exp (1 −
𝑟

𝑐
)     𝑒𝑙𝑠𝑒

 

• c the total length (in words) of the generated output 

• r  the length of the nearest reference. 

6.1.2. Metric for Evaluation of Translation with Explicit Ordering (METEOR) 

METEOR is a metric developed to evaluate the correlation between automatically 

generated captions and those produced by humans, at the sentence level. It extends BLEU-

1 by introducing the harmonic mean between precision and recall, called the Fβ score, with 

a recall-oriented weighting. The Fβ score is a generalization of the F1 score, in which the 

β parameter allows recall to be prioritized. When no n-grams correspond between the 

model output and the human reference, the METEOR score can be reduced by up to 50%. 

In machine translation, a score higher than 0.6 is often interpreted as surpassing human 

performance, as two humans generally do not produce a perfect match. On the other hand, 

a BLUE score close to 1 is often considered unrealistic and may indicate that the model 

has been overlearned(Banerjee & Lavie, 2005). 

The global formula is : 

METEOR=Fmean⋅(1−Penalty) 

is the weighted harmonic mean of precision (P) and recall (R): 

Fmean=αP+ 
P⋅R

(1−α)R 
 

In the original version α=0.9 

Penalty=γ(
𝑐ℎ

𝑚
)β 

with typical values : γ=0.5, β=3. 
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6.1.3. Recall Oriented Understudy for Gisting Evaluation (ROUGE) 

ROUGE is a metric initially developed to assess the quality of automatic 

summaries, by measuring the n-gram overlap between the generated summary and a human 

reference. It is also used in tasks such as image caption generation to compare the 

descriptions produced with references(Lin, 2004). 

ROUGE‑N = 
number of matched n‑grams between candidate and reference

total number of n‑grams in the reference
 

6.1.4. Consensus-based Image Description Evaluation (CIDEr) 

CIDEr (Consensus-based Image Description Evaluation) has been specifically 

designed to evaluate image descriptions. It measures the cosine similarity between the 

weighted TF-IDF representations of the n-grams of the generated and reference 

captions(Vedantam et al., 2015). 

6.1.5. BERTScore 

BERTScore is an automatic evaluation metric for text generation, based on 

contextual representations of pre-trained language models. It measures token-level 

similarity between a generated output and a reference, using cosine similarity in the 

embedding space. According to its authors, BERTScore correlates better with human 

judgments and improves performance in model selection compared with conventional n-

gram-based metrics.(Zhang et al., 2020) 

6.2. Clinical Efficacy (CE)  

Standard Natural Language Generation (NLG) evaluation metrics are designed to 

assess fluency and coherence in human-like texts. However, in radiology, reports often 

contain specialised medical terminology, making these general-purpose metrics not 

enough. As a result, researchers have developed domain-specific evaluation methods that 

better capture clinical accuracy and relevance. 

6.2.1. Radiology-Aware Model-Based Evaluation Metric for Report Generation 

This metric is an adaptation of the COMET framework, originally designed for 

evaluating machine translation, applied here to the field of radiology. It uses pre-trained 

language models to independently encode the reference report (source) and the generated 

report (hypothesis), and then computes combined features from their semantic 

representations. These features are then processed by a regressor trained to predict a quality 

score by minimising the mean square error (MSE). This approach enables the quality of 

the reports generated to be assessed without the need for an explicit reference(Calamida et 

al., 2023). 

6.2.2. MRScore 

MRScore is a radiology-aware rating metric that combines GPT-4 with a fine-tuned 

Large Language Model (LLM) to assess the quality of generated radiology reports. GPT-
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4 is used to rate reports based on clinically-informed parameters and functions as a human 

judgement proxy. These scores are used to train a reward model - built on the Mistral-7B-

Instruct LLM and fine-tuned using Reinforcement Learning with Human Feedback 

(RLHF) - which learns to replicate GPT-4's preferences, providing efficient and human-

aligned scores at inference time(Y. Liu et al., 2024). 

6.2.3. RaTEScore 

RaTEScore is a radiology-specific similarity metric that evaluates report quality by 

comparing extracted medical entities between a reference and a candidate report. It 

comprises three modules: medical named entity recognition (NER), synonym-aware 

embedding, and an affinity-based scoring function. While the scoring does not directly use 

large language models, GPT-4 was used during the creation of the RaTE-NER dataset — 

a large-scale, manually annotated corpus — to enrich the training data with nuanced and 

rare radiological conditions. This indirect use of GPT-4 helped improve the quality and 

coverage of the NER model used in RaTEScore's evaluation pipeline (W. Zhao et al., 2024) 

6.2.4. GREEN: Generative Radiology Report Evaluation and Error Notation 

GREEN is a comprehensive evaluation framework for radiology report generation 

that leverages large language models to detect, classify, and explain clinically significant 

and insignificant errors across six categories. 

• False Finding (Hallucination): Reporting findings not present in the reference 

report. 

• Missing Finding (Omission): Omitting clinically relevant findings present in the 

reference. 

• Incorrect Location: Describing findings in the wrong anatomical location. 

• Incorrect Severity: Misstating the clinical severity of a condition. 

• Incorrect Size: Reporting an inaccurate size for a finding. 

• Incorrect Comparison: Misrepresenting temporal changes, such as stability or 

progression. 

  It outputs both a numerical score — reflecting the accuracy and clinical relevance 

of a generated report — and a textual summary that highlights specific error types using 

clustering-based techniques(Ostmeier et al., 2024). 

7. Conclusion 
The task of radiology report generation stands at the frontier of medical artificial 

intelligence, demanding a synthesis of visual comprehension, linguistic fluency, and 

clinical precision. This chapter has outlined the conceptual and technical evolution of 

image captioning, tracing its adaptation from natural to medical contexts. It has shown that 

while traditional encoder-decoder frameworks and attention mechanisms provide a 
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foundational basis, the specialized nature of medical reporting necessitates innovations in 

both dataset curation and model design. Moreover, the emergence of domain-specific 

evaluation metrics underscores the inadequacy of generic language metrics in assessing 

diagnostic accuracy. As models become more complex and datasets increasingly diverse, 

the focus is shifting toward ensuring factual correctness, minimizing hallucinations, and 

aligning machine-generated reports with clinical expectations. Looking forward, the 

integration of multimodal reasoning, reinforcement learning, and large-scale foundation 

models holds promise for achieving clinically trustworthy radiology report generation. 
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Chapter II: Deep Learning 

Overview and Literature Review 

1. Introduction 
The rapid evolution of artificial intelligence has positioned deep learning as a 

foundational paradigm for automating complex cognitive tasks, including those in medical 

image interpretation and report generation. This chapter provides a comprehensive 

overview of deep learning models and their relevance to the field of radiology. It begins 

with fundamental concepts of neural networks, detailing convolutional and recurrent 

architectures, before progressing to recent innovations such as Transformers, Vision-

Language Models (VLMs), and emerging alternatives like Mamba and State-Space Models 

(SSMs). The chapter also introduces essential techniques like transfer learning and large 

language models, which have significantly enhanced performance across vision and 

language domains. In its final sections, a thorough literature review is presented, 

highlighting the diverse modeling strategies employed in recent research to automate 

diagnostic captioning and clinical reporting. This foundational overview sets the stage for 

the development and justification of the proposed system in subsequent chapters. 

2. Deep learning models 
Machine learning is a branch of artificial intelligence that allows computers to learn 

from data and make forecasts without being specifically coded. Through the examination 

of data patterns, machine learning algorithms create models that evolve and enhance 

through experience, rendering them well-suited for tasks that require handling dynamic or 

intricate datasets. Essential methods encompass supervised, unsupervised, semi-

supervised, and reinforcement learning, along with deep learning, transfer learning, and 

ensemble approaches. These methods are commonly employed in various sectors—from 

healthcare and finance to transportation and customer support—to improve decision-

making, automate processes, identify anomalies, and tailor user experiences. The process 

of machine learning includes gathering data, training models, and assessing performance, 

backed by platforms that provide scalable computing capabilities and strong development 

tools(Azure Microsoft, 2025).  

Deep learning is a branch of machine learning that employs multi-layer neural 

networks to gain insights from vast amounts of unstructured data like images, text, and 

sound. It allows machines to autonomously identify features and make choices without 

direct coding. Drawing inspiration from the human brain, deep learning models analyze 

data via layers of connected nodes to recognize patterns and produce predictions. Deep 

learning, underpinned by frameworks like TensorFlow and PyTorch, finds extensive 
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application in areas such as self-driving cars, healthcare diagnostics, and processing natural 

language. Its effectiveness is fueled by enhanced computational capabilities, extensive 

datasets, and adaptable model structures(Azure, 2025b).  

2.1. Neural Networks 

A neural network is a kind of machine learning model that mimics the operations of 

the human brain. It consists of layers of artificial neurons that are linked together, featuring 

an input layer, several hidden layers, and an output layer. Every neuron evaluates inputs 

according to designated weights and a threshold; when the output surpasses this threshold, 

the signal moves to the subsequent layer. Neural networks adapt based on training data, 

constantly refining their internal parameters to enhance performance. After training, they 

can swiftly execute intricate tasks like image classification and speech recognition with 

great precision. Referred to as Artificial Neural Networks (ANNs), these frameworks are 

essential to deep learning systems and are pivotal in contemporary AI applications, such as 

technologies like Google's search engine (IBM, 2025c). 

2.1.1. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a type of deep neural network highly 

proficient in analyzing visual data, including tasks like image classification, object 

detection, and recognition. In contrast to conventional neural networks, CNNs are 

structured to analyze and learn from spatial hierarchies in data through the use of three 

fundamental layers: convolutional layers, pooling layers, and fully connected layers.  

• Convolutional layer serves as the basic component, using trainable filters (kernels) 

that move across the input data to execute dot products, resulting in feature maps 

that identify patterns such as edges or textures. These filters utilize parameter 

sharing and connection sparsity, significantly lowering computational complexity.  

• Pooling layers, usually max or average pooling, come after convolutional layers to 

downsample feature maps, minimizing dimensionality while maintaining important 

features, aiding in enhancing generalization and reducing overfitting.  

• Fully connected layers integrate the extracted features and execute the final 

classification through activation functions such as softmax.  

CNNs have a hierarchical structure: initial layers detect basic forms (such as lines, 

edges), whereas later layers identify intricate patterns (like faces, organs). This architecture 

enables CNNs to substitute manual feature extraction with learning from start to finish. 

CNNs have become the standard in computer vision and medical imaging tasks due to their 

scalability and performance(IBM, 2025a).  

As an advancement of the convolutional neural network architecture, numerous 

architectures have arisen to boost and refine the performance of convolutional neural 

networks. These architectures are trained on millions of images like ImageNet, allowing 
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them to conserve resources and time while being applicable in various areas. Such as 

EfficientNet. 

• EfficientNet 

EfficientNet is a collection of convolutional neural networks aimed at maximizing 

accuracy and efficiency by consistently scaling model depth, width, and input resolution 

through a compound scaling approach. Developed by Google researchers, EfficientNet 

offers improved performance while utilizing fewer parameters and requiring less 

computation than conventional CNNs. The foundational model is identified via neural 

architecture search, and larger versions (such as EfficientNet-B0) expand upon it while 

ensuring balanced scaling. EfficientNet is commonly utilized in image classification and 

transfer learning because of its excellent accuracy, minimal memory usage, and rapid 

inference speed(Tan & Le, 2020).  

2.1.2. Recurrent Neural Network (RNN) 

A Recurrent Neural Network (RNN) is a deep learning architecture specifically aimed at 

processing sequential data or time series inputs, where the sequence of data points holds 

significant contextual value. In contrast to typical feedforward networks, RNNs possess 

internal memory through loops that enable information to carry over across time steps. This 

makes them ideal for tasks like language modeling, speech recognition, machine 

translation, sentiment analysis, and forecasting time series. An RNN can forecast upcoming 

flood levels by examining historical flood data and meteorological information, or create 

text descriptions for images by understanding patterns in word sequences. Although 

traditional RNNs are beneficial, they can have difficulties with long-term dependencies 

because of problems such as vanishing gradients, which more sophisticated versions like 

LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) aim to address(IBM, 

2025d).  

• Long Short-Term Memory (LSTM)  
A Long Short-Term Memory (LSTM) network is a specific kind of Recurrent Neural 

Network (RNN) created to more effectively capture long-term dependencies in sequential 

information. It resolves the gradient vanishing and exploding issues typical in traditional 

RNNs with a distinctive memory cell design that can maintain information over extended 

periods. This architecture features gates—input, forget, and output gates—that manage the 

information flow, enabling the model to determine what to retain, modify, or eliminate at 

each moment. Due to these abilities, LSTMs excel in tasks such as language modeling, 

speech recognition, machine translation, handwriting generation, and sequence prediction. 

LSTM's power comes from its capability to retain context over numerous steps, which 

makes it especially effective for intricate patterns in time-related data like text, audio, or 

video(NVIDIA, 2025a). 
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2.2. Transformer 

The Transformer is a deep learning framework launched in 2017 that transformed 

natural language processing by removing recurrence in favor of self-attention techniques. 

Its encoder-decoder architecture facilitates the simultaneous processing of sequences, 

permitting the model to focus on every aspect of the input at once. This design enhances 

computational efficiency and more effectively captures long-range dependencies compared 

to conventional RNNs. The Transformer acts as the basis for numerous sophisticated 

models, such as BERT and GPT, by facilitating strong sequence comprehension and 

generation abilities(Vaswani et al., 2023).  

 

Figure 3: The transformer model architecture(Vaswani et al., 2023).. 

• GPT 

Generative Pretrained Transformers (GPTs) represent a series of extensive language 

models created by OpenAI, based on the transformer framework and fine-tuned for 

producing natural language. Since the launch of GPT-1 in 2018, the models have developed 

into robust, multimodal systems such as GPT-4o, which can process and create text, 

images, and audio. Trained on extensive datasets and optimized for particular tasks, GPT 

drives numerous AI applications such as chatbots, code creation, and data examination. 

These models can be accessed via APIs, allowing integration into various tools and services 

across different sectors (IBM, 2025g).  
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• BERT  

BERT (Bidirectional Encoder Representations from Transformers) is a model for 

language representation that employs deep bidirectional Transformers to pre-train on 

extensive collections of unlabeled text. In contrast to previous models, BERT utilizes a 

masked language modeling objective and a next sentence prediction task to capture context 

from both sides, allowing for a deeper comprehension of language. It can be adapted with 

slight modifications to handle various NLP tasks like question answering, sentiment 

analysis, and natural language inference. BERT achieved new state-of-the-art performance 

on various benchmarks, showcasing the effectiveness of bidirectional pre-training for 

natural language understanding(Devlin et al., 2019). 

• Vision Transformer (ViT) 

Vision Transformers (ViTs) represent an innovative method for image recognition that 

utilizes the Transformer architecture on sequences of image patches, removing the 

requirement for convolutional layers. In ViT, an image is split into patches of fixed size, 

with each patch being linearly embedded and integrated with positional information, and 

the resulting sequence is input into a conventional Transformer encoder. A unique 

classification token is employed to generate predictions. In contrast to CNNs, ViTs do not 

rely on image-specific inductive biases such as translation invariance and locality; 

however, when trained on extensive datasets, they attain cutting-edge results in image 

classification. This renders ViTs a scalable and effective substitute for conventional 

convolutional networks, particularly in data-abundant situations(Dosovitskiy et al., 2021).  

2.3. Large Language Models 

Large Language Models (LLMs) are robust AI systems developed on extensive datasets 

to comprehend, produce, and engage in natural language. Based on transformer 

architectures, LLMs are capable of carrying out various tasks like responding to inquiries, 

summarizing texts, translating languages, coding, and producing coherent content. In 

contrast to traditional models designed for particular tasks, LLMs are versatile and 

applicable across various areas, positioning them at the heart of the current generative AI 

movement. Notable instances comprise OpenAI's GPT series, Google's BERT and PaLM, 

Meta's LLaMA, and IBM's Granite models. By understanding intricate language patterns 

with billions of parameters, LLMs are transforming areas ranging from customer service 

to research and content generation (IBM, 2025b).  

2.4. Vision-Language Models (VLMs) 

Vision-language models (VLMs) are sophisticated multimodal AI systems that 

integrate computer vision and natural language processing to comprehend and produce text 

based on visual information. They comprise two primary elements: a vision encoder—

typically utilizing Vision Transformers (ViTs)—that converts visual information into 

embeddings, and a language encoder, generally employing transformer models such as 
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BERT or GPT, to manage textual data. VLMs facilitate tasks like image captioning, visual 

question answering, and object recognition by understanding the intricate connections 

between images and language through learning (IBM, 2025f).  

2.5. Beyond Transformers (Mamba, SSM) 

The prevalence of transformers in deep learning has initiated a quest for architectures 

that provide enhanced efficiency and scalability. Options investigate linear attention, 

recursion, and convolution, frequently blending features to maintain expressiveness while 

lessening computational demand. These architectures after transformers seek to overcome 

constraints such as memory bottlenecks and inefficiencies in handling long 

sequences(Schneider, 2024). 

• State-Space Models (SSMs) 

State-space models represent a category of sequence modeling frameworks that 

describe hidden states changing over time based on learned dynamic systems. In contrast 

to transformers that depend on global self-attention, SSMs capture temporal dependencies 

via continuous or discretized updates, facilitating efficient linear-time processing for 

extremely long sequences. Their framework, grounded in control theory, provides robust 

inductive biases, rendering them highly effective for tasks that involve intricate temporal 

patterns like speech, genomics, and long-context language modeling(Schneider, 2024).  

• Mamba  

Mamba is a modern neural architecture that enhances the state-space model framework 

by integrating a selective scanning mechanism that dynamically determines which input 

data to prioritize in sequence processing. This design enables Mamba to attain competitive 

accuracy on benchmark tasks while preserving the linear-time complexity typical of SSMs. 

By closing the performance-efficiency divide with transformers, Mamba shows that 

structured sequence models can provide both computational benefits and substantial 

representational capability(Gu & Dao, 2024).  

2.6. Transfer Learning 

Transfer learning is a machine learning technique where knowledge gained from one 

task or dataset is reused to improve performance on a related task. It is especially valuable 

in deep learning, where training models from scratch can be costly and require vast 

amounts of labeled data. By starting with a pre-trained model, transfer learning reduces 

training time, enhances generalization, and performs well even with limited data. However, 

it works best when the source and target tasks are similar; otherwise, it risks negative 

transfer, which can degrade model performance. Proper task alignment is therefore key to 

its success (IBM, 2025e). 
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3. Literature Review 
The development of automated radiology report generation has been supported by a 

growing body of research exploring deep learning techniques. This section reviews prior 

work, emphasizing the models and strategies proposed to bridge visual and textual 

modalities. Highlighting key advancements, it helps identify existing challenges and 

inform future improvements. 

 

Figure 4: Summary of the categories of radiology report generation methods 

3.1. CNN-RNN Models 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) 

have established themselves as essential components in generating automated radiology 

reports, allowing intricate medical images to be converted into organized natural language 

(Sirshar et al., 2022) utilizes the CNN-RNN approach, particularly integrating 

convolutional neural networks (CNNs) for image encoding with recurrent neural networks 

(RNNs), implemented here with LSTM units, for generating text. The authors suggest a 

comprehensive model for generating automated radiology reports, incorporating an 

attention mechanism within a CNN-LSTM framework. The encoder section employs 

VGG-16 to derive features from chest X-ray (CXR) images, transforming them into 

compact vector representations. These visual embeddings are subsequently fed into an 

LSTM-based decoder that produces textual medical reports one word at a time. A 

significant improvement in this model is the attention mechanism, which actively directs 

the decoder's focus to particular areas of the image while generating the report. This reflects 

how a radiologist would highlight pathological areas when reporting observations. The 

model underwent training utilizing two datasets: the IU X-Ray from Indiana University 
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and MIMIC-CXR. The training was carried out on Google Colab utilizing an NVIDIA 

Tesla K80 GPU. Assessment was conducted using standard metrics for image captioning. 

The system reached BLEU-1 to BLEU-4 scores of 0.580, 0.342, 0.263, and 0.155 

respectively on the IU X-Ray dataset, indicating the attention layer's role in generating 

more semantically aligned and coherent results. Still, constraints remain. The LSTM 

element has difficulty processing lengthy and intricate sequences, frequently resulting in a 

loss of contextual coherence among report sentences. Although VGG-16 has demonstrated 

effectiveness, it may not possess the same level of expressive capability as newer CNN 

architectures such as ResNet or EfficientNet. Additionally, the model does not possess 

clear mechanisms for modeling coherence at the paragraph level, which could lead to 

reports that are syntactically accurate yet clinically fragmented. Ultimately, the scale of the 

dataset was restricted, and larger, more varied training datasets could improve performance 

even more. Notwithstanding these constraints, the method represents a significant 

contribution to vision-language modeling within radiology.  

(X. Wang et al., 2018) creates a new model TieNet (Text-Image Embedding 

Network), another method that built on a CNN-RNN paradigm, enhances this architecture 

by integrating visual and textual data streams within a single framework. The approach 

integrates convolutional neural networks for extracting spatial features at the image level 

with recurrent neural networks to capture semantic information from unstructured 

radiology reports. Its originality stems from the incorporation of multi-level attention 

mechanisms that improve the interpretability and efficiency of disease classification and 

report generation tasks. The architecture is trained on matched image-text datasets, 

utilizing radiology reports not only as output targets but also as a type of guidance. The 

model carries out two complementary functions: creating detailed reports and executing 

multi-label classification for thoracic conditions. While training, gradients from the two 

tasks affect shared parameters, allowing the model to better align visual attributes with text 

meanings. Experiments were performed on the extensive ChestX-ray14 dataset and 

enhanced by OpenI’s radiology dataset. TieNet showcased impressive performance, 

reaching an average AUC above 0.9 in disease classification and surpassing baseline 

metrics in report generation with a BLEU-1 of 0.2860, BLEU-4 of 0.0736, METEOR of 

0.1076, and ROUGE-L of 0.2263. These metrics validate the model’s ability to produce 

medically pertinent and linguistically smooth results. Regardless of its advantages, TieNet 

shows specific limitations. The model has difficulty with intricate linguistic elements like 

negation, hedging, and uncertainty—characteristics often present in clinical narratives. 

Furthermore, although the multi-level attention enhances alignment, it does not provide 

detailed reasoning regarding pathological concepts, which restricts its capacity to 

differentiate nuanced disease variants. These concerns indicate future paths, like 

integrating graph-based or transformer-based elements for enhanced structured reasoning. 

Nonetheless, TieNet distinguishes itself as a scalable, multi-task system for extracting 
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knowledge from real-world PACS data and progressing toward semi-automated 

radiological analysis.   

 The study of (Jing et al., 2018) also follows the CNN-RNN framework but 

introduces a hierarchical LSTM model refined through co-attention. In contrast to 

conventional captioning systems that produce brief phrases, this research addresses the 

more challenging aim of creating comprehensive medical reports featuring a coherent 

layout and detailed content, closely resembling narratives penned by radiologists. The 

suggested architecture integrates visual and semantic attention methods and presents a two-

phase report generation approach to harmonize content organization and sentence-level 

coherence. At the heart of the model is a multi-task framework: it concurrently forecasts 

medical keywords (tags) and produces descriptive paragraphs. A co-attention mechanism 

that integrates visual and semantic information allows the model to concentrate on 

pertinent areas of the image and related medical terminology. The hierarchical LSTM 

initially chooses a topic at the sentence level (“what to convey”) and then constructs the 

sentence word by word (“how to articulate it”), thus enhancing logical coherence 

throughout the document. The model underwent training and evaluation using two datasets: 

IU X-Ray (radiology reports) and PEIR Gross (descriptions of pathological images). In 

both datasets, the system consistently surpassed traditional CNN-RNN and visual attention 

baselines on BLEU, METEOR, ROUGE, and CIDEr metrics. Qualitative assessment 

additionally indicated that the produced reports demonstrated a strong level of clinical 

significance and stylistic resemblance to texts written by humans. However, the method 

does have its limitations. It relies significantly on the correctness of anticipated tags; 

mistakes at this point can propagate and diminish the quality of the overall report. 

Moreover, the system's resilience weakens when faced with noisy or low-quality images, 

potentially interfering with both attention alignment and content organization. Finally, the 

architecture might gain from better modeling of inter-sentence relationships to boost 

narrative coherence. This research represents a major progress in structured report creation 

by incorporating document-level modeling into medical image description.  

 (Moradi et al., 2018)’s work is related to the CNN-RNN family but emphasizes 

multimodal localization instead of immediate report creation. The authors explore 

techniques for automatically generating visual annotations (region of interest – ROI) on 

chest X-ray images by utilizing data from existing free-text reports. This study tackles a 

major limitation in medical AI: the lack of extensive, manually labeled datasets for 

supervised training. Two designs are suggested. The initial model is a complete CNN-

LSTM framework, which extracts image features and combines them with LSTM-

generated textual embeddings to forecast polygonal ROIs. The second is a modular 

pipeline: DenseNet, trained on ChestX-ray14, extracts visual features; Doc2Vec obtains 

textual semantics; and both vectors are input into a multi-layer perceptron for coordinate 

regression. The objective is to forecast polygonal bounding boxes that emphasize 
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irregularities described in the related reports. The two architectures were assessed using a 

dataset of 494 chest X-rays that radiologists had manually annotated. The modular 

approach surpassed the end-to-end model, attaining a Dice coefficient of 61% (compared 

to 46%) and decreasing centroid error to 5.1% of image width (versus 7.2%). These 

findings emphasize the significance of independent processing and reveal the essential 

function of semantic information derived from text inputs. Nonetheless, the approach 

encounters distinct constraints. The ROIs are represented as basic quadrilaterals, limiting 

the system’s capacity to capture atypical lesion forms. The pipeline assumes that every 

image displays one abnormality, which restricts its use in complicated, multi-disease 

situations. Future efforts might investigate more detailed segmentation results (e.g., masks) 

and implement transformer-based language encoders to enhance semantic grounding. Still, 

the method provides a viable route for utilizing current clinical reports to create useful 

annotation datasets with little human involvement.  
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3.2. CNN-Transformer methods 

Situated within the CNN-Transformer framework, (Aksoy et al., 2023)’s study 

improves report generation by integrating contextual, non-visual data into the modeling 

approach. Aksoy et al. suggest a multimodal Transformer architecture integrating visual 

characteristics obtained from chest X-rays with organized patient demographic information 

like age, gender, and ethnicity. The visual element is obtained via an EfficientNet encoder, 

while demographic characteristics are integrated into semantic vectors. These two 

modalities are subsequently processed together by a Transformer encoder-decoder to 

produce radiology reports informed by context. The main innovation consists of integrating 

demographic characteristics with visual data, recognizing that radiologists typically take 

this context into account during actual diagnostic processes. The model underwent training 

and evaluation using the MIMIC-CXR and MIMIC-IV datasets, assessing various 

configurations: image-only input, image along with one demographic variable, and image 

together with multiple demographics. The findings indicated that adding ethnicity by itself 

resulted in the most significant enhancement in BLEU and BERTScore. Nonetheless, 

merging various demographics (such as gender and ethnicity) did not uniformly improve 

performance, likely because of data imbalance or redundancy in features. Although 

incorporating contextual metadata signifies progress in personalizing automated diagnosis, 

the model encounters multiple obstacles. At times, it generates redundant text or fabricates 

results, especially regarding uncommon conditions. Moreover, the visible effect of 

ethnicity on performance brings crucial issues regarding fairness and bias within medical 

AI systems. These problems highlight the necessity of thoroughly assessing demographic 

factors regarding their predictive advantages and ethical considerations. The study shows 

that generating reports based on individual patient context can enhance output quality and 

sets the stage for more refined, patient-centered report creation in future research.  

Another research of (Z. Wang et al., 2023a) marks a progression in CNN-

Transformer techniques, tackling the limitations of “single-expert” attention frameworks 

employed in automated radiology report creation. The METransformer framework presents 

an innovative idea of “multi-expert joint diagnosis,” mimicking cooperative decision-

making by combining various trainable expert tokens in the Transformer encoder and 

decoder. Every token is crafted to focus on distinct spatial areas of the image, directed by 

an orthogonal loss that promotes variety and complementarity among expert 

representations. While decoding, cross-attention mechanisms enable the expertise of each 

individual to affect the text generation process, using a metric-based voting system to 
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Table 2: : Summary of Studies on Radiology Report Generation Based On CNN-RNN 
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determine the final output. The model was assessed utilizing the IU-Xray and MIMIC-

CXR datasets. In comparison to traditional Transformer and CNN-RNN baselines, 

METransformer showed better performance on standard metrics for natural language 

generation, such as BLEU, ROUGE, and CIDEr. These findings confirm that well-

coordinated ensemble-style attention can result in the generation of reports that are more 

accurate and clinically significant. Although it has its advantages, the model shows some 

weaknesses. The design lacks domain-specific medical expertise, like structured ontologies 

or diagnostic guidelines, that could improve the clinical clarity and factual precision of the 

produced reports. Moreover, the complexity brought on by several expert pathways 

escalates the model’s computational expenses and training demands. Although 

METransformer highlights the advantages of collaborative reasoning in a Transformer 

setting, its dependence only on visual cues presents opportunities for enhancement by 

incorporating external medical knowledge. However, it establishes a hopeful standard for 

utilizing diversity in focus to more accurately replicate expert-level diagnostic methods.  

Within the domain of CNN-Transformer models,(Quigley et al., 2025) create a new 

model named RadTex which brings a transition from contrastive learning to a generative 

approach that is more effective in grasping the intricate semantics of radiology. 

Conventional medical vision-language pretraining (MVLP) techniques such as ConVIRT 

and GLoRIA employ contrastive objectives to synchronously align image and text features 

at global or local levels. Nonetheless, these techniques frequently face challenges in 

achieving the detailed, sentence-level alignment needed for producing coherent radiology 

reports. To address this, RadTex utilizes a bidirectional captioning-focused pretraining 

method that prioritizes language modeling rather than image-text contrast. RadTex 

includes a convolutional encoder to extract image features and a Transformer decoder to 

produce reports. The model is trained using matched chest X-ray images alongside their 

related radiology reports. It employs next-token prediction bidirectionally to create deeper 

semantic connections between image areas and text descriptions. This design enables the 

model to generate interpretable and clinically significant reports, even when trained on 

minimal data. Even with a smaller CNN encoder and a limited training dataset, RadTex 

attains impressive results: a CheXpert macro-AUC of 89.4% and a macro-F1 score of 0.349 

in generating reports. Its design is streamlined enough for single GPU deployment, and its 

adaptability to prompting techniques enables fine-tuning for various clinical situations. 

Nonetheless, constraints remain. The model's effectiveness is limited by the breadth and 

variety of its pretraining data. It also does not include clear integration of structured clinical 

knowledge, which could enhance both interpretability and factual accuracy. In addition, 

although encouraging, depending on generative techniques necessitates cautious 

management to prevent hallucinations or excessive confidence. Nonetheless, RadTex 

signifies a notable advancement in MVLP, demonstrating how generative captioning can 

outshine contrastive pretraining in radiology use cases.  
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Table 3: Summary of Studies on Radiology Report Generation Based On CNN-

Transformer Methods. 

3.3. Full Transformer-based methods 

  (Agarwal & Verma, 2025)’s research illustrates a comprehensive 

Transformer-based method by combining a Vision Transformer (ViT) encoder with a GPT-

4 language decoder to produce intricate and context-sensitive radiology reports. The 

suggested framework, CrossViT-GPT4, substitutes conventional convolutional and 

recurrent components with a transformer-exclusive architecture that can identify spatial 

patterns and generate linguistically detailed descriptions. The ViT encoder transforms 

chest X-rays into embeddings at the patch level, maintaining spatial and positional context. 

A cross-modal attention mechanism subsequently associates these image representations 

with pertinent medical terminology, enabling the GPT-4 decoder to produce fluent and 

clinically cohesive narratives. The Indiana University (IU) and NIH Chest X-ray datasets 

were used for training and evaluating the model. CrossViT-GPT4 delivered exceptional 
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outcomes: it recorded a BLEU-1 of 0.854, CIDEr of 0.883, METEOR of 0.759, and 

ROUGE-L of 0.712 on the IU dataset. In the NIH dataset, it achieved BLEU scores 

reaching 0.825 and a CIDEr score of 0.857. These findings highlight its enhanced 

capability compared to conventional CNN-RNN and hierarchical LSTM models, 

especially in preserving long-range cohesion and merging visual semantics with text 

output. Although it has strengths, the model encounters various challenges. Dependence 

on extensive computation results in high costs for training and inference, complicating 

deployment in resource-limited settings. Moreover, the lack of annotated data for radiology 

reports restricts its reliability across various clinical situations. The model demonstrates 

lower performance when encountering noisy or low-quality inputs. However, by 

leveraging the language comprehension of GPT-4 and the spatial accuracy of ViTs, 

CrossViT-GPT4 represents a notable progression in transformer-oriented medical imaging 

technologies and sets the stage for more in-depth, automated diagnostic instruments.  

 Set within the complete Transformer-based category, (Shisu et al., 2024) presents 

a new vision-language framework that combines the advantages of Vision Transformers 

(ViTs) with an evolutionary algorithm (EA)-influenced design to enhance medical image 

classification named EATFormer. The motivation arises from the constraints of human-

driven diagnostics and conventional CNN systems, which frequently lack consistency and 

do not effectively grasp global image context. The architecture of EATFormer improves 

feature extraction by integrating several specialized modules within a hierarchical 

transformer structure. The architecture features a tailored transformer block termed the 

Enhanced EA-based Transformer (EAT), which incorporates several essential elements: 

the Multi-Scale Region Aggregation (MSRA) module for combining features across 

varying scales; the Global and Local Interaction (GLI) module to improve attention with 

spatial accuracy; and the Modulated Deformable Multi-Scale Attention (MD-MSA) 

mechanism to flexibly adjust to irregularities in medical images. Moreover, the Task-

Related Head (TRH) customizes results to align with the particular classification goals. 

These improvements enable EATFormer to identify both detailed and broader patterns 

without relying significantly on positional encoding. When assessed using the Chest X-ray 

and Kvasir datasets, EATFormer showed enhanced classification accuracy and faster 

prediction speed relative to conventional CNN and standard ViT models. Its tokenization 

system based on patches and four-tiered hierarchical framework also enhance scalability 

and processing efficiency. Although the document does not specifically list any limitations, 

some conclusions can be drawn. The model's intricate nature and the incorporation of 

various specialized modules probably require significant computational power and may 

impede real-time implementation. Moreover, the ability to generalize to other imaging 

fields or clinical environments might rely on the diversity of the dataset. Nonetheless, 

EATFormer exemplifies the increasing sophistication of ViT-based models in clinical AI 

and highlights the effectiveness of hybrid approaches that combine neural architecture 

advancements with bio-inspired optimization.  



40 

Development of an Intelligent System for Automatic Medical Report 

Generation 

ARTICL

E 

AUTHO

R 

MODE

L 

METHO

D 

RESUL

TS 

DATASE

T 

LIMITATIO

NS 

CrossViT-

GPT4 

(Agarwal 

& 

Verma, 

2025) 

ViT + 

GPT-4 

Cross-

modal 

attention, 

ViT 

encoder, 

GPT-4 

decoder 

BLEU-1: 

0.854, 

CIDEr: 

0.883 

(IU); 

BLEU: 

0.825 

(NIH) 

IU X-

Ray, NIH 

CXR 

High compute 

cost, poor 

robustness to 

noise, data 

scarcity 

EATForm

er 

(Shisu et 

al., 2024) 

ViT + 

EA 

module

s 

MSRA, 

GLI, MD-

MSA, 

TRH, 

hierarchic

al ViT 

Higher 

accuracy 

= 0.9533 

Chest X-

ray, 

Kvasir 

Likely 

compute-

intensive, 

generalizabilit

y not tested 

Table 4: Summary of Studies on Radiology Report Generation Based On Full 

Transformer Methods. 

3.4. Vision Language Multimodal (VLMs) 

 In the evolving Vision-Language Multimodal (VLM) framework, CoDiXR 

presents a versatile generative model aimed at producing chest X-ray images along with 

their associated radiological narratives created by (Molino et al., 2025). Rooted in the 

Composable Diffusion (CoDi) framework, CoDiXR facilitates "any-to-any" cross-modal 

creation, for instance, generating side views from front images or creating clinical 

narratives from X-ray images. This flexibility meets increasing needs for artificial medical 

data to aid data augmentation, safeguard privacy, and enhance diagnostic tool creation in 

AI-powered healthcare. The system utilizes a combination of Latent Diffusion Models, 

contrastive learning, and self-supervised methods. Utilizing the MIMIC-CXR dataset, it 

processes images with uniform resizing and normalization, considering frontal and lateral 

X-rays as separate modalities to improve cross-view consistency. The model generates 

high-quality results assessed through numerical metrics: it demonstrates excellent 

performance on Fréchet Inception Distance (FID) for image quality and BLEU scores for 

text creation. In downstream disease classification tasks, the synthetic data produced by 

CoDiXR matches or surpasses the performance of real-world data, indicating its potential 

value in clinical AI workflows. Regardless of these advantages, CoDiXR has significant 

shortcomings. Its effectiveness decreases when depending exclusively on visual inputs, 

suggesting a possible imbalance in its cross-modal training approach. Furthermore, 

although assessment through proxy tasks is promising, there is no formal clinical validation 
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to guarantee the safety or diagnostic accuracy of the results. These issues highlight the 

significance of fine-tuning for specific domains when modifying general-purpose 

generative models for healthcare. Nevertheless, CoDiXR establishes an important 

benchmark for multimodal synthesis in radiology, providing innovative avenues for 

scalable, privacy-aware data creation. Future directions involve enhancing cross-view 

generalization and performing expert assessments to evaluate practical applicability.  

 (Pellegrini et al., 2025) creates another method based on VLMs, RaDialog 

represents a novel category of Vision-Language Multimodal Models (VLMs) aimed at both 

producing radiological reports and facilitating interactive discussions with healthcare 

professionals. The model is designed as an AI assistant with human input, improving 

radiology processes by allowing clinicians to create, edit, and discuss reports instantly. 

RaDialog integrates visual data from chest X-rays, structured pathology labels obtained 

through a CheXpert classifier, and the linguistic abilities of a large language model (LLM). 

A prompt-engineering component combines these resources into adaptable directives that 

steer multi-task results like report creation, editing, and responding to questions. Training 

and assessment are performed on the MIMIC-CXR dataset, supplemented by a semi-

automatically annotated instructional dataset designed for radiology. The training data 

accommodates various conversational styles and tasks, allowing the model to sustain 

domain-specific dialogue while preserving general LLM abilities. To enhance 

computational efficiency, RaDialog employs parameter-efficient fine-tuning rather than 

complete retraining. This enables efficient domain adaptation without the substantial 

expenses usually linked to large-scale LLMs. In terms of performance, RaDialog shows a 

7.3% enhancement in diagnostic effectiveness, surpassing both general models like 

MedPaLM and radiology-focused benchmarks like ELIXR. Its interactive features enhance 

collective decision-making, making it an effective tool for clinical teamwork. Nonetheless, 

there are still limitations: the system presently accommodates only single-view images, 

and any mistakes made by the CheXpert classifier may carry over into the ultimate output. 

Additionally, the model's effectiveness has yet to be confirmed through clinical trials. 

Potential advancements could include the incorporation of multi-view input capability, the 

addition of more detailed patient metadata, and enhanced clinical testing. Nonetheless, 

RaDialog signifies a significant advancement in the development of interactive, 

explainable AI systems for medical imaging.  

ARTIC

LE 

AUTH

OR 

MODE

L 

METHOD RESULT

S 

DATAS

ET 

LIMITATIO

NS 

CoDiXR (Molino 

et al., 

2025) 

CoDi-

based 

VLM 

Latent 

diffusion, 

contrastive/s

elf-

High 

BLEU-4= 

0.22 

MIMIC-

CXR 

Struggles 

with image-

only input, 



42 

Development of an Intelligent System for Automatic Medical Report 

Generation 

supervised, 

any-to-any 

synthesis 

lacks clinical 

validation 

RaDialo

g 

(Pellegri

ni et al., 

2025) 

LLM + 

visual 

labels 

Prompt-

based 

dialogue, 

CheXpert + 

LLM + 

efficient 

fine-tuning 

+7.3% 

diagnosti

c 

accuracy, 

superior 

interactiv

ity 

MIMIC-

CXR + 

instructio

n set 

Single-view 

only, label 

noise 

propagation, 

no clinical 

trials 

Table 5: Summary of Studies on Radiology Report Generation Based On VLMs. 

3.5. Large Language Models (LLMs) + Prompting methods 

 KARGEN illustrates a large language model method that improves the creation of 

radiology reports by integrating organized domain expertise into a static large language 

model. Instead of refining the LLM (LLaMA) created by (Y. Li et al., 2024), KARGEN 

enhances its input by merging visual characteristics from chest X-ray images with disease-

specific information derived from a medical knowledge graph. This approach enables the 

model to generate clinically relevant narratives without altering the foundational language 

model. The architecture comprises four elements: a Swin Transformer that gathers spatially 

aware visual embeddings, a Graph Convolutional Network (GCN) that represents 

interactions among disease concepts, a fusion module that merges visual and graph-based 

features through either element-wise gating or modality-wise expert weighting, and a 

report generator driven by a frozen LLaMA decoder. These elements collaborate to 

synchronize textual output with visual signals and advanced medical associations. 

KARGEN was assessed using the IU-Xray and MIMIC-CXR datasets. It consistently 

exceeded traditional baselines and other LLM-only architectures across standard metrics—

BLEU, METEOR, ROUGE, and CIDEr. Incorporating specialized disease knowledge 

enhanced both the accuracy and contextual richness of the produced reports. Nonetheless, 

the constraints of KARGEN arise from the breadth and depth of the medical knowledge 

graph utilized. Broadening the graph’s scope to capture more intricate clinical connections 

might boost model effectiveness and versatility. Furthermore, although the fusion 

strategies are effective, they add architectural complexity that could affect inference speed 

in clinical environments. Nevertheless, KARGEN establishes a significant benchmark for 

integrating structured medical information with LLMs, underscoring the promise of 

prompt-augmented LLM workflows in clinical NLP use cases.  

 (Z. Wang et al., 2023b)’s model R2GenGPT is part of the new category of prompt-

driven frameworks that utilize static large language models (LLMs) to connect the 

modality divide between image inputs and text-based diagnostic reports. It offers a modular 
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approach where only a simple visual-to-text mapping layer undergoes training, enabling 

LLMs to understand image features without requiring significant retraining. The 

architecture consists of three main elements: a visual encoder (e.g., Swin Transformer), a 

visual mapper, and a static LLM like LLaMA or BioClinicalBERT. The visual mapper 

translates visual attributes into the LLM’s word embedding space, allowing the direct input 

of image-derived “tokens” into the fixed decoder. R2GenGPT investigates three mapping 

approaches: Shallow Alignment (training is limited to the projection layer), Delta 

Alignment (slightly modifies the LLM, about 0.07% of parameters), and Deep Alignment 

(involves more extensive training). The model was evaluated on the IU-Xray and MIMIC-

CXR datasets, achieving performance that equaled or surpassed leading models in BLEU, 

METEOR, ROUGE, and CIDEr. Its training was remarkably efficient in computation, 

needing little memory and reaching convergence rapidly. These benefits render 

R2GenGPT appropriate for clinical settings where resources could be scarce. Nonetheless, 

certain constraints persist. Due to the model depending on mapping into a static embedding 

space, it might not entirely leverage subtle visual semantics. Interpretability poses a 

challenge, since the intermediate alignment mechanism functions like a “black box.” 

Furthermore, the decoder-only configuration might restrict its ability to represent inter-

sentence coherence. Despite these concerns, R2GenGPT offers a scalable, sophisticated 

approach that utilizes the linguistic capabilities of LLMs while ensuring efficiency and 

modularity.  

 (Zeng et al., 2024) creates RadCouncil which presents an innovative multi-agent 

framework for generating radiology reports using LLMs, highlighting the importance of 

collaboration and specialized tasks. Instead of depending on one model to handle every 

step, RadCouncil divides the impression writing process into three agent roles that reflect 

actual radiology workflows. This method closely aligns with the movement toward 

prompt-based, retrieval-augmented generation (RAG) strategies in large language 

modeling. The system comprises three agents: a Retrieval Agent that employs vector 

similarity to identify pertinent previous reports; a Radiologist Agent that generates 

impressions from current discoveries and retrieved cases; and a Reviewer Agent that 

assesses and improves the output for diagnostic precision and stylistic uniformity. The 

architecture prevents complete model retraining through prompt-based task assignment, 

enabling swift deployment and tailored domain customization. Assessment of chest X-ray 

datasets (precise sources not detailed) integrated standard NLG metrics (BLEU, ROUGE, 

BERTScore) alongside qualitative evaluations from GPT-4. RadCouncil surpassed 

individual agent baselines in diagnostic accuracy, adherence to radiological standards, and 

linguistic fluency. The Reviewer Agent was instrumental in minimizing hallucinations and 

enhancing factual accuracy, confirming the effectiveness of the system’s multifaceted 

error-checking framework. Nevertheless, RadCouncil encounters constraints concerning 

memory and reasoning abilities. The RAG pipeline is limited by the size of its context 

window, restricting the amount of information that can be retrieved in each instance. 
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Additionally, multi-agent coordination increases complexity and might necessitate 

stronger memory management for long-term scenarios. However, RadCouncil illustrates 

the promise of collaborative, agent-based LLM systems in clinical settings and paves the 

way for more sophisticated, understandable, and interactive medical AI solutions.  
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Table 6: Summary of Studies on Radiology Report Generation Based On LLMs. 

3.6. Beyond Transformers methods  

 R2Gen-Mamba presents a hybrid framework that diverges from conventional 

Transformer-exclusive architectures by combining a Mamba encoder—rooted in state-

space modeling—with a Transformer-based decoder created by(Sun et al., 2024). This 

design tackles the computational inefficiencies present in Transformer architectures, 

especially their quadratic complexity in managing lengthy sequences. Mamba, featuring 

linear time complexity, enables effective sequence modeling while maintaining contextual 

comprehension, making it exceptionally appropriate for real-time medical uses. The 

architecture of the model is designed so that the Mamba encoder converts chest X-ray 

images into spatially aware representations, subsequently fed into a Transformer decoder 

that creates the relevant diagnostic report. This setup achieves a balance between semantic 
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depth and resource efficiency, targeting the requirements for precise clinical analysis while 

providing scalability in resource-limited settings. Assessments carried out on the IU X-ray 

and MIMIC-CXR datasets indicate that R2Gen-Mamba surpasses conventional 

Transformer-based baselines in important metrics like BLEU, METEOR, ROUGE, and 

CIDEr. These findings emphasize its capability to sustain or improve language quality 

while lessening computational requirements. Significantly, its hybrid characteristics 

preserve the contextual power of Transformers in language generation while attaining a 

remarkable acceleration in feature extraction. Nonetheless, the model's reliance on a 

Transformer decoder indicates it has not entirely avoided the limitations linked to attention 

mechanisms. Moreover, the degree to which the hybrid framework can be applied to other 

medical imaging types is still unclear. Nonetheless, R2Gen-Mamba establishes essential 

foundations for investigating effective, high-performance options in radiology report 

creation, particularly for scenarios where infrastructure limitations hinder the 

implementation of conventional Transformer models.  

SERPENT-VLM  is (Sun et al., 2024) model. It marks a notable shift from 

traditional static Transformer models by incorporating a self-improving, feedback-oriented 

framework for generating radiology reports. Instead of depending on a rigid sequence-to-

sequence process, the model progressively adjusts its output through an innovative loss 

function that correlates the visual elements of an image with the meaning of the produced 

report. This method minimizes hallucinations and enhances factual accuracy—critical 

issues in clinical AI systems. The process starts with a static visual encoder to obtain high-

dimensional characteristics from chest X-rays. These attributes act as input for a large 

language model (LLM), which generates a preliminary report. A self-tuning loss function 

subsequently evaluates the combined visual representation against the embedding of the 

produced text, prompting the model to modify and enhance its output for improved 

alignment. This loss enhances conventional causal language modeling goals, enabling 

improved semantic management. Assessed on the IU X-ray and ROCO datasets, 

SERPENT-VLM delivers top-tier outcomes, exceeding the performance of sophisticated 

models like BiomedGPT and LLaVA-Med on various benchmarks. It demonstrates notable 

resilience, preserving functionality even with noisy or low-quality images frequently found 

in clinical datasets. In addition, its rapid inference speed makes it suitable for 

implementation. Nonetheless, the model has constraints. It has been assessed solely on a 

limited variety of datasets, raising doubts about its applicability to other radiological 

situations. Additionally, its feedback system might enhance training complexity, creating 

difficulties for reproducibility and scaling. Nonetheless, SERPENT-VLM establishes an 

impressive benchmark for adaptive, self-repairing systems in medical vision-language 

modeling and may motivate a new wave of progressive, dependable clinical report 

generators.  
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(X. Wang et al., 2024) built MambaXray-VL which is a next-generation radiology 

report generation model that bypasses traditional Transformer architectures by adopting 

the Mamba framework—a state-space sequence model known for its linear scalability and 

memory efficiency. This model is particularly designed to handle long-sequence data 

efficiently, making it ideal for clinical environments where computational resources are 

constrained.At the heart of MambaXray-VL is a non-Transformer vision encoder based on 

the Mamba architecture. It is paired with pretrained LLMs such as BioClinicalBERT or 

LLaMA2 for report decoding. The training pipeline consists of three phases: self-

supervised autoregressive modeling from image segments, contrastive learning to align X-

ray images with their textual reports, and supervised fine-tuning using standard evaluation 

metrics. This modular and scalable approach facilitates more robust visual-textual 

alignment without relying on quadratic attention.The model is assessed using the newly 

introduced CXPMRG-Bench benchmark, which includes 19 competing systems—14 

LLM-based and 2 vision-language models—evaluated across datasets like CheXpert Plus, 

IU X-ray, and MIMIC-CXR. MambaXray-VL outperforms all baseline models in both 

language generation and interpretability metrics, demonstrating its suitability for high-

stakes clinical applications.Nonetheless, certain limitations exist. While benchmark results 

are strong, the model’s real-world utility is yet to be verified through clinical trials or 

radiologist validation. Additionally, the novel benchmark, while comprehensive, could 

limit comparability with prior work. Still, MambaXray-VL reaffirms the viability of state-

space models in radiology and sets a new standard for future non-Transformer vision-

language systems, offering a computationally lean alternative without sacrificing 

performance or clinical relevance. 
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Table 7: Summary of Studies on Radiology Report Generation Based On Beyond 

Transformer 

4. Conclusion 
This chapter has presented a structured examination of deep learning techniques that 

underpin automated radiology report generation. From foundational architectures like 

CNNs and RNNs to advanced models such as Transformers, BERT, GPT, and Vision-

Language Models, each method was analyzed in terms of its capabilities, limitations, and 

suitability for complex multimodal tasks. Emerging frameworks like Mamba and State-

Space Models were also discussed, reflecting the ongoing quest for more efficient and 

scalable alternatives to traditional attention-based models. The literature review 

synthesized past research efforts, categorizing them by architectural approach and 

highlighting their contributions to the field. Together, these insights provide the theoretical 

and empirical foundation necessary for designing an effective deep learning-based 

diagnostic captioning system, which is addressed in the following chapter. 
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Chapter III: Conception 

1. Introduction 
Artificial intelligence is transforming medicine, making it possible to create systems 

that help doctors, or even automate certain tasks. The automatic generation of radiology 

reports is a key example: it requires a good understanding of medical images and the ability 

to write accurate clinical reports. The design of such a system represents a major 

multidisciplinary challenge, lying at the intersection of computer vision, automatic natural 

language processing (ANLP) and medical expertise. 

This chapter is devoted to the detailed design of our system for automatically 

generating radiology reports. We explore the evolution of our architectural approach, from 

an initial version based on a Long Short-Term Memory (LSTM) decoder that served as a 

foundation for sequence extraction, to the final, optimized implementation. The latter 

incorporates a Transformer-type architecture for more robust modelling of contextual 

dependencies in text, complemented by an innovative post-processing module based on a 

Large Language Model (LLM). This evolution was necessary to correct text quality and 

consistency problems encountered at the outset. 

We will detail the steps involved in this design: how we prepared the data (images and 

text), how we extracted the visual information using a network called EfficientNet-B0, and 

how the report is first generated and then enhanced by the LLM. Each choice was made 

for technical and medical reasons, in order to create high-quality automatic reports that are 

useful in hospitals. 

2. Objective 
This work aims to propose a robust approach for the automatic generation of 

radiological reports by combining the power of visual deep learning with advanced natural 

language processing. The system was initially designed using a CNN-LSTM architecture, 

in which visual features extracted by a convolutional encoder (EfficientNet-B0) were fed 

to an LSTM decoder responsible for producing the report sequentially. Although this first 

version produced globally consistent reports, it revealed several limitations, particularly in 

terms of linguistic fluency, semantic coverage, and terminological consistency. 

To overcome these weaknesses, we replaced the LSTM decoder with a Transformer 

architecture, better suited to modelling complex sequences. This new CNN-Transformer 

system allows more structured and contextually relevant generation of radiology reports 

from thoracic images. However, despite this improvement, grammatical errors, lexical 

approximations and a lack of clinical fluidity persist in certain text productions.  
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To address these shortcomings, we introduce a final post-processing phase, provided 

by a large language model (LLM), such as BioGPT. This step acts as a stylistic and 

linguistic refinement layer, correcting imperfections in the raw report generated by the 

Transformer, while respecting the diagnostic content. It aims to improve readability, 

terminological accuracy and compliance with medical writing standards.  

3. System architecture 
A deep learning-based system for automatically generating radiological reports is 

proposed in this master's thesis. Our system aims to generate a radiology report from chest 

X-ray image input.  

The proposed system uses several interdependent components to generate clinically 

useful written reports from medical images. It incorporates a crucial dataset preparation 

phase, an encoder to ensure accurate classification, which will serve as input to a report 

generator. Our system architecture is illustrated in the following Figure 3.1. 

3.1. Dataset Preparation Phase 

This phase is dedicated to pre-processing the data, both the images and the associated 

radiology reports. In terms of text, the reports are tokenized and cleaned up to eliminate 

any unnecessary symbols that could interfere with the learning process. As for the images, 

they undergo augmentation operations (such as random rotation or flipping), scaling, and 

normalization. These transformations are designed to improve the model's generalization 

capacity and ensure optimum compatibility with our deep learning architecture. 

3.2. Encoding Phase 

The system is based on a hybrid encoder-decoder architecture. The encoding module 

is based on EfficientNet-B0, a pre-trained convolutional neural network responsible for 

extracting high-level visual representations from chest X-rays. These representations are 

then used by a decoder to generate the corresponding text report. The model training is 

based on a double loss function: a binary cross-entropy for multi-label classification (of 

pathologies) and a standard cross-entropy for text generation. This dual objective enables 

the coder to capture rich visual features that are both informative for diagnostic 

classification and consistent with the semantics of radiological reports. 

3.3. Report Generation Phase 

In an initial version of the system, radiology reports were generated by an LSTM-type 

decoder, which modelled the report as a sequence of words generated successively from 

the visual features extracted by the convolutional encoder. Although this approach 

produced globally consistent reports, it had several limitations: lack of lexical diversity, 

omission of some important clinical information, and a limited ability to model long-term 

dependencies. 
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Figure 5: Automatic Radiology Report Generation System Architecture 
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To overcome these weaknesses, the LSTM was replaced by a Transformer decoder, 

which is better able to model the complex linguistic structure of medical reports. The new 

decoder generates the text word by word, starting with a token at the beginning of a 

sequence, and stopping when an end token appears or at a maximum length. The decoding 

used is greedy decoding, for reasons of computational simplicity, although more advanced 

alternatives (beam search, nucleus sampling) could be envisaged to improve fluidity and 

accuracy. Diagnostic labels extracted during the classification phase are injected into the 

decoder input in order to guide the generation towards medically relevant content. 

However, a qualitative analysis of the reports generated revealed recurring errors, 

including omissions, lexical errors and imprecise wording. To remedy this, a post-

processing phase was introduced. This is based on a large language model (LLM), such as 

BioGPT, used as a stylistic and linguistic refinement layer. The LLM only intervenes on 

the generated text, without reconsidering the image, and aims to improve legibility, syntax 

and compliance with medical writing standards. This final module produces reports that 

are more professional, more natural and better aligned with clinicians' expectations. 

Specific LLM training on a radiology corpus could constitute a further improvement 

prospect. 

4. Data Preparation, Preprocessing, and 

Augmentation 
To ensure high-quality, correctly structured input to our automatic radiology report 

generation system, we have implemented a rigorous data preparation pipeline. This process 

combines image augmentation, report tokenization, image normalization and structured 

text formatting, making it easy to train the encoder-decoder architecture.  

4.1. Data Loading and Structuring 

The data used in this study comes from the Indiana University Chest X-ray Collection, 

which provides chest X-rays accompanied by their medical reports. The dataset also 

includes two metadata files: 

• `indiana_projections.csv`, associates the unique identifiers (uid) with the 

standardized names of the image files. 

• `indiana_reports.csv`, contains the text of the reports, divided into two sections: 

`impression` and `findings`. 

To obtain a coherent and usable dataset, the following steps were taken:  

• Filename Matching: each ‘uid’ from the reports was matched with its 

corresponding image using the projection file. 
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• Report Cleaning: the text in the findings and print columns was pre-processed to 

remove excessive punctuation, standardize white spaces and remove bogus strings 

(such as strings of letters “X”). 

• Report formatting: the two text sections have been concatenated into a single 

string, framed by structuring tokens: 

 

 

 

 

 

This structuring enables the decoder to distinguish between the different parts of the 

report while ensuring syntactic and semantic consistency. Only samples with both a valid 

image and non-empty reports were retained. The final dataset is represented as a table 

containing two columns, `image_path` and `report`. 

4.2. Text Tokenization 

The reports were tokenized using the “Keras Tokenizer” module, configured as follows: 

• No Filtering: all characters, including punctuation, were retained to preserve useful 

semantic clues. 

• Case Sensitivity: capitalization was maintained (lower=False) to distinguish 

acronyms and anatomical names. 

• Management of rare words: words absent from the learned vocabulary have been 

replaced by the special <unk> token. 

After fitting the tokenizer on the full corpus of reports: 

• Each report was converted into a sequence of word indices. 

• The longest sequence length was determined and used as the maximum length for 

padding and truncation. 

• Two sequences were generated per report: 

o `decoder_inputs`: all tokens except the last one 

o `targets`: all tokens except the first 

This strategy allows the use of teacher forcing during training, by providing the model 

with the previous tokens as a reference for predicting the next one. 

Findings: 

{findings} 

Impression: 

{impression}  
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4.3. Image Preprocessing 

To ensure optimal compatibility and to fully exploit the capabilities of the EfficientNet 

convolutional encoder, which forms the backbone of our system, all chest X-ray images 

have undergone a standardized pre-processing process. These steps are crucial for 

normalizing the input data and aligning it with the format expected by a model pre-trained 

on large image datasets. The specific transformations applied are detailed below: 

• Image resizing: Each image was loaded from its storage location and 

systematically resized to a resolution of 224×224 pixels. This ensures a uniform 

input size for the EfficientNet network, which is optimized for this dimensionality, 

and contributes to the consistency of batch processing. 

• Conversion from greyscale to RGB: X-rays (single channel greyscale) were 

replicated to three channels (RGB) to fit the pre-trained architecture on ImageNet, 

without semantic alteration of the original pixels. 

• Pixel normalization: pixel values were adjusted and standardized according to the 

parameters of the EfficientNet pre-training on ImageNet (normalization specific to 

this model). 

• Tensor conversion: the images were converted to float32 format to enable them to 

be processed by the deep learning model. 

4.4. Data Augmentation 

Data augmentation is an essential tool for enhancing the generalization capability of a 

deep learning model. By exposing the model to a variety of transformations applied to 

training images, this technique enables it to learn to detect target features under diverse 

conditions, thereby improving accuracy on test data and limiting overfitting (Shorten, C., 

& Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. 

Journal of Big Data, 6 (60).).  

In this work, we implemented an augmentation pipeline based on the Keras Sequential 

API. Random transformations were applied to the images during training, without altering 

the total number of samples, to ensure a diverse input stream for the model. The 

transformations used include: 

• Random Horizontal Flipping: Simulates variations in image orientation. 
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Figure 6: Flipping of an image from dataset. 

• Random Rotation: Accounts for slight differences in patient positioning. 

 

Figure 7: Rotation of an image from dataset.  

• Random Zooming: Introduces spatial variability while preserving core structures. 

 

Figure 8: Rotation of an image from dataset. 

These transformations are safe for chest X-rays and augment the training set with 

realistic variations. No augmentation was applied to validation or test samples. 

5. Model Architecture 
The design of the proposed system is based on a hybrid architecture combining a 

convolutional neural network (CNN) encoder and a decoder. This configuration enables 

the model to efficiently capture the spatial characteristics of medical images and generate 

structured text sequences capable of fully and coherently describing a diagnostic report. 

The CNN encoder is specifically dedicated to extracting discriminating visual information 

by highlighting the spatial and morphological aspects of the radiographic content. The 

decoder, meanwhile, is designed to model long-range dependencies within text sequences, 
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an essential capability for producing radiology reports made up of several interconnected, 

medically relevant sentences. 

The model operates in two main phases: 

• The image encoding phase, during which visual features are extracted from a chest 

X-ray and transformed into a compact, informative representation. 

• The text decoding phase, in which the decoder uses this visual representation to 

generate the corresponding report, producing the tokens one by one, according to a 

sequential logic. The model functions in two primary phases:  

This modular architecture not only offers great flexibility for adaptation to other types 

of data or medical tasks, but also greater transparency in the training, inference and 

development processes for future extensions. As a result, it provides a solid foundation for 

the production of automated reports aligned with the requirements of the clinical field.  

5.1. Image Encoder (EfficientNetB0)  

Our system's image encoder is based on the EfficientNet-B0 architecture, a model 

recognized for its optimal balance between performance, accuracy and computational 

efficiency. This backbone makes it possible to extract deep, discriminating visual features 

from chest X-rays.  

• EfficientNetB0 Backbone: EfficientNet-B0 is the core of the encoder. Its design 

is based on coordinated scaling of depth, width and resolution, optimizing the use 

of resources for maximum accuracy. The model is pre-trained on ImageNet and the 

convolutional layers are frozen (not re-trained) to limit the risk of overfitting on our 

specific medical dataset. The complete architecture of EfficientNet-B0 is illustrated 

in Figure 3.5. 

• Input Layer: The encoder expects input images of dimensions (224, 224, 3), 

conforming to standard EfficientNet specifications.  

• Convolutional Layers: The EfficientNet-B0 network is composed of inverted 

residual blocks incorporating squeeze-and-excitation modules. These layers enable 

hierarchical and progressive feature extraction, from local details to abstract 

representations.  

• GlobalAveragePooling2D: This layer is applied to the last convolutional feature 

map (typically 7 × 7 × 1280). It averages the activations over the spatial dimensions, 

producing a global vector of 1280 dimensions summarizing the entire image  

• BatchNormalization: This layer standardizes the resulting vector in order to speed 

up convergence during training and stabilize weight updates. It adjusts the mean 

and variance of activations for each batch of data.  

• Dropout: A regularization mechanism is introduced via a dropout that randomly 

deactivates 30% of activations during training, reducing the risk of overfitting.  
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• Dense Layer: This transformation reduces the 1280-dimensional representation to 

a more compact 512-dimensional vector. ReLU activation introduces a non-

linearity that is essential for capturing complex patterns.  

• Final Dropout: A second dropout is applied after the dense layer to reinforce the 

regularization of the final image representation.  

The encoder thus delivers a 512-dimensional dense vector representation, which is an 

abstract, compressed synthesis of the visual content of the chest X-ray. This vector acts as 

a conditional input for the Transformer decoder responsible for generating the text report.  
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Figure 9: The architecture of the used EfficientNetB0 pre-trained model in our system. 
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5.2. Transformer Decoder 

The generation of the text report is based on a decoder that transforms the visual 

features extracted from the image into a sequence of words forming a structured medical 

report. Two architectures were studied and implemented in this project: an initial version 

based on an LSTM-type decoder, and a second, more advanced version using a 

Transformer. 

• Initial version: LSTM decoder 

The first decoder implemented was based on a Long Short-Term Memory (LSTM) 

model, designed to generate the report text sequentially, one word at a time. 

 

Figure 10: The architecture of the used LSTM decoder. 

 Although the LSTM decoder was able to generate understandable reports, it showed 

limitations in modelling long dependencies and producing fluent text over several complex 

sentences. 

• Improved version: Transformer decoder 

To overcome these limitations, a decoder based on the Transformer architecture was 

developed, capable of better handling the long-range relationships between words in the 

report. It is designed to generate sequences. It analyses visual data as well as previous 

words to predict the next word in the report.  

• Input Embedding: Transforms each token index into a trainable 512-dimensional 

embedding vector. The embedding matrix is of size (vocab_size, 512), with each 

row representing a word vector.  

• Positional Encoding: Positional encodings are included with each embedded token 

to integrate temporal order, enabling the model to distinguish between tokens 
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within a sequence. Sinusoidal encodings offer a distinct representation for every 

position.  

• Image Modification:  

o The 512-dimensional image feature is linearly transformed to align with the 

input size of the decoder.  

o An additional axis is introduced to adjust the shape to (1, 512), aligning with 

the sequence dimension.  

o This visual token is added before the text token embeddings, allowing the 

model to consider image context from the beginning.  

• Transformer Blocks (2 layers): Every block consists of:  

o Multi-Head Self-Attention: Each head focuses on distinct subspaces of the 

input. Attention weights are determined using scaled dot-product attention.  

o Dropout (rate=0.2): Used following attention to avoid overfitting.  

o Incorporate & LayerNorm: A residual link combines the attention output 

with the input, succeeded by layer normalization for consistency.  

o Feed-Forward Network (FFN): Two Dense layers, each with 512 units, 

interspersed with a ReLU activation function. FFNs incorporate non-linear 

transformations and enhance representational power.  

o Second Dropout and residual normalization complete the block. 

o Final Linear Layer: A TimeDistributed Dense layer maps the output from 

the last decoder layer to the size of the vocabulary. A softmax function 

subsequently transforms logits into probabilities for every word in the 

vocabulary.  

 This decoder architecture enables the model to produce reports one token at a time, 

taking into account both image features and the series of words previously generated. The 

attention mechanism enables selective emphasis on significant tokens and the visual. 
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Figure 11: The architecture of the used Transformer decoder in our system. 

6. Post-processing 
After the initial generation of reports using the CNN-Transformer architecture, a 

complementary post-processing phase is integrated to improve the linguistic quality, 

semantic consistency, and diagnostic fidelity of the texts produced. This phase has two 

main components: inference on the test set and correction of the reports generated using a 

large specialized language model, BioGPT. 

• Inference with CNN-Transformer 

The aim of inference is to evaluate the system's performance on unprecedented data, 

reflecting use in real-life conditions. Each image-report pair in the test set is processed in 

batches, with the decoder generating a report in the form of a sequence of tokens. These 

tokens are then translated into text using the saved tokenizer. Special tokens (start, end and 

padding) are removed to produce a clean, readable final text. 

The dataset produced at the end of this phase contains three aligned columns: 

• image_path: the file path to the X-ray image; 

• original_report: the reference ground truth (reference report provided by an expert); 

• generated_report: the model-generated diagnostic text 

This set is saved for subsequent evaluation tasks and quality analyses. 
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6.1. Correction Using BioGPT 

In order to increase the clinical accuracy and readability of the generated reports, a 

correction phase based on a pre-trained language model, BioGPT, is applied. This step is 

based on a prompt-driven approach, where the generated reports are enriched by 

constructing input examples combining the original reports and the model predictions. 

The main steps in this phase are: 

• Tokenization of prompts and outputs using BioGPT's specific tokenizer; 

• Optimization of the model in causal language modelling mode, using the AdamW 

optimize 

Experiments are carried out with two alignment strategies - shallow alignment and 

deep alignment - aimed at harmonising visual and linguistic information. 

Corrected reports are generated using beam search decoding to improve text diversity 

and consistency. Linguistic and semantic metrics are then calculated to quantify the final 

quality of the reports. 

 

Figure 12: The architecture of the full system. 
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7. Conclusion 
The automatic generation of radiological reports is a major challenge for AI in 

medicine, with the aim of optimizing workflows, standardizing practices and improving 

the quality of care in the face of increasing numbers of examinations. The challenge is to 

translate complex images into precise medical language and to guarantee the robustness of 

the model. 

This chapter has detailed the architectural design of the system. It presented the 

evolution of an LSTM decoder towards a more advanced hybrid architecture: an 

EfficientNet-B0 encoder for visual extraction, and a Transformer decoder for text 

generation. To refine linguistic and terminological quality, a post-processing module based 

on a Large Language Model (LLM) has been integrated. The importance of data pre-

processing (text and image) and dynamic data augmentation for model robustness was also 

highlighted. 
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Chapter IV: Implementation and 

Realization 

1. Introduction 
This chapter describes the practical implementation of our radiology report 

generation system, transforming the conceptual framework into an operational deep 

learning pipeline. We detail the development environment, tools (Python, Jupyter 

Notebook, Kaggle) and libraries used. 

The chapter then explores the detailed implementation of the system components. 

This includes data pre-processing, report tokenization and image formatting for 

EfficientNetB0, which acts as a visual encoder. The architecture of the model is presented, 

with a custom Transformer decoder for language generation. Attention is given to training 

procedures, hyperparameters, and the integration of BioGPT for post-processing of 

generated reports. Overall, a complete and specialized pipeline for the automatic generation 

of medical imaging reports is presented. 

2. Environment and Tools 

2.1. Programming Language 

• Python:  

 Python is a high-level, interpreted, and object-oriented programming language 

recognized for its straightforward syntax and dynamic semantics. Its inherent data 

structures, along with dynamic typing and binding, render it perfect for quick application 

development and scripting assignments. Python encourages code reuse and modularity by 

supporting modules and packages, with its comprehensive standard library accessible on 

various major platforms. A major advantage of Python is its quick edit-test-debug cycle, 

which boosts developer efficiency. Errors are managed via exceptions instead of 

segmentation faults, and debugging is supported by an interactive source-level debugger 

along with Python's introspective features. For numerous tasks, straightforward print-based 

debugging continues to be remarkably efficient because of Python's quick 

feedback(Foundation, 2025).  

2.2. Development Environment 

• Jupyter Notebook 

Jupyter Notebook is a free web application that allows users to generate and distribute 

interactive documents, previously referred to as IPython Notebooks. It offers an online 
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platform for Python coding, enabling users to create and run code in organized sections 

that can be integrated with descriptive text and data. A "notebook" may denote the Jupyter 

web interface, the core Python server, or the final document produced. Used extensively in 

different fields, Jupyter facilitates activities like data cleaning, numerical simulation, 

statistical modeling, and machine learning (DataScientest, 2025) 

• Kaggle  

Kaggle is a prominent online platform for data science and machine learning, featuring 

a worldwide community of more than 500,000 members from 194 nations. It provides a 

robust, configuration-free setting for building models with Jupyter Notebooks, featuring 

access to free GPUs and a wealth of community resources. Users have access to more than 

50,000 public datasets and 400,000 notebooks to aid their projects. Kaggle is relied upon 

by large corporations such as Walmart and Facebook, allowing users to join competitions, 

exchange code, and work together with others. Subjects cover a broad spectrum of areas—

from healthcare forecasts to emotion interpretation—creating an active environment for 

education, skill development, and networking with professionals (DataScientest, 2024) 

2.3. Model Construction Tools 

• TensorFlow  

TensorFlow is a popular open-source platform for machine learning that functions 

through data flow graphs. In this framework, nodes symbolize mathematical operations, 

while edges denote tensors—multidimensional data arrays—moving between them. This 

architecture allows for the development and training of machine learning models on CPUs, 

GPUs, and TPUs, from mobile devices to robust servers, without modifying the 

foundational code. Initially created by Google's Brain Team for deep learning studies, 

TensorFlow has evolved into a flexible resource embraced by data scientists, developers, 

and educators for various machine learning applications(NVIDIA, 2025c).  

• Keras 

Keras is an advanced deep learning API developed in Python that is compatible with 

various backends, such as TensorFlow, PyTorch, and JAX. Created for simplicity and 

adaptability, it enables users to construct intricate models with little coding while also 

permitting sophisticated customizations. Keras 3 enhances this flexibility by allowing 

developers to train and deploy the identical model across various frameworks without 

changes. It accommodates multiple data formats including NumPy, Pandas, TensorFlow 

datasets, and PyTorch DataLoaders. Keras is extensively utilized in research and industry, 

facilitating rapid development, wide compatibility, and effective deployment on various 

platforms(K. Team, 2024). 
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• PyTorch  

PyTorch is a free deep learning framework created by Facebook AI Research, highly 

valued for its adaptability, ease of use, and integration with Python. Created for 

constructing neural networks, PyTorch facilitates dynamic computation graphs (define-

by-run), rendering it perfect for quick prototyping and research. It includes reverse-mode 

automatic differentiation, robust GPU acceleration, and effortless compatibility with 

well-known Python libraries such as NumPy. PyTorch is widely preferred in both 

academic and industrial settings because of its reliable API, straightforward debugging, 

and strong support for distributed training, ONNX export, and visualization resources 

such as TensorBoard. Its dynamic community and growing ecosystem position it as a top 

option for deep learning advancement (NVIDIA, 2025b) 

2.4. Preprocessing Tools 

• NumPy 

NumPy is an essential Python library for scientific calculations that provides robust 

tools for managing extensive, multi-dimensional arrays and matrices. Central to NumPy is 

the ndarray object, enabling effective storage and handling of homogeneous data. In 

contrast to regular Python lists, NumPy arrays maintain fixed sizes and require a uniform 

data type, allowing for efficient computations via compiled code. NumPy offers a broad 

array of functionalities, including linear algebra, statistics, sorting, and Fourier transforms. 

Due to its effectiveness and integration, it underpins numerous scientific Python packages, 

rendering it crucial for data analysis, numerical computing, and simulation (N. Developers, 

2024).  

• Pandas 

Pandas is a robust and versatile Python library created for effective data manipulation 

and analysis, particularly for working with labeled or tabular datasets. It offers two primary 

data structures: Series for one-dimensional data and DataFrame for two-dimensional data, 

allowing for intuitive management of datasets akin to SQL tables or Excel spreadsheets. 

Layered on NumPy, pandas streamlines processes like managing missing values, aligning 

data sets, grouping and summarizing, reshaping, and combining. It additionally provides 

strong assistance for time series data and different file formats, such as CSV and Excel. 

Pandas is a fundamental component of Python’s data science ecosystem, extensively 

utilized in areas such as finance, statistics, and engineering (P. Developers, 2024) 

• PIL 

Pillow is a popular Python library for image manipulation, acting as the approachable 

and actively supported fork of the original Python Imaging Library (PIL). It provides 

comprehensive assistance for different image file formats and includes effective tools for 

loading, editing, and saving images. Engineered for efficiency, Pillow offers rapid pixel-
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level access and features a variety of robust capabilities including image filtering, 

transformations, color modifications, and format changes. It serves as an essential element 

in numerous Python-driven image analysis and computer vision projects, providing a 

strong base for developing image processing tools and workflows (Contributors, 2025).  

2.5. Plotting Tools 

• Matplotlib 

Matplotlib is a library for visualizing data in Python, developed by Michael 

Droettboom and others, which first launched in 2003. It features an object-oriented API 

for generating high-quality, publishable charts and graphs. This system can handle 

various kinds of plots, such as line graphs, scatter plots, bar charts, histograms, and more. 

It also enables the customization of visual styles, layout, and saving in various file 

formats (M. Developers, 2025) 

2.6. Evaluation and NLP Tools 

• NLTK:  

The Natural Language Toolkit (NLTK) is an extensive Python framework created for 

handling human language data and developing natural language processing (NLP) 

applications. It provides convenient access to more than 50 corpora and lexical resources 

like WordNet, coupled with robust libraries for activities such as text classification, 

tokenization, stemming, tagging, parsing, and semantic analysis. NLTK features interfaces 

for strong NLP libraries and benefits from ongoing community discussions. It is commonly 

utilized in education, research, and industry because of its straightforward documentation 

and practical tutorials, which make it a great resource for novices as well as seasoned 

developers in computational linguistics (N. L. T. Team, 2025). 

3. Dataset Preparation 

3.1. Dataset Description 

• Indiana University CXR Dataset 

The Indiana University Chest X-ray dataset (IU X-ray) is a publicly accessible 

benchmark collection aimed at facilitating research in automated radiology report creation. 

Created and launched by the U.S. National Library of Medicine, this dataset features a 

comprehensive combination of chest X-ray images along with corresponding narrative 

radiology reports. It has seen extensive application in natural language processing (NLP), 

computer vision, and medical AI tasks for developing and assessing image-to-text 

generation models(Demner-Fushman et al., 2016).  

o Dataset Structure  
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The dataset includes 7,470 chest X-ray images from 3,955 distinct patient studies, 

featuring a range of frontal and lateral perspectives. Every examination includes a 

diagnostic report written by hand and created by a radiologist. The images come from the 

medical imaging archives at the Indiana University School of Medicine and were 

anonymized to protect patient privacy before being released publicly(Demner-Fushman et 

al., 2016).  

o Report Structure  

Every radiology report is organized in a uniform format and generally includes 

these sections:  

• Findings: A brief diagnostic assessment or clinical overview that usually 

emphasizes the key findings.  

• Impression: A comprehensive account outlining the visual findings derived from 

the X-ray images, generally arranged by anatomical areas or radiological 

importance.  

• Comparison: This section refers to previous imaging studies when relevant and 

emphasizes changes that have occurred over time.  

• Indication: This part details the reasoning for the imaging examination, including 

patient symptoms, history, or clinical concerns.  

This organized structure allows for detailed analysis and modeling of various 

elements of clinical reporting, ranging from descriptive specifics to overarching 

summaries.(Demner-Fushman et al., 2016)  

o Data Format and Accessibility  

The original dataset includes radiographs in DICOM (Digital Imaging and 

Communications in Medicine) format, but the version utilized in this study is hosted on 

Kaggle, offering the same dataset with images converted to PNG format and normalized 

to uniform resolution. This preprocessing enhances user-friendliness in deep learning 

processes, especially when training convolutional neural networks (CNNs) that need 

consistent input sizes. Transforming DICOM to PNG guarantees compatibility with 

common Python libraries (such as PIL, OpenCV, TensorFlow), and normalization 

improves pixel-level uniformity throughout the dataset.  

o Research Purpose and Utility  

The IU X-ray dataset acts as an important standard for assessing vision-language 

models, particularly those designed to create radiology reports from imaging data. Its fairly 

small size, organized reporting format, and publicly available nature render it suitable for 

initial-stage prototyping, guided learning, and performance evaluation. Specifically, the 
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dataset's diagnostic depth and narrative intricacy enable the investigation of both extractive 

and generative tasks, such as report summarization, impression creation, disease 

identification, and image captioning within medical fields(Demner-Fushman et al., 2016).  

3.2. Dataset Preparation and Structuring 

The dataset used in this system is the Indiana University Chest X-ray collection, 

which is publicly accessible. It contains de-identified radiographic images (in PNG format) 

along with structured text reports. Every image is linked to a distinct identifier (UID), 

which serves to connect it with its related radiology report.  

The unprocessed reports were analyzed to extract the two clinically relevant 

sections: 

Figure 13: Samples from the Indiana University Chest X-ray 
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• Findings: describing the features observed on the radiographic image; 

• Impression: summarizing the radiologist's diagnostic conclusions. 

To ensure the quality of the training data all incomplete samples - i.e. those lacking 

at least one of the two sections - were discarded. The text of the reports was then cleaned 

up using regular expressions to remove redundant spaces, repetitive punctuation (e.g. serial 

dots) and formatting artefacts such a placeholder characters like 'XXXX'. 

Finally, each report is framed by special tokens explicitly marking the start and end 

of the sequence: 

<start> Findings:\n{findings}\n\nImpression:\n{impression} <end> 

This structured format plays an essential role in guiding the Transformer decoder, 

providing it with clear cues about the logical and syntactic boundaries of the content to be 

generated. 

3.3. Tokenization and Vocabulary 

Text tokenization is performed using the Keras Tokenizer class. This tokenizer is 

configured to: 

• Case sensitive: Preserve case sensitivity (lower=False), as medical terminology 

often relies on case distinctions. 

• Management of rare words: Include an out-of-vocabulary token <unk> for rare or 

unseen words. 

• Punctuation preservation: Avoid filtering out punctuation, which can be 

semantically significant in medical reports. 

The tokenizer is fitted on all structured reports, yielding a vocabulary of unique 

tokens (including punctuation, words, and special tokens). All reports are then converted 

into integer sequences and padded to the length of the longest report. 

As part of the Transformer decoder training, these sequences are split into two 

parts: 

• Decoder Inputs: All tokens in the sequence, except the last. 

• Targets: all the tokens in the sequence, except for the first.  

This technique enables the model to learn the probability of each subsequent word, 

conditioned on the previous ones. 
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• Tokenizer Configuration: 

Component Value 

Tokenizer Tool Keras Tokenizer 

Filters None 

Lowercase False 

OOV Token <unk> 

Max Sequence Length Dynamically computed from corpus 

Vocabulary Size Varies depending on corpus (e.g. ~4,000) 

Table 8: Summary of Text preparation step. 

3.4. Image Preprocessing and Data Augmentation 

Each chest X-ray image is resized to 224x224 pixels to align with the input size 

expected by EfficientNetB0, the chosen image encoder. Preprocessing includes: 

• Conversion to NumPy arrays. 

• Pixel normalization using efficientnet.preprocess_input, which performs mean 

subtraction and BGR channel reordering. 

Data augmentation is applied only to the training set to improve model 

generalization. Augmentations include: 

• Random horizontal flipping 

• Small random rotations (±10%) 

• Random zooming (±10%) These are implemented using TensorFlow’s Sequential 

augmentation pipeline. 

Step Method 

Resize 224×224 pixels 

Color Preprocessing EfficientNetB0 preprocessing (BGR shift) 

Augmentation Flip (horizontal), Rotation (±10°), Zoom (±10%) 

Table 9: Summary of Image Preparation Step. 
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4. System Implementation 

4.1. CNN Encoder  

This system employs a hybrid architecture combining visual and textual processing 

modules: 

Image Encoder: The visual backbone is EfficientNetB0, pretrained on ImageNet. 

The model is frozen to retain general visual features and avoid overfitting. The output of 

the CNN is: 

• Pooled using GlobalAveragePooling2D 

• Normalized with BatchNormalization 

• Passed through a dropout layer (0.3) 

• Projected to a 512-dimensional vector 

Layer Description 

Base Network EfficientNetB0 (frozen) 

Output Shape (None, 7, 7, 1280) 

Global Pooling GlobalAveragePooling2D 

Normalization & Dropout BatchNorm + Dropout(0.3) 

Dense Layer 512 units + Dropout(0.3) 

Table 10: Summary of Image Encoder Architecture 

4.2. LSTM Decoder 

A custom LSTM decoder is built using: 

• A token embedding layer that transforms input sequences from vocab_size to 256-

dimensional embeddings. 

• A single-layer LSTM with 512 hidden units, initialized using image features as both 

the hidden and cell states. 

• A dropout layer to regularize the LSTM output. 

• A final Dense layer with softmax activation applied at each time step to produce 

the probability distribution over the vocabulary. 
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Layer Description 

Input Token Embedding (vocab_size → 256) 

Image Features Projected (Dense 512) + used as initial LSTM states 

LSTM Layer Single-layer LSTM (512 units) 

Dropout Dropout(0.3) after LSTM output 

Output Layer Dense(vocab_size, softmax) applied per time step 

Table 11: Summary of Text Decoder Architecture 

The CNN encoder (EfficientNetB0) extracts visual features, which are globally 

pooled and projected to 512 units to initialize the decoder's hidden state. This enables 

the model to condition text generation on the input image. 

Hyperparameter Value 

Optimizer Adam 

Learning Rate 1e-4 

Loss Function Sparse Categorical Crossentropy 

Batch Size 16 

Epochs 75 

Metrics Accuracy 

Table 12: Summary of the CNN-LSTM model Training hyperparameters 

4.3. Transformer decoder  

A custom decoder is built using: 

• Token embedding layer (vocab_size → 512) 

• Positional encoding (sinusoidal, as in Vaswani et al., 2017) 

• Concatenation of image embedding to the start of the token sequence 

• 2 Transformer decoder layers, each with: 

o Multi-head attention (4 heads) 

o Feed-forward network (512 units) 

o Layer normalization and residual connections 
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The decoder output is passed through a TimeDistributed Dense layer with softmax 

activation to produce a probability distribution over the vocabulary. 

Layer Description 

Input Token Embedding + Projected Image Feature 

Positional Encoding Applied to combined sequence 

Decoder Layers 2 Transformer layers 

Attention Heads 4 heads per layer 

FFN Dimension 512 units 

Output Layer TimeDistributed(Dense(vocab_size, softmax)) 

Table 13: Summary of Transformer Decoder Architecture. 

• Hyperparameters 

The model is compiled with the Adam optimizer and trained using the sparse 

categorical crossentropy loss. Training and validation metrics are plotted to monitor 

convergence and detect potential overfitting. 

Hyperparameter Value 

Optimizer Adam 

Learning Rate 1e-4 

Loss Function Sparse Categorical Crossentropy 

Batch Size 32 

Epochs 50 

Metrics Accuracy 

Table 14: Summary Of CNN-Transformer Model Training Hyperpameters 

5. Model Training and Evaluation 
The model was trained on the augmented dataset, with a batch size of 32 and over 

50 epochs. The evolution of the metrics was monitored on the validation set at each epoch 

in order to monitor convergence and detect any over- or under-learning. The results were 

visualized using the matplotlib library, enabling the loss and accuracy curves to be 

analyzed over the iterations. 
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5.1. Training Evaluation Metrics: 

• Accuracy measures the proportion of correctly predicted tokens. 

• Loss (Sparse Categorical Crossentropy) captures how well the predicted 

probability distribution aligns with the target token distribution. 

Equations: 

• Accuracy =
Number of correct token predictions

Total number of tokens
 

• Loss  = −∑yi log(ŷ𝑖), where yi is the true class and ŷ𝑖  is the predicted probability 

for token  

o For LSTM Decoder Model 

 

Figure 14:Accuracy And Loss Graphs for LSTM Decoder Model 

o For Transformer Decoder Model 

 

Figure 15: Accuracy And Loss Graphs For Transformer Deoder Model 

Reported Scores: 
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Metric Transformer Decoder LSTM Decoder 

Training Accuracy 99.98% 93.26% 

Validation Accuracy 99.15% 92.16% 

Training Loss 00.97% 28.86% 

Validation Loss 07.71% 42.73% 

Table 15: The Model Metrics 

6. Post-Processing Phase: Correction model training 
In order to improve the linguistic quality and clinical fidelity of the reports 

generated, a post-processing phase based on BioGPT is integrated into the pipeline. The 

correction model is fine-tuned on the basis of examples made up of pairs associating the 

generated reports (input) and the original reference reports (target). The structure of the 

prompts used follows the following format: 

Correct the following radiology report: <generated_report>Corrected report: 

<original_report> 

This prompt format enables BioGPT to learn the distribution and structure of 

realistic radiology reports written by experts. The correction model training is based on the 

following elements:  

• Model used: BioGptForCausalLM from the HuggingFace Transformers library. 

• Token masking: application of masking with a value of -100 on the tokens in the 

input prompt. 

• Metrics tracking: accuracy and loss tracked at each epoch, with output in a format 

similar to Keras to make it easier to interpret the results. 

Fine-tuning Component Value 

Model BioGptForCausalLM 

Pretrained Source microsoft/biogpt 

Prompt Format “Correct the following radiology report: …” 

Learning Rate 5e-5 

Optimizer AdamW 

Batch Size 4 

Epochs 5 



76 

Development of an Intelligent System for Automatic Medical Report 

Generation 

Evaluation Metrics Accuracy, Loss (Token-wise) 

Table 16: Hyperparameters of the correction model 

7. Evaluation and Metrics 

7.1. Evaluation Methodology 

 The evaluation of generated and corrected reports is based on a combination of 

quantitative and qualitative approaches. 

• Quantitative evaluation: classic natural language generation metrics are calculated 

in order to estimate the linguistic and semantic fidelity of the reports generated in 

relation to the reference reports. 

• Qualitative evaluation: examples of generated reports are compared with the 

original reports to analyze clinical relevance, linguistic fluency and terminological 

consistency. 

7.2. Results Overview 

System performance was measured on the test set in different configurations: an 

uncorrected LSTM decoder, an uncorrected Transformer decoder and a Transformer 

decoder with BioGPT post-processing. 

The table below summarizes the average scores obtained:  

Metric LSTM decoder 

without 

correction 

 Transformer 

Decoder without 

Correction 

Transformer 

decoder with 

Correction 

Bleu-avg 0.4191 0.6071 0.8286 

Bleu-1 0.4536 0.7349 0.8789 

Bleu-2 0.4315 0.6802 0.8601 

Bleu-3 0.4235 0.6395 0.8445 

Bleu-4 0.4191 0.6071 0.8286 

Rouge-L 0.4861 0.7455 0.9248 

METEOR 0.0553 0.5950 0.8933 

BertScore 0.8258 0.9121 0.9628 

Table 17: Natural Language Generation Evaluation Metrics Values. 

 

These results illustrate a significant improvement in performance when switching 

from an LSTM decoder to a Transformer, as well as a significant gain in linguistic and 

semantic quality thanks to the integration of the post-processing phase with BioGPT. 

An in-depth analysis of the results shows a significant improvement in the 

performance of our automatic radiology report generation system, thanks in particular to 

the evolution of its architecture. Replacing the LSTM decoder with a Transformer proved 
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to be a key factor in this progress, increasing BLEU-4 scores by 45%. This substantial 

improvement is attributable to the Transformer's superior ability to model long-term 

dependencies in text, enabling more consistent and structurally accurate report generation.  

The integration of a post-processing phase via BioGPT has also had a significant 

impact on the linguistic and semantic quality of the reports produced. This step 

significantly improved the fluidity of the text, as evidenced by a 50% increase in the 

METEOR score, and considerably improved medical accuracy, with a BERTScore of over 

0.96. In particular, this correction made it possible to reduce terminological 

inconsistencies, bringing the reports generated closer to clinical standards. 

The concrete examples presented in Table 18 confirm that the clinical impressions 

generated by the model are structurally very close to the reference reports, validating the 

system's ability to capture the diagnostic essence. However, residual errors remain, 

including misspellings of specific technical terms (e.g. ‘granulomatous disease’), 

highlighting areas for improvement. 

Despite these advances, certain limitations have been identified. The model shows 

a data bias, struggling to generate accurate descriptions for rare conditions (e.g. partial 

pneumothorax), suggesting the need for a more diverse dataset or targeted augmentation 

techniques. In addition, the addition of the BioGPT module, although beneficial for quality, 

leads to an increase in inference time of around 20%, a factor to be considered for real-

time integration in a clinical environment. 

 

o Exemples 

Here are some examples comparing the reports generated with the reference 

reports: 

C
N
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T
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G
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n
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 T

ru
th

 R
ep

o
rt

: 

 

Findings: The aortic is mildly tortuous. The 

cardiomediastinal silhouette and pulmonary 

vasculature are within normal limits. There 

is no pneumothorax or pleural effusion. 

There are no focal areas of consolidation. 

There are T-spine osteophytes. Large body 

habitus. 

 

Impression: No acute cardiopulmonary 

abnormality. 
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G
en

er
a
te

d
 R

ep
o
rt

: 

 

Generated Report: 

Findings: The heart is normal enlarged. The 

cardiomediastinal silhouette is pulmonary 

vasculature are within normal limits There 

is no pneumothorax or pleural effusion. 

There are no focal areas of consolidation. 

 

Impression: There are no osteophytes. 

There degenerative in degenerative acute 

bony abnormality. . 

 

C
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-T
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G
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o
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: 

 

Findings: 

Heart size borderline enlarged. No focal 

alveolar consolidation, no definite pleural 

effusion seen. No typical findings of 

pulmonary edema. Dense nodule in the right 

lower lobe suggests a previous 

granulomatous process. 

 

Impression: 

Borderline heart size, no acute pulmonary 

findings 

 

G
en

er
a
te

d
 R

ep
o
rt

: 

Findings: 

Heart size borderline enlarged. No focal 

alveolar consolidation, no definite pleural 

effusion seen. No typical findings of 

pulmonary edema. Calcific nodule in the 

right lower lobe suggests a previous 

granulomatous disease. 

 

Impression: 

Negative heart size, no acute pulmonary 

finding 

 

A
ft

er
 C

o
rr

ec
ti

o
n

 R
ep

o
rt

: 

 

Findings: Heart size borderline enlarged. 

No focal alveolar consolidation, no definite 

pleural effusion seen. No typical findings of 

pulmonary edema. Calcific nodule in the 

right lower lobe suggests a previous 

granulomatous disease. Impression: 

Negative heart size, no acute pulmonary 

findings 

 

Table 18 : Exmples of generated reports 
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8. Final Discussion 
The results obtained in this study highlight the considerable potential of hybrid deep 

learning architectures for the automatic generation of radiology reports. In both 

quantitative and qualitative terms, the performances demonstrate a significant advance in 

the ability to transform complex visual information into precise, structured medical text 

descriptions that comply with clinical requirements. 

The architectural evolution of the system has been a key factor in improving 

performance. Moving from the LSTM decoder to a Transformer architecture proved to be 

a major strategic choice. The 45% increase in the BLEU-4 score illustrates the superiority 

of Transformers in modelling long-range dependencies and taking into account the 

contextual subtleties of the language. This advance has made it possible to generate texts 

with a more rigorous syntactic structure and greater semantic coherence, thus better 

meeting the expectations of specialists in the field of radiology. 

The integration of a post-processing module based on BioGPT also played a key 

role as a linguistic refinement layer. This component raised the final quality of the reports 

by correcting lexical imperfections, harmonizing medical terminology and improving the 

fluidity of the texts generated. The 50% increase in the METEOR score and a BERTScore 

in excess of 0.96 testify to the system's ability to produce reports that are stylistically and 

semantically close to those written by experts. This module has proved essential in 

guaranteeing the readability, reliability and compliance of the reports generated with 

current medical standards. 

The examples presented (see Table 18) provide a concrete illustration of the 

system's ability to generate clinical impressions whose structure and content are 

remarkably aligned with those of the reference reports. These results validate the system's 

effectiveness in extracting key diagnostic information and rendering it in a form that can 

be used in clinical practice. 

However, the study also highlighted certain limitations and identified areas for 

improvement. Despite the encouraging results, errors remain, notably lexical 

approximations on specific technical terms or difficulties in generating rare words (e.g. 

‘granulomatous disease’). These findings highlight the need to refine the generation 

mechanisms to better manage specialized vocabulary. In addition, a bias linked to the data 

was observed: the model struggles to accurately describe certain rare pathologies, such as 

partial pneumothorax. The integration of more diversified data sets or the use of 

augmentation techniques targeted at these poorly represented cases could constitute 

promising avenues for remedying this limitation. 

Finally, although the addition of BioGPT significantly improved the quality of the 

reports, it was accompanied by an increase in inference time of around 20%. Although this 
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additional cost is tolerable in an experimental setting, it is a point of caution when it comes 

to integrating the system into a clinical environment, where responsiveness is essential. 

Future optimizations should therefore aim to reduce this latency without compromising the 

linguistic and diagnostic quality of the reports. 

These improvements would evolve the existing research prototype into a more 

functional, flexible, and internationally implementable AI system for radiology clinical 

assistance.  

9. System Interface 

 

10. Figure 16: Home Page of The system 
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11. Figure 17: Upload Image Page 

 

12. Figure 18: Example 

 

13.Conclusion 
In this chapter, we presented the implementation of our system for the automatic 

generation of radiological reports, which integrates visual and linguistic processing within 

a deep learning framework. The system is based on a pre-trained CNN (EfficientNet-B0) 
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for extracting X-ray features, combined with a Transformer decoder for generating 

diagnostic texts. 

We have described the main stages of the implementation, including the tools used, 

data pre-processing techniques, model training and the addition of a post-processing 

module with BioGPT to improve the linguistic and clinical quality of the reports. Although 

the results are promising, certain limitations remain, opening up prospects for future work, 

particularly in terms of data diversity, multilingual support and adaptation to other imaging 

modalities. 
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General conclusion and prospects 

Radiological report writing is an essential part of the medical diagnostic process. 

However, this task, performed manually by radiologists, is facing increasing challenges: a 

high workload, inherent inter-observer variability, and increased time pressure. In this 

context, automating the generation of these reports, particularly for chest X-rays widely 

used in the detection of pulmonary and cardiovascular pathologies, is a promising way of 

significantly improving clinical efficiency, standardising medical reports and, ultimately, 

optimising the quality of care. 

In this work, we proposed a comprehensive end-to-end system for the automatic 

generation of radiology reports using a deep learning pipeline. The system combines 

convolutional neural networks (EfficientNetB0) for image feature extraction and a custom 

Transformer decoder for report generation, effectively applying the encoder-decoder 

paradigm to the domain of medical image captioning. A major contribution of this work 

lies in the integration of a post-processing module based on the BioGPT biomedical model. 

This is used at the end of the pipeline to fine-tune the linguistic consistency, language 

fluidity and compliance with medical standards of the reports generated, a crucial stage for 

their clinical acceptability. The system has been rigorously trained and evaluated on the 

Indiana University Chest X-ray dataset. 

A critical aspect of our methodology involved careful data preparation. This 

included matching chest X-ray images to their corresponding reports, cleaning textual data 

using regular expressions, and formatting reports with special tokens to define clear start 

and end points. The resulting dataset was then tokenized, and the image inputs were 

preprocessed with normalization and data augmentation techniques to improve 

generalization. 

The experimental results obtained are particularly encouraging and testify to the 

robustness and effectiveness of the proposed approach. The final model performed very 

satisfactorily, with a BLUE-4 score of 0.8286, a RED-L of 0.9248 and a BERTScore of 

0.9628. These high metrics confirm a strong semantic and lexical similarity between the 

automatically generated reports and those written by professionals. The analysis of the 

architectural contributions showed that the switch from an LSTM decoder to a Transformer 

architecture, as well as the strategic addition of post-processing by BioGPT, were decisive 

in achieving significant gains in terms of quality, semantic accuracy and readability, 

enabling the system to produce reports that are structured, relevant and close to 

professional standards. 
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The prospects opened up by this study are vast and pave the way for future 

developments. To further enhance the system's performance and broaden its field of 

application, several areas of improvement are envisaged: 

➢ Refine linguistic post-processing by integrating more specialised or multi-

lingual biomedical models (e.g. BioMedGPT, ClinicalT5). 

➢ Extend the system to other imaging modalities, such as computed tomography 

(CT) or magnetic resonance imaging (MRI), by adapting the architecture and 

pre-processing. 

➢ Enhance learning on rare cases, using targeted data augmentation techniques or 

generative models (e.g. GANs). 

➢ Carry out clinical validation under real conditions, in collaboration with 

radiologists, to assess the relevance and acceptability of the reports generated. 

➢ Optimise inference time to enable seamless integration into real-time hospital 

environments. 
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Annex: Startup Project 

Project Idea 
The project falls within the medical and healthcare sector, specifically targeting the 

modernization of radiology workflows using artificial intelligence. This innovative system 

seeks to automate the generation of radiology reports from chest X-ray images by 

combining advanced deep learning techniques with natural language processing. 

The idea originated from observing the repetitive, time-consuming nature of report 

writing in radiology departments and the shortage of expert radiologists in many regions. 

The aim is to support clinical staff by automating descriptive reporting, enhancing 

consistency, and saving time for more critical diagnostic decisions. 

To achieve this, we developed an end-to-end pipeline that uses a pre-trained 

convolutional neural network (EfficientNetB0) to extract visual features from X-ray 

images, followed by a Transformer-based decoder that generates textual reports in English. 

The generated reports are further refined using a domain-specific large language model, 

BioGPT, to ensure medical accuracy and fluency 

Proposed Values 
• Modernity 

The system introduces a novel approach to radiology report generation by leveraging 

the latest advances in computer vision and natural language generation. By replacing 

manual report writing with AI-assisted tools, we offer a disruptive innovation for medical 

imaging. 

• Performance 

Our CNN-Transformer architecture, combined with BioGPT, provides high accuracy 

in generating semantically and clinically relevant English reports for chest X-ray images. 

The inclusion of fine-tuning and correction mechanisms ensures robust and consistent 

outputs. 

• Task Accomplishment 

The system automates key radiology tasks including image interpretation, findings 

summarization, and impression generation. This helps clinicians by reducing workload and 

enabling faster decision-making in high-throughput environments. 

• Design 
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The platform is designed with usability in mind. From model inference to report 

correction, the system supports seamless integration into hospital information systems. 

User interfaces can be adapted to the needs of radiologists with minimal technical 

interaction. 

• Cost Reduction 

The system is designed to minimize development and operational costs, aligning with 

the economic constraints of the Algerian healthcare market. Automation of the reporting 

process leads to significant reductions in personnel workload and optimizes radiologist 

time usage. 

• Risk Reduction 

By reducing manual input, the system minimizes human error and ensures consistent 

report formatting. The correction stage using BioGPT further helps in aligning output with 

clinical standards, thus reducing the risk of misdiagnosis due to report inconsistencies. 

• Accessibility 

We aim to make AI-assisted radiology available to hospitals and clinics with limited 

access to expert radiologists. Through scalable and cost-efficient deployment models (e.g., 

local or cloud APIs), even smaller or rural facilities can benefit from AI diagnostics. 

• Ease of Use 

With straightforward deployment and intuitive input-output workflows, the system 

ensures that healthcare professionals can use the tool without needing advanced technical 

training. Reports can be generated with minimal interaction, increasing clinical efficiency. 

Project Objectives 
Our primary objective is to become a leader in the field of automated radiology 

report generation using deep learning and natural language processing. Within the next five 

years, we aim to establish our solution as a reference system in both clinical and academic 

radiology environments. 

Implementation Timeline 
Project Stage 1m 2m 3m 4m 5m 6m 7m 8m 9m 

Preliminary Studies ✓ ✓ 
  

 
    

Algorithm Development 
 

✓ ✓ 
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Software Development 
  

✓ ✓ ✓ 
    

Integration & Testing 
    

✓ 
    

Pilot Phase 
    

 ✓ ✓ 
  

Deployment 
    

 
 

✓ ✓ 
 

Marketing et promotion         ✓ ✓ 

 

Innovative Aspects 
The integration of deep learning-based computer vision models and transformer-

based language models for the automatic generation of medical reports represents a 

significant advancement over traditional radiology workflows. Unlike conventional 

manual dictation or template-based systems, this approach enables dynamic, patient-

specific report generation based on image content. 

This project opens a new market segment for AI in radiology, specifically targeting 

diagnostic support in environments with limited access to expert radiologists. By adopting 

a continuous improvement strategy based on clinician feedback and advances in machine 

learning, the system will remain relevant and effective over time. 

Regular updates to the model architecture and language output capabilities will 

ensure clinical alignment and technical competitiveness. This iterative enhancement 

process is crucial for maintaining the system’s value in a fast-evolving AI and healthcare 

landscape. 

Strategic Market Analysis 

Market Sector Overview 

In Algeria, the medical sector is undergoing digital transformation, particularly in 

the field of radiology, which is a critical component of diagnostic medicine. The demand 

for radiological services is increasing due to population growth, the rise in chronic diseases, 

and the scarcity of trained radiologists in remote regions. 

Artificial intelligence in medical imaging is experiencing accelerated growth, 

driven by the need for efficient diagnostic tools and the potential of machine learning to 

automate and enhance clinical workflows. Automated radiology report generation systems 

offer cost-effective, scalable solutions that address both efficiency and quality in clinical 

documentation. 
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Key Market Characteristics: 

• High Demand for AI Tools: Clinics and hospitals seek intelligent solutions to 

streamline diagnosis and reduce manual workloads. 

• Healthcare Digitization Initiatives: Government and private initiatives are 

increasingly supporting digital health technologies. 

• Emerging Multilingual Needs: In multilingual countries like Algeria, solutions 

that support multiple languages (Arabic, French, English) are especially relevant. 

Key Market Segments: 

• Public Hospitals: Seeking scalable tools to improve diagnostic accuracy under 

constrained resources. 

• Private Clinics: Interested in cutting-edge technology for competitive advantage. 

• Medical Training Institutions: Looking for tools to assist in radiology education 

and training. 

Market Competition Intensity 

The AI radiology space is moderately competitive, with several international 

players offering AI-powered diagnostics. However, few provide multilingual, domain-

specific report generation with end-to-end pipelines integrated with correction 

mechanisms. 

Main Competitors: 

• Template-based Reporting Tools: Rigid and lacking adaptation to image content. 

• Foreign AI Solutions: Powerful but often generalized, expensive, or lacking 

linguistic and clinical adaptation for local settings. 

• Manual and Semi-automated Approaches: Labor-intensive, less scalable, and 

more error-prone. 

Competitive Forces Analysis: 

• Entry Barriers: High development cost and requirement of medical data present 

strong entry barriers. 

• Customer Bargaining Power: High demand for accuracy and regulatory 

compliance puts pressure on solution providers to deliver robust performance. 
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• Rivalry Among Providers: Ongoing innovation in AI healthcare drives constant 

pressure to improve model accuracy, adaptability, and explainability. 

Marketing Strategies 

To maximize our market penetration and attract our target audience, we will implement a 

flexible subscription-based pricing strategy tailored to different institutional needs and 

budgets. 

Subscription Plans: 

Plan Pricing 

Tier 

Usage Limit Key Features 

Free Trial Free Up to 3 report 

generations 

Allows new users to test the system on a 

limited number of images. 

Weekly 

Plan 

Low Up to 20 reports per 

week 

Suitable for short-term evaluations or 

low-volume clinics. 

Monthly 

Plan 

Medium Scalable to 

hundreds of reports 

Designed for mid-sized clinics or 

research teams with continuous usage. 

Annual 

Plan 

High Unlimited usage Ideal for hospitals and enterprise users; 

includes multilingual & priority support. 

Communication Strategies: 

1. Digital Marketing: 

o Develop an informative website with case studies, demo videos, and 

subscription details. 

o Use SEO and paid campaigns to reach targeted healthcare providers. 

o Engage medical professionals through LinkedIn and specialized forums. 

2. Conferences and Health Tech Expos: 

o Present our system at medical technology events and radiology conferences. 

o Conduct live demos to demonstrate report generation and correction 

accuracy. 

3. Strategic Partnerships: 

o Collaborate with radiology networks, health institutions, and medical 

device suppliers. 
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o Offer affiliate incentives to encourage resellers and referrers. 

Sales Strategies: 

• Launch promotional trials or free access periods for early adopters. 

• Provide discounts for long-term or institutional licenses. 

• Build a reseller and integrator network to reach hospitals and clinics. 

• Offer post-deployment support, training resources, and feedback loops to improve 

user satisfaction. 

Client Analysis 

Our potential clients include: 

• Independent Radiologists and Small Clinics: Looking for efficient tools to 

streamline reporting. 

• Hospital Radiology Departments: Needing scalable AI assistance for large 

patient volumes. 

• Telemedicine and Teleradiology Companies: Benefiting from rapid and accurate 

automated reports. 

• Medical NGOs and Government Health Initiatives: Seeking scalable diagnostic 

tools in underserved areas. 

System Development: 

• Data Collection and Cleaning: Gathering radiology images and reports, 

preprocessing with tokenization and cleaning routines. 

• Model Development: Training the CNN-Transformer model for report generation 

and fine-tuning BioGPT for correction. 

• Software Integration: Developing a user interface and API for clinical use, 

enabling hospitals to access the system easily. 

Testing and Validation: 

• Unit Testing: Verifying individual components like tokenizers, decoder, and 

attention modules. 

• End-to-End Testing: Running complete inference pipelines to check output 

coherence. 
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• Clinical Validation: Collaborating with radiologists for expert evaluation of 

generated reports. 

Deployment and Maintenance: 

• Model Packaging: Exporting the trained model in .keras format and tokenizer files 

for easy integration. 

• Infrastructure: Hosting the solution on cloud platforms with secure access for 

hospitals. 

• Monitoring and Updates: Regular performance reviews and model updates based 

on user feedback. 

Material Resources 

Digital Components: 

• Pre-trained CNNs (EfficientNetB0) 

• Transformer-based decoder 

• BioGPT model weights 

• TensorFlow and PyTorch libraries 

Computational Infrastructure: 

• GPU-based servers for training 

• Cloud services for hosting APIs 

• Data storage systems for medical datasets 

 

Human Resources 

Development Team: 

• Deep Learning Engineers specialized in computer vision 

• Natural Language Processing Engineers for report generation 

• Backend Software Developers for API and system integration 

Clinical Collaboration Team: 

• Certified Radiologists for medical validation 
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• Clinical Reviewers for expert feedback 

Operational Team: 

• Site Reliability Engineers responsible for system deployment and scaling 

• API and Integration Managers 

• Technical Customer Support Personnel 

Project Management Team: 

• Artificial Intelligence Project Coordinator 

• Quality Assurance Analysts 

• Medical Artificial Intelligence Program Manager 

Financial study  

Estimated Startup Capital 

Expense Category Estimated Cost 

(USD) 

Estimated Cost (DZD) (1 USD ≈ 

140 DZD) 

Software development 

(initial) 

20,000 2,800,000 

Software licenses and API 

tools 

5,000 700,000 

Cloud infrastructure and 

servers 

10,000 1,400,000 

Dataset acquisition 3,000 420,000 

Secure data storage 2,000 280,000 

UI design and integration 5,000 700,000 

Initial user training 3,000 420,000 

Launch marketing and 

promotion 

5,000 700,000 

Technical support setup 2,000 280,000 

General operating costs 5,000 700,000 

Total Estimated Capital 60,000 8,400,000 

 

Monthly Operating Costs 

Expense Category Monthly Cost (USD) Monthly Cost (DZD) 

AI developer salaries 8,000 1,120,000 
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Clinical expert consultants 2,000 280,000 

Technical support staff 2,000 280,000 

Cloud hosting and maintenance 1,500 210,000 

NLP/API service usage 1,000 140,000 

Communication & internet 500 70,000 

Digital marketing & campaigns 1,000 140,000 

Office rent and utilities 1,000 140,000 

Total Monthly Operating Cost 17,000 2,380,000 

Three-Year Financial Projections 

Year Projected 

Revenue 

(USD) 

Projected 

Revenue 

(DZD) 

Operating 

Costs 

(USD) 

Operating 

Costs 

(DZD) 

Net 

Profit 

(USD) 

Net Profit 

(DZD) 

Year 

1 

200,000 28,000,000 204,000 28,560,000 –4,000 –560,000 

Year 

2 

300,000 42,000,000 204,000 28,560,000 96,000 13,440,000 

Year 

3 

400,000 56,000,000 204,000 28,560,000 196,000 27,440,000 

Total 

(3 

yrs) 

900,000 126,000,000 612,000 85,680,000 288,000 40,320,000 

Financial Analysis 

Aspect Details 

Initial 

Investment 

$60,000 / 8,400,000 DZD 

Profitability Break-even point expected by Year 2. Revenue increases due to 

subscription plans and low infrastructure scaling costs. 

Cost 

Optimization 

Cloud infrastructure and automation reduce operational costs. 

Efficient use of personnel and external tools keeps expenses under 

control. 

Market 

Potential 

High demand in public hospitals, academic institutions, and private 

clinics for scalable radiology automation, particularly in 

multilingual contexts. 

Subscription 

Model 

Revenue generated through tiered subscription plans (Free plan for 

3 reports, Weekly, Monthly, Yearly) tailored to different medical 

centers' needs. 

Fixed Costs (per year) 

Item Cost (USD/year) Cost (DZD/year) 

Office Rent $12,000 1,680,000 DZD 

Cloud Infrastructure (Base Plan) $12,000 1,680,000 DZD 
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Admin & General Expenses $5,000 700,000 DZD 

Software Licenses $6,000 840,000 DZD 

Total Fixed Costs $35,000 4,900,000 DZD 

Variable Costs (per report) 

Item Cost (USD/report) Cost (DZD/report) 

GPU/API Compute Usage $2.00 280 DZD 

Technical Support $1.00 140 DZD 

Token/API Calls (e.g., GPT) $0.50 70 DZD 

Total Variable Cost $3.50 490 DZD 

Depreciation Calculation 

Asset Cost 

(USD) 

Useful Life 

(Years) 

Annual 

Depreciation 

Depreciation 

(DZD) 

GPU 

Accelerator 

$20,000 5 $4,000 560,000 DZD 

Break-even Units (Reports) 

Break-even Point Value in USD Value in DZD 

Revenue $53,846 7,538,440 DZD 

Reports 5,384 5,384 

 

 

Revenue Scenarios (Yearly) 

Scenario Report

s Sold 

Revenu

e (USD) 

Revenue 

(DZD) 

Total 

Costs 

(USD) 

Total 

Costs 

(DZD) 

Net 

Profit 

(USD) 

Net 

Profit 

(DZD) 
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Pessimisti

c 

4,000 $40,000 5,600,000 

DZD 

$49,00

0 

6,860,00

0 DZD 

-

$9,000 

-

1,260,00

0 DZD 

Realistic 6,000 $60,000 8,400,000 

DZD 

$56,00

0 

7,840,00

0 DZD 

$4,000 560,000 

DZD 

Optimisti

c 

10,000 $100,00

0 

14,000,00

0 DZD 

$70,00

0 

9,800,00

0 DZD 

$30,00

0 

4,200,00

0 DZD 

Annual Provisions for Risk (5% of Revenue) 

Scenario Revenue (USD) Revenue (DZD) Provision (5%) Provision (DZD) 

Pessimistic $40,000 5,600,000 DZD $2,000 280,000 DZD 

Realistic $60,000 8,400,000 DZD $3,000 420,000 DZD 

Optimistic $100,000 14,000,000 DZD $5,000 700,000 DZD 

Summary Equations 

• Total Cost: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 + (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐶𝑜𝑠𝑡 × 𝑈𝑛𝑖𝑡𝑠 𝑆𝑜𝑙𝑑) 

• Depreciation: 

Depreciation/year=
𝐴𝑠𝑠𝑒𝑡 𝑃𝑟𝑖𝑐𝑒

𝑈𝑠𝑒𝑓𝑢𝑙 𝐿𝑖𝑓𝑒(𝑦𝑒𝑎𝑟)
 

• Break-Even Point (Units): 

Fixed Costs

Unit Price ‑ Variable Cost Per Unit
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