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Abstract

Effective communication between Deaf and hearing individuals remains a major societal chal-
lenge, particularly in contexts where sign language is not understood by the general popula-
tion. Sign languages are complete natural languages, yet the lack of shared linguistic knowl-
edge continues to hinder accessibility and inclusion in vital domains such as education, health-
care, and employment. In response to this issue, this thesis presents a deep learning-based
system for real-time, bidirectional communication between Deaf and hearing users, using
hand gesture sign language as a primary medium.

The proposed system integrates computer vision, and 3D animation technologies to trans-
late between sign language and spoken/written language. Three model architectures were
implemented and evaluated: CNN-LSTM, MediaPipe-Bi-LSTM, and MediaPipe-GCN-BERT.
While the MediaPipe-LSTM model achieved over 98% accuracy on isolated gesture recog-
nition tasks, it exhibited limitations in handling longer sequences due to its memory-based
structure. To overcome this, a graph-based approach was adopted, where spatial relationships
between hand landmarks were modeled using Graph Convolutional Networks (GCNs), com-
bined with BERT embeddings for semantic context. This resulted in improved generalization
and performance on complex and continuous gestures.

The system was deployed as a mobile application built with React Native and Expo, inte-
grating real-time speech recognition, and sign-to-text translation. Experimental evaluations
using cross-validation, confusion matrices, and Word Error Rate (WER) confirmed the robust-
ness, accuracy, and usability of the platform in real-time scenarios. This work contributes a
significant step toward accessible and inclusive communication technology for the Deaf and
hard-of-hearing communities.

Keywords: Sign Language Recognition, Deep Learning, MediaPipe, LSTM, Graph Convolu-
tional Network, BERT, Real-Time Communication, Accessibility, Human-Centered Al



Résumé

La communication efficace entre les personnes sourdes et entendantes demeure un défi socié-
tal majeur, en particulier dans les contextes ou la langue des signes n’est pas comprise par la
population générale. Les langues des signes sont des langues naturelles a part entiere, pour-
tant 'absence de connaissances linguistiques partagées continue d’entraver I’accessibilité et
I'inclusion dans des domaines essentiels tels que 1’éducation, la santé et 'emploi. Pour répon-
dre a cette problématique, ce mémoire présente un systéme basé sur 'apprentissage profond,
permettant une communication bidirectionnelle en temps réel entre utilisateurs sourds et en-
tendants, en utilisant la langue des signes gestuelle comme principal moyen de communica-
tion.

Le systéme proposé integre des technologies de vision par ordinateur et d’animation 3D pour
assurer la traduction entre la langue des signes et la langue orale/écrite. Trois architectures
de modeles ont été implémentées et évaluées : CNN-LSTM, MediaPipe-BiLSTM et MediaPipe-
GCN-BERT. Bien que le modeéle MediaPipe-LSTM ait atteint une précision supérieure a 98%
sur des taches de reconnaissance de gestes isolés, il a montré des limites dans le traitement de
séquences longues en raison de sa structure basée sur la mémoire. Pour surmonter cela, une
approche basée sur les graphes a été adoptée, ou les relations spatiales entre les points clés de
la main sont modélisées a I’aide de réseaux de neurones convolutifs sur graphes (GCNs), com-
binés avec des embeddings BERT pour le contexte sémantique. Cela a permis une meilleure
généralisation et des performances accrues sur les gestes complexes et continus.

Le systéeme a été déployé sous forme d’application mobile développée avec React Native et
Expo, intégrant la reconnaissance vocale en temps réel ainsi que la traduction de la langue
des signes en texte. Les évaluations expérimentales, réalisées a I’aide de la validation croisée,
de matrices de confusion et du taux d’erreur de mots (WER), ont confirmé la robustesse, la pré-
cision et la convivialité de la plateforme dans des scénarios en temps réel. Ce travail constitue
une avancée significative vers une technologie de communication accessible et inclusive pour
les communautés sourdes et malentendantes.

Mots-clés : Reconnaissance de la langue des signes, Apprentissage profond, MediaPipe, LSTM,
Réseau de neurones convolutifs sur graphes, BERT, Communication en temps réel, Accessi-
bilité, Intelligence artificielle centrée sur ’humain
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“When you wake up one day and you don’t hear the refrigerator hum or you don’t
hear paper rustle, it’s scary. You want to deny it, say it’s temporary, just a head
cold, you’ll hear better later. But you don’t. . . . People just don’t understand what
it’s like.” Eric[[1]]
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General Introduction

Communication is a fundamental human need that transcends cultural, linguistic, and social
boundaries. However, for over 430 million people worldwide living with significant hearing
loss [2], communication remains a daily challenge, particularly in interactions with hearing
individuals. The language barrier between Deaf and hearing communities contributes to a
lack of inclusion in essential areas such as education, healthcare, employment, and social
services.

Sign languages, which are full-fledged natural languages with their own grammar, syntax,
and structure, represent the primary mode of communication for many Deaf individuals [3].
They are visual-gestural languages that convey meaning through manual signs, facial expres-
sions, and body posture. Despite this, the general population—especially hearing individuals,
often lacks the knowledge or training necessary to understand sign languages, leading to com-
munication breakdowns and societal exclusion. In response to this issue, the integration of
artificial intelligence (Al) into sign language processing presents an innovative and inclusive
solution to bridge this gap [4].

This thesis proposes a deep learning-based system for real-time, bidirectional communication
between Deaf and hearing users. The system combines gesture recognition based on skeletal
keypoints, and avatar-based sign language generation to enable seamless translation between
sign and spoken language. It is designed to operate on mobile devices with low computational
overhead, making it accessible in both academic and daily-life contexts.

The first chapter provides a historical and sociolinguistic overview of sign languages. It traces
their development, marginalization through oralist policies such as those institutionalized af-
ter the 1880 Milan Congress, and their eventual recognition as legitimate languages [5]. It also
examines the structural differences between signed and spoken languages and highlights the
social consequences of communication barriers, particularly in sensitive contexts like health-
care. The chapter emphasizes the need for automated translation tools that respect the lin-
guistic richness and sociocultural significance of sign languages.

Chapter two reviews the current state of the art in Sign Language Recognition (SLR). It dis-
cusses traditional machine learning methods (e.g., SVM, Random Forest, KNN) and modern
deep learning models, such as Convolutional Neural Networks (CNN), Long Short-Term Mem-
ory networks (LSTM), Graph Convolutional Networks (GCN), and transformer-based models
like BERT. Additionally, it highlights datasets (e.g., WLASL, RWTH-PHOENIX-Weather) and
evaluation metrics (e.g., accuracy, F1-score, BLEU, ROUGE, Word Error Rate (WER)) used
to benchmark these systems. The chapter also identifies key research gaps, such as limited
support for continuous signs and lack of multimodal context understanding.

Chapter three outlines the methodological framework and system design. It details the
implementation of three distinct model architectures: CNN-LSTM, MediaPipe-LSTM, and
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MediaPipe-GCN-BERT—for gesture classification. The system leverages MediaPipe for real-
time hand tracking, TensorFlow for deep learning, and Blender for 3D avatar generation. A
focus is also placed on data preprocessing, model training pipelines, and the algorithmic com-
plexities involved in building the sign-to-speech and speech-to-sign modules. This chapter
emphasizes the lightweight design required for real-time performance on CPUs, supported
by frame rates exceeding 6 FPS in practice.

Chapter four presents the full system implementation, experimental results, and performance
analysis. The proposed application integrates both voice recognition and sign language trans-
lation into a mobile interface developed with React Native and Expo. The models demon-
strated strong performance in terms of accuracy, robustness under varying lighting condi-
tions, and ability to distinguish between visually similar gestures.

For instance, the MediaPipe-Bi-LSTM model achieved over 98.2% accuracy on the validation
set for isolated gesture classification. However, its architecture, which relies on sequential
memory mechanisms, showed limitations when processing longer or continuous sign se-
quences. Specifically, the LSTM struggled to retain meaningful spatial-temporal dependen-
cies over extended input lengths, often focusing only on the most dominant hand movements
while neglecting subtle contextual cues. This constraint made it insufficient for real-world
scenarios where gestures form part of fluid and semantically rich sentence structures.

To address this, we adopted a graph-based architecture by integrating Graph Convolutional
Networks (GCN) with BERT embeddings. The MediaPipe-GCN-BERT pipeline leveraged the
spatial structure of hand landmarks by modeling them as nodes in a graph, enabling the sys-
tem to capture joint-level relationships more effectively. Combined with the contextual un-
derstanding capabilities of BERT, this architecture provided enhanced generalization on com-
plex and visually similar gestures, as well as on longer sign sequences. Evaluation through
cross-validation, confusion matrices, and Word Error Rate confirmed the practical relevance,
robustness, and real-time stability of the proposed solution in dynamic communication con-
texts. Specifically, MG-BERT achieved a 97.5% recognition rate and maintained an average
inference speed of 6.85 FPS on standard CPU-based systems.

This research presents not just a technical solution but a human-centered innovation aimed at
reducing societal barriers. By uniting artificial intelligence with sign language linguistics, this
work contributes to the broader goal of promoting accessibility, inclusion, and mutual under-
standing between Deaf and hearing individuals. The findings also open promising pathways
for applications in education, healthcare, customer service, and smart environments.
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Chapter 1

Sign Language and Ai-Driven Solutions for
Communication Challenges

1.1 Introduction

According to statistics from the World Health Organization (WHO) [2], approximately 5%
of the global population suffers from hearing impairment. Furthermore, projections by the
United Nations [6] estimate that by 2050, the number of individuals with hearing loss will
reach 900 million.

Communication is fundamental to human interaction, enabling individuals to express their
needs, emotions, and ideas. For the Deaf community, effective communication is equally
essential to ensure inclusion and active participation in society. However, Deaf individuals
often face significant challenges when communicating with hearing individuals, leading to
potential isolation and exclusion. Bridging this communication gap is crucial not only for
social inclusion but also for fostering mutual understanding and equality.

Sign language comprises multiple elements, including hand gestures, facial expressions, body
movements, and finger positioning. These aspects significantly impact the effectiveness of
SLR systems. Artificial intelligence (AI) has emerged as a powerful tool in developing Sign
Language Recognition (SLR) systems, which aim to interpret complex gestures and facial ex-
pressions. SLR is inherently challenging due to the diversity of sign languages and the intri-
cate combination of manual and non-manual features involved. In this section, we explore the
fundamental characteristics of sign language, the unique challenges associated with its recog-
nition, and the necessity of advanced Al-driven solutions. By addressing these challenges, we
can enhance communication accessibility, empowering the Deaf community through seam-
less interaction with technology:.

1.2 The History of Sign Language

In this section, we explore the evolution of sign languages and their significance within the
Deaf community. From their early foundations to their recognition as complete and indepen-
dent languages, sign languages have played a vital role in communication, culture, and iden-
tity for Deaf individuals. This historical overview sheds light on the challenges and victories
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experienced by the Deaf community in preserving and promoting their linguistic heritage.

The history of sign language is deeply connected to the broader struggles for Deaf autonomy,
education, and cultural identity. From the late 18" century to the mid-20" century, sign
languages evolved not only as tools of communication but also as symbols of resistance and
empowerment within Deaf communities [7].

1.2.1 Early Recognition and Institutionalization

The late 18" and early 19 centuries marked a turning point in the recognition of sign lan-
guage. The establishment of the first schools for the Deaf, such as the American School for the
Deaf in Hartford [L.1, Connecticut (1817), played a pivotal role in legitimizing sign language
as a medium of instruction [7]. Many of these institutions were founded by Deaf individuals
or hearing allies who supported manual communication methods. During this period, sign
language thrived as a cornerstone of Deaf identity and social integration, fostering the growth
of vibrant Deaf communities.

Figure 1.1: First school for the Deaf in the USA, Hartford, 1817.

Legacy and Continuity of Early Deaf Schools

Remarkably, many of these pioneering institutions remain active today, preserving their his-
torical missions while adapting to modern educational needs. The American School for the
Deaf (ASD), for instance, continues to operate in Hartford [8] (see Figure [L.7), offering bilin-
gual (ASL/English) education and serving as a cultural touchstone for the Deaf community
[7]. Similarly, Europe’s oldest Deaf school, the Institut National de Jeunes Sourds de Paris
(founded in 1760), still functions as a center for Deaf education and advocacy [5].

These schools’ endurance underscores their foundational role in institutionalizing sign lan-
guage and sustaining Deaf cultural heritage. Their ongoing relevance highlights the resilience
of Deaf communities in the face of shifting pedagogical trends, such as the oralist movement
of the late 19 century [9, 10].
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Figure 1.2: American School for the Deaf campus, Hartford.

1.2.2 Deaf Resistance and the Preservation of Sign Language

Despite the rise of oralism, the Deaf community actively resisted the erasure of their lan-
guage and cultural identity. Organizations such as the National Association of the Deaf (NAD),
founded in 1880, became key advocates for the preservation and recognition of sign language
[7]. Deaf leaders emphasized that sign language was not only a natural and effective form of
communication but also essential to the intellectual and social development of Deaf individ-
uals. Through education, advocacy, and cultural expression, the Deaf community fought to
maintain their linguistic heritage and challenge the stigmatization imposed by oralist ideolo-
gies.

1.2.3 The Rise of Oralism and the Suppression of Sign Language

By the mid-19™ century, a new educational movement known as oralism emerged, challenging
the use of sign language. Oralism promoted teaching Deaf individuals to speak and lip-read,
excluding the use of sign language. This approach gained significant support after the 1880
Milan Congress, where a majority of hearing educators voted in favor of oralist methods [7].
Following this decision, sign language was systematically banned from many schools, driven
by ideologies of normalization and eugenics that viewed it as an obstacle to social assimilation.
As a result, sign language was marginalized, despite its importance for communication and
cultural continuity within Deaf communities.

Despite the rise of oralism, the Deaf community actively resisted the erasure of their lan-
guage and cultural identity. Organizations such as the National Association of the Deaf (NAD),
founded in 1880, became key advocates for the preservation and recognition of sign language
[7]. Deaf leaders emphasized that sign language was not only a natural and effective form of
communication but also essential to the intellectual and social development of Deaf individ-
uals. Through education, advocacy, and cultural expression, the Deaf community fought to
maintain their linguistic heritage and challenge the stigmatization imposed by oralist ideolo-
gies.

1.2.4 Revival and Recognition in the 20th Century
The mid-20" century witnessed a revival of interest in sign languages, spurred by academic re-
search and the growing visibility of Deaf culture. Pioneering linguists such as William Stokoe

demonstrated that American Sign Language (ASL) possessed a complete linguistic structure,
with its own grammar and syntax [[7]. This breakthrough helped shift public and academic
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perceptions, legitimizing sign language as a true language. The rise of Deaf activism further
reinforced this momentum, culminating in significant events like the 1988 Deaf President Now
movement at Gallaudet University, which emphasized the importance of Deaf leadership and
sign language in higher education.

1.3 Difference between Sign Language and Spoken Language

Sign Language (SL) [[11] is a visual-gestural form of communication primarily used by Deaf
and hard-of-hearing individuals. Unlike spoken languages that rely on vocal and auditory
faculties, SL uses hand gestures, body movements, and spatial orientation, and is processed
visually. It has its own grammar and syntax, distinct from spoken or written languages [12].

A Sign Language Recognition (SLR) system translates SL into text or speech using digital im-
age processing and classification techniques. It typically involves gesture modeling, analysis,
recognition, and application [13].

SL is a standalone language with its own alphabet, numerals, and vocabulary, although gen-
erally more limited than spoken languages. In many developing countries, SL is still evolving,
but progress in computer-based recognition is notable [12]. Additionally, SL often mirrors the
alphabet and numerals of its corresponding spoken language, and its vocabulary is shaped by
the cultural context of its users.

1.4 Communication Barriers between Deaf and Hearing In-
dividuals

Communication between Deaf and hearing individuals is hindered by linguistic and percep-
tual differences. With over 300 distinct sign languages globally, each with its own grammar
and vocabulary, cross-linguistic communication poses a significant challenge [[14]. Further-
more, the medical model views deafness as a disability needing correction, while the social
model sees it as a cultural and linguistic identity [, 15]. This affects communication pref-
erences, with many Deaf individuals favoring sign language over spoken or written forms
(15].

Hearing individuals often lack the skills to interpret sign language, while Deaf individuals
may struggle with spoken language, leading to frequent miscommunication—especially in
critical contexts like healthcare [1]. Lip reading is commonly overestimated, even though
only 30-45% of English sounds are visibly distinguishable on the lips [1].

To overcome these barriers, technological solutions like real-time sign language translation
using machine learning and computer vision are essential [16]. Additionally, greater aware-
ness and professional training are necessary to promote inclusion and improve accessibility
for the Deaf community [[14, 15].

19



1.5 Importance of Bridging the Communication Gap for In-
clusivity and Accessibility

Bridging the communication gap between Deaf and hearing individuals is essential for fos-
tering understanding and dismantling misconceptions. Misunderstandings often stem from a
lack of awareness about Deaf culture and communication methods, leading to marginalization
and exclusion [[1]. Effective communication is the cornerstone of an inclusive society, ensur-
ing that all individuals, regardless of hearing ability, can fully engage in social, educational,
and professional environments. Too often, the hearing community perceives Deaf individu-
als as “disabled” rather than recognizing them as part of a linguistic and cultural minority,
further deepening the divide [[1, 17].

1.5.1 Importance of Communication in Health Care

Effective communication is fundamental in health care, ensuring that patients fully under-
stand medical procedures, diagnoses, and treatments. However, individuals who are Deaf or
hard of hearing face significant communication barriers that can lead to discomfort, fear, and
even medical errors. As highlighted in [[1], inadequate communication can have severe conse-
quences, including misdiagnosis, medication errors, and distress during medical procedures.

One striking example is the experience of a patient undergoing a gynecological examination:
“They didn’t tell me what they were going to do. There I was in the stirrups—I couldn’t see what
was going on. The doctor didn’t say to me, ‘This might be uncomfortable, or tell me how much
pain to expect. I never went again” [[1].

Similarly, a male patient undergoing his first testicular examination described his fear and
confusion: ‘T was scared. I didn’t know if I was being molested or raped or if this was a sexual
advance... A hearing doctor with a hearing patient will talk through the entire exam, but when
the patient is Deaf, they just do it. Some doctors keep on talking. They forget I'm Deaf” [1].

These experiences underscore the necessity of patient-centered communication strategies.
Research on American Sign Language (ASL) emphasizes that ASL is not merely a direct trans-
lation of English but a fully developed language with its own structure and grammar [17]. Mis-
communication arises when health care providers assume that written notes or lip reading are
sufficient methods of interaction. In reality, only 30-45% of English sounds are distinguish-
able through lip reading, leading to misunderstandings and patient frustration [[1].

The development of technologies that bridge this communication gap is not only about fa-
cilitating interaction but also about fostering a sense of belonging, dignity, and respect for
the Deaf community [[16]. These technologies play an integral role in promoting a sense of
equality, ensuring that Deaf individuals have the same opportunities to thrive in all aspects

of life.

1.6 Challenges and Limitations in Sign Language

The diversity of sign languages worldwide presents significant challenges, as each has dis-
tinct grammar, vocabulary, and syntax shaped by unique cultural and linguistic contexts.
Languages such as ASL, BSL, and ArSL are not mutually intelligible [18, 19, 17].
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Sign language recognition research must distinguish between isolated sign recognition and
continuous sign language interpretation. The former involves identifying individual signs,
while the latter requires understanding complex, motion-based sequences [20].

Translation between spoken and sign languages is complicated by structural differences. Is-
sues include one-to-one, one-to-many, and many-to-one mappings of semantic concepts to
signs, as noted in Spanish-LSE and Arabic-ArSL translation efforts [21, 22].

Unlike spoken languages, sign languages allow for simultaneous expression through hands,
facial expressions, and body movement. For instance, Thai Sign Language uses parallel spatial
elements, contrasting with the linear structure of Thai speech [23, 24, 25].

Key features of sign languages include:

+ Non-manual markers (e.g., facial expressions, head movements) for grammar and
meaning.

« Use of space to encode phonological and lexical information.

Context-dependent signs that may serve as different parts of speech.
« Classifiers that convey shape, movement, and object characteristics.

« Syntax variations often diverging from the common Subject-Verb-Object (SVO) order
[26].

These unique features introduce complexities in automated recognition and translation, re-
quiring sophisticated systems to ensure accurate and meaningful communication.

1.6.1 Exploring the Diversity of Sign Languages: Illustrative Examples

To highlight the variations and diversity inherent in sign languages, we explore examples
from three prominent systems: Arabic Sign Language (ArSL), British Sign Language (BSL),
and American Sign Language (ASL).

Arabic Sign Language (ArSL)

Arabic Sign Language (ArSL) is a distinct visual-gestural language with its own grammar,
vocabulary, and structure, which differs from both spoken Arabic and other sign languages.
Although the League of Arab States and ALECSO attempted to standardize ArSL in 1999 with
a dictionary comprising approximately 3,200 signs [[18], regional variations remain prevalent,
complicating mutual understanding among signers [27]. ArSL generally follows a subject-
first word order, with question words commonly placed at the end of interrogative sentences,
as illustrated in Figure [1.3 [28].
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Figure 1.3: Structure of a question sentence in Arabic Sign Language (ArSL)

Unlike spoken Arabic, ArSL does not employ inflections for gender or number; instead, it uses
distinct signs. Non-manual markers—such as facial expressions, eye gaze, and body posture—
are essential for conveying grammatical nuances and emotions [29]. However, compared
to American Sign Language (ASL) and British Sign Language (BSL), ArSL lacks robust Sign
Language Recognition (SLR) systems due to limited datasets [30]. Recent initiatives, such as
the dataset shown in Figure [L.4, aim to address this gap and support the development of ArSL
recognition technologies [31].
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Figure 1.4: Sample signs from the Arabic Sign Language (ArSL) dataset

British Sign Language (BSL)

British Sign Language (BSL) is the primary sign language used by the Deaf community in the
United Kingdom [32]. It is a fully independent language, with its own grammar, syntax, and
vocabulary, and is entirely distinct from spoken English [19]. BSL should not be confused with
American Sign Language (ASL) or other national sign languages, as it significantly differs in
both structure and lexicon [33].

Technological advances have contributed to BSL recognition, such as the intelligent vision
system developed by Quinn and Olszewska. This system leverages machine learning and
computer vision—specifically, Support Vector Machines (SVM)—to recognize BSL signs in real
time, thereby enhancing communication accessibility for Deaf users [34]. Figure [1.3 depicts
the BSL manual alphabet.
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American Sign Language (ASL)

American Sign Language (ASL) is one of the most widely used sign languages, particularly in
the United States and parts of Canada. ASL is a complete and natural language with its own
unique grammar, vocabulary, and syntax, which are markedly different from spoken English
[17]. It conveys meaning through a combination of handshapes, facial expressions, and body
movements. Importantly, ASL does not follow English grammatical rules and has its own
linguistic structure.

Figure [L.§ presents the ASL alphabet and number gestures, showcasing the distinct hand con-
figurations used for each letter and digit. These differ significantly from those used in British
Sign Language (BSL).
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&

ﬂ

Figure 1.6: Manual alphabet and number gestures in American Sign Language (ASL)
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1.7 Artificial Intelligence

Artificial Intelligence (AI) refers to the ability of machines and computer systems to perform
tasks that typically require human intelligence. This includes decision-making, pattern recog-
nition, language understanding, and adaptive learning. Al systems may emulate human cog-
nitive processes or adopt approaches inspired by natural phenomena such as evolution and
neural activity [35].

One of the practical applications of Al is in sign language recognition, where Al techniques
analyze hand gestures, movements, and facial expressions to interpret and translate them into
spoken or written language. This application plays a crucial role in enhancing accessibility
for the deaf and hard-of-hearing communities.

1.8 Sign-to-Text or Spoken Language Translation for Deaf In-
dividuals

The primary goal of sign language translation systems is to accurately capture and interpret
signed gestures, converting them into coherent text or spoken language. This process is in-
herently complex due to the distinct grammar, syntax, and spatial dynamics of sign languages,
which differ significantly from spoken language structures [36].

Traditional Sign Language Recognition (SLR) approaches have focused largely on isolated sign
classification. While useful for recognizing individual gestures, such methods often fail to cap-
ture the rich linguistic and contextual nuances present in continuous sign language. Recent
advancements in Neural Sign Language Translation (SLT) have introduced deep learning-
based sequence-to-sequence models, often augmented with attention mechanisms, to trans-
late continuous sign language videos into semantically meaningful spoken language sentences
[36]. These models are capable of learning complex temporal dependencies and aligning sign
gestures with spoken language constructs, thereby overcoming issues related to word order
and syntactic mismatch.

1.9 Spoken Language to Equivalent Sign Translation for
Hearing Individuals

Conversely, translating spoken language into its equivalent sequence of sign language ges-
tures enables hearing individuals to communicate effectively with the deat community. This
task involves not only transcribing speech but also rendering it into a visual-gestural format
that accurately represents the linguistic structure and expressive elements of the target sign
language [16].

The translation process relies heavily on Artificial Intelligence, particularly Natural Language
Processing (NLP), to understand the semantic and syntactic context of spoken input. Once
the meaning is extracted, computer vision and deep learning models are employed to synthe-
size corresponding sign gestures. These models must take into account several parameters,
including hand shape, movement trajectory, palm orientation, facial expressions, and spatial
positioning [16].
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One of the key challenges in this direction stems from the non-linear, multidimensional na-
ture of sign languages. While spoken languages typically follow a linear sequence, sign lan-
guages convey information through simultaneous and spatially distributed channels. Rule-
based translation systems have struggled with this complexity. However, recent deep learn-
ing frameworks have demonstrated greater success by modeling sequential dependencies and
contextual features within multimodal data [[16].

Before further exploring the specific Al architectures and training strategies used in sign lan-
guage translation, it is helpful to reaffirm the relevance of Alin this context. Al technologies—
including speech recognition, natural language understanding, and gesture synthesis—serve
as the foundational tools that enable effective and scalable sign language communication sys-
tems.

1.9.1 Computer Vision in Sign Language Recognition

Computer vision, inspired by the mechanisms of human visual perception [37], plays a piv-
otal role in sign language recognition systems. In this context, cameras act as the “eyes” that
capture visual input, while Al-powered algorithms serve as the “brain,” processing and inter-
preting the information. The output is a meaningful translation that bridges communication
gaps and enhances accessibility for the Deaf community.

Computer vision is essential for developing systems capable of recognizing and interpreting
sign language gestures. These systems leverage advanced techniques in image processing,
machine learning, and deep learning [38] to detect hand gestures, facial expressions, and body
movements. The processed data is then translated into text or speech, enabling real-time sign
recognition and facilitating communication between Deaf and hearing individuals [[16].

Machine learning (ML), a subfield of artificial intelligence, lies at the heart of sign language
recognition. While Al refers broadly to machines performing intelligent tasks, ML specifically
focuses on algorithms that learn from data to make predictions or decisions [35]. In the con-
text of sign language, ML algorithms classify visual inputs such as hand gestures and facial
cues to interpret signs accurately.

Deep learning, a more specialized subset of ML, employs neural networks to tackle complex
tasks like image recognition and sequential data modeling [35]. Unlike traditional ML, deep
learning models can learn intricate features from raw input data (e.g., video frames), elimi-
nating the need for manual feature extraction [[16].

In sign language recognition, deep learning excels at modeling both spatial and temporal
dynamics. Convolutional Neural Networks (CNNs) extract spatial features from individual
frames, while Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks
(LSTMs) capture temporal dependencies across gesture sequences [16].
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Figure 1.7: Hierarchical relationship among Al, ML, and Deep Learning.

Natural Language Processing (NLP), another branch of AL focuses on enabling machines to
understand and generate human language in a meaningful way [39]. In spoken-to-sign lan-
guage translation, NLP processes spoken input, extracts meaning, and generates correspond-
ing sign sequences while considering syntax, semantics, and context [4(]. NLP complements
computer vision in bidirectional translation systems between spoken and sign languages.

1.9.2 Sign Language Recognition

The development of Sign Language Recognition (SLR) systems has accelerated significantly
due to advancements in artificial intelligence and deep learning technologies.

To design effective systems, it is essential to understand the various types of SLR, as illustrated

in Figure [L.§ [41].

Manual
Sign Sign
Continuous Isolated

Figure 1.8: Types of Sign Language Recognition

1.9.3 Vision-Based Approach

In the vision-based approach, cameras capture hand, palm, and finger movements from video
input. Image processing algorithms extract features that are subsequently classified. While
suitable for real-time environments, this approach is sensitive to lighting conditions, back-
ground noise, and image blurriness. Therefore, effective preprocessing, feature extraction,
and classification are critical for accuracy [41].
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1.9.4 Sensor-Based Approach

Sensor-based methods involve physically mounted devices—such as gloves or motion
sensors—that detect finger trajectories, hand articulations, and head movements. These sys-
tems offer higher precision in controlled environments and are less affected by external noise.
Compared to vision-based systems, they often provide more consistent data, though at the cost
of wearability and user comfort [41].

1.9.5 Continuous and Isolated Sign Language Recognition

SLR can be further classified based on recognition style—isolated versus continuous—and on
the nature of gestures—manual versus non-manual.

Manual SLR recognizes hand configurations, orientations, and motion paths. In isolated man-
ual SLR, each sign is recognized as a distinct unit, simplifying classification. In contrast,
continuous manual SLR requires segmenting overlapping gestures within sequences, often
addressed using models like Hidden Markov Models (HMMs) and LSTMs [41].

Non-manual SLR includes facial expressions, eyebrow movements, lip shapes, and head tilts
that contribute to grammatical and emotional nuance. Continuous non-manual SLR poses
significant challenges due to the need for temporal modeling and multimodal fusion. Deep
learning techniques—especially CNNs and RNNs—are well-suited for managing these dynam-
ics and have shown promising results in tackling occlusion and feature variability.

1.9.6 Hand Gesture Recognition

Hand gestures can be divided into two main categories:

Dynamic Hand Gesture Recognition

Dynamic gestures involve movement over time and are typically processed through video
analysis. Earlier systems relied on hand-crafted features such as motion trajectories or body
skeletons [42, 43, 44, 45]. Recently, spatial-temporal deep learning models, such as 3D CNNs
and two-stream networks, have demonstrated superior performance on raw video data [46,
47, 48],

Static Hand Gesture Recognition
Static gestures are characterized by fixed hand positions and shapes without movement. Clas-
sification methods include template-matching and machine learning classifiers. Depending on

the complexity of input data, either linear or non-linear learners are employed [49]. Learning
paradigms span supervised, unsupervised, and reinforcement learning approaches.

1.9.7 Sign Language Translation and Representation

SLR involves two core components: translation and representation.
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Sign Language Translation

Sign Language Translation (SLT) transforms sign videos into spoken or written language,
requiring models that understand gloss sequences, grammar, and semantic context. SLT sys-
tems address more linguistic complexity than conventional gesture recognition. Evaluation
metrics such as BLEU are commonly used to measure translation quality [50, 51].

Sign Language Representation

Representation involves visualizing sign output, often through 3D avatars or synthesized
videos. These systems aim to accurately convey sentence meaning through facial expres-
sions, hand motions, and body posture. One of the biggest challenges is achieving natural
realism, especially in modeling fast transitions and expressive features [52].

« Realistic Avatars: These animated characters simulate human signing behavior. De-
spite technical challenges, they improve communication with Deaf users by offering a
more lifelike and engaging experience [53].

1.10 Conclusion

This chapter has established the foundational context—historical, social, and technological—
of sign language and its intersection with artificial intelligence. Historically, sign language
was marginalized by the rise of oralism, a movement that promoted spoken communication
over visual-gestural forms. While oralism stemmed from the concern that isolating Deaf indi-
viduals might limit societal integration, it often suppressed natural linguistic expression and
cultural identity.

We also examined the structural differences between signed and spoken languages, particu-
larly the spatial and visual grammar unique to sign languages. These differences pose sub-
stantial challenges for translation, especially in critical fields like healthcare, where commu-
nication accuracy is vital.

Artificial Intelligence emerges not as a tool to favor one language over another but as a bridge
that facilitates inclusive communication. Through computer vision, deep learning, and natu-
ral language processing, Al enables systems capable of real-time recognition and generation
of sign language. Both vision-based (camera-driven) and sensor-based (wearable) approaches
contribute meaningfully to this mission, each with distinct advantages.

Ultimately, this chapter frames the ethical vision of our project: to employ technology not to
replace, but to connect.
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Chapter 2

State of the art:Artificial Intelligence
Techniques In Sign Language Recognition:

2.1 Introduction

Sign language recognition (SLR) systems represent a transformative intersection of human-
computer interaction (HCI) and artificial intelligence (AI), aiming to bridge communication
gaps for the deaf and hard-of-hearing community [54]. These systems employ a multidis-
ciplinary approach, integrating techniques from computer vision, pattern recognition, and
natural language processing (NLP) to interpret and translate sign language gestures into text
or speech [36]. The challenge lies in accurately capturing the dynamic and nuanced nature of
sign language, which involves intricate hand movements, facial expressions, and body pos-
tures [41].

Recent advancements in Al, particularly in deep learning, have significantly enhanced the
capabilities of SLR systems [37]. Traditional machine learning methods, while effective for
isolated gesture recognition, often struggle with the continuous and context-dependent nature
of sign language [54]. In contrast, modern approaches leverage convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and transformer-based models to handle both
spatial and temporal dependencies, enabling more robust and real-time recognition [55, 56].

This chapter explores the state-of-the-art Al techniques employed in SLR, categorized into
machine learning and deep learning approaches. We begin with an overview of traditional
machine learning methods, including MediaPipe-based solutions for real-time hand and pose
tracking [57, 58]. Next, we delve into deep learning architectures, such as CNNs for spatial
feature extraction [59], RNNs and LSTMs for temporal sequence modeling [60], and graph
convolutional networks (GCNs) for capturing structural relationships in sign language ges-
tures [61, 62]. Finally, we examine transformer-based models, like BERT, which excel in han-
dling long-range dependencies and contextual nuances.

By analyzing these techniques, we aim to highlight their strengths, limitations, and applicabil-
ity in real-world SLR systems. The chapter also discusses benchmark datasets and evaluation
metrics, providing a comprehensive foundation for understanding the technological landscape
of sign language recognition. Through this exploration, we underscore the potential of Al to
foster inclusivity and accessibility, empowering deaf individuals to communicate seamlessly
with the hearing world.
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2.2 Machine Learning Approach

Machine learning is most effective with small datasets and well-defined features. Unlike deep
learning, which requires large data and significant computational power, traditional machine
learning can achieve competitive results when features are carefully engineered. In sign lan-
guage recognition, machine learning has proven effective, particularly for alphabet classifi-
cation. Several recent studies have explored this approach.

2.2.1 MediaPipe-Based Approach

MediaPipe is an open-source framework by Google Research for building efficient, modular
perception pipelines that process streaming data such as video and audio in real time, lever-
aging CPU and GPU resources [57].

Object Detection with MediaPipe

MediaPipe combines machine learning-based detection models with tracking to enable real-
time object detection. To optimize resources, detection runs on selected frames, while a
tracker propagates results across intermediate frames. This dual-branch strategy ensures
smooth, low-latency detection with minimal computational load (Figure ) [57].
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Figure 2.1: Object Detection Process Using MediaPipe
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Hand Landmark Detection and Tracking

Real-time hand tracking in MediaPipe Hands operates through two main steps [63]: palm de-
tection and landmark extraction. Palm detection focuses on locating the rigid palm structure
rather than the entire hand, generating a bounding box to isolate the hand region; this step
runs initially or when tracking confidence decreases. Following palm detection, a deep neural
network extracts 21 hand landmarks, including joints and fingertips, represented in 2.5D co-
ordinates image plane (x,y) plus relative depth z. To maintain efficiency, landmark tracking
is updated every frame, with palm detection reactivated only upon significant tracking errors
(58].

Image Segmentation Using MediaPipe

Image segmentation [63] with MediaPipe provides efficient, real-time pixel classification for
tasks such as background removal and object isolation, optimized for mobile and web plat-
forms. Its Image Segmenter[64] model can classify various categories including human fig-
ures, hair, skin, and clothing. The Selfie Segmentation model, based on MobileNetV3, special-
izes in fast human segmentation for virtual backgrounds. Additionally, the Interactive Image
Segmenter[65] enables precise object contour estimation through user-defined points. These
lightweight models deliver high performance with minimal computational cost, making them
ideal for applications like mobile AR filters and real-time video processing without requiring
specialized hardware.

Mesbahi et al. [66] propose a hand gesture recognition approach to support communication
for deaf and hard-of-hearing individuals by leveraging geometric features (medians, heights,
angles) of hand keypoints extracted with MediaPipe, combined with lightweight machine
learning models such as Random Forest, KNN, and Decision Tree. Trained on 26 ASL gesture
classes with data augmentation, their method achieves a precision of 98.50%, outperform-
ing some deep learning models with significantly reduced computational complexity, though
challenges remain in distinguishing similar gestures and ensuring accurate hand landmark
detection. Similarly, Chakraborty et al. [67] developed a machine learning-based Indian Sign
Language recognition system using MediaPipe Hands to extract 21 landmarks and classifiers
like Kernel SVM, Random Forest, KNN, and Decision Tree. They created a dataset of 15,000
single- and double-handed gesture samples per English alphabet, achieving up to 99% accu-
racy with Kernel SVM, demonstrating the viability of lightweight ML models for real-time ISL
recognition. However, challenges such as gesture similarity, lighting variability, and reliance
on MediaPipe accuracy persist.

Article Method Dataset Result Challenges

Mesbahi et | MediaPipe 26 ASL  ges- | 98.50%  precision; | Difficulty distin-

al. [66] geometric ture classes, | outperforms deep | guishing similar
features (me- | augmented data | models with lower | gestures; depen-
dians, heights, computational dency on accu-
angles) with complexity rate hand land-
Random For- mark detection
est, KNN,
Decision Tree
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Article Method Dataset Result Challenges

Chakraborty| MediaPipe Custom ISL | 99% accuracy (Ker- | Similar gestures,

et al. [67] Hands API (21 | dataset: 15,000 | nel SVM) lighting  varia-
landmarks) samples per tions,  reliance
with  Kernel | English alphabet on  MediaPipe
SVM, Random | (single/double- accuracy

Forest, KNN, | handed)
Decision Tree

Table 2.1: MediaPipe-Based Approach Related Works

2.3 Deep Learning approach

Deep learning is a specialized subset of machine learning . It is widely used in cutting-edge
applications like image recognition, text generation.[35]

However, the ability of deep learning techniques to capture semantics within data is con-
strained by model complexity and input details [68, 69]. Key techniques applied in sign lan-
guage interpretation include:

2.3.1 Convolutional Neural Network (CNN) Approach

Convolutional Neural Networks (CNNs), inspired by the human visual cortex and established
since the 1980s [59], have become essential in computer vision. They outperform humans in
complex image recognition tasks and power applications such as image search, autonomous
driving, and video classification. CNNs also excel in speech recognition and natural language
processing.

A typical CNN architecture (see Figure 2.4 [59]) consists of hierarchical layers including con-
volutional layers followed by nonlinear activations like ReLU, and pooling layers that reduce
spatial dimensions while retaining key features. As data flows through the network, spatial
size decreases and feature depth increases, enabling the extraction of increasingly abstract
representations.

Convolution Pooling Convolution  Pooling

Input Fully connected

Figure 2.2: Typical CNN architecture

The output of a neuron in a convolutional layer is computed using the following equation:
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where:

« by is the bias term,
+ Ty j i Tepresents the input feature map values,
* Wy ki are the convolutional filter weights,

« i =ixs,+uandj = j X s, + v define the receptive field coordinates based on the
stride values s;, and s,,.

Many researchers have demonstrated the high efficiency of CNNs in both feature extrac-
tion and classification tasks. Koller et al. [55] introduced a hybrid CNN-HMM approach for
continuous sign language recognition, combining CNNs for feature extraction with HMMs
for sequential modeling. Their end-to-end Bayesian framework improves alignment quality
and outperforms traditional HMM models, achieving relative improvements between 15% and
38%, and up to 13.3% absolute gains, though relying on high-quality alignments and annotated
data.

Extending this work, Koller et al. [70] developed a robust statistical framework integrating
deep learning with hybrid CNN-HMMs, enhancing recognition accuracy and generalization
across signers and datasets by optimizing alignment between video sequences and linguistic
glosses.

Runpeng Cui et al. [71] proposed a CNN combined with a bidirectional LSTM (BLSTM) for
sequence learning in continuous sign language recognition. Tested on the RWTH-PHOENIX-
Weather 2014 dataset, their model surpasses traditional HMM methods. They also incorpo-
rated a detection network to refine sequence predictions and improve gloss-video alignment.

Najib [72] highlights the combination of CNN and LSTM models with MediaPipe for real-
time hand gesture recognition, leveraging precise landmark detection to boost classification
performance. However, challenges remain regarding dataset heterogeneity, computational
demands, and generalizability. Najib calls for further optimization to facilitate real-world
applications.

Article Method Dataset Result Challenges

Cui et al. | CNN for | RWTH- Outperforms tradi- | Performance

(2016) [71] | feature extrac- | PHOENIX- tional HMM-based | depends on high-
tion, BLSTM | Weather = mul- | models, improves | quality gloss
for sequence | tisigner 2014 | alignment between | annotations and
learning, dataset glosses and video | dataset-specific
detection segments tuning
network  for
refinement
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Article Method Dataset Result Challenges
Koller et al. | Hybrid CNN- | RWTH- Achieves 15%- | Relies on accu-
(2016) [65] | HMM ap- | PHOENIX- 38% relative im- | rate alignment
proach  with | Weather provement over | between  video
Bayesian traditional HMMs frames and
modeling for glosses, requir-
alignment ing high-quality
annotations
Koller et al. | Improved Multiple sign lan- | Significant per- | Still requires
(2018) [70] | hybrid CNN- | guage datasets formance im- | high-quality an-
HMM model provements across | notated training
with deep datasets, better gen- | data for optimal
learning  for eralization  across | performance
enhanced signers
sequence
modeling
Najib [72] | CNN and | Heterogeneous Improved  perfor- | Computational
LSTM  com- | datasets (unspec- | mance via precise | intensity, dataset
bined  with | ified details) MediaPipe land- | heterogeneity,
MediaPipe mark detection generalizabil-
for real-time ity across sign
tracking languages

Graph convolutional networks

Table 2.2: CNN-Based Approach Related Works

Graph Convolutional Networks (GCNs) are a class of neural networks designed to process
graph-structured data by leveraging neighborhood information through convolutional opera-
tions. Unlike traditional Convolutional Neural Networks (CNNs), which operate on Euclidean
data such as images, GCNs generalize the concept of convolutions to non-Euclidean graph
structures. By aggregating features from neighboring nodes, GCNs enable efficient learning
of node representations, making them well-suited for tasks such as node classification, link
prediction, and graph embedding [61].

The standard architecture of a GCN consists of multiple layers, each performing the following
update operation for a given node v:

where:

HO = o (D4 AD-EHOWO)

H® is the feature matrix at layer [,

« A= A+ I is the adjacency matrix with self-loops added,

« WU is the trainable weight matrix for layer /,

D is the diagonal degree matrix of A,
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« o(+) is an activation function, typically ReLU.

A common GCN model includes an input layer (initial node features), hidden layers (which
perform graph convolutions), and an output layer (for classification or regression tasks). The
GCN model proposed by Kipf and Welling (2017) [73] simplifies spectral convolutions using
a first-order approximation, reducing computational complexity while maintaining perfor-
mance [61]].
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Figure 2.3: GCN Architecture

Correia de Amorim et al. [62] tackle automatic sign language recognition using Spatial-
Temporal Graph Convolutional Networks (ST-GCN) to model gesture dynamics. Trained
on the ASLLVD-Skeleton dataset (derived via OpenPose), their model achieves 61.04% Top-1
accuracy on a subset of 20 signs, outperforming some classical methods but underperforming
optical flow-based approaches. On the full ASLLVD dataset (2,745 signs), accuracy drops to
16.48%, highlighting challenges in capturing fine hand movements and the need to incorporate
depth information.

Parelli et al. [74] address continuous sign language recognition (CSLR) from RGB videos using
ST-GCNss to extract signer pose, shape, and motion dynamics. Evaluated on RWTH-PHOENIX
Weather 2014T and Chinese Sign Language (CSL) datasets, their approach attains state-of-
the-art performance on CSL (Gloss Error Rate: 1.48%) and competitive results on RWTH-
PHOENIX (GER: 21.34%). However, limitations remain for low-resolution videos and complex
sign articulations, suggesting improvements in motion feature extraction and multimodal fu-
sion.

Sign language recognition remains challenging due to signer variability, occlusions, and mo-
tion blur. Recent works employ deep learning and GCNs to mitigate these issues. Papadim-
itriou et al. [75] propose a signer-independent system combining deformable 3D CNN and
modulated ST-GCN, reducing relative error rates by 53% on Greek and Turkish datasets. Naz et
al. [76] introduce SignGraph, a pose-based GCN achieving 100% accuracy on LSA-64 and sig-
nificant improvements on WLASL datasets. Meng and Li [77] develop a multi-scale attention-
enhanced SLR network aided by GCNs, reaching 98.08% accuracy on CSL-500. Zhou et al. [78]
present a multimodal ST-GCN with handshape recognition, achieving 80.8% Top-1 accuracy
on ASLLRP. Song et al. [79] propose a hand-aware GCN with adaptive DropGraph, achieving
96.82% accuracy on AUTSL. Arib et al. [80] combine transformers with ST-GCN for end-to-end
continuous SLR, demonstrating promising results on multiple datasets.

Despite these advances, challenges such as computational efficiency, occlusion handling, and
limited large-scale datasets persist. Future work should focus on lightweight models, im-
proved data augmentation, and multimodal fusion techniques.
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Article Method Dataset Result Challenges
Correia de | Spatial- ASLLVD- 61.04% Top-1 (sub- | Struggles  with
Amorim et | Temporal Skeleton (subset: | set), 16.48% Top-1 | fine hand move-
al. [62] Graph  Con- | 20 signs; full: | (full) ments; lacks
volutional 2,745 signs) depth  informa-
Networks tion
(ST-GCN)
Parelliet al. | ST-GCN + 3D | RWTH- GER: 21.34% | Degrades in low-
[(74] pose/shape PHOENIX 2014T, | (RWTH), 1.48% | resolution video;
parameteriza- | CSL (CSL) complex articula-
tion (ExPose) tion challenges
PapadimitriouDeformable Greek/Turkish 53% relative error | Dataset limita-
et al. [75] 3D CNN + | SL datasets reduction tions; computa-
modulated tional efficiency
ST-GCN
Naz et al. | SignGraph LSA-64, WLASL | 100% (LSA-64), | Limited dataset
[76] (pose-based +8.91-27.62% diversity;  gen-
GCN) (WLASL) eralization
challenges
Meng & Li | Multi-scale at- | CSL-500, 98.08%  (CSL-500), | Lower per-
[(77] tention GCN | DEVISIGN-L 64.57% (DEVISIGN- | formance on
L) complex  signs;
computational
cost
Zhou et al. | Multimodal ASLLRP 80.8% Top-1 Sensitivity to oc-
(78] ST-GCN with clusions; motion
handshape blur issues
recognition
Song et al. | Hand-aware AUTSL 96.82% accuracy Requires  high-
[(79] GCN + Drop- resolution input;
Graph dataset  speci-
ficity
Arib et al. | Transformer | RWTH- SOTA performance | Computational
(80] + ST-GCN | PHOENIX- inefficiency;
fusion 2014T, needs larger
How2Sign, datasets
BornilDB

Table 2.3: GCN-Based Approach Related Works

2.3.2 Time Series Models

Time series models are specifically designed to handle sequential data where observations are
dependent on time. In deep learning, several architectures have been developed to capture
temporal dependencies in such data. Among these, Recurrent Neural Networks (RNNs) were
one of the first neural architectures adapted to time series analysis due to their ability to
model sequences by maintaining hidden states that evolve over time [59]. However, standard
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RNNss struggle to capture long-term dependencies due to issues like vanishing and exploding
gradients.

To address these limitations, more advanced architectures have emerged, such as Long Short-
Term Memory (LSTM) networks, which introduce memory components and gating mecha-
nisms that enable the network to retain relevant information over longer sequences.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a special type of recurrent neural network
(RNN) designed to overcome the vanishing gradient problem encountered in standard RNNs.
LSTMs introduce memory cells and gating mechanisms to selectively retain and forget infor-
mation over long sequences.

An LSTM unit consists of the following components as illustrated in the figurep.4;

Forget gate: Decides which information from the previous state should be discarded.

+ Input gate: Determines which new information should be stored in the cell state.

Cell state: Stores the long-term memory component of the network.

Output gate: Regulates the information to be output from the cell.
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Figure 2.4: Long Short Term Memory architecture

Mathematically, the LSTM operations are defined as follows:

Je = o(Wyxy + Uphy_y + by) (2.3)
iy = o(Wixy + Uihy_1 + ;) (2.4)
C; = tanh(Wa, + Uchy_y +be) (2.5)
Cr=f,0C +i,©C, (2.6)

op = o(Wozy + Ushy—1 + b,) (2.7)
hy = o; ® tanh(C}) (2.8)

where z; represents the input, h; the hidden state, C; the cell state, and o denotes the sigmoid
activation function.
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Long Short-Term Memory networks (LSTMs) improve upon standard RNNs by maintaining
information over extended sequences, making them effective in time series forecasting, nat-
ural language processing, and speech recognition [81].

Fang et al. [82] employed a bidirectional RNN with LSTM units for universal, non-intrusive
word- and sentence-level translation of American Sign Language (ASL), demonstrating the
effectiveness of bidirectional processing in capturing complex sign gestures.

Kavarthapu and Mitra [83] utilized a bidirectional LSTM encoder and an LSTM decoder in
their model, which facilitated abstract feature extraction from sequential inputs. Their ap-
proach showed high performance, attributed to the bidirectional architecture.

Rakun et al. [84] applied LSTMs to Indonesian Sign Language recognition using full sequence
inputs rather than pre-clustered per-frame data. Their two-layer LSTM model achieved 95.4%
accuracy on root word classification but showed reduced accuracy (77%) on inflection words
due to linguistic complexity.

Kumar et al. [85] proposed an LSTM-based RNN model with a softmax classifier for real-
time sign language translation, successfully converting continuous sign language videos into
English sentences, thus enhancing communication accessibility.

Article Method Dataset Result Challenges
Fang et al. | Bidirectional | Not specified Learned key ASL | Handling se-
(82] RNN + features  through | quential depen-
LSTM for bidirectional  pro- | dencies; real-
word/sentence- cessing time processing
level transla- constraints
tion
Kavarthapu | Bidirectional | Not specified High performance | Optimizing
&  Mitra | LSTM en- via abstract feature | bidirectional
[83] coder + LSTM extraction architecture; loss
decoder minimization
Rakun et al. | Two-layer Indonesian Sign | 95.4% accuracy | Morphological
(84] LSTM for | Language (root words), 77% | variations;
full sequence (inflected words) prefix/suffix
input identification
Kumar et | RNN with | Continuous sign | Real-time trans- | Continuous  se-
al. [85] LSTM  cells | videos (unspeci- | lation to English | quence handling;
+ softmax | fied) sentences alignment/speed
classifier variations

Table 2.4: RNN-Based Approach Related Works

2.3.3 Transformer (Attention Is All You Need)

The Transformer is a neural network architecture introduced by Vaswani et al. (2017) [56].
It is designed for sequence transduction tasks such as machine translation, replacing tradi-
tional recurrent neural networks (RNNs) and convolutional neural networks (CNNs) with
self-attention mechanisms. Unlike RNNs, which process data sequentially, the Transformer
enables highly parallelized computation by leveraging self-attention to model dependencies
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between all positions in an input sequence.

BERT (Bidirectional Encoder Representations from Transformers)

BERT [B6] is a language representation model designed to pre-train deep bidirectional repre-
sentations from unlabeled text by jointly conditioning on both left and right context across
all layers.

Pre-training Phase BERT is initially trained on large-scale unlabeled corpora using two un-
supervised tasks: the Masked Language Model (MLM) and Next Sentence Prediction (NSP). MLM
allows the model to capture bidirectional context by randomly masking tokens and predict-
ing them based on surrounding context. NSP trains the model to understand relationships
between sentences by predicting if sentence B follows sentence A in the original text. This
enables BERT to learn deep, bidirectional language representations.

Fine-tuning Phase After pre-training, BERT is fine-tuned on downstream NLP tasks by
adding a small task-specific output layer. All parameters are jointly fine-tuned using labeled
data, requiring minimal architectural changes. This approach achieves state-of-the-art results
in applications such as question answering and natural language inference.
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Figure 2.5: BERT Input Representation

The field of sign language recognition (SLR) has made significant progress with deep learning,
particularly for continuous sign language recognition (CSLR). Zhou et al. [87] proposed Sign-
BERT, a BERT-based framework combining ResNet for spatial feature extraction and BERT for
temporal modeling, achieving state-of-the-art results on datasets such as RWTH-PHOENIX-
Weather 2014 and a newly collected Hong Kong Sign Language (HKSL) dataset. However, its
computational complexity and dependence on offline frame selection limit real-time applica-
bility.

Tunga et al. [88] introduced a pose-based method using Graph Convolutional Networks (GCN)
and BERT to model spatial and temporal dependencies separately, outperforming existing
approaches on the WLASL dataset. While effective for word-level recognition, their method
faces challenges in scaling to larger vocabularies due to ambiguous signs.

Furthering multimodal integration, Zhou et al. [89] developed CA-SignBERT, a cross-attention
BERT-based framework that dynamically fuses multiple input modalities (e.g., RGB, depth,
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hand images) via a novel weight control module. This approach achieves superior perfor-
mance on CSL, RWTH-2014, GSL, and HKSL datasets, though its success depends on the
quality of modality-specific feature extractors.

with  weight
control mod-
ule

Article Method Dataset Result Challenges
Zhou et al. | SignBERT: RWTH- Achieved state-of- | High compu-
(2021) [87] | BERT-based PHOENIX- the-art performance | tational com-
framework Weather 2014, | on both datasets plexity, offline
with ResNet | HKSL frame selection,
for spatial limited real-time
features and applicability
BERT for
temporal
modeling
Tunga et al. | Pose-based WLASL Outperformed Difficulty scaling
(2021) [88] | GCN with existing meth- | to large vocabu-
BERT to ods in word-level | laries due to sign
model spatial recognition ambiguity
and temporal
dependencies
separately
Zhou et al. | CA- CSL, RWTH- | Achieved supe- | Performance
(2022) [89] | SignBERT: 2014, GSL, HKSL | rior results on all | depends on
Cross- datasets the quality of
attention modality-specific
BERT com- feature  extrac-
bining RGB, tors
depth, and
hand images

Table 2.5: BERT-Based Approach Related Works

2.4 Datasets and Benchmarks for Sign Language Recognition
Systems

The primary goal is to enable researchers to develop a sign language recognition system by
utilizing a specific set of words and phrases within a particular domain, such as banking,
railways, public telephone booths, or general conversations in public spaces. Additionally,
combinations of sign gestures representing simple sentences or phrases are employed in the
recognition process.[12]

The databases used by researchers are categorized based on:
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2.4.1 Benchmarks

Datasets are extremely crucial to the functioning of sign language recognition, translation,
and synthesis techniques. As such, much focus has been given on the proper capture of signs
and their proper annotation. The majority of available datasets are captured with visual sen-
sors, which enable high-level information such as hand motion, facial expression, and pos-
ture to be captured. These datasets have to be utilized in order to train and validate machine
learning algorithms in order to ensure robust and generalizable performance in various sign
language tasks. [53]

A brief overview of some of the most commonly used datasets in this area follows:

Continuous Sign Language Recognition Datasets

Continuous Sign Language Recognition (CSLR) datasets consist of video sequences capturing
series of signs, making them more suitable for developing real-world applications compared
to isolated sign datasets.

One of the most widely used datasets is Phoenix-2014 [90], which contains video recordings
of German sign language weather reports. It includes recordings from 9 signers at 25 frames
per second, with 1081 unique glosses distributed across 5672 training, 540 validation, and
629 test videos. A more recent extension, Phoenix-2014-T [91], introduces spoken language
translations, facilitating both CSLR and sign language translation tasks. This updated version
comprises 8257 videos from the same 9 signers, featuring 1088 unique signs and 2887 unique
words. Despite being recorded in a controlled environment, both datasets are challenging
due to their large vocabularies and highly imbalanced sample distributions, where some signs
have only a single example.

Another significant dataset is BSL-1K [92], which consists of British news broadcast videos
annotated automatically from subtitles. This dataset is notable for its large scale, with approxi-
mately 273,000 samples from 40 signers, and is frequently used for sign language segmentation
tasks.

The CSL dataset [93, 94] focuses on Chinese sign language and comprises 100 sentences signed
by 50 individuals. Data collection occurred in a controlled laboratory setting with consistent
lighting and background conditions. The dataset contains a vocabulary of 178 words, each
signed multiple times, facilitating effective evaluation of SLR methods.

Isolated Sign Language Recognition Datasets

Isolated Sign Language Recognition (ISLR) datasets are essential for learning discriminative
features to accurately identify individual signs. One notable dataset is CSL-500 [95, 96], which
contains 500 unique Chinese Sign Language glosses signed by 50 signers. This dataset is
widely used for pretraining feature extractors before fine-tuning on continuous sign language
recognition datasets such as CSL.

Another prominent ISLR dataset is MS-ASL [97], consisting of 1,000 unique American Sign
Language (ASL) glosses. The videos are sourced from YouTube and include 222 different sign-
ers, resulting in significant variations in background and environmental conditions. Such di-
versity makes MS-ASL highly valuable for training robust models capable of generalizing well
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to unconstrained settings.

The WLASL (Word-Level American Sign Language) dataset [98] is currently the largest pub-
licly available ISLR dataset. It contains 21,083 videos of 2,000 distinct ASL words performed by
119 signers. WLASL is designed to tackle challenges such as signer variation, linguistic am-
biguity, and large vocabulary sizes, providing a comprehensive benchmark for isolated sign
language recognition research.

Dataset ‘ Language ‘ Content ‘ Size ‘ Key Features ‘ Citation
Continuous Sign Language Recognition Datasets
Phoenix- German Weather reports, | 6,841 1,081 glosses, | [90]
2014 9 signers, 25fps videos controlled en-
vironment
Phoenix- German Expanded 8,257 Spoken trans- | [91]
2014-T weather reports | videos lations, 2,887
words
BSL-1K British News broadcasts, | 273k sam- | Automatic [92]
40 signers ples subtitle anno-
tations
CSL Chinese 100  sentences, | 178 words | Multiple sign- | [93, 94]
lab recordings ings per word
Isolated Sign Language Recognition Datasets
CSL-500 Chinese Isolated glosses 500 signs Feature [05, bd] |
learning
benchmark
MS-ASL American | YouTube record- | 1k glosses | Diverse back- | [97]
ings grounds, 222
signers
WLASL American | Word-level signs | 21k videos | Largest ISLR | [98]
dataset, 119
signers

Table 2.6: Dataset for Sign Language Recognition

To evaluate the performance of different sign language recognition models on the most widely
used datasets, we present benchmark results for both continuous and isolated sign language
recognition. For continuous sign language recognition, Word Error Rate (WER) is the pri-
mary evaluation metric, where a lower value indicates better performance. For isolated sign
language recognition, Top-1 accuracy is commonly reported, reflecting the proportion of cor-
rectly classified signs in a single prediction attempt.
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Models ‘ WER (%) Year | Dataset

SlowFastSign [99] 18.7 2023 | RWTH Phoenix-14T
TwoStream-SLR [[100] 19.3 2022 | RWTH Phoenix-14T
TCNet [101]] 19.4 2023 | RWTH Phoenix-14T
Models Top-1 Accuracy Year | Dataset

Uni-Sign [[102] 63.52.7 2025 | WLASL-2000
NLA-SLR [103] 61.26 2023 | WLASL-2000
StepNet [[104] 61.17 2022 | WLASL-2000

Table 2.7: Comparison of different approaches on various datasets.

2.4.2 Evaluation Metrics

For isolated sign language recognition, the most commonly used evaluation metric is the
accuracy rate, which measures the proportion of correctly classified signs. In addition to
standard accuracy, Top-K accuracy is widely reported to assess model performance:

+ Top-1 Accuracy: Measures the percentage of test samples where the correct class is the
highest-ranked prediction.

N
1
Top-1 = — 2; 1 (arg max(y;) = ;)

+ Top-5 Accuracy: Counts a prediction as correct if the ground truth is within the top
five predicted classes.

N
1
Top-5 = N Z 1 (y; € Tops(¥:))
i=1

« Top-10 Accuracy: Similar to Top-5, but considers the top ten predictions.
| XN
Top-10 = N Z 1 (y; € Topy,(¥:))
i=1

However, for continuous sign language recognition, the evaluation process is more complex
and relies on metrics adapted from speech recognition and machine translation [105] Com-
monly used metrics include:

« Word Error Rate (WER): This measures the difference between the predicted sequence
of words and the ground truth, accounting for insertions, deletions, and substitutions.

« BLEU (Bilingual Evaluation Understudy) [51]: A precision-based metric that evalu-
ates the overlap between predicted and reference sequences, often used for assessing
translation quality.

« ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [[106]: A recall-based
metric that focuses on the overlap of n-grams between the predicted and reference se-
quences, commonly used in text summarization and translation tasks.
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Word Error Rate (WER)

The Word Error Rate (WER) is a metric that calculates the percentage of words that need to
be replaced, deleted, or inserted to align the recognized word sequence with the reference
(original) word sequence.[[105] It is defined as:

WER — % « 100%

where:

« S = number of substitutions (words that need to be replaced),
o D = number of deletions (words that need to be removed),
« [ = number of insertions (words that need to be added),

« N = total number of words in the reference sequence.

A lower WER indicates better performance, with 0% representing a perfect match between
the recognized and reference sequences.[105]

Due to its effectiveness in evaluating sequence recognition tasks, WER is widely adopted as
a standard evaluation metric in various domains, including sign language recognition. Most
methods in this field rely on WER to assess the accuracy and performance of recognition
systems.[1105]

2.5 Conclusion

This chapter provided a comprehensive analysis of artificial intelligence techniques applied
to sign language recognition, focusing on both traditional machine learning and advanced
deep learning approaches. We examined methods such as MediaPipe-based solutions, convo-
lutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory
networks (LSTMs), and transformer-based models (BERT). Each technique was evaluated in
terms of its strengths, limitations, and performance in recognizing sign language gestures.

Comparative studies demonstrated that hybrid models, combining computer vision with se-
quential modeling, achieve superior accuracy and robustness. However, challenges remain,
including the need for lightweight models for real-time applications and improved general-
ization across diverse sign languages.

Additionally, this chapter highlighted the critical role of datasets and evaluation metrics in
advancing sign language recognition systems. Benchmarks such as Phoenix-2014 and WLASL
provide essential frameworks for training and validation. Future research should focus on
multimodal integration and optimizing models for real-world deployment while enhancing
accessibility for the deaf and hard-of-hearing community.

This methodological foundation sets the stage for the next chapter, where we will detail the
design and implementation of our proposed deep learning-based sign language recognition
system.
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Chapter 3

Conception

3.1 Introduction

Sign Language Recognition (SLR) systems represent a critical technological advancement
aimed at bridging the communication gap between deaf and hearing individuals. However,
the development of robust and efficient SLR solutions remains a challenging task. Key difficul-
ties include the variability of gestures across users, the demands of real-time processing, and
the requirement for high recognition accuracy in dynamic, often noisy environments. Tradi-
tional approaches often struggle to address these complexities—particularly in distinguishing
subtle variations between signs or managing continuous, unsegmented sign sequences.

In this chapter, we present the design and methodology of our proposed deep learning-based
system for bidirectional sign language translation. The system is built around three core
architectures, each tailored to address specific challenges within the SLR domain:

« CNN-LSTM: This architecture combines Convolutional Neural Networks (CNNs) for
spatial feature extraction with Long Short-Term Memory (LSTM) networks for tem-
poral sequence modeling. While effective in capturing spatiotemporal dependencies,
CNN-LSTM models are computationally intensive—especially when processing high-
resolution input frames—posing a limitation for real-time deployment.

+ MediaPipe-BiLSTM: This model leverages the efficiency of MediaPipe’s real-time hand
and body keypoint detection, paired with Bidirectional LSTMs for sequential learning.
This combination enables accurate recognition with minimal computational overhead
and latency, making it suitable for real-time applications.

+ MediaPipe-GCN-BERT: Our most advanced architecture integrates Graph Convolu-
tional Networks (GCNs) for spatial reasoning over keypoint graphs, along with a BERT-
based Transformer for modeling long-range temporal dependencies. This hybrid archi-
tecture significantly enhances the recognition of semantically similar or contextually
complex sign gestures.

In addition to model design, we also describe our dataset preprocessing pipeline, developed
to ensure high model generalization and robustness across varied signing styles and back-
grounds. Finally, we introduce a novel 3D avatar-based sign synthesis module, which pro-
vides visual feedback for hearing users by translating spoken or textual language into sign
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language animations—thereby closing the communication loop in a user-friendly and intu-
itive way.

3.2 General Architecture

This section introduces the general architecture of the proposed bidirectional sign language
translation system, as depicted in Figure B.1. The architecture is designed to support real-time
interaction between deaf and hearing individuals, enabling both sign-to-text (or speech) and
text-to-sign translation functionalities.
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Figure 3.1: General Architecture of the Proposed System

The system is structured around a modular pipeline that processes input data in real time
from both ends of the communication loop. It incorporates:

+ Input Acquisition: Visual data (e.g., sign gestures) is captured via camera for deaf users,
while speech or text input is collected from hearing individuals.

+ Preprocessing: Collected data undergoes preprocessing to extract relevant features. For
sign language, this includes landmark extraction via MediaPipe; for spoken language,
it involves natural language understanding.

« Model Inference: Depending on the input type, one of the deep learning models (CNN-
LSTM, MediaPipe-BiLSTM, or MediaPipe-GCN-BERT) is invoked to interpret signs or
generate appropriate sign gestures.

« Translation and Synthesis: Recognized signs are translated into text or speech for hear-
ing users. Conversely, spoken language is translated into sign sequences and synthe-
sized via a 3D avatar for deaf users.

« Feedback Mechanism: Users can provide real-time feedback on translation accuracy
and quality. This feedback is used to fine-tune the models over time, improving system
performance and personalization.
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Each of these components contributes to ensuring real-time performance, contextual accu-
racy, and a user-friendly interface. The following sections provide a detailed description of
the individual modules and the rationale behind their integration into the system.

3.2.1 Data Preparation and Preprocessing

During the process of creating a sign language recognition system, a critical step is image
extraction and preprocessing from video files to create a structured and usable dataset for
training a deep learning model. This section discusses the data preparation process, starting
from metadata loading, image extraction, and filtering methods to quality dataset manage-
ment.

I worked with 11,980 videos from the WLASL-2000 [98] dataset I downloaded on Kaggle, all
of which have a JSON file with gloss annotations. Each gloss entry is linked with a unique
video ID. In creating my own dataset, I organized the frames extracted into a directory named
*Frames”, where each subdirectory corresponds to a specific sign language word, marked by
its respective class.

Figure B.2 provides a visual summary of the data preparation process.
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Figure 3.2: Data Preparation Process for One Word

The following configuration was utilized to prepare the dataset:
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3.2.2 Metadata Loading and Storage Organization

To assign each video to its corresponding sign class, metadata are read from a JSON file
(WLASL_v0.3.json). The JSON file contains detailed information for each video instance, e.g.,
an ID (video_id) and the corresponding gloss, which is the signed word or expression. A
correspondence between video IDs and their corresponding classes is thereby established.

Before image extraction, the frame store directory is systematically cleaned up. This step is
necessary in order to preclude data corruption from previous extractions and to result in a tidy
dataset. A new folder for each encountered class is created so that hierarchical, easy access is
granted for model training.

Frame Extraction and Choosing

The extraction of frames occurs according to a number of parameters aimed at generating an
even and typical dataset:

« Removing initial and final sequences: The initial 15 frames and final 15 frames of every
video are excluded. This is done because the initial and ending frames may consist of
transitions, position changes, or other non-representative content that will not aid sign
recognition. Figure B.1 illustrates examples of skipped and accepted frames.

Frames Accepted Frames Removed

ASILSearch.com

ASLSearch.com

Table 3.1: Frame Selection: Accepted vs Removed Frames

 Laplacian-based frame selection: To ensure optical clarity and mitigate motion-
induced degradation, frames were quantitatively evaluated using the Laplacian variance
metric (0%), defined as:

N
7= (L) ), 6.
=1

where L(x;,y;) is the Laplacian-convolved image at pixel (z;, y;), pu, is the spatial mean
of the Laplacian response, and N is the total number of pixels.

As illustrated in Figure B.3, frames with 02 < 7 (where 7 = 100.0) were systemat-
ically excluded to reject motion-blurred or defocused content that degrades recogni-
tion performance. This threshold was empirically optimized through receiver operating
characteristic (ROC) curve analysis [[107, [108] on a validation subset (500 frames, 50%
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sharp/blurred), achieving maximal separation (Youden’s J = 0.82) between sharp and
blurred frames.

©

Frame Analysis by Laplacian Variance

Kept Frames
® Rejected Frames
Skipped Frames

120

100 - ° % ® - *

Laplacian Variance
o
g

0 20 40 60 80 100 120
Frame Number @

Figure 3.3: Frame Analysis by Laplacian Variance and Threshold = 100.0

For example, using a threshold of 50.0, we observe that it retains frames with a higher
blur level. In Figure B.4, we notice that it preserves frames that were previously re-
moved, as indicated in red in the earlier Figure B.3.

Analyse des frames par variance Laplacienne

e Laplacienne

(a) Frame Kept by Threshold but Should Have Been D ’ o e
Removed (b) Laplacian Plot

Figure 3.4: Frame Analysis by Laplacian Variance and Threshold = 50.0

+ Reducing the number of frames per class: To maintain a balanced dataset and prevent
certain classes from being oversampled, the number of frames extracted per video is
determined adaptively rather than being fixed. The number of frames is computed
using the formula:

frames_to_extract = min(« - 1/ usable_frames, num_frames_max)

where « is a normalization factor and usable_frames represents the total available
frames after removing the initial and final sequences. This approach ensures that
shorter videos retain a representative number of frames while longer videos do not
dominate the dataset.

Inspired by adaptive frame sampling techniques used in video processing [46, 47], this
method dynamically adjusts the number of frames based on video duration, guaran-
teeing a homogeneous distribution of gestures across different classes while reducing
temporal bias and preserving the diversity of motion information.
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« Frame sampling: Whenever the number of available frames exceeds the threshold spec-
ified, frames are sampled at uniform time intervals in order to obtain a distributed rep-
resentation of the gesture across the video (Equation B.9). If the number of frames drops
below this threshold, all images are retained. Temporal biasing is prevented, and ges-
ture coverage is maximized with this method.

num_frames_per_class’

) total frames if total_frames > num_frames_per_class
interval = (3.2)

1, otherwise

« Sequence construction: To further maintain consistency, feature extraction isn’t ran-
dom. Specifically, for each class, sequences are extracted from the same person to avoid
sign conflicts and ensure temporal coherence. Each class directory contains subfolders
for different individuals, and sequences are extracted per person to ensure intra-user
continuity. The natural order of frames is preserved to maintain the temporal structure
of gestures. This guarantees that each sequence is derived from a single individual,
preventing inter-person blending and improving model robustness.

The research design focuses on exploring and evaluating three deep learning-based ap-
proaches for sign language recognition, aiming to develop a robust system that effectively
captures both spatial features (such as hand gestures and facial expressions) and temporal
dynamics (movement sequences) of sign language. The study addresses challenges including
variability in signing styles, complex gesture transitions, and the demand for real-time pre-
diction, with the goals of achieving high accuracy, modeling temporal sequences, and enabling
practical real-time applications like instant translation. Additionally, the research considers
integrating avatar-based representations created with Blender to enhance communication
accessibility for sign language users.

3.2.3 CNN and LSTM Model Architecture

To effectively recognize sign language gestures from sequences of images, we propose a hybrid
deep learning model that integrates Convolutional Neural Networks (CNNs) for spatial feature
extraction and Long Short-Term Memory (LSTM) networks for temporal sequence learning,.
The architecture (Figure B.5) is designed to process video frames of hand gestures and classify
them into predefined categories.
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Figure 3.5: CNN-LSTM Model Architecture

The following table (Table B.J) summarizes the overall architecture of the proposed CNN-
LSTM model used for sign language recognition.

51



Table 3.2: CNN-LSTM Model Architecture

Component

\ Layer

\ Description

Input Data: Each input sample consists of 16 consecutive frames, with each frame
resized to 128 x 128 pixels.

TimeDistributed
Convolutional Lay-
ers

Conv2D (32 filters,
3x3 kernel, ReLU)

Extracts low-level spatial features like edges
and textures.

MaxPooling2D
(2x2)

Reduces spatial dimensions and computa-
tional cost.

Conv2D (64 filters,
3x3 kernel, ReLU)

Captures more complex features such as
contours and shapes.

MaxPooling2D
(2x2)

Further dimensionality reduction and over-
fitting prevention.

Conv2D (128 filters,
3x3 kernel, ReLU)

Extracts high-level spatial features like hand
postures.

MaxPooling2D Final pooling to compact features for LSTM
(2x2) input.
TimeDistributed Flatten Flattens the CNN feature maps frame-wise
Flattening Layer for sequential processing by LSTM.
LSTM Layer 128-unit LSTM Models temporal dependencies across

frames. Recurrent update:

hy = c(Whphy_1 + Wy, + b)

where h; = hidden state at time ¢t, W, W, =
weights, b = bias, o = activation.

Dense Output Layer

Dense + Softmax

Fully connected layer with softmax activa-

tion for classification:

P(y;) = %, where P(y;) is class prob-
e

il
ability, z; output logits, IV classes.

Limits of the Approach

One major limitation of this approach is the high memory consumption during training. The
image size is constrained to 128 x 128 pixels to ensure feasible computation, but this resolution
is relatively small for extracting detailed features, especially for hand postures and finger
articulations.

Increasing the image resolution to 680 x 480 pixels significantly enhances spatial detail, which
could improve gesture recognition accuracy. However, this comes at the cost of an exponen-
tial increase in memory usage, exceeding 300 GB of RAM, making training impractical on
standard hardware. This trade-off between image resolution and memory constraints directly
influences the model’s capacity to learn fine-grained details in hand gestures.

3.2.4 MediaPipe and Bi-LSTM Architecture

The proposed model (see Table B.3) for sign language recognition is based on a Bidirectional
Long Short-Term Memory (BiLSTM) network, designed to capture temporal dependencies
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from sequences of hand and body landmarks. Feature extraction is performed using Medi-
aPipe, which provides temporally ordered keypoints representing hand and body motion.

Component

Description

Mathematical Representation / Notes

Hand Articu-
lation Model-
ing

Utilizes MediaPipe’s anatom-
ically grounded 21-keypoint
hand model to capture de-
tailed hand movements.

Ht = U?il(xiay’iazi) € [07 1]3

Normalization

Standardizes keypoint coor-
dinates to reduce signer vari-
ability and maintain consis-
tency across inputs.

T—p _ 1 N
L e = _21:1%'7

37/ = Oz N
N
\/% Zi:l (:L“Z - :uz)2

Oy —

Body  Pose | Employs a 33-keypoint body | P; = U?il(xj, Yj, %) @0,
Contextual- pose model capturing essen-
ization tial sign language phonology,
including joint angles.
Temporal Processes sequences bidirec- | Forward: Ft = fism(Wyrxy + Ushi—1 + by)
Modeling tionally to model both past | Backward: % ¢ = frstm(Way + Uphyiq + by)
(BiLSTM) and future dependencies, en-
hancing recognition of dy-
namic transitions.
Regularization | Applies dropout to mitigate | m; ~ Bernoulli(p = 0.7), Z; = m;z;
overfitting by randomly
deactivating neurons during
training.
Data Augmen- | Introduces variation viaran- | H = aoH + (1 — a)N(0,0.01%?), o ~
tation dom scaling and Gaussian | U(0.9,1.1)

noise to simulate sensor inac-
curacies and improve robust-
ness.

Table 3.3: Summary of MediaPipe-BiLSTM Architecture Components

Limits of the Approach

While the MediaPipe-BiLSTM approach demonstrates efficiency in real-time prediction and
robustness under varying lighting conditions (e.g., day and night), it exhibits two main limi-
tations that warrant attention:

1. Difficulty in Distinguishing Similar Gestures: The BiLSTM model struggles to differenti-
ate between signs that are nearly identical in gesture but differ in subtle spatial or temporal
aspects. For instance, gestures with slight differences in hand orientation, finger articulation,
or movement trajectory often result in misclassification.

2. Challenges with Long-Term Sequential Dependencies: The BiLSTM architecture tends
to lose early sequence information in longer sign phrases, affecting recognition of signs that
start similarly but end differently (as illustrated in Figure B.6). This limitation stems from the
inherent difficulty of LSTMs in capturing long-range dependencies, emphasizing the poten-
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tial benefit of transitioning to a Transformer-based architecture, which uses self-attention to
preserve and leverage contextual information across the entire sequence.

(c) Ending of "Act” (d) Ending of "Actor”

Figure 3.6: Comparison between the gestures for "Act” and "Actor”: both begin similarly but
differ at the end.

3.2.5 The MediaPipe-GCN-BERT Architecture

The MediaPipe-GCN-BERT model introduces a novel hybrid architecture for sign language
recognition, combining computer vision techniques, graph neural networks, and transformer-
based sequential modeling. As illustrated in Figure B.7, the system processes input videos
through three specialized computational stages.
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Figure 3.7: MediaPipe-GCN-BERT Model Architecture

Table B.4 summarizes the architecture of the proposed gesture recognition system, which
integrates MediaPipe for keypoint extraction, Graph Convolutional Networks (GCN) for
spatial modeling of anatomical structures, and a Transformer Encoder (BERT) to capture
temporal dependencies in gesture sequences.

Table 3.4: MediaPipe + GCN + BERT Architecture Summary

Component ‘ Description ‘ Notes / Details
Keypoint Extraction Pipeline
Preprocessing and | Standardizes each video frame for resolution | Segmentation = masks

Segmentation

and format. MediaPipe’s Selfie Segmentation | are
is used to isolate the human subject from the

background.

smoothed using
Gaussian blur.  Only
foreground pixels are
retained.
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Table 3.4 Continued from previous page

Component

Description

Notes / Details

Landmark  Detec-
tion

Detects keypoints using MediaPipe modules:
pose (33 landmarks), and hand tracking (21
landmarks per hand, max two hands).

Produces a per-frame
feature vector of size
225: 126 from hands (2
x 21 x 3) + 99 from pose

(33 x 3).
Temporal Sequence | Constructs fixed-length sequences using a slid- | Results in clean, nor-
Construction ing window across frames. Landmarks are con- | malized sequences
catenated to form temporal input sequences. suitable for spatial-

temporal modeling.

Graph Convolutional Network (GCN)

Graph Construction

Converts the feature vectors into graphs
with nodes as keypoints and edges based on
anatomical connections.

Includes  intra-hand,
intra-pose, and inter-
modality connections
(e.g., wrists to hands).

GCN Layers

Applies graph convolution layers to model spa-
tial dependencies and extract topological fea-
tures.

Produces high-
dimensional  vectors
representing  spatial
configurations.

Feature Representa-
tion

Encodes structural and motion relationships
among body parts across frames.

Output is passed to the
Transformer stage.

Transformer Encoder (BERT)

Positional Encoding

Adds temporal positional information to pre-
serve the order of the sequence.

Critical as Transform-
ers do not inherently
capture sequence or-

der.

Multi-Head  Self- | Enables focus on key frames and captures | Facilitates long-range

Attention global dependencies across the entire gesture | contextual understand-
sequence. ing.

Feedforward Net- | Applies a fully connected network to refine | Enhances abstraction

work

temporal feature representations.

and expressiveness of
learned features.

Classification Layer

Fully = Connected
Layer

Maps high-level representations to gesture
class scores.

Connects the learned
features to target ges-
ture labels.

Softmax Activation

Converts raw class scores into probability dis-
tributions.

Supports final clas-
sification decision-
making.

Importance of Each Component

MediaPipe Efficient extraction of hand and pose land- | Reduces dimensional-
marks from raw video input. ity and preprocessing

cost.
GCN Encodes local anatomical structure and spatial | Ensures robust model-

relations between joints.

ing of body configura-

tion.
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Table 3.4 Continued from previous page

Component Description Notes / Details
BERT Captures long-range temporal dependencies in | Enhances recognition
gesture sequences. of both isolated and
continuous gestures.

This architecture effectively harnesses the strengths of visual landmark extraction, graph-
based spatial modeling, and transformer-based temporal reasoning. The result is a powerful
and scalable system capable of achieving high accuracy in real-time sign language recognition
tasks.

3.2.6 Algorithm Description and Complexity Analysis

Algorithm 1 MediaPipe-GCN-BERT Pipeline

Require: Video frames {I1, ..., I}, Sequence length L, Number of classes C'
Ensure: Predicted sign class y

. F<+ 0 > Initialize feature sequence
2. for each frame [, € {[y, ..., I} do
3 S; < SegmentPerson(/;) > Background segmentation
4 f; < ExtractLandmarks(.S;) > 3D landmark extraction
5: F «— FU{f}
6: end for
7: {G1, ..., Gr_r 41} < BuildGraphs(F, L) > Sliding window graphs
8: for each graph sequence G; € {G,...,Gr_r 11} do
9: H; < GraphTransformer(G;) > Joint spatio-temporal encoding
10: p(y|G;) < SoftmaxClassifier(H;)
11: end for
12: y < Mode(,p(y|G:)) > Majority vote prediction
Table 3.5: Time and Space Complexity of the Main Components
Component Time Complexity | Space Complexity
Input Preprocessing O(n) (’)(n)
Graph Construction O(V?) oW )
Feature Extraction O(V -d) oWV -d)
Graph Encoding (e.g., GCN, Transformer) | O(L - V- d) O(L - V d)
Pooling Layer O(L-V -d) O(L-V -d)
Classification Head O(C - d) o )
Where:

« n: Total number of raw input data points (e.g., video frames or gesture samples).
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V': Number of nodes in the graph (e.g., keypoints such as hand joints or facial land-
marks).

+ L: Sequence length, representing the number of temporal steps (e.g., number of frames
per gesture).

« d: Dimensionality of node features (e.g., X, y, z coordinates or higher-level embeddings).

« C: Number of output classes (e.g., number of gesture categories or recognized signs).

This analysis justifies our design choices for real-time operation on modern GPUs, with the
spatial attention being the primary computational bottleneck.

3.2.7 Sign Language Representation

To facilitate effective bidirectional communication between deaf and hearing individuals, it is
essential to accurately represent sign language by capturing both static hand configurations
and dynamic gestures. To this end, we developed a realistic 3D hand model using Blender, a
powerful open-source tool for 3D modeling, rigging, and animation. The model was sculpted
with anatomical precision, rigged with an articulated skeleton to enable naturalistic move-
ment, and animated using keyframe techniques to depict specific sign language words.

This system offers an intuitive and interactive visualization of sign language, supporting ap-
plications in education, virtual interpretation, and real-time communication. Future develop-
ments will focus on expanding the gesture vocabulary, enhancing animation realism through
motion capture or physics-based constraints, and integrating real-time gesture recognition to
enable seamless human-computer interaction.

3.3 Conclusion

This chapter has presented the methodology and system design for a robust, deep learning-
based sign language recognition and translation framework. The proposed architecture builds
on a modular and multi-stage pipeline that addresses both the spatial and temporal complex-
ities of sign language through innovative preprocessing, modeling, and representation tech-
niques.

Key contributions discussed in this chapter include:

« A comprehensive data preparation pipeline, incorporating metadata organization,
frame extraction, Laplacian-based quality filtering, and adaptive sampling strategies
to ensure dataset balance and quality.

+ The development and evaluation of three complementary model architectures:

— The CNN-LSTM model, combining convolutional layers for spatial feature ex-
traction and recurrent layers for temporal modeling.

— The MediaPipe-BiLSTM model, which utilizes pose estimation landmarks to cre-
ate lightweight yet accurate models suitable for real-time inference.
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— The MediaPipe-GCN-BERT model, a novel integration of graph-based reasoning
and transformer-based contextual encoding, designed to handle sign similarity
and long-term dependencies.

+ The use of 3D avatar-based visualization to represent signs in a human-like and inter-
pretable manner, bridging the gap between Al systems and end users through interac-
tive communication.

This solid methodological foundation sets the stage for the implementation and experimental
validation of the system, which will be addressed in the next chapter. The implementation
phase will focus on training and evaluating the proposed models, benchmarking their per-
formance, and assessing their practical applicability for real-time translation and accessibility
enhancement.
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Chapter 4

System Implementation, Results and
Discussion

4.1 Introduction

This chapter represents the practical realization of the project, where the theoretical con-
cepts and methodological choices previously outlined are transformed into a fully functional
system. It is structured around three key components: model implementation, performance
evaluation, and critical result analysis.

We begin by describing the development environment, including the hardware resources
(such as GPU and CPU configurations) and the software tools and libraries used (TensorFlow,
Keras, MediaPipe, Scikit-learn, etc.). This is followed by a detailed explanation of the hyper-
parameter settings for each tested model -CNN-LSTM, MediaPipe-BiLSTM, and MediaPipe-
GCN-BERT—as well as the preprocessing techniques applied to the data (such as normaliza-
tion, augmentation, and sequence encoding).

The next section presents the experimental results obtained during the training and valida-
tion phases. We evaluate and compare model performances using standard metrics including
accuracy, recall, F1-score, confusion matrix, and Word Error Rate (WER). Special attention
is given to how well the models handle visually similar gestures, their ability to operate in
real-time, and their generalization capabilities when exposed to unseen data.

Finally, a comprehensive discussion is provided to interpret the results, highlight the chal-
lenges encountered (e.g., gesture ambiguity, lighting variations, background noise sensitiv-
ity), and emphasize the system’s innovative contributions compared to existing solutions.
This analysis helps assess the system’s overall viability and lays the groundwork for future
improvements and extensions.
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4.2 Implementation

4.2.1 Data Splitting

The dataset is split into training and testing subsets using an 80-20 ratio, with stratified sam-
pling applied to preserve class distribution in both subsets. This split ratio is commonly used
in machine learning experiments, as it offers a balanced compromise between having enough
data for training the model and retaining a representative portion for evaluating its general-
ization performance [[109].

Stratified sampling is particularly important in our context because the dataset includes mul-
tiple gesture classes, some of which may be underrepresented. Without stratification, random
sampling could lead to an imbalanced distribution of classes, where certain signs might appear
predominantly in either the training or testing set. This would negatively affect both train-
ing quality and evaluation reliability, especially in classification tasks where class balance is
critical for model fairness and performance.

By ensuring that each class is proportionally represented in both sets, we allow the model
to learn from a diverse sample while testing it on a similarly distributed set, leading to more
meaningful and consistent evaluation metrics.

4.3 Model Hyperparameter

In this section, we present and justify the choice of hyperparameters used for training our
different models. Hyperparameter tuning is a crucial step in the development of deep learn-
ing systems, as it directly influences the model’s ability to learn, generalize, and converge
effectively. Rather than adopting arbitrary default values, we aim to define each parameter
based on empirical testing, literature benchmarks, and the specific nature of our data (hand
gestures captured from videos).

4.3.1 CNN-LSTM Approach

Table }.1 summarizes the hyperparameters used for training the model. Key configurations
include:
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Table 4.1: Summary of CNN-LSTM Model Hyperparameters

Category

Parameter

Value / Description

Input Parameters

Image Dimensions
Sequence Length
Data Normalization

640 x 480 x 3 (RGB)
16 frames
0, 1], divided by 255.0

Conv2D Layer 1

32 filters, 3 x 3, ReLU activation

Conv2D Layer 2 64 filters, 3 x 3, ReLU activation
CNN Architecture Conv2D Layer 3 128 filters, 3 x 3, ReLU activation

MaxPooling2D Pool size 2 x 2, after each conv layer

Flattening Flattens the output for LSTM input
LSTM Architecture | LSTM Layer 128 units, returns final output only
Output Layer Dense Layer 40 units (number of classes), softmax activation

Optimizer Adam

Loss Function Categorical Cross-Entropy
Training Parameters | Metrics Accuracy

Batch Size 16

Epochs 16

This architecture and hyperparameter configuration are chosen to balance computational ef-
ficiency and model performance, enabling robust feature extraction and sequence modeling

for the given task.

4.3.2 MediaPipe-Bi-LSTM Approach

Table .4 summarizes the hyperparameters used for training the model. Key configurations

include:
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Table 4.2: Summary of MediaPipe-Bi-LSTM Model Hyperparameters

Category

Parameter

Value / Description

Input Parameters

Input Image Resolution
Color Channels
Sequence Length

Hand Landmarks

Pose Landmarks

Total Features

640 x 480 pixels

RGB (3 channels)

16 frames

21 landmarks/hand, 126 features total
33 landmarks, 99 features total

225 features per frame (126 + 99)

Data Augmentation

Gaussian Noise
Random Scaling
Random Rotation

Mean = 0, Std Dev = 0.01
Factor between 0.9 and 1.1
Angle between -10° and 10°

Model Architecture

Input Shape

Hand Branch

Pose Branch

Hand LSTM Layers
Pose LSTM Layers
Fusion Layer
Dense Layer

(16,225)

Extracts first 132 features
Extracts last 93 features
BiLSTM: 64 units, then 32 units
BiLSTM: 64 units, then 32 units
Concatenates both branches

64 units, ReLU activation

Implementation Details

Feature Extraction
Data Augmentation

Dropout Layer Dropout rate: 0.3
Output Layer Softmax, number of units = number of classes
Optimizer Adam
Loss Function Categorical Cross-Entropy
Training Parameters Metrics Accuracy
Batch Size 6
Epochs 30
MediaPipe Init. Confidence threshold = 0.5

From each frame (hands + pose)
Applied during training

This architecture and hyperparameter configuration are designed to effectively model tem-
poral sequences of skeletal and hand landmarks, enabling accurate sign language recognition.
The use of bidirectional LSTMs ensures that both past and future context are considered, while
data augmentation enhances the model’s ability to generalize to unseen data.

4.3.3 MediaPipe-GCN-BERT Hyperparameters

The proposed MediaPipe-GCN-BERT architecture integrates geometric deep learning with
attention mechanisms for spatiotemporal sign language recognition. The hyperparameters
were selected through empirical validation on a held-out development set, balancing model
capacity with computational efficiency.

The selected hyperparameters for the MediaPipe-GCN-BERT architecture, including graph
construction details and transformer configuration, are summarized in Table }4.3.
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Table 4.3: MediaPipe-GCN-BERT Architecture Hyperparameters

Category

Parameters and Justification

Landmark Extraction

Hand Model: static_image_mode=False,

max_num_hands=2,

min_detection_confidence=0.5

Dynamic mode optimized for video input; 0.5 confidence ensures a
good precision-recall trade-off.

Pose Model: 33 landmarks

Captures the body without unnecessary redundancy.

Graph Construction

Temporal Frames: T' = 16

Matches average sign length (2.1 + 0.3s at 30fps).
Anatomic Connections

Reflect biomechanical constraints.

Cross-Modal Connections

Connect wrists to merge hand and pose graphs.

Graph Transformer

Embedding Dimension: 128

Balances expressiveness and regularization.
Attention Heads: 8

Based on the 128/16 = 8 convention.
Feed-Forward Dimension: 256

Uses 2:1 ratio standard in transformers.
Layer Normalization: Pre-LN

Stabilizes training.

Training Protocol

Optimizer: Adam (3; = 0.9, 85 = 0.999, ¢ = 107%), LR = 0.001
Batch Size: 16

Efficient GPU use and good gradients.

Dropout: 0.1

Prevents overfitting.

Epochs: 80

Training stabilizes near 40; extra for fine-tuning.

4.4 Hardware Tools

The implementation and deployment of the sign language recognition system required careful
consideration of hardware resources to ensure performance, accessibility, and scalability. The
following table .4 summarizes the key hardware tools.
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Table 4.4: Summary of Hardware Tools

Component Details

Training Environment | Google Colab Pro - used to ensure efficient RAM manage-
ment and high computational performance.

Testing Environment | Jupyter Notebook running on an 8th generation Intel Core
i5 CPU.

GPU Acceleration Not used — the model is optimized to run entirely on CPU.
Optimization Strategy | Utilizes multi-core CPU processing to parallelize tasks such
as image preprocessing, landmark detection, and inference.
Hardware Compatibil- | Broad - suitable for deployment in low-resource environ-

ity ments without the need for specialized hardware.
Performance Effi- | Maintains strong performance by distributing the compu-
ciency tational load across CPU cores, allowing for efficient image

segmentation and pose estimation.

4.5 Software Tools and Libraries

The software environment for developing and deploying the model is based on a collection of
widely-used libraries that support efficient execution on CPUs. These libraries are optimized
to handle various deep learning, computer vision, and data processing tasks, ensuring the
model’s effectiveness across different computational environments.

4.5.1 TensorFlow/Keras

The model’s core is implemented using TensorFlow and Keras [[110], which are highly op-
timized for CPU execution. TensorFlow’s ability to perform operations across multiple CPU
cores allows for efficient training and inference without the need for GPU acceleration. Keras,
as the high-level API of TensorFlow, simplifies model development, making it easier to im-
plement complex deep learning architectures while maintaining CPU compatibility .

4.5.2 OpenCV

OpenCV [111] is utilized for image processing tasks, including resizing images, converting
color spaces, and applying filters such as Gaussian blur for segmentation. These operations
are implemented to run efficiently on the CPU, enabling the model to handle real-time video
streams and static image inputs. OpenCV is known for its optimized implementations of
various image processing algorithms .

4.5.3 MediaPipe

For hand landmark detection and pose estimation, the model leverages MediaPipe [112], a
framework designed for real-time computer vision tasks. MediaPipe operates effectively on
the CPU, providing highly efficient solutions for hand and pose detection, even in environ-
ments with limited computational resources. The framework’s ability to process video frames
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on a CPU in real-time makes it particularly suited for interactive applications, such as sign
language recognition .

4.5.4 NumPy

NumPy [113], a core library for numerical computing in Python, is extensively used for manip-
ulating arrays and performing mathematical operations on image data. The library is highly
optimized for CPU-based computations and allows for efficient handling of large datasets,
which is crucial for deep learning applications that involve large-scale image data .

4.5.5 Scikit-learn

Scikit-learn [[114] is used for model evaluation, including cross-validation, confusion matrices,
and computing performance metrics like precision, recall, and F1-score. It is well-optimized
for CPU execution and allows for the efficient assessment of model performance. Scikit-learn’s
utilities are integrated into the pipeline to ensure a rigorous evaluation process .

4.5.6 Spektral

Spektral[[115], a library for graph neural networks, is employed to process graph-based repre-
sentations of hand landmarks. The library supports efficient CPU execution for graph-based
operations such as graph convolution and attention mechanisms. By using Spektral, the model
can extract high-level features from the graph structure of hand landmarks, which are essen-
tial for accurate pose and gesture recognition .

4.5.7 Matplotlib

For visualization purposes, Matplotlib [116] is used to create plots for performance analysis,
including confusion matrices and learning curves. The library is fully compatible with CPU-
based systems and allows for the generation of detailed and informative visualizations, which
are essential for analyzing model performance and tuning hyperparameters.

4.5.8 Blender

For the creation of 3D avatars, Blender [117] was employed as the primary tool for model-
ing, texturing, and rendering the avatar’s appearance. Blender is a powerful open-source 3D
creation suite that provides a comprehensive environment for creating realistic 3D models,
including human-like avatars. It supports a range of tools that allow for accurate facial fea-
ture modeling, rigging, and animation, which were utilized to create the avatar for use in the
sign language recognition system. Blender is particularly known for its efficient workflows,
which include sculpting, applying materials, and rigging models, all optimized for computa-
tional efficiency .
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4.5.9 React Native

To enable the deployment of the model on mobile devices, the mobile application interface is
developed using React Native. React Native[[118] is a popular framework for building cross-
platform mobile applications using JavaScript and React. It allows the development of native
applications for both iOS and Android from a single codebase. React Native’s efficiency in
rendering user interfaces and managing asynchronous operations makes it suitable for build-
ing high-performance mobile applications that need to integrate real-time processing and user
interactions.

4.5.10 Expo

Expo [119] is utilized in conjunction with React Native to simplify the development process.
Expo is a framework and platform that provides a set of tools and services for building, de-
ploying, and testing React Native applications. Expo significantly reduces the configuration
overhead for developers by offering a managed workflow, which helps with rapid develop-
ment and testing. The framework includes libraries for handling image captures, video feeds,
and sensor data, which are essential for integrating the sign language recognition system into
a mobile app.

4.6 Overview of the Mobile Application Enabling Interaction
Between Deaf and Hearing Individuals

Effective communication and emotional expression are fundamental aspects of human inter-
action. However, a significant gap persists between deaf and hearing individuals, often lead-
ing to misunderstandings and social isolation. Addressing this critical challenge, we propose
the development of an innovative mobile application designed to revolutionize communica-
tion between these two communities. By bridging the gap between distinct worlds, this solu-
tion aims to foster seamless, natural, and accessible interactions, thereby promoting greater
social inclusion and mutual understanding. In the following sections, we will present a de-
tailed overview of the proposed mobile application, including its key features, functionality,
and the complete interaction scenarios that illustrate its practical use in real-world contexts.

4.6.1 Project Name and Logo :

The name of our project is S.E.N.S, an acronym with profound meaning: Silence, Ecoute, Nou-
velle Sensation. This name was carefully chosen to reflect both the technical mission and the
human-centered vision behind the system.

The term "S.E.N.S” goes beyond a simple abbreviation. It represents a journey from silence
to connection a digital bridge between Deaf and hearing communities. It evokes themes of
perception, emotion, and understanding, resonating with the sensory and communicative
nature of the application. Each word in the name carries symbolic weight:

« Silence: Refers to the world of Deaf users and the communication void they often face.
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. Ecoute (Listening): Highlights the importance of active understanding and receptivity
between users.

« Nouvelle Sensation (New Sensation): Symbolizes innovation, the emotional impact of
inclusive technology, and the creation of new communicative experiences.

The logo [4.1, presented on the application’s launch screen, visually embodies these concepts.
It depicts two users engaged in communication one using spoken language and the other using
sign language connected by arrows that represent the flow of interaction and translation. The
speech bubble and hand gesture icons further reinforce the app’s core function: real-time
interpretation between different modes of communication.

Y

Figure 4.1: Logo: A symbolic representation of inclusivity and interaction between spoken
and signed communication.

4.6.2 User Interface (UI)

The user interface developed for the communication application between Deaf and Hearing
individuals was designed following a user-centered design (UCD) approach, aiming to ensure
a seamless and accessible communication experience. This approach focuses on meeting the
needs of various users, whether Deaf, Hearing, technology-illiterate, or low-literate.

The interface is built around three core principles: clarity, accessibility, and rapid inter-
action, providing an intuitive experience that minimizes the steps needed to communicate.
Figure B.d illustrates the Home user interface when the user launches the application.
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Record Your Signs Get Instant Translation

gn language Our Al transl 1s into text and

Figure 4.2: Home User Interface

UI Architecture

The architecture of the interface adheres to proven ergonomic concepts, particularly those
defined by the theories of Norman and Nielsen on user experience (UX). The following prin-
ciples are followed:

« Visibility of system status: Every user action triggers immediate visual feedback, en-
suring clear responsiveness. For instance, a recording icon blinks when gesture capture
is active.

+ Freedom of control and error prevention: The user can easily go back, cancel, or mod-
ify any action, such as stopping video capture or selecting a different translation mode.

« Standardization and consistency: Icons and colors are used consistently throughout
the interface, simplifying understanding and accelerating the learning of interactions
by users.

« Recognition rather than recall: The interface uses simple visual symbols for key func-
tions, minimizing the cognitive load on the user.

4.6.3 Usage Scenario: Deaf-Hearing Communication
The following scenario describes the typical interaction of a user with the application, empha-

sizing the simplicity and efficiency of the interface for bidirectional communication between
Deaf and hearing individuals.
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Al-Powered Sign Language Processing: Full System Architecture Diagram

This diagram synthesizes the end-to-end operational pipeline of our bidirectional commu-
nication system, where artificial intelligence mediates between sign language and spoken
language modalities. As illustrated in Figure }4.3:

Start
User Type
Deaf Hearing
Sign-->Text/Voice Text/Voice--Sign
Mode /Text Mode
Record Signs via
Camera Input Text or Speech
Al Processes Signs Al Converts to Signs
& & Yes
Output as Text and Sign-->Text/Voice
Speech Mode

Output as an animated

2Py Avatar or Text

Continue?

No

Exit

Figure 4.3: Full System Architecture Diagram

Scenario Steps:

1. Launching the application When the user opens the Sign Language Mobile Application, the
initial screen displays a splash interface that reflects the core purpose of the app—enabling
communication between individuals using spoken and sign language—as illustrated in Fig-
ure [t.4. The visual elements depict two users, speech and gesture bubbles, and arrows indi-
cating the bidirectional flow of information.
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Figure 4.4: Launching the application

2. Choosing the mode of communication The user selects one of the two communication
modes, as illustrated in Figure §.5;

+ Sign Language to Text/Voice: The Deaf user signs in front of the camera, and the app
translates it into text or speech.

« Text/Voice to Sign Language: The hearing user speaks or types their message, and the
app generates a sign language animation.
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Text to Sign Sign to Text

Sign Language Translation

Your Recording Will Appear Here

Your translated sign language will

appear here... :

Figure 4.5: User Control

3. Message capture

« Sign Language: The signer performs gestures in front of the camera.

« Voice to Text: The system records spoken input through a microphone. Using a speech
recognition engine, the audio is transcribed into written text in real time, as shown in
Figure @
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9:57 . 9:57 9:57

< Scanner de... < Scanner de... < Scanner de...

Voice to Text Voice to Text Voice to Text

Voice to Text Voice to Text Voice to Text

Record your voice to get text recognition Record your voice to get text recognition Record your voice to get text recognition

Speech Recognition Result

Hi how are you
Tap the record button to start recording

. ]

Uploading the audio...
16%

Recording 0:04

Figure 4.6: Processing and Recognition

4. Processing and translation The system uses our model and a speech recognition API to
translate the message into the other mode:

« Visual translation: Text is displayed on the screen, or speech is synthesized, as shown
in Figure .7,

73



Sign to Text Sign to Text

Sign to Text Sign to Text

Record a sign language video and get its Record a sign language video and get its
translation translation

Translation Result

() New Recording
 ________________________________J] S

Uploading the video...
2%

Figure 4.7: Processing and Translation

« Gestural translation: An animated avatar generates the corresponding signs. Figure .8
illustrates the hand avatar created using Blender, animating the letter "’B” in American
Sign Language (ASL).

Figure 4.8: Hand Avatar Created and Animated in Blender

5. Confirmation and user feedback Animations and visual signals confirm the accurate in-
terpretation and transmission of the message. Immediate feedback reinforces user confidence
in the system.

6. Bidirectional communication Users can continue exchanging messages smoothly, alter-
nating between translation modes as needed for the conversation.
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4.6.4 Speech-to-Text and Text-to-Speech Modules in the SLR System

The Sign Language Recognition (SLR) system integrates both Speech-to-Text (STT) and Text-
to-Speech (TTS) modules to enable real-time, bidirectional communication between hearing
and non-hearing individuals. The STT module captures audio via the microphone using
JavaScript and processes it in Python by decoding and converting it to WAV format for op-
timal transcription using the Google Speech-to-Text engine. The transcribed text is then fed
into the SLR model for sign gesture generation.

In parallel, the TTS module allows non-hearing users to input text uploaded via Google
Colab—which is synthesized into speech using the Google Text-to-Speech (gTTS) APIL The
audio is played back using Mutagen and IPython libraries, ensuring synchronization.

Together, these modules create a multimodal and inclusive system, enhancing accessibility
and enabling seamless communication through speech, text, and sign gestures.

4.7 Evaluation Metrics Used

To rigorously evaluate the performance of the proposed model, we employed a set of widely
recognized classification metrics, as summarized in Table 4.5, Each metric offers a unique
perspective on model performance, particularly in scenarios involving class imbalance or
sequence-based outputs.

Table 4.5: Evaluation Metrics Used

Metric Definition Formula

classes. Each cell (7,7) indicates the | of classes.
number of samples from class 7 predicted

Confusion Ma- | Tabular summary showing actual vs. | Represented as a square matrix of
trix predicted classifications across all | size N x IV, where N is the number

as class j.
A Ratio of correctly predicted instances t R
ccuracy atio of correctly predicted instances to
total predictions. TP+TN+FP+FN
. . . . TP
Precision Proportion of true positive predictions | ————
. - . TP+ FP
among all positive predictions; important
when false positives are costly.
Recall (Sensitiv- | P tion of t iti dicti Ul
eca ensitiv- | Proportion of true positive predictions | —————
P P b TP+ FN

ity) among all actual positives; critical when
false negatives are costly.

Precision X Recall

F1-Score Harmonic mean of precision and recall, Brecisi Recall
balancing both; useful for imbalanced recision + Reca
datasets.

S+D+1

Word Error Rate | Measures the discrepancy between pre- %

(WER) dicted and true word sequences by count-
ing substitutions (S), deletions (D), and
insertions (I).
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4.8 Training, Validation and Results

This section presents the evaluation of the three proposed approaches, analyzing their per-
formance in terms of accuracy, loss, and error metrics. Each approach is assessed based on its
training and validation results, highlighting its strengths and limitations. The effectiveness
of the models is demonstrated through accuracy/loss curves, confusion matrices, and perfor-
mance metrics such as precision, recall, and F1-score. Additionally, the computational cost of
each approach is discussed to determine its feasibility for real-time sign language recognition.

4.8.1 CNN-LSTM Approach

This approach has demonstrated excellent performance, achieving an accuracy exceeding 98%.
However, it comes with a significant drawback: its high memory consumption. When in-
creasing the image resolution to 640 x 480, the RAM usage exceeded 300 GB. Despite this, the
resolution remains insufficient for the CNN to effectively learn important features, particu-
larly those related to hand gestures. This highlights the trade-off between performance and
computational cost in deep learning-based sign language recognition.

Figure 4.9 presents the training and validation accuracy and loss curves of the model. These
curves provide insights into the model’s learning progress over epochs. A smooth and con-
verging accuracy curve indicates effective learning, while a decreasing loss curve suggests
proper optimization.

Training and Validation Accuracy

—

Training and Validation Loss

[ 3 —— Loss (train)
0.6 Loss (validation)

— Accuracy (train)
Accuracy (validation)

0 2 4 6 8 0 2 4 6 8
Epochs Epochs

Figure 4.9: Accuracy and loss curves for training and validation.

Metric | Train | Validation
Accuracy | 99.1% 98.8%
Loss 0.04 0.05

Table 4.6: Numerical results of accuracy and loss for training and validation.

4.8.2 MediaPipe-Bi-LSTM Approach

This approach has demonstrated exceptional performance, achieving a 98% validation ac-
curacy. Beyond its high precision, it excels in prediction efficiency, delivering an ultra-fast
inference time of just 0.01 ms per word in real-time. The evaluation further highlights a
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refresh rate of 6.98 FPS, ensuring smooth and responsive system performance. These results
were obtained from tests conducted on a CPU, showcasing the approach’s lightweight na-
ture and computational efficiency, making it well-suited for real-world applications without
requiring a GPU.

Training Results

Table .7 presents the accuracy and loss values for both training and validation phases.

Metric Training | Validation
Accuracy (%) 97.5 98.2
Loss 0.02 0.05

Table 4.7: Training and validation accuracy and loss.

Figure presents the evolution of the accuracy and loss of the MediaPipe-LSTM model
during training. The left curve illustrates the progressive increase in accuracy for both train-
ing and validation, reaching approximately 98% after 30 epochs, indicating excellent model
performance. The right curve shows the rapid decrease in loss, converging towards values
close to zero, demonstrating effective learning. The absence of a significant gap between the
training and validation curves suggests good generalization, minimizing the risk of overfit-
ting.
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Figure 4.10: Training and validation accuracy/loss curves of the MediaPipe-LSTM model.

The confusion matrix in Figure provides a detailed evaluation of the model’s classifica-
tion performance by highlighting instances where predictions differ from actual labels. One
limitation observed is the model’s slight difficulty in distinguishing between visually similar
signs, as well as signs that start similarly but differ towards the end. This is evident in the
case of the words act and actor, where the actual word was actor, but the model predicted
act. Such misclassifications suggest that the model may benefit from additional fine-tuning
or enhanced feature extraction to better capture subtle differences between these signs.
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Figure 4.11: Confusion matrix of the MediaPipe-LSTM model, highlighting classification per-
formance. The matrix reveals slight misclassifications, particularly between visually similar
signs and signs with similar initial gestures, such as act and actor.

Real-time Prediction

To demonstrate the efficiency of our approach, it is essential to provide concrete evidence.
One effective way to do this is by showcasing a real-time prediction example under both
well-lit and low-light conditions [.14. This will highlight the robustness and adaptability of
our system across different environments.

(a) Low-light example 1 (b) Low-light example 2 (c) Low-light example 3

Figure 4.12: Real-time predictions in low-light conditions.
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4.8.3 MediaPipe-GCN-BERT Approach

The MediaPipe-GCN-BERT approach has demonstrated remarkable effectiveness in address-
ing the two primary challenges of sign language recognition: the similarity between certain
signs and the varying sequence lengths. By leveraging a combination of spatial feature ex-
traction (MediaPipe), graph-based structural learning (GCN), and contextual sequence mod-
eling (BERT), this architecture efficiently captures both spatial and temporal dependencies,
leading to highly accurate recognition results.

Moreover, our approach has proven to be highly robust, achieving excellent results without
requiring data augmentation. This success highlights the effectiveness of our preprocessing
and data cleaning strategy, which ensured high-quality input data. We were able to enhance
model generalization without artificially expanding the training set.

In the following sections, we present a detailed analysis of the model’s performance, show-
casing its accuracy, robustness, and efficiency in sign language recognition.

Training results (Case 1)

Table }4.§ summarizes the performance metrics of our MediaPipe-GCN-BERT model during
training and validation. The results confirm the model’s robustness and effectiveness in sign
language recognition.

Metric | Training | Validation
Accuracy 96% 95%
Loss 0.125 0.13

Table 4.8: Training and validation performance metrics of the MediaPipe-GCN-BERT model.

Model Accuracy Model Loss
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Figure 4.13: Training and validation accuracy/loss curves of the MediaPipe-GCN-BERT model.

Training results (Case 2)

To further improve the system, we integrated background segmentation using MediaPipe.
This enhancement allows the model to focus solely on the person performing the signs, ef-
fectively reducing noise from the background.As a result in the table [£.9, we achieved a
significant increase in both the speed and efficiency of real-time predictions §.17.
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To assess the robustness of our method under challenging conditions, we simulated a low-
light environment by darkening the input image. This reflects real-world scenarios, such as
poorly lit indoor settings with dark backgrounds.

In such conditions, segmentation without processing produces rough and inaccurate con-
tours, which hinder downstream tasks like pose estimation and hand tracking using tools
such as MediaPipe Hands and Pose.

To address this, we applied a Gaussian blur to the segmentation mask. This smoothing tech-
nique reduces edge harshness, enabling more accurate foreground extraction and enhancing
the stability of landmark detection in low-contrast scenes.

Segmentation without blur Segmentation with blur

Figure 4.14: Comparison between segmentation without (left) and with (right) Gaussian blur
under low-light conditions. Blurred segmentation improves the precision of landmark detec-
tion in challenging lighting scenarios.

As shown in Figure §t.14, the blurred version yields cleaner contours and better separation
from the background.

Landmarks withaut blur Landmarks with blur

Figure 4.15: Comparison of hand and face landmarks detected without (left) and with (right)
Gaussian blur. The blurred version better preserves the full structure of the hands, leading to
more accurate landmark detection.

Figure illustrates that without blur, parts of the hands—especially fingertips—are trun-
cated, leading to missing or misaligned landmarks. With Gaussian blur, the full hand structure
is preserved, improving detection accuracy.
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Landmarks withaut blur Landmarks with blur

Figure 4.16: Comparison of pose landmarks without (left) and with (right) Gaussian blur. The
blurred version allows more accurate localization of joints like shoulders, which is critical for
pose estimation.

Additionally, as shown in Figure [4.16, low contrast caused by dark clothing and background
results in poorly localized shoulder landmarks. This impacts the construction of the pose
graph used in the Graph Convolutional Network (GCN), where joints (e.g., shoulder, elbow,
wrist) serve as nodes. Inaccurate landmarks lead to errors in the adjacency matrix, degrading
classification performance and gesture recognition robustness.

Metric | Training | Validation
Accuracy 98% 97%
Loss 0.12 0.13

Table 4.9: Training and validation(Case 2) performance metrics of the MediaPipe-GCN-BERT
model.
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Figure 4.17: Training and validation accuracy/loss curves of the MediaPipe-GCN-BERT model.

We also utilized the confusion matrix to demonstrate that with BERT, the model effectively
learns from long sequences. The results highlight BERT’s ability to distinguish between sim-
ilar signs that share the same initial gesture but differ towards the end, such as distinguishing
between act and actor. This confirms its robustness in handling fine-grained temporal varia-
tions in sign language recognition.

81



Confusion Matrix

0

25

[a]
oo

a lot
abdomen
able

about
above
accent
accept
accident
accomplish
accountant
across

act

action
active
activity
actor
adapt

) O

) O

o
o

-
3

o O O (

o 0O

0

True label

) C

o
T cY5YeEREeGERLSY>sa
205320002 m8 882828
£ o = °e"oSosE>0m
© Toguuzoay DU S BT
S ®RERUESR® #PT
Q ®S S ©
o U o
Wy
T M

Predicted label

Figure 4.18: Confusion matrix showing the model’s ability to distinguish between similar
signs with different endings, demonstrating BERT’s effectiveness in learning long sequences.

Table presents the performance evaluation metrics for different cases, including Recall,
Precision, F1-Score, and Word Error Rate (WER). These metrics provide insights into the
model’s effectiveness in recognizing and classifying signs accurately. A high Recall and Pre-
cision indicate that the model correctly identifies relevant signs, while the F1-Score balances
these two measures. The WER highlights the model’s error rate in predicting sign sequences,
with lower values indicating better performance.

Metric | Recall | Precision | F1-Score | WER
Case 1 95% 94% 94% 0.065
Case 2 95% 96% 95% 0.05

Table 4.10: Performance metrics for different cases, including Recall, Precision, F1-Score, and
Word Error Rate (WER).

To enhance the model’s generalization ability, cross-validation is the most effective approach.
Below is the configuration:

4.8.4 Cross-Validation Configuration

To evaluate the performance and generalization ability of the proposed model, we adopted a

k-fold cross-validation strategy.as shown in the table
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Table 4.11: Summary of 5-Fold Cross-Validation Configuration

Configuration Description

Cross-Validation Type | Stratified 5-Fold Cross-Validation

Tool Used KFold module from scikit-learn

Dataset Splitting Dataset D is split into 5 disjoint folds: Dy, D, D3, Dy, Ds

such that D = (J7_, D; and D; N D; = § for i # j
Training Set per Fold | For iteration k, training set is D" = | J?_, . 2, Di
Validation Set per Fold | For iteration £, validation set is Dzal =D,
Number of Iterations | 5 (each fold used once for validation)

This approach allows a robust estimation of the model’s ability to generalize to unseen data
while minimizing bias due to a particular data split.

Cross-Validation Results

The cross-validation results as illustrated in the figure demonstrate strong and consistent
performance across all folds:

Model Accuracy Across Folds

T\ AR e s i e

ST

;;;;;

Figure 4.19: Training and validation learning curves over 100 epochs using 5-fold cross-
validation.

Table 4.12: Summary of Model Performance

Category Values and Interpretations

Accuracy Performance | Mean training accuracy: 0.90 + 0.02 (all folds); Mean vali-
dation accuracy: 0.82 + 0.03 (all folds); Minimal gap (0.08)
indicates strong generalization and negligible overfitting.
Loss Metrics Training loss converges to 0.2, showing effective optimiza-
tion; Validation loss remains stable at a similar level, con-
firming good generalization.

Conclusions High performance with effective learning on both train-
ing and validation sets; Excellent generalization with small
accuracy gap (<0.1); Consistent performance across all 5
folds.

Real-time Prediction

Our approach effectively distinguishes between similar signs and handles long sequences
by leveraging robust temporal modeling and a multi-prediction confidence mechanism. As
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shown in Figure t.20, captured in real-time from a CPU-only machine (Intel Core i5 8th Gen),
the system demonstrates high prediction accuracy without ambiguity, even for visually close
gestures.

To enhance reliability, the model outputs the top-5 predicted words along with their probabil-
ities, allowing users to verify the most likely interpretations. In practice, however, the system
consistently predicts the same correct word in a loop when the gesture is performed clearly,
proving the stability of our recognition pipeline. This eliminates false variations and ensures
coherent real-time feedback.

Additionally, the lightweight architecture maintains low latency on CPU-only systems, mak-
ing it suitable for deployment in resource-constrained environments while retaining high dis-
criminative power between similar signs. The combination of efficient sequence modeling and
confidence-based filtering ensures robust performance in continuous signing scenarios.

Cfurrent Blo: (0.81) -

f
E

(a) Top-5 predictions for Sign ”Actor” (b) Top-5 predictions for Sign "Act”

Figure 4.20: Real-time prediction comparison between two similar signs on CPU (Intel i5 8th
Gen). The system resolves ambiguity by: (1) Showing high confidence for the correct sign, and
(2) Maintaining consistent top-1 prediction across consecutive frames (see looping behavior).

4.9 Discussion

The approaches proposed in this thesis for sign language recognition, offer significant advan-
tages over existing methods described in the literature. These advantages are demonstrated
by the experimental results obtained and are evident across several dimensions: performance,
computational efficiency, robustness, and real-time applicability.
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Table 4.13:

Comparative Analysis of MediaPipe-LSTM and MediaPipe-GCN-BERT Ap-
proaches versus State-of-the-Art Methods

without hardware ac-

taining accuracy; more

Aspect MediaPipe-LSTM MediaPipe-GCN- State of the Art (References)
BERT
Performance | Achieved 98% val- | Combines  attention | CNN-HMM models exhibit
& Accuracy idation accuracy; | mechanisms  (BERT) | lower accuracy and higher
processes temporal | and graph convolu- | latency [55, 70]; 3D CNNs
sequences with min- | tional networks (GCN); | and pure Transformers are
imal latency (0.01 | effectively differenti- | resource-intensive [89].
ms/word); outperforms | ates similar signs (e.g.,
traditional CNN or | act vs actor); advances
RNN models [55, 70]. over methods using
GCNs or Transformers
independently [78, 88].
Computational| Runs on CPU at ap- | Optimized for CPU | 3D CNNs and pure Trans-
Efficiency proximately 6.98 FPS | execution while main- | formers demand high com-

putational resources [55, 89].

celeration; suitable for | lightweight than large-
mobile deployment. scale 3D CNNs or pure
Transformers.
Robustness & | Utilizes data augmen- | Models anatomical | Existing approaches suffer

Compared to
State of the
Art

tegration (hands, body
pose, spatial context)
via MediaPipe.

(spatial) and BERT
(temporal) for long-
term dependency

capture; addresses sub-
tle temporal variations
at sequence ends.

Generaliza- tation (Gaussian noise, | joint connections via | in complex backgrounds and
tion random rotations) and | GCN for better gen- | low light [[120, 66, 41]; visual-
background segmenta- | eralization to unseen | only methods have limited
tion (MediaPipe) to en- | signers. generalization [[121, 74].
hance robustness; per-
forms well under low-
light conditions.
Innovations Multimodal input in- | Integration of GCN | Prior works focus on sin-

gle modality or lack effective
long-sequence modeling [82,
85, 89].

Practical Ap-
plicability

Mobile app implemen-
tation using React Na-
tive and Expo; supports
real-time, low-latency
recognition.

Suited for deployment
with practical, accessi-
ble UI; enables bidirec-
tional translation (text-
speech-signs).

Many experimental systems
limited to controlled lab set-
tings [67, 72]; accessibility
concerns noted in literature

[].

In conclusion, our approaches successfully combine efficiency, accuracy, and accessibility,
offering a comprehensive solution for sign language recognition while surpassing the limi-
tations of current methods. These contributions pave the way for more inclusive and high-
performance systems, in line with the societal challenges highlighted in this thesis.
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Limitations and Proposed Solutions

A key limitation of the proposed system is the incompatibility of the MediaPipe Python library
with mobile operating systems such as iOS and Android. During testing, it was observed that
deploying the system on an iPhone did not yield the same landmark detection accuracy as
on a desktop. This is due to the fact that MediaPipe in Python is not natively supported on
mobile devices; it requires a reimplementation using the official native APIs Swift for iOS or
Java/Kotlin for Android.

To overcome this limitation, a hybrid client-server approach is proposed. Landmark detec-
tion (e.g., hands or facial keypoints) would be executed directly on the mobile device using
native MediaPipe APIs, while the numerical landmark data would be transmitted to the Flask
backend for processing and classification by the machine learning model. This not only re-
duces latency and data transfer but also preserves privacy by avoiding the transmission of
raw images.

4.9.1 Conclusion

This chapter has translated the theoretical foundations established in the previous sec-
tions into a tangible, functional system enabling bidirectional communication between deaf
and hearing individuals. By combining advanced technologies—including gesture tracking
through MediaPipe, deep learning architectures such as CNN-LSTM and GCN-BERT, and the
use of modern libraries like TensorFlow, Spektral, and React Native—we successfully devel-
oped an integrated and interactive solution.

The experimental results demonstrated high accuracy, robustness, and generalization capa-
bilities, even under challenging conditions such as low lighting or visually similar gestures.
Through rigorous evaluation metrics—accuracy, recall, F1-score, Word Error Rate (WER), and
confusion matrices—we validated the effectiveness of our models and confirmed their reli-
ability in real-time performance. The mobile application, with its intuitive interface and
speech/text modules, further enhances accessibility, enabling seamless interaction for both
deaf and hearing users.

In essence, this chapter showcases not only the technical feasibility of our proposed system
but also its potential to significantly impact inclusive communication in real-world scenar-
ios. It lays a strong foundation for future improvements, including expanding to other sign
languages and refining avatar expressiveness for more natural communication.
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Chapter 5

Appendix:Business Model Canvas (BMC)

5.1 Supervisory and Project Team

Role Name(s) Specialty
Supervisor Dr. Samir HALLACI Computer Science
Project Team | Ghada Malak GUERGOUR | Computer Science

Table 5.1: Supervisory and Project Team Members

5.2 Project Presentation

5.2.1 Project Idea

Our innovation is a comprehensive bidirectional communication platform that bridges the
gap between deaf and hearing communities through advanced Al technologies. The system
combines real-time sign language recognition (using MediaPipe for gesture tracking) with
speech-to-sign translation capabilities, creating a seamless two-way communication channel.

5.2.2 Algerian Context and Statistics

According to the latest national data provided by the Ministére de la Solidarité Nationale, de
la Famille et de la Condition de la Femme, Algeria is home to over 200,000 individuals with
hearing impairments, including both total and partial deatness [122]. These individuals face
daily challenges due to the limited availability of interpretation services and inclusive digital
tools.

A 2021 report from the Office National des Statistiques (ONS) estimated that 5% of the Al-
gerian population experiences some form of hearing loss, a figure that aligns with World
Health Organization global averages [123]. Despite this, fewer than 15% of schools and public
institutions provide any form of sign language support or interpretation services, and most
communication tools rely on foreign systems that do not support Algerian Sign Language
(ALSL).
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Furthermore:

+ Only 2 out of 48 wilayas (Algiers and Oran) have public centers with sign language
interpretation programs [[122];

« Less than 2% of government websites offer accessible formats for deaf users [[123];

« Over 90% of imported assistive technologies are incompatible with Arabic or ArSL vari-
ants [[124].

DO
e}

—
ot
T

14% |

0%

2% |
1%

! ! ! !
Hospitals ~ Schools  Universities Government

% with Sign Support
SIS

Figure 5.1: Sign language accessibility in Algerian institutions (2021). Note: Data reflects
services primarily available in Algiers and Oran, where most interpretation programs are
concentrated.

These statistics demonstrate a clear technological and social gap in communication acces-
sibility, justifying the urgency and societal value of a locally developed, Al-powered, and
culturally adapted solution such as the S.E.N.S platform.

Social Difficulties and Challenges

« Lack of Real-Time Interpretation: Deaf individuals often face delays or complete ab-
sence of sign language interpretation in hospitals, schools, or administrative settings,
leading to miscommunication or exclusion from essential services.

+ Educational Barriers: Many deaf students rely solely on lip reading or written content,
which is insufficient for deep understanding, especially in scientific or abstract subjects
where sign language support is essential.

« Employment Exclusion: The majority of workplaces are not equipped with tools or
staff who understand sign language, creating a significant gap in job opportunities and
inclusion.

+ Healthcare Risks: Miscommunication in medical consultations can lead to misdiagnosis
or incorrect treatment due to the absence of a qualified interpreter.

« Limited Access to Public Information: Most emergency alerts, government updates,
or legal notices are not translated into sign language, excluding a large part of the deaf
community.

88



« High Cost of Existing Tools: Commercial solutions are often expensive, require special
hardware, or support only Western sign languages (e.g., ASL), making them inaccessible
for local communities in Algeria and the MENA region.

+ Social Isolation and Stigmatization: Lack of inclusive communication tools often leads
to social withdrawal, decreased self-esteem, and marginalization of deaf individuals in
society.

5.2.3 Value Creation

+ Customer Segments: The primary users are Deaf and hard-of-hearing individuals seek-
ing to communicate easily in real-life scenarios (e.g., healthcare, education, public ser-
vices), as well as hearing users (doctors, teachers, customer service agents) who lack
sign language knowledge. Secondary users include NGOs, government institutions,
and educational centers supporting accessibility.

+ Value Propositions: S.E.N.S, as illustrated in Figure @, is not only a technical solution
but a social innovation guided by the following core values:

— Inclusion: Ensuring that deaf individuals have equal access to communication,
education, healthcare, and employment opportunities.

— Accessibility: Offering a user-friendly and affordable platform that supports na-
tive sign languages, especially Algerian Sign Language (LSAI).

— Empowerment: Providing the deaf community with tools to communicate inde-
pendently, reducing reliance on human interpreters.

— Cultural Relevance: Adapting to local contexts through linguistic, regional, and
cultural personalization of the interface and recognition models.

— Innovation for Impact: Leveraging Al computer vision, and mobile technologies
not just for efficiency, but for real-world human impact.

— Sustainability: Designing a solution that is scalable, maintainable, and can evolve
through community participation and open innovation.

« Channels: The system will be distributed as a mobile application via Google Play Store
and institutional partnerships (e.g., universities, clinics). Awareness campaigns, con-
ferences, and social media will be used to promote adoption.

« Customer Relationships: The platform encourages user feedback, incorporates
accessibility-driven design, and includes customer support, regular updates, and com-
munity collaboration through surveys and testing.

« Key Activities:

— Training and improving deep learning models for sign language recognition.

— Mobile app development using React Native and Expo.
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— Integration of 3D avatar-based sign generation.

— User testing and validation in real-world environments.

— Deployment and maintenance of the platform.

« Key Resources:

+ Key Partners:

Annotated datasets for sign language gestures.
Trained deep learning models (MediaPipe-Bi-LSTM, MediaPipe-GCN-BERT).
Human resources: Al engineers, UI/UX designers, sign language experts.

Cloud infrastructure for updates and future online services.

Partner

Role / Position

Deaf associations and sign
language interpreters

Provide linguistic expertise, cultural insights, and
validation of sign language accuracy.

Universities and research

labs

Offer Al expertise, technical mentoring, dataset anal-
ysis, and model evaluation support.

NGOs and governmental in-
stitutions

Support funding, promote accessibility rights, facil-
itate legal and ethical compliance, and raise aware-
ness.

Healthcare centers and edu-
cational institutions

Serve as pilot deployment environments, offering
real-world user feedback, testing, and potential adop-
tion.

Table 5.2: Key Partners and Their Roles in the S.E.N.S. System

5.2.4 Economic Viability

« Cost Structure:

+ Revenue Streams:

Al model training and computational infrastructure (GPU usage, cloud services).
App development and testing.

Human resources (researchers, developers, testers).
Marketing and deployment efforts.

Accessibility compliance and continuous dataset curation.
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Freemium model: basic version free for personal use, premium features for insti-
tutions.

Institutional licensing for clinics, schools, and service providers.

Government grants and innovation funding.

Partnerships with NGOs and accessibility-driven programs.

5.2.5 Objectives

Technical

« Achieve >95% recognition accuracy for common gestures
+ Develop lightweight models capable of running on mid-range smartphones

« Create a scalable architecture for adding new sign languages

Social

» Reduce communication barriers in healthcare settings
« Enable deaf students to access educational content

« Facilitate workplace inclusion

Commercial

« Establish partnerships with disability organizations

« Create sustainable revenue streams within 18 months of launch
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5.2.6 Development Timeline

Phase Duration Key Activities Deliverables

Research 2 months Literature review, Dataset | Requirements doc-
identification, Tech stack | ument, Competitive
selection analysis

Prototyping 3 months Core algorithm develop- | Working MVP, Accu-
ment, Basic Ul framework | racy benchmarks

Optimization | 4 months Model refinement, Perfor- | Production-ready mod-
mance tuning, Accessibil- | els, Documentation
ity testing

Deployment 3 months App store submission, Pi- | Public release, User
lot programs, Marketing | guides
launch

Table 5.3: Development Timeline

5.2.7 Team Structure

Ghada Malak GUERGOUR
Role: Project Lead

Responsibilities: Overall management, algorithm development, integration
Expertise: Deep Learning, Computer Vision, Python/TensorFlow
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5.2.8 Future Work

Smart Glasses Inte-
gration

Phase 1 (2025-2026): MVP mobile app development; initiation of
prototype with Vuzix M4000; HUD text overlay; 5-hour battery life
target.

Phase 2 (2026-2027): Custom optics adapted for signers; haptic no-
tification feedback; support for multiple sign languages.

Phase 3 (2027-2028): Fully standalone glasses with on-device Al;
AR sign language tutor; enterprise edition for healthcare and cus-
tomer service.

Extended Timeline

2025 Q3: Start mobile app MVP development

2025 Q4: MVP mobile app release (basic translation)

2026 Q1: SDK alpha for smart glasses (for devs/testers)
2026 Q2: Prototype field testing + seed funding round
2026 Q3: Educational version launch

2026 Q4: Official launch in Algeria

2027 Q1: AR advanced features (gesture overlays, contextual UI)
2027 Q2: Series A fundraising round
2027 Q3: Enterprise hardware version launch

2027 Q4: Development of on-glasses Al co-processor

2028 Q1: Global partnerships with deaf education institutions

2028 Q2: IPO preparation or major expansion phase

Technical Roadmap

Computer Vision: 2026 — 2D gesture recognition; 2027 — 3D spatial
awareness; 2028 — Full-body motion and emotion recognition.

Hardware: 2026 — Off-the-shelf commercial smart glasses; 2027 —
Custom reference design; 2028 — Al-powered ASIC processor for
AR and sign language tasks.

Table 5.4: Updated Future Work and Roadmap (2025-2028)
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5.2.9 Innovative Aspects

Domain Breakthrough Innovations

Technical Innova- | Hybrid GCN-BERT Architecture - Combines GCN for modeling
tion 21 hand + 33 body landmarks and BERT for context over 128-frame
sequences. Includes novel cross-attention between spatial and tem-
poral streams.

Hardware Optimization — Runs on Intel i5-8250U CPUs with 110ms
latency using INT8 quantization, speculative execution, and a mem-
ory footprint under 500MB.

Multimodal Processing — Fuses data from video (MediaPipe Holis-
tic), IMU sensors (smart glasses), and speech/text input.

Social Innovation Accessibility Breakthrough - First Algerian mobile app supporting
native Algerian Sign Language, Arabic/Darija Ul and 90% cheaper
than foreign apps.

Societal Impact — Built with stakeholders including rehabilitation
centers, special education schools, and the Ministry of Solidarity.
Includes an integrated educational toolkit.

Technological In- | Context Awareness — Automatically detects domains like medical
novation (consultations), educational (classroom), or professional.

Scalability — Continuous learning with user-generated signs and a
community validation mechanism.

Table 5.5: Summary of Innovative Aspects Across Technical, Social, and Technological Do-
mains

Metric Value Competitive Advantage

GCN Accuracy 98.2% Superior distinction of simi-
lar signs

BERT Latency 86ms Guaranteed real-time perfor-
mance

Hardware Com- | x86/ARM Mass deployment capability

patibility

Adoption Rate 73% (pilot phase) | High cultural acceptability

Table 5.6: Key Performance Metrics and Competitive Benefits

94



5.3 Strategic Market Analysis

5.3.1 Market Segmentation

Our solution targets three primary customer segments: First, the deaf and hard-of-hearing
community, estimated at over 430 million people globally according to WHO data. Second,
educational institutions, particularly Algeria’s network of 200+ specialized schools for deaf
students that currently lack affordable digital tools. Third, healthcare providers and progres-
sive employers committed to accessibility compliance. Geographically, we adopt a phased
rollout strategy beginning with Algeria (where 5% of the population experiences hearing loss),
followed by expansion to Maghreb neighbors Tunisia and Morocco within 24 months, and ul-
timately addressing the broader MENA region’s 22 million affected individuals.

5.3.2 Competitive Advantage

The current market .7 is dominated by Western solutions like Brazil’s HandTalk ($20/month
subscription) and SignAll’s $15,000 hardware system, both ill-suited for Arabic sign languages.
Our competitive edge stems from three key differentiators: (1) Cultural specificity through
native Algerian Sign Language (LSAI) support, (2) Cost efficiency with pricing 90% below
imports, and (3) Technical adaptability via continuous learning features that accommodate
regional dialect variations.

Table 5.7: Comparison of Sign Language Recognition Systems (Costs in DA)

Criterion S.ENN.S HandTalk SignAll Google
(Ours) SignTown

Cost 500 20,000 1,500,000 DA Free (lim-
DA/month | DA/year ited)

Supported Lan- | ALSA, Ara- | ASL, BSL ASL ASL, LSF

guages bic

Hardware Standard High-end External sen- | PC + Web-
smart- phone sors cam
phone

Accuracy 98% 95% 99% 90%

Offline Mode Yes No Yes No

Key Insight: Our system costs 40x less than SignAll while supporting localized ALSA.

5.3.3 Marketing Strategy
To promote S.E.N.S and ensure adoption among the deaf community, educational institutions,
healthcare providers, and employers, we propose a multi-faceted marketing strategy tailored

to Algerian contexts:

+ Targeted Discounts and Trials: Offer free access to the freemium model (50 daily trans-
lations) for the first 100 users through the Algerian Deaf Federation for three months.
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Provide a 50% discount on premium subscriptions (500 DA/month) for early adopters
in deaf associations.

Events and Workshops: Host five workshops in specialized schools in Algiers and
Oran, targeting 200 students and teachers to demonstrate S.E.N.S features like real-time
sign language recognition.

Advertising Campaigns: Launch a social media campaign on Facebook and Instagram
with a 50,000 DA budget, targeting deaf community groups in Algeria. Collaborate with
local TV channels for accessibility-focused advertisements.

Partnerships: Partner with Algérie Télécom for co-branded campaigns and the Min-
istere de la Solidarité Nationale for endorsements to amplify reach.

— Why Algérie Télécom:

« National coverage and recognition: As the main telecommunications
provider in Algeria, Algérie Télécom has a wide presence across all regions,
allowing S.E.N.S to reach users even in remote areas.

« Trusted public image: Collaborating with a well-known and respected na-
tional company strengthens S.E.N.S’s credibility and reassures users and
partners.

« Strong communication channels: With access to physical agencies, web-
sites, and social media, Algérie Télécom can help widely disseminate the
solution.

«+ Inclusive mission: The company supports educational and social projects,
aligning with the values and purpose of S.E.N.S to improve accessibility for
the deaf community.

+ Technical and commercial potential: Future possibilities include integrat-
ing S.E.N.S into internet packages or billing systems, facilitating broader
adoption.
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Category

Budget (DA)

Justification

Events and Workshops

44,000 (40%)

Organization of 5 workshops in spe-
cialized schools in Algiers and Oran
(approx. 8,800 DA each) to reach
200 students and teachers through live
demonstrations. Goal: drive early, on-
the-ground adoption.

Social Media Advertising

33,000 (30%)

Sponsored campaigns on Facebook
and Instagram targeting deaf commu-
nity groups, with visual content cre-
ation to maximize online visibility and
attract initial users.

Public Relations

33,000 (30%)

Press release creation and distribu-
tion, co-branded posters with Algérie
Télécom, and communication efforts
to secure support from the Ministry of
National Solidarity. Goal: boost cred-
ibility and institutional backing.

Total

110,000

Table 5.8: Marketing Budget Allocation

5.4 Production and Operations Plan

5.4.1 Development Phases

Table 5.9: Production Process

Phase Duration Activities Tools/Technologies

Market  Re- | 1 month Surveys with 100 deaf | Google Forms, SPSS

search users

Design/ 2 months Wireframes, MVP app de- | Figma, React Native

Prototyping velopment

Data Acquisi- | 3 months Collect 1,000+ hours LSAl | Cameras, MediaPipe

tion video data

Model Train- | 3 months Train GCN-BERT models | TensorFlow, NVIDIA

ing GPUs

Testing 2 months Unit, integration, UAT | Jest, Postman, surveys
with 50 users

Deployment 1 month Deploy app on | AWS, CI/CD pipelines
i0S/Android, AWS
cloud

Launch 1 month Soft launch in 5 Algiers | App Store, Google Play
schools

Maintenance | Ongoing Bug fixes, model retrain- | GitHub, = TensorFlow
ing Serving
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5.4.2 Partnership Ecosystem

Strategic alliances form the backbone of our operational model:

+ Academic: Data sharing agreements with Computer Science Department
+ Technological: Cloud infrastructure partnership with Algérie Télécom

« Community: Co-development with the Algerian Deaf Federation (FAS)

5.4.3 Procurement

To support S.E.N.S development, the following resources will be procured:

« Hardware: 2 NVIDIA RTX 3090 GPUs (80,000 DA) via local tech supplier; 5 HD cameras
(20,000 DA) for LSAI data collection.

+ Software: AWS Educate cloud credits (50,000 DA); Figma Pro license (10,000 DA).

« Data: LSAI video datasets through partnership with Algiers University’s Linguistics
Department.

5.5 Financial Framework

5.5.1 Capital Requirements

Category Item Cost (DA)
Hardware 50,000
Development | Software Licenses 30,000
Data Collection 120,000
Cloud Hosting (AWS) 50,000
Operations Office Space 50,000
Utilities 30,000
Marketing Campaigns 80,000
Outreach Events/\i&/%)lrkshfpsg 30,000
Total 440,000

Table 5.10: Cost Breakdown
5.5.2 Funding Sources

The 440,000 DA capital will be secured through a 50% personal contribution (220,000 DA) and
a 50% ANSE] loan (220,000 DA).
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5.5.3 Revenue Model

We employ a tiered monetization strategy:

Freemium Base: Free version with 50 daily translations

Individual Premium: 500 DA/month for unlimited use

Institutional Licenses: 20,000 DA annual fee per school/hospital

« Government Contracts: Custom deployments at 150,000 DA per province

5.5.4 Personnel Plan

Team Composition

Role Type Salary (DA/month) | Hiring Timeline
Al Developer Permanent 70,000 Month 3
Mobile Developer Contract 60,000 Month 3
Sign Language Expert | Consultant 30,000 Month 1
Marketing Specialist | Contract 35,000 Month 6
Table 5.11: Team Composition and Salary Structure
Staffing Budget

« Year 1 Total: 1,860,000 DA

— Fixed salaries: 1,440,000 DA

— Consultant fees: 360,000 DA

— Social charges (30%): 558,000 DA

« Year 2 Total: 2,400,000 DA

— Team expansion planned (+1 full-time developer)

« Benefits Package:

— CNAS health insurance (5% of salary)

— Transport allowance: 5,000 DA/month

— Training budget: 50,000 DA/year per developer

99




Recruitment Strategy

+ Technical Staff: Recruitment through:

— Computer science department partnerships

— Algerian developer communities
« Sign Language Experts: Collaboration with:

— Algerian Deaf Federation (FAS)

— National Institute for Special Education
+ Internship Program:

— 2 positions/year for computer science students
— Stipend: 20,000 DA/month

— ANSEJ-funded internships possible

Productivity Metrics
KPI Target | Bonus Threshold
Model Accuracy Improvement | +5%/quarter +7%
App Downloads 5,000/year 7,500
User Retention Rate 65% 75%
Bug Resolution Time <48 hours <24 hours

Table 5.12: Performance Indicators and Incentives

Personnel Cost Projection
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Figure 5.2: Three-year personnel cost projection showing gradual team expansion
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5.5.5 Revenue Projections

Table 5.13: Three-Year Revenue Projections

Year Freemium | Premium Institutional Government | Total (DA)
Users (500 (20k DA/yr) (150k DA)
DA/mo)
1 1,000 100 5 (100,000) 0(0) 700,000
(600,000)
2 2,000 500 20 (400,000) 2 (300,000) 3,700,000
(3,000,000)
3 5,000 1,000 50 (1,000,000) | 5 (750,000) 7,750,000
(6,000,000)
-10°
T
8M - 75107 i}
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< 6M 2
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Figure 5.3: Stacked revenue projections (Years 1-3) showing contributions from Premium sub-
scriptions (blue), Institutional licenses (red), and Government contracts (green). Values in DA
(1M = 1,000,000 DA).

5.5.6 Balance Sheet

Item Amount (DA)
Assets
Equipment 100,000
Cash 340,000
Total Assets 440,000
Liabilities
Personal Contribution 220,000
ANSE] Loan 220,000
Total Liabilities 440,000

Table 5.14: Initial Financing Plan
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Initial Balance Sheet Breakdown
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Figure 5.4: Visual breakdown of assets and liabilities.

5.5.7 Assumptions Underlying Financial Estimates

The financial projections provided in this section are based on personal assumptions and
general benchmarks derived from similar technological projects and market behaviors in
emerging economies. Due to the absence of a formal market study, these estimates are in-
tended to illustrate the potential economic viability of the proposed system rather than to
serve as precise financial forecasts.

Key assumptions include:
« Estimated development costs are drawn from average freelance and startup pricing in

the Algerian tech ecosystem.

« Revenue projections are modeled on plausible adoption scenarios within institutions
such as schools, universities, and healthcare centers.

+ Personnel costs reflect a gradual team expansion over three years, assuming modest
salary growth.

« The pricing strategy for subscriptions and licenses is inspired by accessible pricing prac-
tices in socially-driven tech solutions.

While these figures are speculative, they provide a structured foundation for understanding
the potential business model and preparing for future validation through more detailed feasi-
bility studies or pilot deployments.

5.6 Risk Analysis

5.6.1 Technical Risks

The MG-BERT model may not be fully adaptable to the Algerian dataset due to differences
in language structure, dialects, or domain-specific terminology. To mitigate this, the model
should be fine-tuned or enhanced using localized data to improve its performance and rele-
vance.
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5.6.2 Social Risks

+ Cultural Resistance: Preference for human interpreters. Mitigation: Co-design work-
shops with FAS.

« Digital Literacy: Elderly users may struggle with Ul Mitigation: Onboarding tutorials
in LSAL

5.6.3 Financial Risks

+ ANSE]J Loan Default: 30% risk if adoption <50 users/year. Contingency: Crowdfunding
via Jisr Platform.

Risk Likelihood | Impact | Mitigation
Hardware Failure | Medium High 2-year warranty clauses
Data Privacy Laws | Low Critical | On-device processing

Table 5.15: Risk Assessment Matrix

5.7 Deployment and Validation

5.7.1 User Testing Protocol

User testing will be conducted in the upcoming phase of the project. The protocol is as follows:

« Planned Participants: 50 individuals — 30 deaf and 20 hearing — will be recruited
through FAS to ensure a balanced representation of urban and rural users.

+ Metrics to Be Evaluated: The system will be assessed based on accuracy (expected:
97% for LSAl gestures), latency (target: <100ms), and usability (expected average score:
4.5/5).

« Feedback Approach: Bi-weekly focus groups will be organized to collect participant
input and iteratively refine gesture recognition performance.

« Anticipated Participant Demographics: The sign language testing cohort is expected
to include 50% male and 50% female participants; 70% aged between 18-35, 20% between
36-50, and 10% over 50. Additionally, 80% of participants will come from urban areas
and 20% from rural regions, ensuring diversity in gesture styles and signing habits.

The evaluation approach consists of the following elements:

+ Questionnaires: Structured forms to assess ease of use, responsiveness, interface clar-
ity, and perceived usefulness of the application.

+ Interviews: Semi-structured interviews with Deaf users to gather qualitative insights
on their experience, expectations, and difficulties.
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+ Observation: Direct observation of users interacting with the system to analyze usage
patterns, facial expressions, confusion points, and gestures.

« Usability metrics: Quantitative measurements such as task completion time, error rates,

and number of interactions required to complete tasks (e.g., translating a phrase).

This user-centered evaluation methodology will guide the iterative improvement of the sys-
tem and ensure that the application meets real-world communication needs. The feedback
loop established by these methods reinforces the project’s human-centered approach and
long-term sustainability.

5.7.2 Roadmap Enhancements

Post-launch priorities include:

« Integration of regional variants (Kabyle sign dialects by Q3 2025)
+ Smart glasses optimization for industrial applications

« Al tutor functionality for sign language learning

5.8 S.E.N.S: Silence, Ecoute et Nouvelle Sensation

S.E.N.S, which stands for Silence, Ecoute et Nouvelle Sensation, is more than just a project title,
it embodies the vision and emotion behind this innovation. Rooted in the values of inclusion,
empathy, and accessibility, S.E.N.S aims to bridge the communication gap between Deaf and
hearing individuals by transforming silent gestures into meaningful interactions.

For a detailed explanation of the system, please refer to Section 4.4,
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General Conclusion

The history of sign language, marked by struggles, imposed silences, and resilience, reminds
us that it is not merely a tool for communication but a carrier of identity, culture, and dignity
for millions of deaf people worldwide. While oralism has long sought to erase this natural
language, today’s technological advances offer us a unique opportunity: not to replace sign
language, but to build bridges. Bridges between two worlds that too often look at each other
without truly understanding one another.

This thesis fits into this dynamic. It has presented the development of an intelligent sys-
tem based on deep learning, designed to facilitate two-way communication between deaf and
hearing users through gestural language. Starting from a historical, social, and technical ex-
ploration of the context, we demonstrated how communication barriers persist in critical areas
such as education, healthcare, and employment.

Three architectures were proposed and analyzed: CNN-LSTM, MediaPipe-BiLSTM, and
MediaPipe-GCN-BERT. Each brought different perspectives depending on the type of ges-
tures (isolated or continuous) to be recognized. While the MediaPipe-LSTM model achieved a
remarkable accuracy of over 98%, its limitations in handling long sequences led us to propose
a more robust approach combining Graph Convolutional Networks (GCN) with BERT. This
latter model proved better suited to managing the complexity of real-time gestural sequences,
taking into account both the spatial structure of gestures and the overall semantic context.

A mobile application was developed to implement these solutions concretely, integrating
voice recognition, gesture generation via a 3D avatar, and an intuitive interface. Experimen-
tal evaluations confirmed the system’s relevance, adaptability in real-world conditions, and
potential for extension to other linguistic and cultural contexts.

This work thus goes beyond purely technical boundaries. It proposes a human-centered inno-
vation that places technology at the service of accessibility, inclusion, and social justice. Fu-
ture perspectives include enriching the system with facial and non-manual body expressions,
integrating regional dialects of sign language, as well as generalizing it to other languages
and cultures.

Ultimately, this thesis affirms a conviction: the most powerful technology is the one that
knows how to listen to silent needs.
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