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Abstract

Radiological reports play an essential role in the diagnostic process, particularly for
thoracic pathologies visible on chest X-rays. The manual preparation of these reports by
radiologists is a demanding, time-consuming task that is subject to subjective variations.
The emergence of deep learning offers promising prospects for automating this task and
improving clinical productivity.

In this work, we propose an automatic radiology report generation system based on
a hybrid deep learning architecture. The system integrates a pre-trained convolutional
neural network (EfficientNetB0) for visual feature extraction, coupled with a Transformer-
based decoder for diagnostic text generation. The model is trained on the Indiana
University Chest X-ray database, after structured pre-processing of the images and text
reports. In order to improve the linguistic consistency and terminological accuracy of the
reports generated, a post-processing phase is introduced, based on the BioGPT model,
which specialises in the biomedical field. This step improves the fluidity, readability and
clinical accuracy of the reports produced.

The experimental results obtained demonstrate the effectiveness of the system. The
BLEU-4 score increased from 0.4191 (LSTM model) to 0.8286 (Transformer model with
BioGPT), while the BERTScore reached 0.9628, reflecting strong semantic similarity with
the reference reports. These performances confirm the potential of the proposed approach
to assist radiologists and improve the quality of Al-assisted diagnoses.

Keywords: Radiology report generation, encoder-decoder architecture, deep learning,
CNN-Transformer, EfficientNetB0, Transformer decoder, BioGPT, chest X-rays, natural
language processing
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Résumé

Les rapports radiologiques jouent un role essentiel dans le processus de diagnostic,
en particulier pour les pathologies thoraciques visibles sur les radiographies du thorax. La
préparation manuelle de ces rapports par les radiologues est une tache exigeante, longue et
sujette a des variations subjectives. L'émergence de l'apprentissage profond offre des
perspectives prometteuses pour automatiser cette tache et améliorer la productivité
clinique.

Dans ce travail, nous proposons un systéme de génération automatique de rapports
de radiologie basé sur une architecture hybride d'apprentissage profond. Le systéme intégre
un réseau neuronal convolutionnel pré-entrainé (EfficientNetB0) pour l'extraction des
caractéristiques visuelles, couplé a un décodeur basé sur Transformer pour la génération
de texte diagnostique. Le modele est entrainé sur la base de données de radiographie
thoracique de 1'Université de 1'Indiana, apres un prétraitement structuré des images et des
rapports textuels. Afin d'améliorer la cohérence linguistique et la précision terminologique
des rapports générés, une phase de post-traitement est introduite, basée sur le modele
BioGPT, spécialis¢ dans le domaine biomédical. Cette étape améliore la fluidité, la lisibilité
et la précision clinique des rapports produits.

Les résultats expérimentaux obtenus démontrent l'efficacité du systéme. Le score
BLEU-4 est passé¢ de 0,4191 (modele LSTM) a 0,8286 (modele Transformer avec
BioGPT), tandis que le score BERTS a atteint 0,9628, reflétant une forte similarité
sémantique avec les rapports de référence. Ces performances confirment le potentiel de
l'approche proposée pour aider les radiologues et améliorer la qualité des diagnostics
assistés par I'IA.

Mots-clés Génération de rapports radiologiques, architecture codeur-décodeur,
apprentissage profond, CNN-Transformateur, EfficientNetB0, décodeur transformateur,
BioGPT, radiographies du thorax, traitement du langage naturel.

4
Development of an Intelligent System for Automatic Medical Report
Generation



uaild\
b et A Ayl Gl peS Al Lals (aiiil) lee 8 Gl 1550 2231y i Cals

Sty sha U 5 (3 jaini 8L dage a2V (iladl U8 (g 8 03] (g sul) 2l ands  aall L) 42
Aol Al pen 5 W dagall 028 dlacy sac) g BT Gaand) alaill ) seda ji gy 313 Cl el puiad

Adaill ey | Cngll Grandl alaill Ay o aaing 3V )l sl W Ll & i (Jaadl 131 8
el as g Gaila ) el @l ad) 1 a5 (EfficientNetB0) lawe 4 )i 4add duac 4805
Indiana University 4asla <l 82el8 o 73 gaill ()2 o3| paampdill Gaill 2l il Jsaall o 4l
@l Bulil) Gauad dal ey Apaill g ) geall dadaiall Al dalleall 22y ¢ aall ) 22530
¢ BioGPTzse (o 13l calleall aey Lo dla o Ja) &8 claslis) a5 )y )&l cilallaiadll 4834
LSSy A8 5 ) il A g s Al G e 3 shaall o2 Jasi g sl ahall Jladll & (anadidl
Lol iy (Al el

0.4191 (o BLEU-4 da yo Camii )5 _aUaill 4lad Lgide Jgumnl) 23 3l Gy el il el

«BERTScore 0.9628 4> 2 <aly (s & «(BioGPT ae Jsaall z3543) 0.8286 ) (LSTM 3 54i)

i) ilad sae ludd 7 il gl U] 12V 138 S5 Lpma yall g ) e U8 UV Lol (o Laa
‘;{:ULMY\ #SAl Bac ey (i El) B3 g Cpeni g

«CNN-Transformer ¢ Gueall aladll ldlly paldall 2 ¢ daelalll el ad g dgalidall cilalsl
Ldall 23l Aallae ¢ yaall Ayl 225Y) ) sea <BioGPT «Transformer Decoder «EfficientNetB0

5
Development of an Intelligent System for Automatic Medical Report
Generation



Contents

ACKNOWIEAZEIMENLS ......eoiiiiiiiiiiieeiiee ettt e et e e st e e et e e st eeeentaeeeneeeenes 1
AADSTIACE ...ttt et sttt et et eenateeaee 3
RESUME. ..ottt et st e et e e e ieee e 4
ARl ettt b et 5
L010) 11153 1 1 O TP U TP PP P PP PP PR OTPPROP 6
LISt Of FIGUIES ....viiiiiiieeiiie ettt ettt et e et e e e tteeestbeesnneeeensaeeennsaeenns 9
LSt Of TabIES ...eeuiieiieiiie ettt ettt et 10
General INrOAUCTION. .......eiiiiiiiieiie ettt e 11
Chapter I: Image Captioning TasK...........cceeiriiiiiiiiiiiiii et 13
L. INErOAUCTION .ttt et 13

2. Natural Image Captioning...........ccueeevuvieeriieeniiieeeiiieenrteeeieeesireeeaeeeseseeesneeeenens 13

3.  Medical Image Diagnostic Captioning..........cc.eeevvereriureeeiiieeninieennieeesireeesneeeennns 15

4. Datasets for Radiology Report GEneration ............ccceeecvvveeeeeciiieeeeiiieeeeeeiiiee e 16
4.1.  Indiana University X-ray Dataset (IU-Xray):......ccccceervieniinncniienncenieennne. 16

4.2.  MIMIC-CXR Dataset COlECtion ..........coeeervueerieenieenieiieeieerieesieesee e 16

4.3. Multi-Source CXR Dataset SETI€s.........ccvvuervueerueeriienieinieeieeniee e 17

4.4, Other Datasets........c.cooueiiieiiiiiiieiieere ettt 17

S MBS . 19
5.1, Early APProaches..........coocuiiiiiiiiiiiii ettt 19

5.2, Generative APPrOACHES........ceeiviiuiiiieeeiiiieeeeeieee e et e e e erre e e e e saaeee e e enaaaee s 19

5.3, Hybrid MethodS........ooeiiiiiiiiiecee e e 20

6. Language Evaluation MEtriCS .......ccoiuiiiiiiiiiiiie et 21
6.1.  Natural Language Generation Evaluation Methods.............cccceeeviieennennnne. 21

6.2.  Clinical Efficacy (CE) ..cccovooiiiiiiiiie ettt 23

A ©70711¢] L1 1 10 FO O TR PPRUPRR 24
Chapter II: Deep Learning Overview and Literature Review ...........cccccvveeevviiiieeeencnnennn. 26
Lo INtrOAUCHION ..ottt 26

2. Deep learning MOdelS .........ccceiiriiiiiiiiiiiie et 26
2.1 Neural NetWOTKS ......cooiiiriiiiieiiierieesie et 27

6

Development of an Intelligent System for Automatic Medical Report
Generation



2.2 TTANSTOTINET .o et e e e e e e e e e e eeaeas 29

2.3, Large Language MOdEIS .........coovuiiiiiiiiiiiieeiie et 30
2.4.  Vision-Language Models (VLMS) .......coooiiiiiiiiiiiiiieeiie e 30
2.5. Beyond Transformers (Mamba, SSM) ........ccccoooiiiiiiiiiiiiie e 31
2.6, Transfer Learning .......ccccceeeecviiieeiiiiiiie et eeeeee e e e e vvee e e e seaaee e e 31

3. LIterature REVIEW ......coiiiiiiiiiiiiiiie e e 32
3.1, CNN-RNN MOEIS ....ueieiiieiieeiieiiie ettt eieeseee e ens 32
3.2, CNN-Transformer methods ..........ccceeeeriiiiiieeiiiiieeeceee e 36
3.3.  Full Transformer-based methods ...........ccccoveeriiiiiiiiiiiieeee e 38
3.4. Vision Language Multimodal (VLMS)........cccceeviiiiriieeniiieeiiee e 40
3.5. Large Language Models (LLMs) + Prompting methods ............ccccvveeennnnee. 42
3.6.  Beyond Transformers methods ...........ccccvviiieeiiiiiiieie e, 44

4. CONCIUSION. . ..tieiiiie ettt ettt e ettt e sttt e e st e e ebbeesabbeeesnbeeaens 47
Chapter IT1: CONCEPLION.......cccuvieeiiieeeiiee ettt eeiee et e e eriteeesbteeetaeeesebeeessaeesssaeesasseeesnseeeans 48
Lo INETOAUCTION c.ueiieiieee ettt ettt e 48
I O o117 2 A PRSPPI 48
3. System arChit@CTUIE .......cccocuviiiieiiiiee et e e e e e e e e e 49
3.1.  Dataset Preparation Phase............cccceviieviiiiiieniiiiiieecee e 49
3.2, Encoding Phase..........ccccuiiiiiiiiiiiiieiieeie et e 49
3.3.  Report Generation Phase...........ccccoeciiiiiiiiiiiiiiiciicce e 49

4. Data Preparation, Preprocessing, and Augmentation ...........cccceevcveevveeneennieennean. 51
4.1.  Data Loading and StruCturing ...........ccueeeviieeriireeniiiee e eeiieeeireeeiveeesneeeens 51
4.2, Text TOKENIZAtION .....cc..eiiiiiiiiiiieiieeee ettt 52
4.3, IMage PreproCeSSINE ........ueeiuiitiiiieeeiieeeiieeeeite ettt e et eeeetee e et eeeenbeeeseeeaeas 53
4.4, Data AUZMENTATION ....eeeruiiieeiiieeiiieeeiieeeriteeeeiteeeteeeeiaeeesbeeeebeeessnseeesnseeanns 53

5. Model ATChItECUIE. ... ..eiiiiiiiieiiieiieete ettt 54
5.1.  Image Encoder (EfficientNetBO) .........cccoooiiiiiiiiiiiiiiiiceee e, 55
5.2, Transformer DeCORT .......cccueiriiiiiiiiiiiiiieniceeeeeee e 58

0. POSE-PIOCESSINE. ...cccuviiieiiiieiiiieeiieeeite ettt e et e et e e et e e e abeeessbeeesnsaeeesssaeennseeeenens 60
o Inference with CNN-TransfOrmer..........occceeeiiiiiiiiiiiiiieeeeee e, 60
6.1.  Correction Using BioGPT.........cccoooiiiiiiiiiiiiiieiecee e 61

7

Development of an Intelligent System for Automatic Medical Report
Generation



T CONCIUSION. ..ot e e e e e et e e e e e e eeeeaaaeaaeeas 62

Chapter IV: Implementation and Realization .............ccoceeviiiiiiniiiniiiiiiieeieeeeeee 63
Lo INErOAUCTION .ttt ettt 63

2. Environment and ToOOIS.........c.ooiiiiiiiiiiii e 63
2.1.  Programming Language...........cccceevuvireeeiiiiireeeiiiieeeeeiitee e e evree e e e seneee e e 63

2.2.  Development ENVIFONMENt .........ccccuviieiiiiiiiieeeiiiiee e seree e e 63

2.3. Model Construction TOOIS ........ccceeiriiiiiiiiiiiiiieee e 64

2.4, Preprocessing TOOIS ... .oocuuiiiiiiiiiii e 65

2.5, Plotting TOOIS .....oiiiieiiieeiieeeiiee ettt et et e et eaa e e e ebeeeeeree e 66

2.6.  Evaluation and NLP TOOIS .......cccerriiiiiiiiiieieeieeee e 66

3. Dataset Preparation...........cccviieeeciiiiieeiiiieeeeiiieeeeeieee e e e e e e s erae e e e e e e e 66
3.1, Dataset DeSCIIPLION. ......ceeeeeiriireeeiiiiieeeriieeeeeeireeeeeerreeeeeserreeeeensaseeeeesnnes 66

3.2.  Dataset Preparation and Structuring...........ccceeeevveeeeniiiieeeesiiee e 68

3.3.  Tokenization and Vocabulary ............ccoccveeriiiiiiiiieeniie e 69

3.4. Image Preprocessing and Data Augmentation.............cceeeveveecieeenireenneeennne. 70

4. System Implementation ..........cccceccuireriiiieeiiieeiiie et eieeerieeeereeeeaaeeesereeesreee e 71
4.1, CNN ENCOET ...ttt ettt st 71

4.2, LSTM DECOMRT ....cuvieiiieiiieiie ettt ettt ettt 71

4.3, Transformer deCOAET . .........oiviiiiiiiiiiiiiiiceeceeee e 72

5. Model Training and Evaluation ..........c.cccceeeviieiriiieiiiieeiee e 73
5.1.  Training Evaluation MEtriCs: ........cccceeriiiiiriiiieiiiie et 74

6. Post-Processing Phase: Correction model training............cceeeecvereeciieeenieeencnneennne 75

7. Evaluation and MEtriCS .......coueeruiiiriiiiiieiieesie ettt e 76
7.1.  Evaluation Methodology..........cccoiiiiiiiiiiiiiiiiecee e 76

7.2, ReESUIS OVEIVIEW ....coruiiiiiiiiiiiieiiie ittt sttt 76

8. FINAl DISCUSSION ...ueiiiiiiiiiiiieiiee ettt ettt 79

9. SyStemM INtEITACE ....ccuviiiiiiiieiie e e 80
13, CONCIUSION. ..cutiiiiieiie ettt ettt ettt ettt et e b e e e 81
General conclusion and PrOSPECES........ueerrurieeriieeeiiieeiiieeeiteeeieeeerreeesraeeesteessereeeenreeans &3
L3 10) B0 ea:10] 1 | RSP PP 85
ANNEX: StArtup PrOJEC ....eiiiiiieee et 94
8

Development of an Intelligent System for Automatic Medical Report
Generation



List of Figures

Figure 1: Exemple of caption generation from image ..............ccccocceueeeeueeescuieencneeeneneann. 14
Figure 2: Example of a normal finding in radiology report from the MIMIC-CXR Dataset
........................................................................................................................................ 15
Figure 3: The transformer model architeCture. ................ccccooveuiiiioiiiniiianiiieeiie e, 29
Figure 4: Summary of the categories of radiology report generation methods ................ 32
Figure 5: Automatic Radiology Report Generation System Architecture......................... 50
Figure 6: Flipping of an image from dataset. ...............c.cccocceevueriiinieenieeniieieenieennens 54
Figure 7: Rotation of an image from dataset. ................ccoococeeeeoiiiniiianiiiaaiiieesieeeeeenn, 54
Figure 8: Rotation of an image from dataset. ..............cccocceueeeecieenceeeeiieeeniiieenerieeeiaveens 54
Figure 9: The architecture of the used EfficientNetB0 pre-trained model in our system. .57
Figure 10: The architecture of the used LSTM decoder. ...................cccoouveeeeeccuueeeenannnnn.. 58
Figure 11: The architecture of the used Transformer decoder in our system. .................. 60
Figure 12: The architecture of the full SYStem. .............ccccceevvueeviinniiiiiiniienieeeeeeeesens 61
Figure 13: Samples from the Indiana University Chest X-ray..........c.cccocceveeeevveernecnencnn. 68
Figure 14:Accuracy And Loss Graphs for LSTM Decoder Model.................................... 74
Figure 15: Accuracy And Loss Graphs For Transformer Deoder Model......................... 74
Figure 16: Home Page Of THe SYSIEM ..........cceeueeeeuiieeiiieeiieeeeiie et eiaeeeaeeseveeeeaveaens 80
Figure 17: Upload IMage Page..................cccoeveeeiiiiiiiiiiiieesieee et 81
FIGUIE 18: EXAMPIE ...ttt s 81

9

Development of an Intelligent System for Automatic Medical Report
Generation



List of Tables

Table 1: Summary Of The Available Datasets For Radiology Report Generation. .......... 19
Table 2: : Summary of Studies on Radiology Report Generation Based On CNN-RNN
MEOIROCS. ...ttt 36
Table 3: Summary of Studies on Radiology Report Generation Based On CNN-
Transformer MEINOGS. ................eeeeeuueeeeeeeiiieeeeeiee e e et e e e e aaee e e e s raee e e ssaeaeeessnsaeeeeannnees 38
Table 4: Summary of Studies on Radiology Report Generation Based On Full Transformer
MEIROGS. ...ttt sttt 40
Table 5: Summary of Studies on Radiology Report Generation Based On VLMs. ........... 42
Table 6: Summary of Studies on Radiology Report Generation Based On LLMs............. 44
Table 7: Summary of Studies on Radiology Report Generation Based On Beyond
W TR o] 1 T SRR 47
Table 8: Summary of Text preparation StEp. ...........cc.ueeeeecueeeeeeicieeeeesiieeeeeesiieeeeesnseeeens 70
Table 9: Summary of Image Preparation Step. ...............occeeceeveieineieeniinieenieeneeeeeenn, 70
Table 10: Summary of Image Encoder ArchiteCture .................coceeveveeveinceenceeenieeeneennn, 71
Table 11: Summary of Text Decoder ArcRiteCture ................ueeeeeeuveeeeeecciieeeeecieeeeeeeveeenn. 72
Table 12: Summary of the CNN-LSTM model Training hyperparameters ....................... 72
Table 13: Summary of Transformer Decoder Architecture. ..............c.ccocveeeueeeiceneninnann. 73
Table 14: Summary Of CNN-Transformer Model Training Hyperpameters..................... 73
Table 15: The MOdel MEtFiCS...........cceoeueeiieeiiieieeieeeeeee ettt 75
Table 16: Hyperparameters of the correction model ..................ccccccoevvuieniieiiiineninnn. 76
Table 17: Natural Language Generation Evaluation Metrics Values. ............................. 76
Table 18 : Exmples of generated rePOrLS ............ccccuueeeeueeeeiieeeeiieeeiieeeciieeeeeeeesveeeeieeens 78

10

Development of an Intelligent System for Automatic Medical Report
Generation



General introduction

Radiology plays a fundamental role in modern clinical diagnosis, providing vital
visual information to support medical decision-making. Among various imaging
modalities, chest X-rays are the most frequently used due to their low cost, non-invasive
nature, and diagnostic importance in detecting thoracic pathologies such as pneumonia,
cardiomegaly, tuberculosis, and pulmonary edema. However, the interpretation and
reporting of these images require significant expertise and time from radiologists, who are
often overwhelmed by the growing volume of imaging data in clinical workflows.

Despite advances in digital health, radiology reports are typically generated
manually by experts after a detailed visual analysis of X-ray images. This process is not
only labor-intensive but also susceptible to inter-observer variability and reporting
inconsistencies. In regions with limited access to trained radiologists, the quality and
timeliness of radiological assessments are further compromised. These limitations have
motivated the development of intelligent systems capable of automating the generation of
diagnostic reports directly from medical images.

Artificial intelligence (Al), particularly deep learning, has shown remarkable
progress in various medical image analysis tasks. Encoder-decoder architectures—
comprising convolutional neural networks (CNNs) for image feature extraction and
recurrent or transformer-based models for text generation—have been successfully applied
to medical image captioning. However, generating accurate and clinically coherent
radiology reports remains a challenging task due to several factors. These include the
complexity and variability of medical language, the need for domain-specific knowledge,
and the scarcity of large, high-quality annotated datasets.

In In this context, our work addresses this issue by proposing a system for
automatically generating radiological reports from chest X-rays. The approach we have
developed is based on a hybrid architecture combining a pre-trained visual encoder
(EfficientNetB0) with a Transformer-type decoder to produce diagnostic text. To improve
the linguistic quality and clinical accuracy of the reports, a post-processing module is
integrated, based on the BioGPT biomedical language model, trained to correct and refine
the texts generated.

This work is structured into four chapters, preceded by a general introduction and
followed by a general conclusion.

The first chapter is devoted to the field of thoracic radiology. It presents the basics
of medical imaging, the types of pathologies that can be detected by radiography, the
formats of clinical reports, and the databases available for training Al systems in this field.
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The second chapter introduces the foundations of artificial intelligence and deep
learning. It details convolutional neural networks, sequential decoders (LSTM,
Transformer), and biomedical language models such as BioGPT. A review of recent
approaches to generating medical reports is also presented.

The third chapter describes our methodology. It describes the proposed pipeline,
from data pre-processing to the design of the CNN-Transformer architecture, including
tokenisation, image normalisation and model input formats.

Finally, the fourth chapter deals with the practical implementation of the system,
model training, performance evaluation using metrics such as BLEU, ROUGE-L,
METEOR and BERTScore, and analysis of the results. This chapter also discusses the
limitations identified and suggests possible improvements.

12
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Chapter I: Image Captioning Task

1. Introduction

The automatic generation of descriptive text from visual content, known as image
captioning, represents a compelling interdisciplinary challenge at the intersection of
computer vision and natural language processing. Over the past decade, natural image
captioning (NIC) has achieved remarkable progress, fueled by the development of
powerful deep learning architectures and large-scale annotated datasets. However, the
extension of these techniques to the medical domain introduces unique complexities that
go far beyond those encountered in general image captioning. Medical image captioning,
particularly for diagnostic purposes, demands the generation of clinically accurate,
coherent, and contextually grounded radiology reports—tasks which require not only
visual understanding but also domain-specific biomedical reasoning. This chapter provides
a comprehensive overview of the progression from traditional NIC techniques to
contemporary radiology report generation methods. It presents a detailed survey of publicly
available medical imaging datasets, explores the evolution of model architectures from
retrieval-based systems to Transformer-based decoders, and critically examines both
generic and radiology-aware evaluation metrics designed to assess the clinical validity of
generated reports.

2. Natural Image Captioning

The automatic generation of image captions is a complex challenge at the
intersection of computer vision (CV) and natural language processing (NLP). It requires a
detailed understanding of the visual content of an image, as well as the ability to describe
its objects, attributes and relationships in a fluid human language. While natural image
captioning (NIC) uses a common vocabulary, medical image captioning (MIC) requires
specialist knowledge and biomedical terminology that is often unfamiliar to the general
public.

13
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Natural image captioning, the task of automatically generating descriptive
sentences for images, has seen significant advancements (Pan et al., 2024). Over the past
few years, a wide range of approaches have been proposed to address this challenge.

<bus, park, street>
<plane, fly, sky>

<ship, sail, sea>
] A yellow bus is parking in the sirest
<irain, move, rail>
There is a small plane flying in the sky

A TR, gece:: An old fishing ship sailing in a blue sea.

r
| /.L'-ﬁ
A -
- ? h—-‘ The train is moving on rails close o the station

Meaning Space An adverturous man ridng a bike in a forest.

Image Space Sentence Space

Figure 1: Exemple of caption generation from image (Hutchison et al., 2010)

A dominant architectural approach in image captioning is the encoder-decoder
framework. These methods commonly employ a CNN as the encoder to extract visual
features from the input image and an RNN as the decoder to generate the corresponding
textual description(Pan et al., 2024). The Show-Tell model is a foundational example of
this end-to-end neural network approach, where CNN-extracted image features are fed into
an LSTM to produce captions(Vinyals et al., 2015).

Inspired by the human visual system, numerous methods have integrated attention
mechanisms into the encoder-decoder framework. (Vinyals et al., 2015),(You et al., 2016)
and (Lu et al., 2017). These attention mechanisms enable the model to automatically focus
on the most relevant parts of the image while generating the caption(Pan et al., 2024). For
instance, Lu et al. introduced an adaptive attention model that dynamically adjusts its focus
between visual cues and the language model. (Lu et al., 2017). Similarly, (Anderson et al.,
2018)proposed a combined bottom-up and top-down attention mechanism that computes
attention at the level of objects and salient regions. Other research efforts have focused on
improving the individual components of the captioning model(Pan et al., 2024). To
enhance the image encoder, some methods explicitly model the relationships between
different visual regions using Graph Convolutional Networks (GCNs) or scene graphs. (X.
Yang et al., 2019; Yao et al., 2018). For improving the text decoder, hierarchical RNNs
have been developed for paragraph generation, and novel attention mechanisms like the X-
Linear attention block have been introduced to better utilize visual information. (Pan et al.,
2020)The Transformer model, known for its powerful representation capabilities, has also
been adopted as a replacement for RNNs in the text decoder. (Vaswani et al.,
2023)Furthermore, Reinforcement Learning techniques have been applied to directly
optimize non-differentiable captioning evaluation metrics(S. Liu et al., 2017; Pasunuru &
Bansal, 2017, 2017).
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While these advances in image annotation have been made, applying these methods
directly to medical report generation often results in reduced performance. Pan, Y. et al.
Generation of thoracic radiology reports based on multiscale feature fusion. This is
primarily due to the unique characteristics and challenges associated with generating
radiology reports.

3. Medical Image Diagnostic Captioning

The automated generation of a diagnosis from the study of one or more medical
images of a patient is known as a diagnostic legend (DC)(Pavlopoulos et al., 2021). A
medical report is nothing more than a factual, in-depth account of the important findings
from medical imaging, drawn up by a professional (Monshi et al., 2020). The generation
of these diagnostic reports is often considered to be a monotonous operation that can be
automated(Yin et al., 2019).

\

FINAL REPORT \

INDICATION: Persistent cough.

TECHNIQUE: PA and lateral chest radiographs.

COMPARISONS: ___

FINDINGS:
Thexre is no focal consolidation, pleural effusion, vascular

congestion, or pneumothorax.
There is no change from

\\\FMPRESSION: Normal chest radiographs. <l//

NG

Figure 2: Example of a normal finding in radiology report from the MIMIC-CXR
Dataset (A. E. W. Johnson et al., 2019)
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4. Datasets for Radiology Report Generation

Systems for generating radiology reports based on deep learning depend
significantly on extensive, labeled collections of medical images and their associated
textual descriptions. Presented here is a summary of the key datasets, organized into
families and extensions, along with other significant corpora.

4.1. Indiana University X-ray Dataset (IU-Xray):

The IU-Xray dataset (also called Open-i dataset), published in 2016, is among the
first and most frequently utilized public datasets for research on generating radiology
reports. It includes chest X-rays in both frontal and lateral perspectives from 3,955 patients,
yielding 7,470 images. Every image is associated with a structured report composed in
English, featuring sections like “Findings” and “Impression.” The dataset is especially
useful for training and assessing models focused on generating reports at the sentence level.
Its small dimensions and superior annotations render it a remarkable benchmark for proof-
of-concept research(Demner-Fushman et al., 2016).

4.2. MIMIC-CXR Dataset Collection

The MIMIC-CXR dataset is a large-scale, resource widely used for training and
evaluating deep learning models in radiology report generation. It contains hundreds of
thousands of chest X-ray images paired with free-text reports. Its scale, diversity, and
clinical depth make it a cornerstone for model development in this field.

4.2.1. Medical Information Mart for Intensive Care CXR (MIMIC-CXR):
MIMIC-CXR, released in 2019, is an extensive, anonymized dataset with 227,827
radiological examinations and 377,110 chest X-ray images from 65,379 individuals. It
comprises both front and side perspectives, as well as English-written free-text reports. The
dataset can be accessed under a limited access license for authorized researchers. It is

commonly utilized in both classification and report creation activities(A. E. W. Johnson et
al., 2019).

4.2.2. Medical Information Mart for Intensive Care - Annotated Biomedical
Mention(MIMIC-ABM):

An extension of MIMIC-CXR, the MIMIC-ABM (Annotated Biomedical Mention)
dataset was made available in 2020. It includes 38,551 entries labeled with biomedical
entities to assist in entity recognition and relation extraction. While the number of patients
isn't given, it aids in tasks such as medical named entity recognition (NER) and enhances
the quality of visual-semantic embeddings(Ni et al., 2020).

4.2.3. Chest ImaGenome:
Launched in 2021, Chest ImaGenome expands on MIMIC-CXR by offering
detailed image-level annotations for 242,072 frontal CXR images. These annotations
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encompass spatial entities and connections, rendering the dataset valuable for training
attention-driven and grounding models. (Wu et al., n.d.).

4.2.4. Chest X-Ray Pro (CXR-PRO):
Released in 2022, CXR-PRO is yet another limited-access extension of MIMIC-
CXR. It includes 374,139 examinations from 65,379 individuals, preserving both frontal
and lateral perspectives. It aims to minimize hallucinations by eliminating nonexistent
earlier references in reports(Ramesh et al., 2022).

4.3. Multi-Source CXR Dataset Series

The Multi-Source CXR datasets were introduced to increase the robustness and
generalizability of radiology models. By integrating images from diverse clinical settings
and temporal contexts, they enable models to better handle variability across patient
populations and institutions. These datasets are particularly valuable for longitudinal and
comparative studies.

4.3.1. Multi-Source Chest X-ray (MS-CXR)
The MS-CXR dataset, launched in 2022, is a limited collection of chest X-rays
sourced from various origin points. It consists of 1,047 frontal photographs from 851

individuals. Reports are in English and encompass diverse clinical settings(Boecking et al.,
2022).

4.3.2. Multi-Source Chest X-ray — Temporal (MS-CXR-T)
MS-CXR-T, released in 2023, builds upon MS-CXR by incorporating a temporal
aspect, comprising 1,326 frontal images from 800 different patients. It is especially

beneficial for time-related reasoning and detecting changes in radiology(Bannur et al.,
2023)..

4.4. Other Datasets

Several additional datasets complement the main collections by offering unique
features such as different imaging modalities, languages, or regional healthcare contexts.
These resources, though often smaller or restricted in access, support cross-lingual research
and broaden the applicability of automated report generation across global healthcare
systems.

e PadChest: is a restricted dataset published in 2019. It covers frontal and lateral
CXRs from 67,625 patients, with 109,931 exams and 160,868 images. It is in
Spanish (Bustos et al., 2020).

e Chinese Hospital Chest X-ray (CH-Xray): is a private dataset published in 2022,
comprising frontal CXRs from 11,049 patients. It contains 11,049 images in
Chinese (H. Zhao et al., 2021).
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e Chinese Cross-institutional Chest X-ray (CX-CXR): is a restricted dataset
published in 2018. It contains CXRs in frontal and lateral views of 33,236 patients
for a total of 45,598 images. Reports are in Chinese (F. Wang et al., 2021).

e COVID-19 CT Report Dataset (COV-CTR): is a public dataset published in
2022. It contains axial CTs of 728 patients with as many images, in English (M. Li
et al., 2023).

e Japanese Liver CT (JLiverCT): is a private dataset published in 2023. It contains
axial CTs of 1,083 patients with the same number of images. Data in Japanese
(Nishino et al., 2022).

e CT Radiology Annotated for Text and Entity Extraction(CT-RATE): is a
public dataset published in 2024. It contains axial CTs from 21,304 patients, with
25,692 examinations and 50,188 images. The reports are in English (Hamamci et

al., 2025).

Dataset Year | Patients | Images /| Views Language | Access
Exams

IU-Xray 2016 | 3,955 7,470 Frontal/Lateral | English Public

MIMIC-CXR | 2019 | 65,379 | 377,110 /| Frontal/Lateral | English Restricted
227,827

MIMIC- 2020 | — 38,551 — English Restricted

ABM reports

Chest 2021 | — 242,072 Frontal English Restricted

ImaGenome

CXR-PRO 2022 | 65,379 | 374,139 Frontal/Lateral | English Restricted

exams
MS-CXR 2022 | 851 1,047 Frontal English Restricted
MS-CXR-T | 2023 | 800 1,326 Frontal English Restricted

PadChest 2019 | 67,625 160,868 Frontal/Lateral | Spanish Restricted

CH-Xray 2022 | 11,049 | 11,049 Frontal Chinese Private

CX-CXR 2018 | 33,236 | 45,598 Frontal/Lateral | Chinese Restricted

COV-CTR 2022 | 728 728 Axial CT English Public

JLiverCT 2023 | 1,083 1,083 Axial CT Japanese | Private
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CT-RATE 2024 | 21,304 | 50,188 /| Axial CT English Public
25,692

Table 1: Summary Of The Available Datasets For Radiology Report Generation.

5. Methods

A wide range of methods have been developed for radiology report generation,
evolving from rule-based systems to modern deep learning architectures. It can be
categorized these approaches based on their design philosophy and underlying
mechanisms. The progression reflects the increasing complexity and sophistication
required for accurate clinical text generation.

5.1. Early Approaches

Early systems relied on hand-crafted rules, retrieval techniques, and template-based
generation to produce diagnostic descriptions. While limited in flexibility and scalability,
these approaches laid the groundwork for automated report generation. They remain useful
for well-structured tasks with constrained vocabularies.

5.1.1. Retrieval-based Methods
Retrieval-based methods generate an image caption based on the analysis of similar
images extracted from a database. According to established rules, the final caption

corresponds to the closest image or to a combination of the best k-captions
identified(Ayesha et al., 2021).

5.1.2. Template-based Methods
Template-based approaches use predefined structures with empty slots to be filled in,
enabling captions to be generated in a syntactically and semantically controlled way. The
method begins by detecting a set of visual descriptors. These concepts are then combined
into complete sentences using specific sentence templates or grammatical rules(Y. Yang et
al., 2011).

5.2. Generative Approaches

Generative methods leverage neural networks to learn the mapping between visual
inputs and textual outputs. Architectures such as encoder-decoder models and attention
mechanisms have enabled more expressive and context-aware report generation. These
approaches support end-to-end learning from large-scale datasets.

5.2.1. Encoder-Decoder Architectures
Encoder-decoder (ED) architectures learn to extract features end-to-end. The
encoder, often implemented as a convolutional neural network (CNN), extracts visual
features from the image, which are then used by a language model (LM) to generate
syntactically and semantically correct sentences(Sutskever et al., 2014).
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5.2.2. Compositional Architectures
Compositional approaches are based on the assembly of several functional
modules, trained separately. An image is first processed by a convolutional neural network
(CNN) to extract visual features. These representations are then used by a language model
(LM) to generate a set of candidate descriptions, which are re-evaluated and re-ranked
using a deep multimodal similarity model. The best evaluated description is selected as the
image caption(Reale-Nosei et al., 2024).

5.2.3. Attention-based Architectures
Encoder—Decoder and compositional methods generally overlook the spatial
structure of the input image, generating captions based on the image as a whole. Attention-
based approaches, however, dynamically focus on specific regions during caption
generation, allowing for a more detailed and accurate description(Reale-Nosei et al., 2024).

5.2.4. Dense image captioning
While encoder-decoder and compositional methods generate captions by
considering the image as a whole, and attention-based methods focus selectively on regions
before merging them into a single output, both approaches ultimately produce a single
overall description. This mono-captioning strategy can be subjective and insufficient to
fully capture complex scenes. Dense captioning offers an alternative by producing multiple
region-specific captions(Reale-Nosei et al., 2024).

One of the first models that implemented this idea was DenseCap, which uses a
CNN for feature extraction, a dense region suggestion layer to determine regions of
interest, and a language model (often an LSTM) to generate individual captions for each
region(J. Johnson et al., 2016).

5.3. Hybrid Methods

Hybrid approaches combine the strengths of retrieval, template, and generative
techniques to improve accuracy and adaptability. They offer a flexible framework that
balances structure with creativity, making them particularly effective for medical domains
where factual correctness is critical. These models aim to minimize errors while preserving
clinical utility.

5.3.1. Template-based and Generative Models

In the field of caption generation for medical images, a promising approach is to
combine template-based and generative methods. Given that medical reports often follow
a fixed structure, template-based approaches initially seem well-adapted for Diagnostic
Captioning (DC). However, their lack of flexibility can limit their applicability across
diverse diagnostic scenarios. To overcome this, several studies have proposed hybrid
approaches that combine the reliability of templates with the adaptability of generative
models. For example, Gill et al. showed that the generation of context-specific frontal
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images x-ray of the pelvis to detect hip fractures - a well-defined task - can be effectively
managed using only two templates. In their approach, images are coded using a dense
network and categorized as either positive or negative for fractures. For positive cases, an
LSTM with an attention mechanism fills in the appropriate fields in the predefined
template(Gale et al., 2019).

5.3.2. Retrieval-based and Generative Models
The advantages and disadvantages of retrieval-based models have been explored
extensively. Similar to hybrid template-based strategies, retrieval-based approaches can be
combined with generative models to better adapt previously generated reports to new
imaging data. This combination alleviates some of the strict limitations seen in pure

template-based approaches by offering the ability to generalize to unseen cases(Beddiar et
al., 2023).

Furthermore, some studies have proposed using Reinforcement Learning (RL) to
dynamically decide whether to reuse an existing report or create a new one from scratch(C.
Y. Lietal, 2018; Xiong et al., 2019).

6. Language Evaluation Metrics

Human evaluations of machine translation are extensive but costly. They can take
months to complete and involve human labor that cannot be reused. For this reason, the
researchers have created the language evaluation metrics to assess the generated text which
are simple to use and faster.

6.1. Natural Language Generation Evaluation Methods

To assess the quality of generated reports, researchers have adopted a variety of
automatic evaluation metrics from natural language generation. These include n-gram
overlap measures like BLEU and METEOR, as well as embedding-based scores such as
BERTScore. Each metric offers different insights into linguistic quality and semantic
fidelity.

6.1.1. Bilingual Evaluation Understudy (BLEU)

BLEU is a metric that evaluates the quality of the generated text by measuring the
n-gram overlap between candidate and reference sentences, without the need for precise
positional alignment. To discourage very short outputs, this metric includes a brevity
penalty (BP) that penalizes captions that are shorter than the reference. A BLEU scores
closer to 1 indicates better performance. BLEU-n is commonly used to specify the number
of words considered in an n-gram comparison(Papineni et al., 2001).

The standard formula for the BLEU score for a corpus is :
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N
BLEU = BP X exp (Z wy, log pn>
n=1

With

e p, is the modified accuracy of the n-grams (with saturation according to
maximum occurrences)

e w, is the weight of each n-gram (classically w,, = %, with N = 4)

e BP is the brevity penalty, calculated as follows:

1 ifc>r
= r
Bp exp (1 — E) else

e c the total length (in words) of the generated output
e r the length of the nearest reference.

6.1.2. Metric for Evaluation of Translation with Explicit Ordering (METEOR)

METEOR is a metric developed to evaluate the correlation between automatically
generated captions and those produced by humans, at the sentence level. It extends BLEU-
1 by introducing the harmonic mean between precision and recall, called the Ff score, with
a recall-oriented weighting. The Ff score is a generalization of the F1 score, in which the
B parameter allows recall to be prioritized. When no n-grams correspond between the
model output and the human reference, the METEOR score can be reduced by up to 50%.
In machine translation, a score higher than 0.6 is often interpreted as surpassing human
performance, as two humans generally do not produce a perfect match. On the other hand,
a BLUE score close to 1 is often considered unrealistic and may indicate that the model
has been overlearned(Banerjee & Lavie, 2005).

The global formula is :

is the weighted harmonic mean of precision (P) and recall (R):

P-R

Finean=0P+ 1—0R

In the original version 0=0.9
ch
— — B
Penalty y(m)
with typical values : y=0.5, =3.
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6.1.3. Recall Oriented Understudy for Gisting Evaluation (ROUGE)

ROUGE 1is a metric initially developed to assess the quality of automatic
summaries, by measuring the n-gram overlap between the generated summary and a human
reference. It is also used in tasks such as image caption generation to compare the
descriptions produced with references(Lin, 2004).

number of matched n-grams between candidate and reference

ROUGE-N =

total number of n-grams in the reference

6.1.4. Consensus-based Image Description Evaluation (CIDEr)

CIDEr (Consensus-based Image Description Evaluation) has been specifically
designed to evaluate image descriptions. It measures the cosine similarity between the
weighted TF-IDF representations of the n-grams of the generated and reference
captions(Vedantam et al., 2015).

6.1.5. BERTScore
BERTScore is an automatic evaluation metric for text generation, based on
contextual representations of pre-trained language models. It measures token-level
similarity between a generated output and a reference, using cosine similarity in the
embedding space. According to its authors, BERTScore correlates better with human
judgments and improves performance in model selection compared with conventional n-
gram-based metrics.(Zhang et al., 2020)

6.2. Clinical Efficacy (CE)

Standard Natural Language Generation (NLG) evaluation metrics are designed to
assess fluency and coherence in human-like texts. However, in radiology, reports often
contain specialised medical terminology, making these general-purpose metrics not
enough. As a result, researchers have developed domain-specific evaluation methods that
better capture clinical accuracy and relevance.

6.2.1. Radiology-Aware Model-Based Evaluation Metric for Report Generation

This metric is an adaptation of the COMET framework, originally designed for
evaluating machine translation, applied here to the field of radiology. It uses pre-trained
language models to independently encode the reference report (source) and the generated
report (hypothesis), and then computes combined features from their semantic
representations. These features are then processed by a regressor trained to predict a quality
score by minimising the mean square error (MSE). This approach enables the quality of
the reports generated to be assessed without the need for an explicit reference(Calamida et
al., 2023).

6.2.2. MRScore
MRScore is a radiology-aware rating metric that combines GPT-4 with a fine-tuned
Large Language Model (LLM) to assess the quality of generated radiology reports. GPT-
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4 is used to rate reports based on clinically-informed parameters and functions as a human
judgement proxy. These scores are used to train a reward model - built on the Mistral-7B-
Instruct LLM and fine-tuned using Reinforcement Learning with Human Feedback
(RLHF) - which learns to replicate GPT-4's preferences, providing efficient and human-
aligned scores at inference time(Y. Liu et al., 2024).

6.2.3. RaTEScore

RaTEScore is a radiology-specific similarity metric that evaluates report quality by
comparing extracted medical entities between a reference and a candidate report. It
comprises three modules: medical named entity recognition (NER), synonym-aware
embedding, and an affinity-based scoring function. While the scoring does not directly use
large language models, GPT-4 was used during the creation of the RaTE-NER dataset —
a large-scale, manually annotated corpus — to enrich the training data with nuanced and
rare radiological conditions. This indirect use of GPT-4 helped improve the quality and
coverage of the NER model used in RaTEScore's evaluation pipeline (W. Zhao et al., 2024)

6.2.4. GREEN: Generative Radiology Report Evaluation and Error Notation
GREEN is a comprehensive evaluation framework for radiology report generation
that leverages large language models to detect, classify, and explain clinically significant
and insignificant errors across six categories.

e False Finding (Hallucination): Reporting findings not present in the reference
report.

e Missing Finding (Omission): Omitting clinically relevant findings present in the
reference.

e Incorrect Location: Describing findings in the wrong anatomical location.

e Incorrect Severity: Misstating the clinical severity of a condition.

e Incorrect Size: Reporting an inaccurate size for a finding.

e Incorrect Comparison: Misrepresenting temporal changes, such as stability or
progression.

It outputs both a numerical score — reflecting the accuracy and clinical relevance
of a generated report — and a textual summary that highlights specific error types using
clustering-based techniques(Ostmeier et al., 2024).

7. Conclusion

The task of radiology report generation stands at the frontier of medical artificial
intelligence, demanding a synthesis of visual comprehension, linguistic fluency, and
clinical precision. This chapter has outlined the conceptual and technical evolution of
image captioning, tracing its adaptation from natural to medical contexts. It has shown that
while traditional encoder-decoder frameworks and attention mechanisms provide a
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foundational basis, the specialized nature of medical reporting necessitates innovations in
both dataset curation and model design. Moreover, the emergence of domain-specific
evaluation metrics underscores the inadequacy of generic language metrics in assessing
diagnostic accuracy. As models become more complex and datasets increasingly diverse,
the focus is shifting toward ensuring factual correctness, minimizing hallucinations, and
aligning machine-generated reports with clinical expectations. Looking forward, the
integration of multimodal reasoning, reinforcement learning, and large-scale foundation
models holds promise for achieving clinically trustworthy radiology report generation.
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Chapter II: Deep Learning
Overview and Literature Review

1. Introduction

The rapid evolution of artificial intelligence has positioned deep learning as a
foundational paradigm for automating complex cognitive tasks, including those in medical
image interpretation and report generation. This chapter provides a comprehensive
overview of deep learning models and their relevance to the field of radiology. It begins
with fundamental concepts of neural networks, detailing convolutional and recurrent
architectures, before progressing to recent innovations such as Transformers, Vision-
Language Models (VLMs), and emerging alternatives like Mamba and State-Space Models
(SSMs). The chapter also introduces essential techniques like transfer learning and large
language models, which have significantly enhanced performance across vision and
language domains. In its final sections, a thorough literature review is presented,
highlighting the diverse modeling strategies employed in recent research to automate
diagnostic captioning and clinical reporting. This foundational overview sets the stage for
the development and justification of the proposed system in subsequent chapters.

2. Deep learning models

Machine learning is a branch of artificial intelligence that allows computers to learn
from data and make forecasts without being specifically coded. Through the examination
of data patterns, machine learning algorithms create models that evolve and enhance
through experience, rendering them well-suited for tasks that require handling dynamic or
intricate datasets. Essential methods encompass supervised, unsupervised, semi-
supervised, and reinforcement learning, along with deep learning, transfer learning, and
ensemble approaches. These methods are commonly employed in various sectors—from
healthcare and finance to transportation and customer support—to improve decision-
making, automate processes, identify anomalies, and tailor user experiences. The process
of machine learning includes gathering data, training models, and assessing performance,
backed by platforms that provide scalable computing capabilities and strong development
tools(Azure Microsoft, 2025).

Deep learning is a branch of machine learning that employs multi-layer neural
networks to gain insights from vast amounts of unstructured data like images, text, and
sound. It allows machines to autonomously identify features and make choices without
direct coding. Drawing inspiration from the human brain, deep learning models analyze
data via layers of connected nodes to recognize patterns and produce predictions. Deep
learning, underpinned by frameworks like TensorFlow and PyTorch, finds extensive
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application in areas such as self-driving cars, healthcare diagnostics, and processing natural
language. Its effectiveness is fueled by enhanced computational capabilities, extensive
datasets, and adaptable model structures(Azure, 2025b).

2.1. Neural Networks

A neural network is a kind of machine learning model that mimics the operations of
the human brain. It consists of layers of artificial neurons that are linked together, featuring
an input layer, several hidden layers, and an output layer. Every neuron evaluates inputs
according to designated weights and a threshold; when the output surpasses this threshold,
the signal moves to the subsequent layer. Neural networks adapt based on training data,
constantly refining their internal parameters to enhance performance. After training, they
can swiftly execute intricate tasks like image classification and speech recognition with
great precision. Referred to as Artificial Neural Networks (ANNs), these frameworks are
essential to deep learning systems and are pivotal in contemporary Al applications, such as
technologies like Google's search engine (IBM, 2025¢).

2.1.1. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a type of deep neural network highly
proficient in analyzing visual data, including tasks like image classification, object
detection, and recognition. In contrast to conventional neural networks, CNNs are
structured to analyze and learn from spatial hierarchies in data through the use of three
fundamental layers: convolutional layers, pooling layers, and fully connected layers.

e Convolutional layer serves as the basic component, using trainable filters (kernels)
that move across the input data to execute dot products, resulting in feature maps
that identify patterns such as edges or textures. These filters utilize parameter
sharing and connection sparsity, significantly lowering computational complexity.

e Pooling layers, usually max or average pooling, come after convolutional layers to
downsample feature maps, minimizing dimensionality while maintaining important
features, aiding in enhancing generalization and reducing overfitting.

e Fully connected layers integrate the extracted features and execute the final
classification through activation functions such as softmax.

CNNs have a hierarchical structure: initial layers detect basic forms (such as lines,
edges), whereas later layers identify intricate patterns (like faces, organs). This architecture
enables CNNs to substitute manual feature extraction with learning from start to finish.
CNNs have become the standard in computer vision and medical imaging tasks due to their
scalability and performance(IBM, 2025a).

As an advancement of the convolutional neural network architecture, numerous
architectures have arisen to boost and refine the performance of convolutional neural
networks. These architectures are trained on millions of images like ImageNet, allowing
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them to conserve resources and time while being applicable in various areas. Such as
EfficientNet.

e [EfficientNet

EfficientNet is a collection of convolutional neural networks aimed at maximizing
accuracy and efficiency by consistently scaling model depth, width, and input resolution
through a compound scaling approach. Developed by Google researchers, EfficientNet
offers improved performance while utilizing fewer parameters and requiring less
computation than conventional CNNs. The foundational model is identified via neural
architecture search, and larger versions (such as EfficientNet-B0) expand upon it while
ensuring balanced scaling. EfficientNet is commonly utilized in image classification and
transfer learning because of its excellent accuracy, minimal memory usage, and rapid
inference speed(Tan & Le, 2020).

2.1.2. Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is a deep learning architecture specifically aimed at
processing sequential data or time series inputs, where the sequence of data points holds
significant contextual value. In contrast to typical feedforward networks, RNNs possess
internal memory through loops that enable information to carry over across time steps. This
makes them ideal for tasks like language modeling, speech recognition, machine
translation, sentiment analysis, and forecasting time series. An RNN can forecast upcoming
flood levels by examining historical flood data and meteorological information, or create
text descriptions for images by understanding patterns in word sequences. Although
traditional RNNs are beneficial, they can have difficulties with long-term dependencies
because of problems such as vanishing gradients, which more sophisticated versions like
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) aim to address(IBM,
2025d).

® Long Short-Term Memory (LSTM)

A Long Short-Term Memory (LSTM) network is a specific kind of Recurrent Neural
Network (RNN) created to more effectively capture long-term dependencies in sequential
information. It resolves the gradient vanishing and exploding issues typical in traditional
RNNs with a distinctive memory cell design that can maintain information over extended
periods. This architecture features gates—input, forget, and output gates—that manage the
information flow, enabling the model to determine what to retain, modify, or eliminate at
each moment. Due to these abilities, LSTMs excel in tasks such as language modeling,
speech recognition, machine translation, handwriting generation, and sequence prediction.
LSTM's power comes from its capability to retain context over numerous steps, which
makes it especially effective for intricate patterns in time-related data like text, audio, or
video(NVIDIA, 2025a).
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2.2. Transformer

The Transformer is a deep learning framework launched in 2017 that transformed
natural language processing by removing recurrence in favor of self-attention techniques.
Its encoder-decoder architecture facilitates the simultaneous processing of sequences,
permitting the model to focus on every aspect of the input at once. This design enhances
computational efficiency and more effectively captures long-range dependencies compared
to conventional RNNs. The Transformer acts as the basis for numerous sophisticated
models, such as BERT and GPT, by facilitating strong sequence comprehension and
generation abilities(Vaswani et al., 2023).
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Figure 3: The transformer model architecture(Vaswani et al., 2023)..

e GPT

Generative Pretrained Transformers (GPTs) represent a series of extensive language
models created by OpenAl, based on the transformer framework and fine-tuned for
producing natural language. Since the launch of GPT-1 in 2018, the models have developed
into robust, multimodal systems such as GPT-40, which can process and create text,
images, and audio. Trained on extensive datasets and optimized for particular tasks, GPT
drives numerous Al applications such as chatbots, code creation, and data examination.
These models can be accessed via APIs, allowing integration into various tools and services
across different sectors (IBM, 2025g).
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e BERT

BERT (Bidirectional Encoder Representations from Transformers) is a model for
language representation that employs deep bidirectional Transformers to pre-train on
extensive collections of unlabeled text. In contrast to previous models, BERT utilizes a
masked language modeling objective and a next sentence prediction task to capture context
from both sides, allowing for a deeper comprehension of language. It can be adapted with
slight modifications to handle various NLP tasks like question answering, sentiment
analysis, and natural language inference. BERT achieved new state-of-the-art performance
on various benchmarks, showcasing the effectiveness of bidirectional pre-training for
natural language understanding(Devlin et al., 2019).

e Vision Transformer (ViT)

Vision Transformers (ViTs) represent an innovative method for image recognition that
utilizes the Transformer architecture on sequences of image patches, removing the
requirement for convolutional layers. In ViT, an image is split into patches of fixed size,
with each patch being linearly embedded and integrated with positional information, and
the resulting sequence is input into a conventional Transformer encoder. A unique
classification token is employed to generate predictions. In contrast to CNNs, ViTs do not
rely on image-specific inductive biases such as translation invariance and locality;
however, when trained on extensive datasets, they attain cutting-edge results in image
classification. This renders ViTs a scalable and effective substitute for conventional
convolutional networks, particularly in data-abundant situations(Dosovitskiy et al., 2021).

2.3. Large Language Models

Large Language Models (LLMs) are robust Al systems developed on extensive datasets
to comprehend, produce, and engage in natural language. Based on transformer
architectures, LLMs are capable of carrying out various tasks like responding to inquiries,
summarizing texts, translating languages, coding, and producing coherent content. In
contrast to traditional models designed for particular tasks, LLMs are versatile and
applicable across various areas, positioning them at the heart of the current generative Al
movement. Notable instances comprise OpenAl's GPT series, Google's BERT and PalLM,
Meta's LLaMA, and IBM's Granite models. By understanding intricate language patterns
with billions of parameters, LLMs are transforming areas ranging from customer service
to research and content generation (IBM, 2025b).

2.4. Vision-Language Models (VLMs)

Vision-language models (VLMs) are sophisticated multimodal AI systems that
integrate computer vision and natural language processing to comprehend and produce text
based on visual information. They comprise two primary elements: a vision encoder—
typically utilizing Vision Transformers (ViTs)—that converts visual information into
embeddings, and a language encoder, generally employing transformer models such as
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BERT or GPT, to manage textual data. VLMs facilitate tasks like image captioning, visual
question answering, and object recognition by understanding the intricate connections
between images and language through learning (IBM, 2025f).

2.5. Beyond Transformers (Mamba, SSM)

The prevalence of transformers in deep learning has initiated a quest for architectures
that provide enhanced efficiency and scalability. Options investigate linear attention,
recursion, and convolution, frequently blending features to maintain expressiveness while
lessening computational demand. These architectures after transformers seek to overcome
constraints such as memory bottlenecks and inefficiencies in handling long
sequences(Schneider, 2024).

e State-Space Models (SSMs)

State-space models represent a category of sequence modeling frameworks that
describe hidden states changing over time based on learned dynamic systems. In contrast
to transformers that depend on global self-attention, SSMs capture temporal dependencies
via continuous or discretized updates, facilitating efficient linear-time processing for
extremely long sequences. Their framework, grounded in control theory, provides robust
inductive biases, rendering them highly effective for tasks that involve intricate temporal
patterns like speech, genomics, and long-context language modeling(Schneider, 2024).

e Mamba

Mamba is a modern neural architecture that enhances the state-space model framework
by integrating a selective scanning mechanism that dynamically determines which input
data to prioritize in sequence processing. This design enables Mamba to attain competitive
accuracy on benchmark tasks while preserving the linear-time complexity typical of SSMs.
By closing the performance-efficiency divide with transformers, Mamba shows that
structured sequence models can provide both computational benefits and substantial
representational capability(Gu & Dao, 2024).

2.6. Transfer Learning

Transfer learning is a machine learning technique where knowledge gained from one
task or dataset is reused to improve performance on a related task. It is especially valuable
in deep learning, where training models from scratch can be costly and require vast
amounts of labeled data. By starting with a pre-trained model, transfer learning reduces
training time, enhances generalization, and performs well even with limited data. However,
it works best when the source and target tasks are similar; otherwise, it risks negative
transfer, which can degrade model performance. Proper task alignment is therefore key to
its success (IBM, 2025e).
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3. Literature Review

The development of automated radiology report generation has been supported by a
growing body of research exploring deep learning techniques. This section reviews prior
work, emphasizing the models and strategies proposed to bridge visual and textual
modalities. Highlighting key advancements, it helps identify existing challenges and
inform future improvements.

CNN-RNN Models
CNN-Transformer Models

. . Full Transformer Models
Automatic radiology

report system methods
Beyond Transformer Models

Large Language Models

Vision Language Models

Figure 4: Summary of the categories of radiology report generation methods

3.1. CNN-RNN Models
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
have established themselves as essential components in generating automated radiology
reports, allowing intricate medical images to be converted into organized natural language

(Sirshar et al., 2022) utilizes the CNN-RNN approach, particularly integrating
convolutional neural networks (CNNs) for image encoding with recurrent neural networks
(RNNs), implemented here with LSTM units, for generating text. The authors suggest a
comprehensive model for generating automated radiology reports, incorporating an
attention mechanism within a CNN-LSTM framework. The encoder section employs
VGG-16 to derive features from chest X-ray (CXR) images, transforming them into
compact vector representations. These visual embeddings are subsequently fed into an
LSTM-based decoder that produces textual medical reports one word at a time. A
significant improvement in this model is the attention mechanism, which actively directs
the decoder's focus to particular areas of the image while generating the report. This reflects
how a radiologist would highlight pathological areas when reporting observations. The
model underwent training utilizing two datasets: the [lU X-Ray from Indiana University
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and MIMIC-CXR. The training was carried out on Google Colab utilizing an NVIDIA
Tesla K80 GPU. Assessment was conducted using standard metrics for image captioning.
The system reached BLEU-1 to BLEU-4 scores of 0.580, 0.342, 0.263, and 0.155
respectively on the IU X-Ray dataset, indicating the attention layer's role in generating
more semantically aligned and coherent results. Still, constraints remain. The LSTM
element has difficulty processing lengthy and intricate sequences, frequently resulting in a
loss of contextual coherence among report sentences. Although VGG-16 has demonstrated
effectiveness, it may not possess the same level of expressive capability as newer CNN
architectures such as ResNet or EfficientNet. Additionally, the model does not possess
clear mechanisms for modeling coherence at the paragraph level, which could lead to
reports that are syntactically accurate yet clinically fragmented. Ultimately, the scale of the
dataset was restricted, and larger, more varied training datasets could improve performance
even more. Notwithstanding these constraints, the method represents a significant
contribution to vision-language modeling within radiology.

(X. Wang et al., 2018) creates a new model TieNet (Text-Image Embedding
Network), another method that built on a CNN-RNN paradigm, enhances this architecture
by integrating visual and textual data streams within a single framework. The approach
integrates convolutional neural networks for extracting spatial features at the image level
with recurrent neural networks to capture semantic information from unstructured
radiology reports. Its originality stems from the incorporation of multi-level attention
mechanisms that improve the interpretability and efficiency of disease classification and
report generation tasks. The architecture is trained on matched image-text datasets,
utilizing radiology reports not only as output targets but also as a type of guidance. The
model carries out two complementary functions: creating detailed reports and executing
multi-label classification for thoracic conditions. While training, gradients from the two
tasks affect shared parameters, allowing the model to better align visual attributes with text
meanings. Experiments were performed on the extensive ChestX-rayl4 dataset and
enhanced by Openl’s radiology dataset. TieNet showcased impressive performance,
reaching an average AUC above 0.9 in disease classification and surpassing baseline
metrics in report generation with a BLEU-1 of 0.2860, BLEU-4 of 0.0736, METEOR of
0.1076, and ROUGE-L of 0.2263. These metrics validate the model’s ability to produce
medically pertinent and linguistically smooth results. Regardless of its advantages, TieNet
shows specific limitations. The model has difficulty with intricate linguistic elements like
negation, hedging, and uncertainty—characteristics often present in clinical narratives.
Furthermore, although the multi-level attention enhances alignment, it does not provide
detailed reasoning regarding pathological concepts, which restricts its capacity to
differentiate nuanced disease variants. These concerns indicate future paths, like
integrating graph-based or transformer-based elements for enhanced structured reasoning.
Nonetheless, TieNet distinguishes itself as a scalable, multi-task system for extracting
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knowledge from real-world PACS data and progressing toward semi-automated
radiological analysis.

The study of (Jing et al.,, 2018) also follows the CNN-RNN framework but
introduces a hierarchical LSTM model refined through co-attention. In contrast to
conventional captioning systems that produce brief phrases, this research addresses the
more challenging aim of creating comprehensive medical reports featuring a coherent
layout and detailed content, closely resembling narratives penned by radiologists. The
suggested architecture integrates visual and semantic attention methods and presents a two-
phase report generation approach to harmonize content organization and sentence-level
coherence. At the heart of the model is a multi-task framework: it concurrently forecasts
medical keywords (tags) and produces descriptive paragraphs. A co-attention mechanism
that integrates visual and semantic information allows the model to concentrate on
pertinent areas of the image and related medical terminology. The hierarchical LSTM
initially chooses a topic at the sentence level (“what to convey”) and then constructs the
sentence word by word (“how to articulate it”), thus enhancing logical coherence
throughout the document. The model underwent training and evaluation using two datasets:
IU X-Ray (radiology reports) and PEIR Gross (descriptions of pathological images). In
both datasets, the system consistently surpassed traditional CNN-RNN and visual attention
baselines on BLEU, METEOR, ROUGE, and CIDEr metrics. Qualitative assessment
additionally indicated that the produced reports demonstrated a strong level of clinical
significance and stylistic resemblance to texts written by humans. However, the method
does have its limitations. It relies significantly on the correctness of anticipated tags;
mistakes at this point can propagate and diminish the quality of the overall report.
Moreover, the system's resilience weakens when faced with noisy or low-quality images,
potentially interfering with both attention alignment and content organization. Finally, the
architecture might gain from better modeling of inter-sentence relationships to boost
narrative coherence. This research represents a major progress in structured report creation
by incorporating document-level modeling into medical image description.

(Moradi et al., 2018)’s work is related to the CNN-RNN family but emphasizes
multimodal localization instead of immediate report creation. The authors explore
techniques for automatically generating visual annotations (region of interest — ROI) on
chest X-ray images by utilizing data from existing free-text reports. This study tackles a
major limitation in medical Al: the lack of extensive, manually labeled datasets for
supervised training. Two designs are suggested. The initial model is a complete CNN-
LSTM framework, which extracts image features and combines them with LSTM-
generated textual embeddings to forecast polygonal ROIs. The second is a modular
pipeline: DenseNet, trained on ChestX-rayl4, extracts visual features; Doc2Vec obtains
textual semantics; and both vectors are input into a multi-layer perceptron for coordinate
regression. The objective is to forecast polygonal bounding boxes that emphasize
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irregularities described in the related reports. The two architectures were assessed using a
dataset of 494 chest X-rays that radiologists had manually annotated. The modular
approach surpassed the end-to-end model, attaining a Dice coefficient of 61% (compared
to 46%) and decreasing centroid error to 5.1% of image width (versus 7.2%). These
findings emphasize the significance of independent processing and reveal the essential
function of semantic information derived from text inputs. Nonetheless, the approach
encounters distinct constraints. The ROIs are represented as basic quadrilaterals, limiting
the system’s capacity to capture atypical lesion forms. The pipeline assumes that every
image displays one abnormality, which restricts its use in complicated, multi-disease
situations. Future efforts might investigate more detailed segmentation results (e.g., masks)
and implement transformer-based language encoders to enhance semantic grounding. Still,
the method provides a viable route for utilizing current clinical reports to create useful
annotation datasets with little human involvement.
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Table 2: : Summary of Studies on Radiology Report Generation Based On CNN-RNN
Methods.

3.2. CNN-Transformer methods

Situated within the CNN-Transformer framework, (Aksoy et al., 2023)’s study
improves report generation by integrating contextual, non-visual data into the modeling
approach. Aksoy et al. suggest a multimodal Transformer architecture integrating visual
characteristics obtained from chest X-rays with organized patient demographic information
like age, gender, and ethnicity. The visual element is obtained via an EfficientNet encoder,
while demographic characteristics are integrated into semantic vectors. These two
modalities are subsequently processed together by a Transformer encoder-decoder to
produce radiology reports informed by context. The main innovation consists of integrating
demographic characteristics with visual data, recognizing that radiologists typically take
this context into account during actual diagnostic processes. The model underwent training
and evaluation using the MIMIC-CXR and MIMIC-IV datasets, assessing various
configurations: image-only input, image along with one demographic variable, and image
together with multiple demographics. The findings indicated that adding ethnicity by itself
resulted in the most significant enhancement in BLEU and BERTScore. Nonetheless,
merging various demographics (such as gender and ethnicity) did not uniformly improve
performance, likely because of data imbalance or redundancy in features. Although
incorporating contextual metadata signifies progress in personalizing automated diagnosis,
the model encounters multiple obstacles. At times, it generates redundant text or fabricates
results, especially regarding uncommon conditions. Moreover, the visible effect of
ethnicity on performance brings crucial issues regarding fairness and bias within medical
Al systems. These problems highlight the necessity of thoroughly assessing demographic
factors regarding their predictive advantages and ethical considerations. The study shows
that generating reports based on individual patient context can enhance output quality and
sets the stage for more refined, patient-centered report creation in future research.

Another research of (Z. Wang et al., 2023a) marks a progression in CNN-
Transformer techniques, tackling the limitations of “single-expert” attention frameworks
employed in automated radiology report creation. The METransformer framework presents
an innovative idea of “multi-expert joint diagnosis,” mimicking cooperative decision-
making by combining various trainable expert tokens in the Transformer encoder and
decoder. Every token is crafted to focus on distinct spatial areas of the image, directed by
an orthogonal loss that promotes variety and complementarity among expert
representations. While decoding, cross-attention mechanisms enable the expertise of each
individual to affect the text generation process, using a metric-based voting system to
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determine the final output. The model was assessed utilizing the [U-Xray and MIMIC-
CXR datasets. In comparison to traditional Transformer and CNN-RNN baselines,
METransformer showed better performance on standard metrics for natural language
generation, such as BLEU, ROUGE, and CIDEr. These findings confirm that well-
coordinated ensemble-style attention can result in the generation of reports that are more
accurate and clinically significant. Although it has its advantages, the model shows some
weaknesses. The design lacks domain-specific medical expertise, like structured ontologies
or diagnostic guidelines, that could improve the clinical clarity and factual precision of the
produced reports. Moreover, the complexity brought on by several expert pathways
escalates the model’s computational expenses and training demands. Although
METransformer highlights the advantages of collaborative reasoning in a Transformer
setting, its dependence only on visual cues presents opportunities for enhancement by
incorporating external medical knowledge. However, it establishes a hopeful standard for
utilizing diversity in focus to more accurately replicate expert-level diagnostic methods.

Within the domain of CNN-Transformer models,(Quigley et al., 2025) create a new
model named RadTex which brings a transition from contrastive learning to a generative
approach that is more effective in grasping the intricate semantics of radiology.
Conventional medical vision-language pretraining (MVLP) techniques such as ConVIRT
and GLoRIA employ contrastive objectives to synchronously align image and text features
at global or local levels. Nonetheless, these techniques frequently face challenges in
achieving the detailed, sentence-level alignment needed for producing coherent radiology
reports. To address this, RadTex utilizes a bidirectional captioning-focused pretraining
method that prioritizes language modeling rather than image-text contrast. RadTex
includes a convolutional encoder to extract image features and a Transformer decoder to
produce reports. The model is trained using matched chest X-ray images alongside their
related radiology reports. It employs next-token prediction bidirectionally to create deeper
semantic connections between image areas and text descriptions. This design enables the
model to generate interpretable and clinically significant reports, even when trained on
minimal data. Even with a smaller CNN encoder and a limited training dataset, RadTex
attains impressive results: a CheXpert macro-AUC of 89.4% and a macro-F1 score of 0.349
in generating reports. Its design is streamlined enough for single GPU deployment, and its
adaptability to prompting techniques enables fine-tuning for various clinical situations.
Nonetheless, constraints remain. The model's effectiveness is limited by the breadth and
variety of its pretraining data. It also does not include clear integration of structured clinical
knowledge, which could enhance both interpretability and factual accuracy. In addition,
although encouraging, depending on generative techniques necessitates cautious
management to prevent hallucinations or excessive confidence. Nonetheless, RadTex
signifies a notable advancement in MVLP, demonstrating how generative captioning can
outshine contrastive pretraining in radiology use cases.
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Table 3: Summary of Studies on Radiology Report Generation Based On CNN-
Transformer Methods.

3.3. Full Transformer-based methods

(Agarwal & Verma, 2025)’s research illustrates a comprehensive
Transformer-based method by combining a Vision Transformer (ViT) encoder with a GPT-
4 language decoder to produce intricate and context-sensitive radiology reports. The
suggested framework, CrossViT-GPT4, substitutes conventional convolutional and
recurrent components with a transformer-exclusive architecture that can identify spatial
patterns and generate linguistically detailed descriptions. The ViT encoder transforms
chest X-rays into embeddings at the patch level, maintaining spatial and positional context.
A cross-modal attention mechanism subsequently associates these image representations
with pertinent medical terminology, enabling the GPT-4 decoder to produce fluent and
clinically cohesive narratives. The Indiana University (IU) and NIH Chest X-ray datasets
were used for training and evaluating the model. CrossViT-GPT4 delivered exceptional
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outcomes: it recorded a BLEU-1 of 0.854, CIDEr of 0.883, METEOR of 0.759, and
ROUGE-L of 0.712 on the IU dataset. In the NIH dataset, it achieved BLEU scores
reaching 0.825 and a CIDEr score of 0.857. These findings highlight its enhanced
capability compared to conventional CNN-RNN and hierarchical LSTM models,
especially in preserving long-range cohesion and merging visual semantics with text
output. Although it has strengths, the model encounters various challenges. Dependence
on extensive computation results in high costs for training and inference, complicating
deployment in resource-limited settings. Moreover, the lack of annotated data for radiology
reports restricts its reliability across various clinical situations. The model demonstrates
lower performance when encountering noisy or low-quality inputs. However, by
leveraging the language comprehension of GPT-4 and the spatial accuracy of ViTs,
CrossViT-GPT4 represents a notable progression in transformer-oriented medical imaging
technologies and sets the stage for more in-depth, automated diagnostic instruments.

Set within the complete Transformer-based category, (Shisu et al., 2024) presents
a new vision-language framework that combines the advantages of Vision Transformers
(ViTs) with an evolutionary algorithm (EA)-influenced design to enhance medical image
classification named EATFormer. The motivation arises from the constraints of human-
driven diagnostics and conventional CNN systems, which frequently lack consistency and
do not effectively grasp global image context. The architecture of EATFormer improves
feature extraction by integrating several specialized modules within a hierarchical
transformer structure. The architecture features a tailored transformer block termed the
Enhanced EA-based Transformer (EAT), which incorporates several essential elements:
the Multi-Scale Region Aggregation (MSRA) module for combining features across
varying scales; the Global and Local Interaction (GLI) module to improve attention with
spatial accuracy; and the Modulated Deformable Multi-Scale Attention (MD-MSA)
mechanism to flexibly adjust to irregularities in medical images. Moreover, the Task-
Related Head (TRH) customizes results to align with the particular classification goals.
These improvements enable EATFormer to identify both detailed and broader patterns
without relying significantly on positional encoding. When assessed using the Chest X-ray
and Kvasir datasets, EATFormer showed enhanced classification accuracy and faster
prediction speed relative to conventional CNN and standard ViT models. Its tokenization
system based on patches and four-tiered hierarchical framework also enhance scalability
and processing efficiency. Although the document does not specifically list any limitations,
some conclusions can be drawn. The model's intricate nature and the incorporation of
various specialized modules probably require significant computational power and may
impede real-time implementation. Moreover, the ability to generalize to other imaging
fields or clinical environments might rely on the diversity of the dataset. Nonetheless,
EATFormer exemplifies the increasing sophistication of ViT-based models in clinical Al
and highlights the effectiveness of hybrid approaches that combine neural architecture
advancements with bio-inspired optimization.
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Table 4: Summary of Studies on Radiology Report Generation Based On Full
Transformer Methods.
3.4. Vision Language Multimodal (VLMs)

In the evolving Vision-Language Multimodal (VLM) framework, CoDiXR
presents a versatile generative model aimed at producing chest X-ray images along with
their associated radiological narratives created by (Molino et al., 2025). Rooted in the
Composable Diffusion (CoDi) framework, CoDiXR facilitates "any-to-any" cross-modal
creation, for instance, generating side views from front images or creating clinical
narratives from X-ray images. This flexibility meets increasing needs for artificial medical
data to aid data augmentation, safeguard privacy, and enhance diagnostic tool creation in
Al-powered healthcare. The system utilizes a combination of Latent Diffusion Models,
contrastive learning, and self-supervised methods. Utilizing the MIMIC-CXR dataset, it
processes images with uniform resizing and normalization, considering frontal and lateral
X-rays as separate modalities to improve cross-view consistency. The model generates
high-quality results assessed through numerical metrics: it demonstrates excellent
performance on Fréchet Inception Distance (FID) for image quality and BLEU scores for
text creation. In downstream disease classification tasks, the synthetic data produced by
CoDiXR matches or surpasses the performance of real-world data, indicating its potential
value in clinical Al workflows. Regardless of these advantages, CoDiXR has significant
shortcomings. Its effectiveness decreases when depending exclusively on visual inputs,
suggesting a possible imbalance in its cross-modal training approach. Furthermore,
although assessment through proxy tasks is promising, there is no formal clinical validation
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to guarantee the safety or diagnostic accuracy of the results. These issues highlight the
significance of fine-tuning for specific domains when modifying general-purpose
generative models for healthcare. Nevertheless, CoDiXR establishes an important
benchmark for multimodal synthesis in radiology, providing innovative avenues for
scalable, privacy-aware data creation. Future directions involve enhancing cross-view
generalization and performing expert assessments to evaluate practical applicability.

(Pellegrini et al., 2025) creates another method based on VLMs, RaDialog
represents a novel category of Vision-Language Multimodal Models (VLMs) aimed at both
producing radiological reports and facilitating interactive discussions with healthcare
professionals. The model is designed as an Al assistant with human input, improving
radiology processes by allowing clinicians to create, edit, and discuss reports instantly.
RaDialog integrates visual data from chest X-rays, structured pathology labels obtained
through a CheXpert classifier, and the linguistic abilities of a large language model (LLM).
A prompt-engineering component combines these resources into adaptable directives that
steer multi-task results like report creation, editing, and responding to questions. Training
and assessment are performed on the MIMIC-CXR dataset, supplemented by a semi-
automatically annotated instructional dataset designed for radiology. The training data
accommodates various conversational styles and tasks, allowing the model to sustain
domain-specific dialogue while preserving general LLM abilities. To enhance
computational efficiency, RaDialog employs parameter-efficient fine-tuning rather than
complete retraining. This enables efficient domain adaptation without the substantial
expenses usually linked to large-scale LLMs. In terms of performance, RaDialog shows a
7.3% enhancement in diagnostic effectiveness, surpassing both general models like
MedPalLM and radiology-focused benchmarks like ELIXR. Its interactive features enhance
collective decision-making, making it an effective tool for clinical teamwork. Nonetheless,
there are still limitations: the system presently accommodates only single-view images,
and any mistakes made by the CheXpert classifier may carry over into the ultimate output.
Additionally, the model's effectiveness has yet to be confirmed through clinical trials.
Potential advancements could include the incorporation of multi-view input capability, the
addition of more detailed patient metadata, and enhanced clinical testing. Nonetheless,
RaDialog signifies a significant advancement in the development of interactive,
explainable Al systems for medical imaging.
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Table 5: Summary of Studies on Radiology Report Generation Based On VLMs.

3.5. Large Language Models (LLMs) + Prompting methods

KARGEN illustrates a large language model method that improves the creation of
radiology reports by integrating organized domain expertise into a static large language
model. Instead of refining the LLM (LLaMA) created by (Y. Li et al., 2024), KARGEN
enhances its input by merging visual characteristics from chest X-ray images with disease-
specific information derived from a medical knowledge graph. This approach enables the
model to generate clinically relevant narratives without altering the foundational language
model. The architecture comprises four elements: a Swin Transformer that gathers spatially
aware visual embeddings, a Graph Convolutional Network (GCN) that represents
interactions among disease concepts, a fusion module that merges visual and graph-based
features through either element-wise gating or modality-wise expert weighting, and a
report generator driven by a frozen LLaMA decoder. These elements collaborate to
synchronize textual output with visual signals and advanced medical associations.
KARGEN was assessed using the [U-Xray and MIMIC-CXR datasets. It consistently
exceeded traditional baselines and other LLM-only architectures across standard metrics—
BLEU, METEOR, ROUGE, and CIDEr. Incorporating specialized disease knowledge
enhanced both the accuracy and contextual richness of the produced reports. Nonetheless,
the constraints of KARGEN arise from the breadth and depth of the medical knowledge
graph utilized. Broadening the graph’s scope to capture more intricate clinical connections
might boost model effectiveness and versatility. Furthermore, although the fusion
strategies are effective, they add architectural complexity that could affect inference speed
in clinical environments. Nevertheless, KARGEN establishes a significant benchmark for
integrating structured medical information with LLMs, underscoring the promise of
prompt-augmented LLM workflows in clinical NLP use cases.

(Z. Wang et al., 2023b)’s model R2GenGPT is part of the new category of prompt-
driven frameworks that utilize static large language models (LLMs) to connect the
modality divide between image inputs and text-based diagnostic reports. It offers a modular
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approach where only a simple visual-to-text mapping layer undergoes training, enabling
LLMs to understand image features without requiring significant retraining. The
architecture consists of three main elements: a visual encoder (e.g., Swin Transformer), a
visual mapper, and a static LLM like LLaMA or BioClinical BERT. The visual mapper
translates visual attributes into the LLM’s word embedding space, allowing the direct input
of image-derived “tokens” into the fixed decoder. R2GenGPT investigates three mapping
approaches: Shallow Alignment (training is limited to the projection layer), Delta
Alignment (slightly modifies the LLM, about 0.07% of parameters), and Deep Alignment
(involves more extensive training). The model was evaluated on the [U-Xray and MIMIC-
CXR datasets, achieving performance that equaled or surpassed leading models in BLEU,
METEOR, ROUGE, and CIDEr. Its training was remarkably efficient in computation,
needing little memory and reaching convergence rapidly. These benefits render
R2GenGPT appropriate for clinical settings where resources could be scarce. Nonetheless,
certain constraints persist. Due to the model depending on mapping into a static embedding
space, it might not entirely leverage subtle visual semantics. Interpretability poses a
challenge, since the intermediate alignment mechanism functions like a “black box.”
Furthermore, the decoder-only configuration might restrict its ability to represent inter-
sentence coherence. Despite these concerns, R2GenGPT offers a scalable, sophisticated
approach that utilizes the linguistic capabilities of LLMs while ensuring efficiency and
modularity.

(Zeng et al., 2024) creates RadCouncil which presents an innovative multi-agent
framework for generating radiology reports using LLMSs, highlighting the importance of
collaboration and specialized tasks. Instead of depending on one model to handle every
step, RadCouncil divides the impression writing process into three agent roles that reflect
actual radiology workflows. This method closely aligns with the movement toward
prompt-based, retrieval-augmented generation (RAQG) strategies in large language
modeling. The system comprises three agents: a Retrieval Agent that employs vector
similarity to identify pertinent previous reports; a Radiologist Agent that generates
impressions from current discoveries and retrieved cases; and a Reviewer Agent that
assesses and improves the output for diagnostic precision and stylistic uniformity. The
architecture prevents complete model retraining through prompt-based task assignment,
enabling swift deployment and tailored domain customization. Assessment of chest X-ray
datasets (precise sources not detailed) integrated standard NLG metrics (BLEU, ROUGE,
BERTScore) alongside qualitative evaluations from GPT-4. RadCouncil surpassed
individual agent baselines in diagnostic accuracy, adherence to radiological standards, and
linguistic fluency. The Reviewer Agent was instrumental in minimizing hallucinations and
enhancing factual accuracy, confirming the effectiveness of the system’s multifaceted
error-checking framework. Nevertheless, RadCouncil encounters constraints concerning
memory and reasoning abilities. The RAG pipeline is limited by the size of its context
window, restricting the amount of information that can be retrieved in each instance.
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Additionally, multi-agent coordination increases complexity and might necessitate
stronger memory management for long-term scenarios. However, RadCouncil illustrates
the promise of collaborative, agent-based LLM systems in clinical settings and paves the

way for more sophisticated, understandable, and interactive medical Al solutions.
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Table 6: Summary of Studies on Radiology Report Generation Based On LLMs.

3.6. Beyond Transformers methods

R2Gen-Mamba presents a hybrid framework that diverges from conventional
Transformer-exclusive architectures by combining a Mamba encoder—rooted in state-
space modeling—with a Transformer-based decoder created by(Sun et al., 2024). This
design tackles the computational inefficiencies present in Transformer architectures,
especially their quadratic complexity in managing lengthy sequences. Mamba, featuring
linear time complexity, enables effective sequence modeling while maintaining contextual
comprehension, making it exceptionally appropriate for real-time medical uses. The
architecture of the model is designed so that the Mamba encoder converts chest X-ray
images into spatially aware representations, subsequently fed into a Transformer decoder
that creates the relevant diagnostic report. This setup achieves a balance between semantic

44
Development of an Intelligent System for Automatic Medical Report
Generation



depth and resource efficiency, targeting the requirements for precise clinical analysis while
providing scalability in resource-limited settings. Assessments carried out on the IU X-ray
and MIMIC-CXR datasets indicate that R2Gen-Mamba surpasses conventional
Transformer-based baselines in important metrics like BLEU, METEOR, ROUGE, and
CIDEr. These findings emphasize its capability to sustain or improve language quality
while lessening computational requirements. Significantly, its hybrid characteristics
preserve the contextual power of Transformers in language generation while attaining a
remarkable acceleration in feature extraction. Nonetheless, the model's reliance on a
Transformer decoder indicates it has not entirely avoided the limitations linked to attention
mechanisms. Moreover, the degree to which the hybrid framework can be applied to other
medical imaging types is still unclear. Nonetheless, R2Gen-Mamba establishes essential
foundations for investigating effective, high-performance options in radiology report
creation, particularly for scenarios where infrastructure limitations hinder the
implementation of conventional Transformer models.

SERPENT-VLM is (Sun et al.,, 2024) model. It marks a notable shift from
traditional static Transformer models by incorporating a self-improving, feedback-oriented
framework for generating radiology reports. Instead of depending on a rigid sequence-to-
sequence process, the model progressively adjusts its output through an innovative loss
function that correlates the visual elements of an image with the meaning of the produced
report. This method minimizes hallucinations and enhances factual accuracy—critical
issues in clinical Al systems. The process starts with a static visual encoder to obtain high-
dimensional characteristics from chest X-rays. These attributes act as input for a large
language model (LLM), which generates a preliminary report. A self-tuning loss function
subsequently evaluates the combined visual representation against the embedding of the
produced text, prompting the model to modify and enhance its output for improved
alignment. This loss enhances conventional causal language modeling goals, enabling
improved semantic management. Assessed on the IU X-ray and ROCO datasets,
SERPENT-VLM delivers top-tier outcomes, exceeding the performance of sophisticated
models like BiomedGPT and LLaVA-Med on various benchmarks. It demonstrates notable
resilience, preserving functionality even with noisy or low-quality images frequently found
in clinical datasets. In addition, its rapid inference speed makes it suitable for
implementation. Nonetheless, the model has constraints. It has been assessed solely on a
limited variety of datasets, raising doubts about its applicability to other radiological
situations. Additionally, its feedback system might enhance training complexity, creating
difficulties for reproducibility and scaling. Nonetheless, SERPENT-VLM establishes an
impressive benchmark for adaptive, self-repairing systems in medical vision-language
modeling and may motivate a new wave of progressive, dependable clinical report
generators.
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(X. Wang et al., 2024) built MambaXray-VL which is a next-generation radiology
report generation model that bypasses traditional Transformer architectures by adopting
the Mamba framework—a state-space sequence model known for its linear scalability and
memory efficiency. This model is particularly designed to handle long-sequence data
efficiently, making it ideal for clinical environments where computational resources are
constrained.At the heart of MambaXray-VL is a non-Transformer vision encoder based on
the Mamba architecture. It is paired with pretrained LLMs such as BioClinical BERT or
LLaMA?2 for report decoding. The training pipeline consists of three phases: self-
supervised autoregressive modeling from image segments, contrastive learning to align X-
ray images with their textual reports, and supervised fine-tuning using standard evaluation
metrics. This modular and scalable approach facilitates more robust visual-textual
alignment without relying on quadratic attention.The model is assessed using the newly
introduced CXPMRG-Bench benchmark, which includes 19 competing systems—14
LLM-based and 2 vision-language models—evaluated across datasets like CheXpert Plus,
IU X-ray, and MIMIC-CXR. MambaXray-VL outperforms all baseline models in both
language generation and interpretability metrics, demonstrating its suitability for high-
stakes clinical applications.Nonetheless, certain limitations exist. While benchmark results
are strong, the model’s real-world utility is yet to be verified through clinical trials or
radiologist validation. Additionally, the novel benchmark, while comprehensive, could
limit comparability with prior work. Still, MambaXray-VL reaffirms the viability of state-
space models in radiology and sets a new standard for future non-Transformer vision-
language systems, offering a computationally lean alternative without sacrificing
performance or clinical relevance.
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Table 7: Summary of Studies on Radiology Report Generation Based On Beyond
Transformer

4. Conclusion

This chapter has presented a structured examination of deep learning techniques that
underpin automated radiology report generation. From foundational architectures like
CNNs and RNNs to advanced models such as Transformers, BERT, GPT, and Vision-
Language Models, each method was analyzed in terms of its capabilities, limitations, and
suitability for complex multimodal tasks. Emerging frameworks like Mamba and State-
Space Models were also discussed, reflecting the ongoing quest for more efficient and
scalable alternatives to traditional attention-based models. The literature review
synthesized past research efforts, categorizing them by architectural approach and
highlighting their contributions to the field. Together, these insights provide the theoretical
and empirical foundation necessary for designing an effective deep learning-based
diagnostic captioning system, which is addressed in the following chapter.
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Chapter III: Conception

1. Introduction

Artificial intelligence is transforming medicine, making it possible to create systems
that help doctors, or even automate certain tasks. The automatic generation of radiology
reports is a key example: it requires a good understanding of medical images and the ability
to write accurate clinical reports. The design of such a system represents a major
multidisciplinary challenge, lying at the intersection of computer vision, automatic natural
language processing (ANLP) and medical expertise.

This chapter is devoted to the detailed design of our system for automatically
generating radiology reports. We explore the evolution of our architectural approach, from
an initial version based on a Long Short-Term Memory (LSTM) decoder that served as a
foundation for sequence extraction, to the final, optimized implementation. The latter
incorporates a Transformer-type architecture for more robust modelling of contextual
dependencies in text, complemented by an innovative post-processing module based on a
Large Language Model (LLM). This evolution was necessary to correct text quality and
consistency problems encountered at the outset.

We will detail the steps involved in this design: how we prepared the data (images and
text), how we extracted the visual information using a network called EfficientNet-B0, and
how the report is first generated and then enhanced by the LLM. Each choice was made
for technical and medical reasons, in order to create high-quality automatic reports that are
useful in hospitals.

2. Objective

This work aims to propose a robust approach for the automatic generation of
radiological reports by combining the power of visual deep learning with advanced natural
language processing. The system was initially designed using a CNN-LSTM architecture,
in which visual features extracted by a convolutional encoder (EfficientNet-B0) were fed
to an LSTM decoder responsible for producing the report sequentially. Although this first
version produced globally consistent reports, it revealed several limitations, particularly in
terms of linguistic fluency, semantic coverage, and terminological consistency.

To overcome these weaknesses, we replaced the LSTM decoder with a Transformer
architecture, better suited to modelling complex sequences. This new CNN-Transformer
system allows more structured and contextually relevant generation of radiology reports
from thoracic images. However, despite this improvement, grammatical errors, lexical
approximations and a lack of clinical fluidity persist in certain text productions.
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To address these shortcomings, we introduce a final post-processing phase, provided
by a large language model (LLM), such as BioGPT. This step acts as a stylistic and
linguistic refinement layer, correcting imperfections in the raw report generated by the
Transformer, while respecting the diagnostic content. It aims to improve readability,
terminological accuracy and compliance with medical writing standards.

3. System architecture

A deep learning-based system for automatically generating radiological reports is
proposed in this master's thesis. Our system aims to generate a radiology report from chest
X-ray image input.

The proposed system uses several interdependent components to generate clinically
useful written reports from medical images. It incorporates a crucial dataset preparation
phase, an encoder to ensure accurate classification, which will serve as input to a report
generator. Our system architecture is illustrated in the following Figure 3.1.

3.1. Dataset Preparation Phase

This phase is dedicated to pre-processing the data, both the images and the associated
radiology reports. In terms of text, the reports are tokenized and cleaned up to eliminate
any unnecessary symbols that could interfere with the learning process. As for the images,
they undergo augmentation operations (such as random rotation or flipping), scaling, and
normalization. These transformations are designed to improve the model's generalization
capacity and ensure optimum compatibility with our deep learning architecture.

3.2. Encoding Phase

The system is based on a hybrid encoder-decoder architecture. The encoding module
is based on EfficientNet-B0, a pre-trained convolutional neural network responsible for
extracting high-level visual representations from chest X-rays. These representations are
then used by a decoder to generate the corresponding text report. The model training is
based on a double loss function: a binary cross-entropy for multi-label classification (of
pathologies) and a standard cross-entropy for text generation. This dual objective enables
the coder to capture rich visual features that are both informative for diagnostic
classification and consistent with the semantics of radiological reports.

3.3. Report Generation Phase

In an initial version of the system, radiology reports were generated by an LSTM-type
decoder, which modelled the report as a sequence of words generated successively from
the visual features extracted by the convolutional encoder. Although this approach
produced globally consistent reports, it had several limitations: lack of lexical diversity,
omission of some important clinical information, and a limited ability to model long-term
dependencies.
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Figure 5: Automatic Radiology Report Generation System Architecture
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To overcome these weaknesses, the LSTM was replaced by a Transformer decoder,
which is better able to model the complex linguistic structure of medical reports. The new
decoder generates the text word by word, starting with a token at the beginning of a
sequence, and stopping when an end token appears or at a maximum length. The decoding
used is greedy decoding, for reasons of computational simplicity, although more advanced
alternatives (beam search, nucleus sampling) could be envisaged to improve fluidity and
accuracy. Diagnostic labels extracted during the classification phase are injected into the
decoder input in order to guide the generation towards medically relevant content.

However, a qualitative analysis of the reports generated revealed recurring errors,
including omissions, lexical errors and imprecise wording. To remedy this, a post-
processing phase was introduced. This is based on a large language model (LLM), such as
BioGPT, used as a stylistic and linguistic refinement layer. The LLM only intervenes on
the generated text, without reconsidering the image, and aims to improve legibility, syntax
and compliance with medical writing standards. This final module produces reports that
are more professional, more natural and better aligned with clinicians' expectations.
Specific LLM training on a radiology corpus could constitute a further improvement
prospect.

4. Data Preparation, Preprocessing, and
Augmentation

To ensure high-quality, correctly structured input to our automatic radiology report
generation system, we have implemented a rigorous data preparation pipeline. This process
combines image augmentation, report tokenization, image normalization and structured
text formatting, making it easy to train the encoder-decoder architecture.

4.1. Data Loading and Structuring

The data used in this study comes from the Indiana University Chest X-ray Collection,
which provides chest X-rays accompanied by their medical reports. The dataset also
includes two metadata files:

e ‘indiana projections.csv', associates the unique identifiers (uid) with the
standardized names of the image files.

e ‘indiana reports.csv', contains the text of the reports, divided into two sections:
‘impression’ and ‘findings’.

To obtain a coherent and usable dataset, the following steps were taken:

e Filename Matching: each ‘uid’ from the reports was matched with its
corresponding image using the projection file.
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e Report Cleaning: the text in the findings and print columns was pre-processed to
remove excessive punctuation, standardize white spaces and remove bogus strings
(such as strings of letters “X”).

e Report formatting: the two text sections have been concatenated into a single
string, framed by structuring tokens:

Findings:
{findings}

Impression:

{impression}

This structuring enables the decoder to distinguish between the different parts of the
report while ensuring syntactic and semantic consistency. Only samples with both a valid
image and non-empty reports were retained. The final dataset is represented as a table
containing two columns, "image path’ and ‘report’.

4.2. Text Tokenization
The reports were tokenized using the “Keras Tokenizer” module, configured as follows:

e No Filtering: all characters, including punctuation, were retained to preserve useful
semantic clues.

e Case Sensitivity: capitalization was maintained (lower=False) to distinguish
acronyms and anatomical names.

e Management of rare words: words absent from the learned vocabulary have been
replaced by the special <unk> token.

After fitting the tokenizer on the full corpus of reports:

e Each report was converted into a sequence of word indices.
e The longest sequence length was determined and used as the maximum length for
padding and truncation.
e Two sequences were generated per report:
o ‘decoder inputs': all tokens except the last one
o ‘targets': all tokens except the first

This strategy allows the use of teacher forcing during training, by providing the model
with the previous tokens as a reference for predicting the next one.
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4.3. Image Preprocessing

To ensure optimal compatibility and to fully exploit the capabilities of the EfficientNet
convolutional encoder, which forms the backbone of our system, all chest X-ray images
have undergone a standardized pre-processing process. These steps are crucial for
normalizing the input data and aligning it with the format expected by a model pre-trained
on large image datasets. The specific transformations applied are detailed below:

e Image resizing: Each image was loaded from its storage location and
systematically resized to a resolution of 224224 pixels. This ensures a uniform
input size for the EfficientNet network, which is optimized for this dimensionality,
and contributes to the consistency of batch processing.

e Conversion from greyscale to RGB: X-rays (single channel greyscale) were
replicated to three channels (RGB) to fit the pre-trained architecture on ImageNet,
without semantic alteration of the original pixels.

e Pixel normalization: pixel values were adjusted and standardized according to the
parameters of the EfficientNet pre-training on ImageNet (normalization specific to
this model).

e Tensor conversion: the images were converted to float32 format to enable them to
be processed by the deep learning model.

4.4. Data Augmentation

Data augmentation is an essential tool for enhancing the generalization capability of a
deep learning model. By exposing the model to a variety of transformations applied to
training images, this technique enables it to learn to detect target features under diverse
conditions, thereby improving accuracy on test data and limiting overfitting (Shorten, C.,
& Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning.
Journal of Big Data, 6 (60).).

In this work, we implemented an augmentation pipeline based on the Keras Sequential
API. Random transformations were applied to the images during training, without altering
the total number of samples, to ensure a diverse input stream for the model. The
transformations used include:

¢ Random Horizontal Flipping: Simulates variations in image orientation.
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Figure 6: Flipping of an image from dataset.

e Random Rotation: Accounts for slight differences in patient positioning.

Rotation 10°

Figure 7: Rotation of an image from dataset.

e Random Zooming: Introduces spatial variability while preserving core structures.

Figure 8: Rotation of an image from dataset.

These transformations are safe for chest X-rays and augment the training set with
realistic variations. No augmentation was applied to validation or test samples.

5. Model Architecture

The design of the proposed system is based on a hybrid architecture combining a
convolutional neural network (CNN) encoder and a decoder. This configuration enables
the model to efficiently capture the spatial characteristics of medical images and generate
structured text sequences capable of fully and coherently describing a diagnostic report.
The CNN encoder is specifically dedicated to extracting discriminating visual information
by highlighting the spatial and morphological aspects of the radiographic content. The
decoder, meanwhile, is designed to model long-range dependencies within text sequences,
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an essential capability for producing radiology reports made up of several interconnected,
medically relevant sentences.

The model operates in two main phases:

The image encoding phase, during which visual features are extracted from a chest
X-ray and transformed into a compact, informative representation.

The text decoding phase, in which the decoder uses this visual representation to
generate the corresponding report, producing the tokens one by one, according to a
sequential logic. The model functions in two primary phases:

This modular architecture not only offers great flexibility for adaptation to other types
of data or medical tasks, but also greater transparency in the training, inference and
development processes for future extensions. As a result, it provides a solid foundation for
the production of automated reports aligned with the requirements of the clinical field.

5.1. Image Encoder (EfficientNetB0)

Our system's image encoder is based on the EfficientNet-BO architecture, a model
recognized for its optimal balance between performance, accuracy and computational

efficiency. This backbone makes it possible to extract deep, discriminating visual features
from chest X-rays.

EfficientNetB0 Backbone: EfficientNet-B0 is the core of the encoder. Its design
is based on coordinated scaling of depth, width and resolution, optimizing the use
of resources for maximum accuracy. The model is pre-trained on ImageNet and the
convolutional layers are frozen (not re-trained) to limit the risk of overfitting on our
specific medical dataset. The complete architecture of EfficientNet-BO0 is illustrated
in Figure 3.5.

Input Layer: The encoder expects input images of dimensions (224, 224, 3),
conforming to standard EfficientNet specifications.

Convolutional Layers: The EfficientNet-BO network is composed of inverted
residual blocks incorporating squeeze-and-excitation modules. These layers enable
hierarchical and progressive feature extraction, from local details to abstract
representations.

GlobalAveragePooling2D: This layer is applied to the last convolutional feature
map (typically 7 x 7 x 1280). It averages the activations over the spatial dimensions,
producing a global vector of 1280 dimensions summarizing the entire image
BatchNormalization: This layer standardizes the resulting vector in order to speed
up convergence during training and stabilize weight updates. It adjusts the mean
and variance of activations for each batch of data.

Dropout: A regularization mechanism is introduced via a dropout that randomly
deactivates 30% of activations during training, reducing the risk of overfitting.
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e Dense Layer: This transformation reduces the 1280-dimensional representation to
a more compact 512-dimensional vector. ReLU activation introduces a non-
linearity that is essential for capturing complex patterns.

¢ Final Dropout: A second dropout is applied after the dense layer to reinforce the
regularization of the final image representation.

The encoder thus delivers a 512-dimensional dense vector representation, which is an
abstract, compressed synthesis of the visual content of the chest X-ray. This vector acts as
a conditional input for the Transformer decoder responsible for generating the text report.
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Figure 9: The architecture of the used EfficientNetB0 pre-trained model in our system.
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5.2. Transformer Decoder

The generation of the text report is based on a decoder that transforms the visual
features extracted from the image into a sequence of words forming a structured medical
report. Two architectures were studied and implemented in this project: an initial version
based on an LSTM-type decoder, and a second, more advanced version using a
Transformer.

e Initial version: LSTM decoder

The first decoder implemented was based on a Long Short-Term Memory (LSTM)
model, designed to generate the report text sequentially, one word at a time.

Y

Embedding I
h 4

LSTM Decoder I
v

Dropout |
v

Dense |

L
I Report |

Figure 10: The architecture of the used LSTM decoder.

Although the LSTM decoder was able to generate understandable reports, it showed
limitations in modelling long dependencies and producing fluent text over several complex
sentences.

e Improved version: Transformer decoder

To overcome these limitations, a decoder based on the Transformer architecture was
developed, capable of better handling the long-range relationships between words in the
report. It is designed to generate sequences. It analyses visual data as well as previous
words to predict the next word in the report.

e Input Embedding: Transforms each token index into a trainable 512-dimensional
embedding vector. The embedding matrix is of size (vocab_size, 512), with each
row representing a word vector.

e Positional Encoding: Positional encodings are included with each embedded token
to integrate temporal order, enabling the model to distinguish between tokens
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within a sequence. Sinusoidal encodings offer a distinct representation for every
position.

e Image Modification:

O

The 512-dimensional image feature is linearly transformed to align with the
input size of the decoder.

An additional axis is introduced to adjust the shape to (1, 512), aligning with
the sequence dimension.

This visual token is added before the text token embeddings, allowing the
model to consider image context from the beginning.

e Transformer Blocks (2 layers): Every block consists of:

O

Multi-Head Self-Attention: Each head focuses on distinct subspaces of the
input. Attention weights are determined using scaled dot-product attention.

Dropout (rate=0.2): Used following attention to avoid overfitting.

Incorporate & LayerNorm: A residual link combines the attention output
with the input, succeeded by layer normalization for consistency.

Feed-Forward Network (FFN): Two Dense layers, each with 512 units,
interspersed with a ReLU activation function. FFNs incorporate non-linear
transformations and enhance representational power.

Second Dropout and residual normalization complete the block.

Final Linear Layer: A TimeDistributed Dense layer maps the output from
the last decoder layer to the size of the vocabulary. A softmax function
subsequently transforms logits into probabilities for every word in the
vocabulary.

This decoder architecture enables the model to produce reports one token at a time,
taking into account both image features and the series of words previously generated. The
attention mechanism enables selective emphasis on significant tokens and the visual.
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Figure 11: The architecture of the used Transformer decoder in our system.

6. Post-processing

After the initial generation of reports using the CNN-Transformer architecture, a
complementary post-processing phase is integrated to improve the linguistic quality,
semantic consistency, and diagnostic fidelity of the texts produced. This phase has two
main components: inference on the test set and correction of the reports generated using a
large specialized language model, BioGPT.

e Inference with CNN-Transformer

The aim of inference is to evaluate the system's performance on unprecedented data,
reflecting use in real-life conditions. Each image-report pair in the test set is processed in
batches, with the decoder generating a report in the form of a sequence of tokens. These
tokens are then translated into text using the saved tokenizer. Special tokens (start, end and
padding) are removed to produce a clean, readable final text.

The dataset produced at the end of this phase contains three aligned columns:

e 1image path: the file path to the X-ray image;
e original report: the reference ground truth (reference report provided by an expert);
o generated report: the model-generated diagnostic text

This set is saved for subsequent evaluation tasks and quality analyses.
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6.1. Correction Using BioGPT

In order to increase the clinical accuracy and readability of the generated reports, a
correction phase based on a pre-trained language model, BioGPT, is applied. This step is
based on a prompt-driven approach, where the generated reports are enriched by
constructing input examples combining the original reports and the model predictions.

The main steps in this phase are:
e Tokenization of prompts and outputs using BioGPT's specific tokenizer;

e Optimization of the model in causal language modelling mode, using the AdamW
optimize

Experiments are carried out with two alignment strategies - shallow alignment and
deep alignment - aimed at harmonising visual and linguistic information.

Corrected reports are generated using beam search decoding to improve text diversity

and consistency. Linguistic and semantic metrics are then calculated to quantify the final
quality of the reports.

-
l g i Seq_input

|
1 v
| EfficientNetBO | I Embedding |
h 4 I v
| Global Average Pooling2D | g Positional Encoding |
v v
| Batch Normalization I I Transformer Decoder |
h 4 v
| Dropout | I Time Destributed(softmax) |
| Dense(512) | I Dense |
| Dropout I A4
v | Report |
| Dense(512) |
v
| Bio-GPT |
Y
| Final Report |

Figure 12: The architecture of the full system.
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7. Conclusion

The automatic generation of radiological reports is a major challenge for Al in
medicine, with the aim of optimizing workflows, standardizing practices and improving
the quality of care in the face of increasing numbers of examinations. The challenge is to
translate complex images into precise medical language and to guarantee the robustness of
the model.

This chapter has detailed the architectural design of the system. It presented the
evolution of an LSTM decoder towards a more advanced hybrid architecture: an
EfficientNet-BO encoder for visual extraction, and a Transformer decoder for text
generation. To refine linguistic and terminological quality, a post-processing module based
on a Large Language Model (LLM) has been integrated. The importance of data pre-
processing (text and image) and dynamic data augmentation for model robustness was also
highlighted.

62
Development of an Intelligent System for Automatic Medical Report
Generation



Chapter 1V: Implementation and
Realization

1. Introduction

This chapter describes the practical implementation of our radiology report
generation system, transforming the conceptual framework into an operational deep
learning pipeline. We detail the development environment, tools (Python, Jupyter
Notebook, Kaggle) and libraries used.

The chapter then explores the detailed implementation of the system components.
This includes data pre-processing, report tokenization and image formatting for
EfficientNetB0, which acts as a visual encoder. The architecture of the model is presented,
with a custom Transformer decoder for language generation. Attention is given to training
procedures, hyperparameters, and the integration of BioGPT for post-processing of
generated reports. Overall, a complete and specialized pipeline for the automatic generation
of medical imaging reports is presented.

2. Environment and Tools

2.1. Programming Language
e Python:

Python is a high-level, interpreted, and object-oriented programming language
recognized for its straightforward syntax and dynamic semantics. Its inherent data
structures, along with dynamic typing and binding, render it perfect for quick application
development and scripting assignments. Python encourages code reuse and modularity by
supporting modules and packages, with its comprehensive standard library accessible on
various major platforms. A major advantage of Python is its quick edit-test-debug cycle,
which boosts developer efficiency. Errors are managed via exceptions instead of
segmentation faults, and debugging is supported by an interactive source-level debugger
along with Python's introspective features. For numerous tasks, straightforward print-based
debugging continues to be remarkably efficient because of Python's quick
feedback(Foundation, 2025).

2.2. Development Environment
o Jupyter Notebook

Jupyter Notebook is a free web application that allows users to generate and distribute
interactive documents, previously referred to as IPython Notebooks. It offers an online
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platform for Python coding, enabling users to create and run code in organized sections
that can be integrated with descriptive text and data. A "notebook" may denote the Jupyter
web interface, the core Python server, or the final document produced. Used extensively in
different fields, Jupyter facilitates activities like data cleaning, numerical simulation,
statistical modeling, and machine learning (DataScientest, 2025)

o Kaggle

Kaggle is a prominent online platform for data science and machine learning, featuring
a worldwide community of more than 500,000 members from 194 nations. It provides a
robust, configuration-free setting for building models with Jupyter Notebooks, featuring
access to free GPUs and a wealth of community resources. Users have access to more than
50,000 public datasets and 400,000 notebooks to aid their projects. Kaggle is relied upon
by large corporations such as Walmart and Facebook, allowing users to join competitions,
exchange code, and work together with others. Subjects cover a broad spectrum of areas—
from healthcare forecasts to emotion interpretation—creating an active environment for
education, skill development, and networking with professionals (DataScientest, 2024)

2.3. Model Construction Tools
e TensorFlow

TensorFlow is a popular open-source platform for machine learning that functions
through data flow graphs. In this framework, nodes symbolize mathematical operations,
while edges denote tensors—multidimensional data arrays—moving between them. This
architecture allows for the development and training of machine learning models on CPUs,
GPUs, and TPUs, from mobile devices to robust servers, without modifying the
foundational code. Initially created by Google's Brain Team for deep learning studies,
TensorFlow has evolved into a flexible resource embraced by data scientists, developers,
and educators for various machine learning applications(NVIDIA, 2025c¢).

e Keras

Keras is an advanced deep learning API developed in Python that is compatible with
various backends, such as TensorFlow, PyTorch, and JAX. Created for simplicity and
adaptability, it enables users to construct intricate models with little coding while also
permitting sophisticated customizations. Keras 3 enhances this flexibility by allowing
developers to train and deploy the identical model across various frameworks without
changes. It accommodates multiple data formats including NumPy, Pandas, TensorFlow
datasets, and PyTorch Datal.oaders. Keras is extensively utilized in research and industry,
facilitating rapid development, wide compatibility, and effective deployment on various
platforms(K. Team, 2024).
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e PyTorch

PyTorch is a free deep learning framework created by Facebook Al Research, highly
valued for its adaptability, ease of use, and integration with Python. Created for
constructing neural networks, PyTorch facilitates dynamic computation graphs (define-
by-run), rendering it perfect for quick prototyping and research. It includes reverse-mode
automatic differentiation, robust GPU acceleration, and effortless compatibility with
well-known Python libraries such as NumPy. PyTorch is widely preferred in both
academic and industrial settings because of its reliable API, straightforward debugging,
and strong support for distributed training, ONNX export, and visualization resources
such as TensorBoard. Its dynamic community and growing ecosystem position it as a top
option for deep learning advancement (NVIDIA, 2025b)

2.4. Preprocessing Tools
e NumPy

NumPy is an essential Python library for scientific calculations that provides robust
tools for managing extensive, multi-dimensional arrays and matrices. Central to NumPy is
the ndarray object, enabling effective storage and handling of homogeneous data. In
contrast to regular Python lists, NumPy arrays maintain fixed sizes and require a uniform
data type, allowing for efficient computations via compiled code. NumPy offers a broad
array of functionalities, including linear algebra, statistics, sorting, and Fourier transforms.
Due to its effectiveness and integration, it underpins numerous scientific Python packages,
rendering it crucial for data analysis, numerical computing, and simulation (N. Developers,
2024).

e Pandas

Pandas is a robust and versatile Python library created for effective data manipulation
and analysis, particularly for working with labeled or tabular datasets. It offers two primary
data structures: Series for one-dimensional data and DataFrame for two-dimensional data,
allowing for intuitive management of datasets akin to SQL tables or Excel spreadsheets.
Layered on NumPy, pandas streamlines processes like managing missing values, aligning
data sets, grouping and summarizing, reshaping, and combining. It additionally provides
strong assistance for time series data and different file formats, such as CSV and Excel.
Pandas is a fundamental component of Python’s data science ecosystem, extensively
utilized in areas such as finance, statistics, and engineering (P. Developers, 2024)

o« PIL

Pillow is a popular Python library for image manipulation, acting as the approachable
and actively supported fork of the original Python Imaging Library (PIL). It provides
comprehensive assistance for different image file formats and includes effective tools for
loading, editing, and saving images. Engineered for efficiency, Pillow offers rapid pixel-
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level access and features a variety of robust capabilities including image filtering,
transformations, color modifications, and format changes. It serves as an essential element
in numerous Python-driven image analysis and computer vision projects, providing a
strong base for developing image processing tools and workflows (Contributors, 2025).

2.5. Plotting Tools
o Matplotlib

Matplotlib is a library for visualizing data in Python, developed by Michael
Droettboom and others, which first launched in 2003. It features an object-oriented API
for generating high-quality, publishable charts and graphs. This system can handle
various kinds of plots, such as line graphs, scatter plots, bar charts, histograms, and more.
It also enables the customization of visual styles, layout, and saving in various file
formats (M. Developers, 2025)

2.6. Evaluation and NLP Tools
e NLTK:

The Natural Language Toolkit (NLTK) is an extensive Python framework created for
handling human language data and developing natural language processing (NLP)
applications. It provides convenient access to more than 50 corpora and lexical resources
like WordNet, coupled with robust libraries for activities such as text classification,
tokenization, stemming, tagging, parsing, and semantic analysis. NLTK features interfaces
for strong NLP libraries and benefits from ongoing community discussions. It is commonly
utilized in education, research, and industry because of its straightforward documentation
and practical tutorials, which make it a great resource for novices as well as seasoned
developers in computational linguistics (N. L. T. Team, 2025).

3. Dataset Preparation

3.1. Dataset Description
e Indiana University CXR Dataset

The Indiana University Chest X-ray dataset (IU X-ray) is a publicly accessible
benchmark collection aimed at facilitating research in automated radiology report creation.
Created and launched by the U.S. National Library of Medicine, this dataset features a
comprehensive combination of chest X-ray images along with corresponding narrative
radiology reports. It has seen extensive application in natural language processing (NLP),
computer vision, and medical Al tasks for developing and assessing image-to-text
generation models(Demner-Fushman et al., 2016).

o Dataset Structure
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The dataset includes 7,470 chest X-ray images from 3,955 distinct patient studies,
featuring a range of frontal and lateral perspectives. Every examination includes a
diagnostic report written by hand and created by a radiologist. The images come from the
medical imaging archives at the Indiana University School of Medicine and were
anonymized to protect patient privacy before being released publicly(Demner-Fushman et
al., 2016).

o Report Structure

Every radiology report is organized in a uniform format and generally includes
these sections:

e Findings: A brief diagnostic assessment or clinical overview that usually
emphasizes the key findings.

e Impression: A comprehensive account outlining the visual findings derived from
the X-ray images, generally arranged by anatomical areas or radiological
importance.

e Comparison: This section refers to previous imaging studies when relevant and
emphasizes changes that have occurred over time.

e Indication: This part details the reasoning for the imaging examination, including
patient symptoms, history, or clinical concerns.

This organized structure allows for detailed analysis and modeling of various
elements of clinical reporting, ranging from descriptive specifics to overarching
summaries.(Demner-Fushman et al., 2016)

o Data Format and Accessibility

The original dataset includes radiographs in DICOM (Digital Imaging and
Communications in Medicine) format, but the version utilized in this study is hosted on
Kaggle, offering the same dataset with images converted to PNG format and normalized
to uniform resolution. This preprocessing enhances user-friendliness in deep learning
processes, especially when training convolutional neural networks (CNNs) that need
consistent input sizes. Transforming DICOM to PNG guarantees compatibility with
common Python libraries (such as PIL, OpenCV, TensorFlow), and normalization
improves pixel-level uniformity throughout the dataset.

o Research Purpose and Utility

The IU X-ray dataset acts as an important standard for assessing vision-language
models, particularly those designed to create radiology reports from imaging data. Its fairly
small size, organized reporting format, and publicly available nature render it suitable for
initial-stage prototyping, guided learning, and performance evaluation. Specifically, the
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dataset's diagnostic depth and narrative intricacy enable the investigation of both extractive
and generative tasks, such as report summarization, impression creation, disease
identification, and image captioning within medical fields(Demner-Fushman et al., 2016).

3.2. Dataset Preparation and Structuring

The dataset used in this system is the Indiana University Chest X-ray collection,
which is publicly accessible. It contains de-identified radiographic images (in PNG format)
along with structured text reports. Every image is linked to a distinct identifier (UID),
which serves to connect it with its related radiology report.

Figure 13: Samples from the Indiana University Chest X-ray

The unprocessed reports were analyzed to extract the two clinically relevant
sections:
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¢ Findings: describing the features observed on the radiographic image;
e Impression: summarizing the radiologist's diagnostic conclusions.

To ensure the quality of the training data all incomplete samples - i.e. those lacking
at least one of the two sections - were discarded. The text of the reports was then cleaned
up using regular expressions to remove redundant spaces, repetitive punctuation (e.g. serial
dots) and formatting artefacts such a placeholder characters like 'XXXX'.

Finally, each report is framed by special tokens explicitly marking the start and end
of the sequence:

<start> Findings:\n{findings}\n\nImpression:\n{impression} <end>

This structured format plays an essential role in guiding the Transformer decoder,
providing it with clear cues about the logical and syntactic boundaries of the content to be
generated.

3.3. Tokenization and Vocabulary
Text tokenization is performed using the Keras Tokenizer class. This tokenizer is
configured to:

e C(Case sensitive: Preserve case sensitivity (lower=False), as medical terminology
often relies on case distinctions.

e Management of rare words: Include an out-of-vocabulary token <unk> for rare or
unseen words.

e Punctuation preservation: Avoid filtering out punctuation, which can be
semantically significant in medical reports.

The tokenizer is fitted on all structured reports, yielding a vocabulary of unique
tokens (including punctuation, words, and special tokens). All reports are then converted
into integer sequences and padded to the length of the longest report.

As part of the Transformer decoder training, these sequences are split into two
parts:

e Decoder Inputs: All tokens in the sequence, except the last.
o Targets: all the tokens in the sequence, except for the first.

This technique enables the model to learn the probability of each subsequent word,
conditioned on the previous ones.
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o Tokenizer Configuration:

Component Value

Tokenizer Tool Keras Tokenizer

Filters None

Lowercase False

OOV Token <unk>

Max Sequence Length Dynamically computed from corpus
Vocabulary Size Varies depending on corpus (e.g. ~4,000)

Table 8: Summary of Text preparation step.

3.4. Image Preprocessing and Data Augmentation
Each chest X-ray image is resized to 224x224 pixels to align with the input size
expected by EfficientNetB0, the chosen image encoder. Preprocessing includes:

e Conversion to NumPy arrays.

o Pixel normalization using efficientnet.preprocess_input, which performs mean
subtraction and BGR channel reordering.

Data augmentation is applied only to the training set to improve model

generalization. Augmentations include:
o Random horizontal flipping

e Small random rotations (+10%)

e Random zooming (£10%) These are implemented using TensorFlow’s Sequential

augmentation pipeline.

Step

Method

Resize

224x224 pixels

Color Preprocessing

EfficientNetB0 preprocessing (BGR shift)

Augmentation

Flip (horizontal), Rotation (x10°), Zoom (+10%)

Table 9: Summary of Image Preparation Step.
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4. System Implementation

4.1. CNN Encoder

This system employs a hybrid architecture combining visual and textual processing
modules:

Image Encoder: The visual backbone is EfficientNetB0, pretrained on ImageNet.
The model is frozen to retain general visual features and avoid overfitting. The output of
the CNN is:

e Pooled using GlobalAveragePooling2D
e Normalized with BatchNormalization
e Passed through a dropout layer (0.3)

e Projected to a 512-dimensional vector

Layer Description

Base Network EfficientNetBO (frozen)
Output Shape (None, 7, 7, 1280)

Global Pooling GlobalAveragePooling2D
Normalization & Dropout BatchNorm + Dropout(0.3)
Dense Layer 512 units + Dropout(0.3)

Table 10: Summary of Image Encoder Architecture

4.2. LSTM Decoder
A custom LSTM decoder is built using:

e A token embedding layer that transforms input sequences from vocab_size to 256-
dimensional embeddings.

o Asingle-layer LSTM with 512 hidden units, initialized using image features as both
the hidden and cell states.

e A dropout layer to regularize the LSTM output.

e A final Dense layer with softmax activation applied at each time step to produce
the probability distribution over the vocabulary.
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Layer Description

Input Token Embedding (vocab_size — 256)

Image Features Projected (Dense 512) + used as initial LSTM states
LSTM Layer Single-layer LSTM (512 units)

Dropout Dropout(0.3) after LSTM output

Output Layer Dense(vocab_size, softmax) applied per time step

Table 11: Summary of Text Decoder Architecture

The CNN encoder (EfficientNetB0) extracts visual features, which are globally
pooled and projected to 512 units to initialize the decoder's hidden state. This enables
the model to condition text generation on the input image.

Hyperparameter Value

Optimizer Adam

Learning Rate le-4

Loss Function Sparse Categorical Crossentropy
Batch Size 16

Epochs 75

Metrics Accuracy

Table 12: Summary of the CNN-LSTM model Training hyperparameters

4.3. Transformer decoder
A custom decoder is built using:

e Token embedding layer (vocab_size — 512)
o Positional encoding (sinusoidal, as in Vaswani et al., 2017)
o Concatenation of image embedding to the start of the token sequence
e 2 Transformer decoder layers, each with:

o Multi-head attention (4 heads)

o Feed-forward network (512 units)

o Layer normalization and residual connections
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The decoder output is passed through a TimeDistributed Dense layer with softmax
activation to produce a probability distribution over the vocabulary.

Layer Description

Input Token Embedding + Projected Image Feature

Positional Encoding | Applied to combined sequence

Decoder Layers 2 Transformer layers

Attention Heads 4 heads per layer

FFN Dimension 512 units

Output Layer TimeDistributed(Dense(vocab_size, softmax))

Table 13: Summary of Transformer Decoder Architecture.

o Hyperparameters
The model is compiled with the Adam optimizer and trained using the sparse
categorical crossentropy loss. Training and validation metrics are plotted to monitor
convergence and detect potential overfitting.

Hyperparameter Value

Optimizer Adam

Learning Rate le-4

Loss Function Sparse Categorical Crossentropy
Batch Size 32

Epochs 50

Metrics Accuracy

Table 14: Summary Of CNN-Transformer Model Training Hyperpameters

5. Model Training and Evaluation

The model was trained on the augmented dataset, with a batch size of 32 and over
50 epochs. The evolution of the metrics was monitored on the validation set at each epoch
in order to monitor convergence and detect any over- or under-learning. The results were
visualized using the matplotlib library, enabling the loss and accuracy curves to be
analyzed over the iterations.
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5.1. Training Evaluation Metrics:
e Accuracy measures the proportion of correctly predicted tokens.

e Loss (Sparse Categorical Crossentropy) captures how well the predicted
probability distribution aligns with the target token distribution.

Equations:
Number of correct token predictions

e Accuracy =
ccuracy Total number of tokens

e Loss = —)y;log(§;), where y; is the true class and §; is the predicted probability
for token

o For LSTM Decoder Model

Vawing Accuracy ~
valeat on ACCacy 129 —

Figure 14:Accuracy And Loss Graphs for LSTM Decoder Model

o For Transformer Decoder Model
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Figure 15: Accuracy And Loss Graphs For Transformer Deoder Model

Reported Scores:
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Metric Transformer Decoder LSTM Decoder
Training Accuracy 99.98% 93.26%
Validation Accuracy 99.15% 92.16%
Training Loss 00.97% 28.86%
Validation Loss 07.71% 42.73%

Table 15: The Model Metrics

6. Post-Processing Phase: Correction model training

In order to improve the linguistic quality and clinical fidelity of the reports
generated, a post-processing phase based on BioGPT is integrated into the pipeline. The
correction model is fine-tuned on the basis of examples made up of pairs associating the

generated reports (input) and the original reference reports (target). The structure of the
prompts used follows the following format:

Correct the following radiology report: <generated report>Corrected report:

<original_report>

This prompt format enables BioGPT to learn the distribution and structure of
realistic radiology reports written by experts. The correction model training is based on the

following elements:

e Model used: BioGptForCausalLM from the HuggingFace Transformers library.

o Token masking: application of masking with a value of -100 on the tokens in the

input prompt.

e Metrics tracking: accuracy and loss tracked at each epoch, with output in a format
similar to Keras to make it easier to interpret the results.

Fine-tuning Component Value
Model BioGptForCausalLM
Pretrained Source microsoft/biogpt

Prompt Format

“Correct the following radiology report: ...”

Learning Rate Se-5
Optimizer AdamW
Batch Size 4
Epochs 5

Development of an Intelligent System for Automatic Medical Report
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Evaluation Metrics Accuracy, Loss (Token-wise)

Table 16: Hyperparameters of the correction model

7. Evaluation and Metrics

7.1. Evaluation Methodology
The evaluation of generated and corrected reports is based on a combination of
quantitative and qualitative approaches.

¢ Quantitative evaluation: classic natural language generation metrics are calculated
in order to estimate the linguistic and semantic fidelity of the reports generated in
relation to the reference reports.

e (Qualitative evaluation: examples of generated reports are compared with the
original reports to analyze clinical relevance, linguistic fluency and terminological
consistency.

7.2. Results Overview

System performance was measured on the test set in different configurations: an
uncorrected LSTM decoder, an uncorrected Transformer decoder and a Transformer
decoder with BioGPT post-processing.

The table below summarizes the average scores obtained:

Metric LSTM decoder Transformer Transformer
without Decoder without decoder with
correction Correction Correction

Bleu-avg 0.4191 0.6071 0.8286
Bleu-1 0.4536 0.7349 0.8789
Bleu-2 0.4315 0.6802 0.8601
Bleu-3 0.4235 0.6395 0.8445
Bleu-4 0.4191 0.6071 0.8286
Rouge-L 0.4861 0.7455 0.9248
METEOR 0.0553 0.5950 0.8933
BertScore 0.8258 09121 0.9628

Table 17: Natural Language Generation Evaluation Metrics Values.

These results illustrate a significant improvement in performance when switching
from an LSTM decoder to a Transformer, as well as a significant gain in linguistic and
semantic quality thanks to the integration of the post-processing phase with BioGPT.

An in-depth analysis of the results shows a significant improvement in the
performance of our automatic radiology report generation system, thanks in particular to
the evolution of its architecture. Replacing the LSTM decoder with a Transformer proved
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to be a key factor in this progress, increasing BLEU-4 scores by 45%. This substantial
improvement is attributable to the Transformer's superior ability to model long-term
dependencies in text, enabling more consistent and structurally accurate report generation.

The integration of a post-processing phase via BioGPT has also had a significant
impact on the linguistic and semantic quality of the reports produced. This step
significantly improved the fluidity of the text, as evidenced by a 50% increase in the
METEOR score, and considerably improved medical accuracy, with a BERTScore of over
0.96. In particular, this correction made it possible to reduce terminological
inconsistencies, bringing the reports generated closer to clinical standards.

The concrete examples presented in Table 18 confirm that the clinical impressions
generated by the model are structurally very close to the reference reports, validating the
system's ability to capture the diagnostic essence. However, residual errors remain,
including misspellings of specific technical terms (e.g. ‘granulomatous disease’),
highlighting areas for improvement.

Despite these advances, certain limitations have been identified. The model shows
a data bias, struggling to generate accurate descriptions for rare conditions (e.g. partial
pneumothorax), suggesting the need for a more diverse dataset or targeted augmentation
techniques. In addition, the addition of the BioGPT module, although beneficial for quality,
leads to an increase in inference time of around 20%, a factor to be considered for real-
time integration in a clinical environment.

o Exemples

Here are some examples comparing the reports generated with the reference
reports:

Findings: The aortic is mildly tortuous. The
cardiomediastinal silhouette and pulmonary
vasculature are within normal limits. There
is no pneumothorax or pleural effusion.
There are no focal areas of consolidation.
There are T-spine osteophytes. Large body
habitus.

CNN-LSTM Model

Impression: No acute cardiopulmonary
abnormality.

Ground Truth Report:
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Generated Report:

Findings: The - is _ The
cardiomediastinal silhouette is pulmonary
vasculature are within normal limits There

is no pneumothorax or pleural effusion.
There are .

Impression:

Generated Report:

acute
abnormality. .

Findings:

Heart size borderline enlarged. No focal
alveolar consolidation, no definite pleural
effusion seen. No typical findings of
pulmonary edema. Dense nodule in the right
lower lobe  suggests a  previous
granulomatous process.

Impression:
Borderline heart size, no acute pulmonary
findings

Ground Truth Report:

Findings:

Heart size borderline enlarged. No focal
alveolar consolidation, no definite pleural
effusion seen. No typical findings of
pulmonary edema. Calcific nodule in the
right lower lobe suggests a previous
granulomatous

Impression:
Negative heart size, no acute pulmonary
finding

Cnn-Transformer + Correction

Generated Report:

Findings: Heart size borderline enlarged.
No focal alveolar consolidation, no definite
pleural effusion seen. No typical findings of
pulmonary edema. Calcific nodule in the
right lower lobe suggests a previous
granulomatous ﬂ Impression:
Negative heart size, no acute pulmonary
findings

After Correction Report:

Table 18 : Exmples of generated reports
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8. Final Discussion

The results obtained in this study highlight the considerable potential of hybrid deep
learning architectures for the automatic generation of radiology reports. In both
quantitative and qualitative terms, the performances demonstrate a significant advance in
the ability to transform complex visual information into precise, structured medical text
descriptions that comply with clinical requirements.

The architectural evolution of the system has been a key factor in improving
performance. Moving from the LSTM decoder to a Transformer architecture proved to be
a major strategic choice. The 45% increase in the BLEU-4 score illustrates the superiority
of Transformers in modelling long-range dependencies and taking into account the
contextual subtleties of the language. This advance has made it possible to generate texts
with a more rigorous syntactic structure and greater semantic coherence, thus better
meeting the expectations of specialists in the field of radiology.

The integration of a post-processing module based on BioGPT also played a key
role as a linguistic refinement layer. This component raised the final quality of the reports
by correcting lexical imperfections, harmonizing medical terminology and improving the
fluidity of the texts generated. The 50% increase in the METEOR score and a BERTScore
in excess of 0.96 testify to the system's ability to produce reports that are stylistically and
semantically close to those written by experts. This module has proved essential in
guaranteeing the readability, reliability and compliance of the reports generated with
current medical standards.

The examples presented (see Table 18) provide a concrete illustration of the
system's ability to generate clinical impressions whose structure and content are
remarkably aligned with those of the reference reports. These results validate the system's
effectiveness in extracting key diagnostic information and rendering it in a form that can
be used in clinical practice.

However, the study also highlighted certain limitations and identified areas for
improvement. Despite the encouraging results, errors remain, notably lexical
approximations on specific technical terms or difficulties in generating rare words (e.g.
‘granulomatous disease’). These findings highlight the need to refine the generation
mechanisms to better manage specialized vocabulary. In addition, a bias linked to the data
was observed: the model struggles to accurately describe certain rare pathologies, such as
partial pneumothorax. The integration of more diversified data sets or the use of
augmentation techniques targeted at these poorly represented cases could constitute
promising avenues for remedying this limitation.

Finally, although the addition of BioGPT significantly improved the quality of the
reports, it was accompanied by an increase in inference time of around 20%. Although this
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additional cost is tolerable in an experimental setting, it is a point of caution when it comes
to integrating the system into a clinical environment, where responsiveness is essential.
Future optimizations should therefore aim to reduce this latency without compromising the
linguistic and diagnostic quality of the reports.

These improvements would evolve the existing research prototype into a more
functional, flexible, and internationally implementable Al system for radiology clinical
assistance.

9. System Interface

Télécharger Accuelil

AutoXReport

Votre systéme d'lA pour la génération
automatique de rapports radiologiques.

Démarrer

10. Figure 16: Home Page of The system
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Télécharger Accueil

Télécharger une image de radiographie

Aucune image sélectionnée

(S LIDIGIETLIIE Aucun fichier choisi

Générer le rapport

11. Figure 17: Upload Image Page

Télécharger Accueil

Findings: Clear cell change was the most common finding. Impression: Clear cell change ~ *
was the most common finding. Impression: Clear cell change was the most common finding.

Télécharger une image de radiographie

Choisir un fichier [RAETEREEERY

Générer le rapport

12. Figure 18: Example

13.Conclusion

In this chapter, we presented the implementation of our system for the automatic
generation of radiological reports, which integrates visual and linguistic processing within
a deep learning framework. The system is based on a pre-trained CNN (EfficientNet-B0)
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for extracting X-ray features, combined with a Transformer decoder for generating
diagnostic texts.

We have described the main stages of the implementation, including the tools used,
data pre-processing techniques, model training and the addition of a post-processing
module with BioGPT to improve the linguistic and clinical quality of the reports. Although
the results are promising, certain limitations remain, opening up prospects for future work,
particularly in terms of data diversity, multilingual support and adaptation to other imaging
modalities.
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General conclusion and prospects

Radiological report writing is an essential part of the medical diagnostic process.
However, this task, performed manually by radiologists, is facing increasing challenges: a
high workload, inherent inter-observer variability, and increased time pressure. In this
context, automating the generation of these reports, particularly for chest X-rays widely
used in the detection of pulmonary and cardiovascular pathologies, is a promising way of
significantly improving clinical efficiency, standardising medical reports and, ultimately,
optimising the quality of care.

In this work, we proposed a comprehensive end-to-end system for the automatic
generation of radiology reports using a deep learning pipeline. The system combines
convolutional neural networks (EfficientNetB0) for image feature extraction and a custom
Transformer decoder for report generation, effectively applying the encoder-decoder
paradigm to the domain of medical image captioning. A major contribution of this work
lies in the integration of a post-processing module based on the BioGPT biomedical model.
This is used at the end of the pipeline to fine-tune the linguistic consistency, language
fluidity and compliance with medical standards of the reports generated, a crucial stage for
their clinical acceptability. The system has been rigorously trained and evaluated on the
Indiana University Chest X-ray dataset.

A critical aspect of our methodology involved careful data preparation. This
included matching chest X-ray images to their corresponding reports, cleaning textual data
using regular expressions, and formatting reports with special tokens to define clear start
and end points. The resulting dataset was then tokenized, and the image inputs were
preprocessed with normalization and data augmentation techniques to improve
generalization.

The experimental results obtained are particularly encouraging and testify to the
robustness and effectiveness of the proposed approach. The final model performed very
satisfactorily, with a BLUE-4 score of 0.8286, a RED-L of 0.9248 and a BERTScore of
0.9628. These high metrics confirm a strong semantic and lexical similarity between the
automatically generated reports and those written by professionals. The analysis of the
architectural contributions showed that the switch from an LSTM decoder to a Transformer
architecture, as well as the strategic addition of post-processing by BioGPT, were decisive
in achieving significant gains in terms of quality, semantic accuracy and readability,
enabling the system to produce reports that are structured, relevant and close to
professional standards.
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The prospects opened up by this study are vast and pave the way for future
developments. To further enhance the system's performance and broaden its field of
application, several areas of improvement are envisaged:

>

>

Refine linguistic post-processing by integrating more specialised or multi-
lingual biomedical models (e.g. BioMedGPT, ClinicalT5).

Extend the system to other imaging modalities, such as computed tomography
(CT) or magnetic resonance imaging (MRI), by adapting the architecture and
pre-processing.

Enhance learning on rare cases, using targeted data augmentation techniques or
generative models (e.g. GANSs).

Carry out clinical validation under real conditions, in collaboration with
radiologists, to assess the relevance and acceptability of the reports generated.
Optimise inference time to enable seamless integration into real-time hospital
environments.
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Annex: Startup Project

Project Idea

The project falls within the medical and healthcare sector, specifically targeting the
modernization of radiology workflows using artificial intelligence. This innovative system
seeks to automate the generation of radiology reports from chest X-ray images by
combining advanced deep learning techniques with natural language processing.

The idea originated from observing the repetitive, time-consuming nature of report
writing in radiology departments and the shortage of expert radiologists in many regions.
The aim is to support clinical staff by automating descriptive reporting, enhancing
consistency, and saving time for more critical diagnostic decisions.

To achieve this, we developed an end-to-end pipeline that uses a pre-trained
convolutional neural network (EfficientNetB0) to extract visual features from X-ray
images, followed by a Transformer-based decoder that generates textual reports in English.
The generated reports are further refined using a domain-specific large language model,
BioGPT, to ensure medical accuracy and fluency

Proposed Values
e Modernity

The system introduces a novel approach to radiology report generation by leveraging
the latest advances in computer vision and natural language generation. By replacing
manual report writing with Al-assisted tools, we offer a disruptive innovation for medical
imaging.

e Performance

Our CNN-Transformer architecture, combined with BioGPT, provides high accuracy
in generating semantically and clinically relevant English reports for chest X-ray images.
The inclusion of fine-tuning and correction mechanisms ensures robust and consistent
outputs.

e Task Accomplishment

The system automates key radiology tasks including image interpretation, findings
summarization, and impression generation. This helps clinicians by reducing workload and
enabling faster decision-making in high-throughput environments.

e Design
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The platform is designed with usability in mind. From model inference to report
correction, the system supports seamless integration into hospital information systems.
User interfaces can be adapted to the needs of radiologists with minimal technical
interaction.

e Cost Reduction

The system is designed to minimize development and operational costs, aligning with
the economic constraints of the Algerian healthcare market. Automation of the reporting
process leads to significant reductions in personnel workload and optimizes radiologist
time usage.

¢ Risk Reduction

By reducing manual input, the system minimizes human error and ensures consistent
report formatting. The correction stage using BioGPT further helps in aligning output with
clinical standards, thus reducing the risk of misdiagnosis due to report inconsistencies.

e Accessibility

We aim to make Al-assisted radiology available to hospitals and clinics with limited
access to expert radiologists. Through scalable and cost-efficient deployment models (e.g.,
local or cloud APIs), even smaller or rural facilities can benefit from Al diagnostics.

e FEase of Use

With straightforward deployment and intuitive input-output workflows, the system
ensures that healthcare professionals can use the tool without needing advanced technical
training. Reports can be generated with minimal interaction, increasing clinical efficiency.

Project Objectives
Our primary objective is to become a leader in the field of automated radiology
report generation using deep learning and natural language processing. Within the next five
years, we aim to establish our solution as a reference system in both clinical and academic
radiology environments.

Implementation Timeline

Project Stage Im |2m [3m [4m [Sm | 6m | 7m | 8m | 9m
Preliminary Studies v |V
Algorithm Development v |V
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Software Development v IV |V

Integration & Testing v

Pilot Phase v IV
Deployment VAR N
Marketing et promotion v |V

Innovative Aspects

The integration of deep learning-based computer vision models and transformer-
based language models for the automatic generation of medical reports represents a
significant advancement over traditional radiology workflows. Unlike conventional
manual dictation or template-based systems, this approach enables dynamic, patient-
specific report generation based on image content.

This project opens a new market segment for Al in radiology, specifically targeting
diagnostic support in environments with limited access to expert radiologists. By adopting
a continuous improvement strategy based on clinician feedback and advances in machine
learning, the system will remain relevant and effective over time.

Regular updates to the model architecture and language output capabilities will
ensure clinical alignment and technical competitiveness. This iterative enhancement
process is crucial for maintaining the system’s value in a fast-evolving Al and healthcare
landscape.

Strategic Market Analysis

Market Sector Overview
In Algeria, the medical sector is undergoing digital transformation, particularly in
the field of radiology, which is a critical component of diagnostic medicine. The demand
for radiological services is increasing due to population growth, the rise in chronic diseases,
and the scarcity of trained radiologists in remote regions.

Artificial intelligence in medical imaging is experiencing accelerated growth,
driven by the need for efficient diagnostic tools and the potential of machine learning to
automate and enhance clinical workflows. Automated radiology report generation systems
offer cost-effective, scalable solutions that address both efficiency and quality in clinical
documentation.
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Key Market Characteristics:

High Demand for AI Tools: Clinics and hospitals seek intelligent solutions to
streamline diagnosis and reduce manual workloads.

Healthcare Digitization Initiatives: Government and private initiatives are
increasingly supporting digital health technologies.

Emerging Multilingual Needs: In multilingual countries like Algeria, solutions
that support multiple languages (Arabic, French, English) are especially relevant.

Key Market Segments:

Public Hospitals: Seeking scalable tools to improve diagnostic accuracy under
constrained resources.

Private Clinics: Interested in cutting-edge technology for competitive advantage.

Medical Training Institutions: Looking for tools to assist in radiology education
and training.

Market Competition Intensity

The Al radiology space is moderately competitive, with several international

players offering Al-powered diagnostics. However, few provide multilingual, domain-
specific report generation with end-to-end pipelines integrated with correction
mechanisms.

Main Competitors:
Template-based Reporting Tools: Rigid and lacking adaptation to image content.

Foreign AI Solutions: Powerful but often generalized, expensive, or lacking
linguistic and clinical adaptation for local settings.

Manual and Semi-automated Approaches: Labor-intensive, less scalable, and
more error-prone.

Competitive Forces Analysis:

Entry Barriers: High development cost and requirement of medical data present
strong entry barriers.

Customer Bargaining Power: High demand for accuracy and regulatory
compliance puts pressure on solution providers to deliver robust performance.
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e Rivalry Among Providers: Ongoing innovation in Al healthcare drives constant
pressure to improve model accuracy, adaptability, and explainability.

Marketing Strategies
To maximize our market penetration and attract our target audience, we will implement a
flexible subscription-based pricing strategy tailored to different institutional needs and
budgets.

Subscription Plans:

Plan Pricing Usage Limit Key Features

Tier
Free Trial | Free Up to 3 report | Allows new users to test the system on a

generations limited number of images.

Weekly Low Up to 20 reports per | Suitable for short-term evaluations or
Plan week low-volume clinics.
Monthly | Medium | Scalable to | Designed for mid-sized clinics or
Plan hundreds of reports | research teams with continuous usage.
Annual High Unlimited usage Ideal for hospitals and enterprise users;
Plan includes multilingual & priority support.

Communication Strategies:
1. Digital Marketing:

o Develop an informative website with case studies, demo videos, and
subscription details.

o Use SEO and paid campaigns to reach targeted healthcare providers.
o Engage medical professionals through LinkedIn and specialized forums.
2. Conferences and Health Tech Expos:
o Present our system at medical technology events and radiology conferences.

o Conduct live demos to demonstrate report generation and correction
accuracy.

3. Strategic Partnerships:
o Collaborate with radiology networks, health institutions, and medical
device suppliers.
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o Offer affiliate incentives to encourage resellers and referrers.

Sales Strategies:

Launch promotional trials or free access periods for early adopters.
Provide discounts for long-term or institutional licenses.
Build a reseller and integrator network to reach hospitals and clinics.

Offer post-deployment support, training resources, and feedback loops to improve
user satisfaction.

Client Analysis
Our potential clients include:

Independent Radiologists and Small Clinics: Looking for efficient tools to
streamline reporting.

Hospital Radiology Departments: Needing scalable Al assistance for large
patient volumes.

Telemedicine and Teleradiology Companies: Benefiting from rapid and accurate
automated reports.

Medical NGOs and Government Health Initiatives: Seeking scalable diagnostic
tools in underserved areas.

System Development:

Data Collection and Cleaning: Gathering radiology images and reports,
preprocessing with tokenization and cleaning routines.

Model Development: Training the CNN-Transformer model for report generation
and fine-tuning BioGPT for correction.

Software Integration: Developing a user interface and API for clinical use,
enabling hospitals to access the system easily.

Testing and Validation:

Unit Testing: Verifying individual components like tokenizers, decoder, and
attention modules.

End-to-End Testing: Running complete inference pipelines to check output
coherence.
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e Clinical Validation: Collaborating with radiologists for expert evaluation of

generated reports.

Deployment and Maintenance:

e Model Packaging: Exporting the trained model in .keras format and tokenizer files

for easy integration.

o Infrastructure: Hosting the solution on cloud platforms with secure access for

hospitals.

e Monitoring and Updates: Regular performance reviews and model updates based

on user feedback.

Material Resources
Digital Components:

e Pre-trained CNNs (EfficientNetBO0)

o Transformer-based decoder

e BioGPT model weights

e TensorFlow and PyTorch libraries
Computational Infrastructure:

o GPU-based servers for training

e Cloud services for hosting APIs

o Data storage systems for medical datasets

Human Resources
Development Team:

e Deep Learning Engineers specialized in computer vision

o Natural Language Processing Engineers for report generation

o Backend Software Developers for API and system integration
Clinical Collaboration Team:

e Certified Radiologists for medical validation
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e Clinical Reviewers for expert feedback

Operational Team:

» Site Reliability Engineers responsible for system deployment and scaling

e API and Integration Managers

e Technical Customer Support Personnel

Project Management Team:

e Artificial Intelligence Project Coordinator

e Quality Assurance Analysts

e Medical Artificial Intelligence Program Manager

Financial study

Estimated Startup Capital

Expense Category Estimated  Cost | Estimated Cost (DZD) (1 USD =
(USD) 140 DZD)

Software development | 20,000 2,800,000

(initial)

Software licenses and API | 5,000 700,000

tools

Cloud infrastructure and | 10,000 1,400,000

servers

Dataset acquisition 3,000 420,000

Secure data storage 2,000 280,000

UI design and integration | 5,000 700,000

Initial user training 3,000 420,000

Launch marketing and | 5,000 700,000

promotion

Technical support setup 2,000 280,000

General operating costs 5,000 700,000

Total Estimated Capital 60,000 8,400,000

Monthly Operating Costs
Expense Category Monthly Cost (USD) | Monthly Cost (DZD)
Al developer salaries 8,000 1,120,000
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Clinical expert consultants 2,000 280,000
Technical support staff 2,000 280,000
Cloud hosting and maintenance | 1,500 210,000
NLP/API service usage 1,000 140,000
Communication & internet 500 70,000
Digital marketing & campaigns | 1,000 140,000
Office rent and utilities 1,000 140,000
Total Monthly Operating Cost | 17,000 2,380,000
Three-Year Financial Projections
Year | Projected | Projected | Operating | Operating Net Net Profit
Revenue Revenue Costs Costs Profit (DZD)
(USD) (DZD) (USD) (DZD) (USD)
Year | 200,000 28,000,000 | 204,000 28,560,000 | —4,000 | —560,000
1
Year | 300,000 42,000,000 | 204,000 28,560,000 | 96,000 | 13,440,000
2
Year | 400,000 56,000,000 | 204,000 28,560,000 | 196,000 | 27,440,000
3
Total | 900,000 126,000,000 | 612,000 85,680,000 | 288,000 | 40,320,000
@3
yrs)
Financial Analysis
Aspect Details
Initial $60,000 / 8,400,000 DZD
Investment
Profitability Break-even point expected by Year 2. Revenue increases due to
subscription plans and low infrastructure scaling costs.
Cost Cloud infrastructure and automation reduce operational costs.
Optimization Efficient use of personnel and external tools keeps expenses under
control.
Market High demand in public hospitals, academic institutions, and private
Potential clinics for scalable radiology automation, particularly in
multilingual contexts.
Subscription Revenue generated through tiered subscription plans (Free plan for
Model 3 reports, Weekly, Monthly, Yearly) tailored to different medical
centers' needs.
Fixed Costs (per year)
Item Cost (USD/year) | Cost (DZD/year)
Office Rent $12,000 1,680,000 DZD
Cloud Infrastructure (Base Plan) | $12,000 1,680,000 DZD
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Admin & General Expenses $5,000 700,000 DZD
Software Licenses $6,000 840,000 DZD
Total Fixed Costs $35,000 4,900,000 DZD
Variable Costs (per report)
Item Cost (USD/report) | Cost (DZD/report)
GPU/API Compute Usage $2.00 280 DZD
Technical Support $1.00 140 DZD
Token/API Calls (e.g., GPT) | $0.50 70 DZD
Total Variable Cost $3.50 490 DZD
Depreciation Calculation
Asset Cost Useful Life | Annual Depreciation
(USD) (Years) Depreciation (DZD)
GPU $20,000 5 $4,000 560,000 DZD
Accelerator
Break-even Units (Reports)
Break-even Point | Value in USD | Value in DZD
Revenue $53,846 7,538,440 DZD
Reports 5,384 5,384
Revenue Scenarios (Yearly)
Scenario | Report | Revenu | Revenue | Total | Total Net Net

s Sold | e (USD) | (DZD) Costs | Costs Profit | Profit
(USD) | (DZD) (USD) | (DZD)
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Pessimisti | 4,000 $40,000 | 5,600,000 | $49,00 | 6,860,00 | - -
c DZD 0 0 DZD $9,000 | 1,260,00
0 DZD

Realistic | 6,000 $60,000 | 8,400,000 | $56,00 | 7,840,00 | $4,000 | 560,000
DZD 0 0 DZD DZD

Optimisti | 10,000 | $100,00 | 14,000,00 | $70,00 | 9,800,00 | $30,00 | 4,200,00

c 0 0 DZD 0 0 DZD 0 0 DZD

Annual Provisions for Risk (5% of Revenue)

Scenario Revenue (USD) | Revenue (DZD) | Provision (5%) | Provision (DZD)

Pessimistic | $40,000 5,600,000 DZD | $2,000 280,000 DZD

Realistic $60,000 8,400,000 DZD | $3,000 420,000 DZD

Optimistic | $100,000 14,000,000 DZD | $5,000 700,000 DZD

Summary Equations

o Total Cost:

Total Cost = Fixed Cost + (Variable Cost X Units Sold)

e Depreciation:

Asset Price
Useful Life(year)

Depreciation/year=

e Break-Even Point (Units):

Fixed Costs
Unit Price - Variable Cost Per Unit
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