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Résumé

Ce mémoire présente SmartEpiStock, une solution intelligente de surveillance des silos à
grains reposant sur l’intégration de trois technologies majeures : l’Internet des Objets (IoT),
le Deep Learning et les ontologies. Le système développé vise à améliorer la conservation du
blé en surveillant en temps réel les conditions de stockage (température, humidité, CO, etc.),
en détectant automatiquement les anomalies à l’aide d’un modèle MobileNetV3 entraîné sur
des images de grains, et en inférant des risques à partir de règles logiques intégrées à une on-
tologie sémantique. Une application mobile conviviale permet de visualiser les alertes et l’état
du silo, renforçant ainsi la capacité des agriculteurs à intervenir rapidement. L’approche pro-
posée répond aux limites des méthodes traditionnelles de stockage, en combinant perception,
analyse et raisonnement dans un système intelligent, autonome et adaptable.

Mots-clés: Agriculture de précision, Deep learning,IoT, MobileNetV3, Ontologie, Raison-
nement sémantique, Silos à grains, Stockage intelligent, Surveillance temps réel.



Abstract

This dissertation introduces SmartEpiStock, an innovative solution for grain silo monitor-
ing based on the integration of three key technologies: the Internet of Things (IoT), Deep
Learning, and ontologies. The system is designed to optimize grain preservation by moni-
toring storage conditions in real time such as temperature, humidity, and CO, automatically
detecting anomalies using a MobileNetV3 model trained on grain images, and assessing risks
through logical rules embedded in a semantic ontology. An intuitive mobile application en-
ables users to view alerts and silo status, thereby improving farmers’ responsiveness. The
proposed approach overcomes the limitations of traditional storage methods by combining
perception, analysis, and reasoning into a smart, autonomous, and scalable system.

Keywords: Deep learning, Grain silos, IoT, MobileNetV3, Ontology, Precision agricul-
ture, rReal-time monitoring, Semantic reasoning, Smart storage .
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Introduction

General Context

Wheat is one of the world’s most essential food crops, playing a critical role in global food
security and the economies of many countries 1. After harvest, the safe and effective stor-
age of wheat grains is vital to maintaining quality, preventing economic losses, and ensuring
year-round availability [1]. However, storage conditions are vulnerable to numerous exter-
nal factors such as temperature, humidity, air circulation, pest infestations, and microbial
activity. If not properly controlled, these factors can rapidly degrade grain quality or even
lead to total spoilage [2].

In the context of digital transformation, agriculture is undergoing a paradigm shift to-
ward what is commonly known as smart agriculture. This new approach leverages emerging
technologies—such as the Internet of Things (IoT), artificial intelligence (AI), and knowledge-
based systems to enable real-time monitoring, intelligent decision-making, and dynamic con-
trol of storage environments [3]. Within this framework, the present work proposes the de-
velopment of an intelligent wheat grain storage system that integrates multiple technologies
to ensure optimal preservation and proactive risk management.

Problem Statement

The rapid growth of heterogeneous data sources and the rising demand for automation
in agricultural management highlight the limitations of traditional grain storage systems.
These legacy systems are often rigid, poorly scalable, and incapable of adapting to real-time
environmental changes. Moreover, they typically lack the capacity to fully exploit the rich
and diverse data generated by modern sensing technologies.

On one hand, IoT technologies provide the infrastructure for continuous, large-scale
data collection from the physical environment. However, this raw sensor data requires
intelligent processing to yield actionable insights. On the other hand, deep learning tech-
niques—particularly convolutional neural networks (CNNs)—have demonstrated strong per-
formance in analyzing complex data types like images, but often operate as opaque “black
boxes” with limited interpretability and no built-in understanding of domain knowledge.

Semantic technologies, particularly ontologies, address this shortcoming by providing
a formal and interpretable framework for representing domain knowledge and supporting
logical reasoning. However, ontologies alone are not equipped to perform perceptual analysis
of unstructured data such as images or real-time sensor streams.

Consequently, the core challenge addressed by this research is the design of an integrated
intelligent system capable of:

• Collecting and aggregating real-time contextual data via IoT sensors;

• Automatically analyzing this data using deep learning models;
1https://www.fao.org/publications/fao-flagship-publications/the-state-of-food-and-agriculture/

2021/en

1
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• Reasoning over the extracted knowledge using an agricultural ontology enhanced with
logical inference rules.

This hybrid approach aims to unify perception, semantic understanding, and reason-
ing within a scalable and autonomous architecture, thereby overcoming the limitations of
conventional storage monitoring solutions.

Objectives

The primary objective of this dissertation is to design and implement an intelligent wheat
grain storage system capable of:

• Automatically detecting environmental conditions and grain characteristics that may
compromise storage quality;

• Identifying damaged and infected grains through image-based classification;

• Generating timely alerts and supporting preventive interventions.

To achieve this, the project sets out the following specific objectives:

• Train a deep learning model (MobileNetV3) to classify wheat grains based on grain
images;

• Construct an agricultural ontology enriched with Semantic Web Rule Language (SWRL)
rules to infer critical storage risks;

• Implement a user-friendly mobile application to visualize alerts, monitor system status,
and facilitate user interaction.

Contribution

This work makes several scientific and technical contributions to the field of intelligent agri-
cultural systems:

• Design of a real-time data acquisition system incorporating temperature, humidity,
and motion sensors, along with imaging devices to capture grain conditions;

• Implementation and training of a lightweight, efficient MobileNetV3 model for classi-
fying wheat grains into health categories;

• Development of an agricultural ontology integrated with SWRL rules to enable infer-
ence of high-risk storage scenarios based on sensor and image data;

• Creation of a mobile application that provides real-time monitoring, interactive feed-
back, and alerts for proactive storage management.

2



Disertation structure

This dissertation is organized into two main chapters, each addressing a key component of
the proposed intelligent system for wheat grain storage monitoring, followed by a general
conclusion.

• Chapter 1: State of the Art — Synergy of Technologies for Wheat Grain
Storage Monitoring
This chapter presents a comprehensive review of the existing literature and technolog-
ical approaches relevant to grain storage. It explores the challenges associated with
post-harvest wheat preservation and examines the role of emerging technologies such
as the Internet of Things (IoT), deep learning, and semantic ontologies. Particular
emphasis is placed on how these technologies can be synergistically combined to ad-
dress the limitations of traditional storage systems and to enable intelligent, adaptive
monitoring frameworks.

• Chapter 2: Methods and Materials
This chapter details the methodological framework adopted for the development of the
intelligent storage system. It describes the architecture of the proposed solution, in-
cluding the IoT-based data acquisition system, the image classification model based on
MobileNetV3, and the design of the agricultural ontology with SWRL-based reason-
ing. It also outlines the datasets used, the experimental setup, the tools and platforms
employed, and the implementation of the mobile application for system interaction and
alert visualization.

• Conclusion
The dissertation concludes by summarizing the key findings, highlighting the contri-
butions of the proposed system, and discussing its limitations and potential directions
for future research.

3



Chapter 1

State of the Art: Synergy of Technologies
for Wheat Grain Storage Monitoring

1.1 Introduction

Ensuring the safe and long-term storage of wheat grain is a critical component of food
security and supply chain stability. However, post-harvest grain management continues
to face significant challenges due to environmental variability, biological threats, and the
limitations of traditional monitoring systems. As wheat remains a staple food for a large
portion of the global population, maintaining its quality during storage is a priority for both
producers and policymakers.

This chapter provides a comprehensive overview of the key factors affecting wheat grain
storage and introduces modern technological solutions that aim to address these issues. It
begins with a discussion of the fundamentals and challenges associated with wheat storage,
followed by an analysis of the major causes of storage losses, including biotic and abiotic
factors. The chapter then explores how storage conditions such as temperature, humidity,
and airflow influence the physical and nutritional quality of wheat over time.

To respond to these challenges, the chapter presents a set of enabling technologies that
form the foundation of intelligent storage systems. It examines the Internet of Things as
a platform for real-time, context-aware monitoring of storage environments through dis-
tributed sensors. It then introduces deep learning techniques, particularly convolutional
neural networks (CNNs), which provide powerful capabilities for image-based grain quality
assessment and predictive modeling. Finally, the chapter discusses the role of ontologies
in formally representing domain knowledge, enabling semantic reasoning, and supporting
decision-making processes.

1.2 Wheat Grain Storage: Fundamentals and Challenges

1.2.1 Traditional Storage Techniques

Since prehistoric times, various storage systems and techniques have been developed to pro-
long the availability of seasonal food resources beyond their natural harvesting period [4].
In Africa, three major types of storage systems exist, each with distinct structural char-
acteristics: traditional or local storage, which includes local cribs and rhombus structures,
platforms, open fields, rooftops, and fireplaces; improved or semi-modern storage, such as
ventilated cribs, enhanced rhombus structures, and brick bins; and modern centralized stor-
age used commercially, involving silos and warehouses.

4



The first two storage types are the most widespread, as agriculture is predominantly prac-
ticed by subsistence farmers [5]. Whether traditional or modern, several methods are used
for storing cereals, but five are considered particularly important due to their effectiveness
and frequency of use. These key methods include:bulk storage, storage in bags, storage
in metal or concrete silos,traditional granaries and hermetic storage,Each of these
methods offers specific advantages and faces particular limitations during the storage period
[6].

1.2.1.1 Underground Storage Practices(Matmour System)

Underground storage was a traditional and essential practice for the long-term preservation
of surplus cereals in farming communities. Grain could be stored for several years in these
underground pits, which provided a cool and often airtight environment[7]. However, grain
located near the surface and along the edges was frequently prone to mould. These pits
varied in capacity and could hold more than 1,000 kg of grain. They were typically located
either inside or outside houses. The pit opening was usually round and large enough for a
person to enter, with a bell-shaped cross-section (Figure 1.1). The top was sealed with a
flat stone combined with mud or cow dung to create an airtight barrier that prevented water
infiltration and pest intrusion. When the pits were dug into the soil, the ground needed to
be compact and hard to minimize water seepage [4]. This traditional storage method, known
as Matmours silos, still exists in Algeria.

Figure 1.1: Sectional view of an underground silo (Matmour) [8]

Figure 1.2: Appearance of a ‘Matmour’ [9]

1.2.1.2 Storage in warehouse

A warehouse is designed to store and physically protect grains, whether in bulk or in bags. It
can also accommodate equipment and materials necessary for packaging, handling, and pest
control. When choosing a warehouse location, several factors should be taken into account,

5



including topography, soil type, ease of access, orientation, and proximity to residential areas
[6].

Bulk storage: Grain can be effectively stored in both vertical and horizontal warehouses
(Figure 1.3). In this method, the surface of bulk-stored cereals such as wheat, barley, rye,
oat, corn, chickpea, and lentil must be properly leveled. This technique allows for a greater
volume of grain to be stored per unit area, facilitates easier sampling and monitoring, reduces
labor costs, and saves time [6]. Further advancements have been made in bulk storage
systems through the integration of pest monitoring technologies (such as acoustic detection)
and the automation of key processes including aeration, grain cooling, and pest control [10].

Figure 1.3: Bulk Storage
1

Storage in bag: For extended storage periods, certain types of grains like wheat are not
suitable for bulk storage; therefore, they are stored in bags (Figure 1.4) to maintain quality.
The moisture level in the grain is a crucial element of this method. An increase in moisture
content leads to a reduction in the number of bags in storage. This technique facilitates
easy counting of the bags and sampling from each one, but managing the products becomes
challenging since they are bagged. Additionally, the quantity of grains stored per unit area is
lower compared to bulk storage methods. This approach is also costlier due to higher labor
expenses and is more time-consuming, which increases the risk of rodent damage [11].

Figure 1.4: Bag storage
2

1https://pvc-hall.fr/bulk-storage-hall/
2http://www.knowledgebank.irri.org/step-by-step-production/postharvest/storage/

grain-storage-systems/bag-storage
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1.2.1.3 Storage in silo

Silos (Figure 1.5) represent an efficient method for grain storage. Bulk storage saves space
and facilitates mechanical handling, thereby reducing packaging and processing costs. Air
recycling inside silos, through aeration, is essential to prevent increases in grain temperature
a key aspect of silo management. There is a wide variety of silos of different sizes for bulk
grain storage. These structures can be made of concrete, bricks, or assembled sheet metal
[12].

Figure 1.5: Storage in silo
3

1.2.2 Modern and Innovative Storage Solutions

Recent advancements in grain storage technologies have led to the development of improved
systems such as aeration, cold storage and hermetic storage particularly in industrialized
nations [13].

1.2.2.1 Grain Aeration Techniques

Aeration is one of the most commonly used methods for preserving stored grain. It involves
the forced circulation of surrounding air either natural or conditioned through a bulk of
grain to enhance its storability. This technique is particularly effective for reducing grain
temperature and is typically carried out using fans and mechanical systems. Designed pri-
marily for environments with low humidity, forced aeration plays a crucial and efficient role
in commercial grain preservation [2].

1.2.2.2 Refrigerated storage

One of the main goals of refrigerated aeration in subtropical climates is to lower the grain
temperature below 18°C when ambient temperatures are too high to effectively suppress
insect activity. In this method, cooled ambient air is circulated through the bulk grain using
standard aeration systems. When combined with air-drying techniques, this method offers
valuable insight into the viability of aeration for ensuring safe commercial storage in tropical
environments [2] [14].

3http://www.silosupplier.com/grain-silo-advantages-benefits/
4https://pradosilos.com/aeration-systems/
5https://siila.com.br/news/refrigerated-warehouses-know-how-they-work/373/lang/en
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Figure 1.6: Modern Silo with Aeration Systems
4

Figure 1.7: Refrigerated storage
5

1.2.2.3 Hermetic storage

The foundation of hermetic storage (Figure 1.8) is bio-generated environments. The produc-
tion of low-oxygen and An interstitial atmosphere enriched in carbon dioxide is a outcome
of the aerobic organisms’ respiration residing inside the product [15]. The process allows
insects and other living things that breathe in the grain or the grain itself to produce the
altered environment by decreasing O2 and elevating CO2 levels via metabolism of the res-
piratory system. Breathing exercises the living things produces an atmosphere. comprising
roughly 20% CO2 and 1% to 2% O2. Success of insect control because of the hermetic
storage treatment is similar to that of traditional fumigants.(more than 99.9% fatality), and
losses brought on by insect activity little. An atmosphere with low O2 and high CO2 kills
pests such as insects and mites, and stops aerobic fungi from expanding [13].

1.2.3 Major Causes of Storage Losses

During storage, wheat grains are subject to various types of losses that can compromise
their quality and nutritional value. These losses are mainly caused by biological agents such
as insects, mites, and rodents, whose activity leads to both physical damage and microbial
contamination of the grains.

6https://www.researchgate.net/figure/Different-kinds-of-hermetic-storage-containers
-available-for-use-by-small-holder-farmers_fig6_344329525
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Figure 1.8: Different kinds of hermetic storage containers available for use by small holder
farmers

6

1.2.3.1 Insect Infestation

Insects are among the first and most significant threats to grain quality during storage. They
consume the grain, contaminate it, and spread microorganisms [10]. It is critical to moni-
tor and diagnose stored-grain insect infestations early in order to take timely and effective
pest control measures to protect stored grains[16]. Losses caused by insect infestations are
typically assessed in terms of weight reduction. However, the impact goes beyond that, as
insect activity also affects the nutritional composition of the grain, with certain nutrients
being more severely degraded than others [17]. More than 100 insect species are known to
infest stored grains, the majority being beetles, followed by moths and a group of primitive
insects called psocids [10].

Figure 1.9: Psocids
7

1.2.3.2 Mites

Throughout the processing and storage stages, mites represent significant pests of wheat and
other cereals. Due to their microscopic size, they are difficult to detect with the naked eye
and can cause considerable economic losses if not properly managed. Mites are responsible
for both qualitative and quantitative degradation of stored grains. They primarily target

7https://bugspray.com/psocids-questions-about-how-to-treat
8https://www.bugfreegrains.com/blog/grain-insects/stored-grain-insect-identification
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Figure 1.10: Beetles
8

and consume the germ, significantly damaging its contents, while also feeding though to a
lesser extent on other grain components [18] [19].

Figure 1.11: Mites
9

10

1.2.3.3 Rodents

Rats and mice can cause significant damage to both standing crops and stored products.
This damage can occur in several ways [20]:

– by consuming part of the stored products

– by contaminating food with their droppings

– by damaging buildings, storage containers, and packaging materials

– moreover, they are carriers of diseases that pose serious risks to human health

1.2.3.4 Micro-organisms

Microorganisms from the field and during storage such as fungi, yeasts, and bacteria play a
major role in the deterioration of grains during storage. Yeasts tend to dominate in sealed
silos under low oxygen conditions and when grain moisture is high. Bacteria thrive in grains
when water activity exceeds 0.9%, leading to grain degradation. Sources of contamination
by both field and storage fungi include soil and decomposing plant debris, but they may also
originate from harvesting and grain-handling equipment. Key field fungi that infect grains
before threshing or while still on the farm include species such as Alternaria, Cladosporium,
Fusarium, and Drechsclora. These fungi target grains with moisture content over 20%.

10https://www.mamawax.fr/blog/les-mites-alimentaires-qui-
sont-elleset-comment-sen-debarrasser--n73
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However, their harmful effects diminish as the grain dries during storage at that point, the
fungi either die or persist as dormant mycelium within the grain [10].

1.2.4 Influence of Storage Conditions on Wheat Quality

1.2.4.1 Moisture

Moisture plays a critical role in managing grain infestations. Insects that inhabit stored
grains and their by-products rely heavily on available moisture for survival. Typically, when
the grain moisture content is 8% or lower, insect activity is significantly limited. Moisture
is also a key factor in ensuring the safe storage of cereals and their derivatives with respect
to microbial contamination, especially by certain fungal species. Fungal growth is inhib-
ited under low moisture conditions, but begins to occur when the moisture content reaches
approximately 13% or slightly higher [21].

1.2.4.2 Temperature

During storage, wheat temperature tends to rise, primarily due to insect infestation. These
insects not only feed on the grains for energy and growth, but they also undergo respiration,
releasing heat into the surrounding environment [22].

The effects of temperature on pests are well established. Between 30 and 40 ◦C, molds
and insects actively proliferate, which accelerates the deterioration of the grain. From 40
◦C up to 55 ◦C, damage is observed at the seed level itself, compromising their viability.
When the temperature is between 25 and 30 ◦C, the biological activity of molds and insects
remains significant. Between 20 and 25 ◦C, mold development becomes more limited. At
18 to 20 ◦C, the development of young insects stops. Finally, when the temperature drops
below 15 ◦C, reproduction of most insects ceases, and molds also stop developing. Thus,
Maintain grain temperatures below 23 ◦C in summer and below 15 ◦C in winter to prevent
pest activity and preserve grain quality during storage 11.

Figure 1.12: Factors affecting the grain and microorganism respiration in the hermetic stor-
age [23]

11https://storedgrain.com.au/tag/pest-control-guide/
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1.2.4.3 Biochemical changes

Grain moisture content plays a critical role in these biochemical processes. When the mois-
ture content exceeds 18%, molds and insects become highly active, leading to rapid grain
deterioration. Between 13% and 18%, biological activity remains significant and continues
to impact wheat quality. A moisture range between 10% and 13% limits mold development,
while at 9%, the development of young insects comes to a halt. Finally, when moisture
content drops below 8%, most insects stop reproducing and molds cease to grow. There-
fore, maintaining grain moisture below 13%, and ideally under 8% for long-term storage, is
essential to slow down biochemical degradation and preserve grain quality 12.

1.2.5 Current Challenges

Traditional wheat storage methods, including underground pits (Matmours), jute bags, and
even modern silos, present significant limitations in ensuring long-term grain quality and
safety. These approaches often rely on manual inspections and lack the ability to detect early
signs of deterioration such as mold growth, insect infestation, and moisture accumulation.
Environmental conditions—especially temperature and humidity—are rarely monitored in
real time, leading to delayed interventions and substantial post-harvest losses. Moreover,
traditional systems are reactive, labor-intensive, and unable to adapt to dynamic storage
conditions. These shortcomings are particularly critical in hot and humid climates, where
biological activity accelerates spoilage.

To address these persistent challenges, Internet of Things (IoT) technologies offer a trans-
formative solution by enabling real-time environmental monitoring.

1.3 Existing IoT-Powered Systems for Intelligent Grain
Storage

The Internet of Things (IoT) refers to a network of interconnected physical or virtual “things”
(sensors, devices, machines) embedded with processing capabilities, communication inter-
faces, and unique identifiers. These components autonomously collect, transmit, and act
on data via the internet without human intervention. In agriculture, IoT enables real-time
visibility into environments (e.g., grain silos) and processes (e.g., aeration control) previously
reliant on manual oversight [24].

A comprehensive review of IoT-based monitoring systems for grain storage was conducted
in previous master work under the same academic supervision [25]. That review systemati-
cally analyzed scientific publications between 2018 and 2023 to identify sensor technologies
and architectures deployed in intelligent grain warehouse management. Key studies ad-
dressed diverse challenges such as environmental monitoring, grain theft prevention, and
inventory tracking. The systems described typically integrate temperature and humidity
sensors, gas detectors, vibration and motion sensors, RFID technologies, and microcon-
trollers such as Arduino, Raspberry Pi, or NodeMCU. Some approaches further incorporate
machine learning tools and cloud-based platforms for real-time visualization and forecasting.

The insights gained from that review form the foundation for the present study, which
aims to build upon these findings by proposing an enhanced, multi-technology solution tai-
lored for efficient and intelligent wheat grain storage.

12https://storedgrain.com.au/tag/pest-control-guide/
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1.3.1 Challenges with Existing Systems

The problem with existing IoT-systems is that sensor networks generate fragmented, het-
erogeneous data streams [26]—temperature, humidity, CO2, and images—in incompatible
formats, creating silos that prevent holistic analysis. Rule-based threshold alerts fail to cap-
ture nonlinear interactions between variables (e.g., humidity spikes accelerating mold growth
only above 25°C), leading to reactive, post-failure interventions.

Meanwhile, visual inspection struggles with grain diversity, dust occlusion, and lighting
variations, causing unreliable defect detection. Raw sensor values (e.g., “500ppm CO”) lack
actionable context without domain knowledge—such as grain type or storage duration—
leaving operators blind to emerging risks.

These systems also cannot scale expert rules to cover dynamic threats. AI models can
overcome these gaps [27]. Ontologies then can inject domain intelligence, semantically uni-
fying data into knowledge graphs that infer causality and prescribe actions [26].

Through this fusion storage systems can evolve from reactive monitoring to predictive,
adaptive intelligence—transforming raw data into decisions that preempt loss.

1.4 Artificial Intelligence for Agricultural domain

Artificial Intelligence is commonly understood as a field encompassing science, engineering,
and technology aimed at replicating intelligent behavior by mimicking human abilities such
as reasoning, perception, and response [28]. Moreover, AI is defined by a system’s capac-
ity to accurately analyze external inputs, learn from them, and apply that knowledge to
accomplish designated objectives with adaptive flexibility [29]. It is also considered a form
of machine-based information processing that imitates human cognitive functions [30]. Ul-
timately, the overarching aim of AI is to build autonomous systems capable of perception,
learning, decision-making, and interaction, thereby fostering innovation across sectors like
healthcare, finance, transportation, and beyond [31]. Furthermore, AI encompasses various
subfields such as machine learning, deep learning, natural language processing, and computer
vision.

Figure 1.13: Different subdomain of AI [32]

13



1.4.1 Theoretical Foundations

1.4.1.1 Machine Learning

"Machine Learning is a field of study that gives computers the ability to learn without
explicitly being programmed.," (Arthur Samuel, [33]).

In broad terms, machine learning represents a modern application of artificial intelligence
(AI) that enables computers to independently learn from experiences and enhance their
performance without needing specific programming. The idea is to grant machines access
to data, allowing them to learn autonomously. This relies on the machines’ capability to
understand the data’s structure and convert it into models that can be understood and
utilized by humans [34].

Machine learning encompasses several learning paradigms, including Supervised Learn-
ing, Unsupervised Learning, Semi-Supervised Learning, and Reinforcement Learning. There
are several popular machine learning algorithms, including Support Vector Machine (SVM)
[35], K-Nearest Neighbor (KNN) [36], Decision Tree (DT), Random Forest (RF) [37], K-
means [38], Fuzzy C-Means (FCM) [39], Naïve Bayes (NB), Logistic Regression (LR) [40],
and the Gaussian Mixture Model (GMM).

Figure 1.14: Different machine learning categories and algorithms [41]

1.4.1.2 Deep Learning

Deep learning represents a type of machine learning that allows computers to gain insights
from experiences and comprehend the world through a structured set of concepts. Since the
computer accumulates knowledge through experience, there is no requirement for a human
operator to explicitly outline all the information necessary for the computer [42].

Deep learning relies on artificial neural networks that consist of numerous layers (thus
the term "deep") which allow for the automatic identification of features from unprocessed
data. It includes various subfields and specific architectures, including Convolutional Neural
Networks (CNNs) for handling images, Recurrent Neural Networks (RNNs) for sequential
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information like language or time series, and Generative Adversarial Networks (GANs) for
producing new data. Each of these subfields targets distinct types of tasks and data forms,
driving progress in fields like computer vision.

1. Artificial Neural Networks (ANNs)
ANNs are computational processing systems of which are heavily inspired by way
biological nervous systems (such as the human brain) operate. ANNs are mainly
comprised of a high number of interconnected computational nodes (referred to as
neurons), of which work entwine in a distributed fashion to collectively learn from the
input in order to optimise its final output [43].

Figure 1.15: The architecture of ANN [44]

2. Deep Neural Networks (DNNs)
A Deep Neural Network (DNN), or deep learning model, refers to an artificial neu-
ral network (ANN) composed of multiple hidden layers [45]. These additional layers
enable the network to learn increasingly abstract and complex data representations
[46]. Deep learning models have shown remarkable performance when applied to large-
scale datasets, achieving significant breakthroughs in areas such as speech recognition,
computer vision, pattern recognition, recommendation systems, and natural language
processing [47].

Figure 1.16: A structure of a DNN [48]

3. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) [49] are a class of feedforward artificial neu-
ral networks particularly well-suited for extracting complex and hierarchical features.
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They are widely used in image and video analysis tasks due to their ability to maintain
spatial relationships between pixels. Unlike traditional ANNs, which treat individual
pixels independently and thus lose spatial structure [50], [51], [46], CNNs process local
pixel regions, or patches, collectively. Each patch is mapped to specific nodes in the
next layer, preserving the relative position of visual features.

A typical CNN architecture consists of several deep layers. Early layers are responsible
for detecting low-level features such as edges and corners, while deeper layers extract
more abstract and complex patterns for object recognition. The key components of a
CNN include convolutional layers, pooling layers, and fully connected layers. Notable
CNN architectures include MobileNet [52], DenseNet [53], ResNet [54], and GoogleNet
[55].

Figure 1.17: A structure of a CNN [56]

4. Generative Adversarial Networks (GANs)
GANs are a type of deep learning model consisting of two neural networks: a generator
and a discriminator. The generator learns to produce synthetic data that closely
resembles real data, while the discriminator learns to distinguish between real and
generated data. Through an adversarial training process, both networks improve by
competing with each other. This enables GANs to generate high-quality synthetic
content, such as images, videos, or other data that can be difficult to distinguish from
real-world examples [57].

Figure 1.18: A structure of a GAN [56]

5. Autoencoders (AE)
An Autoencoder (AE) is a type of feedforward artificial neural network designed for
unsupervised learning tasks. Its main objective is to filter out irrelevant noise while
preserving the most significant information from the input data [58]. The network
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functions in two main phases: the encoding phase, where input data is compressed
into a lower-dimensional representation, and the decoding phase, where it attempts
to reconstruct the original input from this compressed form. AEs are particularly
effective for anomaly detection, as they can identify unusual data points by measuring
reconstruction errors, which are typically much higher for anomalies than for normal
inputs [59]. Structurally, an AE is composed of three main components: the encoder,
the latent code (or bottleneck), and the decoder

Figure 1.19: An AE structure [60]

6. Transformer

A Transformer [61] is a type of artificial neural network designed to capture contextual
relationships in sequential data through the use of a self-attention mechanism, which
allows for efficient parallel processing [62]. Initially developed for natural language
processing (NLP), Transformers are now widely applied across diverse domains where
data can be represented as sequences, including computer vision, speech recognition,
and more.

7. Long Short-Term Memory Networks (LSTM) Long Short-Term Memory (LSTM) net-
works [63] are a specialized type of Recurrent Neural Network (RNN) designed to
capture long-term dependencies in sequential data through the use of memory cells.
Their primary objective is to overcome the limitations of traditional RNNs, particu-
larly the vanishing gradient problem, by enabling gradients to flow more effectively
during training [64]. This vanishing gradient issue occurs when gradients become too
small during backpropagation through time, impairing the model’s ability to learn
long-range patterns. LSTMs address this by incorporating memory cells and gating
mechanisms that regulate the flow of information. Due to these capabilities, LSTMs
have been widely applied in tasks such as time series forecasting, speech recognition,
and natural language processing. As illustrated in Figure X, an LSTM unit typically
consists of a memory cell, along with input, output, and forget gates.

1.4.2 Deep Learning Models in Agricultural Seed Classification Tasks

In this section, we focus on the application of deep learning techniques to grain classification.
To conduct a comprehensive review, we performed a structured search using the query "Deep
learning and grain quality classification" on the Mendeley database. This search initially
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Figure 1.20: A transformer structure [62]

returned 3,126 papers. From this set, we filtered 2,286 articles published in scientific journals
and conference proceedings. We then narrowed the selection to papers published between
2021 and 2024, resulting in 2,084 articles. To ensure accessibility and reproducibility, we
prioritized open access publications, which reduced the number to 13 articles. After a thor-
ough reading and critical evaluation of these documents, we identified 14 papers as highly
relevant to our specific area of interest:

The authors in [66] focuse on automating the identification of wheat varieties, a crucial
task for seed testing and certification. The researchers employed various Convolutional
Neural Network (CNN) architectures, including DenseNet201, Inception V3, and MobileNet,
leveraging transfer learning techniques. The dataset used consisted of 31,606 single-grain
images representing four wheat varieties: Simeto, Vitron, ARZ, and HD, collected from
different regions in Algeria. The results showed that the DenseNet201 model achieved the
highest accuracy of 95.68%, followed closely by Inception V3 at 95.62% and MobileNet at
95.49%. These findings demonstrate the effectiveness of deep learning models in accurately
classifying wheat varieties, highlighting their potential for use in seed testing and certification
processes.

In this study [67], a deep learning-based approach was proposed for barley classification
using pre-trained Convolutional Neural Networks (CNNs), specifically VGG-16, and transfer
learning. The methodology focused on overcoming the challenge of having a relatively small
number of samples by leveraging transfer learning from the large-scale ImageNet dataset.
The VGG-16 architecture was chosen for its strong performance in image classification tasks,
and the final layer was modified for the barley classification task. The model was tested with
different classifiers, including Support Vector Machine (SVM) and softmax, to evaluate its
effectiveness.

The article [68] addresses the challenge of visual inspection of grain quality typically
a manual, slow, and error-prone process—by introducing GrainSet, a large annotated im-
age database designed to support automated grain classification. GrainSet comprises over
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Figure 1.21: A structure of LSTM [65]

350,000 high-resolution images of individual kernels (wheat, maize, sorghum, rice), collected
from more than 20 regions in 5 countries and labeled by experts based on morphological
traits, weight, size, and various defect types (such as damaged, moldy, or broken grains).
The deep learning model used in the study is based on ResNet-50, enhanced with a Squeeze-
and-Excitation (SE) attention module, and trained to classify kernels into eight categories:
normal, six types of defects, and impurities. The dataset is structured by grain type, and the
model demonstrated excellent performance, achieving average F1-scores of 99.9% for wheat,
97.2% for maize, 96.8% for sorghum, and 94.1% for rice.

The article [69]introduces a highly effective and intelligent method for the automatic clas-
sification of rice varieties, called ARVDC-QIMFODL, which integrates a deep Convolutional
Neural Network (CNN) with a Quantum-Inspired Moth Flame Optimizer (QIMFO). This
approach addresses the challenge of distinguishing between rice varieties that are visually
very similar by automating the identification process using image-based deep learning. The
ARVDC (Advanced Rice Variety Detection CNN) is responsible for extracting discriminative
visual features from grain images, while QIMFO dynamically optimizes the CNN’s hyper-
parameters such as learning rate, number of filters, and kernel size to enhance accuracy and
model generalization. Additionally, the study evaluates a Long Short-Term Memory (LSTM)
model, a type of Recurrent Neural Network (RNN), for comparison purposes. However, the
LSTM underperforms compared to the CNN-based architecture, reaffirming the suitability
of CNNs for image classification tasks. The dataset includes five rice varieties—Ipsala, Ar-
borio, Basmati, Jasmine, and Karacadag—and is split into training and testing sets using a
70/30 ratio.

The work [70] addresses the challenge of automatically segmenting and classifying air-
borne pollen grains from scanning electron microscope (SEM) images, particularly in real-
world environments where images often contain numerous impurities. The main problem
lies in the lack of detailed pixel-level annotations, which makes fully supervised approaches
expensive and impractical. To overcome this, the authors propose a weakly supervised
collaborative learning framework that combines two deep learning modules: a segmenta-
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tion module based on U-Net, trained using pseudo-masks generated through unsupervised
methods, and a mask-guided classification module built on a DenseNet architecture en-
hanced with Grad-CAM to extract discriminative activation regions. These two modules
are trained iteratively and cooperatively, allowing each to refine the predictions of the other.
The dataset used consists of 1324 real SEM images of three pollen types (Cupressaceae,
Fraxinus, Ginkgo), collected in Beijing, and labeled only at the image level (global labels)
for supervision. Experimental results show a significant improvement over classical models
(VGG, ResNet, MobileNet).

This article [71] addresses the problem of identifying and classifying peanut varieties, a
crucial task for seed sorting, phenotype collection, and scientific breeding programs. The
authors propose a method based on deep learning, specifically an improved version of the
VGG16 model, in which the fully connected layers F6 and F7 were removed, a Conv6 convo-
lutional layer was added, along with a Global Average Pooling (GAP) layer, Batch Normal-
ization (BN) layers, and an Inception-style structure integrated into the Conv5 block. The
model was trained on a dataset composed of 3,365 scanned images of 12 peanut varieties,
which were segmented and labeled accordingly. The images were preprocessed (grayscale
conversion, binarization, ROI extraction) and divided into training, validation, and test sets
using an 8:1:1 ratio. The results show that the improved model achieved an average accuracy
of 96.7% on the test set, compared to 87.8% for the standard VGG16.

In [72], the authors addressed the challenge of recognizing imperfect wheat grains, which
are visually similar to perfect ones and difficult to classify using conventional image features.
To improve classification performance, they proposed a deep learning approach combining
Residual Networks (ResNet) with the Convolutional Block Attention Module (CBAM). The
dataset consisted of RGB images (100×100 pixels) of six wheat grain categories, with 3000
training images per class after augmentation.

The authors of [73] addressed the problem of automatically identifying multiple rice grain
varieties, which is essential for quality control in agriculture and difficult to achieve accu-
rately with traditional methods. They proposed a deep learning-based two-stage framework
combining DarkNet19 and SqueezeNet architectures to improve classification performance.
The system processes RGB images of five rice grain types (Khazar, Gharib, Ghasrdashti,
Gerdeh, and Mohammadi), using 75,000 labeled images for training and testing. Features
extracted from both CNN models were fused and optimized using the Butterfly Optimization
Algorithm (BOA) to select the most relevant information. The best results were achieved
after feature fusion and selection, reaching 100% classification accuracy using a cubic SVM,
demonstrating the effectiveness of combining lightweight CNN models with optimization
techniques for precise and efficient multiclass grain identification.

The article [74] addresses the research problem of automating the classification of five
rice seed varieties grown in Turkey, traditionally a manual, time-consuming, and error-prone
process. It applies Deep Learning techniques, specifically computer vision, to improve ac-
curacy and efficiency. Four Convolutional Neural Network (CNN) models were used: VGG,
ResNet, EfficientNet, and a custom-designed CNN. The data type consists of 6,833 high-
resolution images of rice seeds captured with a digital microscope. The results show that
the VGG model achieved the highest accuracy at 97%, followed closely by the custom CNN,
demonstrating the effectiveness of deep learning models in agricultural seed classification
tasks.

This study [75] addresses the research problem of accurately detecting and classifying
closely related grain storage pests Tribolium and Sitophilus species—in real wheat stor-
age conditions, where manual identification is difficult and hazardous. Using Deep Learn-
ing, the authors developed MCSNet+, an enhanced convolutional neural network (CNN)
model incorporating Soft Non-Maximum Suppression (Soft-NMS), Position-Sensitive Pre-
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diction Modules (PSPM), and optimized anchor boxes to improve detection accuracy and
speed. The model used is based on the Faster R-CNN architecture with modifications for
improved small-object detection, leveraging pre-trained CNNs such as VGG16, ResNet50,
and a custom MCS structure. The data type includes over 26,000 annotated images of pests
collected from both laboratory and real warehouse environments.

The research problem tackled in [76] is the accurate classification of different rice varieties,
which is essential for quality control in agriculture but traditionally done manually, leading
to inefficiencies. The authors employed Deep Learning techniques to automate this process,
focusing on two models: Vanilla Convolutional Neural Network (CNN) and VGG16, a widely
used pre-trained deep learning architecture. The data type consists of a large dataset of
75,000 RGB images (250×250 pixels) of five rice varieties Basmati, Jasmine, Arborio, Ipsala,
and Karacadag—each represented by 15,000 images.

This article [77] addresses the research problem of automating maize grain quality as-
sessment. The authors apply deep learning methods to improve accuracy and efficiency in
classification. Specifically, they use Convolutional Neural Networks (CNNs), with transfer
learning applied to VGG-16 and VGG-19 models. The system is trained on a balanced
dataset of 2,500 maize grain images categorized into five quality levels: Excellent, Good,
Average, Bad, and Worst.

Table 1.1 provides a consolidated overview of recent deep learning applications in the
classification of grain images, highlighting the models used, datasets and evaluation metrics.

Ref Research Problem Deep Learning
Model Used

Data Type Results

[66] Identification of wheat va-
rieties for seed testing

DenseNet201, Incep-
tion V3, MobileNet
(transfer learning)

31,606 single-grain images, 4
varieties (Algeria)

DenseNet201 achieved 95.68%
accuracy; Inception V3:
95.62%, MobileNet: 95.49%

[67] Barley variety classifica-
tion with limited samples

VGG-16 with SVM
and softmax classi-
fiers

Front/back images of barley
varieties

Best: 94% accuracy (SVM
with feature fusion); cross-
validation avg: 94%

[68] Automating grain quality
inspection

ResNet-50 + SE,
VGG19, Inception-
v3, ResNet-152

350,000+ RGB single-kernel
images (wheat, rice, maize,
sorghum)

F1-score up to 99.9% for wheat
, 97.2% for maize, 96.8% for
sorghum, and 94.1% for rice.

[69] Rice variety classification
(similar appearance)

ARVDC-QIMFODL
(CNN + QIMFO),
LSTM

5 rice varieties (image
dataset, 70/30 split)

Accuracy up to 99.66%; robust
even with 30% training data

[70] Pollen segmenta-
tion/classification with
weak labels

U-Net + DenseNet +
Grad-CAM

1324 SEM images, 3 pollen
types

Accuracy: 86.6%, F1: 86%,
Specificity: 93.2%, mIoU:
92.47%

[71] Peanut variety classifica-
tion for breeding

Improved VGG16
(GAP, BN, Inception
module)

3365 scanned images of 12
peanut varieties

Accuracy: 96.7%; outperforms
standard VGG16 (87.8%); F1
97.2%

[72] Recognizing imperfect
wheat grains

ResNet-50 + CBAM RGB images (100×100 px), 6
wheat grain classes

Accuracy: 97.5%, F-measure:
96.12–99.5%

[73] Rice variety classification
(multi-stage)

DarkNet19 +
SqueezeNet + BOA

75,000 RGB images, 5 rice
types

100% accuracy (cubic SVM af-
ter feature fusion and selec-
tion)

[74] Rice seed variety classifica-
tion in Turkey

VGG, ResNet, Ef-
ficientNet, custom
CNN

6833 microscope images, 5
rice varieties

Best accuracy: 97% (VGG);
custom CNN close second

[75] Detection of wheat storage
pests

MCSNet+ (Faster R-
CNN + Soft-NMS +
PSPM)

26,000+ annotated pest im-
ages (real & lab)

mAP: 94.27% (Tribolium),
92.67% (Sitophilus)

[76] Rice variety classification Vanilla CNN vs
VGG16

75,000 RGB images (5 rice
varieties)

VGG16: 99.5% accuracy vs
Vanilla CNN: 95.3%

[77] Maize grain quality assess-
ment

VGG-16, VGG-19
(transfer learning)

2500 images, 5 quality levels VGG-16: 92% accuracy, VGG-
19: 90%

Table 1.1: Summary of Deep Learning Application in Grain Image Classification
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1.5 Agricultural Ontologies: Knowledge Modeling for Het-
erogeneity Problem

In complex systems such as agricultural supply chains, data is often generated from diverse
sources, formats, and domains, leading to significant heterogeneity issues. This hetero-
geneity can hinder seamless data integration, interoperability, and effective decision-making.
Ontologies offer a powerful solution to this challenge by providing a formal, structured rep-
resentation of knowledge that enables semantic interoperability among heterogeneous data
sources [78].

To conduct a comprehensive review on the use of ontology in agriculture, we performed
a structured search using the query "Existing Agricultural Ontologies" on the Mendeley
database. This search initially returned 110 papers. From this set, we filtered 99 articles
published in scientific journals and conference proceedings. We then narrowed the selection
to papers published between 2019 and 2023, resulting in 36 articles. To ensure accessibility
and reproducibility, we prioritized open access publications, which reduced the number to 19
articles. After a thorough reading and critical evaluation of these documents, we identified
6 papers as highly relevant to our specific area of interest:

The article [79] presents an agricultural ontology specifically developed for the Saudi
context, named SAAONT. The main objective is to structure and standardize agricultural
terminology in the Arabic language, while providing a semantic knowledge base capable of
supporting intelligent decision-making systems. This initiative addresses two major gaps:
the lack of technological tools in the Saudi agricultural sector, and the absence of ontologies
tailored to the local language and context. The developed ontology enhances the retrieval
of accurate and relevant information for decision-makers and farmers, thus contributing to
the establishment of a more intelligent, sustainable, and context-aware agriculture in Saudi
Arabia.

The article [80] presents an extension of the ONTAgri ontology by integrating it with a
Service-Oriented Architecture (SOA) to support precision farming applications. ONTAgri
is an agricultural ontology designed to represent domain knowledge related to crop produc-
tion, pests, soil, weather, and other farming factors. However, to enhance its applicability
in real-time decision-making systems, the authors propose coupling ONTAgri with web ser-
vices within a service-oriented framework. This integration allows farmers and agricultural
systems to access semantically enriched information through interoperable services, enabling
more dynamic, personalized, and context-aware farming support. The extended system im-
proves data sharing, reusability, and interoperability across agricultural platforms, aiming
to support precision agriculture by providing timely and relevant recommendations based on
environmental and crop data. The proposed approach demonstrates how semantic technolo-
gies, combined with SOA, can bridge the gap between ontological knowledge and practical
smart farming solutions.

This paper [81] addresses the problem of integrating heterogeneous agricultural data,
which often come from diverse sources such as weather stations, farm management systems,
and remote sensors, and are expressed in different formats and semantics. This heterogeneity
poses a significant barrier to data interoperability and reuse. To solve this issue, the authors
propose the use of semantic technologies specifically ontologies, RDF (Resource Description
Framework), and SPARQL queries to semantically structure and integrate agricultural data.
Their method involves aligning data from various sources through a semantic layer, enabling
consistent representation and improved accessibility. The study is conducted within the
context of French agriculture, illustrating real use cases relevant to the local agricultural
system. The proposed approach demonstrates how semantic integration can facilitate better
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data sharing, enhance decision making, and support the development of intelligent farm-
ing systems. Although the article does not include a formal experimental evaluation, it
contributes by presenting a conceptual framework and practical perspectives for applying
semantic technologies in agriculture.

The article [82] presents an open platform based on ontologies aimed at improving seman-
tic and syntactic interoperability of agricultural data from Internet of Things (IoT) sources.
The work focuses on the use of crop-specific trait ontologies, particularly for hazelnuts,
to structure and annotate data collected from wireless sensor networks, weather stations,
and other agricultural systems. The system includes ontology-based data acquisition forms,
mapping rules linking sensor data to ontology concepts, and web services for data exchange
between different applications. The data is stored in formats compatible with the semantic
web (RDF/XML, JSON, CSV). This approach enables better integration, visualization, and
utilization of agricultural data, promoting smarter and more interoperable precision agri-
culture. Although developed for hazelnut cultivation, the method can be adapted to other
crops by creating specific ontologies.

[83] Post-harvest loss is a major challenge in intelligent agriculture, especially for fruits
like the Sekai-ichi apple, which is highly prone to diseases and experiences significant wastage
during the post-harvest stage. To address this issue, the authors propose an ontology-enabled
Internet of Things (IoT) framework that uses a hierarchical model to improve the detection
and separation of damaged fruits. This model operates on three levels: the lower level in-
volves manual separation and reliability detection, the middle level handles variations by
reducing overfitting and improving adaptability, and the upper level refines fruit classifica-
tion through image segmentation. The system uses a method called Boosted Continuous
Non-spatial whole Attribute Extraction (BCNAE) to extract image features such as area,
compactness, entropy, and moments from 3D sensor images. These features are structured
into an ontology that supports precise identification of damaged areas using a region-based
RIGS algorithm.

This article [84] presents the design and development of RiceMan, an ontology based
expert system for identifying rice diseases and recommending appropriate treatments. The
authors developed two ontologies—RiceDO and TreatO v2 based on trusted agricultural
sources to represent rice disease symptoms (including pest-related issues) and corresponding
control measures. RiceMan integrates these ontologies and employs ontology-based reason-
ing by composing user observations to diagnose diseases and suggest suitable treatments.
The system was evaluated through practical tests with four stakeholder groups in Thailand,
including ontology experts, senior and junior agronomists, and agricultural students. Eval-
uation results showed that the ontologies were consistent and the system was effective in
assisting with disease diagnosis, though some vocabulary enhancements were recommended.

Table 1.2 provides a summary of existing agricultural ontologies, highlighting their main
objectives, domains of application, and key features relevant to knowledge modeling in smart
farming and agri-food systems.

1.6 Conclusion

In this chapter, we explored the multifaceted challenges associated with wheat grain storage
and highlighted the critical need for intelligent, real-time monitoring systems. We first exam-
ined the factors that contribute to storage losses, including pests, moisture, and temperature
fluctuations, which significantly impact grain quality.

To address these challenges, we reviewed a synergy of emerging technologies that enable
smarter and more adaptive storage systems. The Internet of Things (IoT) offers a scalable
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Ref Research Problem Ontology/Method Purpose
[79] Lack of technological tools and

context-specific ontologies in Saudi
agriculture

SAAONT (Agricul-
tural Ontology)

Structure and standardize agricultural terminology
in Arabic, support intelligent decision-making sys-
tems, and enhance information retrieval for farmers.

[80] Need for real-time decision-making
systems in agriculture

Extension of ON-
TAgri ontology with
Service-Oriented
Architecture (SOA)

Enhance data sharing, reusability, and interoperabil-
ity for precision farming through semantic web ser-
vices.

[81] Integration of heterogeneous agri-
cultural data from various sources

Use of semantic
technologies (RDF,
SPARQL)

Facilitate semantic data integration and improve
decision-making and accessibility in agriculture.

[82] Lack of interoperability for agricul-
tural data from IoT sources

Ontology-based plat-
form for crop-specific
trait ontologies

Improve the integration, visualization, and utiliza-
tion of agricultural data from IoT sources.

[83] Post-harvest losses due to fruit
damage

IoT-enabled ontology
framework for detect-
ing and separating
damaged fruits

Reduce post-harvest losses by improving detection
accuracy and processing time.

[84] Rice disease identification and
treatment recommendations

RiceDO and TreatO
v2 ontologies

Assist with rice disease diagnosis and treatment rec-
ommendations using ontology-based reasoning.

Table 1.2: Summary of Existing Agricultural Ontologies

solution for real-time environmental monitoring, while deep learning techniques provide ad-
vanced analytical capabilities for visual grain quality assessment. Additionally, semantic
ontologies were presented as a means of encoding expert knowledge and supporting auto-
mated reasoning for informed decision-making.

These technologies establish a solid foundation for the development of an integrated
system capable of perception, analysis, and intelligent response. Building upon the insights
and technological components discussed in this chapter, the next chapter will present the
proposed architecture, methodology, tools, and implementation details of our intelligent
wheat grain storage system.
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Chapter 2

Methods and Materials

2.1 Introduction

This chapter presents the methodological framework and technical components employed to
realize the objectives outlined in this dissertation. The proposed intelligent wheat grain stor-
age system integrates multiple technologies to address the challenges of quality monitoring,
risk prediction, and decision support in wheat grain warehouses management.

In alignment with the primary goal of ensuring safe and efficient grain storage, the meth-
ods adopted in this work include the use of deep learning, semantic modeling, and mobile
computing. First, we describe the used dataset of wheat grain images, followed by the train-
ing and optimization of the MobileNetV3 model for classifying grain health conditions. To
address the heterogeneity of sensor data and enhance reasoning capabilities, we present the
development of a domain-specific agricultural ontology, enriched with Semantic Web Rule
Language (SWRL) rules to infer storage risks dynamically.

In addition, this chapter details the design of the architecture used for real-time data
acquisition, involving environmental sensors and imaging devices. Finally, we explain the
development of a user-friendly mobile application that enables users to interact with the
system, monitor storage conditions, and receive timely alerts.

2.2 Image Dataset Description

In this study, we used the GrainSet dataset [68] for the classification of image wheat grain.
This dataset contains high-resolution images of individual wheat grains, extracted from a
larger collection of more than 350,000 images that also includes maize, sorghum, and rice.
Each grain was photographed from top and bottom views using a specialized optical imaging
device, and manually annotated by expert inspectors. The dataset used comprises a total
of 200,000 images distributed across eight grain quality categories. The largest portion
of the dataset corresponds to normal (NOR) grains, accounting for 120,000 images, which
reflects a significant representation of healthy samples. The remaining images are evenly
distributed among various defect classes, each representing specific quality issues (Figure 2.2).
These include 13,000 images each for Fusarium & Shriveled (F&S), Sprouted (SD), Moldy
(MY), and Pest Attacked (AP) grains. The Broken (BN) category includes 14,500 images,
while Black Point (BP) and Impurities (IM) are represented by 3,500 and 10,000 images
respectively. This distribution ensures sufficient representation of both normal and defective
grain types, enabling robust deep learning-based classification and quality assessment.

The use of this dataset is further justified by the limited availability of open-access,
high-quality datasets dedicated to wheat grain classification in existing literature. Exist-
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Figure 2.1: Examples of Dataset Classes

ing (Section 1.4.2) studies in the field of grain quality assessment employ proprietary or
institution-specific datasets that are not publicly available, which hinders reproducibility
and comparative evaluation of deep learning approaches. In contrast, the dataset used in
our study provides a large-scale, well-annotated collection of 200,000 images covering a wide
spectrum of real-world grain quality categories. This makes it particularly valuable for train-
ing and validating deep learning models aimed at automating quality inspection processes.
Its comprehensive coverage of both normal and defective grains ensures that the model can
generalize across diverse conditions, thus supporting the development of a robust and scalable
intelligent grain monitoring system.

All images are resized to a fixed resolution of 224 × 224 × 3 , which matches the standard
input size expected by the MobileNetV3-Large model. This resizing ensures uniform pro-
cessing of images with varying original dimensions, while preserving the general proportions
of the objects within the image.

2.3 Deep Learning Classification

In this work, we adopt MobileNetV3-Large as the backbone convolutional neural network for
image-based wheat grain classification, due to its excellent trade-off between accuracy, speed,
and computational efficiency key requirements for real-time mobile deployment. MobileNet
belongs to a family of lightweight deep learning models specifically designed for mobile and
embedded vision applications, where computational resources are often limited.

The original MobileNet architecture [52] introduced the concept of depthwise separable
convolutions, which decompose the standard convolution operation into two simpler steps:
a depthwise convolution (applying one filter per input channel), followed by a pointwise
1×1 convolution (to combine outputs across channels). This design significantly reduces the
number of parameters and floating-point operations, making the model compact and efficient
for edge devices such as smartphones and IoT-based systems. Furthermore, MobileNet
incorporates width and resolution multipliers, enabling users to adjust the model’s depth
and input resolution to balance accuracy against computational cost.

Subsequent improvements came with MobileNetV2 [85], which introduced inverted resid-
ual blocks and linear bottlenecks to enhance information flow and memory efficiency. In this
architecture, each block first expands the feature space using a lightweight convolution, pro-
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cesses it using a depthwise separable convolution, and projects it back to a lower-dimensional
space through a linear 1 × 1 convolution, omitting non-linear activation in the bottleneck
layer to preserve representational power.

MobileNetV3 [86], the latest evolution, combines architecture search with manual tuning
to optimize both performance and efficiency. It incorporates the structural advantages of
MobileNetV2 while adding Squeeze-and-Excitation (SE) modules to better capture inter-
channel dependencies, as well as the h-swish activation function, which improves performance
while remaining hardware-friendly. MobileNetV3 is available in two versions: Small, designed
for ultra-low-latency applications, and Large, optimized for tasks requiring higher accuracy.

Figure 2.2: A structure of MobileNetV3
1

The architecture of MobileNetV3-Large consists of three main components: an initial
standard convolution layer, followed by a sequence of bottleneck blocks with SE and h-swish
enhancements, and a final classification head. This design ensures efficient feature extraction
and accurate classification with minimal resource consumption—perfectly aligned with the
goals of our mobile-based grain monitoring solution.

1. Input Layer

– Input: RGB image resized to 224× 224× 3

– A 3× 3 convolution layer with 16 filters and stride 2

– Followed by Batch Normalization and Hard-Swish activation

2. Bottleneck Blocks (B1)

MobileNetV3-Large contains 15 bottleneck blocks, each with varying parameters:

– Kernel sizes: mostly 3× 3 or 5× 5

1https://www.researchgate.net/figure/The-MobileNetV3-architecture-and-its-core-components_
fig4_375462137
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– Expansion factors: up to 6× the number of input channels

– Output channels: from 16 up to 160

– SE blocks: applied in some layers (Squeeze-and-Excitation for attention)

– Activations: ReLU and Hard-Swish, depending on the block

– These blocks perform:

– Depthwise convolutions for efficient spatial filtering

– Pointwise convolutions (1× 1) for channel mixing

– Residual connections (skip connections) when possible

– The sequence of blocks allows the network to learn increasingly abstract and complex
features

3. Final Convolution Block (B2)

– After the bottleneck blocks, a 1×1 convolution layer increases the number of channels
to 960

– Followed by Batch Normalization and Hard-Swish activation

4. Classification Head (B3)

– A Global Average Pooling layer compresses spatial dimensions (H×W) to 1× 1

– Two fully connected layers (implemented as 1× 1 convolutions):

– The first expands the features to 1280

– The second projects down to the number of classes (e.g., 8 in our case)

– Final activation is Softmax to produce class probabilities

Figure 2.3: A structure of MobileNetV3-Large
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2.4 Experimental Setup

The experiments were conducted on the workstation DESKTOP-38CR7NV, running Win-
dows 11. It is equipped with dual Intel(R) Xeon(R) Gold 6138 CPUs, each operating at 2.00
GHz, and features 128 GB of RAM. The system has a 64-bit architecture with an x64-based
processor.

The model was trained from scratch using two subsets: a training set comprising 80% of
the data (180,000 images) and a testing and validation set comprising the remaining 20%
(20,000 images). Hyperparameter values were selected empirically based on insights gained
through extensive experimental testing. Various combinations were explored to identify
those that provided the best generalization across different datasets while minimizing the
risk of overfitting. The optimization algorithm employed was Adaptive Moment Estimation
(Adam [87]) with its default parameters.

Hyperparameters Description

Batch Size

Batch size refers to the number of samples processed simultaneously during a single training
iteration. It has a direct impact on both training efficiency and memory consumption. While
larger batch sizes can accelerate training, they also demand more computational resources.

Epoch

An epoch refers to one complete pass through the entire training dataset. This option
specifies the number of epochs to be used during training.

Learning Rate

The learning rate determines the step size used by the optimizer to update the model’s
weights during training. A learning rate that is too high may cause the model to overshoot
the optimal solution, while a rate that is too low can result in slow convergence.

Optimizer

An optimizer is an algorithm used to update the weights of a neural network in order to
minimize the loss function during training. Its main goal is to improve the model’s perfor-
mance by reducing prediction errors. Optimizers determine how the model’s parameters are
adjusted at each step based on the gradients computed through backpropagation. There are
different types of optimizers, such as:

• SGD (Stochastic Gradient Descent) – updates weights using a fixed learning rate
and a single or small batch of samples.

• Adam (Adaptive Moment Estimation) – combines momentum and adaptive learn-
ing rates for faster and more efficient convergence.

• RMSprop – maintains a moving average of squared gradients and adapts learning
rates accordingly.

A summary of the tested hyperparameters and the final chosen values is presented in
Table 2.1.
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Hyperparameter Values Explored Selected values
Batch size 8, 16, 32, 64, 128, 256 64
Epochs 1,2, .. .,1000 301
Learning rate 0.000001, 0.00005, 0.00002, 0.00001, 0.0005,

0.0002, 0.0001, 0.005, 0.002, 0.001, 0.01
0.00005

Table 2.1: Hyperparameters configuration

2.5 Evaluation and Results

Evaluation metrics

To evaluate the proposed system, we employed various classification performance metrics,
including:

Confusion matrix

The confusion matrix [88] is a fundamental tool in predictive analytics for evaluating the
performance of classification models. It provides a summary of the model’s prediction results
by displaying the number of correct and incorrect predictions in a tabular format.

Specifically designed for classification tasks, especially binary classification, the confusion
matrix takes the form of an N x N square matrix, where N is the number of target classes.
In this matrix, rows typically represent the predicted classes, Columns represent the actual
(true) classes. By examining the diagonal elements of the matrix, one can identify the
number of correct classifications. Off-diagonal values indicate the types and frequency of
misclassifications, offering insight into the model’s behavior. The confusion matrix includes
the following key components:

True Positive (TP): The model correctly predicted the positive class.
False Positive (FP): The model incorrectly predicted the positive class .
False Negative (FN): The model incorrectly predicted the negative class.
True Negative (TN): The model correctly predicted the negative class.

Precision

refers to the proportion of correctly identified positive instances among all instances that
the model has labeled as positive. It is computed by dividing the number of true positives
by the sum of true positives and false positives:

Precision =
TP

TP + FP

This metric indicates how accurate the model’s positive predictions are.

Recall

also known as sensitivity, measures the proportion of actual positive instances that are
correctly identified. It is calculated by dividing the number of true positives by the sum of
true positives and false negatives:

Recall =
TP

TP + FN

This metric reflects how well the model is able to identify all relevant cases within a dataset.
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Loss Function

A loss function is a mathematical function that measures the difference between the pre-
dicted output of a model and the actual target value. It quantifies how well or poorly the
model is performing during training. The goal of training a neural network is to minimize
this loss function, thereby improving the model’s predictions.There are different types of loss
functions depending on the task; in our system, we used the Categorical Cross-Entropy loss.

Accuracy

Accuracy is a fundamental metric used to evaluate the performance of a model. It rep-
resents the proportion of correct predictions out of the total number of predictions made.
This includes both true positives (TP ) and true negatives (TN), meaning the instances
correctly identified by the model. Accuracy is calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN

F1-score

The F1 score is the harmonic mean of precision and recall. It is particularly useful when
dealing with imbalanced datasets, as it provides a balance between the two metrics. A
perfect F1 score of 1.0 indicates that the model has achieved both perfect precision and
perfect recall, while a score of 0.0 means very poor performance in one or both aspects.

The F1 score is calculated using the following formula:

F1Score =
2 · (Precision ·Recall)

Precision+Recall

Table 2.2 presents the accuracy and loss values obtained for the training and testing sets.
Figure 2.4 illustrates the progression of the training loss and accuracy over the epochs. From
Figure 2.4, it can be observed that the model’s accuracy increases rapidly during the initial
epochs and finally stabilizes after 301 epochs, reaching its optimal performance of 99.27%.
The loss function follows an inverse curve, decreasing steadily during the initial epochs, then
stabilizing and eventually reaching its minimum value of 0.0226.

For the testing set, the model achieves an accuracy of 98.33% and successfully minimizes
the loss to 0.0574. The accuracy is distributed across the classes, as shown in the confusion
matrix in Figure 2.5. As observed, the individual class accuracies are well aligned, indicating
consistent performance across different classes. In order to identify the classification errors
made by the model, we thoroughly examined the misclassified images for each of the eight
classes. We found that the highest misclassification error occurred in the AP class. The
images from this class often contain small holes caused by pests, which are not clearly
visible. This lack of clarity leads the model to misclassify them as NOR or, in some cases,
as SP, due to the visual similarity between pest-induced holes and those caused by the
early stages of sprouting. We found another significant misclassification error in the MY
class. Images of wheat containing small powdery spots were misclassified as F&S, likely
due to the visual similarity between the grain curling patterns and those found in F&S
samples. The misclassification errors in the F&S class occur in images containing grains
with pronounced curling, which appear similar to the holes caused by pests in the AP class.
The misclassification in the NOR class occurs in images of grains with an indented lower
edge, which visually resembles the edge damage caused by pests in the AP class. As a result,
these grains are often misclassified as AP. The misclassification error in the SD class occurs
in images of grains that often exhibit early stages of sprouting. These visual characteristics
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resemble grains from the AP class, which have small holes caused by pests. However, a
few misclassifications were observed in classes such as BP, BN, and IM. Overall, the model
demonstrates near-perfect classification performance for these classes, with the few errors
primarily occurring in images that lack clear or distinctive class-specific features

Accuracy Loss
Train 0.9927 0.0226
Test 0.9833 0.0574

Table 2.2: Performance on training and testing sets

Figure 2.4: Training set loss and accuracy progression

The dataset exhibits some imbalance, as shown in Table ??. To understand the effect of
this imbalance, we carried out a more detailed analysis of the model’s performance. Along
with the confusion matrix results, we evaluated the model using three main metrics: preci-
sion, recall, and F1 score. Table 2.3 presents the results for these metrics. A recall value of
0.9833 shows that the model identifies about 98.33% of all actual positive cases. A precision
of 0.9832 means that when the model predicts a positive class, it is right about 98.32% of the
time. The F1 score, at 0.9831, confirms that the model keeps a strong balance between pre-
cision and recall. The close values of precision, recall, and F1 score indicate a well-balanced
classification performance.

As shown in Figure 2.5, the accuracy of the majority class, Normal (NOR), is not the
highest. The minority classes, like Black Point (BP) and Insect Damage (IM), do not
have the lowest accuracies. This indicates that the model does not demonstrate a strong
bias toward the majority class and is capable of effectively recognizing minority classes. In
addition, we analyze false positives (FP) (last ligne) and false negatives (FN) (last column)
across all classes. We found that the majority class, Normal (NOR), has a small number
of false positives. This means the model does not often misclassify other classes as Normal.
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Figure 2.5: Confusion matrix

It shows that there is no bias toward the majority class and that the model can clearly
distinguish NOR from other classes, even when there is class imbalance. On the other hand,
the minority classes, like Black Point (BP) and Impurities (IM), have few false negatives.
This shows that the model can correctly classify most examples of these minor classes. It
demonstrates its ability to recognize and differentiate minority class instances from others,
despite their limited presence in the dataset.

F1-score Precision Recall
Test 0.9831 0.9832 0.9833

Table 2.3: Performance on testing set

2.5.1 Model Testing

To evaluate the model in a real-case scenario, a single image was provided as input. The
model performed inference and predicted the corresponding class. In this example, the
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predicted class is NOR, indicating that the image was classified as normal by the model.
This test confirms that the prediction pipeline image loading, preprocessing, inference, and
result display is functioning correctly.

Figure 2.6: Model classification result for a test image

2.6 Ontology Development

The ontology forms the knowledge backbone of our smart storage system, providing a seman-
tic framework that integrates heterogeneous data streams – including MobileNetV3 defect
classifications from the GrainSet dataset and real-time IoT sensor networks – into a unified
reasoning environment. Built using Methontology, this domain model enables context-aware
decision automation through SWRL rules by formally representing key entities and their
relationships.

2.6.1 Domain definition and objectives

This ontology aims to create an intelligent decision-support system that integrates Mo-
bileNetV3 outputs, real-time IoT environmental monitoring, and expert domain knowledge
into a unified semantic framework.

Its primary purpose is to prevent wheat grain disease in storage facilities by enabling
automated, context-aware interventions through SWRL reasoning rules.

2.6.2 Information Collection

The development of the agricultural ontology for intelligent wheat grain storage was grounded
in a rigorous and multi-source information collection phase. This process began with a com-
prehensive review of scientific literature, including peer-reviewed journal articles, academic
theses, and technical reports related to wheat storage, grain quality assessment, and post-
harvest management [89] [90]. These sources provided foundational theoretical knowledge
and helped identify core domain concepts, such as storage conditions, quality parameters,
degradation risks, and operational practices.

To complement the theoretical insights, a professional internship was conducted at the Di-
rectorate of Cereals and Pulses (Direction des Champs et des Légumineuses) in the province
of Guelma. During this internship, practical experience was acquired within the quality
control department, where various aspects of wheat storage management were directly ob-
served. This included batch inspection protocols, classification criteria, environmental con-
dition monitoring, and infrastructure handling procedures. First-hand exposure to opera-
tional challenges—such as maintaining optimal humidity and temperature ranges to prevent
spoilage—helped bridge the gap between academic knowledge and field realities. This prac-
tical engagement significantly enriched the ontology development process by ensuring that
the modeled knowledge reflects both scientific standards and operational needs.

Competency Questions for Ontology Development

Before initiating the formal construction of the ontology, a set of competency questions was
defined. These questions serve as a methodological tool to guide ontology design by outlining
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the scope, purpose, and types of reasoning the ontology must support. They also help ensure
that the ontology aligns with real-world informational and decision-making needs within the
domain of wheat grain storage.

General Questions

– What are the main conditions required to ensure proper wheat storage?

– Why is it important to control humidity during wheat storage?

– What are the risks associated with poor wheat storage?

– What are the economic impacts of wheat quality degradation during storage?

– How does climate variability influence wheat storage practices?

Questions about Humidity and Temperature

– What is the optimal humidity level for long-term wheat storage?

– How does temperature affect the quality of stored wheat?

– What tools or equipment can be used to monitor humidity and temperature in grain
silos?

– What are the acceptable temperature and humidity ranges to avoid mold or pest
proliferation?

– How frequently should environmental conditions be monitored in storage facilities?

Questions about Storage Infrastructure

– What are the differences between silo storage and warehouse storage?

– What materials are best suited for building grain silos, and why?

– How does the choice of storage infrastructure impact the shelf life of wheat?

– What design features can help improve air circulation in wheat storage?

– How can sensor-based monitoring systems be integrated into storage infrastructures?

Questions about Pest Management

– What are the most common pests in wheat storage, and how can they be prevented?

– What natural or chemical methods can be used to protect wheat stocks from infesta-
tions?

– How important is stock rotation in preventing pest infestations?

– What indicators suggest early stages of infestation?

– How can AI or IoT technologies assist in early pest detection and intervention?
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Practical and Management Questions

– What are the main indicators of wheat deterioration during storage?

– Why is the first-in, first-out (FIFO) policy important in stock management?

– How does silo automation contribute to better wheat storage management?

– What types of data should be collected to optimize wheat preservation?

– How can ontology-based reasoning support decision-making in storage management?

This structured set of questions played a crucial role in shaping the ontology’s structure,
enabling it to effectively support semantic reasoning, early risk detection, and decision-
making in smart grain storage systems.

2.6.3 Conceptualization and Implementation

The conceptualization stage of the ontology, which entails locating and organizing the essen-
tial ideas pertaining to wheat storage management, is covered in this section. The primary
entities, their characteristics, and the connections between them are defined in light of the
domain knowledge that has been acquired. Grain states, sensors, and possible storage issues
are a few of these.

The hierarchical structure of the ontology’s classes and their relationships, as created
with Python using OWLready2 (Annexe 01) Library and visualised with Protégé, is shown
in the Figure 2.7.

Figure 2.7: Hierarchical Representation of the Proposed Ontology with Protégé

To enable reasoning based on both sensor data and visual analysis, we integrate SWRL
rules that leverage the outputs of the deep learning classification model. Specifically, the
MobileNetV3-Large model classifies wheat grains into categories such as normal, moldy,
sprouted, pest-attacked, or broken. These classification results are semantically annotated
and injected into the ontology as instances of grain conditions. SWRL rules are then ap-
plied to combine this information with environmental parameters obtained from IoT sensors
Figure 2.8.
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Figure 2.8: Some SWRL Rules Implemented in Python

2.7 System Architecture

The architecture is composed of multiple functional layers, each responsible for a specific
role. These components work collaboratively to acquire heterogeneous data, analyze it in-
telligently, and generate context-aware alerts and actions. Figure 2.9 illustrates the overall
system workflow.

2.7.1 Data Acquisition Layer

The system begins with the acquisition of environmental and visual data from the warehouse.
Two sources are involved:

• IoT Sensors continuously monitor critical environmental parameters such as temper-
ature and humidity within the storage facility. These values are stored and transmitted
to the system for semantic interpretation.

• Cameras are deployed to capture images of stored wheat batches. These visual inputs
are used to assess grain quality and detect defects (e.g., mold, sprouting, pest damage).

2.7.2 Deep Learning Layer

Captured images are processed by a MobileNetV3-Large model, trained on a labeled Wheat
Grain Dataset.

The model classifies the input images into predefined categories (e.g., normal, damaged,
moldy) and produces classification results, which are passed to the reasoning layer. This
step plays a crucial role in automating the quality assessment process.

2.7.3 Semantic Reasoning Layer

Both the classification results and sensor data are fed into the ontology. Based on predefined
rules and semantic inference, the system can identify critical conditions—such as temperature
anomalies, early signs of infestation, or batch degradation.
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Figure 2.9: Achitecture System

2.7.4 Alert Layer

The final layer is responsible for generating alerts. When the ontology detects a risk or rule
violation, it triggers an appropriate response. Alerts are delivered via a mobile application.

This architecture ensures that each component from data acquisition to reasoning con-
tributes to a scalable, context-aware, and intelligent grain storage solution. It promotes
automation, improves storage quality, and minimizes losses due to spoilage or late interven-
tion.

2.8 Execution scenarios

In this section, we showcase the user interfaces for both the desktop and mobile iterations
of the application. These interfaces have been crafted to provide a uniform user experience
across various platforms. The subsequent screenshots demonstrate the primary features,
arrangement, and interactions offered to users, emphasizing the application’s effectiveness
and adaptability in both desktop and mobile settings.

2.8.1 Desktop application

This is the initial screen of the SmartEpiStock dashboard. It provides access to the main
silo operations, including options to create a new silo, analyze all silos, save the ontology,
visualize data, and view the dashboard summary. The main display area is currently empty,
waiting for user interaction.
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Figure 2.10: Initial SmartEpiStock interface displaying core AI-powered silo management
controls before any silo creation.

After creating Silo 1, sensor data is now displayed, including temperature, humidity, CO2
concentration, O2 level, and a visual detection of “Fusarium” via camera input. The interface
also adds two new operational buttons: Add Sensors and Analyze, allowing users to initiate
analysis or configure sensor settings.

Figure 2.11: SmartEpiStock interface showing real-time environmental data and camera-
based detection after creating Silo 1

This version of the interface allows users to add sensors at specific vertical levels within the
silo, namely the middle and bottom. These options support advanced monitoring strategies
by enabling AI to detect conditions at different depths of the grain storage.

After clicking the Analyze button for the silo, the system performs an AI-driven evalua-
tion of the sensor data. In this version, the interface displays a warning or alert indicating
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Figure 2.12: Advanced sensor setup interface enabling middle and bottom sensor placement
within Silo1forlayeredmonitoring.

an issue (such as temperature too high, or Fusarium presence), helping users identify and
take action on anomalies.

Figure 2.13: Silo 1 analysis results highlighting detected problems through AI, such as
abnormal temperature or contamination alerts.

This interface is the Dashboard Summary view. It presents bar graphs for key environ-
mental parameters such as humidity and temperature across all silos. It also categorizes the
silos into status groups: Normal, Warning, and Danger, giving users a high-level overview
of the overall silo health.

After clicking on Save Ontology, the system confirms the successful export or saving of
the internal knowledge model used to describe silo structures, sensors, and anomalies. This
ontology can be reused for reasoning, inference, or integration with semantic systems.
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Figure 2.14: SmartEpiStock dashboard showing humidity and temperature charts, along
with silo status categorization: Normal, Warning, and Danger.

2.8.2 Mobile application

This interface represents the homepage for new users wishing to create an account on the
SmartEpiStock application. The screen offers a simple and uncluttered form, including two
essential fields: email address and password. The orange button labeled "Register" allows
you to confirm your registration after entering the required information.

This interface is designed for users who already have an account on the SmartEpiStock
app. It displays a "Welcome Back" message followed by an email and password field. The
blue Login button allows you to validate the information entered and access the app. For
new users, a link at the bottom of the page titled "Sign Up" redirects them to the registration
form.

This interface represents the home screen of the SmartEpiStock application when no silos
have been created yet. The user is prompted to click the “Create Silo” button to get started.
Other functionalities such as “Analyze Silos” and “View Charts” are disabled until at least
one silo is added.

This figure shows the application state after the creation of the first silo. The options
“Analyze Silos” and “View Charts” are now enabled. The displayed silo (Silo 1) includes
environmental data such as temperature, humidity, CO2, and O2 levels, along with the
camera type (“Shriveled”). There is also a button to add additional sensors to the silo.

This interface appears when the user clicks on “Add Sensors” for a specific silo. The user
is given the option to add a sensor in the middle (“Add Middle Sensor”) or at the bottom
of the silo (“Add Bottom Sensor”). A “Save” button allows the user to confirm the addition,
while a “Cancel” button is available to abort the operation.

This interface appears when the user clicks on “Add Sensors” for a specific silo. The user
is given the option to add a sensor at the bottom of the silo (“Add Bottom Sensor”) or in the
middle section (“Middle Sensor”), where multiple types of sensors can be added, including
temperature (“Add Temp”), humidity (“Add Humidity”), carbon dioxide (“Add CO”), and
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Figure 2.15: Confirmation interface showing that the ontology model of silo configurations
and sensor data has been successfully saved.

oxygen (“Add O”). A “Save” button allows the user to confirm the addition of the selected
sensors, while a “Cancel” button is available to abort the operation.

This interface provides a real-time overview of the environmental conditions inside the
storage silos. At the top, three summary indicators are presented: Total Silos: Displays
the total number of silos monitored (1 in this case). Good Silos: Indicates how many silos
are currently in optimal conditions (1 in this case). Not Good: Shows the number of silos
with abnormal or critical conditions (0 in this case). Below the indicators, a bar chart is
used to visualize the values recorded for Silo 1: The red bar represents the temperature
( 28.21°C), The blue bar represents the humidity ( 17.18This visual representation allows
users to quickly assess environmental conditions and detect any potential risks or anomalies
in the silo.

This interface displays a detailed alert card for Silo 1, including environmental sensor
readings and automatically generated alerts based on expert rules:

Camera Type: Fusarium (used for visual inspection of grain quality).
Temperature: 37.28°C
Humidity: 10.43
CO Level: 54.09
O Level: 55.19
The system has triggered the following alerts:
Temperature between 30–40°C: Indicates risk of mould growth and insect activity.
Humidity between 10–13%: Indicates favourable conditions for mould development.
Elevated CO level: Suggests possible fungal growth or lack of proper ventilation.
Visual inspection: Damaged or contaminated grains were identified (e.g., cracked kernels,

discoloration, fungal spots).

2.9 Conclusion

This chapter has outlined the methodological foundations and technological building blocks
of the proposed intelligent wheat grain storage system. By integrating deep learning for
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Figure 2.16: the home page for new users wishing to create an account on the SmartEpiStock
application

Figure 2.17: users who already have an account on the SmartEpiStock app

image-based grain classification, semantic ontologies for knowledge representation and rea-
soning, and IoT-based sensing for real-time environmental monitoring, the system is designed
to provide a comprehensive and adaptive approach to storage management.

The combination of MobileNetV3 for efficient image classification, a domain-specific on-
tology enriched with SWRL rules for decision support, and a user-centered mobile appli-
cation ensures that the system meets both technical performance and practical usability
requirements. The presented architecture enables continuous data acquisition, intelligent
interpretation of heterogeneous data sources, and timely generation of alerts
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Figure 2.18: Home screen displayed when no silos have been created yet. Only the “Create
Silo” button is active; other options are disabled.

Figure 2.19: after the first silo has been created.

Figure 2.20: Interface allowing the user to add a sensor to the middle or bottom of the silo,
with Save and Cancel buttons.
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Figure 2.21: Advanced sensor configuration screen with options to add temperature, humid-
ity, CO, and O sensors in the middle or bottom of the silo.

Figure 2.22: Temperature and humidity monitoring interface for storage silos.

Figure 2.23: Detailed alert view for Silo 1
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Conclusion and Perspectives

This Master thesis presented the design and implementation of SmartEpiStock, an intelligent
system for real-time monitoring and management of wheat grain storage conditions. Con-
ducted within the broader context of digital transformation in agriculture, the project sought
to address persistent challenges related to post-harvest losses, environmental variability, and
the lack of responsive monitoring tools in silo management.

To meet these challenges, we proposed a hybrid approach combining three complemen-
tary technologies: Internet of Things (IoT) for environmental data acquisition, Deep Learn-
ing (MobileNetV3-Large) for visual classification of grain quality, and Semantic ontologies
enriched with SWRL rules for advanced reasoning and alert generation.

The proposed architecture supports continuous monitoring of key parameters and lever-
ages AI to detect anomalies, and the integration of ontological reasoning. The development
of a user-friendly mobile and desktop application ensures accessibility for end users, partic-
ularly silo operators.

The evaluation of the system demonstrated both its technical feasibility and its poten-
tial to significantly enhance storage practices. The deep learning model achieved strong
classification performance, while the ontology enabled flexible rule based inference. These
components form a reliable, modular, and scalable solution for intelligent grain storage man-
agement.

Building on this foundation, several directions can be explored to extend and enhance
the SmartEpiStock:

• Integration of additional sensors: Incorporating gas sensors (e.g., ethylene, am-
monia), vibration detectors, or insect movement trackers could further enrich the en-
vironmental understanding and risk detection capabilities.

• Improvement of AI models: Training the deep learning model on a larger, more
diverse dataset including images from different insects improve generalization and ro-
bustness.

• Scalability to other grain types: The architecture could be adapted for monitoring
other grain types such as maize or barley, by adjusting the ontology and retraining
classification models.
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Annexe 01: Used Software tools

Development environment

Annaconda

Anaconda is an open-source distribution of the Python and R programming languages specif-
ically designed for data science, with the aim of simplifying package management and de-
ployment. It uses the Conda package manager to handle package versions and manage
environments, ensuring that installations do not conflict with existing packages or frame-
works. The distribution comes with over 250 pre-installed packages and provides access to
more than 7,500 additional open-source packages from both PyPI and Conda repositories.

Anaconda also includes a graphical interface called Anaconda Navigator, which offers a
user-friendly alternative to the command line. With Anaconda Navigator, users can eas-
ily launch applications, manage packages, configure environments, and access channels—all
without writing terminal commands. It allows users to search for packages, install them into
specific environments, run them, and ensure they are up to date [91].

Jupyter

It is an interactive web-based development environment for notebooks, code, and data.
Its flexible interface makes it easy to set up and manage workflows in fields such as data
science, scientific computing, computational journalism, and machine learning. Thanks to
its modular architecture, it is possible to add extensions that enhance its functionality [92].

Programming language

Python

Python is a powerful and flexible programming language that is extensively used across
multiple domains, including web development, data analysis, machine learning, and scientific
computing. The most recent version, Python 3, introduces enhanced syntax, better Unicode
support, improved memory management, and overall performance gains. Maintained by
the Python Software Foundation, Python benefits from a vast ecosystem of libraries and
frameworks tailored to a wide range of applications [93].

Used Libraries

TensorFlow

TensorFlow is an open-source software library developed by the Google Brain team for artifi-
cial intelligence and machine learning applications. Although it supports a broad spectrum of
machine learning tasks, its primary use lies in the training and inference of neural networks.
Since its public release under the Apache License 2.0 in 2015, TensorFlow has become one of
the most widely adopted deep learning frameworks, alongside alternatives such as PyTorch.
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A major revision, TensorFlow 2.0, was launched in September 2019, introducing a more
user-friendly and consistent API. TensorFlow supports multiple programming languages, in-
cluding Python, JavaScript, C++, and Java, making it a flexible tool widely used across
both research and industry domains [94].

Keras

Keras is a high-level deep learning library written in Python, designed to simplify the cre-
ation and training of neural networks. Operating as an interface rather than a standalone
framework, Keras runs on top of backends such as TensorFlow. It abstracts away the com-
plexity of tensor operations, shapes, and mathematical calculations, allowing developers to
build and experiment with deep learning models more intuitively. Thanks to its modular
architecture and user-friendly syntax, Keras is particularly suitable for beginners, while still
being powerful enough for advanced applications [95].

Scikit-learn (sklearn)

is a Python library that provides a comprehensive selection of machine learning algorithms
for both supervised and unsupervised learning tasks. Built on top of foundational libraries
like NumPy, SciPy, and Matplotlib, it offers a user-friendly interface for data handling.
Scikit-learn supports tasks such as classification, regression, clustering, and dimensionality
reduction, along with tools for data preprocessing, model selection, and evaluation. Its sim-
plicity, flexibility, and scalability have made it widely adopted in both academic research and
industry. Moreover, its extensive documentation and active community make it a valuable
resource for those working in machine learning [96].

Matplotlib

is a Python library designed for creating 2D visualizations, including static, animated, and
interactive plots. It is extensively used in scientific computing for data visualization and
exploration. With a rich set of plotting capabilities and a high degree of customization,
Matplotlib allows users to build detailed and sophisticated visual representations of data
with ease. Its compatibility with various Python libraries and frameworks enhances its
flexibility for data visualization across different contexts [97] .

Numpy

NumPy is a foundational Python library for numerical computing. It provides support for
efficient manipulation of large multi-dimensional arrays and matrices, along with a vast
collection of mathematical functions. NumPy’s array-oriented computing enables vector-
ized operations, which significantly enhance performance compared to native Python data
structures. It plays a critical role in fields such as scientific research, engineering, and data
science. Additionally, NumPy includes modules for linear algebra, statistical operations,
Fourier transforms, and random number generation, and it serves as the backbone for many
other scientific libraries in Python [98].

Owlready2

Owlready2 is a Python library designed for ontology-oriented programming. It enables
users to load, manipulate, and save OWL 2.0 ontologies as native Python objects, while also
supporting reasoning capabilities through the integrated HermiT reasoner. Unlike traditional
Java-based APIs, Owlready2 provides seamless and transparent access to OWL ontologies
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directly within Python. Version 2 of Owlready introduces an optimized triplestore/quadstore
built on SQLite3, offering improvements in both performance and memory efficiency. Unlike
its predecessor, Owlready2 is capable of handling large-scale ontologies. Additionally, it
includes support for accessing UMLS and various medical terminologies via the built-in
PyMedTermino2 module [99].
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Annexe 02: Annexe StartUp

Project Presentation

The project idea (proposed solution)

– The business area of the project is smart agriculture, with a focus on the automated
and optimized management of wheat grain storage.

– The idea originated from recognizing the significant losses in quality and quantity that
often occur during grain storage due to poor environmental control (e.g., humidity,
temperature, mold, insect infestations). Traditional monitoring methods are often
manual, infrequent, and inefficient.

– The project proposes the development of an intelligent stock management system that
integrates artificial intelligence (AI) ,Internet of Things (IoT) sensors, camera-based
monitoring to analyze and control storage conditions in real time.

– IoT sensors will continuously measure key environmental parameters such as tempera-
ture, humidity, and CO2 levels. Simultaneously, cameras installed in silos will capture
images that are automatically analyzed to detect visual anomalies like mold growth,
insect presence, or spoilage.

– The system will collect data and trigger intelligent alerts and recommendations. An
application mobile will allow managers to visualize real-time data, receive warnings.

The Proposed Values

– The system significantly reduces storage losses through continuous, automated moni-
toring of both environmental and visual conditions.

– It improves the quality and safety of wheat grain storage by detecting risks early, includ-
ing heat buildup, mold development, excessive humidity, and biological threats—thanks
to the combination of sensor data and image-based artificial intelligence analysis.

– It enhances traceability and food safety.

– It enables cost savings by reducing unnecessary manual inspections and supporting
targeted corrective actions only when needed.

– The system features a modular, scalable architecture that can be easily integrated into
various agricultural storage facilities, with plug-and-play installation and future-ready
updates.

– Ultimately, this solution drives the transition toward smart, sustainable agriculture,
empowering decision-makers with real-time, data-driven insights.
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Work team

Harizi Rana
Bouacida Imane
Djakhdjakha Lynda

The project’s objectives

– Short Term: Deploy an MVP in 2–3 grain storage units in Algeria and collect per-
formance data.

– Medium Term: Expand to more agricultural regions and integrate with cooperatives
and private silos.

– Long Term: Become the go-to AI monitoring solution for smart agriculture in North
Africa and the Middle East.

Project completion schedule

Phase 1m 2m 3m 4m 5m 6m
Preliminary Studies * *
Service Development * * *
Testing & Launch *
Marketing & Promotion * *

Table 2.4: Project Completion Schedule

Innovative Aspects

– This project stands out for several reasons: It combines three advanced technologies:
IoT (sensors for temperature, humidity, CO2,O2 and Camera), Ontology (a smart
knowledge-based system to understand concepts), and AI that classifies grain condi-
tions using images.

– The system can operate autonomously: collecting data, analyzing it intelligently, and
sending alerts in case of risks (e.g., mold, humidity anomalies).

– It offers a mobile application for real-time monitoring.

– It is designed to be adapted to local needs, including resource-limited environments.

– It replaces traditional manual tracking methods with a modern, automated, and intel-
ligent mobile application.

– It helps reduce losses and ensures better storage decision-making.

Strategic Market Analysis

a. Target Market:

– Agricultural cooperatives and cereal storage centers.
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– Large-scale farmers and silo owners.

– Agritech companies and startups.

– Public institutions working in food security.

b. Competitive Analysis:
There are some basic systems that use IoT to monitor temperature or humidity. How-

ever, they lack intelligence, no image classification, no automated decision-making, and no
ontology.

Traditional methods rely on manual inspection, which is neither scalable nor reliable.
Our system stands out because it is:

– Affordable (can be implemented with low-cost sensors).

– Autonomous (makes decisions without human intervention).

– Domain-specific (tailored for wheat grain storage).

c. Marketing Strategy

– Awareness campaigns about AI and smart monitoring benefits in agriculture.

– Pilot deployments in targeted storage units with published results to build trust.

– Collaboration with agricultural ministries, cooperatives, and farmer organizations.

– Offering starter kits at reduced cost for early adopters (freemium model or subsidy-
based).

– Participation in agricultural expos, tech fairs, and agritech webinars.

– Online presence via website, case studies, demo videos, and expert articles.

d. Communication Strategy

– Demonstrations in agricultural events and exhibitions.

– Partnerships with agricultural cooperatives and incubators.

– Online marketing (social media, website, and agritech platforms).

– Publications and presentations in academic or professional settings.

Production and Organization Plan

The Production Process

• Partnership Development: Collaboration with agricultural cooperatives, AI and
semantic research institutions, IoT sensor suppliers, equipment manufacturers, and
public institutions.

• System Development:

– IoT module integration (temperature, humidity, CO2, motion).

– Wheat grain classification.
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– Ontology-based reasoning with rules.

– Mobile app development with alert system and dashboards.

• Testing and Deployment: Pilot deployment in storage silos, real-world testing, and
evaluation of model accuracy and alert performance.

• Agro-Digital Launch: System launch through agricultural fairs, cooperatives, and
institutional partnerships.

Supply

• IoT sensor and microcontroller suppliers (e.g., DHT22, MQ2, PIR, ESP32).

• Agricultural equipment manufacturers for integration.

• Local server components and storage systems.

• Partner universities for validation and support.

Employees

The project is expected to create approximately 40 to 50 job opportunities, including:

• artificial intilligence developers.

• IoT engineers and embedded systems specialists.

• Ontology and semantic web engineers.

• Mobile and web developers.

• Field technicians and deployment staff.

• Agronomists and product advisors.

• Technical support and user training teams.

Special Discussion

Strategic partnerships are essential with:

• Agricultural institutions for scalability and support.

• Sensor and equipment manufacturers for cost-effective integration.

• Research centers and universities for knowledge and validation.
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Financial Plan

Costs and Charges

The identification of all necessary costs and investments is crucial to ensure the success and
sustainability of the project. These include initial, operational, recurring, and additional
strategic expenses.

A) Initial Costs

Infrastructure:

• Setting up or leasing office spaces for development and administration.

• Installation of local servers, computers, and secured network infrastructure.

• Implementation of safety systems: access control, fire protection, UPS devices.

Equipment:

• Sensors: Temperature and humidity (DHT22), gas (MQ2), motion (PIR), CO and O
sensors.

• Microcontrollers: ESP32 or Arduino boards for sensor integration and data collec-
tion.

• Computers and Workstations: For developers, analysts, and system users.

• Networking Equipment: Routers, switches, and IoT communication modules.

• Software Licenses: TensorFlow, Protégé, Android Studio, and development IDEs.

• Office Supplies and Furniture: Desks, chairs, and consumables (pens, notebooks,
etc.).

Technology:

• Ontology Tools: Semantic web frameworks using OWL, SWRL, owlready2.

• Data Management Systems: Secure databases and data warehouses.

• User Interfaces: Mobile/web interfaces for sensor monitoring and alerts.

• AI Modules: Image classification (e.g. mold detection).

• Dashboards and Reports: Visual tools to present system metrics and alerts.
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B) Operational Costs

Personnel:

• Salaries for developers, AI engineers, ontology experts, technicians, and support staff.

• Consultant fees (AI, IoT, agriculture).

• Ongoing training on smart farming, AI, and semantic web technologies.

Logistics and Services:

• Software subscriptions for development and analytics tools.

• Acquisition of datasets for AI training (sensor readings, images, environmental data).

Marketing and Customer Support:

• Marketing campaigns: online advertising, awareness campaigns, demo videos.

• Support systems for assisting users and responding to technical issues.

C) Other Costs

• Insurance (hardware, cyber liability).

• Legal compliance (data privacy, licensing).

• Regulatory fees and permits for hardware and software deployment.

D) Recurring Costs

• Software license renewal.

• Maintenance and update of sensors and equipment.

• Updating AI models and the mobile/web platform.

Financing Methods and Sources

A) Internal Financing

• Company’s own capital and savings.

• Reinvested profits from previous business activities.

B) External Financing

Bank Loans:

• Long-term loans for equipment and infrastructure.

• Credit lines for covering operational costs.

Investors:

• Search for investors focused on agri-tech, AI, and IoT.
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• Form partnerships with cooperatives or tech entrepreneurs.

• Explore monetization strategies for mass adoption of the platform.

Subsidies and Grants:

• Government support programs for digital agriculture.

• International funding (FAO, World Bank, EU, etc.).

• Participation in incubators and accelerators for AI or smart farming.

Crowdfunding:

• Launch of public fundraising campaigns (Kickstarter, Indiegogo, etc.).

Financing Reimbursement Strategy

Repayment Schedule:

• Clear repayment plan with timelines, amounts, interest rates, and grace periods.

Cash Flow Forecasting:

• Monitor monthly income and expenses to ensure financial stability.

• Adjust expenses as needed to maintain positive cash flow.

• Include a buffer for unforeseen costs.

Reimbursement Plan

Date Amount Financing Type Due Date Remaining Balance
2025-07-01 1 000 000 DZD Initial Investment N/A 1 000 000 DZD
2025-08-15 500 000 DZD Sensors & Equipment N/A 500 000 DZD
2025-09-30 750 000 DZD Deployment & Testing N/A 1 250 000 DZD
2025-10-15 300 000 DZD Software Licenses N/A 950 000 DZD
2025-11-30 400 000 DZD Technician Salaries N/A 550 000 DZD

Table 2.5: Payment Table – Smart Grain Storage Monitoring Project (2025)

63



   
 

D
e

s
ig

n
e

d
 f
o

r:
 

D
e

s
ig

n
e

d
 b

y
: 

D
a

te
: 

V
e

rs
io

n
: 

B
u

s
in

e
s
s

 M
o

d
e

l 
C

a
n

v
a

s
 

 
 

 
 

 
 

 

 
 

 
 

 
K

e
y
 P

a
rt

n
e
rs

 
K

e
y
 A

c
ti

v
it

ie
s
 

 
V

a
lu

e
 P

ro
p

o
s
it

io
n

s
 

C
u

s
to

m
e

r 
R

e
la

ti
o

n
s

h
ip

s
 

C
u

s
to

m
e

r 
S

e
g

m
e

n
ts

 

1
. 

P
ro

v
id

er
s 

o
f 

sm
ar

t 
Io

T
 

se
n

so
rs

 (
te

m
p

er
at

u
re

, 

h
u

m
id

it
y
, 

C
O

₂,
 e

tc
.)

 f
o

r 

re
al

-t
im

e 
si

lo
 m

o
n
it

o
ri

n
g
. 

2
. 

U
n
iv

er
si

ti
es

 a
n
d

 r
es

ea
rc

h
 

in
st

it
u

ti
o

n
s 

sp
ec

ia
li

ze
d

 i
n
 

A
I 

an
d

 s
e
m

a
n
ti

c 

te
ch

n
o

lo
g
ie

s 
fo

r 
A

I 

re
se

ar
ch

, 
o

n
to

lo
g
y
 d

es
ig

n
, 

an
d

 v
al

id
at

io
n

. 
3

. 
A

g
ri

cu
lt

u
ra

l 
co

o
p

er
at

iv
es

 

an
d

 s
il

o
 m

a
n
a
g
er

s 
fo

r 
: 

te
st

in
g
 a

n
d

 a
d

o
p

ti
n
g
 t

h
e 

so
lu

ti
o

n
. 

4
. 

A
g
ri

cu
lt

u
ra

l 
eq

u
ip

m
e
n
t 

m
an

u
fa

ct
u
re

rs
 f

o
r 

h
ar

d
w

ar
e 

in
te

g
ra

ti
o

n
. 

5
. 

G
o

v
er

n
m

en
ta

l 
in

st
it

u
ti

o
n
s 

in
 t

h
e 

a
g
ri

c
u
lt

u
ra

l 
se

ct
o

r 

fo
r 

su
p

p
o

rt
 a

n
d

 s
ca

le
-u

p
 

fo
r 

: 
re

g
u
la

to
ry

 s
u
p

p
o

rt
, 

sc
al

e-
u
p

 p
ro

g
ra

m
s,

 a
n
d

 

fu
n
d

in
g
. 

 

1
. 

D
at

a 
co

ll
ec

ti
o

n
 u

si
n

g
 I

o
T

 

se
n

so
rs

. 

2
. 

Im
ag

e 
an

al
y
si

s 
an

d
 

cl
as

si
fi

ca
ti

o
n

 u
si

n
g
 d

ee
p

 

le
ar

n
in

g
 (

M
o
b

il
eN

et
V

3
).

 

3
. 

In
te

ll
ig

en
t 

re
as

o
n

in
g
 t

h
ro

u
g
h
 

o
n

to
lo

g
y
 a

n
d

 S
W

R
L

 r
u

le
s.

 

4
. 

A
le

rt
 g

en
er

at
io

n
 a

n
d

 

re
co

m
m

en
d

at
io

n
s 

v
ia

 a
 

m
o

b
il

e 
ap

p
. 

5
. 

M
ai

n
te

n
an

ce
 a

n
d

 u
p

d
at

es
 o

f 

m
o

d
el

s 
an

d
 t

h
e 

k
n
o

w
le

d
g
e 

b
as

e.
 

6
. 

U
se

r 
o

n
b
o

ar
d

in
g
 a

n
d

 t
ra

in
in

g
 

fo
r 

o
p

ti
m

al
 s

y
st

em
 a

d
o

p
ti

o
n
. 

 

1
. 

A
 s

m
ar

t 
sy

st
e
m

 f
o

r 
re

al
-

ti
m

e 
m

o
n
it

o
ri

n
g
 o

f 
w

h
ea

t 

st
o

ra
g
e 

co
n
d

it
io

n
s.

 

2
. 

E
ar

ly
 d

et
ec

ti
o

n
 o

f 
ri

sk
s 

(h
u

m
id

it
y
, 

fe
rm

en
ta

ti
o

n
, 

in
se

ct
 i

n
fe

st
at

io
n
).

 

3
. 

R
ed

u
ct

io
n
 o

f 
p

o
st

-h
ar

v
e
st

 

lo
ss

es
 a

n
d

 i
m

p
ro

v
ed

 g
ra

in
 

q
u
al

it
y
. 

4
. 

E
as

y
-t

o
-u

se
 a

p
p

 w
it

h
 

in
st

a
n
t 

al
er

ts
 t

o
 

re
sp

o
n
si

b
le

 p
ar

ti
es

. 

5
. 

D
ec

is
io

n
 s

u
p

p
o

rt
 p

o
w

er
ed

 

b
y
 d

o
m

ai
n

-s
p

ec
if

ic
 r

u
le

s.
 

6
. 

C
o

m
p

li
a
n
ce

 w
it

h
 f

o
o

d
 

sa
fe

ty
 a

n
d

 s
to

ra
g
e 

re
g
u
la

ti
o

n
s.

 
7

. 
 

 

1
. 

O
n
b

o
ar

d
in

g
 s

u
p

p
o

rt
 

(i
n
st

al
la

ti
o

n
 a

n
d

 s
et

u
p

).
 

2
. 

O
n

g
o

in
g
 t

ec
h

n
ic

al
 

as
si

st
an

ce
. 

3
. 

C
u

st
o

m
iz

ed
 a

le
rt

s 
b

as
ed

 

o
n
 s

to
ra

g
e 

p
ro

fi
le

s.
 

4
. 

S
im

p
le

 i
n
te

rf
ac

e 
w

it
h
 

o
p

ti
o

n
al

 a
cc

es
s 

to
 e

x
p

er
t 

su
p

p
o

rt
. 

 

1
. 

S
il

o
 m

a
n
ag

er
s 

a
n
d

 

ag
ri

cu
lt

u
ra

l 
co

o
p

er
at

iv
es

. 

2
. 

F
ar

m
er

s 
w

it
h
 t

h
ei

r 
o

w
n
 

st
o

ra
g
e 

fa
ci

li
ti

es
. 

3
. 

P
u
b

li
c 

in
st

it
u
ti

o
n
s 

in
v
o

lv
ed

 i
n
 f

o
o

d
 s

af
et

y
 

an
d

 s
to

ra
g
e.

 

4
. 

L
o

g
is

ti
c
s 

an
d

 a
g
ri

c
u
lt

u
ra

l 

st
o

ra
g
e 

co
m

p
an

ie
s.

 

 

K
e

y
 R

e
s
o

u
rc

e
s

 
C

h
a
n

n
e

ls
 

 

1
. 

S
m

ar
t 

se
n
so

rs
 a

n
d

 

e
m

b
ed

d
ed

 s
y
st

e
m

s.
 

2
. 

A
I-

b
as

ed
 i

m
a
g
e 

cl
as

si
fi

ca
ti

o
n
 m

o
d

el
. 

3
. 

C
u

st
o

m
 o

n
to

lo
g

y
 f

o
r 

w
h

ea
t 

st
o

ra
g
e.

 

4
. 

M
o

b
il

e 
ap

p
li

ca
ti

o
n
 .

 

5
. 

T
ec

h
n
ic

al
 t

ea
m

 f
o

r 

d
ep

lo
y
m

en
t 

a
n
d

 s
u
p

p
o

rt
. 

 

 

1
. 

D
ir

ec
t 

sa
le

s 
th

ro
u
g

h
 

ag
ri

cu
lt

u
ra

l 
co

o
p

er
at

iv
es

. 

2
. 

O
n
li

n
e 

p
la

tf
o

rm
 w

it
h
 l

o
ca

l 

in
st

a
ll

at
io

n
 p

ar
tn

er
s.

 

3
. 

D
o

w
n
lo

ad
ab

le
 m

o
b

il
e 

ap
p

 

(A
n
d

ro
id

).
 

4
. 

D
e
m

o
n

st
ra

ti
o

n
s 

at
 

ag
ri

cu
lt

u
ra

l 
fa

ir
s 

a
n
d

 

ev
en

ts
. 

 

1
. 

C
o

s
t 

S
tr

u
c
tu

re
 

2
. 

H
ar

d
w

ar
e 

m
a
n

u
fa

ct
u
ri

n
g
 a

n
d

 s
en

so
r 

co
st

s.
 

3
. 

S
o

ft
w

ar
e 

d
ev

el
o

p
m

e
n
t 

(A
I,

 o
n

to
lo

g
y
, 

ap
p

).
 

4
. 

U
se

r 
tr

ai
n
in

g
 a

n
d

 o
n
b

o
ar

d
in

g
 s

u
p

p
o

rt
. 

5
. 

T
ec

h
n
ic

al
 s

u
p

p
o

rt
 a

n
d

 s
y
st

e
m

 m
ai

n
te

n
a
n
ce

. 

6
. 

M
ar

k
et

in
g
 a

n
d

 d
e
m

o
n
st

ra
ti

o
n
 c

a
m

p
ai

g
n
s.

 

 

R
e

v
e

n
u

e
 S

tr
e

a
m

s
 

1
. 

S
al

e 
o

f 
h
ar

d
w

ar
e 

k
it

s 
(s

e
n
so

rs
 +

 c
o

n
tr

o
ll

er
).

 

2
. 

M
o

n
th

ly
 s

u
b

sc
ri

p
ti

o
n
 f

o
r 

p
la

tf
o

rm
 a

cc
es

s 
an

d
 s

m
ar

t 
al

er
ts

 

(2
0

0
0

D
Z

).
 

3
. 

C
u

st
o

m
 p

ac
k
a
g
e
s 

fo
r 

la
rg

e
-s

c
al

e 
fa

rm
s 

o
r 

in
d

u
st

ri
al

 s
il

o
s.

 

4
. 

P
o

te
n
ti

al
 p

ar
tn

er
sh

ip
s 

o
r 

su
b

si
d

ie
s 

fo
r 

ru
ra

l 
d

ep
lo

y
m

e
n
t.

 


	List of Figures
	List of Tables
	Introduction
	General Context
	Problem Statement
	Objectives
	Contribution
	Disertation structure

	State of the Art: Synergy of Technologies for Wheat Grain Storage Monitoring
	Introduction
	Wheat Grain Storage: Fundamentals and Challenges
	Traditional Storage Techniques
	Modern and Innovative Storage Solutions
	Major Causes of Storage Losses
	Influence of Storage Conditions on Wheat Quality
	Current Challenges

	Existing IoT-Powered Systems for Intelligent Grain Storage
	Challenges with Existing Systems

	Artificial Intelligence for Agricultural domain
	Theoretical Foundations
	Deep Learning Models in Agricultural Seed Classification Tasks

	Agricultural Ontologies: Knowledge Modeling for Heterogeneity Problem 
	Conclusion

	Methods and Materials
	Introduction
	Image Dataset Description
	Deep Learning Classification
	Experimental Setup
	Evaluation and Results
	Model Testing

	Ontology Development
	Domain definition and objectives
	Information Collection
	Conceptualization and Implementation

	System Architecture
	Data Acquisition Layer
	Deep Learning Layer
	Semantic Reasoning Layer
	Alert Layer

	Execution scenarios
	Desktop application
	Mobile application

	Conclusion

	Annexe 01: Used Software tools
	Annexe 2: Annexe StartUp

